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Abstract 

This dissertation explored two major sources of systematic errors, namely, 

selection bias and missing data in electronic health record (EHR)-linked biobank 

research. EHR-linked biobanks are a tremendous resource for answering questions of 

public health and clinical significance. However, they are non-probability samples 

wrinkled with multiple sources of bias. Aim 1 explored the impact of selection weights on 

the potential for reducing selection bias for four common analyses (prevalence, 

dimensionality, and association estimation, and large-scale hypothesis testing) across 

three EHR-linked biobanks with different recruitment mechanisms: the NIH All of Us 

Research Program (AOU; n=244,071), the University of Michigan’s Michigan Genomics 

Initiative (MGI; n=81,243), and the UK Biobank (UKB; n=401,167). In the US-based 

cohorts (AOU and MGI), inverse probability and poststratification selection weights were 

derived using National Health Interview Survey data to reflect the US adult population. 

Findings highlighted the importance of selection weights, especially when estimating 

prevalences and associations, and underscored the need for biobanks to disclose their 

recruitment and selection processes. 

Aim 2 compared six approaches to constructing phenotype risk score (PheRS) in 

MGI for three digestive cancer diagnoses with no definitive screening tools currently 

available: esophageal, liver, and pancreatic. We assessed whether weighted approaches 

enhanced performance in the external evaluation cohort, AOU. No single PheRS 



 xvii 

approach uniformly performed better in terms of risk stratification, though elastic net and 

random forest tended to exhibit good properties. Additionally, in no setting did using 

weights meaningfully or consistently improve PheRS risk stratification performance. 

Notably, the results for liver cancer suggest that agnostic EHR-based approaches toward 

early detection have promise. Our findings suggest that EHR-linked biobank researchers 

should consider using health history summarized as PheRS, which contributed to risk 

stratification alongside other domains, including covariates, risk factors, and presenting 

symptoms, in risk prediction and stratification. The use of weights, however, did not 

conclusively alter the transferability of the risk prediction models. 

Aim 3 explored the joint impacts of missing data and selection bias in EHR-linked 

biobanks using polygenic risk scores (PRS). Leveraging relatively complete genetic 

information available in EHR-linked biobanks, we compared three missing data methods: 

complete case analysis, multiple imputation without using exposure and outcome PRS 

(woPRS-imputed), and multiple imputation with exposure and outcome PRS (PRS-

imputed). We evaluated association estimation performance with simulated data 

generated as missing completely at random (MCAR), missing at random (MAR), and 

missing not at random (MNAR). Our simulation analyses considered random and biased 

sampling of data with missingness in (a) exposure only and (b) both exposure and 

outcome. We found that weighting biased sample data was crucial to reducing bias in 

association estimation and recovering coverage rates. PRS-imputed analyses also had 

better association estimation properties than standard woPRS-imputed analyses, 

particularly for MAR data. These findings highlight the need to use sampling weights 



 xviii 

representative of the intended target population to address selection bias and PRS to 

address missing data. 

This dissertation has the potential to guide the application of principled methods 

that are appropriately applied to imperfect EHR-linked biobank data, thereby improving 

the quality of analyses, inference, and their impact on data-driven decision-making for 

relevant target populations. The role of selection bias differs across inferential goals and 

that studying multiple sources of bias, such as selection bias and missing data, together 

is critical for biobank analysis, a burgeoning field in epidemiology and clinical research. 

 



 1 

Chapter 1 Introduction 

1.1 Overview of the dissertation 

This dissertation was focused on addressing the methodological concerns of selection 

bias and missing data in electronic health record (EHR)-linked biobanks. 

• Aim 1 focused on the use of selection weights in common data tasks using EHR-

linked biobank data. EHR-linked biobanks often do not represent a group of people 

about whom researchers are interested in drawing conclusions. This aim involved 

developing selection weights that can be used to correct for the lack of 

representativeness in EHR-linked biobanks to draw research conclusions that are 

generalizable to the target population.  

• Aim 2 focused on comparing methods for risk prediction model development and 

whether weighted-based methods improved performance of prediction rules when 

they are transferred across EHR-linked biobanks. EHR-linked biobanks have 

multiple domains of data, including sociodemographic information, diagnosis 

codes, laboratory results, imaging data, and genotype data. We compared six risk 

prediction methods and explored whether weighting methods improved the 

performance of risk prediction models for three digestive cancers developed using 

diagnosis code data in the EHR. We compared the performance of the unweighted 
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and weighted approaches alongside models using covariates, risk factors, and 

symptoms. 

• Aim 3 jointly focused on missing data and selection bias in the EHR-linked 

biobanks. Exposure data, such as smoking and drinking status, body mass index, 

and glucose, are often incomplete or missing in EHR data. We explored (a) 

whether using largely complete genotype data available in EHR-linked biobanks 

reduced bias due to missing data using multiple imputation and (b) the joint 

impacts of missing data and selection bias on association analyses. 

This dissertation includes six chapters. Chapter 1 introduces the dissertation and the 

three aims. Chapter 2 provides background and a critical evaluation of the literature on 

EHR-linked biobanks, methodological concerns of selection bias and missing data, and 

risk prediction models, three main themes that are explored in this dissertation. Chapters 

3-5 present the scientific content relevant to the three aims. Chapter 6 is the conclusion, 

which summarizes the significance and public health relevance of the key findings for 

each of the aims and describes directions for future research. 

1.2 Aim 1: Exploring the impact of selection weights on commonly conducted 

analyses in EHR-linked biobanks 

EHR-linked biobanks link EHR data like diagnosis codes, procedures, laboratory 

results, and imaging data to genetic data and potentially other domains, including self-

reported survey data, death registry data, residential history, and neighborhood-level 

characteristics.1 EHR-linked biobanks, including All of Us (AOU)2 (n > 760,000) and the 

UK Biobank (UKB)3 (n > 500,000), are increasing in size and number and are publicly 
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available to researchers. However, these cohorts are non-probability samples and are 

likely not representative of their target populations.2,4  

Despite aiming to be population-based, the lack of representativeness in these 

EHR-linked biobanks induces selection bias and may lead to conclusions that are not 

generalizable.5–7 Ideally, selection bias would be mitigated in the study design phase.6  

However, EHR-linked biobank administrators often do not (or cannot) take steps to 

prevent selection bias2,4,8,9 in pursuit of large sample sizes. Further, many of the users of 

these data are not involved in data collection and study design. 

There are analytic approaches to reduce the impact of selection bias; the most 

common are weighting-based methods.5–7,10 Recently, Beesley and Mukherjee 

developed theory to address selection bias in EHR-linked biobanks.7,11 Van Alten and 

colleagues estimated selection weights for the UK Biobank.8 However, many EHR-linked 

biobanks do not provide selection weights for researchers, and it is unclear how important 

selection weights are in different analyses. 

Aim 1: To explore the role of selection bias adjustment by weighting EHR-linked biobank 

data for commonly performed analyses. 

• Sub-aim 1.1: To estimate inverse probability and poststratification weights in two 

US-based EHR-linked biobanks – AOU and MGI – to make them representative of 

the US adult population and to apply previously estimated weights in UKB to make 

it representative of the UKB-eligible population. 

• Sub-aim 1.2: To compare demographics, EHR characteristics, and the diagnostic 

phenomes of three EHR-linked biobanks: AOU, MGI, and UKB. 
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• Sub-aim 1.3: To evaluate whether selection weights meaningfully change and 

improve descriptive (prevalence and latent dimension estimation) and analytic 

(association estimation and large-scale, agnostic hypothesis testing) tasks in the 

same three EHR-linked biobanks. 

1.3 Aim 2: Exploring the impact of selection weights on the development of risk 

prediction models 

Risk prediction and stratification is a hallmark of population and precision health.12–

15 A classic example is the Framingham Risk Score, which identifies individuals at high 

10-year risk for cardiovascular disease and are candidates for drug interventions to 

reduce their risk.14 While models, scores, and calculators for many diseases exist, 

computational and statistical advances in the analysis of multi-modal Big Data are 

transforming the promise of precision health into reality.16 

 Risk prediction methods include traditional regression, regularized regression, 

machine learning, ensemble methods, and pruning-and-thresholding in polygenic risk 

score (PRS) development. Some methods, like regularized regression and random forest, 

can accommodate high-dimensional data (like those found in EHR-linked biobanks) and 

involve tuning hyperparameters prior to model fitting. Recently, Iparragirre and colleagues 

developed theory and an R package to tune the 𝜆 hyperparameter in lasso models with 

complex survey weights, which can be modified to accommodate selection weights for 

several types of models.17 Weighting-based methods can make analytic samples more 

representative of the target population (e.g., an external sample). Lack of transferability, 

a related problem, occurs when there are differences in the data distributions between 



 5 

internal and external samples, resulting in a reduction in model performance in the 

external sample. 

Because EHR-linked biobanks contain multiple domains of data, they present an 

opportunity to compare risk prediction performance and combine information across 

domains. Recently, Salvatore and colleagues developed a phenotype risk score (PheRS) 

for pancreatic cancer using diagnosis data available in the EHR and found it contributed 

to risk prediction alongside covariate, risk factor, and genetic data.18 Building on this work, 

different PheRS development approaches and the impact of weights on risk prediction 

model performance in an external validation cohort (i.e., transferability) are explored in 

Aim 2. 

Aim 2: To determine optimal PheRS development approaches and whether weighting-

based approaches improve transferability across EHR-linked biobanks. 

• Sub-aim 2.1: To modify an existing R package to accommodate weighted 

hyperparameter tuning for regularized regression and random forest models. 

• Sub-aim 2.2: To determine if there is an optimal PheRS development approach. 

• Sub-aim 2.3: To determine whether weights improve the performance of diagnosis 

code-based risk prediction models in an external validation cohort. 

• Sub-aim 2.4: To evaluate whether PheRS meaningfully improve risk stratification 

alongside models developed using covariate, risk factor, and symptom data. 

1.4 Aim 3: Using genotype data to inform imputation of missing non-genetic 

exposure data 

EHR-linked biobank data are subject to multiple concurrent sources of bias, like 

missing data and selection bias; however, these biases are often studied in isolation. 
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Missing data is a foundational problem in statistics19 and a common practical problem in 

epidemiologic research.20,21 Analyses restricted to individuals with non-missing data (i.e., 

complete case analyses) are commonplace21 but can lead to biased conclusions if data 

missingness is informative (and dependent on unmeasured factors).22 Observations in 

EHR data are further complicated by clinically informative visiting processes and EHR 

fragmentation (where different providers collect data on the same person).23–28 Other 

analytic approaches to analyzing data with missing values are more robust, like inverse 

probability weighting and multiple imputation.20,29–32 

Multiple imputation is a commonly used and easily implemented approach to 

reducing bias when analyzing data with missing values.20,33–35 It fills in missing values by 

drawing from distributions informed by relationships between observed variables.32 

Imputation of medical and EHR data has received significant attention, though often 

without genetic data.36–39 

Genetic data is often summarized as a PRS to predict health-related outcomes, 

most commonly disease risk.40–42 Recently, Ma and colleagues developed exposure PRS 

(ExPRS) and found that the relationships between these ExPRS mirrored the 

relationships seen in the raw exposure data.43 Concurrently, Li, Chen, and Moore found 

that using genetic information improved imputation in missing EHR data.44 These findings 

present an opportunity to explore whether genotype-informed imputation of non-genetic 

data reduces biases in exposure-outcome association analyses. 

At the same time, recruitment mechanisms (e.g., recruitment through specific 

clinics45 or oversampling of underrepresented groups2) and participant-driven (e.g., 
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healthy volunteers4) factors impact EHR-linked biobank participation leading to selection 

bias. 

Aim 3: To evaluate (a) the degree to which genotype-informed multiple imputation of 

missing data and (b) selection weighting of the internal sample mitigate the joint impacts 

of missing data and selection bias and lead to bias reduction in association analyses 

using EHR-linked biobank data. 

1.5 Objective 

This dissertation explores methodological issues related to selection bias and 

missing data in common EHR-linked biobank analyses. As a broader range of 

researchers analyze EHR-linked biobank data, we aim to provide practical guidance on 

when and what methods researchers should implement to perform meaningful and 

impactful research. In total, this dissertation informs analytic approaches designed to 

achieve results that are readily applicable to intended target populations, reducing the 

time between study and the translation of its results among the people whom research is 

intended to benefit.  
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Chapter 2 Background 

2.1 Promise and perils of electronic health record-linked biobanks 

Electronic health record (EHR)-linked biobanks are repositories with biospecimen 

and/or related data linked to EHR and other forms of auxiliary data (e.g., medical and 

pharmacy claims, residential-level neighborhood characteristics; Section 2.2).1,7,11,46 

Notable examples include the National Institutes of Health All of Us Research Program2 

(AOU; beginning in 2018) and the UK Biobank3 (UKB; starting in 2006), while efforts like 

the Global Biobank Meta-analysis Initiative (GMBI)47 are fostering collaborations and 

meta-analyses across biobanks. Alongside improvements in biospecimen analysis and 

computational methods and capabilities, EHR-linked biobanks are rapidly growing in size 

and number (Beesley and colleagues (2020) highlighted 21 major EHR-linked biobanks1 

– only a fraction of those globally). 

 Because of their size, data linkage capabilities, immediacy, and accessibility, EHR-

linked biobanks are attractive to clinical and health researchers. Central administration of 

these cohorts means researchers can avoid devoting resources like time (e.g., obtaining 

IRB approval for primary human subjects’ data collection, writing grant applications for 

funding, managing study team personnel, data collection administration) and money 

towards primary data collection and instead focus on analyzing data and publishing 

findings. The wealth of and benefits of EHR-linked biobank data have not gone unnoticed; 
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PubMed citations dealing with EHR and EHR data have more than tripled in the last 

decade from 3,212 citations in 2013 to 9,824 in 2023. 

However, while careful study design before primary data collection can mitigate 

data quality issues, this is not always possible in EHR-linked biobanks. There are 

methodological issues researchers need to be aware of and critically consider before 

diving into analyses and drawing conclusions. Traditional concerns include selection bias 

(Section 2.3), missing data (Section 2.4), confounding,48,49 and misclassification.7,50,51 In 

contrast, other concerns arise like false (a) confidence in results simply due to large 

sample size and (b) discoveries (controlling false discovery rate due to multiple 

testing52,53), target validity,54 and informed presence/absence bias1,25,26,55,56 (other 

concerns in Section 2.5). Sections 0, 2.4, and 2.5 describe the current literature regarding 

these concerns. Section 2.6 discusses risk prediction model development, its application 

to EHR-linked biobank data, and challenges. Section 2.7 summarizes the dissertation 

motivation based on the background provided in the preceding sections. 

2.2 Electronic health records: what are they? 

EHRs, acting as massive longitudinal cohorts with passively collected data, hold 

immense potential for medical research. These data include structured metrics like 

diagnosis codes (International Classification of Disease [ICD]) and unstructured data like 

doctors’ notes and imaging data. Structured data, with their standardized nomenclature, 

are readily accessible to researchers. Unstructured data, with the growth of processing 

and analysis methods like natural language processing, machine learning, and artificial 

intelligence, will only continue to augment and complement existing structured data. 

Significant efforts, like the Observational Medical Outcomes Partnership Common Data 
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Model57 and SNOMED Clinical Terminology,58 map information from several clinical 

sources and lexicons to a standard concept set for domains including drugs, conditions, 

procedures, and measurements, further increasing accessibility and interoperability. 

Diagnoses captured as ICD codes during health care encounters serve as a 

foundation data domain in this dissertation. They are maintained by the World Health 

Organization, originally designed to facilitate the international comparability of morbidity 

and mortality data.59,60 ICD codes are, as mentioned in Section 2.2, structured data, and 

the tens of thousands of alphanumeric codes are grouped into 22 chapters (in ICD 10 th 

Revisions, or ICD-10; e.g., Chapter II: Neoplasms, Chapter XI: Diseases of the digestive 

system) and can be nested (e.g., C25: Malignant neoplasm of the pancreas; C25.0: 

Malignant neoplasm of head of pancreas). Moreover, as these codesets are periodically 

updated, codes and their usage are also updated (e.g., ICD-9 was used until ICD-10 

came into effect in 2015). Because these codesets are standardized and used globally, 

they are attractive for use in research. However, the granularity encoded in ICD codes 

may not be helpful in research contexts, and changing codesets over time can hamper 

data harmonization. Realizing these limitations, a team at Vanderbilt University developed 

phecodes, which map both ICD-9 and ICD-10 codes into broader yet clinically meaningful 

phenotypes (the latest version, phecode X, defines 3,612 phenotypes; Figure 2.1), 

focused on common diagnoses to facilitate genome-wide association studies.61–63 
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Figure 2.1 Example mapping International Classification of Disease (ICD) 9th and 10th edition codes to 
phecode version 1.2 and phecode X codes for chronic hepatitis. Note the mapping for phecode X is not 
exhaustive (there are 23 unique ICD codes, only 17 are shown). Mapping tables can be found at 
https://phewascatalog.org. Phecodes are described in Denny and colleagues,62 Bastarache,63 and Shuey 
and colleagues.61 

The first application of phecodes was to conduct disease-single nucleotide 

polymorphism (SNP) phenome-wide association studies (PheWAS) by Denny and 

colleagues in 2010, successfully reproducing 5 of 7 known disease-SNP associations and 

identifying 19 previously unidentified associations.62 PheWAS have also been conducted 

on other types of genetic data besides SNPs, including gene expression levels and 

functional genetic variants. We have previously used phecodes to conduct a phenotype-

phenotype PheWAS to identify associated diagnoses and construct a phenotype risk 

score (PheRS) for pancreatic cancer.18 While phecodes are beneficial for large-scale, 

agnostic hypothesis testing and -omics-wide association studies, other high-throughput 

phenotyping algorithms exist (e.g., PheNorm64 and PheCAP,65 both of which also 

incorporate narrative notes) and curated (e.g., PheKB66) phenotyping algorithms which 

incorporate information across EHR data domains, including lab results and clinical notes, 

can be preferable in targeted analysis settings. 

070.4
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version

Chronic hepatitis

K73 Chronic hepatitis NOS

K73.0 Chronic persistent hepatitis

571.4

ICD9 ICD10 ICD Description

571.40

571.41

K73.4571.42 Autoimmune hepatitis

K73.8571.49 Other chronic hepatitis

K73.1 Other lobular hepatitis, not elsewhere classified

K73.2 Chronic active hepatitis, not elsewhere classified

K71.5 Toxic liver disease with chronic active hepatitis

K73.9

Chronic hepatitis

Description

Chronic hepatitisGI_540.1

X Description

K71.6 Chronic viral hepatitis, not elsewhere specified

B18 Chronic viral hepatitis

B18.1 Chronic viral hepatitis B without delta-agent

B18.2 Chronic viral hepatitis C

1.2

https://phewascatalog.org/
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Moreover, EHR data are increasingly linked with biospecimens and associated 

genetic information, creating EHR-linked biobanks. These biobanks are also connected 

to other data sources, such as administrative claims data, vital status records, cancer 

registries, neighborhood-level characteristics, and self-report survey data (Figure 2.2).67 

The multi-modal nature of these data provides a unique opportunity to explore the relative 

importance and cumulative contribution of each domain in studies on a range of health-

related questions, including association analyses and large-scale agnostic hypothesis 

testing (e.g., phenome-wide association studies, PheWAS),68 risk prediction and 

stratification,13,18,47,69 treatment response,70–72 and time-to-event outcomes.73–75 

 
Figure 2.2. Schematic representation of structured and unstructured electronic health record (EHR) data 
alongside linked and linkable data in EHR-linked biobanks. 

2.3 Selection bias: who do your data represent? 

Selection bias and cohort representativeness7,11,24,76–79 are areas receiving 

significant attention – and for good reason. Large sample sizes and rich data, along with 

some EHR-linked biobank cohorts like the UKB being labeled as “population-based,” may 

distract researchers from considering the representativeness of the underlying data. For 
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example, work has shown that UKB data are not representative of the general UK or UKB-

eligible population,8,80 and not accounting for this can lead to invalid estimates. 

Selection bias is a distortion arising from a lack of representativeness in the study 

sample with respect to a population of interest (i.e., the target population, which 

sometimes is the source population).7,81,82 The implication is that the result of a data task 

– whether it be estimating a prevalence or association, testing a hypothesis, or predicting 

an outcome – is not expected to align with the truth (e.g., a population parameter).5,6,83 

This theoretical concern is increasingly a practical problem given the rise of non-

probabilistic samples of Big Data (e.g., web surveys, social media). Specifically, EHR-

linked biobanks are appealing to researchers because they have large sample sizes, 

contain rich multimodal data, and are publicly available for secondary data analysis (e.g., 

researchers are not responsible for resources related to data collection).84–86 

What is the potential impact of selection bias in these cohorts, and what analytic 

tools do researchers have at their disposal to address the bias? Selection bias is 

particularly troublesome because the magnitude and direction of its impact are hard to 

determine,87 its effect cannot be mitigated by increasing sample size,88,89 and it can be 

coupled with other data imperfections, including outcome and exposure 

misclassification,7,77 missing data,76,77 and immortality bias.90,91 Until recently, based on 

the belief that genetics (e.g., single nucleotide polymorphisms) are not related to 

selection, it has been argued that genetic and downstream analyses may not be 

meaningfully affected by selection bias.92,93 However, there is now evidence that even 

genetic analyses are not immune to selection bias.94–96 For example, Schoeler and 

colleagues (2023) found both over- and under-estimation of genetic associations with 
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behavioral, lifestyle, and social (and, to a lesser extent, physical and molecular) outcomes 

because of participation bias in the UKB.97 The use of weights resulted in the identification 

of novel single nucleotide polymorphism (SNP) associations for 12 traits, small change in 

heritability estimates (maximum change in ℎ2, 5%), and substantial discrepancies for 

genetic correlations (maximum change in 𝑟𝑔, 0.31) and Mendelian randomization 

estimates (maximum change in 𝛽𝑆𝑇𝐷, 0.15) for socio-behavioral traits. 

Epidemiology textbooks stress the importance of control selection and well-defined 

source populations in the study design phase (i.e., before recruitment and data collection) 

to mitigate selection bias.5,6,98 However, it is often unavoidable;5 EHR-linked biobanks are 

subject to selection biases because of healthy volunteer bias4 and recruitment 

strategies,2,45 and researchers must grapple with this bias. There are three common 

analytic approaches to adjust for selection bias – stratification, bias analysis, and inverse 

probability weighting.5,6,99,100 Stratification is easier to perform than weighting-based 

approaches because it simply involves adjusting for factors related to selection; however, 

it will only yield unbiased results in limited settings (when selection on the descendent of 

a collider5) where selection bias is present. Bias analysis is used to estimate the potential 

magnitude and direction of biases and to quantify uncertainty about these biases to 

combat overconfidence in results and guide future research.99 The most common analytic 

approach to handling selection bias is inverse probability (IP) weighting 

(IPW).5,7,8,77,97,101,102 IPW involves reweighting individuals in the sample by the inverse of 

the estimated probability of their inclusion (relative to the target population) conditional on 

factors impacting selection.7,10,11 The estimation of IP weights relies on (a) access to 

representative individual-level data from the target population (which is often unavailable) 
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and (b) correct specification of the selection model. Representative data can be in the 

form of probability samples like the National Health Interview Survey (NHIS).103 

Poststratification (PS) weighting is an alternative that relies on summary-level data from 

the target population, which is often more available.104 Methods for combining information 

from probability samples (like NHIS) and non-probability samples (like AOU, MGI, and 

UKB) have been pioneered in survey literature.105,106 

Selection bias in EHR-linked biobanks has been examined in many studies. Some 

have simply proposed adjusting for factors related to selection, like referral status or clinic 

type.55,56 However, selection factors are often unknown and require reviewing study 

recruitment protocols and critical thinking about possible participant-driven factors. 

Further, there are often multiple selection mechanisms. Haneuse and Daniels proposed 

modeling each selection mechanism separately,76 an approach that demonstrated 

reduced bias in an EHR-based study to address this.77 Theory for weighting-based 

approaches to reducing bias due to selection exist,7,79 and have been applied to the UK 

Biobank.8,97 Notably, despite often being studied in isolation, Beesley and Mukherjee 

derived theory to address selection bias and misclassification jointly.7,11 More research 

on the joint and relative impacts of selection and other sources of bias is needed because 

multiple biases co-occur in practice. 

2.4 Missing data 

Missing data is a foundational topic of statistics19 and a common issue in health 

research,21 receiving significant attention generally and within the context of EHR data. 

Rubin’s seminal paper introduced the concept of three missing data classes based on the 

reason why the data are missing: missing completely at random (MCAR), missing at 
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random (MAR), and missing not at random (MNAR or NMAR).22 These classes help 

summarize instances when bias is expected and what methods might help address them. 

If the probability of being missing is the same for all participants, then the data are 

considered MCAR. That is, the probability of being missing is unrelated to the data.32 

While information is lost (i.e., larger variances), analyses based on MCAR data are 

expected to remain unbiased. However, assuming missing data are MCAR is often 

unrealistic. For example, in EHR-linked biobanks, patient-provider interactions are not 

random (sicker patients are observed more frequently23,55,56) and a clinician’s judgment 

concerning a patient’s risk can prompt a test order (meaning the absence of a test order 

is clinically informative).107,108 EHR fragmentation, where providers document the 

patient’s interactions with their system, as in the US, can result in incomplete pictures of 

a patient’s health history across time and type of encounter, further complicating missing 

EHR data. Observations can be unobserved for other reasons, including failure to initiate 

or complete an encounter, financial costs associated with testing and diagnosis,109 

underdiagnosis,110 and differential disease classification processes.111 If, however, the 

probability of being missing is the same within groups defined by observed data, then the 

data are MAR (i.e., missingness is random conditional on observed values). Complete 

case analyses of MAR data are expected to be biased. However, methods exist to 

mitigate bias due to MAR data. Finally, suppose the probability of being missing depends 

on unobserved values. In that case, observed data cannot explain missingness, and the 

data are considered MNAR. Complete case analyses of MNAR data are expected to be 

biased and generally rely on sensitivity analyses to understand the robustness of the 

results. 
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Two common methods for analyzing MAR data are multiple imputation and IPW. 

Multiple imputation relies on drawing multiple plausible values from distributions and 

relationships between observed variables in the data.112 A statistical analysis is carried 

out on each imputed dataset, and the results are pooled using Rubin’s rules.112 Common 

issues for multiple imputation arise when the outcome variable is omitted in the imputation 

model, when variables are not normally distributed, when the MAR assumption is not 

plausible, and when the data are MNAR.113 While it can be computationally expensive,114 

multiple imputation and related analyses are easily and flexibly carried out through 

available software.35,115 Importantly, multiple draws of missing values retain variation and 

relationships between observed variables while simply analyzing the single most accurate 

prediction of the missing values results in too-small standard errors and false positives.32 

These are several high-quality introductory reviews32,116. 

Alternatively, IPW, where complete cases are weighted by the inverse of their 

probability of being a complete case, can be used to reduce bias due to missing data.117 

As discussed in Section 2.3, IPW can also be used to simultaneously address lack of 

sample representativeness and biases due to missing data.117 Instead of relying on the 

distribution of missing values conditional on observed data (as in multiple imputation), 

IPW relies on correctly specifying a model for being a complete case.117 Some 

methodologists suggest IPW is preferable to multiple imputation for the analysis of 

missing data for several reasons: (a) IPW is arguably easier to explain, (b) the distribution 

of missingness predictors is very different between complete and incomplete 

observations, and (c) when individuals with missing values are missing data for several 

variables rather than one or two.117 Other methods for analyzing missing data exist, like 
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full information maximum likelihood.118,119 Several papers compare the performance of 

different missing data methods,34,117,120,121 and, while different methods may be preferred 

in different settings, multiple imputation is generally more efficient.117 

Missing data in the context of EHR has been discussed. Petersen and 

colleagues122 and Li and colleagues44 have discussed adaptations of multiple imputation 

for EHR-linked biobank data. For example, Li and colleagues exploited non-missing 

genotype data available in EHR-linked biobank data to improve imputation of 

cardiovascular-related measurements.44 Haneuse and colleagues introduced a 

modularization approach to thinking about missing EHR data to facilitate their analysis.123 

Importantly, missing EHR data can be thought of as inducing selection bias.77 Peskoe 

and colleagues applied a modularization approach for handling selection bias due to 

missing EHR data by estimating a series of IPW.77 Relatedly, Beesley and colleagues 

conceptualized an individual’s true phenotype as “missing” data.1 In this case, individuals 

lacking a diagnosis could be erroneously considered a non-case. Beesley and Mukherjee 

proposed several likelihood-based approaches for handling misclassification in EHR, 

potentially due to underdiagnosis or lack of provider observation (i.e., missing 

diagnoses).7 They also jointly considered multiple biases in EHR-linked biobank data, a 

commonly encountered issue in practice.7,11 Section 2.5 discusses a related concept of 

informed presence/absence. 

2.5 Other electronic health record data concerns 

Beyond introductory papers,1,124–128 substantial work has focused specifically on 

other traditional methodological concerns, including confounding48,49 and 

misclassification,7,50,51 in EHR-based cohorts (Figure 2.3). For example, traits defined 
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using the phecode framework have demonstrated reduced misclassification compared to 

ICD codes.129 One method to further reduce the impact of misclassification, described by 

Hubbard and colleagues, relies on EHR-derived probabilistic phenotyping.50 Others have 

described methods using manual chart review on a subset of data to improve EHR-

derived phenotypes.51,130,131 Teixeira and colleagues explored the incorporation of 

unstructured data like doctors’ notes, which improved the identification of hypertensive 

individuals compared to using ICD codes and blood pressure reading cutoffs alone.132 

 
Figure 2.3 Common methodological concerns in the analysis of EHR-linked biobank data 

Target validity is one consideration broadly applicable in health research but 

particularly acute in EHR-based analyses. Westreich and colleagues have defined this as 

a joint measure of internal and external validity of an effect estimate with respect to a 

specific target population.54 Historically, internal validity, the notion that an estimate 

reflects the true underlying parameter in the study population, has taken precedence over 

external validity, that the parameter in the study population is representative of the true 

parameter in the target population. However, because of observation mechanisms and 

recruitment strategies into EHR-linked biobanks, the target population is almost certainly 

never (a) exactly the study sample or (b) the population of which the study sample is a 

simple random sample.54 EHR researchers should think critically regarding whom the 

results are intended for or representative of before beginning an analysis and making 

their target populations explicit in their work. It is crucial for researchers to consider 
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weighted approaches that account for both the observation and recruitment mechanisms 

in each cohort (including potential subcohorts) and differences in the distribution of key 

characteristics between the analytic cohort and the target population. 

One unique concept in EHR is that of clinically informative observation processes, 

defined by Goldstein and colleagues as “the notion that inclusion in an EHR is not random 

but rather indicates that the subject is ill, making people in EHRs systematically different 

from those not in EHRs.”55 This discrepancy harms generalizability to general populations 

who tend to be healthier than those in the EHR data sample and results in bias. This 

concept extends to individuals within the EHR – those who are sicker tend to have more 

encounters and records than those who are healthier23,24 – and, in some cases, to records 

in the EHR (e.g., lab results). This phenomenon is illustrated by Agniel and colleagues, 

which shows that the presence and timing of laboratory results were more informative 

than the value of the laboratory results themselves.133 Interested readers can learn more 

about informed presence elsewhere.1,25,55,56,134 Including EHR metadata, like the length 

of follow-up, number of encounters, the density of laboratory measurements, and visit 

type (e.g., outpatient vs. inpatient vs. emergency), and careful selection or matching of 

controls in analyses are recommended to improve exchangeability and attempt to make 

EHR observation mechanisms comparable. 

Finally, a topic relevant to Big Data in general and EHR-linked biobank data 

specifically is the “Big Data Paradox.”135 Xiao-Li Meng eloquently proposed a 

decomposition of mean bias into three parts: (a) data quality, (b) data quantity, and (c) 

problem difficulty.135 Conceptually, the Big Data Paradox characterizes the idea that 

systematic error (e.g., selection bias, information bias, confounding bias; Figure 2.4) is 
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not mitigated by increasing sample size as random error is. This paradox demands the 

thorough exploration and thoughtful application of methods to reduce biases associated 

with systematic error (described in Sections 2.3, 2.4, and 2.5). 

 
Figure 2.4 Flowchart depicting systematic and random errors. 

2.6 Risk prediction: methods, challenges, and context 

Risk prediction models, such as the widely recognized Framingham Risk Score,14 

are a fundamental tool in public health and precision medicine. These statistical models 

predict the likelihood of a health outcome, such as diagnosis, prognosis, or treatment 

response, to guide prevention, intervention, or treatment strategies.136 Individuals with 

high scores, indicating high risk, are often recommended for preventive therapies like 

cholesterol-lowering statins.137 Numerous models, including those for cardiovascular 

disease14,138,139 and cancer,15,140–147 exist to enhance both the quantity and quality of life.  

Many methods for developing risk prediction models exist (Figure 2.5). 

Conventional linear, logistic, and Cox regression models are staples of an 

epidemiologist’s toolbox. Regularized regression methods, like ridge, lasso, and elastic 
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net, which penalize the magnitude of coefficients, are increasingly used because they can 

perform variable selection (as in lasso) and handle multicollinearity (as in ridge).148 

Machine learning methods, like decision trees, support vector machines, and neural 

networks, trade interpretability for flexibility and performance.149 Ensemble methods like 

bagging,150 random forest,151 boosting,152 and SuperLearner,153 combine results from 

multiple models are designed with the goal of achieving even better performance.153,154 

 
Figure 2.5 Schematic representation of some common risk prediction model methods. 

EHR-linked biobanks present a promising avenue for expediting the development 

of risk prediction models. Their appeal lies in their large sample size, real-time, real-world 

clinical data access, and linkage to multiple data domains (e.g., genetics, administrative 
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and insurance claims, complementary survey data; Section 2.2). Indeed, several risk 

prediction models, including those for cardiovascular disease,155–157 cancer,18,158,159 and 

COVID-19 diagnosis and outcomes,160–162 have been developed using EHR-linked 

biobank data. 

 However, despite the numerous benefits of EHR-linked biobank-based risk 

prediction, several concerns remain. First, there is the issue of privacy and data sharing. 

EHR and genetic data are subject to institutional and government regulations. Institutional 

Review Boards limit the sharing of identifiable information in research involving human 

subjects and ensure compliance with federal rules.163 Governments protect and restrict 

the sharing of protected health information (like EHR data; e.g., Health Insurance 

Portability and Accountability Act of 1996 (HIPAA) in the US164). These restrictions make 

it challenging to aggregate fragmented EHR into an individual’s complete health history 

and, thus, to generate robust and generalizable predictions. Beyond attempts to 

deidentify or obfuscate data before sharing and analysis, federated learning has been 

developed to minimize data sharing.165 Federated methods allow multiple institutions to 

collaboratively perform analyses without sharing their data, generally via an iterative 

process.166 One example is where intermediate summary-level data are prepared and 

broadcast by a central site to other sites before synthesizing aggregated data (Figure 

2.6). Many federated learning methods have been developed, like those for linear 

mixed,167 logistic,168–170 and Cox171,172 regression. While iterative sharing of aggregated 

data makes their implementation challenging, these newer methods rely on few to no 

iterations, enhancing their use in practice. 
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Figure 2.6 Schematic representation of a broadcasting federated learning approach. Figure adapted from 
Privacy-preserving Distributed Algorithms (https://pdamethods.org/). 

Second, there are issues when there are differences between a sample used to 

develop a risk prediction model (e.g., an EHR-linked biobank like MGI) and its application 

to a target population of interest. When the sample and target population have different 

data distributions (i.e., different “case-mix”136), the model may not apply to the target 

population, a problem called lack of transferability. Transfer learning is a class of methods 

that adapt existing models for use in a new population.173,174 Computer science literature 

has discussed issues of covariate shift and domain adaptation.175–179 The related problem 

of lack of representativeness, called selection bias (Section 2.3), is most commonly dealt 

with using weighting-based methods. Steingrimsson and colleagues developed an 

inverse-odds weighting-based approach to tailoring risk prediction models for use in an 

external target population where outcome data are unavailable.180 Weighting-based 

approaches allow for consideration of the target population during model development 

rather than incorporating information into an existing model, as in transfer learning. While 

methods addressing issues of privacy and transferability exist and are actively being 

developed, their application to and assessment in EHR-linked biobanks is needed. 

2

1) Broadcast initial values

Local site Site 2 Site 3 Site k

…

2) Share aggregated data

3) Synthesize evidence 4) Final results

Source: Privacy-preserving Distributed Algorithms (PDA). Link: https://pdamethods.org/ 

https://pdamethods.org/
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Further, the growing number of researchers using EHR-linked biobank data need 

practical recommendations regarding their implementation. 

It is crucial for researchers to deeply understand the clinical context of a model’s 

outcome and its application in the development of risk prediction models. Cancers, such 

as esophageal, liver, and pancreatic, exhibit variations in their clinical presentation, 

particularly at advanced stages, and their diagnostic approach, with early detection and 

screening largely unavailable for these three cancers. Esophageal, liver, and pancreatic 

cancers, which currently lack screening mechanisms, are often diagnosed at a late stage. 

Thirty-nine percent of esophageal, 20% of liver, and 51% of pancreatic cancers are 

diagnosed after the cancer has metastasized when the 5-year relative survival is 5.3%, 

3.31%, and 3.1%, respectively (SEER-22, 2014-2020, all races, both sexes181).  

 Current risk prediction models for these cancers tend to focus on high-risk 

populations, such as those with chronic hepatitis B virus infections182–185 or chronic liver 

disease186–188 for liver cancer and those with new-onset diabetes for pancreatic 

cancer.189,190 Other models aim to identify individuals to screen for premalignant 

conditions, as in the case of Barrett’s esophagus prior to the transition to esophageal 

cancer.191,192 Importantly, models incorporating biomarkers and genetic factors to 

construct integrated and multi-factorial models generally exhibit better performance.193–

195 

These models play a crucial role in guiding surveillance and monitoring strategies, 

such as abdominal ultrasonography and 𝛼-fetoprotein (AFP) tests for high-risk individuals 

for liver cancer,196 or endoscopic ultrasonography and MRI for high-risk individuals for 

pancreatic cancer.197 In the absence of screening mechanisms, incorporating multi-modal 
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data, including biomarker and genetic factors alongside demographics, risk factors, and 

diagnostic history, can facilitate the development of risk prediction models in the general 

population to identify high-risk individuals for targeted enhanced surveillance and 

prevention measures. Moreover, each cancer has multiple histological types with different 

risk factors, clinical features, genetic susceptibility, and pathogenesis, such as squamous 

cell carcinoma and adenocarcinoma for esophageal cancer.198 Data-driven agnostic 

approaches to risk prediction model development need to acknowledge the heterogeneity 

across and within cancer types and consider the multitude of data domains available in 

EHR-linked biobanks. A focused and rigorous approach to model development and 

stratification can significantly enhance early detection, targeted surveillance, and patient 

outcomes for these and other cancers. 

Finally, researchers must also be cognizant of obstacles to effective model 

deployment related to development, implementation, and adoption in health care settings. 

First, despite the growing number of publications on clinical risk prediction models, few 

ultimately are implemented because of issues in model development, including lack of 

reproducibility and replicability,199,200 lack of model fairness,201–203 heterogeneities in 

clinical data,204,205 and improper model evaluation.206,207 Chan and Wong recommend 

external validation (whenever possible), checking that the evaluation methodology is 

error-free (e.g., data leakage), and assessing model performance using metrics focused 

on achieving the prediction objective.206 Second, barriers to adoption include skepticism 

around evaluating “black box” machine learning algorithms and lack of clear actionability, 

limiting clinical implementation.208–210 Watson and colleagues recommended considering 

traditional versus machine learning methods for development, close collaboration with 
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clinicians before and during model development, and the actionability of model results 

before model development to address these barriers.208 Finally, predictive models can be 

a victim of their success.211–214 The knowledge that a factor, like cholesterol levels, holds 

predictive value can change a clinician’s consideration to measure that factor. Because 

the observation and measurement mechanism changes, so does the predictive value of 

the presence or absence of a measurement, which can degrade model performance.211 

In the context of prognostic prediction models, Lenert and colleagues found that along 

with model performance surveillance and updating, incorporating the intervention space 

and considering the model life cycle can mitigate performance degradation.212 

2.7 Dissertation motivation 

The dissertation aims to explore methods addressing two sources of bias – 

selection bias and missing data – in EHR-linked biobanks, separately and jointly. Through 

principled interrogation of these biases, this dissertation aims to provide researchers 

practical guidance for analyzing EHR-linked biobank data to produce relevant and 

impactful results. 
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Chapter 3 To Weight or Not to Weight? The Effect of Selection Bias in Three 

Large EHR-Linked Biobanks and Recommendations for Practice 

This manuscript has been published in the Journal of the American Medical Informatics 
Association.215 

3.1 Abstract 

Objective: To develop recommendations regarding the use of weights to reduce selection 

bias for commonly performed analyses using electronic health record (EHR)-linked 

biobank data. 

Materials and methods: We mapped diagnosis (ICD code) data to standardized phecodes 

from three EHR-linked biobanks with varying recruitment strategies: All of Us (AOU; 

n=244,071), Michigan Genomics Initiative (MGI; n=81,243), and UK Biobank (UKB; 

n=401,167). Using 2019 National Health Interview Survey data, we constructed selection 

weights for AOU and MGI to represent the US adult population more. We used weights 

previously developed for UKB to represent the UKB-eligible population. We conducted 

four common analyses comparing unweighted and weighted results. 

Results: For AOU and MGI, estimated phecode prevalences decreased after weighting 

(weighted-unweighted median phecode prevalence ratio [MPR]: 0.82 and 0.61), while 

UKB estimates increased (MPR: 1.06). Weighting minimally impacted latent phenome 

dimensionality estimation. Comparing weighted versus unweighted PheWAS for 

colorectal cancer, the strongest associations remained unaltered, with considerable 
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overlap in significant hits. Weighting affected the estimated log-odds ratio for sex and 

colorectal cancer to align more closely with national registry-based estimates. 

Discussion: Weighting had a limited impact on dimensionality estimation and large-scale 

hypothesis testing but impacted prevalence and association estimation. When interested 

in estimating effect size, specific signals from untargeted association analyses should be 

followed up by weighted analysis. 

Conclusion: EHR-linked biobanks should report recruitment and selection mechanisms 

and provide selection weights with defined target populations. Researchers should 

consider their intended estimands, specify source and target populations, and weight 

EHR-linked biobank analyses accordingly. 

3.2 Background and significance 

Electronic health record (EHR)-linked biobanks are repositories with biospecimen 

and/or related data linked to EHR and auxiliary data (e.g., medical and pharmacy claims, 

residential-level neighborhood characteristics).1,7,11,46 Many EHR-linked biobanks are 

non-probability samples1,2,9,45,80,216 drawn from a poorly defined source population (i.e., 

the population from which individuals are sampled). Because of their large sample size, 

linked multimodal data, immediacy, and accessibility,84–86 researchers have used EHR 

data en masse for scientific research (from 3,212 PubMed citations in 2013 to 9,824 in 

2023). EHR-linked biobanks are increasingly prevalent, and efforts like the Global 

Biobank Meta-analysis Initiative (GBMI)47 facilitate global collaboration.43,217–220 

As the research community gets excited about amassing data, two fundamental 

questions must be asked: (a) who is in the study, and (b) what is the target population of 

interest? If biobanks are not representative of the target population, they are vulnerable 
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to selection bias,7,79,81,82,221 a naïve analysis is not expected to align with the population 

truth.5,6,83 Handling selection bias presents a challenge; it is difficult to pinpoint the 

magnitude and direction of its impact on estimates,87 increasing the sample size does not 

mitigate its effect,88,89 and it often occurs in concert with other data 

imperfections.7,76,77,90,91 Moreover, contrary to previous arguments,92,93 recent evidence 

suggests that even genetic association analyses with inherited germline susceptibility 

factors can also be prone to selection bias.94–97  

 There are three common analytic approaches for handling selection bias: 

stratification,5,6 quantitative bias analysis,6,99 and, by far the most common, inverse 

probability (IP)-weighting.5,7,8,11,77,79,97,101 IP-weighting involves reweighting individuals in 

a given sample by the inverse of the estimated probability of their inclusion (relative to the 

target population) constructed as a function of variables that impact selection.7,10,11 IP-

weight estimation relies on (a) access to representative individual-level data from the 

target population and (b) correct specification of the selection probability model. 

Representative data can be probability samples drawn from the target population, like the 

National Health Interview Survey (NHIS; USA).103 One can use poststratification (PS)-

weights that rely on summary-level data when individual-level data on the target 

population is unavailable.104 

 In this paper, we consider three EHR-linked biobanks that have three different 

recruitment strategies/selection mechanisms: the National Institutes of Health All of Us 

Research Program (AOU),2,222 our University of Michigan’s Michigan Genomics Initiative 

(MGI),45,223 and the UK Biobank (UKB).3,224 We explore the impact of the use of a set of 

selection weights on common descriptive (prevalence estimation, principal components 
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analysis) and inferential (agnostic large-scale association testing, estimation of targeted 

association parameters) tasks in EHR data (Supplementary Figure 3.1). First, we 

estimate selection weights in both US-based cohorts using NHIS data. Second, we 

characterize demographic and diagnosis (prevalences, latent dimensionality, partial 

correlation) data in AOU, MGI, and UKB, with and without selection weights. Third, we 

investigate how using weights impacts discovery in large-scale untargeted hypothesis 

testing by performing a phenome-wide association study (PheWAS). Fourth, we 

characterize the influence of weights on a targeted effect estimate in a fitted logistic 

regression model using colorectal cancer as a sample phenotype. Finally, we develop 

practical recommendations regarding using selection weights for researchers conducting 

analyses in and across biobanks. 

Weighting-based methods are foundational to survey methodology. It stems from 

Horvitz and Thompson's 1952 work225 and has been integral for over seven decades (see 

Pfefferman's review226). Extensions of weighting methods to EHR-linked biobanks are not 

new.7,11,79 However, it often needs to be clarified how to create these weights in biobanks 

with incomplete knowledge of their recruitment strategies. Survey design weights are 

usually not available or applicable for biobanks. Investigators have tried to develop and 

apply weights in EHR-linked biobanks inconsistently.8,97 To the best of our knowledge, 

there is no systematic evaluation of the effect of weights on downstream analyses across 

a range of tasks and multiple biobanks. Thus, our paper fills a critical gap in the literature 

by guiding the use of selection weights in biobank analysis based on empirical evidence. 

3.3 Materials and methods 

3.3.1 Cohorts 
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3.3.1.1 AOU: All of Us 

AOU started in 2018 to enroll over one million adults via a combination of open 

invitations and a network of healthcare provider-based recruitment sites. Engagement 

efforts have focused on oversampling people from communities historically 

underrepresented in biomedical research based on 10 factors: age, sex, race/ethnicity, 

gender identity, sexual orientation, disability status, healthcare access, income, 

educational attainment, and geographic location.2 We considered these selection factors 

(except gender identity (not collected in NHIS) and disability status (significant 

missingness (~61%) in AOU)) in the estimation of IP- and PS-based selection weights. 

As of January 1, 2024, there were over 760,000 participants, providing access to over 

539,000 biosamples and 420,000 EHRs. The AOU subset used in these analyses 

comprises 244,071 participants with sociodemographic and ICD-9-CM/ICD-10-CM data 

as part of the curated data repository version 7 (Controlled Tier C2022Q4R9). 

3.3.1.2 MGI: Michigan Genomics Initiative 

The Michigan Medicine-based MGI (University of Michigan) began in 2012 

recruiting adults primarily through appointments for procedures requiring anesthesia.45 It 

evolved to include sub-cohorts through metabolism, endocrinology and diabetes (MEND) 

and mental health (MHB) clinics and a wearables cohort enriched with hypertensive 

individuals (MIPACT). Age, sex, and race/ethnicity were considered selection factors. 

Additionally, cancer, diabetes and body mass index (BMI), anxiety and depression, and 

hypertension were selection mechanisms into the original cohort and these sub-cohorts, 

respectively, and were also used in selection weight estimation. As of September 2023, 

there were ~100,000 consented participants in MGI. The MGI subset used in these 
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analyses consists of 81,243 participants (August 22, 2022, data pull) with demographic 

and ICD-9-CM/ICD-10-CM data. 

3.3.1.3 UKB: UK Biobank 

The UKB recruited over 500,000 adults aged 40-69 by mailing over 9 million 

invitations to homes within ~40 kilometers of 22 assessment centers across the UK. 

Following evidence of healthy volunteer bias,80 van Alten and colleagues developed a set 

of generic weights to reweight the UKB sample to the UKB-eligible population using UK 

Census Microdata.8 Using an array of sociodemographic characteristics – age, sex, 

race/ethnicity, educational attainment, employment status, location of residence, tenure 

of dwelling, number of cars in household, self-reported health, and one-person household 

status – they estimated lasso regression-based IP-weights.8 These weights were used in 

this paper. The UKB subset used in these analyses consists of 401,167 participants with 

sociodemographic and ICD-10 code data remaining after phenome curation 

(Supplementary Figure 3.2). 

3.3.2 Phenome curation 

For all cohorts, ICD-9-CM and ICD-10(-CM) codes were recoded into up to 3,612 

phecodes across 18 phecode categories (i.e., phecodes, or “PheWAS codes”62), using 

the phecode X mapping tables (downloaded from GitHub227 on 6 September 2023) and 

the PheWAS R package (version 0.99.6-1).228 Cases were defined as individuals with a 

single occurrence of a corresponding phecode. 3,493, 3,354, and 2,660 phecodes were 

defined in AOU, MGI, and UKB, respectively; we restricted our analyses to the 2,042 

phecodes with at least 20 cases in all three cohorts. Flowcharts depicting sample size 

changes following filtering and ICD-to-phecode mapping for all cohorts are shown in 
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Supplementary Figure 3.2. Phecode-derived trait mappings are shown in Supplementary 

Table 3.1. 

3.3.3 Weight estimation 

3.3.3.1 Inverse probability weighting 

We constructed IP-weights, which require individual-level data in the target 

population, in the US-based cohorts. To do this, we used the 2019 NHIS, a probabilistic 

sample of US adults with self-reported health information. We estimated selection 

probabilities, 𝜓, using a simplex regression framework based on the Beta regression 

approach to weight estimation described in Kundu and colleagues79: 

𝜓 = 𝑃(𝑆 = 1|𝑿) ≈ 𝑃(𝑆𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 1|𝑿) ×
𝑃(𝑆 = 1|𝑿, 𝑆𝑎𝑙𝑙 = 1)

1 − 𝑃(𝑆 = 1|𝑿, 𝑆𝑎𝑙𝑙 = 1)
 Eq. (1) 

where, assuming there is no overlap between the internal and external data, 𝑆 is an 

inclusion indicator in the internal cohort (i.e., AOU or MGI), 𝑆𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  is an indicator for 

inclusion in the external cohort (i.e., NHIS), 𝑆𝑎𝑙𝑙 is an indicator for inclusion in either cohort, 

and 𝑿 are selection factors as listed in the Cohorts section (page 31 and Figure 3.1). We 

estimated the first term, 𝑃(𝑆𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 1|𝑿), by fitting a simplex regression model for the 

known design probabilities using NHIS data. We estimated the numerator of the second 

term, 𝑃(𝑆 = 1|𝑿, 𝑆𝑎𝑙𝑙 = 1), using a logistic regression model using both internal and 

external data.  

In AOU, we flexibly selected 𝑿 by splitting the data in half and fitting a lasso-

penalized logistic regression model on 𝑿 and all possible pairwise interactions using the 

glmnet R package (version 4.1-8). Using 10-fold cross-validation, we selected 𝜆 such that 

the error is within 1 standard error of the minimum to result in a parsimonious model. The 
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selected terms were then used as the final set of 𝑿 to estimate IP weights in the other 

half of the data as described above. 

3.3.3.2 Poststratification 

Using weighted NHIS data, PS-weights were calculated using: 

𝜔 =
Pr(𝑿 = 𝒙)

Pr(𝑿 = 𝒙|𝑆 = 1)
 Eq. (2) 

where 𝑿 are the set of selection variables, and 𝑆 is an indicator for membership in the 

internal sample (i.e., AOU or MGI). IP- and PS-weights were winsorized at the 2.5th and 

97.5th percentile. Variable definitions are described in Supplementary Table 3.2 Definition 

of variables by cohort used throughout paper, and additional details of IP- and PS-weight 

estimation are described in Supplementary Methods. 

Figure 3.1 summarizes the cohorts and their source populations, sampling 

strategies, presumed target populations, external data for weighting, and selection 

factors. 

3.3.4 Statistical analyses 

First, we obtained crude unweighted and IP-weighted estimates of prevalences. 

These are calculated as the number of cases over the number of individuals in the 

respective biobanks. For sex-specific phecodes, only individuals with the corresponding 

sex are considered. 

 Second, we estimated the latent dimensionality of the phenome by conducting 

unweighted and IP-weighted principal components analyses (PCA). We used the number 

of principal components explaining 95% and 99% of the cumulative variation in the data 



 36 

to represent its dimensionality. Additionally, we explored partial correlations, described in 

Section 3.10.3.3. 

 Third, we conducted a colorectal cancer (phecode CA_101.41) PheWAS to 

illustrate large-scale hypothesis testing. Here, the interest was in obtaining the test 

statistic and corresponding p-value. PheWAS were adjusted for age, sex, and length of 

EHR follow-up.  

Fourth, we estimated the association between biological sex and colorectal cancer, 

where the interest was in estimating the log-odds ratio. The female-colorectal cancer 

association was selected because it is known to be negative (recent log-odds ratio 

estimate approximations range from -0.414 to -0.270) in the US229 and the UK.230 For 

hypothesis testing and targeted association analyses, after performing a weighted or 

unweighted analysis within each cohort, we conducted a meta-analysis across three 

cohorts by using inverse variance weights and a fixed effect model using the meta R 

package (version 6.5-0) (Supplementary Figure 3.3).231 Additional data preparation detail 

is described in Supplementary Methods. 

3.3.5 Software 

All data cleaning, manipulation, and analysis were conducted using R version 

4.2.2. Code and supplementary data are publicly available: 

https://github.com/maxsal/biobank_selection_weights. 

3.4 Results 

3.4.1 Descriptive characteristics 

https://github.com/maxsal/biobank_selection_weights
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Of 244,071 AOU participants, 62.2% were female, with a mean (standard deviation 

(SD)) age of 54.0 (17.3) years old (Table 3.1). Additionally, 55.4% were non-Hispanic 

White, and 27.1% had a qualifying cancer phecode in their EHR. Of 81,243 MGI 

participants, 53.8% were female, with a mean age of 56.3 (17.0) years old. Most of MGI 

was non-Hispanic White (83.1%) and 49.2% had a cancer diagnosis on their EHR. MGI 

had substantially more EHR data points per person than AOU as measured by 

encounters per person (mean 103 in MGI vs. 32 in AOU), unique phecodes per person 

(77 vs. 72), and years of follow-up per person (9.9 vs. 9.3). Both IP- and PS-weighting 

brought AOU and MGI closer to NHIS-based estimates of the US population concerning 

age (47.7 years old), sex (51.7% female), and race/ethnicity (63.2% non-Hispanic White). 

Of the 401,167 participants in UKB, 55.3% were female, and their mean age was 

57.7 (8.0) years. Additionally, they were 94.2% White, and 25.9% had a qualifying cancer 

phecode on their EHR. The application of the IP-weights resulted in a cohort that was 

reflective of the UKB-eligible population concerning age (54.9 weighted vs. 54.8 UKB-

eligible), sex (50.8% female weighted vs. 50.8% female UKB-eligible), and race/ethnicity 

(90.9% White weighted vs. 87.0% White UKB-eligible). 

3.4.2 Phecode prevalences 

3.4.2.1 Within cohort comparison 

In AOU, unweighted phecode prevalences ranged from <0.01% to 52.07% with a 

median of 0.40%, while IP-weighted (hereafter “weighted” unless otherwise specified) 

prevalences ranged from 0% to 46.86% with a median of 0.20%. Weighted-to-unweighted 

phecode prevalence ratios (PR; Figure 3.2A) were down-weighted (i.e., below 1) 

phenome-wide with a median PR (MPR) of 0.82. In MGI, unweighted prevalences ranged 



 38 

from <0.01% to 50.69% with a median of 0.33%, while weighted prevalences ranged from 

0% to 43.12% with a median of 0.21%. Weighting tended to down-weight prevalences 

with an MPR of 0.61 (Figure 3.2B). In UKB, unweighted prevalences spanned <0.01% to 

33.68%, with a median of 0.06%, while weighted prevalences spread from 0% to 32.12%, 

with a median of 0.07%. Weighting tended to upweight prevalences with an MPR of 1.06 

(Figure 3.2C). 

3.4.2.2 Across cohorts comparison 

Comparing unweighted phecode prevalences, MGI over AOU (Figure 3.3A), we 

calculated a median and mean PR of 1.15 and 1.70, respectively. On average, 13 of 17 

phecode categories had higher prevalences in MGI than AOU except for infections, 

dermatological, pregnancy, and mental categories (MPRs 0.97, 0.92, 0.88, and 0.74, 

respectively). Neoplasms were substantially more common in MGI (MPR 2.69). After IP-

weighting both cohorts (Figure 3.3D), median and mean PRs were 0.81 and 1.23, 

respectively. Only congenital and genetic (MPRs 1.70, 1.02, respectively) phecodes 

remained more common in MGI after weighting. 

 Using unweighted data (Figure 3.3B and C), phecodes in AOU and MGI were more 

common than in UKB (MPR: AOU/UKB 5.12; MGI/UKB: 6.37). After IP-weighting (Figure 

3.3E and F), phecodes in AOU and MGI were still more common than in UKB (MPR: 

AOU/UKB: 3.87; MGI/UKB 3.39). 

3.4.3 Phenome structure: PCA to estimate the effective number of phenotypes 

The latent dimensionality of the diagnostic phenome (n = 2,042) was estimated 

using PCA in AOU, MGI, and UKB (Table 3.2; shown graphically in Supplementary Figure 

3.4). Within cohorts, weighting nominally decreased the number of PCs explaining 95% 
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of the cumulative variation (CV) in AOU and MGI (from 732 to 711 in AOU; from 752 to 

729 in MGI) and nominally increased in UKB (from 553 to 569). This trend was the same 

at the 99% CV threshold (from 1,262 to 1,236 in AOU; from 1,293 to 1,258 in MGI; from 

1,065 to 1,080 in UKB). The dimensionality of the UKB data was noticeably smaller than 

the US-based cohorts with higher phecode prevalences (e.g., at the 95% CV threshold, 

569 PCs weighted UKB phenome vs. 711 and 729 PCs in AOU and MGI, respectively).  

We calculated unweighted and weighted partial correlations as a supplemental 

exploration (Unweighted and weighted partial correlations, pg. 81). Partial correlations 

were visualized as network graphs for AOU, MGI, and UKB in Supplementary Figure 3.5, 

Supplementary Figure 3.6, and Supplementary Figure 3.7, respectively, and did not show 

noticeable differences after weighting. Distributions of unweighted (Supplementary Figure 

3.8) and weighted (Supplementary Figure 3.9) partial correlations showed that cohorts 

with higher phecode prevalences (e.g., MGI) had slightly stronger correlations than those 

with lower phecode prevalences (e.g., UKB). 

3.4.4 Large-scale hypothesis testing: an “untargeted” PheWAS for colorectal 

cancer 

In AOU, there were 25 phenome-wide significant hits in the unweighted PheWAS 

across 6 categories (Figure 3.4A). After IP-weighting, there were only 5 hits, all 

neoplasms (Figure 3.4D) – the same top 5 hits as in the unweighted PheWAS. In MGI, 

there were 9 phenome-wide significant hits in the unweighted PheWAS across 2 

categories (Figure 3.4B). After IP-weighting, there were 26 hits across 4 categories 

(Figure 3.4E). The IP-weighted PheWAS identified 3 of the 9 unweighted hits. The IP-

weighted PheWAS identified 23 hits not identified in the unweighted PheWAS. In UKB, 
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there were 60 phenome-wide-significant hits in the unweighted PheWAS across 11 

categories (Figure 3.4C). After IP-weighting, there were 34 hits across 8 categories 

(Figure 3.4F). Of the 60 unweighted hits, 30 were also identified in the weighted PheWAS. 

There were 4 new gastrointestinal hits in the weighted PheWAS. Venn diagrams show 

the overlaps in phenome-wide significant hits across weighting strategies within cohort in 

Supplementary Figure 3.10A-C. 

 Of the 96 unique hits identified in any unweighted or IP-weighted PheWAS, 21.9% 

(n = 21) appeared only in IP-weighted PheWAS. Most of these hits found only in weighted 

PheWAS were neoplasms (11), with others belonging to the gastrointestinal (4), 

neurological (3), mental (1), and musculoskeletal (2) categories. The only hit identified in 

all three IP-weighted PheWAS (CA_101: Malignant neoplasm of the digestive organs) 

was also identified in all three unweighted PheWAS. Of the 21 hits only identified in IP-

weighted PheWAS, 71.4% (15) appeared only in MGI, and 14.3% (3) appeared only in 

UKB. Venn diagrams show the overlaps in phenome-wide significant hits across cohorts 

by weighting strategy in Supplementary Figure 3.10D-F. 

 The unweighted meta-PheWAS identified 37 hits across 9 categories, while the IP-

weighted meta-PheWAS identified 22 hits across 5 categories. Of the 44 unique hits 

identified in both meta-PheWAS, 15.9% (7) appeared only in the IP-weighted meta-

PheWAS. Notably, the IP-weighted meta-PheWAS identified a hit (NS_356.2: Aphasia 

and dysphasia) in a novel category (neurological). The overlaps in phenome-wide 

significant hits across weighting strategies are shown as Venn diagrams in 

Supplementary Figure 3.11. 
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Of the 101 unique hits identified in any unweighted or PS-weighted PheWAS, 

25.7% (n = 26) appeared only in PS-weighted PheWAS (Supplementary Figure 3.12). 

PheWAS summary statistics are available in the supplementary data file in the GitHub 

repository. 

3.4.5 “Targeted” estimation of the sex-colorectal cancer log-odds ratio 

The unweighted age-adjusted log-odds ratio for female sex and colorectal cancer 

were -0.098 (-0.164, -0.033), -0.164 (-0.247, -0.082), and -0.389 (-0.431, 0.348) for AOU, 

MGI, and UKB, respectively. The unweighted UKB estimate overlapped with the 

benchmark range of -0.414 to -0.270 based on 2018-2020 US SEER229 and UK230 

estimates. The unweighted meta-analytic estimate was -0.284 (-0.316, -0.252). IP- and 

PS-weighting did not improve estimation in AOU, resulting in null estimates of -0.047 (-

0.198, 0.104) and -0.084 (-0.191, 0.024), respectively. However, in MGI, weighting 

improved estimation with the IP-weighted confidence interval overlapping with (-0.217 (-

0.419, -0.014)) and the PS-weighted point estimate falling within (-0.342 (-0.629, -0.056)) 

the benchmark range. IP-weighting did not change the UKB estimate (-0.398 (-0.461, -

0.334)). The IP- and PS-weighted meta-analytic estimates (-0.335 (-0.392, -0.279) and -

0.318 (-0.371, -0.264), respectively) remained stable, driven by the UKB estimates. Along 

with unadjusted estimates, these results are shown in Figure 3.5 and Supplementary 

Table 3.3. 

3.5 Discussion 

EHR-linked biobanks – such as AOU, MGI, and UKB analyzed here – are 

transforming the fields of epidemiology and health research. They offer valuable 
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resources comprising large longitudinal cohorts, with vast amounts of readily available 

structured and unstructured data and potential for data linkages at relatively low 

costs.1,2,4,9,45,216 However, the varying sampling mechanisms across these cohorts require 

researchers to understand and address the impact of selection bias on various descriptive 

and inferential tasks (Supplementary Figure 3.1). We developed practical 

recommendations on constructing and applying weights to mitigate selection bias in 

standard EHR-linked biobank analyses. Furthermore, we advise biobank management 

bodies to define their recruitment strategies clearly and explain various forms of 

enrichment that can lead to departure from the source and target population, which 

essential for accurately developing selection weights. 

To do this, we estimated IP- and PS-based selection weights for AOU and MGI 

and, along with previously described UKB IP-weights,8 evaluated their impact on common 

analyses currently undertaken in the field (impact on prediction is the subject of a 

forthcoming manuscript). Estimates of latent phenome dimensionality were marginally 

lower in cohorts with relatively higher phecode prevalences (e.g., AOU and MGI). The 

practical implication in terms of reduction in the denominator of a Bonferroni-corrected p-

value from the number of total tests to the PCA-estimated number of independent tests 

would not have a meaningful impact.232 Further, p-value-identified results from untargeted 

hypothesis testing (as explored via a colorectal cancer PheWAS) for the strongest 

association signals remained largely unaltered following the introduction of selection 

weights. For example, the top 9 hits (and 12 total) from the unweighted meta-PheWAS 

were also identified in both weighted meta-PheWAS, and the top 5 hits were the same in 

all meta-PheWAS (Supplementary Figure 3.11). We also found that while weighting 
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typically increases p-values, some p-values in MGI decreased, likely due to significant 

selection bias. These results indicate using selection weights for exploring phenome 

structure and large-scale hypothesis testing tasks is not crucial, particularly when such 

weights are not provided. If weights are readily available, using selection weights in this 

context is advisable. Significant hits from agnostic analyses should be followed by a 

targeted analysis where the importance of using weights is clearer. 

For estimation tasks, like prevalence and effect size estimation, using selection 

weights to reduce potential selection bias is recommended. Regarding phecode 

prevalence estimation, we saw considerable changes in prevalence estimates after 

weighting (e.g., prevalence of MB_286.2: Major depressive disorder dropped 24 

percentage points after IP-weighting in MGI), and these changes were phenome-wide 

(e.g., IP-weighted over unweighted MPR in AOU: 0.82). Sampling strategies that are 

health system-based (e.g., MGI) or that target groups with elevated disease burdens due 

to healthcare disparities and negative social determinants (e.g., AOU) can lead to 

overrepresentation of individuals with more diseases and comorbidities. Such enrichment 

can explain the marked deflation in within-cohort (particularly in MGI and to a lesser extent 

in AOU; Figure 3.2) and cross-cohort (AOU/UKB, MGI/UKB; Figure 3.3) prevalence ratios 

after applying weights to align with the target population. Regarding association 

estimation, we saw that using generic selection weights moved sex log-odds ratio 

estimates for colorectal to within the benchmark interval in MGI. However, AOU estimates 

remained outside the benchmark interval even after weighting, likely because of 

substantial racial/ethnic heterogeneity (Supplementary Figure 3.13). Stratified analyses 

are preferable when there is expected or known heterogeneity, especially when the data 
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are powered to do so (e.g., race/ethnicity-specific analyses in AOU). In the case of 

targeted association estimation, we also recommend that weights be curated based on 

the outcome of interest, a conclusion supported by recent literature.7,11,79 Finally, in all 

settings, selection weights are more critical in samples whose characteristics differ more 

from the target population than in smaller and non-population-based cohorts, like the MGI. 

3.5.1 Achievable goal is to reduce, not remove, bias 

Weighted analyses are, historically, attempts to remove the impact of selection 

bias (e.g., on an association estimate) with respect to a defined target population.5,101 We 

developed selection weights based on explicit selection factors that were either publicly 

reported to have influenced recruitment strategies (as in AOU) or known to impact 

eligibility (as in MGI). However, these selection mechanisms are complex, and the true 

mechanisms are not fully known. Thus, using selection weights aims to reduce rather 

than remove bias. This is particularly important in the case of Big Data where, while 

confidence intervals are narrow, effects of selection bias are not mitigated by increasingly 

large sample sizes.233 Additionally, some associations may be more or less prone to 

selection biases, but which associations are affected and how are unknown. See section 

3.10.5 for comments on methodological considerations in EHR-based data analysis. 

3.5.2 Strengths and limitations 

This study has multiple strengths. First, we utilized AOU and UKB data, which are 

large-scale, public, and frequently used EHR-linked biobanks. Second, we utilized various 

methods to visualize and characterize EHR-linked biobanks. Third, we estimated IP- and 

PS-weights in AOU and provided code for recreating them. Fourth, the weights are based 
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on NHIS data, a public resource with individual-level data representing a probabilistic 

sample of the US adult population. Fifth, we used the new phecode X mapping table, 

which is more granular than its predecessor (version 1.2), is built on ICD-10 data, and 

appears to have more accurate phecode definitions (an earlier version of this manuscript 

used phecode 1.2 mappings and found unexpected consequences of its phecode 

definitions; see section 3.10.6).  

 However, our study also has several limitations. First, we cannot fully account for 

selection bias because the selection mechanisms are not fully known. Thus, our selection 

weights attempt to reduce selection bias. Second, the cohorts used vary in terms of 

geographical location, recruitment mechanisms, and access to EHR data (e.g., single 

medical system vs. primary care EHR). Future studies could examine more comparable 

cohorts to derive nuanced insights. Third, we performed meta-analyses of the US- and 

UK-based cohorts following the assumption of a fixed/common effect meta-analysis.234 

However, the phenome has salient socio-behavioral, economic, infrastructural, and 

environmental contributors that are divergent across the cohorts. As such, for interpreting 

pooled estimates and p-values from meta-analyses, investigators should consider the 

heterogeneity of estimates within and across cohorts. Fourth, we focus on generalizing 

results to an overall target population. However, having statistical power to conduct 

analyses in historically underrepresented groups in biomedical research (e.g., AOU) is a 

strength, not a liability. Aggregating data by reporting overall rather than stratified results 

can mask health inequities. Researchers can consider constructing strata-specific 

weights to obtain results generalizable to national level subpopulation (e.g., all adult non-

Hispanic Blacks in the US; Supplementary Figure 3.14). Fifth, analyses focused on or 
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combined with genetic data are common and a strength of EHR-linked biobanks, which 

we do not address. Schoeler and colleagues explore the impact of selection weights on 

genetic analyses like GWAS, heritability estimation, and Mendelian randomization in 

UKB, which may interest readers.97 Further research should explore the effect of selection 

bias on the genome-by-phenome landscape. Finally, while our focus was on approaches 

to reduce the impact of selection bias, multiple sources of bias7,235,25,48,236,237 need to be 

considered when conducting EHR analysis. Future studies should investigate these 

biases jointly, how they affect analytic tasks, and their relative importance on the final 

inferential conclusion. 

3.6 Conclusion 

We have introduced methods for assessing and comparing the effect of selection 

bias in EHR-linked biobanks and computed IP- and PS-weights for two US-based 

biobanks. These weights can potentially reduce – not remove – selection bias as the 

selection mechanisms are not fully known. Our findings suggest that using generic 

selection weights for exploring phenome structure (i.e., latent dimensionality, partial 

correlation across phecodes) and large-scale hypothesis testing is not crucial. EHR-linked 

biobanks should provide detailed guidance on sampling and recruitment processes and, 

where possible, make selection weights publicly available. Researchers should also 

clearly state their intended target population and estimand and describe recruitment and 

selection mechanisms from the source population. Systematic and rigorous exploration 

and comparisons of cohorts should be standard in analyses using multi-center EHR-

linked biobank data. 
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3.8 Tables 

Table 3.1 Descriptive characteristics of the Michigan Genomics Initiative, the UK Biobank, and All of Us. 
For unweighted metrics, mean (standard deviation) and percent (n) are provided for continuous and 
categorical/binary variables, respectively. For weighted metrics, mean (standard error) and percent 
(standard error) are provided for continuous and categorical/binary variables, respectively. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

 

Table 3.2 Number of principal components by proportion of cumulative variation (CV) in diagnostic 
phenome (n = 2,042) explained by cohort. 

 95% CV explained  99% CV explained 

  Unweighted Weighted   Unweighted Weighted 

All of Us 732 711  1,262 1,236 
Michigan Genomics 
Initiative 

752 729 
 

1,293 1,258 

UK Biobank 553 569   1,065 1,080 
Weighted results were conducted using inverse probability (IP)-weights. Out of 2,042 phecodes 
with at least 20 cases in all three cohorts. 

 

https://www.doi.org/10.17605/OSF.IO/SBMN2
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3.9 Figures 

 
Figure 3.1 Schematic representation of the All of Us, the Michigan Genomics Initiative, and the UK Biobank 
cohorts, their sampling strategies, potential target populations, and selection factors. All three cohorts are 
non-probability samples of their source populations for different reasons: oversampling, procedures 
requiring anesthesia, and healthy volunteers, respectively. External data like NHIS or UK Census Microdata 
can be used in selection weight construction to make inferences regarding presumed target populations. 
Factors known to influence recruitment strategy or eligibility criteria are listed. 

 

Michigan 
Genomics 

Initiative

(MGI)

All of Us
(AOU)

UK Biobank
(UKB)

USA Michigan Medicine UK Biobank-eligibleSource
population

Sample

Oversampling historically 
underrepresented groups

Preoperative appointments 
requiring anesthesia

Healthy volunteers proximal to 

assessment centers

Primary
sampling

strategy

US adult population UK 40-69 population

Presumed
target

population

National Health Interview Survey 
(NHIS)

UK Census Microdata
Means to target 

population

Factors
impacting

selection

• Age

• Sex
• Race/ethnicity

• Gender identity
• Sexual orientation

• Disability status

• Access to care
• Income

• Educational attainment
• Geographic location

• Age
• Sex
• Race/ethnicity

• Comorbidities with procedures 
requiring anesthesia including cancer 

(MGI)
• Hypertension (MIPACT)
• Diabetes, high BMI (MEND)

• Anxiety, depression (MHB)

• Age

• Sex
• Race/ethnicity

• Educational attainment
• Employment status

• Region of residence

• Tenure of dwelling
• Number of cars in household

• Self-reported health
• One-person household

van Alten et al., 2023

(doi: 10.2139/ssrn.4493234)

The All of Us Research Program Investigators, 2019 

(doi: 10.1056/NEJMsr1809937)

Zawistowski et al., 2023

(doi: 10.1016/j.xgen.2023.100257)
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Figure 3.2 Side-by-side boxplots of the inverse probability (IP)-weighted over unweighted phecode 
prevalence ratios within cohorts by 17 defined phecode categories. Panel A shows the ratio of IP-
weighted/unweighted prevalences in AOU, panel B shows the ratio of IP-weight/unweighted prevalences 
in MGI, and panel C shows the ratio of IP-weighted/unweighted prevalances in UKB. IP-weights were used 
in AOU and MGI and IP-weights described in van Alten et al.8 were used in UKB. 
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Figure 3.3 Side-by-side boxplots of the unweighted and inverse probability (IP)-weighted phecode 
prevalence ratios across cohorts by 17 defined phecode categories. Panel A shows the ratio of unweighted 
prevalences in MGI over AOU, panel B shows the ratio of unweighted prevalences in AOU / UKB, and 
panel C shows the ratio of unweighted prevalances in MGI / UKB. Panel D shows the ratio of IP-weighted 
prevalences in MGI over AOU, panel E shows the ratio of IP-weighted prevalences in AOU / UKB, and 
panel F shows the ratio of IP-weighted prevalances in MGI / UKB. The horizontal red line indicates the 
median phenome-wide prevalence ratio value. IP-weights were used in AOU and MGI and IP-weights 
described in van Alten et al.8 were used in UKB. 
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Figure 3.4 Manhattan plots summarizing unweighted (panels A-C) and inverse probability (IP)-weighted 
(panels E-G) phenome-wide association studies (PheWAS) for colorectal cancer in All of Us, the Michigan 
Genomics Initiative, and UK Biobank using 1:2 case:non-case matched data restricted to one year prior to 
initial diagnosis. Panels D and H show the unweighted and IP-weighted meta-analysis PheWAS, 
respectively. The dashed red line represents the Bonferroni-corrected p-value threshold (-
log10(0.05/number of traits)). The five traits with the smallest p-values are labeled. The upward (downward) 
orientation of the triangle indicates a positive (negative) association. Plots corresponding to 
poststratification-weighted PheWAS are presented in Supplementary Figure 3.12. 
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Figure 3.5 Within cohort and meta-analysis unadjusted and age-adjusted female log-odds ratio estimates 
(95% confidence interval) for colorectal cancer (phecode CA_101.41). Point estimate shapes and fill colors 
correspond to the weighting method (white circle, unweighted; dark blue square, inverse probability (IP)-
weighted; pink triangle, poststratification (PS)-weighted). Line colors correspond to the cohort (orange, 
AOU; blue, MGI; green, UKB; black, meta-analysis). Shaded region represents range of age-adjusted 
log(incidence rate ratio [IRR]) estimates from 2018-2020 US SEER data229 and an age-standardized 
log(IRR) estimate from White et al. 2018 from the UK.230 
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3.10 Supplementary materials 

3.10.1 Supplementary tables 

Supplementary Table 3.1 Phenotypes defined in paper and their qualifying phecode definitions 

Variable Phecode Description 

Anxiety MB_288 Anxiety and anxiety disorders 
Cancer CA_100 Malignant neoplasm of the head and neck 

CA_100.1 Malignant neoplasm of the oral cavity 
CA_100.12 Malignant neoplasm of the tongue 
CA_100.13 Malignant neoplasm of the gums 
CA_100.14 Malignant neoplasm of the floor of mouth 
CA_100.15 Malignant neoplasm of the palate 
CA_100.2 Malignant neoplasm of the oropharynx 
CA_100.3 Malignant neoplasm of the nasopharynx 
CA_100.4 Malignant neoplasm of the hypopharynx 
CA_100.5 Malignant neoplasm of nasal cavities, middle ear, and accessory 

sinuses 
CA_100.6 Malignant neoplasm of the larynx 
CA_100.7 Malignant neoplasm of the pharynx 
CA_100.8 Malignant neoplasm of the lip 
CA_100.9 Malignant neoplasm of the salivary glands 
CA_101 Malignant neoplasm of the digestive organs 
CA_101.1 Malignant neoplasm of the esophagus 
CA_101.2 Malignant neoplasm of stomach 
CA_101.21 Malignant neoplasm of cardia 
CA_101.3 Malignant neoplasm of the small intestine 
CA_101.4 Malignant neoplasm of the lower GI tract 
CA_101.41 Colorectal cancer 
CA_101.411 Malignant neoplasm of colon 
CA_101.412 Malignant neoplasm of appendix 
CA_101.42 Malignant neoplasm of anus 
CA_101.6 Malignant neoplasm of the liver and intrahepatic bile ducts 
CA_101.61 Malignant neoplasm of the liver 
CA_101.62 Malignant neoplasm of the intrahepatic bile ducts 
CA_101.7 Malignant neoplasm of the gallbladder and extrahepatic bile ducts 
CA_101.71 Malignant neoplasm of the gallbladder 
CA_101.8 Malignant neoplasm of the pancreas 
CA_102 Malignant neoplasm of the thoracic and respiratory organs 
CA_102.1 Malignant neoplasm of the of bronchus and lung 
CA_102.3 Malignant neoplasm of the trachea 
CA_102.5 Malignant neoplasm of the heart, mediastinum, thymus, and pleura 
CA_102.51 Malignant neoplasm of the heart 
CA_102.52 Malignant neoplasm of the mediastinum 
CA_102.53 Malignant neoplasm of the of pleura 
CA_102.54 Malignant neoplasm of the thymus 
CA_103 Malignant neoplasm of the skin 
CA_103.1 Melanomas of skin 
CA_103.2 Keratinocyte carcinoma 
CA_103.21 Basal cell carcinoma 
CA_103.22 Squamous cell carcinoma of the skin 
CA_103.3 Carcinoma in situ of skin 
CA_104 Malignant sarcoma-related cancers 
CA_104.1 Malignant neoplasm of the bone and/or cartilage 
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Variable Phecode Description 
CA_104.2 Malignant neoplasm of retroperitoneum and peritoneum 
CA_104.3 Malignant neoplasm of connective and soft tissue 
CA_104.4 Malignant neoplasm of peripheral nerves* 
CA_104.5 Gastrointestinal stromal tumor* 
CA_104.6 Kaposi's sarcoma 
CA_105 Malignant neoplasm of the breast 
CA_105.1 Malignant neoplasm of the breast, female 
CA_105.2 Malignant neoplasm of the breast, male 
CA_106 Gynecological malignant neoplasms 
CA_106.1 Malignant neoplasm of external female genital organs and cervix 
CA_106.11 Malignant neoplasm of the vulva 
CA_106.12 Malignant neoplasm of the vagina 
CA_106.13 Malignant neoplasm of the cervix 
CA_106.2 Malignant neoplasm of the uterus 
CA_106.21 Malignant neoplasm of endometrium 
CA_106.3 Malignant neoplasm of the ovary 
CA_106.4 Malignant neoplasm of the fallopian tube and uterine adnexa 
CA_106.6 Malignant neoplasm of the placenta 
CA_107 Malignant neoplasm of male genitalia 
CA_107.1 Malignant neoplasm of the penis 
CA_107.2 Malignant neoplasm of the prostate 
CA_107.3 Malignant neoplasm of the testis 
CA_107.4 Malignant neoplasm of epididymis 
CA_107.5 Malignant neoplasm of spermatic cord 
CA_107.6 Malignant neoplasm of the scrotum 
CA_108 Malignant neoplasm of the urinary tract 
CA_108.4 Malignant neoplasm of the kidney 
CA_108.41 Malignant neoplasm of kidney, except pelvis 
CA_108.42 Malignant neoplasm of renal pelvis 
CA_108.5 Malignant neoplasm of the bladder 
CA_108.6 Malignant neoplasm of urethra 
CA_108.7 Malignant neoplasm of ureter 
CA_109 Malignant neoplasm of the eye, brain and other parts of central 

nervous system 
CA_109.1 Malignant neoplasm of eye 
CA_109.11 Malignant neoplasm of orbit 
CA_109.12 Malignant neoplasm of lacrimal gland and duct 
CA_109.13 Malignant neoplasm of conjunctiva 
CA_109.14 Malignant neoplasm of cornea 
CA_109.15 Malignant neoplasm of retina 
CA_109.16 Malignant neoplasm of choroid 
CA_109.2 Malignant neoplasm of meninges 
CA_109.3 Malignant neoplasm of brain 
CA_109.4 Malignant neoplasm of spinal cord 
CA_109.5 Malignant neoplasm of cranial nerve 
CA_110 Malignant neoplasm of the endocrine glands 
CA_110.1 Malignant neoplasm of the thyroid 
CA_110.3 Malignant neoplasm of the parathyroid gland 
CA_110.4 Malignant neoplasm of the pituitary gland and craniopharyngeal duct 
CA_110.5 Malignant neoplasm of the pineal gland 
CA_112 Malignant neoplasm of other and ill-defined sites 
CA_112.1 Mesothelioma* 
CA_114 Neuroendocrine tumors 
CA_114.1 Malignant neuroendocrine tumors 
CA_114.11 Exocrine pancreatic cancer 
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Variable Phecode Description 
CA_114.12 Merkel cell carcinoma 
CA_114.2 Benign neuroendocrine tumors 
CA_114.4 Carcinoid tumors 
CA_114.41 Intestinal carcinoid 
CA_114.42 Carcinoid tumor of the bronchus and lung 
CA_114.43 Carcinoid tumor of the thymus 
CA_114.44 Carcinoid tumor of the stomach 
CA_114.45 Carcinoid tumor of the kidney 
CA_114.5 Paraganglioma 
CA_114.6 Pheochromocytoma 
CA_116 Secondary malignant neoplasm 
CA_120 Hemo onc - by cell of origin 
CA_120.1 Myeloid 
CA_120.11 Plasma cell 
CA_120.12 Monocyte 
CA_120.13 Erythroid 
CA_120.14 Megakaryoblast 
CA_120.15 Mast cell 
CA_120.2 Lymphoid 
CA_120.21 Mature B-cell 
CA_120.22 Mature T-Cell 
CA_120.3 Histocytes 
CA_121 Leukemia 
CA_121.1 Acute leukemia 
CA_121.11 Acute lymphoid leukemia 
CA_121.12 Acute myeloid leukemia 
CA_121.2 Chronic leukemia 
CA_121.21 Chronic lymphoid leukemia 
CA_121.22 Chronic myeloid leukemia 
CA_121.23 Chronic myelomonocytic (monocytic) leukemia 
CA_122 Lymphoma 
CA_122.1 Hodgkin lymphoma 
CA_122.11 Nodular sclerosis Hodgkin lymphoma 
CA_122.2 Non-Hodgkin lymphoma 
CA_122.21 Follicular lymphoma 
CA_122.22 Diffuse large B-cell lymphoma* 
CA_122.23 Burkitt lymphoma 
CA_122.24 T-cell lymphoma 
CA_122.25 Anaplastic large cell lymphoma 
CA_122.26 Extranodal NK/T-cell lymphoma, nasal type* 
CA_123 Multiple myeloma and malignant plasma cell neoplasms 
CA_123.1 Multiple myeloma 
CA_124 Myeloproliferative disorder 
CA_124.3 Polycythemia vera 
CA_124.5 Essential thrombocythemia 
CA_124.6 Myelodysplastic syndrome 
CA_124.7 Chronic myeloproliferative disease* 
CA_124.8 Myelofibrosis 
CA_125 Other malignant neoplasms of lymphoid, hematopoietic and related 

tissue 
CA_128 Estrogen receptor status 
CA_128.1 Estrogen receptor positive status [ER+] 
CA_128.2 Estrogen receptor negative status [ER-] 
CA_130 Cancer (solid tumor, excluding BCC) 
CA_132 Sequelae of cancer 
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Variable Phecode Description 
Coronary artery 
disease 

CV_404.2 Coronary atherosclerosis [Atherosclerotic heart disease] 

Depression MB_286.2 Major depressive disorder 
Diabetes EM_202 Diabetes mellitus 

Visit https://phewascatalog.org (phecodeX) and https://github.com/PheWAS/PhecodeX 
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Supplementary Table 3.2 Definition of variables by cohort used throughout paper 

  AOU MGI UKB NHIS (2019)* 

Age Age at last diagnosis Age at last 
diagnosis 

Age at consent: date of 
consent (field ID 200) minus 
date of birth (field IDs 34, 52) 

Age at screening 
(AGEP_A) 

Sex Self-reported sex at birth (field 
name: sex_at_birth_concept_id) 

Self-report 
EHR 

Acquired by central registry at 
recruitment, may be updated 

by individual (field ID 31) 

SEX_A 

Race/ethnicity Self-reported race ethnicity (field 
names: 

race_source_concept_id, 
ethnicity_source_concept_id) 

Self-report 
EHR 

Self-report survey (field ID 
21000) 

HISPALLP_A 

BMI Median of EHR values Median of 
EHR values 

Median of assessed values 
(field ID 21001) 

BMICAT_A  
(HEIGHTTC_A, 

WEIGHTLBTC_A) 
Smoking status Self-report (concept IDs: 

1585857, 1585860) 
Self-report 

EHR 
Survey (field ID 20116) SMKCIGST_A 

Anxiety Phecode MB_288: Anxiety and anxiety disorders GADCAT_A 

Cancer See Supplementary Table 3.1 CANEV_A 

Coronary artery 
disease 

Phecode CV_404.2: Coronary atherosclerosis [Atherosclerotic heart disease] CHDEV_A 

Depression Phecode MB_286.2: Major depressive disorder PHQCAT_A 

Diabetes Phecode EM_202: Diabetes mellitus DIBEV_A 

* visit https://www.cdc.gov/nchs/nhis/2019nhis.htm for more information 

 

  

https://www.cdc.gov/nchs/nhis/2019nhis.htm
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Supplementary Table 3.3 Female log odds ratio estimate (95% confidence interval) for colorectal cancer (phecode CA_101.41). 

Weighting Covariates AOU MGI UKB META 

Unweighted 
None 

-0.287 
(-0.354, -0.220) 

-0.303 
(-0.387, -0.219) 

-0.450 
(-0.492, -0.409) 

-0.390 
(-0.423, -0.358) 

Age 
-0.098 

(-0.164, -0.033) 
-0.164 

(-0.247, -0.082) 
-0.389 

(-0.431, -0.348) 
-0.284 

(-0.316, -0.252) 

IP-weighted 
None 

-0.037 
(-0.188,  0.113) 

-0.266 
(-0.467, -0.065) 

-0.443 
(-0.506, -0.380) 

-0.373 
(-0.429, -0.317) 

Age 
-0.047 

(-0.198,  0.104) 
-0.217 

(-0.419, -0.014) 
-0.398 

(-0.461, -0.334) 
-0.335 

(-0.392, -0.279) 

PS-weighted 

None 
-0.135 

(-0.321,  0.052) 
-0.329 

(-0.615, -0.044) 
-0.443 

(-0.506, -0.380) 
-0.408 

(-0.466, -0.349) 

Age 
-0.123 

(-0.311,  0.064) 
-0.342 

(-0.629, -0.056) 
-0.398 

(-0.461, -0.334) 
-0.368 

(-0.427, -0.310) 

* Meta-analysis results include IP-weighted estimate from UKB 
Abbrevs: AOU, All of Us; IP, inverse probability; META, meta-analysis; MGI, Michigan Genomics Initiative; PS, poststratification; UKB, UK 
Biobank 
Bolded point estimates are statistically significant at the 95% confidence level  
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Supplementary Table 3.4 Comparison between ICD codes by colorectal cancer phecode mapping table, 
count with ICD code, and overlap with individuals who have HIV phecode (sorted by proportion of overlap). 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

  

https://www.doi.org/10.17605/OSF.IO/SBMN2
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3.10.2 Supplementary figures 

 
Supplementary Figure 3.1 Flowchart depicting several common data tasks. This flowchart is subjective and 
not exhaustive. 

 

Common data tasks

Descriptive Analytic

Prevalence Structure

Correlation Dimensionality

Hypothesis 

testing
Association Prediction
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Supplementary Figure 3.2 Flowcharts depicting samples sizes before and after filter and ICD-to-phecode mapping in AOU (panel A), MGI (panel B), 
and UKB (panel C). 

 

A. AOU

Demographics
(n = 413,457)

ICD-CM codes
(n = 249,950)

ICD9-CM
(n = 185,520)

ICD10-CM
(n = 238,453)

ICD-mapped phecodes
(n = 244,071)

AOU analytic dataset
(n = 244,071)

B. MGI

Demographics
(n = 81,608)

ICD-CM codes
(n = 81,376)

ICD9-CM
(n = 81,289)

ICD10-CM
(n = 80,753)

ICD-mapped phecodes
(n = 81,243)

MGI analytic dataset
(n = 81,243)

C. UKB

Demographics
(n = 502,413)

ICD codes
(n = 410,250)

ICD9*
(n = 20,299)

ICD10
(n = 410,250)

ICD-mapped phecodes
(n = 401,167)

UKB analytic dataset
(n = 401,167)

Initial data pull

Participants in 
qualifying 

subcohorts

(n = 81,485)

After mapping ICD
codes to phecodes
And applying phecode-
participant sex concordance 

filter

* 3,252 have only ICD9 codes
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Supplementary Figure 3.3 A schematic representation of the targeted and untargeted association analyses 
pipelines carried out in the manuscript. 
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Supplementary Figure 3.4 Principal components (PC) analysis in All of Us (AOU), the Michigan Genomics 
Initiative (MGI), and the UK Biobank (UKB). Panel A shows all principal components explain at least 1% of 
variation. Panel B shows the cumulative proportion of variance explained (VE) and reports variance 
explanation thresholds. The vertical dashed lines represent the number of PCs that explain at least 95% of 
total variance. The vertical dotted lines represent the number of PCs that explain at least 99% of the total 
variance. 
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Supplementary Figure 3.5 Unweighted (panel A) and inverse probability-weighted (panel B) network plots 
of the partial correlation structure of medical phenomes in All of Us. Correlation coefficients are adjusted 
for age and sex. Only correlations with an absolute value greater than or equal to 0.3 are shown. The size 
of the nodes corresponds to the prevalence of the trait in its cohort and the color corresponds to the phecode 
category. Corresponding figures for MGI and UKB are in Supplementary Figure 3.6 and Supplementary 
Figure 3.7, respectively. 
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Supplementary Figure 3.6 Unweighted (panel A) and inverse probability-weighted (panel B) network plots 
of the partial correlation structure of medical phenomes in MGI. Correlation coefficients are adjusted for 
age and sex. Only correlations with an absolute value greater than or equal to 0.3 are shown. The size of 
the nodes corresponds to the prevalence of the trait in its cohort and the color corresponds to the phecode 
category. Corresponding figures for AOU and UKB are in Supplementary Figure 3.5 and Supplementary 
Figure 3.7, respectively. 
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Supplementary Figure 3.7 Unweighted (panel A) and inverse probability-weighted (panel B) network plots 
of the partial correlation structure of medical phenomes in UKB. Correlation coefficients are adjusted for 
age and sex. Only correlations with an absolute value greater than or equal to 0.3 are shown. The size of 
the nodes corresponds to the prevalence of the trait in its cohort and the color corresponds to the phecode 
category. Corresponding figures for AOU and MGI are in Supplementary Figure 3.5 and Supplementary 
Figure 3.6, respectively. 
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Supplementary Figure 3.8 Distribution of unweighted partial correlations across medical phenomes. Partial 
correlations were adjusted for age and, if both codes in the pair applied to both sexes, sex. 
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Supplementary Figure 3.9 Distribution of weighted partial correlations across medical phenomes. Partial 
correlations were adjusted for age and, if both codes in the pair applied to both sexes, sex. IP-based weights 
were used for AOU and MGI and IP-based weighted developed by van Alten and colleagues8 were used 
for UKB. 
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Supplementary Figure 3.10 Venn diagrams comparing the overlap in phenome-wide significant hits from 
unweighted and weighted colorectal cancer PheWAS in AOU, MGI, and UKB. 
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Supplementary Figure 3.11 Venn diagrams comparing the overlap in phenome-wide significant hits from 
meta-analysis PheWAS. 
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Supplementary Figure 3.12 Manhattan plots summarizing poststratification-weighted (panels A-D) 
phenomewide association studies for colorectal cancer in All of Us and the Michigan Genomics Initiative 
and the inverse probability weighted UK Biobank using 1:2 case:non-case matched data restricted to one 
year prior to initial diagnosis along with the corresponding meta-analysis. The dashed red line represents 
the Bonferroni-corrected p-value threshold (-log10(0.05/number of traits)). The five traits with the smallest 
p-values are labeled. The upward (downward) orientation of the triangle indicates a positive (negative) 
association. Plots corresponding to unweighted and IP-weighted PheWAS are presented in Figure 3.4. 
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Supplementary Figure 3.13 Unweighted unadjusted and age-adjusted female log-odds ratio estimate (95% 
confidence interval) for colorectal cancer (phecode CA_101.41) by race/ethnicity and cohort. Line colors 
correspond to the cohort (orange, AOU; blue, MGI; green, UKB). Shaded region represents range of age-
adjusted log(incidence rate ratio [IRR]) estimates from 2018-2020 US SEER data229 and an age-
standardized log(IRR) estimate from White et al. 2018 from the UK.230 
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Supplementary Figure 3.14 Schematic representation of analysis pipelines where All of Us data is used to 
generate an association estimate representative of the general US adult population (upper half) and 
association estimates representative of the US adult population by race/ethnicity category (lower half). 
Abbreviations: NHB, non-Hispanic Black; NHIS, National Health Interview Survey; NHW, non-Hispanic 
White. 
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Supplementary Figure 3.15 Manhattan plots summarizing unweighted (panels A-C) phenomewide 
association studies for colorectal cancer in All of Us, the Michigan Genomics Initiative, and UK Biobank 
using 1:2 case:non-case matched data restricted to one year prior to initial diagnosis. Panel D shows the 
unweighted meta-analysis PheWAS, respectively. The dashed red line represents the Bonferroni-corrected 
p-value threshold (-log10(0.05/number of traits)). The five traits with the smallest p-values are labeled. The 
upward (downward) orientation of the triangle indicates a positive (negative) association.  
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3.10.3 Supplementary Methods 

3.10.3.1 Inverse probability weighting 

In MGI, we estimated the first term, 𝑃(𝑆𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 1|𝑿), by fitting a simplex 

regression model for the known design probabilities using NHIS data. We estimated the 

numerator of the second term, 𝑃(𝑆 = 1|𝑿, 𝑆𝑎𝑙𝑙 = 1), using a logistic regression model. We 

considered the set of selection factors, 𝑿: age (≥ 50 indicator), female sex, BMI 

(categorical), non-Hispanic White race/ethnicity, and EHR-derived binary indicators for 

anxiety, depression, diabetes, cancer, and hypertension (variable definitions in 

Supplementary Table 3.2). Cancer was not included directly in the estimation procedure 

above because the small prevalence of cancer in NHIS led to unstable model fitting.11 

Instead, a cancer factor, 𝛾𝑐𝑎𝑛𝑐𝑒𝑟 , defined as 
𝑃(Cancer|𝑿,𝑆=1)

𝑃(Cancer|𝑿) 
, was estimated by fitting logistic 

regression models with the same 𝑿. The probabilities, 𝜓, were multiplied by this factor 

(i.e., 𝜓𝛾𝑐𝑎𝑛𝑐𝑒𝑟). 

In AOU, we flexibly selected 𝑿 by splitting the data in half and fitting a lasso-

penalized logistic regression model on 𝑿 and all possible pairwise interactions using the 

glmnet R package (version 4.1-8). We considered a set of selection factors, 𝑿: age ((≥ 

50 indicator), female sex, non-Hispanic White race/ethnicity, non-heterosexual orientation 

(yes/no), health insurance coverage status (yes/no), annual household/family income (≥ 

$75,000), educational attainment (at least high school graduate or equivalent), and region 

of residence (indicators for West, South, and Northeast) (variable definitions in 

Supplementary Table 3.2). Using 10-fold cross-validation, we selected the largest 𝜆 such 

that the error is within 1 standard error of the minimum to result in a parsimonious model. 

Of the 55 possible main effect and interaction terms, 39 were selected by this model 
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(Supplementary Table 3.3) and (along with the main effect for West region) were then 

used as the final set of 𝑿 to estimate IP weights in the other half of the data as described 

for MGI above. The indicator variables for income, health insurance status, and non-

Hispanic White race/ethnicity were the three most important variables (Supplementary 

Figure 3.2). In both cohorts, the resulting probabilities were winsorized at the 2.5th and 

97.5th percentiles. 

We note that augmented inverse probability weighting (AIPW) is a doubly robust 

weighting method that may be of interest to the reader; see 238–240. 

3.10.3.2 Poststratification weighting 

In AOU, we considered the set of 𝑿: age (≥ 50 indicator), female sex, non-Hispanic 

White race/ethnicity, sexual orientation (non-heterosexual indicator), health insurance 

coverage status (yes/no), annual household/family income (≥ $75,000 indicator), and 

region of residence (categorical). In MGI we considered the set of selection factors, 𝑿: 

age (≥ 50 indicator), female sex, non-Hispanic White race/ethnicity, BMI (categorical), 

smoking status (ever/never), and EHR-derived history of anxiety, cancer, depression, 

diabetes, and hypertension.  

We note that other there are other weighting methods relying only on summary 

statistics like calibration, raking, and pseudolikelihood that may be of interest to the 

reader; see 7,79,104. 

3.10.3.3 Correlations 

We also explored the correlation structure of unweighted and weighted phenomes 

through partial correlations. Unweighted partial correlations were calculated between 

pairs of traits, 𝑋 and 𝑌, adjusted for age and sex, using the ppcor R package (version 
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1.1). 241 Weighted partial correlations were approximated as the coefficient 𝛽𝑋 from the 

weighted multiple linear regression model 𝑌 = 𝛽0 + 𝛽𝑋𝑋 + 𝜷𝒁𝒁, where 𝑋, 𝑌, and 𝒁 were 

mean standardized and 𝒁 were age and female sex. For 𝑋, 𝑌 pairs where one trait was 

sex-specific, the other trait was limited to individuals of that sex, and sex was not included 

as a covariate. Network graphs of correlations with absolute values greater than 0.3 were 

constructed to visually inspect the structure. All traits were treated as binary based on the 

presence of a single phecode in the EHR. (see Section 3.10.4 for results). 

3.10.3.4 PheWAS 

The data were prepared as described in Salvatore and colleagues 18 at the one-

year prior to colorectal cancer diagnosis threshold. For sex-specific phecodes, those with 

discordant sex were treated as missing. (Of note, some ICD codes do not map to 

phecodes). Logistic regression models were fit as follows: 

𝑙𝑜𝑔𝑖𝑡(𝑃(CA101.41 = 1|𝑘, 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆𝒔)) = 𝛽0 + 𝛽𝑘𝑘 + 𝜷𝐜𝐨𝐯𝐚𝐫𝐢𝐚𝐭𝐞𝐬𝐜𝐨𝐯𝐚𝐫𝐢𝐚𝐭𝐞𝐬 Eq. (S1) 

where CA_101.41 (the phecode for colorectal cancer) is an indicator for the outcome, 𝑘 

represents the exposure phecode 𝑘 (indicator), and covariates are age at one-year prior 

to colorectal cancer diagnosis (continuous), female sex (indicator), and length of EHR 

follow-up (continuous). 

Phenomewide significant hits were identified using a conservative multiple testing 

corrected threshold of 0.05 divided by the number of total tests. Weighted logistic 

regression models were fit using svyglm from the survey R package.242 In cases where a 

given exposure phecode did not have both (1) at least 20 occurrences and (2) at least 10 

individuals with the exposure and colorectal cancer, weighted Firth bias-corrected logistic 
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regression (logistf R package version 1.26.0) was used to address concerns about 

separation. 

3.10.4 Unweighted and weighted partial correlations 

Network diagrams depicting unweighted and weighted partial correlation 

coefficients with absolute values greater than 0.3 (an arbitrary threshold) in AOU is shown 

in Supplementary Figure 3.5 (MGI and UKB shown in Supplementary Figure 3.6 and 

Supplementary Figure 3.7). We can see clusters of correlated traits within 

endocrine/metabolic and musculoskeletal categories, as well as a cluster including both 

digestive and neurological traits. A small reduction in correlations with absolute values 

greater than 0.3 were observed after weighting (2,533 vs. 2,474). Interestingly, we see 

strong correlations with neoplasm traits in MGI (Supplementary Figure 3.6), which largely 

disappear after weighting. There are distinct clusters within musculoskeletal traits and 

across circulatory system and endocrine/metabolic traits in UKB, which remain after 

weighting. The number of strong (absolute value > 0.3) correlations in UKB slightly 

increases after weighting (1,674 vs 1,757). Supplementary Figure 3.8 and Supplementary 

Figure 3.9 depict the distribution of the unweighted and weighted partial correlation 

coefficients in each cohort, respectively. Generally, correlations tend to be highest in MGI 

followed by AOU and then UKB. Comparing the two US-based cohorts, AOU 

(Supplementary Figure 3.5) and MGI (Supplementary Figure 3.6), we see that, while the 

prevalences of traits involved in these networks are comparable, the network in MGI is 

denser compared to AOU.  
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3.10.5 Comments on methodological considerations in EHR-based data analysis 

Weighting-based analytic approaches present a relatively simple way for 

researchers to improve the generalizability of their results and help reduce (not remove) 

selection bias. IP weights are preferred to PS weights though they rely on the assumption 

that the weighting model is correctly specified. Regression-based weights can be made 

more flexible through the use of indicator variables (as in our AOU IP-weights and in van 

Alten and colleagues8), though non-parametric methods like random forest can be used. 

When individual-level data from the target population is not available, PS weights can be 

estimated using summary-level strata probabilities (provided these probabilities are 

conditionally independent). When selection weights are unavailable, methods like 

covariate or propensity score adjustment, which are simple to implement, can be 

considered to address in some situations where selection bias is a concern. 

Beyond introductory papers,1,124–128 substantial work has focused specifically on 

traditional methodological concerns including confounding,48,49 misclassification,7,50,51 

missing data,20,23,117,123,235,243,244 and selection bias and cohort 

representativeness7,11,24,76–79 related to EHR-based cohorts. For example, traits defined 

using the phecode framework have demonstrated reduced misclassification compared to 

ICD codes.129 One method to further reduce the impact of misclassification, described by 

Hubbard and colleagues, relies on EHR-derived probabilistic phenotyping.50 Others have 

described methods using manual chart review on a subset of data to improve EHR-

derived phenotypes.51,130,131 Beesley and Mukherjee developed three novel likelihood-

based bias correction strategies to address outcome misclassification of EHR-derived 

disease status.7 Teixeira and colleagues explored incorporation of unstructured data like 
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doctors notes, which improved the identification of hypertensive individuals compared to 

using ICD codes and blood pressure reading cutoffs alone.132 Missing data is another 

issue that has received attention to avoid loss of power and inducing selection bias (via 

complete case analyses) and aid in meeting assumptions necessary for multiple 

imputation.243 One avenue is using non-missing genotype data available in EHR-linked 

biobanks to inform imputation, which demonstrated improvements in imputation of 

cardiovascular related measurements.44 This idea could be extended using exposure 

polygenic risk scores43 to inform imputation of missing exposure data.  

Target validity is one consideration broadly applicable in health research but 

particularly acute in EHR-based analyses. Westreich and colleagues have defined this as 

a joint measure of internal and external validity of an effect estimate with respect to a 

specific target population.54 Historically, internal validity, the notion that an estimate 

reflects the true underlying parameter in the study population, has taken precedence over 

external validity, that the parameter in the study population is representative of the true 

parameter in the target population. However, because of observation mechanisms and 

recruitment strategies into EHR-linked biobanks, the target population is almost certainly 

never (1) exactly the study sample or (2) the population of which the study sample is a 

simple random sample.54 EHR researchers should think critically regarding who the 

results are intended for or representative of before beginning an analysis and make their 

target populations explicit in their work. We believe it is critical for researchers to consider 

weighted approaches that account for both the observation and recruitment mechanisms 

in each cohort (including potential subcohorts) and differences in the distribution of key 

characteristics between the analytic cohort and the target population. 
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We want to highlight some considerations that are hallmarks of EHR analysis. One 

such consideration is informed presence, defined by Goldstein and colleagues as “the 

notion that inclusion in an EHR is not random but rather indicates that the subject is ill, 

making people in EHRs systematically different from those not in EHRs.”55 This resulting 

discrepancy harms generalizability to general populations who tend to be healthier than 

those in the EHR data sample and results in bias. This concept extends to individuals 

within the EHR – those that are sicker tend to have more encounters and records than 

those who are healthier – and, in some cases, to records in the EHR (e.g., lab results). 

This phenomenon is illustrated by Agniel and colleagues, which shows that the presence 

and timing of laboratory results was more informative than the value of the laboratory 

results themselves.133 Interested readers can learn more about informed presence 

elsewhere.1,25,55,56,134 Including EHR metadata, like length of follow-up, number of 

encounters, density of laboratory measurements, and visit type (e.g., outpatient vs 

inpatient vs emergency), and careful selection or matching of controls in analyses are 

recommended to improve exchangeability and attempt to make EHR observation 

mechanisms comparable. 

  



 85 

3.10.6 Investigation into infectious diseases peak in AOU PheWAS using phecode 

1.2 mapping tables 

An earlier version of the manuscript was performed using the phecode 1.2 

mapping tables instead of phecode X. The Manhattan plot representing the colorectal 

cancer PheWAS in AOU in Supplementary Figure 3.15 shows a peak in the infectious 

disease category. The top hit is Human immunodeficiency virus [HIV] disease, or phecode 

071 in the phecode 1.2 mapping tables. It is well established that there is no association 

between HIV status and colorectal cancer.245,246 We investigated the underlying ICD 

codes that qualify as a colorectal cancer case. Our analyses in the manuscript use the 

phecode mapping table present in the PheWAS R package (version 1.2).228,247 We also 

show qualifying ICD codes for a different phecode mapping table (version X),61,227 which 

defines over 3,600 traits. The results of the differences in qualifying ICD codes, number 

of individuals with the ICD code, and the number (and percent) overlap with individuals 

who have HIV according to their version 1.2 defined phecode are summarized in 

Supplementary Table 3.4. We see that there is significant overlap between individuals 

with ICD codes for anal Pap smears, inconclusive results and carcinoma in situ and HIV 

status. These codes are present in the version 1.2 mapping table, but not in the version 

X mapping table. Codes present in the version 1.2 definition also include malignant 

neoplasms of the anus, but not in the version X definition. And there is evidence that 

people living with HIV experience higher incidence of anal cancer.248 Because version X 

has more traits, there is greater separation between colorectal cancer and anal cancer. 
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Chapter 4 The Impact of Sample-Weighting on Risk Prediction and Risk 

Stratification Properties of Prediction Models Trained in One EHR-Linked Biobank 

When Applied to Another Biobank with a Different Recruitment Strategy: A Case 

Study in the United States  

4.1 Abstract 

Should weights be considered for developing risk prediction/stratification models 

using electronic health record (EHR)-linked biobank data when the external test cohort 

has a different sampling strategy than the internal training sample? To answer this 

question, we calculated two sets of poststratification (PS) weights to make a hospital-

based biobank, the Michigan Genomics Initiative (MGI; n=76,757) in the United States, 

resemble a nationally recruited biobank in the US that oversamples groups historically 

underrepresented in biomedical research, All of Us (AOU; n=226,764) and assessed the 

impact of using these weights on the performance of risk scores constructed based on 

EHR data in MGI. Basic PS weights (PSBASIC) included age, sex, and race/ethnicity; full 

PS weights (PSFULL) additionally included smoking, alcohol consumption, BMI, 

depression, hypertension, and the Charlson Comorbidity Index. We compared weighted 

and unweighted versions of six commonly used methods, including lasso, ridge, elastic 

net, and random forest, to diagnosis code-derived phecode X data to develop phenotype 

risk scores (PheRS). We developed risk prediction models using MGI EHR data from 0, 

1, 2, and 5 years prior to the index diagnosis date for three cancer types: esophageal, 

liver, and pancreatic, where there is a pressing need for early detection and screening 
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tools. PheRS were considered in concert with three other groups of predictors: basic 

covariates (age, sex, race/ethnicity), known risk factors (e.g., alcohol consumption for 

liver cancer; curated for each outcome), and a presenting symptom (e.g., weight loss for 

no known reason for liver cancer; curated for each outcome). The primary risk 

stratification metric of interest was the odds ratio (OR), comparing the top decile to the 

middle 40th-60th percentile of the risk score distribution. We also calculated other 

measures for evaluating prediction models, such as the area under the receiver operating 

curve (AUC), Hosmer-Lemeshow goodness-of-fit statistic, and Brier Score. While no 

single PheRS construction approach uniformly performed better in terms of risk 

stratification or discrimination, elastic net and random forest tended to exhibit good 

properties in general. In no setting did the use of PS weights consistently or meaningfully 

improve risk stratification performance (e.g., unweighted random forest PheRS alone OR 

(95% CI) for liver cancer at t=1: unweighted: 13.73 (8.97, 21.01), PSBASIC-weighted: 14.55 

(9.45, 22.42), PSFULL-weighted: 13.62 (8.90, 20.85)). The indeterminate impact of PS 

weights applied to other prediction diagnostics and to the predictive performance of other 

data domains. PheRS was the most important in risk stratification compared to the other 

three domains of predictors (e.g., unweighted OR (95% CI) for liver cancer at t=1: 

covariates and risk factors: 1.75 (1.16, 2.63), plus random forest PheRS: 7.02 (4.75, 

10.38), plus presenting symptom: 6.26 (4.18, 9.39)). The results for liver cancer are 

indeed encouraging for an agnostic EHR-based approach towards early detection. 

Researchers should consider EHR-embedded health history (i.e., PheRS) alongside 

other data domains like genetics, laboratory results, and medication data to improve risk 

stratification and predictive properties of clinical prediction models. The use of weights 
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does not conclusively alter the performance of the risk scores we considered when the 

transferability of prediction models from one biobank to the other is considered. 

4.2 Introduction 

Risk prediction models are classic tools in clinical medicine and precision health. 

Prediction models and resultant risk scores have been developed to identify or stratify 

individuals at elevated risk for many health-related outcomes to prioritize prevention, 

screening, diagnostic, and treatment approaches.14,249 A classic example is the 

Framingham Risk Score, which predicts 10-year risk for cardiovascular disease;14 

individuals at higher risk are often recommended to start preventive treatment based on 

this score.137 Many risk score models exist for cancer, including breast,140–142 ovarian,141 

colorectal,15,143,144,250–252 esophageal,13,144,253,254 liver,146,147,193,255,256 and pancreatic 

cancers,18,144,250,257,258 that identify high-risk individuals who might benefit differential 

preventive or treatment approaches than those offered to individuals at baseline risk. Risk 

prediction and stratification are critical for cancers where early detection is poor, and 

screening is generally unavailable. 

Electronic health record (EHR)-linked biobanks, which are cohorts combining 

EHR, survey, and genetic data with other linkable data (e.g., cancer and vital status 

registries, prescription and insurance claims data, neighborhood-level environmental 

exposures), are rapidly increasing in size and number.1 Examples include the UK Biobank 

(UKB)3 and the US-based NIH All of Us Research Program (All of Us; AOU),2  each 

containing over 500,000 participants. Researchers have used diagnosis codes in EHR-

linked biobanks to summarize an individual’s health history for risk prediction.18,259–262 For 

example, we used diagnosis code data to develop a pancreatic cancer phenotype risk 
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score (PheRS) in the University of Michigan’s Michigan Genomics Initiative (US-based; 

MGI) using a parametric pruning-and-thresholding approach and assessed the 

performance of these scores in the UKB.18 

However, EHR-linked biobanks often adopt sampling mechanisms such as 

recruiting patients who are awaiting surgery (MGI),45 oversampling groups historically 

underrepresented in research (as in AOU),2 or enacting strategies that result in healthy 

volunteer self-selection (as in UKB),4 making them not representative of their respective 

source populations (or comparable to one another). One problem that can arise with 

predictions is lack of transferability. This happens when differences exist in the underlying 

distributions between the data used to create a risk prediction model and the sample to 

which the model is applied. As a result, the model may have sub-optimal predictive 

performance in the target sample.199 One approach to addressing this problem is called 

transfer learning, which can adapt models developed in one sample for use in a second 

sample by using a relatively small amount of information from the second sample.173,174 

Alternatively, a sample weighting-based approach to transferable model building could 

be considered.180 

Weighting-based methods are commonly employed to address the lack of 

representativeness between the analytic sample and its source population (i.e., selection 

bias).5,7,77,81,82 They can also address differences between the sample and an external 

target population of interest (i.e., transportability).54 Steingrimsson and colleagues 

developed an inverse-odds weight-based framework for transporting risk prediction 

models for use in an external target population where outcome data is unavailable.180 The 

lack of readily available software to implement variable selection and machine learning 
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methods to complex multi-stage samples has been a bottleneck in developing risk 

prediction models for weighted data. Recently, Iparragirre and colleagues developed a 

method for tuning hyperparameters for lasso models for risk prediction in weighted 

settings.17 Their general framework can be extended to other regularized regression and 

random forest risk prediction models, which could enhance the transferability of risk 

prediction models through the use of weights. Such transferability would accelerate the 

integration of risk prediction models developed in one biobank into another healthcare 

system, making them available to more clinicians at the point of care.263 

Building off our work18 and that of Iparragirre and colleagues,17 we assessed the 

impact of poststratification (PS) weights on the performance of PheRS for esophageal, 

liver, and pancreatic cancers at four time thresholds (t=0,1,2,5 years) before diagnosis of 

the index cancer. We considered six different methods commonly used for risk score 

construction. One-step PheRS methods included regularized regression (lasso, ridge, 

elastic net) and random forest models, and two-step PheRS methods included univariable 

and multivariable pruning-and-thresholding-like approaches. We developed PheRS using 

EHR data in MGI, a cohort enriched with cancer diagnoses because of its perioperative 

recruitment strategy. We assessed their performance in the US-based cohort AOU. MGI 

was split 50/50 such that hyperparameter tuning or feature selection was performed in 

50% of the data, and model fitting to obtain the beta-coefficients or estimates of fitted 

parameters was conducted in the other 50%. Two sets of PS weights were calculated: 

PSBASIC, which accounted for age, sex, and race/ethnicity, and PSFULL, which additionally 

included smoking, alcohol consumption, BMI, depression, hypertension, and Charlson 

Comorbidity Index (CCI, which captures local and metastatic cancers). We had weighted 
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and unweighted versions of the fitted models, with weights designed to make MGI 

resemble the target cohort AOU. Evaluating in AOU, we had three aims: (a) to compare 

different PheRS construction approaches, (b) to determine whether using PS weights 

improved PheRS performance, and (c) to contrast PheRS performance with that of three 

other predictor domains: basic demographic covariates, risk factors, and presenting 

symptoms. For each aim, we chose several metrics associated with prediction (namely 

discrimination, calibration, and accuracy measures) and measures of risk stratification 

(Figure 4.1). Finally, we made recommendations regarding (a) the choice of methods for 

constructing PheRS, (b) the use of PS weights to make PheRS more transferrable to 

another cohort, and (c) the role of PheRS in comparison to other sets of predictors in the 

development of EHR-based risk scores. 

4.3 Results 

4.3.1 Characteristics of the training and assessment cohorts 

Unweighted, AOU (n=226,764) had an average age of 54, was 62% female, and 

was 55% non-Hispanic White (Table 4.1). Additionally, 12% were high on the CCI, 88% 

had reported ever consuming alcohol, and 26% had a record of depression (phecode 

MB_286.2). MGI (n=76,757) had a similar average age of 57 but was less female (54%), 

more White (84%), had more individuals with high CCI (33%), self-reported less alcohol 

(69%), and had a higher rate of depression (32%).  

Using PS weights that accounted for age, sex, and race/ethnicity (i.e., PSBASIC), 

MGI looked more similar with respect to age (mean 55 years old), sex (60% female), and 

race/ethnicity (60% non-Hispanic White), but still had more individuals with high CCI 

(30%), less reported alcohol consumption (68%), and higher rates of depression (33%). 
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PS weights that additionally accounted for smoking, alcohol consumption, body mass 

index, depression, hypertension, and CCI (i.e., PSFULL), MGI generally mimicked the 

marginal frequencies more like AOU, including age (mean 55 years old), sex (61% 

female), race/ethnicity (65% non-Hispanic White), high CCI (13%), reported alcohol 

consumption (89%), and rate of depression (27%).  

Regarding the three digestive cancer outcomes we consider, there were 193 

esophageal, 599 liver, and 385 pancreatic cancer diagnoses in AOU. In MGI, there were 

389 esophageal, 337 liver, and 311 pancreatic cancer diagnoses. 

4.3.2 Methods for constructing phenotype risk score 

Overall finding: No single PheRS approach is best for risk stratification or discrimination 

 Risk stratification: PheRS risk stratification capacity was assessed by measuring 

the top decile of risk score compared to the middle 40th-60th percentile in terms of the 

relevant cancer outcome odds ratio (hereafter, simply OR). Different unweighted PheRS 

approaches performed best for esophageal cancer depending on the time threshold 

(Table 4.2). For example, the two-step multivariable PheRS (2.40 (1.30, 4.43)) performed 

best, while the ridge PheRS performed worst (1.36 (0.62, 2.99)) at the t=1 threshold. At 

the t=2 threshold, the univariable PheRS performed best (2.26 (1.16, 4.42)), and the 

random forest PheRS performed worst (0.81 (0.35, 1.88)). This pattern was seen for 

unweighted PheRS for the other cancer outcomes. For liver cancer, the random forest 

PheRS performed best (t=1: 13.73 (8.97, 21.01); t=2: 16.42 (10.19, 26.46)) and the elastic 

net PheRS performed worst (t=1: 2.66 (1.95, 3.63); t=2: 1.37 (0.95, 1.99)) at both t=1 and 

t=2. For pancreatic cancer, the ridge PheRS performed best at both t=1 and t=2; random 
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forest (1.15 (0.64, 2.08)) and univariable PheRS (0.98 (0.53, 1.78)) performed worst at 

t=1 and t=2, respectively. 

The following section reports results regarding the impact of weights on the risk 

stratification and discriminatory ability of PheRS. 

Discrimination: The area under the receiver-operator characteristics curve (AUC) 

was considered a summary measure of each PheRS’ discriminatory ability. Different 

unweighted esophageal cancer PheRS approaches performed better at different time 

thresholds. For example, the elastic net PheRS performed best at the t=1 threshold (AUC 

(95% CI): 0.594 (0.552, 0.636)) while the multivariable PheRS performed best at the t=2 

threshold (0.610 (0.545, 0.674); Table 4.3). The best PheRS approach in terms of AUC 

at a given time threshold for one outcome was not necessarily the best PheRS approach 

for a different outcome. For example, while the elastic net PheRS for esophageal and 

pancreatic cancers had the highest AUC at t=1, the lasso (0.771 (0.742, 0.800)) and 

random forest (0.771 (0.741, 0.801)) PheRS were highest for liver cancer. Though no 

clear winner exists, elastic net and random forest generally exhibited better discrimination 

than the other approaches. 

While all PheRS approaches exhibited fair calibration (by Hosmer-Lemeshow 

goodness-of-fit test) and comparable accuracy (by Brier score; highest accuracy was 

observed for liver cancer (e.g., mean Brier score across all PheRS at t=1: 0.170; followed 

by esophageal (0.214) and pancreatic (0.220)), no discernible patterns of consistent, 

substantial differences in these metrics by PheRS methods were observed (t=0,1,2,5 in 

Supplementary Table 4.3, Supplementary Table 4.4, Supplementary Table 4.5, and 

Supplementary Table 4.6, respectively). 
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4.3.3 Influence of weights on the performance of optimal phenotype risk score 

Overall Finding: Weights do not substantially alter risk stratification or discriminatory 

properties of PheRS 

 Risk stratification: Considering weights in the development of PheRS did not 

consistently or meaningfully change risk stratification performance across outcomes, 

PheRS approaches, or time thresholds. For example, consider the random forest liver 

cancer PheRS approach across time thresholds (Figure 4.3). The unweighted approach 

had the highest OR point estimate (unweighted random forest PheRS: 63.80 (36.78, 

110.68)) compared to both weighted versions for each PheRS approach (PSBASIC-

weighted random forest PheRS: 49.94 (30.52, 81.73); PSFULL-weighted random forest 

PheRS: 31.14 (20.43, 47.47)) at t=0, though the confidence intervals overlapped. At the 

t=1 threshold, the PSBASIC-weighted random forest PheRS (14.55 (9.45, 22.42)) yielded a 

higher OR than the unweighted (13.73 (8.97, 21.01)) and PSFULL-weighted (13.62 (8.90, 

20.85)) versions. In this instance, comparing the two weighted approaches, the 

unweighted version performed better at t=0, while the PSBASIC-weighted version 

performed better at t=1. 

A lack of a uniformly superior PheRS approach was seen when looking across liver 

cancer PheRS at the same time threshold. For example, at the t=1 threshold, among 

random forest PheRS, the PSFULL-weighted version performed best (unweighted: 1.25 

(0.99, 1.58); PSBASIC-weighted: 1.19 (0.95, 1.50); PSFULL-weighted: 1.50 (1.20, 1.88)). 

However, among lasso PheRS, the unweighted version performed best (unweighted: 

12.24 (8.74, 17.14); PSBASIC-weighted: 1.00 (0.99, 1.01); PSFULL-weighted:7.86 (5.97, 

10.34)). 
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In general, unweighted and weighted PheRS OR confidence intervals tended to 

overlap within (and, to a lesser extent, across) PheRS approaches, with similar 

conclusions regarding magnitude and statistical significance. These observations were 

seen across all three cancer outcomes (Supplementary Figure 4.1 and Supplementary 

Figure 4.2). 

4.3.4 Assessing the relative contribution of PheRS with other domains of data for 

risk stratification and discrimination 

Overall Finding: PheRS contributes significantly to risk stratification and discrimination 

alongside demographic covariates, risk factors, and presenting symptoms 

Risk stratification: A series of models that we refer to as the model cascade were 

fit to determine the individual, cumulative, and combined risk stratification capacity of 

multiple domains of predictive data: covariates (age, sex, race/ethnicity), risk factors 

(obesity, alcohol, and smoking status), PheRS, and a presenting symptom (curated for 

each outcome based on literature; see Materials and methods). For example, for liver 

cancer at t=1, unweighted OR (95% CI) for covariates, risk factors, random forest PheRS, 

and presenting symptom alone were 1.27 (0.82, 1.95), 1.49 (1.07, 2.09), 13.73 (8.97, 

21.01), and 1.53 (1.21, 1.95), respectively (Figure 4.2). The OR increased from covariates 

alone to covariates and risk factors combined (1.75 (1.16, 2.63)) and again, substantially, 

after adding the random forest PheRS (7.02 (4.75, 10.38)). The increase in OR after the 

inclusion of PheRS indicates that it adds to risk stratification capacity alongside covariates 

and risk factors. Additionally, including the presenting symptom slightly attenuated the 

OR estimate to 6.26 (4.18, 9.39), possibly due to correlation with PheRS (𝜌 = 0.22). 

Finally, considering all factors jointly (i.e., covariates, risk factors, phecodes, and 
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symptom simultaneously in a random forest model) performed almost as well as PheRS 

alone (13.57 (8.90, 20.70)). Among sequential and joint models, we see that PheRS 

substantially contributes to risk stratification for those in the top decile compared to those 

in different parts of the risk score distribution (Figure 4.4, left panel). The contribution of 

PheRS to risk stratification is most pronounced among those in the highest decile rather 

than those in the second-, third-, and fourth-highest deciles.  

To explore the consistency of feature selection across time thresholds, we 

gathered the top 10 features by variable importance from unweighted random forest 

PheRS for liver cancer (Table 4.4). As expected, the top features primarily came from the 

gastrointestinal phecode category. Established risk factors, chronic liver disease, fibrosis 

and cirrhosis of liver, and cirrhosis of liver, were selected at all time thresholds. Hepatitis 

and hepatovirus were top 10 features at all non-0 time thresholds. Several peri-liver 

cancer diagnosis features were identified at t=0 that ranked lower at other time thresholds, 

including hepatomegaly, diseases of the pancreas, and obstruction of bile duct. Important 

peri-diagnosis features present an opportunity for targeted follow-up to determine specific 

presenting symptoms. Top features at the t=5 threshold, including back pain, 

hyperlipidemia, diseases of spleen, and nonspecific abnormal results of function study of 

liver, were identified and remained relatively important as time threshold decreased.  

Results from the model cascade for other outcomes at t=1 were attenuated for 

pancreatic and, to a lesser extent, esophageal cancer. For example, for pancreatic 

cancer, PSBASIC-weighted OR for covariates, risk factors, random forest PheRS, and 

presenting symptom alone were 0.94 (0.51, 1.74), 1.15 (0.80, 1.66), 1.20 (0.66, 2.18), 

and 1.00 (0.99, 1.01), respectively. Adding risk factors to covariates (1.78 (0.98, 3.23)) 
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improved the OR compared to each alone. Adding the random forest PheRS to covariates 

decreased the OR to 0.88 (0.47, 1.64) while adding the presenting symptom increased 

the OR to 0.96 (0.52, 1.78). One potential explanation for the decrease in OR point 

estimate after adding the PheRS is collinearity between the risk factors and PheRS. 

Considering covariates, risk factors, diagnosis history, and a presenting symptom jointly 

did not change the OR (0.93 (0.53, 1.65)). For comparison, the joint PSBASIC-weighted 

random forest OR for esophageal cancer at t=1 was 3.31 (1.58, 6.94).  

We also compared the top 10 features according to unweighted random forest 

variable importance across outcomes at t=1 (Table 4.5). While they are all digestive 

cancers, there is substantial heterogeneity in their risk factors and presentation. None of 

the top 10 features for one cancer appeared in the top 10 for another and were often 

outside the top 100 most important features. For example, the most important feature for 

liver cancer at t=1, chronic nonalcoholic liver disease, was the 56th and 184th most 

important feature for pancreatic and esophageal cancer, respectively. We also saw 

differences in phecode group representation. While 8 of the top 10 features were 

gastrointestinal for liver cancer, only 4 were for esophageal cancer and 3 for pancreatic. 

Interestingly, there were 4 cardiovascular features in the top 10 for esophageal cancer, 

including atrial fibrillation and flutter, abnormal results of cardiovascular function studies, 

essential hypertension, and ischemic heart disease. 

Discrimination: Similar results were observed concerning discriminatory ability as 

measured by AUC. For example, for liver cancer at t=1, unweighted AUC (95% CI) for 

covariates, risk factors, random forest PheRS, and presenting symptoms alone were 

0.573 (0.541, 0.605), 0.572 (0.540, 0.603), 0.771 (0.741, 0.801), and 0.548 (0.521, 
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0.575), respectively. Combining covariates and risk factors improved AUC compared to 

each domain individually (0.601 (0.570, 0.633)). However, the subsequent addition of the 

random forest resulted in a significant improvement (0.701 (0.669, 0.732); Figure 4.4, 

right panel). Adding the presenting symptom at this time threshold did not improve AUC 

(0.673 (0.640, 0.705)). The jointly constructed model exhibited the highest discriminatory 

ability (0.776 (0.747, 0.806). The models where PheRS was included exhibited a 

noticeable shift in the AUC curve towards the upper left corner of the plot (Figure 4.4, 

right panel). 

Results for other outcomes at t=1 were attenuated for esophageal and pancreatic 

cancers. For example, for pancreatic cancer, unweighted AUC (95% CI) for covariates, 

risk factors, random forest PheRS, and presenting symptom alone were 0.516 (0.470, 

0.562), 0.519 (0.474, 0.564), 0.532 (0.486, 0.578), and 0.497 (0.493, 0.500), respectively. 

Adding risk factors to covariates did not change AUC (0.487 (0.441, 0.534)), while the 

subsequent addition of PheRS saw a nominal increase (0.511 (0.465, 0.557). Adding the 

presenting symptom lowered the AUC (0.492 (0.446, 0.538). The joint model (along with 

PheRS alone) exhibited statistically significant discriminatory ability (0.549 (0.504, 

0.595)). For comparison, the joint unweighted random forest AUC for esophageal cancer 

at t=1 was 0.575 (0.513, 0.637). 

 Supplementary Table 4.3, Supplementary Table 4.4, Supplementary Table 4.5, 

and Supplementary Table 4.6 contain diagnostics for all models in the model cascade for 

all outcomes and PheRS and weighting approaches at t=0,1,2, and 5, respectively. 
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4.4 Discussion 

Summary contributions: We explored the impact of sample weights on the 

performance of diagnosis-code-based risk predictions for esophageal, liver, and 

pancreatic cancers developed in one EHR-linked biobank (the University of Michigan’s 

Michigan Genomics Initiative or MGI) for use in an external EHR-linked biobank with a 

different recruitment mechanism (the NIH All of Us Research Program). Two sets of 

poststratification (PS) weights were estimated in MGI to make it representative of the 

AOU population. We modified an existing R package developed to perform 

hyperparameter tuning in complex survey design settings for lasso models17 to 

accommodate lasso, ridge, elastic net, and random forest models. Using time-restricted 

ICD code-derived phecode data, we constructed unweighted and weighted one-step 

(lasso, ridge, elastic net, and random forest) and two-step (univariable and multivariable; 

pruning-and-thresholding-analogous) risk score models (called PheRS). We compared 

and combined these models with covariates, risk factors, and symptoms to (a) compare 

PheRS construction approaches, (b) assess the impact of PS weights on optimal PheRS 

performance, and (c) discern the relative performance of PheRS alongside demographic 

covariates, risk factors, and presenting symptoms when evaluating in an external sample 

using EHR-linked biobank data. Thus, the paper presents a comprehensive empirical 

assessment of transferring predictions from one biobank to another using sample 

weighting. 

Methodological novelty: This work contributes to the growing literature regarding 

weights, selection bias, and the challenge of transferable risk prediction264 in EHR-linked 

biobank and clinical settings. We previously (a) developed a framework for estimating 
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time-based two-step risk scores using diagnostic data18 and (b) explored the use of 

selection weights in making common EHR-linked biobank analyses with non-probabilistic 

recruitment mechanisms more generalizable.215 Beesley and Mukherjee7,11 and Kundu 

and colleagues79 investigated weighting-based methods to account for selection bias in 

EHR-linked biobank analyses. None of these studies explore the impact of weights on 

prediction. Steingrimsson and colleagues proposed a weighting-based approach to 

developing and assessing a risk score model in an external sample in which one does 

not have outcome information.180 Of relevance to developers of clinical prediction models 

is the fact that we expanded the framework developed by Iparragirre and colleagues to 

tune the 𝜆 hyperparameter for lasso models in weighted settings to ridge, lasso, elastic 

net, and random forest models. We made the R code publicly available via a GitHub 

repository (https://github.com/maxsal/weighted_prediction). 

Other non-weighting-based methods have demonstrated promise, including semi-

supervised models,265 cross-site feature selection,266 and multi-site model building.267 

These approaches can be explored to create more generalizable risk prediction models. 

Alternatively, when models have been developed using large datasets, transfer learning 

can be applied to improve prediction performance by using relatively small amounts of 

information from the target cohort.173,174,268 

PheRS exhibits risk stratification and discriminatory ability, but no single approach 

uniformly performed best in the AOU test cohort 

No PheRS approach was best regarding risk stratification or discriminatory 

capacity, and their performance varied by outcome and worsened as time threshold 

increased. For example, ORs (95% CI) for unweighted random forest PheRS at the t=1 

https://github.com/maxsal/weighted_prediction
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threshold ranged from 1.15 (0.64, 2.08) for pancreatic cancer to 13.73 (8.97, 21.01) for 

liver cancer. These estimates fell to 1.11 (0.53, 2.34) and 6.84 (4.22, 11.11), respectively, 

when the time threshold increased to t=5 (Supplementary Table 4.6). An alternative 

approach, elastic net, performed slightly better for pancreatic cancer (1.19 (0.66, 2.14) 

and much worse for liver cancer (2.64 (1.79, 3.90) at t=1. However, regardless of 

approach, health history captured by diagnosis codes and summarized as PheRS can 

generally perform risk stratification. At least one unweighted PheRS approach resulted in 

a statistically significant OR for all outcomes through t=2 and all by pancreatic cancer 

through t=5 (Table 4.2). Our risk stratification results align with epidemiology: some 

cancers have strong, long-term signals (e.g., liver cancer269) while others (e.g., pancreatic 

cancer270,271) remain hard to predict. Our results demonstrate that no single PheRS 

approach performs best by outcome or time threshold.  

Using weights did not consistently improve PheRS risk stratification or discrimination in 

the AOU test cohort 

Risk stratification capacity did not consistently or meaningfully change when the 

model development process considered PSBASIC- or PSFULL-weights (Figure 4.3). For 

example, for the random forest pancreatic cancer PheRS at t=1, the OR for the 

unweighted approach was 1.15 (0.64, 2.08), compared to 1.20 (0.66, 2.18) and 1.41 

(0.80, 2.48) for the PSBASIC- and PSFULL-weighted approaches, respectively 

(Supplementary Figure 4.3). While the PSFULL-weighted random forest at t=1 had the 

highest OR for pancreatic cancer, the PSBASIC-weighted version was highest for 

esophageal cancer (Table SD2). At t=2, the PSFULL-weighted and unweighted versions 

were highest for esophageal and liver cancer, respectively (Table SD3). The 
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indeterminate impact of weighting applied to risk stratification and discrimination for all 

data domains. 

PheRS contributes independently and significantly to risk stratification and discriminatory 

ability alongside other data domains in a model cascade 

By building sequential and joint models via a “model cascade,” we assessed the 

role of different domains of data to determine whether PheRS were additive to covariates 

(like age, sex, and race/ethnicity, which are deemed non-modifiable) and risk factors 

(which vary by outcome and may be preventable/modifiable) (Figure 4.2). We found that 

when PheRS alone can perform risk stratification, as for the random forest PheRS for 

liver cancer at t=1 (Figure 4.2), they generally improve the risk stratification ability after 

covariates and risk factors are considered. For example, the unweighted covariates and 

risk factors model for liver cancer at t=1 had an OR (95% CI) of 1.75 (1.16, 2.63). After 

adding the random forest PheRS, the OR (95% CI) increased to 7.02 (4.75, 10.38). 

PheRS can also contribute to risk stratification even when covariates and risk factors do 

not. For example, for pancreatic cancer at t=2, unweighted covariates and risk factors 

had an OR (95% CI) of 1.85 (0.97, 3.51). After adding the unweighted ridge PheRS, the 

OR became statistically significant (1.97 (1.09, 3.53)). A single acute symptom 

demonstrated risk stratification capacity (e.g., unweighted chest pain OR (95% CI) for 

esophageal cancer at t=0: 1.68 (1.13, 2.50)) but can quickly become null as the time-

threshold increases (e.g., unweighted chest pain OR (95% CI) for esophageal cancer at 

t=1: 1.00 (0.97, 1.03)). These conclusions align with previous literature that found PheRS 

additive alongside covariates and risk factors for pancreatic cancer.18 

Comparison with existing risk prediction models for these three cancers 
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For each cancer outcome, we identified previously published risk prediction 

models developed using (at least in part) a general US or UK adult population estimating 

5- or 10-year risk that reported AUCs (Supplementary Figure 4.3). Several features of 

these studies differ such as the incorporation of genetic information,18,257,272,273 restriction 

to older adults (40+ years old),143,147,257,272,274–276 or creation of sex-stratified 

models.143,274,275,277 Several used internal set-aside147,272,277 or cross-validation143,273,276 

data to evaluate model performance. Generally, models were developed using 

cohort143,147,272,278 or case-control18,272–274,276 study designs and Cox143,274,277 or logistic 

regression18,272–276 models and used demographic, lifestyle, and personal and health 

history information. Details on comparison studies are presented in Supplementary Table 

4.7 and Supplementary Table 4.8. 

For esophageal cancer, we saw that only the model at t=0 (0.820 (0.781, 0.860); 

0.605 (0.543, 0.667) at t=1, 0.540 (0.476, 0.604) at t=2, 0.538 (0.459, 0.616) at t=5) was 

able to achieve comparable AUC compared to Dong and colleagues (0.745 (0.721, 

0.769)).273 Dong and colleagues developed a logistic regression model that focused on 

esophageal adenocarcinoma (circumventing challenges with potentially conflicting risk 

factors with squamous cell carcinoma279 as in a data-driven approach), had a much 

larger sample size (n=2,511 cases vs. n=389 in MGI), and included established risk 

factors (e.g., use of non-steroidal anti-inflammatory drugs (NSAIDs)). Moreover, they 

used self-reported data collected at or near the time of the cancer diagnosis, which can 

be more complete and accurate than comparable data available in EHR,280,281 capturing 

important presenting symptoms, including heartburn and regurgitation symptoms. These 

factors highlight the importance of specificity in the outcome definition, the timing of 
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predictors relative to the outcome, and using established risk factors (e.g., NSAID use) 

and symptoms (e.g., heartburn and regurgitation symptoms) in enhancing the predictive 

performance of models for esophageal cancer. 

For liver cancer, we observed comparable AUCs in our models (0.909 (0.893, 

0926) at t=0, 0.776 (0.747, 0.806) at t=1, 0.762 (0.731, 0.793) at t=2, 0.713 (0.675, 

0.752)) with those found by Liu and colleagues (0.771 (0.702, 0.840)).147 Liu and 

colleagues developed a Fine-Gray regression model for 5-year incident liver cancer 

using self-reported survey data supplemented by EHR in the UKB (n=113 cases in 

development dataset vs. n=337 in MGI). The selection of factors was driven by clinical 

knowledge and a literature review, and it focused on socioeconomic status, 

anthropomorphic measurements, lifestyle factors, and personal and family health 

history. Notably, there are strong, long-term predictors of liver cancer,282 including 

history of viral hepatitis and liver disease, which were included in Liu and colleagues’ 

model and selected in ours. These common factors can explain the common AUCs 

between the two models despite very different model development approaches. 

For pancreatic cancer, we observed lower AUCs in our models (0.842 (0.814, 

0.867) at t=0, 0.574 (0.529, 0.620) at t=1, 0.558 (0.511, 0.605) at t=2, 0.530 (0.474, 

0.585) at t=5) compared to those by Salvatore and colleagues18 (0.732 (0.710, 0.754) at 

t=5) and by Hippisley-Cox and Coupland277 (0.857 (0.846, 0.867) in males, 0.865 

(0.855, 0.875) in females). Salvatore and colleagues developed time-restricted models, 

using MGI data a pruning-and-thresholding and multivariable regression framework (like 

those in this paper), but had several limitations, including being assessed in time-

unrestricted data in UKB and the development and validation cohorts being very 
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different geographically and in terms of age. Hippisley-Cox and Coupland used a 

flexible, data-driven approach and a large dataset comprising over 6 million adult 

patients from the United Kingdom (n=7,117 cases vs. n=311 in MGI). Their Cox model 

used fractional polynomials for non-linear relationships, considered interactions 

between risk factors selected based on literature, and had richer covariate information 

(e.g., categorical smoking and alcohol variables instead of binary). Unlike data in this 

paper, the UK data comes from a country with universal health care, possibly increasing 

EHR completeness, and their hold-out validation cohort is likely to contain data 

collected similar to the development cohort. Notably, Salvatore and colleagues and 

Hippisley-Cox and Coupland considered individuals with a history of other cancers. 

However, we restricted to individuals without a history of cancer and sought to predict 

first primary pancreatic cancer diagnoses. These factors can explain why we found 

relatively lower AUCs at non-0 time thresholds than others reported in the literature. 

Understanding clinical context is paramount in risk prediction model development 

It is crucial to consider the clinical context of the outcome and the use of the risk 

prediction model. The outcomes considered here vary greatly in their clinical presentation, 

particularly at advanced stages, and their diagnostic approach. These differences can 

explain why different approaches are better suited for different outcomes. All three 

outcomes currently do not have screening mechanisms and are often diagnosed late 

when prognosis is poor. Thirty-nine percent of esophageal, 20% of liver, and 51% of 

pancreatic cancers are diagnosed after the cancer has metastasized when the 5-year 

relative survival is 5.3%, 3.3%, and 3.1%, respectively (SEER-22, 2014-2020, all races, 

both sexes181).  
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The current risk prediction models for these cancers tend to focus on high-risk 

populations, such as those with chronic hepatitis B virus infections182–185 or chronic liver 

disease186–188 for liver cancer and those with new-onset diabetes for pancreatic 

cancer.189,190 Other models aim to identify individuals to screen for premalignant 

conditions, as in the case of Barrett’s esophagus prior to the transition to esophageal 

cancer.191,192 Importantly, models incorporating biomarkers and genetic factors to 

construct integrated and multi-factorial models generally exhibit better performance.193–

195 

These models can inform surveillance and monitoring strategies, such as 

abdominal ultrasonography and 𝛼-fetoprotein (AFP) tests for high-risk individuals for liver 

cancer,196 or endoscopic ultrasonography or MRI for high-risk individuals for pancreatic 

cancer.197 In the absence of screening mechanisms, incorporating biomarker and genetic 

factors alongside demographics, risk factors, and diagnostic history can aid in developing 

risk prediction models in the general population to identify high-risk individuals for 

targeted enhanced surveillance and prevention measures. Furthermore, each cancer has 

multiple histological types with different risk factors, clinical features, genetic 

susceptibility, and pathogenesis, such as squamous cell carcinoma and adenocarcinoma 

for esophageal cancer.198 Designing risk prediction models by subtype theoretically could 

improve model performance by allowing models to consider heterogeneous tumor 

behavior separately for each histological type. However, the rarity of subtypes for these 

cancers makes such models challenging to develop and diminishes their utility. A 

focused, comprehensive approach to risk prediction model development and stratification 
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can improve early detection, targeted surveillance, and, ultimately, patient outcomes for 

these challenging cancers. 

4.4.1 Strengths and Limitations 

 This paper has several strengths. First, we used the relatively new phecode X 

mapping table, designed with ICD-10-CM in mind, and almost doubled the number of 

defined phecodes compared to its predecessor.61 Second, we explored many commonly 

used risk prediction modeling approaches. Third, we developed and shared code for 

tuning hyperparameters in weighted settings for regularized regression and random forest 

models in R. 

 There are also several limitations of our work. First, despite the size of cohorts, 

sample sizes for some outcomes were small. This contributed to convergence issues for 

lasso and elastic net models, which we handled by considering multiple hyperparameter 

(i.e., 𝜆) values, screening out highly correlated predictors, and fitting models with weights 

as a predictor. It also resulted in some models with little variation in the assessment 

cohort. Future work should consider outcomes with larger sample sizes. Second, we used 

joint strata proportions from MGI and AOU to estimate PS weights. Inverse probability 

weights could not be estimated because the aggregation of individual-level data across 

cohorts was restricted due to privacy concerns. For PS weights with many strata, like 

those in our PSFULL-weights, proportions are typically only available with access to 

individual-level data. However, in practice, the number of factors used for 

poststratification is often limited because accurately estimating proportions within each 

stratum becomes more difficult as the complexity of stratification increases with additional 

factors. Third, there are many risk prediction methods that we did not consider, like neural 
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networks, support vector machines, and SuperLearner, that can be used and have shown 

promise in many clinical settings.283–287 The performance of these models can be 

compared with other approaches, including transfer, semi-supervised, and federated 

learning.173,174,265,267 Future work should apply transfer learning to risk prediction models 

developed with and without weights. Fifth, Firth bias-corrected logistic regression was 

used to fit sequential models, which could have hampered performance in the presence 

of collinearity between terms. Alternative approaches like ridge regression that handle 

collinearity could be considered. Sixth, we ignored genetic data, a core feature of EHR-

linked biobanks, and other potentially predictive data domains, including laboratory 

results and medications. Future work should include polygenic risk scores (PRS) and 

combine PRS and PheRS with approaches to enhance transferability, as in Zhao and 

colleagues’ transfer learning PRS (TL-PRS) approach.268 Seventh, the two-step PheRS 

approach identifies an initial set of candidate phecodes with the 50 smallest p-values. 

Future work, preferably with larger data, could employ a p-value threshold cutoff (e.g., a 

phenome-wide significance threshold corrected for multiple testing). 

4.5 Conclusion 

Using two EHR-linked biobanks, we have explored the role of poststratification 

sampling weights on the risk stratification performance of diagnosis code-derived PheRS 

for esophageal, liver, and pancreatic cancer. We constructed two sets of poststratification 

weights to make MGI look more like AOU. We modified an existing R package to 

accommodate hyperparameter tuning for regularized regression and random forest 

models in weighted settings. No PheRS approach consistently or meaningfully improved 

risk stratification or discriminatory ability; using weights in PheRS construction did not 
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change this observation. Because PheRS contributes to risk stratification and 

discriminatory ability alongside demographic covariates, risk factors, and a presenting 

symptom, PheRS should be considered when developing risk prediction models. 

Researchers should instead carefully consider the population represented by their data 

and refrain from overgeneralizing the risk stratification capacity of models developed 

using EHR-linked biobank data. Future work should consider a wider array of outcomes, 

different cohorts, non-weighting-based machine learning approaches for transferring 

predictions, and integrating genetic and other linkable data available in EHR-linked 

biobanks. 

4.6 Materials and methods 

4.6.1 Cohorts 

4.6.1.1 All of Us (AOU) 

AOU is a US-based EHR-linked biobank organized by the National Institutes of 

Health. It began recruitment in 2018, attempting to enroll over 1,000,000 adults from 340 

recruitment centers nationwide. As of January 31, 2024, there are over 760,000 

participants, including over 539,000 and 420,000 who have biosamples and EHR data, 

respectively. Its EHR data are shared by participants and based on the ICD-9/ICD-10-CM 

codesets. Our analysis focuses on 226,764 people with non-missing sociodemographic 

and mappable EHR data. After mapping ICD codes to phecodes (see Section 4.6.2.1), 

3,489 traits were defined.  
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4.6.1.2 Michigan Genomics Initiative (MGI) 

MGI is an academic medical center (Michigan Medicine)-based EHR-linked 

biobank at the University of Michigan. It began recruitment in 2012, primarily recruiting 

adult patients through pre-/peri-operative appointments requiring anesthesia. Over time, 

additional Precision Health cohorts have been launched, recruiting adults through mental 

health, endocrinology (diabetes), and outpatient clinics). As of September 2023, there are 

~100,000 enrolled, with ~10,000 enrolled yearly. The EHR data comprise patients’ 

Michigan Medicine EHR based on the ICD-9/ICD-10-CM codesets. Our analysis focuses 

on 76,757 people with non-missing sociodemographic and mappable EHR data. After 

mapping ICD codes to phecodes, 3,347 traits were defined. 

4.6.2 Data 

4.6.2.1 Construction of the phenome 

ICD-9-CM and ICD-10-CM codes were aggregated to broader yet clinically 

meaningful phenotypes called PheWAS codes, or phecodes,61,288 using the phecode 

X61,227 mapping tables. Observations of sex-specific phecodes that were discordant with 

the individual’s EHR-recorded sex were removed. After curating the time-based phecode 

data (see Phenome time-restriction section below), phecode indicator matrices were 

constructed containing case status indicator variables across all defined phecodes where 

a single occurrence of a phecode was sufficient to determine case status. 

4.6.2.2 Phenome time-restriction 

Time-restricted phenomes were created for a given outcome and time threshold 

combination based on Salvatore and colleagues.18 For a given outcome, say, pancreatic 
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cancer (CA_101.8), cases were identified as individuals whose pancreatic cancer 

diagnosis was the first specific malignant neoplasm diagnosis in their EHR 

(Supplementary Table 4.1; could co-occur with other malignant neoplasm diagnoses). All 

cases were matched with 2 non-cases based on age at first diagnosis (nearest neighbor), 

sex (exact), and length of EHR follow-up (nearest neighbor). Eligible non-cases were 

individuals who never had a malignant neoplasm diagnosis. For each matched group, the 

days since birth corresponding to the initial diagnosis in the case were used as the index 

threshold. Each group's phenomes were restricted to observations that occurred t years 

(time threshold) before the index threshold. Phecode indicator matrices are reconstructed 

using the time-restricted data. We considered time thresholds of 0, 1, 2, and 5 years 

before the diagnosis of interest. The MGI sample was split 50-50 at each time threshold 

into training (for hyperparameter tuning and phecode selection) and testing (for phecode 

weight estimation and model fitting) sets. 

4.6.2.3 Outcomes, exposures, covariates, risk factors, symptoms, and sampling 

weight variables 

Outcomes: Risk prediction models are constructed for the following digestive organ 

cancers: esophageal (CA_101.1), liver and intrahepatic bile duct (CA_101.6), and 

pancreatic (CA_101.8). Gastrointestinal cancers account for 26% of incident cancer 

cases and 35% of cancer deaths globally.289 Because screening mechanisms exist, 

colorectal cancer was not considered. Other digestive cancers (anal, small intestine, 

stomach, and gallbladder and extrahepatic bile duct) were not considered because they 

did not have a sufficient sample size (at least 300 cases in MGI occurring as their initial 

specific, malignant cancer diagnosis). A single occurrence of a phecode was considered 
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adequate to identify a case. The index threshold was identified at a case's first occurrence 

of the phecode. 

 Exposures, covariates, risk factors, and symptoms: Exposures were considered 

the set of non-outcome phecodes with at least 20 cases in both cohorts (n = 2,728). We 

compared PheRS performance with models that included combinations of covariates, risk 

factors, and a presenting symptom. Covariates were age (at time threshold), sex, and 

whether an individual was non-Hispanic White; factors considered non-modifiable. Risk 

factors included history of overweight/obesity, smoking, and alcohol consumption (all 

binary), factors considered modifiable. We selected a single non-specific symptom that is 

commonly associated with each cancer: chest pain (SS_800), jaundice (SS_814), and 

abdominal pain (phecode GI_527) for esophageal, liver, and pancreatic cancer, 

respectively. 

 Sampling weight variables: Several additional variables were curated for 

poststratification weighting (following section). Age at last EHR diagnosis was categorized 

into bins: [0-18), [18,35), [35,65), [65-80), [80+). Race/ethnicity was categorized into non-

Hispanic Asian, non-Hispanic Black, Hispanic, non-Hispanic White, and Other/Unknown. 

Smoking and alcohol consumption status were ever/never indicator variables. Body mass 

index (BMI) was categorized into underweight (<18.5), healthy weight ([18,25)), 

overweight ([25,30)), and obese (30+). History of depression and hypertension were 

indicators of the presence of phecodes MB_286.2 and CV_401, respectively. Finally, 

using raw ICD-9-CM/ICD-10-CM data, Quan-weighted Charlson Comorbidity Index (CCI) 

scores290 were calculated using the comorbidity R package (version 1.0.7)291 and 

categorized into: very low (0), low (1-2), moderate (3-4), and high (5+). Importantly, 
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because MGI is enriched for cancer patients,45 information regarding the presence of local 

or metastasized tumors is captured in the CCI. Additional information on variable 

definitions in AOU and MGI is described in Supplementary Table 4.2. 

4.6.2.4 Poststratification weighting 

To account for differences between MGI and AOU, AOU PS-weights in MGI were 

estimated. PS-weights rely on summary-level data on the target population (i.e., AOU). 

PS-weights were estimated using the following formula: 

𝜔 =
Pr(𝑿 = 𝒙|𝑆 = 0)

Pr(𝑿 = 𝒙|𝑆 = 1)
 Eq. (1) 

where 𝑿 are the set of factors over which to make MGI representative of AOU and 𝑆 is an 

indicator variable for membership in AOU (𝑆 = 0) or in MGI (𝑆 = 1). PS-weights 

corresponding to two sets of 𝑿 were estimated. First, basic weights (PSBASIC) were 

calculated using categorical age at last EHR diagnosis, sex, and race/ethnicity. Basic 

weights mimic the setting where limited summary statistics are available in the target 

population. Full weights (PSFULL) included basic factors and added smoking and alcohol 

consumption status, BMI, history of depression and hypertension, and categorized 

Charlson Comorbidity Index. Strata with a proportion equal to 0 were set equal to the 

minimum non-zero stratum proportion in each cohort. PS-weights were winsorized at the 

2.5th and 97.5th percentiles. 

4.6.2.5 Modeling approaches 

Two-step approaches 

 Our two-step approaches are analogous to pruning-and-thresholding in 

constructing polygenic risk scores. First, we performed unweighted and weighted 
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phenome-wide association studies (PheWAS) in the discovery cohort training sample at 

each time threshold. That is, for each of 𝑘 phecodes (up to 2,728 phecodes with at least 

20 cases in both cohorts exclusive of 𝑌), we fit the following standard logistic regression 

model: 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 = 1|𝑃ℎ𝑒𝑐𝑜𝑑𝑒𝑖𝑘 , 𝒁𝒊; 𝜔𝑖)) = 𝛽0 + 𝛽𝑘𝑃ℎ𝑒𝑐𝑜𝑑𝑒𝑖𝑘 + 𝜷𝒁𝒁𝒊 Eq. (2) 

where 𝑌𝑖 is an indicator variable for cancer outcome case status, 𝒁𝒊 are the set of 

covariates age, sex, and length of follow-up included in the model for individual 𝑖. For 

each PheWAS, we selected the top 50 hits based on smallest p-value. To remove highly 

correlated phecodes, we ranked pairwise Pearson correlations (calculated using full 

discovery cohort phenome) in descending order. We removed phecodes with the larger 

p-value in each pair until correlation coefficients were no greater than 0.5. 

 After phecodes were selected and screened, we estimated phecode weights in the 

discovery cohort testing sample. For univariable phecode weights, models shown in Eq. 

2 were fit for each screened phecode. For multivariable phecode weights, a multivariable 

logistic regression including all screened phecodes following Eq. 2 was fit. Using the log-

odds estimates from these models as phecode weights; we calculated the two-step 

phenotype risk score (PheRS) in the assessment cohort as: 

PheRS𝑖 =∑𝛽̂𝑗𝐷𝑖𝑗
𝑗

 Eq. (3) 

where 𝛽̂𝑗 is the log-odds estimate corresponding to phecode 𝑗 and 𝐷𝑖𝑗 is an indicator 

variable that equals 1 if individual 𝑖 has ever been diagnosed with phecode 𝑗. Two-step 

PheRS are “unweighted”/”weighted” when both the PheWAS and the phecode weight 

model are unweighted/weighted. 
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One-step approaches 

 One-step approaches included the full-time-restricted phenome in regularized 

regression (ridge, lasso, and elastic net) and random forest models. First, 

hyperparameters for these models were tuned in the discovery cohort training sample, 

including 𝜆 in regularized regression models, 𝛼 in elastic net, and (a) the number of 

randomly sampled features considered at each split (mtry) and (b) the minimum number 

of observations in a leaf node in random forest (min.node.size). We modified the weighted 

lasso approach described by Iparragirre and colleagues,17 which selects 𝜆 based on 

performance in replicate weighted subsamples, to accommodate regularized regression 

(via the glmnet package) and random forest (via the ranger package). The following 

pseudocode describes the process for obtaining weighted hyperparameter values: 

1. Split data into 10 folds and generate 10 sets of replicate weights 
2. Initialize a set of hyperparameter values to search over 

a. For regularized regression models 
i. lambda: default lambda grid provided by glmnet 

b. For random forest models 
i. mtry: number of variables to possibly split at in each node 

1. ⌊𝒙√𝑝⌋, where 𝑝 is the dataset dimension and 𝒙 are values 

0.25, 0.5, 1, 2, and 4 
ii. min.node.size: minimal terminal node size to split at 

1. Considered 1, 3, 5, 10, 20 
3. For each set of replicate weights 

a. Split data 90/10 into training/testing sets from folds defined in (1) 
b. For each possible value of hyperparameter in grid search 

i. Fit model in 90% training set 
1. For regularized regression 

a. A regularized regression model in glmnet with replicate 
weights as observation weights (weights) 

2. For random forest 
a. A random forest model in ranger with replicate weights 

as case weights (case.weights) 
c. Estimate errors in each 10% testing set 
d. Average over the errors across the testing sets 

4. Select hyperparameter value(s) with minimum average error in test data 
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Default wlasso, glmnet, and ranger settings were used unless otherwise specified. Code for 

loading the modified package is available at https://github.com/maxsal/wglmnet. 

Next, models for the selected hyperparameters were fit in the discovery cohort 

testing sample using the time-restricted phenome. For regularized regression models, 

they were first fit using 𝜆 that minimized the loss function, then using the 𝜆 within one 

standard error of the minimum, and then again, in order, after screening the predictors 

until the mean absolute value of correlation was less than 0.25 (via findCorrelation from 

the caret R package) until the model converged and had non-zero degrees of freedom 

and a positive deviance ratio. In weighted models, the weights were included in the 

weight argument of the glmnet function. If none of these models were selected, models 

with screened predictors were fit with weights as a predictor variable (additional 

information in Supplementary Section 4.1). For weighted random forest, the weights 

were included in the case.weights argument of the ranger function. Standardized 

predicted values from these fitted models were obtained using time-restricted phenome 

data in the assessment cohort and served as the PheRS. 

4.6.2.6 Fitting the model cascade 

The model cascade consists of 8 models: 4 alone, 3 sequential, and 1 joint. The 

first 4 models were fit for covariates, risk factors, PheRS, and symptoms alone in the 

discovery test cohort using Firth bias-corrected logistic regression. The 3 sequential 

models added covariates and risk factors, PheRS, and finally, a presenting symptom in 

the discovery test cohort using Firth bias-corrected logistic regression. Finally, the “joint 

search” model considered all covariates, risk factors, phecodes, and presenting 

symptoms jointly following the process for the corresponding PheRS approach. The 

https://github.com/maxsal/wglmnet
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mean-standardized predicted values from these models in the assessment cohort were 

used in evaluation. 

4.6.2.7 Evaluation 

All prediction models were summarized and evaluated using the same set of 

criteria. Our primary indicator of performance was each model’s ability to perform risk 

stratification assessed by estimating an odds ratio for those in the top decile compared to 

those in the middle 20% (i.e., 40th to 60th percentile; distribution estimated in the controls). 

The area under the receiver-operator characteristics curve (AUC) (pROC R package), 

Brier score (DescTools R package), and Hosmer-Lemeshow Chi-square goodness-of-fit 

test (ResourceSelection R package) are reported to describe discriminatory ability, 

accuracy, and calibration, respectively. Additionally, we reported model fit using 

Nagelkerke’s pseudo-R2 and the continuous OR for the risk scores. 

4.6.2.8 Software 

Analyses were conducted using R version 4.3.1. Codes corresponding to studies 

carried out in this paper are available at https://github.com/maxsal/weighted_prediction.  

https://github.com/maxsal/weighted_prediction
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4.7 Tables 

Table 4.1 Comparison of unweighted All of Us and Michigan Genomics Initiative cohorts and All of Us-
weighted Michigan Genomics Initiative. 

   Michigan Genomics Initiative 

    Weighted 

Variable All of Us   Unweighted PSBASIC PSFULL 

N 226,764   76,757 - - 
      

Age 54.2 (17.2)   56.7 (16.8) 54.7 (17.2) 
54.5 
(17.0) 

Female 62.1 (140,785)  53.9 (41,369) 60.3 60.9 
Race/ethnicity           

Asian, non-Hispanic  2.6 (5,887)    3.6 (2,752) 2.8 2.9 
Black, non-Hispanic 18.8 (42,607)    6.1 (4,657) 20.4 17.1 
Hispanic 18.8 (42,736)    2.6 (2,008) 11.7 10.4 
White, non-Hispanic 54.9 (124,488)   83.5 (64,089) 59.7 64.5 
Other/Unknown  4.9 (11,046)    4.2 (3,251) 5.3 5.1 

BMI category      
Underweight  1.3 (2,878)   1.0 (803) 1.0 0.8 
Healthy weight 25.6 (57,968)  24.5 (18,818) 24.1 26.2 
Overweight 30.6 (69,414)  32.0 (24,597) 30.8 31.0 
Obese 42.6 (96,504)  42.4 (32,539) 44.1 42.0 

Charlson Comorbidity Index           
Very low [0] 46.3 (104,962)   30.1 (23,117) 31.7 44.5 
Low [1-2] 29.1 (66,089)   26.6 (20,452) 27.6 30.2 
Moderate [3-4] 12.5 (28,299)   10.0 (7,679) 10.3 12.2 
High [5+] 12.1 (27,414)   33.2 (25,509) 30.4 13.1 

Alcohol (ever) 88.3 (200,139)  69.4 (53,285) 68.1 89.1 
Smoking (ever) 41.0 (92,992)   47.0 (36,052) 44.5 41.6 
Depression (phecode) 25.5 (57,821)  32.2 (24,748) 33.4 26.7 
Hypertension (phecode) 47.5 (107,716)   51.7 (39,719) 51.1 47.7 
Length of EHR follow-up (years) 9.4 (8.3)  10.2 (7.6) - - 
      
Cancer      

Esophageal cancer 0.1 (193)  0.5 (389) - - 
Liver cancer 0.3 (599)   0.4 (337) - - 
Pancreatic cancer 0.2 (385)   0.4 (311) - - 

Notes:      
 - Charlson Comorbidity Index calculated with Quan weights via the comorbidity R package and ICD-9-
CM/ICD-10-CM codes. 
 - Basic weights include age at last diagnosis (categorical), sex, and race/ethnicity. 
 - Full weights include age at last diagnosis (categorical), sex, race/ethnicity, smoking (ever), alcohol 
(ever), body mass index (categorical), depression (binary phecode), hypertension (binary phecode), and 
Charlson Comorbidity Index (categorical). 

 - Additional information on variable definitions can be found in Supplementary Table 4.1 and 

Supplementary Table 4.2.  
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Table 4.2 Unweighted PheRS top decile to middle 20% (40th-60th percentiles) odds ratio (95% confidence interval) by outcome, PheRS approach, 
and time threshold in All of Us. 

  Time threshold 

Outcome PheRS approach 0 1 2 5 

Esophageal cancer 
[CA_101.1] 

Univariable 6.87 (4.36, 10.84) 2.40 (1.17, 4.93) 2.26 (1.16, 4.42) 0.90 (0.34, 2.39) 

Multivariable - 2.40 (1.30, 4.43) 1.45 (0.80, 2.62) 0.69 (0.26, 1.84) 

Lasso - - NA 2.66 (1.02, 6.91) 

Ridge 5.79 (3.16, 10.61) 1.28 (0.60, 2.76) 1.13 (0.48, 2.64) 0.51 (0.15, 1.67) 

Elastic net 10.25 (6.41, 16.41) - 1.27 (0.70, 2.30) 1.29 (0.50, 3.35) 

Random forest 10.14 (5.47, 18.81) 1.36 (0.62, 2.99) 0.81 (0.35, 1.88) 2.08 (0.70, 6.19) 

Liver cancer 
[CA_101.6] 

Univariable 22.69 (16.71, 30.80) 9.60 (7.11, 12.97) 11.01 (7.55, 16.06) 5.43 (3.61, 8.17) 

Multivariable 21.26 (15.52, 29.13) 8.28 (6.00, 11.44) 9.27 (6.39, 13.44) 3.18 (2.10, 4.80) 

Lasso 36.87 (26.25, 51.77) 12.24 (8.74, 17.14) 8.54 (6.14, 11.87) 3.68 (1.32, 10.22) 

Ridge 26.81 (17.65, 40.72) 12.08 (7.93, 18.39) 12.22 (7.81, 19.12) 6.61 (4.04, 10.81) 

Elastic net 37.25 (26.53, 52.30) 2.66 (1.95, 3.63) 1.37 (0.95, 1.99) 3.68 (1.32, 10.22) 

Random forest 63.80 (36.78, 110.68) 13.73 (8.97, 21.01) 16.42 (10.19, 26.46) 6.84 (4.22, 11.11) 

Pancreatic cancer 
[CA_101.8] 

Univariable 19.01 (12.97, 27.87) 1.75 (0.97, 3.14) 0.98 (0.53, 1.78) 1.05 (0.50, 2.21) 

Multivariable 16.23 (11.22, 23.49) 1.58 (0.88, 2.82) 1.22 (0.71, 2.11) 1.23 (0.64, 2.37) 

Lasso 18.22 (12.71, 26.11) - 1.62 (0.94, 2.80) 1.19 (0.74, 1.94) 

Ridge 12.45 (7.79, 19.91) 1.88 (1.00, 3.53) 2.03 (1.11, 3.71) 1.20 (0.58, 2.48) 

Elastic net 18.70 (12.85, 27.21) 1.19 (0.66, 2.14) 1.77 (0.98, 3.19) 0.56 (0.25, 1.24) 

Random forest 16.88 (10.82, 26.35) 1.15 (0.64, 2.08) 1.36 (0.76, 2.44) 1.11 (0.53, 2.34) 
Abbreviations: PheRS, phenotype risk score  
Notes: A dash ('-') indicates the PheRS distribution among controls in All of Us was unable to distinguish between the middle 20% (40th-60th 
percentiles) and top decile. NA indicates that the model was unable to converge. 
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Table 4.3 Unweighted PheRS area under the receiver-operator characteristics curve (AUC, 95% confidence interval) by outcome, PheRS approach, 
and time threshold in All of Us. 

  Time threshold 

Outcome PheRS approach 0 1 2 5 

Esophageal cancer 
[CA_101.1] 

Univariable 0.767 (0.725, 0.809) 0.561 (0.498, 0.625) 0.540 (0.474, 0.607) 0.426 (0.349, 0.502) 

Multivariable 0.515 (0.475, 0.555) 0.528 (0.463, 0.592) 0.610 (0.545, 0.674) 0.572 (0.495, 0.648) 

Lasso 0.777 (0.737, 0.818) 0.572 (0.540, 0.605) NA 0.569 (0.493, 0.646) 

Ridge 0.653 (0.603, 0.703) 0.505 (0.443, 0.567) 0.507 (0.443, 0.571) 0.529 (0.453, 0.604) 

Elastic net 0.775 (0.733, 0.818) 0.594 (0.552, 0.636) 0.561 (0.498, 0.625) 0.477 (0.400, 0.555) 

Random forest 0.781 (0.740, 0.823) 0.528 (0.467, 0.590) 0.521 (0.458, 0.585) 0.520 (0.440, 0.600) 

Liver cancer 
[CA_101.6] 

Univariable 0.845 (0.825, 0.865) 0.734 (0.704, 0.764) 0.764 (0.734, 0.795) 0.700 (0.661, 0.738) 

Multivariable 0.818 (0.795, 0.842) 0.687 (0.655, 0.720) 0.732 (0.700, 0.765) 0.642 (0.603, 0.680) 

Lasso 0.860 (0.839, 0.882) 0.771 (0.742, 0.800) 0.751 (0.719, 0.782) 0.712 (0.674, 0.749) 

Ridge 0.880 (0.862, 0.899) 0.770 (0.740, 0.799) 0.765 (0.735, 0.796) 0.689 (0.649, 0.729) 

Elastic net 0.862 (0.841, 0.884) 0.562 (0.538, 0.586) 0.540 (0.516, 0.564) 0.711 (0.674, 0.749) 

Random forest 0.909 (0.892, 0.925) 0.771 (0.741, 0.801) 0.753 (0.721, 0.785) 0.692 (0.652, 0.732) 

Pancreatic cancer 
[CA_101.8] 

Univariable 0.833 (0.805, 0.861) 0.530 (0.482, 0.577) 0.537 (0.490, 0.584) 0.477 (0.420, 0.535) 

Multivariable 0.760 (0.726, 0.794) 0.554 (0.507, 0.600) 0.504 (0.457, 0.551) 0.492 (0.435, 0.548) 

Lasso 0.810 (0.780, 0.840) 0.531 (0.492, 0.570) 0.546 (0.498, 0.593) 0.511 (0.467, 0.556) 

Ridge 0.753 (0.720, 0.785) 0.537 (0.490, 0.584) 0.536 (0.488, 0.585) 0.519 (0.462, 0.576) 

Elastic net 0.808 (0.777, 0.838) 0.560 (0.514, 0.606) 0.560 (0.513, 0.608) 0.511 (0.460, 0.561) 

Random forest 0.854 (0.827, 0.880) 0.532 (0.486, 0.578) 0.535 (0.488, 0.583) 0.517 (0.460, 0.574) 
Abbreviations: PheRS, phenotype risk score  
Notes: NA indicates that the model was unable to converge. 

 

  



 121 

Table 4.4 Comparison of top 10 features by permutation-based variable importance for unweighted random forest liver cancer PheRS by time 
threshold. 

  Variable importance rank by time threshold 
Phenotype [Phecode] Phecode group 0 1 2 5 

Other disorders of liver [GI_546] Gastrointestinal 1 8 6 24 
Other diseases of biliary tract [GI_552] Gastrointestinal 2 9 14 45 
Fibrosis and cirrhosis of liver [GI_542.1] Gastrointestinal 3 4 3 9 
Chronic liver disease [GI_542] Gastrointestinal 4 2 1 1 
Cirrhosis of liver [GI_542.11] Gastrointestinal 5 3 4 3 
Chronic nonalcoholic liver disease [GI_542.7] Gastrointestinal 6 1 2 11 
Abnormal findings on examination of blood [SS_829] Symptoms 7 68 75 1293 
Hepatomegaly [GI_546.3] Gastrointestinal 8 376 265 192 
Diseases of the pancreas [GI_554] Gastrointestinal 9 56 56 135 
Obstruction of bile duct [GI_552.2] Gastrointestinal 10 1599 291 213 
Hepatitis [GI_540] Gastrointestinal 12 5 5 2 
Chronic hepatitis [GI_540.1] Gastrointestinal 13 11 7 7 
Viral hepatitis [GI_540.3] Gastrointestinal 14 7 8 13 
Hepatovirus [ID_054] Infections 18 6 10 4 
Chronic hepatitis C [ID_054.31] Infections 23 17 9 15 
Back pain [MS_718] Musculoskeletal 28 38 113 6 
Hyperlipidemia [EM_239] Endocrine/Metab 35 62 39 10 
Diseases of spleen [BI_174] Blood/Immune 41 18 17 8 
Nonspecific abnormal results of function study of liver [GI_545] Gastrointestinal 56 10 15 5 

Notes: Ranks are bolded indicating they were identified as a top 10 feature for the given time threshold. Variable importance was estimated using 
the permutation method in the ranger package and extracted using the vip package. Phenotypes, phecodes, and phecode groups are defined 
using Phecode X mapping tables from https://phewascatalog.org. 
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Table 4.5 Comparison of top 10 features by permutation-based variable importance for unweighted random forest PheRS at t=1 by outcome. 

  

Variable importance rank by 
outcome 

Phenotype [Phecode] Phecode group Esophageal Liver Pancreatic 

Hyperlipidemia [EM_239] Endocrine/Metab 1 62 71 
Disorders of prostate [GU_602] Genitourinary 2 1615 184 
Diseases of esophagus [GI_510] Gastrointestinal 3 221 161 
Esophageal obstruction (Stricture and stenosis of esophagus) [GI_514.1] Gastrointestinal 4 808 673 
Atrial fibrillation and flutter [CV_416.2] Cardiovascular 5 270 105 
Abnormal results of cardiovascular function studies [CV_418] Cardiovascular 6 64 28 
Barrett's esophagus [GI_510.8] Gastrointestinal 7 804 668 
Essential hypertension [CV_401.1] Cardiovascular 8 1697 93 
Ischemic heart disease [CV_404] Cardiovascular 9 177 70 
Diverticula of colon [GI_523.2] Gastrointestinal 10 1666 84 
Pain in joint [MS_713.3] Musculoskeletal 35 70 5 
Asthma [RE_475] Respiratory 44 357 8 
Cardiac arrhythmia and conduction disorders [CV_416] Cardiovascular 51 26 2 
Hepatitis [GI_540] Gastrointestinal 81 5 1299 
Obesity [EM_236.1] Endocrine/Metab 98 60 7 
Sinusitis [RE_462] Respiratory 124 1685 6 
Chronic nonalcoholic liver disease [GI_542.7] Gastrointestinal 184 1 56 
Chronic liver disease [GI_542] Gastrointestinal 246 2 169 
Other disorders of liver [GI_546] Gastrointestinal 253 8 314 
Other diseases of biliary tract [GI_552] Gastrointestinal 256 9 1406 
Nonspecific abnormal results of function study of liver [GI_545] Gastrointestinal 348 10 126 
Fibrosis and cirrhosis of liver [GI_542.1] Gastrointestinal 687 4 699 
Cirrhosis of liver [GI_542.11] Gastrointestinal 688 3 700 
Diseases of the pancreas [GI_554] Gastrointestinal 698 56 1 
Pancreatitis [GI_554.1] Gastrointestinal 699 171 3 
Acute pancreatitis [GI_554.11] Gastrointestinal 700 98 9 
Overweight and obesity [EM_236] Endocrine/Metab 1191 66 4 
Hepatovirus [ID_054] Infections 1206 6 1292 
Viral hepatitis [GI_540.3] Gastrointestinal 1229 7 1287 
Other disorders of bone [MS_727] Musculoskeletal 1315 76 10 

Notes: Ranks are bolded indicating they were identified as a top 10 feature for the given outcome. Variable importance was estimated using the 
permutation method in the ranger package and extracted using the vip package. Phenotypes, phecodes, and phecode groups are defined using 
Phecode X mapping tables from https://phewascatalog.org. 
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4.8 Figures 

 
Figure 4.1 Schematic representation of analytic framework. Michigan Genomics Initiative (MGI) and All of 
Us (AOU) are samples of presumptive source populations – Michigan Medicine and the US adult 
population, respectively. In theory, Michigan Medicine is a subset of the US adult population, but we assume 
minimal overlap. First, poststratification weights are calculated to make the MGI sample representative of 
AOU. These weights are then used across several one- and two-step modeling approaches. Outcomes for 
these risk prediction models are esophageal, liver, and pancreatic cancers. Finally, the models developed 
using MGI data are applied to the AOU sample and evaluated for risk stratification capacity and other 
performance measures. Abbreviations: AOU, All of Us; AUC, area under the receiver-operator 
characteristics curve; MGI, Michigan Genomics Initiative; OR, odds ratio; PS, poststratification. 
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Figure 4.2 Comparison of model cascade for esophageal (panel A), liver (panel B), and pancreatic (panel 
C) cancer using the random forest PheRS approach by weighting approach at t = 1. The top decile 
compared to the middle 20% (40th-60th percentiles) odds ratio (95% confidence interval) is shown. 
Abbreviations: Cov, covariates; PheRS, phenotype risk score; RF, risk factors; Symp, presenting symptom 
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Figure 4.3 Top decile-to-middle 20% odds ratio (95% confidence interval) for by phenotype risk score 
(PheRS) and weighting approach by time threshold for liver cancer [CA_101.6]. Corresponding plots for 
esophageal [CA_101.1] and pancreatic [CA_101.8] cancers are shown in Supplementary Figure 4.1 and 
Supplementary Figure 4.2, respectively. 
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Figure 4.4 Comparison of unweighted liver cancer risk score stratified odds ratios (95% CI) (left panel) and 
area under the receiver-operator characteristics curves (AUC) (right panel) for the random forest PheRS 
by different predictor sets at the t=1 time threshold. The 40th-60th risk score percentile is used as the 
reference group in the left panel. Covariates (Cov) included age, sex, and a non-Hispanic White indicator. 
Risk factors (Risk) included alcohol consumption, obesity, and smoking. The presenting symptom (Symp) 
was abdominal pain. The first four models were constructed sequentially in a logistic regression model. The 
“Joint” model was built considering all predictors during PheRS construction (see Materials and Methods 
for details). 
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4.9 Supplementary materials 

Supplementary Table 4.1 Phecode X neoplasm phecodes and whether they are considered malignant or 
specific. 

Phecode Description Malignant Specific 

CA_100 Malignant neoplasm of the head and neck 1 1 
CA_100.1 Malignant neoplasm of the oral cavity 1 1 
CA_100.12 Malignant neoplasm of the tongue 1 1 
CA_100.13 Malignant neoplasm of the gums 1 1 
CA_100.14 Malignant neoplasm of the floor of mouth 1 1 
CA_100.15 Malignant neoplasm of the palate 1 1 
CA_100.2 Malignant neoplasm of the oropharynx 1 1 
CA_100.3 Malignant neoplasm of the nasopharynx 1 1 
CA_100.4 Malignant neoplasm of the hypopharynx 1 1 
CA_100.5 Malignant neoplasm of nasal cavities, middle ear, and 

accessory sinuses 
1 1 

CA_100.6 Malignant neoplasm of the larynx 1 1 
CA_100.7 Malignant neoplasm of the pharynx 1 1 
CA_100.8 Malignant neoplasm of the lip 1 1 
CA_100.9 Malignant neoplasm of the salivary glands 1 1 
CA_101 Malignant neoplasm of the digestive organs 1 1 
CA_101.1 Malignant neoplasm of the esophagus 1 1 
CA_101.2 Malignant neoplasm of stomach 1 1 
CA_101.21 Malignant neoplasm of cardia 1 1 
CA_101.3 Malignant neoplasm of the small intestine 1 1 
CA_101.4 Malignant neoplasm of the lower GI tract 1 1 
CA_101.41 Colorectal cancer 1 1 
CA_101.41
1 

Malignant neoplasm of colon 1 1 

CA_101.41
2 

Malignant neoplasm of appendix 1 1 

CA_101.42 Malignant neoplasm of anus 1 1 
CA_101.6 Malignant neoplasm of the liver and intrahepatic bile ducts 1 1 
CA_101.61 Malignant neoplasm of the liver 1 1 
CA_101.62 Malignant neoplasm of the intrahepatic bile ducts 1 1 
CA_101.7 Malignant neoplasm of the gallbladder and extrahepatic bile 

ducts 
1 1 

CA_101.71 Malignant neoplasm of the gallbladder 1 1 
CA_101.8 Malignant neoplasm of the pancreas 1 1 
CA_102 Malignant neoplasm of the thoracic and respiratory organs 1 1 
CA_102.1 Malignant neoplasm of the of bronchus and lung 1 1 
CA_102.3 Malignant neoplasm of the trachea 1 1 
CA_102.5 Malignant neoplasm of the heart, mediastinum, thymus, and 

pleura 
1 1 

CA_102.51 Malignant neoplasm of the heart 1 1 
CA_102.52 Malignant neoplasm of the mediastinum 1 1 
CA_102.53 Malignant neoplasm of the of pleura 1 1 
CA_102.54 Malignant neoplasm of the thymus 1 1 
CA_103 Malignant neoplasm of the skin 1 0 
CA_103.1 Melanomas of skin 1 1 
CA_103.2 Keratinocyte carcinoma 1 0 
CA_103.21 Basal cell carcinoma 1 0 
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Phecode Description Malignant Specific 
CA_103.22 Squamous cell carcinoma of the skin 1 0 
CA_103.3 Carcinoma in situ of skin 0 0 
CA_104 Malignant sarcoma-related cancers 1 1 
CA_104.1 Malignant neoplasm of the bone and/or cartilage 1 1 
CA_104.2 Malignant neoplasm of retroperitoneum and peritoneum 1 1 
CA_104.3 Malignant neoplasm of connective and soft tissue 1 1 
CA_104.4 Malignant neoplasm of peripheral nerves* 1 1 
CA_104.5 Gastrointestinal stromal tumor* 1 1 
CA_104.6 Kaposi's sarcoma 1 1 
CA_105 Malignant neoplasm of the breast 1 1 
CA_105.1 Malignant neoplasm of the breast, female 1 1 
CA_105.2 Malignant neoplasm of the breast, male 1 1 
CA_106 Gynecological malignant neoplasms 1 1 
CA_106.1 Malignant neoplasm of external female genital organs and 

cervix 
1 1 

CA_106.11 Malignant neoplasm of the vulva 1 1 
CA_106.12 Malignant neoplasm of the vagina 1 1 
CA_106.13 Malignant neoplasm of the cervix 1 1 
CA_106.2 Malignant neoplasm of the uterus 1 1 
CA_106.21 Malignant neoplasm of endometrium 1 1 
CA_106.3 Malignant neoplasm of the ovary 1 1 
CA_106.4 Malignant neoplasm of the fallopian tube and uterine adnexa 1 1 
CA_106.6 Malignant neoplasm of the placenta 1 1 
CA_107 Malignant neoplasm of male genitalia 1 1 
CA_107.1 Malignant neoplasm of the penis 1 1 
CA_107.2 Malignant neoplasm of the prostate 1 1 
CA_107.3 Malignant neoplasm of the testis 1 1 
CA_107.4 Malignant neoplasm of epididymis 1 1 
CA_107.5 Malignant neoplasm of spermatic cord 1 1 
CA_107.6 Malignant neoplasm of the scrotum 1 1 
CA_108 Malignant neoplasm of the urinary tract 1 1 
CA_108.4 Malignant neoplasm of the kidney 1 1 
CA_108.41 Malignant neoplasm of kidney, except pelvis 1 1 
CA_108.42 Malignant neoplasm of renal pelvis 1 1 
CA_108.5 Malignant neoplasm of the bladder 1 1 
CA_108.6 Malignant neoplasm of urethra 1 1 
CA_108.7 Malignant neoplasm of ureter 1 1 
CA_109 Malignant neoplasm of the eye, brain and other parts of 

central nervous system 
1 1 

CA_109.1 Malignant neoplasm of eye 1 1 
CA_109.11 Malignant neoplasm of orbit 1 1 
CA_109.12 Malignant neoplasm of lacrimal gland and duct 1 1 
CA_109.13 Malignant neoplasm of conjunctiva 1 1 
CA_109.14 Malignant neoplasm of cornea 1 1 
CA_109.15 Malignant neoplasm of retina 1 1 
CA_109.16 Malignant neoplasm of choroid 1 1 
CA_109.2 Malignant neoplasm of meninges 1 1 
CA_109.3 Malignant neoplasm of brain 1 1 
CA_109.4 Malignant neoplasm of spinal cord 1 1 
CA_109.5 Malignant neoplasm of cranial nerve 1 1 
CA_110 Malignant neoplasm of the endocrine glands 1 1 
CA_110.1 Malignant neoplasm of the thyroid 1 1 
CA_110.3 Malignant neoplasm of the parathyroid gland 1 1 
CA_110.4 Malignant neoplasm of the pituitary gland and 

craniopharyngeal duct 
1 1 
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Phecode Description Malignant Specific 
CA_110.5 Malignant neoplasm of the pineal gland 1 1 
CA_112 Malignant neoplasm of other and ill-defined sites 1 1 
CA_112.1 Mesothelioma* 1 1 
CA_114 Neuroendocrine tumors 0 0 
CA_114.1 Malignant neuroendocrine tumors 1 1 
CA_114.11 Exocrine pancreatic cancer 1 1 
CA_114.12 Merkel cell carcinoma 1 1 
CA_114.2 Benign neuroendocrine tumors 0 0 
CA_114.4 Carcinoid tumors 1 1 
CA_114.41 Intestinal carcinoid 1 1 
CA_114.42 Carcinoid tumor of the bronchus and lung 1 1 
CA_114.43 Carcinoid tumor of the thymus 1 1 
CA_114.44 Carcinoid tumor of the stomach 1 1 
CA_114.45 Carcinoid tumor of the kidney 1 1 
CA_114.5 Paraganglioma 1 1 
CA_114.6 Pheochromocytoma 1 1 
CA_116 Secondary malignant neoplasm 1 0 
CA_120 Hemo onc - by cell of origin 1 1 
CA_120.1 Myeloid 1 1 
CA_120.11 Plasma cell 1 1 
CA_120.12 Monocyte 1 1 
CA_120.13 Erythroid 1 1 
CA_120.14 Megakaryoblast 1 1 
CA_120.15 Mast cell 1 1 
CA_120.2 Lymphoid 1 1 
CA_120.21 Mature B-cell 1 1 
CA_120.22 Mature T-Cell 1 1 
CA_120.3 Histocytes 1 1 
CA_121 Leukemia 1 1 
CA_121.1 Acute leukemia 1 1 
CA_121.11 Acute lymphoid leukemia 1 1 
CA_121.12 Acute myeloid leukemia 1 1 
CA_121.2 Chronic leukemia 1 1 
CA_121.21 Chronic lymphoid leukemia 1 1 
CA_121.22 Chronic myeloid leukemia 1 1 
CA_121.23 Chronic myelomonocytic (monocytic) leukemia 1 1 
CA_122 Lymphoma 1 1 
CA_122.1 Hodgkin lymphoma 1 1 
CA_122.11 Nodular sclerosis Hodgkin lymphoma 1 1 
CA_122.2 Non-Hodgkin lymphoma 1 1 
CA_122.21 Follicular lymphoma 1 1 
CA_122.22 Diffuse large B-cell lymphoma* 1 1 
CA_122.23 Burkitt lymphoma 1 1 
CA_122.24 T-cell lymphoma 1 1 
CA_122.25 Anaplastic large cell lymphoma 1 1 
CA_122.26 Extranodal NK/T-cell lymphoma, nasal type* 1 1 
CA_123 Multiple myeloma and malignant plasma cell neoplasms 1 1 
CA_123.1 Multiple myeloma 1 1 
CA_124 Myeloproliferative disorder 1 1 
CA_124.3 Polycythemia vera 1 1 
CA_124.5 Essential thrombocythemia 1 1 
CA_124.6 Myelodysplastic syndrome 1 1 
CA_124.7 Chronic myeloproliferative disease* 1 1 
CA_124.8 Myelofibrosis 1 1 
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Phecode Description Malignant Specific 
CA_125 Other malignant neoplasms of lymphoid, hematopoietic and 

related tissue 
1 1 

CA_125.1 Cutaneous mastocytosis* 0 1 
CA_128 Estrogen receptor status 1 1 
CA_128.1 Estrogen receptor positive status [ER+] 1 1 
CA_128.2 Estrogen receptor negative status [ER-] 1 1 
CA_130 Cancer (solid tumor, excluding BCC) 1 0 
CA_132 Sequelae of cancer 1 0 
CA_135 Benign neoplasm of the head and neck 0 1 
CA_135.1 Benign neoplasm of the oral cavity 0 1 
CA_135.11 Benign neoplasm of the lip 0 1 
CA_135.12 Benign neoplasm of the tongue 0 1 
CA_135.14 Benign neoplasm of the floor of mouth 0 1 
CA_135.16 Benign neoplasm of the salivary glands 0 1 
CA_135.2 Benign neoplasm of the oropharynx 0 1 
CA_135.3 Benign neoplasm of the nasopharynx 0 1 
CA_135.4 Benign neoplasm of the hypopharynx 0 1 
CA_135.5 Benign neoplasm of the paranasal sinus and nasal cavity 0 1 
CA_135.6 Benign neoplasm of vocal cord or larynx 0 1 
CA_136 Benign neoplasm of the digestive organs 0 1 
CA_136.1 Benign neoplasm of the esophagus 0 1 
CA_136.2 Benign neoplasm of stomach 0 1 
CA_136.3 Benign neoplasm of the small intestine 0 1 
CA_136.4 Benign neoplasm of colon, rectum, anus and anal canal 0 1 
CA_136.41 Benign neoplasm of the colon 0 1 
CA_136.42 Benign neoplasm of rectum and anus 0 1 
CA_136.6 Benign neoplasm of the liver and intrahepatic bile ducts 0 1 
CA_136.61 Benign neoplasm of the liver* 0 1 
CA_136.8 Benign neoplasm of the pancreas 0 1 
CA_137 Benign neoplasm of the thoracic and respiratory organs 0 1 
CA_137.1 Benign neoplasm of the of bronchus and lung 0 1 
CA_137.3 Benign neoplasm of the trachea 0 1 
CA_137.5 Benign neoplasm of the heart, mediastinum, thymus, and 

pleura 
0 1 

CA_137.51 Benign neoplasm of the heart 0 1 
CA_137.52 Benign neoplasm of the mediastinum 0 1 
CA_137.53 Benign neoplasm of the of pleura 0 1 
CA_137.54 Benign neoplasm of the thymus 0 1 
CA_138 Benign neoplasm of the skin 0 1 
CA_138.1 Nevus, non-neoplastic 0 1 
CA_138.2 Melanocytic nevi* 0 1 
CA_139 Benign sarcoma-related cancers 0 1 
CA_139.1 Benign neoplasm of the bone and/or cartilage 0 1 
CA_139.2 Benign neoplasm of retroperitoneum and peritoneum 0 1 
CA_139.3 Benign neoplasm of other connective and soft tissue 0 1 
CA_139.4 Benign neoplasm of peripheral nerves* 0 1 
CA_139.5 Lipoma 0 1 
CA_139.51 Lipomatosis* 0 1 
CA_139.52 Lipoma of intrathoracic organs 0 1 
CA_139.53 Lipoma of skin subcutaneous tissue 0 1 
CA_139.54 Testicular lipoma 0 1 
CA_139.6 Hemangioma and lymphangioma 0 1 
CA_139.61 Hemangioma 0 1 
CA_139.62 Lymphangioma 0 1 
CA_140 Benign neoplasm of the breast 0 1 



 131 

Phecode Description Malignant Specific 
CA_142 Lump or mass in breast or nonspecific abnormal breast exam 0 0 
CA_142.1 Lump or mass in breast 0 0 
CA_142.2 Abnormal mammogram 0 0 
CA_142.21 Mammographic microcalcification 0 0 
CA_144 Gynecological benign neoplasms 0 1 
CA_144.1 Benign neoplasms of external female genital organs and 

cervix 
0 1 

CA_144.11 Benign neoplasms of the vulva 0 1 
CA_144.12 Benign neoplasms of the vagina 0 1 
CA_144.13 Benign neoplasms of the cervix 0 1 
CA_144.2 Benign neoplasms of the uterus 0 1 
CA_144.21 Leiomyoma of uterus 0 1 
CA_144.3 Benign neoplasms of the ovary 0 1 
CA_144.4 Benign neoplasm of the fallopian tube and uterine adnexa 0 1 
CA_146 Benign neoplasm of male genital organs 0 1 
CA_146.1 Benign neoplasm of the penis 0 1 
CA_146.2 Benign neoplasm of the prostate 0 1 
CA_146.3 Benign neoplasm of the testis 0 1 
CA_146.31 Benign neoplasm of epididymis and spermatic cord 0 1 
CA_146.32 Benign neoplasm of the scrotum 0 1 
CA_147 Benign neoplasm of kidney and urinary organs 0 1 
CA_147.1 Benign neoplasm of the kidney 0 1 
CA_147.2 Benign neoplasm of ureter 0 1 
CA_147.3 Benign neoplasm of bladder 0 1 
CA_147.4 Benign neoplasm of urethra 0 1 
CA_148 Benign neoplasm of the eye, brain and other parts of central 

nervous system 
0 1 

CA_148.1 Benign neoplasm of eye 0 1 
CA_148.11 Benign neoplasm of orbit 0 1 
CA_148.12 Benign neoplasm of lacrimal gland and duct 0 1 
CA_148.13 Benign neoplasm of conjunctiva 0 1 
CA_148.14 Benign neoplasm of cornea 0 1 
CA_148.15 Benign neoplasm of retina 0 1 
CA_148.16 Benign neoplasm of choroid 0 1 
CA_148.2 Benign neoplasm of meninges (Meningioma) 0 1 
CA_148.3 Benign neoplasm of brain 0 1 
CA_148.4 Benign neoplasm of spinal cord 0 1 
CA_148.5 Benign neoplasm of cranial nerve 0 1 
CA_149 Benign neoplasm of the endocrine glands 0 1 
CA_149.1 Benign neoplasm of the thyroid 0 1 
CA_149.3 Benign neoplasm of the parathyroid gland 0 1 
CA_149.4 Benign neoplasm of the pituitary gland and craniopharyngeal 

duct 
0 1 

CA_149.5 Benign neoplasm of pineal gland 0 1 
CA_152 Benign neoplasm of lymph nodes 0 1 
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Supplementary Table 4.2 Definition of variables by cohort used throughout paper 

Variable AOU MGI Categories 

Age Age at last diagnosis [0-18), [18,35), [35,65), [65-80), 
[80+) 

Sex Self-reported sex at birth (field name: 
sex_at_birth_concept_id) 

Self-report EHR 
non-Hispanic Asian, non-Hispanic 
Black, Hispanic, non-Hispanic 
White, and Other/Unknown 

Race/ethnicity Self-reported race ethnicity (field names: 
race_source_concept_id, 

ethnicity_source_concept_id) 

Self-report EHR 
underweight (<18.5), healthy 
weight ([18,25)), overweight 
([25,30)), and obese (30+) 

Body mass index Median of EHR values  
Drinking status Self-report (concept ID: 1586198) Self-report EHR   
Smoking status Self-report (concept IDs: 1585857, 1585860) Self-report EHR  
Depression Phecode MB_286.2: Major depressive disorder   
Hypertension Phecode CV_401: Hypertension  
Charlson Comorbidity Index comorbidity R package using Quan weights and ICD-9-CM/ICD-10-CM 

data 
very low (0), low (1-2), moderate 
(3-4), and high (5+) 

https://ellessenne.github.io/comorbidity/


 133 

 
Supplementary Figure 4.1 Top decile-to-middle 20% odds ratio (95% confidence interval) for by phenotype 
risk score (PheRS) and weighting approach by time threshold for esophageal cancer [CA_101.1]. 
Corresponding plots for liver[CA_101.6] and pancreatic [CA_101.8] cancers are shown in Figure 4.3 and 
Supplementary Figure 4.2, respectively. 
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Supplementary Figure 4.2 Top decile-to-middle 20% odds ratio (95% confidence interval) for by phenotype 
risk score (PheRS) and weighting approach by time threshold for pancreatic cancer [CA_101.8]. 
Corresponding plots for liver [CA_101.6] and esophageal [CA_101.1] cancers are shown in Figure 4.3 and 
Supplementary Figure 4.1, respectively. 
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Supplementary Figure 4.3 Comparison of AUCs (95% CI) in this manuscript with those published in the 
literature. We identified published risk prediction models developed for use in a general US or UK adult 
population that reported AUCs for esophageal (panel A),273,275–278 liver (panel B),147 and pancreatic cancer 
(panel C).18,257,272,277 Point shapes indicate whether genetic information was (triangle) or was not (circle) 
used in model development. Point estimate color indicates whether the model was stratified by sex (blue 
for male; purple for female) or not (unstratified; black). Estimates from this manuscript (shaded background) 
are taken from the joint random forest model using the weighting approach that yielded the highest AUC. 
The numbers in the point estimates indicate the time threshold. Study details are provided in Supplementary 
Table 4.7 and Supplementary Table 4.8. 
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Supplementary Table 4.3 Risk stratification and diagnostic performance for cascade models by PheRS 
approach, weighted approach and outcome at t=0 threshold. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

Supplementary Table 4.4 Risk stratification and diagnostic performance for cascade models by PheRS 
approach, weighted approach and outcome at t=1 threshold. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

Supplementary Table 4.5 Risk stratification and diagnostic performance for cascade models by PheRS 
approach, weighted approach and outcome at t=2 threshold. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

Supplementary Table 4.6 Risk stratification and diagnostic performance for cascade models by PheRS 
approach, weighted approach and outcome at t=5 threshold. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

  

https://www.doi.org/10.17605/OSF.IO/SBMN2
https://www.doi.org/10.17605/OSF.IO/SBMN2
https://www.doi.org/10.17605/OSF.IO/SBMN2
https://www.doi.org/10.17605/OSF.IO/SBMN2
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Supplementary Table 4.7 Comparison of AUCs (95% CI) in this manuscript with those published in the 
literature. We identified published 5- or 10-year risk prediction models developed for use in a general US 
or UK adult population that reported AUCs for esophageal, liver, and pancreatic cancers. Estimates from 
this manuscript are taken from the joint random forest model using the weighting approach that yielded the 
highest AUC. 
   
Esophageal cancer     

Study Country AUC (95% CI) 

Rubenstein et al. (2013) 
doi: 10.1038/ajg.2012.446275 
predicts Barrett's esophagus 

US 0.72 (0.66, 0.79) 

QCancer10 
Hippisley-Cox & Coupland (2015) 
doi: 10.1136/bmjopen-2015-007825277 

US 0.868 (0.862, 0.874) (male) 
0.873 (0.864, 0.881) (female) 

Dong et al. (2018) 
doi: 10.1053/j.gastro.2017.12.003273 

Multiple 0.745 (0.721, 0.769) (without genetic 
information) 
0.754 (0.729, 0.778) (with genetic 
information) 

Baldwin-Hunter et al. (2019) 
doi: 10.1007/s10620-019-05707-2276 
predicts Barrett's esophagus 

US 0.71 (0.64, 0.77) 

Wang et al. (2021) 
doi:10.14309/ajg.0000000000001094278 
predicts esophageal squamous cell 
carcinoma 

Norway/UK 0.70 (0.64, 0.75) 

This manuscript US 0.820 (0.781, 0.860) (t=0) 
0.605 (0.543, 0.667) (t=1) 
0.540 (0.476, 0.604) (t=2) 
0.538 (0.459, 0.616) (t=5) 

   
Liver cancer     

Study Country AUC (95% CI) 

Liu et al. (2022) 
doi: 10.3389/fpubh.2022.955287147 

UK 0.771 (0.702, 0.840) 

This manuscript US 0.909 (0.893, 0.926) (t=0) 
0.776 (0.747, 0.806) (t=1) 
0.762 (0.731, 0.793) (t=2) 
0.713 (0.675, 0.752) (t=5) 

   
Pancreatic cancer     

Study Country AUC (95% CI) 

Klein et al. (2013) 
doi: 10.1371/journal.pone.0072311 

Multiple 0.58 (0.56, 0.60) (without genetic 
information) 
0.61 (0.058, 0.63) (with genetic 
information) 

QCancer10 
Hippisley-Cox & Coupland (2015) 
doi: 10.1136/bmjopen-2015-007825277 

UK 0.857 (0.846, 0.867) (male) 
0.865 (0.855, 0.875) (female) 

Salvatore et al. (2021) 
doi: 10.1016/j.jbi.2020.10365218 

US 0.732 (0.710, 0.754) (t=5, without genetic 
information) 
0.742 (0.720, 0.763) (t=5, with genetic 
information) 

This manuscript US 0.842 (0.814, 0.869) (t=0) 
0.574 (0.529, 0.620) (t=1) 
0.558 (0.511, 0.605) (t=2) 
0.530 (0.474, 0.585) (t=5) 
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Supplementary Table 4.8 Summary of digestive cancer (5-/10-year) risk prediction models 
developed/validated using data from the US/UK for use in a general adult population and reported area-
under-the-curve (AUC) metrics. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2 
  

https://www.doi.org/10.17605/OSF.IO/SBMN2
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Supplementary Section 4.1 Handling of glmnet convergence issues 

There are several settings that might cause glmnet models in R to not converge 
including large penalty factors, sparse data, collinearity in predictors, inadequate 
iterations, ill-scaled features, extreme values or outliers, choice of convergence criteria, 
and algorithmic instability. Convergence issues exclusively took place when the weights 
argument was specified (i.e., there were no convergence issues fitting unweighted glmnet 
models). glmnet models were fit for hyperparameter tuning and for prediction model fitting. 
We here describe the sequence in which models were fit if there were convergence 
issues. 
 
For hyperparameter tuning 

1. Attempt to perform tuning using wglmnet (based on Iparragirre et al.’s wlasso, 
described in Materials and methods one-step approaches section in main text) 

2. If there is a warning or error, revert to glmnet::cv.glmnet with the weights as an 

unpenalized predictor 
 
For prediction model fitting 
Model fitting was carried out in the following order. If the model (a) failed to converge, (b) 
had a negative deviance ratio, (c) had 0 degrees of freedom, or (d) retained only the 
weights as a predictor (see 5 and 6), the subsequent model was fit. If none of the models 
met these criteria, no model was fit (happened in one instance: unweighted lasso for 
esophageal cancer [CA_101.1] at t=2). 
 

1. Attempt to fit glmnet model with lambda.min from hyperparameter tuning and weights 
in weight argument 

2. Attempt to fit glmnet model with lambda.1se from hyperparameter tuning and weights 
in weight argument 

 
Screen out highly correlated predictors using caret::findCorrelation such that absolute 
values of pair-wise correlations are less than 0.25 (retaining variable with smaller mean 
absolute correlation). 
 

3. Attempt to fit glmnet model with screened predictors with lambda.min from 
hyperparameter tuning and weights in weight argument 

4. Attempt to fit glmnet model with screened predictors with lambda.1se from 
hyperparameter tuning and weights in weight argument 

5. Attempt to fit glmnet model with screened predictors with lambda.min from 
hyperparameter tuning and with weights as unpenalized predictor 

6. Attempt to fit glmnet model with screened predictors with lambda.1se from 
hyperparameter tuning and with weights as unpenalized predictor 

 
Diagnostics corresponding to attempted and final model fits are described for esophageal, 

liver, and pancreatic cancers in   

Supplementary Table 4.9, Supplementary Table 4.10, and  
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Supplementary Table 4.11, respectively.  

Supplementary Table 4.9 Diagnostics corresponding to glmnet predictive model fitting for esophageal 
cancer [CA_101.1]. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

 
Supplementary Table 4.10 Diagnostics corresponding to glmnet predictive model fitting for liver cancer 
[CA_101.6]. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

 
Supplementary Table 4.11 Diagnostics corresponding to glmnet predictive model fitting for pancreatic 
cancer [CA_101.8]. 

This table can be viewed via this dissertation’s corresponding repository at 
https://www.doi.org/10.17605/OSF.IO/SBMN2  

 

https://www.doi.org/10.17605/OSF.IO/SBMN2
https://www.doi.org/10.17605/OSF.IO/SBMN2
https://www.doi.org/10.17605/OSF.IO/SBMN2
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Chapter 5 Impact of Polygenic Risk Score-Informed Multiple Imputation and 

Sample Weighting for Handling Missing Data and Selection Bias on Association 

Estimation in EHR-Linked Biobanks 

5.1 Abstract 

Electronic health records (EHR) are valuable public health and clinical research 

resources. However, analyses based on EHR data are subject to multiple sources of bias, 

including those due to missing data and non-probability selection. Missing data in EHRs 

is particularly problematic because it is challenging to distinguish between data that were 

not recorded and data that are absent/present due to clinically informative 

missingness/observation process. The patient’s visit process may be driven by patient-

level covariates such as age, sex, self-reported race/ethnicity, partnered status, access 

to healthcare, or underlying health status. In the US, this is exacerbated by EHR 

fragmentation across healthcare providers, where single centers maintain incomplete 

snapshots of an individual’s health history. EHR-linked biobanks like the Michigan 

Genomics Initiative (MGI) link EHR with genetic information and can lead to exposure 

and outcome proxies by constructing polygenic risk scores (PRS). Data from MGI are 

subject to selection bias because 90% of MGI participants are recruited while awaiting 

surgery. It is an interesting question whether PRS that are relatively complete on the 

recruited participants can help handling exposure or outcome missing values. 

While multiple sources of bias in EHR-linked biobanks are often studied in 

isolation, in reality, they co-occur. This paper investigates: (a) whether PRS-informed 
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multiple imputation reduces bias in estimating association parameters due to missing data 

in a biobank with germline genetics available for nearly all participants, and (b) the joint 

impact of PRS-informed multiple imputation and sample weighting on exposure-outcome 

association estimation. To study these questions, we conducted simulations inducing (a) 

exposure only and (b) exposure and outcome missingness under different missingness 

(e.g., missing at random (MAR)) and sampling (random and covariate-driven) 

mechanisms, and analyzed the bias, coverage, width of confidence interval, and root 

mean square error properties of covariate-adjusted exposure-outcome association 

estimates across several sample sizes (n=1,000, 2,500, 5,000, and 10,000). We then 

presented a case study using MGI data to estimate the association of BMI with blood 

glucose in individuals 40 years or older without diabetes. We fit the association model 

separately in non-Hispanic Whites (n=42,999) and non-Hispanic Blacks (n=2,297). We 

compared association estimates using complete case analysis and multiple imputation 

with (PRS-imputed) and without PRS (woPRS-imputed).  

In our simulation study, PRS-imputed analyses exhibited better properties than 

woPRS-imputed with MAR data under random sampling (e.g., woPRS-imputed and PRS-

imputed percent bias for n=2,500 with exposure and outcome missingness: 2.1% and 

1.4%, respectively; n=5,000: 1.8%, and 1.4%, respectively). PRS-imputed analyses, 

bolstered by sample weighting, exhibited superior properties when analyzing MAR data 

where covariates drove sample selection. However, it did not fully recover nominal 

coverage rates (e.g., coverage rate for n=2,500 and n=5,000: 0.860 and 0.895, 

respectively). 
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In our MGI case study, we estimated the regression coefficient of BMI on glucose 

in non-Hispanic White and non-Hispanic Black strata. Among non-Hispanic Whites, 

unweighted, adjusted coefficient estimates changed somewhat between complete case, 

woPRS-imputed, and PRS-imputed analyses (e.g., unweighted complete case: 0.288 

(0.264, 0.312); woPRS-imputed: 0.300 (0.277, 0.323); PRS-imputed: 0.302 (0.280, 

0.324)). However, weighted analyses using stratum-specific selection weights changed 

the estimates considerably (e.g., PRS-imputed increased to 0.338 (0.302, 0.374)), more 

closely aligning with a benchmark range (0.375, 0.423) estimated using All of Us data. A 

smaller extent of change after weighting was observed in non-Hispanic Blacks (e.g., 

unweighted PRS-imputed: 0.203 (0.116, 0.290); weighted PRS-imputed: 0.214, (0.096, 

0.332); benchmark range: (0.196, 0.297)). 

Our study suggests that EHR-linked biobanks can effectively use genetic data, 

such as PRS, as proxies in multiple imputation strategies to address missing data. 

Researchers should employ multiple analytic techniques to address multiple biases, like 

PRS-informed multiple imputation for missing data and sample weighted analysis for 

selection bias, which exhibited the best association estimation properties in our simulation 

study. 

5.2 Introduction 

Electronic health records (EHR) represent a rich, longitudinal resource that 

researchers increasingly use to address questions of public health and clinical 

significance. EHR-linked biobanks, which often contain genetic information linked to other 

data sources, including administrative and insurance claims, neighborhood-level 

characteristics, and complementary survey data, are growing in both the number of 
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participants (𝑛) and the breadth of measured variables (𝑝). However, EHR data has not 

been designed for research purposes, so researchers must carefully consider potential 

biases/systematic errors. Potential sources of bias include selection bias,7,76 

misclassification,7,51,292 confounding,48,293 missing data,20,44,107 clinically informative 

visiting process,107,211,294 immortal time bias,295,296 and heterogeneity across EHRs.297,298 

Although the advent of large-scale secondary data (colloquially, “Big Data”299) effectively 

neutralizes the threat of random error, systematic sources of bias are ever-present 

adversaries, unphased by ever-increasing sample sizes. In fact, large sample sizes 

amplify these biases relative to the very small variance, frequently making inference 

erroneous. While we typically study one source of bias at a time, these biases exist 

simultaneously in practice; our study jointly considered missing data and selection bias. 

Most importantly, we explored whether the observed genetic data, measured on almost 

all participants in the internal study sample, when related to the variables with missing 

data or to the variables driving sample selection, can help us reduce the double jeopardy 

of biases. 

Missing Data: Missing data is a foundational statistical problem,19 ubiquitous in 

epidemiology,300–304 and almost universally encountered in health research.21,305 

Complete case analyses, which remove observations with missing values for the 

variables of interest, are the most commonly reported missing data method in randomized 

clinical trials305 and epidemiology studies.21 However, depending on why the data are 

missing, ignoring missing data (as in complete case analyses) can lead to biased 

parameter estimation, leading to invalid conclusions.20,300,306 
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Why data are missing (i.e., the missing data mechanism(s)) are classically defined 

into three classes: missing completely at random (MCAR), missing at random (MAR), and 

missing not at random (MNAR).22 Complete case analyses are expected to produce 

unbiased results when data are MCAR. However, assuming MCAR in EHR-linked 

biobanks is unreasonable for several reasons. First, patient-provider interactions are not 

random – for example, sicker patients and patients with easy access to healthcare are 

observed more frequently23,55,56). Second, clinicians judge a patient’s risk, which can 

prompt a test order; thus, the presence/absence of a test order itself is clinically 

informative.107,108 Third, EHR fragmentation, an issue in the US, means providers 

document only the patient interactions within their own health care system. This can result 

in incomplete capture of a patient’s health history across time and type of encounter. Data 

in an EHR can be missing for other reasons, including failure to initiate or complete an 

encounter,76 financial costs associated with testing and diagnosis,109 underdiagnosis,110 

and differential disease classification processes.111 Methods like inverse probability 

weighting34,117,307 and full-information maximum likelihood118,119,308,309 can improve 

precision, reduce bias, and result in valid conclusions in MAR data, a more plausible 

assumption in EHR data.310 However, MNAR EHR data cannot be ruled out, particularly 

for laboratory tests, such as cholesterol tests, which may be ordered when a clinician 

suspects the patient is at elevated risk or when the result is more likely to be abnormal 

based on presenting symptoms. 

Perhaps the most common method for handling missing data (after complete case 

analysis), multiple imputation uses information from observed data to create a distribution 

of possible values for missing data, is flexible, and is readily implementable in statistical 
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software.20,112,114,311 Multiple imputation aims to produce unbiased and efficient estimates 

for population parameters of interest by retaining uncertainty in the missing values rather 

than simply attempting to achieve the best estimate for a missing value.300 Multiple 

imputation has been recommended as a method for handling the common problem of 

missing data in EHR-linked biobanks.1,38,44,310,312 However, it is empirically impossible to 

distinguish between MAR and MNAR settings, both of which are plausible in EHR-linked 

biobanks. While multiple imputation is generally effective in MAR settings, it may not work 

well in MNAR settings. 

Selection Bias: EHR-linked biobanks often do not represent their source (or target) 

population, introducing potential selection bias. Recruitment mechanisms like recruiting 

patients awaiting surgery (as in the Michigan Genomics Initiative (MGI)45) and 

oversampling groups historically underrepresented in biomedical research (as in the NIH 

All of Us Research Program2) as well as participant-driven factors like healthy volunteer 

bias (as in the UK Biobank4,8) explain differences between the cohorts and their 

underlying source populations.4,313 (We note that selection bias due to missing data or 

non-response differs because it induces differences between the analytic and study 

samples). Weighting-based methods like inverse probability weighting and 

poststratification weighting are often employed to reduce selection bias in parameter 

estimation. Recent papers have shown that weighted analyses reduce (but not remove) 

bias due to selection in EHR-linked biobanks.8,97,215 

The role of genetic information: Analyses of genetic data, which are often 

completely observed in EHR-linked biobanks, were shown to be vulnerable to selection 

bias.97 Using the non-missing genetic data to predict missing phenotypes/outcomes in 
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EHR-linked biobanks has been explored. Li, Chen, and Moore demonstrated that using 

genetic data available in EHR-linked biobanks improved imputation for missing 

cardiovascular phenotypes.44 Concurrently, Ma and colleagues developed exposure 

polygenic risk scores (PRS) (ExPRS), which were associated with 27 common 

exposures, like body mass index (BMI) and glucose, in MGI and the UK biobank.43 These 

works motivate, to the best of our knowledge, an unexplored question: can PRS-informed 

multiple imputation reduce bias due to missing exposure data in association estimation? 

Building off these studies, we investigated (a) whether PRS-informed multiple 

imputation meaningfully reduces bias due to missing data and (b) the joint impact of PRS-

informed multiple imputation and sample weighting on exposure-outcome association 

estimation (Figure 5.1). We calculated unweighted and weighted complete case- and 

multiple imputation-based estimates of the BMI coefficient for glucose in simulations and 

a stratified case study using data among non-Hispanic White (n=42,999) and non-

Hispanic Black (n=2,297) participants in MGI. First, our simulation studies explored the 

joint impacts of complete case analysis and multiple imputation with and without exposure 

and outcome PRS and weighted analysis for selection bias on association estimation. We 

evaluated these methods in terms of percent bias, coverage rate, confidence interval 

width, and root mean square error (RMSE). Our case study applied these methods to 

MGI data to estimate the BMI coefficient for glucose using the same missing data 

methods and stratum-specific selection weights (as described previously215) to 

demonstrate differences in association estimates in real-world data. We concluded by 

highlighting the utility of genetic data to reduce bias due to missing data and calling for 

applying multiple approaches to address the issue of multiple biases. 
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5.3 Materials and Methods 

5.3.1 Simulations 

5.3.1.1 Generating outcome, exposure, covariates, and polygenic risk scores 

jointly 

We simulated 1,000 replicates of a pseudo-population with size 100,000 (Figure 

5.2). To achieve this, we first generated an 8-dimensional multivariate normal distribution, 

𝚾~𝒩8(𝝁, 𝚺), mimicking the joint distribution of age, sex, non-Hispanic White (NHW), 

smoking status (ever/never), BMI, glucose, BMI PRS, and glucose PRS, assuming mean 

standardized variables (𝝁 = 0) and 𝚺 as observed in MGI (see Eq.1 below).  

𝚺 =

(

 
 
 
 
 

0.998 0.209 0.254 −0.177 0.060 0.092 0.084 0.092
0.209 0.997 0.051 0.020 −0.006 0.022 0.301 −0.005
0.254 0.051 0.923 −0.126 0.160 0.165 −0.052 −0.004
−0.177 0.020 −0.126 1.001 −0.038 −0.115 0.022 −0.008
0.060 −0.006 0.160 −0.038 0.907 0.078 −0.033 0.023
0.092 0.0217 0.165 −0.115 0.078 1.005 0.076 0.001
0.084 0.301 −0.052 0.022 −0.033 0.076 0.990 0.061
0.092 −0.005 −0.004 −0.008 0.023 0.001 0.061 1.005 )

 
 
 
 
 

 (Eq.1) 

Binary variables were recoded (sex, NHW, smoking status) from the generated 

continuous variables to preserve the observed variance-covariance structure. 

5.3.1.2 Sample selection 

For each pseudo-population, we performed sampling under two scenarios: random 

and biased/covariate-informed. Covariate-informed sampling probabilities depended on 

observed age, glucose, and BMI (e.g., 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑆 = 1|𝑎𝑔𝑒, 𝑔𝑙𝑢𝑐𝑜𝑠𝑒,𝐵𝑀𝐼)) = 𝛾0 +

𝛾𝑎𝑔𝑒𝑎𝑔𝑒 + 𝛾𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝛾𝐵𝑀𝐼𝐵𝑀𝐼, where 𝑆 is an indicator variable for selection into 

the sample; 𝛾𝑎𝑔𝑒 , 𝛾𝑔𝑙𝑢𝑐𝑜𝑠𝑒 , 𝛾𝐵𝑀𝐼 = 1). For each scenario, the intercept, 𝛾0, was selected to 
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draw a probability sample of approximately 1,000, 2,500, 5,000, and 10,000 (𝛾0 = -6.92, 

-5.83, -4.94, -3.93, respectively) from the pseudo-population where individual 𝑖 had 

selection probability 𝑃(𝑆𝑖 = 1|𝑎𝑔𝑒𝑖 , 𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑖 , 𝐵𝑀𝐼𝑖)). In practice, selection could be 

dependent on unmeasured variables, but this was not considered in our simulation. 

5.3.1.3 Missingness generation 

We simulated (a) exposure only (i.e., BMI) and (b) exposure and outcome (i.e., 

BMI and glucose) missingness under MCAR, MAR, and MNAR mechanisms for each 

selected sample size 𝑛. Approximately 25% missingness was generated for each 

variable. Under MCAR, the probability of missingness (e.g., 𝑃(𝑅𝐵𝑀𝐼 = 1) where 𝑅𝐵𝑀𝐼 is 

an indicator for whether BMI is missing) was 25% for all observations. Under MAR, 

exposure (i.e., BMI) missingness depended on the outcome and covariates (age, sex, 

race/ethnicity, smoking status) and outcome missingness dependent only on covariates 

(e.g., 𝑃(𝑅𝐵𝑀𝐼 = 1|𝑔𝑙𝑢𝑐𝑜𝑠𝑒, 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆𝒔) = 𝛼0 + 𝛼𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑔𝑙𝑢𝑐𝑜𝑠𝑒 +

𝜶𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆𝒔𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆𝒔). Under MNAR, exposure and outcome missingness was 

dependent on the exposure, outcome, and covariates (e.g.,  

𝑃(𝑅𝑔𝑙𝑢𝑐𝑜𝑠𝑒 = 1|𝑔𝑙𝑢𝑐𝑜𝑠𝑒, 𝐵𝑀𝐼, 𝒄𝒐𝒗) = 𝜁0 + 𝜁𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑔𝑙𝑢𝑐𝑜𝑠𝑒 + 𝜁𝐵𝑀𝐼𝐵𝑀𝐼 + 𝜻𝒄𝒐𝒗𝒄𝒐𝒗). In all 

settings, all non-intercept coefficients were set equal to 1 and only the intercept varied. 

Supplementary Table 5.1 shows the intercept coefficient values by missingness 

mechanism to (approximately) achieve the desired sample sizes. 

5.3.1.4 Methods 

We performed unweighted and weighted analyses. Weighted analyses were 

employed to address selection bias. We used the covariate-informed sampling 
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probabilities meaning the true sample weights were known, not estimated.  The weights 

were proportional to the inverse of sampling probabilities for each individual 𝑖 (𝜔𝑖 ∝

1

𝑃(𝑆𝑖=1|𝑎𝑔𝑒𝑖,𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑖 ,𝐵𝑀𝐼𝑖)
), and weighted analyses were carried out using the survey R 

package (version 4.4-2).242 

We also performed multiple imputation to address missing data. For each sample, 

multiple imputation using age, sex, NHW, smoking status, BMI, glucose (woPRS-

imputed) and additionally exposure (BMI) and outcome (glucose) PRS (PRS-imputed) 

was carried out using the R package mice (version 3.16.0)35,115 with default settings (5 

imputations using predictive mean matching). Beta coefficients across imputations were 

pooled using Rubin’s rule, with confidence intervals calculated from pooled standard 

errors based on within and between imputation variances.112,314 For multiply imputed 

analyses of biased/covariate-informed samples, weighted analyses were conducted on 

each imputed dataset before pooling. 

Our target quantity was the true coefficient of BMI in a linear regression model for 

glucose (𝛽𝐵𝑀𝐼) adjusted for age, sex, non-Hispanic White race/ethnicity, and smoking 

status (ever/never) (Eq. 2).  

𝐺𝑙𝑢𝑐𝑜𝑠𝑒𝑖 = 𝛽0 + 𝛽𝐵𝑀𝐼𝐵𝑀𝐼𝑖 + 𝛽𝑎𝑔𝑒𝑎𝑔𝑒𝑖 + 𝛽𝑠𝑒𝑥𝑠𝑒𝑥𝑖 + 𝛽𝑁𝐻𝑊𝑁𝐻𝑊𝑖 + 𝛽𝑠𝑚𝑜𝑘𝑒𝑠𝑚𝑜𝑘𝑒𝑖 + 𝜖𝑖 (Eq.2) 

For each replicate, the true 𝛽𝐵𝑀𝐼 was obtained from the pseudo-population of size 100,000 

and the sample estimates were obtained in the selected samples of sizes 1,000, 2,500, 

5,000, and 10,000. In each sample, we conducted complete case, woPRS-imputed, and 

PRS-imputed analyses, extracting the coefficient estimate of BMI for glucose (𝛽̂𝐵𝑀𝐼). We 

evaluated association estimation properties using percent bias, coverage rate, average 

95% confidence interval width, and RMSE, averaged over the 1,000 replicates. 
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5.3.2 Case study: Michigan Genomics Initiative 

5.3.2.1 Description of the study cohort 

MGI is an EHR-linked biobank that began in 2012, initially recruiting adult patients 

through pre-/peri-operative appointments requiring anesthesia from the University of 

Michigan Health System. As of September 2023, ~100,000 consented participants have 

provided access to their EHR and a biospecimen for genotyping, with a recent follow-up 

effort collecting complementary survey data.67 This paper included 42,999 (25,520 

complete cases) non-Hispanic White and 2,297 (1,240 complete cases) non-Hispanic 

Black participants aged 40 or older without a diabetes diagnosis (phecode EM_202) and 

with demographic, health measurement, laboratory, and polygenic risk score data. MGI 

protocols were reviewed and approved by the University of Michigan Medical School 

Institutional Review Board (IRB ID HUM00099605 and HUM00155849). 

5.3.2.2 Outcome, exposure, covariates, and polygenic risk score 

The outcome and exposure of interest were glucose (mg/dL; logical observation 

identifiers names and codes (LOINC) code: 2345-7) and BMI (kg/m2), respectively. The 

longitudinal data in the EHR was reduced to the participant’s median value after removing 

extreme values (values outside 1.5x the interquartile range) for the corresponding 

variable. Age was considered the participant’s age at the time of data pull (March 23, 

2022). Sex (indicator for female) and race/ethnicity were obtained from EHR data. 

Multiple measurements of self-reported smoking status were recorded and recoded into 

a binary ever/never indicator variable.  

Ma and colleagues previously calculated several PRS for 27 exposures in MGI 

participants.43 In this paper, we selected the Lassosum PRS for BMI and the deterministic 
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Bayesian sparse linear mixed model PRS for glucose because they had the highest R2 

value for their respective traits in the published paper.43 These PRS relied on publicly 

available GWAS summary statistics of UK Biobank data (Neale lab315,316). Both PRS’s 

were predictive in MGI, with BMI PRS being much stronger (Pearson correlation between 

BMI and BMI PRS: 0.30; glucose and glucose PRS: 0.09; Supplementary Figure 5.2). 

5.3.2.3 Estimated regression coefficient corresponding to BMI with glucose as the 

outcome 

The target estimand of interest was the regression coefficient corresponding to 

BMI with glucose as the outcome. We conducted analyses among individuals 40 and 

older without a diabetes diagnosis in non-Hispanic White and non-Hispanic Black strata 

as well as in the full (i.e., unstratified) cohort. Unlike in the simulations, the selection 

weights in MGI were not known. Salvatore and colleagues estimated inverse probability 

selection weights to make MGI more representative of the US adult population using 

National Health Interview Survey data.215 Using the same methods to calculate stratum-

specific weights, we conducted weighted versions of each regression analysis. Using the 

non-Hispanic White and non-Hispanic Black samples with missing data (n=42,999 and 

2,297, respectively), we performed multiple imputation with and without PRS (adjusting 

for age, sex, and smoking status). We also conducted a PRS-informed multiple imputation 

analysis where observations were restricted to only those with observed PRS (PRS-

imputed (subset): n=25,520 and 1,240 for non-Hispanic Whites and non-Hispanic Blacks, 

respectively). We reported the estimated beta coefficients and 95% confidence intervals. 

5.3.3 Software 
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Analyses were conducted using R version 4.3.3. The code used to conduct 

analyses in this paper is available at https://github.com/maxsal/exprs_imputation. 

5.4 Results 

5.4.1 Simulation study 

Random sampling, exposure only missingness: When BMI missingness was 

MCAR (orange in Figure 5.3), estimated BMI coefficients for glucose maintained the 

nominal coverage rate (95% confidence level; panel A) and exhibited essentially no bias 

(panel C). When BMI missingness was MAR, complete case analysis was unable to retain 

the nominal coverage rate, which decreased as sample size increased, and was 

consistently biased (e.g., 8.86% for n=1,000, 7.80% for n=10,000). woPRS-imputed 

analyses were able to achieve a stable coverage rate (e.g., 0.931 for n=1,000, 0.924 for 

n=10,000) and reduced bias, which decreased as sample size increased (e.g., 2.89% for 

n=1,000, 0.10% for n=10,000). PRS-imputed analyses were able to full retain the nominal 

coverage rate at all sample sizes and had less bias, which decreased as sample size 

increased (e.g., 1.5% for n=1,000, 0.04% for n=10,000). When BMI missingness was 

MNAR, all analyses failed to retain the nominal coverage rate and exhibited substantial 

bias (>30%), with multiply imputed analyses performing better than complete case 

analysis. PRS-imputed analyses were able to achieve a slightly better coverage rate (e.g., 

for n=1,000: 0.637, PRS-imputed; 0.561, woPRS-imputed) and lower bias (e.g., for 

n=1,000: 31.95%, PRS-imputed; 36.12%, woPRS-imputed) than woPRS-imputed 

analyses.  

Biased sampling, exposure only missingness: When BMI missingness was MCAR 

in biased sampling simulations (Figure 5.4), all unweighted analyses were unable to retain 

https://github.com/maxsal/exprs_imputation
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the nominal coverage rate and exhibited substantial bias (>29%), which worsened as 

sample size increased. When missingness was MAR or MNAR, unweighted complete 

case analyses demonstrated less bias than multiple imputation analyses. This is likely 

due to multiple imputation amplifying biases when imputing biased samples without 

considering sampling weights. However, weighted analyses improved association 

estimation properties, with multiple imputation approaches outperforming complete case 

analysis. For example, in the 10,000-observation sample with MAR missingness, the 

coverage rate was 0.784, 0.877, and 0.883 for complete case, woPRS-imputed, and 

PRS-imputed analysis, respectively. Coverage decreased and bias increased for all 

analyses when BMI was MNAR. Multiple imputation methods performed better than 

complete case analysis, with PRS-imputed analyses performing slightly better than 

woPRS-imputed analyses as sample size increased (e.g., coverage rate for n=10,000: 

23.22%, complete case; 14.00%, woPRS-imputed; 12.66%, PRS-imputed). 

Random sampling, exposure and outcome missingness: When BMI and glucose 

missingness were MCAR, all analyses maintained the nominal coverage rate and were 

unbiased (Figure 5.3). For example, the coverage rate of complete case analysis was 

0.938, 0.956, 0.961, and 0.951 for MCAR sample sizes 1,000, 2,500, 5,000, and 10,000, 

respectively. As expected, complete case analyses with MAR and MNAR data could not 

maintain the nominal coverage rate, and the estimates were biased. The coverage rate 

decreased, and the percent bias remained stable as the sample size increased. For 

example, the coverage rate for complete case analyses with MAR data was 0.925, 0.914, 

0.857, and 0.784, as the sample size increased from 1,000 to 10,000. For woPRS-

imputed and PRS-imputed analyses of MAR data, the coverage rate returned to the 
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nominal level (e.g., 10,000-observation sample: woPRS-imputed: 0.946; PRS-imputed: 

0.947) and little-to-no bias was observed (e.g., 10,000-observation sample: woPRS-

imputed: 1.32%; PRS-imputed: 0.97%). woPRS-imputed and PRS-imputed analyses 

were unable to achieve the nominal coverage rate and remained substantially biased in 

MNAR analyses. Notably, PRS-imputed analyses of MNAR data had better coverage 

rates (e.g., 1,000-observation sample: complete case: 0.000, woPRS-imputed: 0.296; 

PRS-imputed: 0.299) and percent bias (e.g., 1,000-observation sample: complete case: 

62.27%; woPRS-imputed: 55.68%; PRS-imputed: 53.89%) properties than woPRS-

imputed analyses but remained poor. Plots describing average 95% CI width and RMSE 

are shown in Supplementary Figure 5.3. 

Biased sampling, exposure and outcome missingness: Because PRS-informed 

multiple imputation exhibited superior properties when analyzing missing data in random 

samples, we only comment on unweighted and weighted PRS-imputed analyses in 

biased/covariate-informed sampling here (results for other analyses shown in Figure 5.4). 

Unweighted PRS-imputed analyses of MCAR, MAR, and MNAR data were unable to 

recover the nominal coverage rate (e.g., 2,500-observation MAR sample: 0.080; Figure 

5.4B, left) and demonstrated substantial bias (e.g., 2,500-observation MAR sample: 

53.37%; Figure 5.4D, left) when selection weights were not considered. While analyses 

for all missingness mechanisms were similarly poor in terms of coverage rate, MCAR 

analyses performed best in terms of percent bias, followed by MAR and then MNAR, 

regardless of the missing data method. Notably, complete case analyses of unweighted 

data exhibited slightly better properties of MNAR data than the multiple imputation 
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approaches (e.g., percent bias in 2,500-observation sample: complete case: 98.04%; 

woPRS-imputed: 135.57%; PRS-imputed: 122.88%). 

 Sampling weighted analyses told a different story (Figure 5.4, right side of panels). 

Multiple imputation analyses of MCAR data performed better than the complete case 

analysis, and the coverage rate decreased as the sample size increased. However, PRS-

imputed analyses of MAR data saw improved coverage rates, exceeding those seen in 

MCAR analyses, and increased as sample size increased. For example, the PRS-

imputed coverage rate for MCAR analyses of sample sizes 1,000, 2,500, 5,000, and 

10,000 were 0.890, 0.896, 0.875, and 0.834, respectively. Meanwhile, the same analysis 

applied to MAR data resulted in coverage rates of 0.840, 0.860, 0.895, and 0.906, 

respectively. Regardless of the method for handling missing data, MNAR analyses had 

similarly poor coverage rates, which decreased with increasing sample size. 

 Similar trends were observed regarding percent bias (Figure 5.4D, right). PRS-

imputed analyses of MAR data exhibited little bias (e.g., n=1,000: 3.67%; n=2,500: 5.99%; 

n=5,000: 7.54%; n=10,000: 7.38%). PRS-imputed analyses of MNAR data performed 

substantially worse in terms of percent bias (e.g., n=1,000: 32.40%; n=2,500: 21.94%; 

n=5,000: 21.07%; n=10,000: 23.19%), while still performing better than complete case 

and woPRS-imputed analyses (plots depicting average 95% CI width and RMSE are 

shown in Supplementary Figure 5.4 and Supplementary Figure 5.5).  

5.4.2 Analysis in the Michigan Genomics Initiative (MGI) 

5.4.2.1 Descriptive characteristics of the study population 

We initially considered a cohort of 50,026 MGI participants aged 40 or older without 

diabetes, which were 54.5% female and 86.0% non-Hispanic White, with a mean 
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(standard deviation (SD)) age of 62.9 (12.5), BMI of 29.1 (6.0), and glucose of 99.0 (14.1) 

mg/dL (Supplementary Table 5.8). However, because the literature suggested 

racial/ethnic heterogeneity,317,318 we stratified our analysis into non-Hispanic White and 

non-Hispanic Black strata. 

Of 42,999 non-Hispanic White MGI participants aged 40 or older without diabetes, 

53.8% were female, with a mean (SD) age of 63.5 (12.5) years old, BMI of 29.1 (6.0), and 

glucose of 99.5 (14.2) mg/dL (). A subset of 25,520 participants had no missing data. 

Individuals with any missing data were more likely to be younger (mean age 62.6 vs. 64.1; 

p<0.001), more female (54.6% vs. 53.3%; p=0.006), less likely to have ever smoked 

(46.5% vs. 50.7%; p<0.001) and have lower glucose values (99.47 mg/dL vs 99.55 mg/dL; 

p=0.023) compared to complete cases. No statistical differences in BMI PRS (p=0.6) or 

glucose PRS (p=0.4) were observed between complete cases and participants with 

missing data. 

Of 2,297 non-Hispanic Black MGI participants aged 40 or older without diabetes, 

63.3% were female, with a mean (SD) age of 57.8 (11.4) years old, BMI of 30.8 (6.4) and 

glucose of 95.1 (12.5) mg/dL (Table 5.2). A subset of 1,240 participants had no missing 

data. Individuals with any missing data were less likely to have ever smoked (39.2% vs 

44.7%; p=0.017) and have lower glucose values (94.0 mg/dL vs 95.8 mg/dL; p<0.001). 

Again, no statistical differences in BMI PRS (p=0.8) or glucose PRS (p=0.061) were 

observed between complete cases and participants with missing data. 

 Missing PRS values exist because some samples have not been genotyped yet.  

Subsets of 30,492 non-Hispanic Whites and 1,437 non-Hispanic Blacks with genotyped 

biospecimen were also analyzed with complete PRS data (last column, Table 5.1 and 
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Table 5.2). Smoking status and glucose exhibited fair missingness (i.e., was never 

recorded at any encounter), approximately 14% and 11% in the non-Hispanic White 

sample and 13% and 7% in the non-Hispanic Black sample. BMI was hardly missing 

(0.5% in non-Hispanic Whites and 1.1% in non-Hispanic Blacks). 

5.4.2.2 Estimation of the coefficient for BMI with glucose as the outcome 

In non-Hispanic Whites: Among non-Hispanic White individuals aged 40 years or 

older without a diabetes diagnosis in MGI, the unweighted, covariate-adjusted, complete 

case coefficient estimate was 0.288 (0.264, 0.312) (Figure 5.5). This differed from the 

benchmark range of (0.376, 0.423), which was derived from All of Us data using 2019 

National Health Interview Survey (NHIS) data and sampling weights to make it 

representative of US adults aged 40 years or older without diabetes. Deriving similar 

stratum-specific sampling weights in MGI using NHIS data to reduce selection bias, the 

weighted, covariate-adjusted complete case estimate of 0.324 (0.283, 0.365) aligned 

more closely with the benchmark. woPRS-imputed and PRS-imputed, unweighted 

analyses aimed at reducing bias due to missing data saw a nominal increase in the 

coefficient estimate compared to the corresponding complete case analysis (woPRS-

imputed: 0.300 (0.277, 0.323); PRS-imputed: 0.302 (0.280, 0.324)). Weighted woPRS-

imputed and PRS-imputed analyses achieved estimates even closer to the benchmark 

range (woPRS-imputed: 0.331 (0.292, 0.371); PRS-imputed: 0.338 (0.299, 0.373)). We 

also considered an analysis using the subset of individuals in MGI with completely 

observed exposure and outcome PRS, which nominally decreased the estimate (0.329 

(0.284, 0.375)) compared to the PRS-imputed analysis on the full data. In all cases, 

weighting and, to a lesser extent, multiple imputation of missing data resulted in 
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coefficient estimates that more closely aligned with the benchmark range. Similar trends 

were seen in the corresponding unadjusted analyses in Figure 5.5A. 

In non-Hispanic Blacks: Among non-Hispanic Black individuals aged 40 years or 

older without a diabetes diagnosis in MGI, the unweighted, covariate-adjusted, complete 

case coefficient estimate was 0.178 (0.097, 0.261) (Figure 5.5). This differed from the 

benchmark range of (0.196, 0.297), similarly derived from stratum-specific All of Us and 

NHIS derived sampling weights. The weighted, covariate-adjusted complete case point 

estimate of 0.202 (0.086, 0.317) fell within the benchmark range. woPRS-imputed and 

PRS-imputed, unweighted analyses saw nominal increases in the coefficient estimates, 

with point estimates also falling within the benchmark range (woPRS-imputed: 0.204 

(0.119, 0.288); PRS-imputed: 0.203 (0.116, 0.290)).  Weighted woPRS-imputed and 

PRS-imputed analyses also had point estimates in the benchmark range with virtually no 

change in the coefficient estimate (woPRS-imputed: 0.200 (0.082, 0.318); PRS-imputed: 

0.214 (0.096, 0.332)). Weighting had a smaller impact than in the non-Hispanic White 

analyses, in part because point estimates were already in the benchmark range. Unlike 

the non-Hispanic White analyses, analyses on the subset of individuals with completely 

observed exposure and outcome PRS performed worse, possibly due to genotyping 

prioritization mechanisms not captured in the sample weight estimation process. 

We present unstratified results on the full MGI adult cohort aged 40 years or older 

without diabetes in Supplementary Figure 5.6. Results largely mirrored those seen in the 

non-Hispanic White strata because the cohort was mostly non-Hispanic White (86%) 

(e.g., covariate-adjusted: unweighted, complete case: 0.277 (0.255, 0.299); weighted 



 160 

woPRS-imputed: 0.305 (0.269, 0.342); weighted PRS-imputed: 0.312 (0.274, 0.349; 

NHIS-weighted All of Us-derived benchmark range: (0.346, 0.386)). 

5.5 Discussion 

In this paper, we examined the combined impact of selection bias and missing data 

on association analyses using EHR data and demonstrated how biobanks with genetic 

data can use genetic summaries of exposures and outcomes to reduce bias due to these 

systematic sources of error. Genetic data, often largely observed in EHR-linked biobanks, 

provides a unique opportunity to further mitigate bias due to missing data. Li and 

colleagues demonstrated improved properties of data imputed using genetic 

information,44 while Ma and colleagues calculated ExPRS predictive of several exposures 

that frequently have missing values in EHR-linked biobanks.43 Building on these works, 

we used simulations and a case study to explore whether PRS-informed multiple 

imputation improves association estimation properties with missing exposure only and 

exposure and outcome data and how PRS-informed imputation and sample weighting 

jointly impact exposure-outcome association estimates. To our knowledge, this is the first 

paper to explore the joint impacts of genetic-informed multiple imputation and sample 

weighting methods in EHR-linked biobank data. 

 Findings from the simulation study: Our random sampling simulation revealed 

some key findings. Multiple imputation, as expected, improved association estimation of 

MAR data compared to complete case analyses.112,306 However, PRS-informed multiple 

imputation exhibited superior properties than multiple imputation without PRS for MAR 

and MNAR data. While woPRS- and PRS-imputed analyses improved coverage rates 

relative to complete case analyses and improved as sample size increased, they failed to 
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recover the nominal coverage rate. PRS-informed multiple imputation produced smaller 

confidence intervals than multiple imputation without PRS at all sample sizes 

(Supplementary Figure 5.4). PRS-imputed analyses also had the smallest RMSE of MAR 

analyses. 

 While all analyses of MCAR data were (and are expected to be) unbiased, MCAR 

assumptions are often not applicable to real-world EHR-linked biobank data.76,243 

Clinically informative observation processes due to health status (e.g., less healthy 

patients have more complete EHR), healthcare access (e.g., those with limited access 

might have gaps that correlate with health access), and referrals (e.g., patients referred 

for testing or treatments based on their symptoms and health conditions) violate the 

MCAR assumption.23,107,211,312,319 Lack of interoperability and connectivity between EHR 

across different providers (e.g., changes in patient’s insurance status or location, out-of-

network referrals for specialized care; i.e., EHR fragmentation), as in the US, further 

complicates observation processes, providing incomplete snapshots of a patient’s health 

history.27,28,319–321 While PRS-informed multiple imputation estimates of MNAR had better 

properties than multiple imputation without PRS and complete case estimates, all 

methods performed poorly. The improvements in PRS-informed multiple imputation 

estimates could be attributable to the property that correlations between PRS mimic 

correlations between their traits’ observed values.43 Notably, the correlations between 

exposures and their PRS are not very strong (Supplementary Figure 5.2), and stronger 

correlates would likely improve multiple imputation.  

 EHR-linked biobank data are subject to selection bias, primarily because of healthy 

volunteer bias (as in the UK Biobank4) or non-random recruitment strategies like 
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recruitment through specific clinics (as in MGI45) and oversampling groups historically 

underrepresented in biomedical research (as in the NIH All of Us Research Program2). 

We explored the joint roles of missing data and selection bias through simulation by 

oversampling older individuals, individuals with higher BMI, and individuals with higher 

glucose levels. As expected, all missing data methods for all missing data mechanisms 

could not capture the true value (e.g., woPRS-imputed coverage rate for n=1,000 MAR 

exposure and outcome missingness sample: 0.754; Figure 5.4) and exhibited substantial 

bias (all analyses had at least 21% bias) in unweighted analyses where selection bias 

was present. In weighted analyses, multiple imputation with and without PRS had better 

properties than complete case analysis when data were MAR (e.g., complete case, 

woPRS-imputed, and PRS-imputed coverage rate for exposure and outcome 

missingness with n=1,000: 0.682, 0.842, 0.840, respectively; percent bias: 35.89%, 

1.04%, 3.67%, respectively). However, comparing diagnostics between woPRS- and 

PRS-imputed analyses showed they were virtually identical for MAR analyses (e.g., 

woPRS-imputed and PRS-imputed coverage rate for exposure and outcome missingness 

with n=1,000: 0.842, 0.840, respectively; n=10,000: 0.884, 0.906, respectively), while 

PRS-imputed analyses showed slightly improved percent bias and RMSE of MNAR data 

(e.g., woPRS-imputed and PRS-imputed percent bias for exposure and outcome 

missingness with n=1,000: 33.67% and 32.40%, respectively; n=10,000: 25.46% and 

23.19%, respectively). 

 Findings from the case study: Our estimation of the BMI coefficient for glucose 

using MGI data demonstrated relatively small differences between complete case and 

multiple imputation estimates (e.g., weighted complete case, woPRS-imputed, and PRS-



 163 

imputed coefficient (95% CI) among non-Hispanic Whites: 0.324 (0.283, 0.365), 0.331 

(0.292, 0.371), and 0.338 (0.292, 0.371), respectively; Figure 5.5). These small changes 

are likely attributable to relatively low levels of missingness (e.g., in non-Hispanic Whites 

and non-Hispanic Blacks, respectively: glucose: 14% and 13%; BMI: 0.5% and 1.1%). 

We saw substantial changes in the coefficient estimate after accounting for selection bias 

(e.g., PRS-imputed estimate before weighting: 0.302 (0.280, 0.324; after weighting: 0.338 

(0.302, 0.374)). These larger changes are attributable to MGI’s recruitment mechanism 

(primarily at pre-/peri-operative appointments requiring anesthesia) and MGI being 

unrepresentative of the presumptive target population (US adults).215 In this case study, 

bias due to selection played a more substantial role than bias due to missing data. 

 Guidance for practitioners: In a given situation, we may not know the missingness 

or selection mechanisms. While it is possible to test the plausibility of data being 

MCAR322–325 (a strong and often unrealistic assumption in practice32), it is impossible to 

distinguish between MAR and MNAR data empirically.300,326 Methods like multiple 

imputation and inverse probability weighting can reduce bias in MAR data. However, they 

can theoretically increase bias in MNAR data.300 While results from our simulation 

analyses suggest that PRS-informed multiple imputation has preferable properties for the 

analysis of MAR data and, to a lesser extent, MNAR data, than multiple imputation without 

PRS, when data are suspected to be MNAR, bounds and sensitivity analyses are 

recommended.327 For example, if, based on external information, we hypothesize that 

glucose values are more likely to be lower than those with observed glucose values, one 

can model alternative scenarios that fit the hypothesis and compare the robustness and 

variability in the resulting estimates. Despite well-documented problems with mishandling 



 164 

missing data, missing data mechanisms are not rigorously examined.21,305,328–330 

Researchers must use expert knowledge113,331 and tools like m-graphs or m-DAGs332–335 

to interrogate not only missingness mechanisms but also identify variables related to 

missingness before employing analyses appropriate for their missing data. For most 

regression models, complete case analyses can give unbiased results when the 

probability of being a complete case is independent of the outcome after taking covariates 

into account, regardless of the missingness mechanism (Supplementary Table 

5.9).30,121,336 Correctly specifying the selection probability in EHR data is also a 

challenge.215 While removing bias from these two sources is a daunting task, our findings 

suggest PRS-informed multiple imputation with sampling weights help with bias reduction 

and improving coverage. 

5.5.1 Strengths and limitations 

This study not only underscores the importance of considering missing data and 

selection bias in EHR-linked biobanks but also calls for specific actions from researchers. 

Our simulation studies, informed by real-world variance-covariance conditions, 

demonstrate the potential of multiple imputation to improve the handling of missing data. 

Additionally, we examined the combined impacts of missing data and selection bias 

through multiple imputation and weighting methods. By conducting weighted analyses on 

multiply imputed data and sharing our code, we promote reproducibility and transparency. 

We recommend that all researchers adopt these practices to enhance the reliability of 

their findings. 

 This study also had several limitations. First, our simulation study considered 

missingness in two settings: exposure only and exposure and outcome. In practice, 
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multiple missingness patterns simultaneously impact exposures, outcomes, and 

covariates. Relatedly, this study considered only one level of missingness (~25% 

missingness). Again, in practice, multiple variables of interest will have varying levels of 

missingness. Future work should consider different levels and patterns of missingness, 

preferably those informed by levels and patterns seen in real-world data. Second, the 

recruitment strategies into EHR-linked biobanks vary greatly, meaning selection bias and 

its impact on analyses varies dataset-to-dataset. For example, MGI has substantial 

selection biases (relative to a US adult target population, as explored here). Other 

prominent biobanks, such as the NIH All of Us Research Program and the UK Biobank, 

are more representative of presumptive target populations. Thus, the relative impact of 

selection bias presented in this study may be more pronounced than for biobanks that 

are more representative of their target population. Third, the real-world case study 

examined a single association with a relatively small level of missingness compared to 

the simulations. Further, an established estimate for this association does not exist; thus, 

assessing changes in the estimates is based on simulation conclusions and expert 

knowledge rather than a preferable gold standard benchmark. Future studies should 

explore additional associations for which gold standard estimates exist for comparison. 

Fourth, this study looked at glucose (LOINC: 2345-7), which was collected primarily 

through basic or comprehensive metabolic panels and may or may not have been 

collected under fasting conditions. The uncontrolled collection of glucose compared to 

fasting glucose makes its interpretation challenging and of limited use. We explored 

alternative LOINC codes specifying fasting conditions for glucose collection, but they 

were rarely used. Fifth, this study considered the association between two continuous 
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variables after collapsing longitudinal measurements; however, much clinical research 

uses binary outcome and longitudinal data available in EHR. Future work should consider 

association analyses in binary and longitudinal data. Sixth, clinically informative visiting 

processes increase the likelihood that missing data in EHR are MNAR. While we saw 

some improvements in association estimation properties of PRS-imputed analyses of 

MNAR data compared to woPRS-imputed analyses, future studies should incorporate 

targeted methods that model and account for visiting processes.337–340  

5.6 Conclusion 

Missing data is a pervasive issue in EHR-linked biobank data. In our study, we 

leveraged a unique aspect of biobanks – non-missing genetic data – to assess whether 

using PRS-informed multiple imputation of missing data could reduce bias in association 

estimation. Our simulation studies demonstrated a substantial reduction in bias and an 

improvement in the coverage rate for MAR data when multiple imputation incorporated 

genetic information. We also investigated the combined impacts of missing data and 

selection bias using real-world data from MGI. This case study showed that the impact of 

missing data was smaller relative to selection bias. Our findings call for future research 

to explore additional patterns and levels of missingness across several associations and 

cohorts. Our results indicate that biobanks should provide PRS for common exposures 

available as proxies to inform multiple imputation of missing data and offer sampling 

weights to address selection bias. This will enable researchers better to mitigate multiple 

biases in EHR-linked biobank association analyses, enhancing the reliability and validity 

of their findings. 
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5.7 Tables 

Table 5.1 Comparison of demographic, health measurements, and polygenic risk score values overall and 
among non-Hispanic Whites 40 or older without diabetes, with and without any missing values in the 
Michigan Genomics Initiative.  

 Overall 
Incomplete 

observations 
Complete 

observations   

Non-missing 
PRS 

Characteristic N = 42,999a N = 17,479a N = 25,520a p-valueb  N = 30,942a 

Age 63.5 (12.5) 62.6 (12.4) 64.1 (12.5) <0.001  63.7 (12.5) 
Female 53.8 (23,145) 54.6 (9,547) 53.3 (13,598) 0.006  53.4 (16,509) 
Smoking status (ever) 49.4 (18,187) 46.5 (5,255) 50.7 (12,932) <0.001  50.1 (14,320) 
    Missing 6,178 6,178 0   2348 
BMI 29.1 (6.0) 29.1 (6.0) 29.0 (5.9) 0.3  29.0 (5.9) 
    Missing 236 236 0   138 
Glucose 99.5 (14.2) 99.5 (14.7) 99.5 (14.0) 0.023  99.8 (14.3) 
    Missing 4,836 4,836 0   3560 
BMI PRSc 0.000 (1.000) 0.004 (1.021) -0.001 (0.996) 0.6  0.000 (1.000) 
    Missing 12,057 12,057 0   0 
Glucose PRSc 0.000 (1.000) 0.013 (0.989) -0.003 (1.002) 0.4  0.000 (1.000) 
    Missing 12,057 12,057 0   0 
a continuous: mean (SD); dichotomous: % (n) 
b Wilcoxon rank sum test; Pearson’s Chi-squared test 
c PRS were mean standardized 
Abbreviations: BMI, body mass index; PRS, polygenic risk score 

 
Table 5.2 Comparison of demographic, health measurements, and polygenic risk score values overall and 
among non-Hispanic Blacks 40 or older without diabetes, with and without any missing values in the 
Michigan Genomics Initiative.  

 Overall 
Incomplete 

observations 
Complete 

observations   

Non-missing 
PRS 

Characteristic N = 2,297a N = 1,057a N = 1,240a p-valueb  N = 1,437a 

Age 57.8 (11.4) 57.3 (11.2) 58.2 (11.6) 0.069  57.7 (11.6) 
Female 63.3 (1,454) 63.2 (668) 63.4 (786) >0.9  63.3 (910) 
Smoking status (ever) 42.6 (847) 39.2 (293) 44.7 (554) 0.017  44.3 (597) 
    Missing 310 310 0   88 
BMI 30.8 (6.4) 30.6 (6.3) 31.0 (6.5) 0.2  31.0 (6.5) 
    Missing 26 26 0   8 
Glucose 95.1 (12.5) 94.0 (12.6) 95.8 (12.4) <0.001  95.8 (12.4) 
    Missing 160 160 0   116 
BMI PRSc 0.000 (1.000) -0.006 (0.977) 0.001 (1.004) 0.8  0.000 (1.000) 
    Missing 860 860 0   0 
Glucose PRSc 0.000 (1.000) 0.158 (1.064) -0.025 (0.988) 0.061  0.000 (1.000) 
    Missing 860 860 0   0 
a continuous: mean (SD); dichotomous: % (n) 
b Wilcoxon rank sum test; Pearson’s Chi-squared test 
c PRS were mean standardized 
Abbreviations: BMI, body mass index; PRS, polygenic risk score 
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5.8 Figures 

 
Figure 5.1 Schematic representation depicting multiple imputation and weighted analyses to jointly address 
missing data and selection bias. 𝑌 represents the outcome (e.g., glucose), 𝑋 represents the exposure (e.g., 

body mass index) and covariates could include age, sex, race/ethnicity, and smoking status. The empty 
boxes represent missing data. 𝑌𝑃𝑅𝑆  and 𝑋𝑃𝑅𝑆 are the polygenic risk scores (PRS) corresponding to the 

outcome and exposure, respectively. 
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Figure 5.2 Schematic representation of random and biased sampling simulation analyses. Abbreviations: 
CI, confidence interval; MAR, missing at random; MCAR, missing completely at random; MNAR, missing 
not at random; PRS, polygenic risk score; RMSE, root mean square error; woPRS, without polygenic risk 
score 
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Figure 5.3 Coverage rate (panels A and B) and percent bias (panels C and D) diagnostics for exposure 
only (panels A and C) and exposure and outcome missingness (panels B and D) BMI coefficient for glucose 
by missing data mechanism and method and sample size under random sampling in a 1,000-iteration 
simulation. Analyses were adjusted for age, sex, non-Hispanic White, and smoking status (ever/never). 
Corresponding coverage rate, percent bias, average confidence interval width, and root mean squared error 
diagnostics are reported in Supplementary Table 5.2 and Supplementary Table 5.3. Abbreviations: MAR, 
missing at random; MCAR, missing completely at random; MNAR, missing not at random; PRS-imputed, 
polygenic risk score-informed multiple imputation; woPRS-imputed, multiple imputation without exposure 
and outcome PRS. 
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Figure 5.4 Coverage rate (panels A and B) and percent bias (panels C and D) diagnostics for unweighted 
(left) and weighted (right) BMI coefficient for glucose estimation by missing data mechanism and method 
and sample size under biased sampling and exposure only (panels A and C) and exposure and outcome 
missingness (panels B and D) in a 1,000-iteration simulation. For biased sampling simulations, unweighted 
and weighted diagnostics are reported in Supplementary Table 5.4, Supplementary Table 5.5, 
Supplementary Table 5.6, and Supplementary Table 5.7, respectively. Analyses were adjusted for age, 
sex, non-Hispanic White, and smoking status (ever/never).   
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Figure 5.5 Estimation of the coefficient for BMI with glucose as the outcome by missing data method and 
weighting approach among non-Hispanic Whites (n=42,999; panels A and B) and non-Hispanic Blacks 
(n=2,297; panels C and D) in all MGI adults age 40 or older without diabetes. The PRS-imputed subset 
sample (n=30,942 for non-Hispanic Whites; n=1,437 for non-Hispanic Blacks) was restricted to individuals 
with non-missing genotype data before multiple imputation. Analyses were adjusted for age, sex, and 
smoking status (ever/never). Gray shaded regions represent corresponding 95% confidence interval from 
National Health Interview Survey-weighted All of Us data where weights are calculated separately for non-
Hispanic Whites and non-Hispanic Blacks to make All of Us data for each of these groups more 
representative of their corresponding US population (target population). Results for the full, unstratified 
cohort are shown in Supplementary Figure 5.6. Abbreviations: PRS, polygenic risk score. 
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5.9 Supplementary materials 

 
Supplementary Figure 5.1 Schematic representation of sources of bias. While missing data is not classically 
considered a source of systematic bias, we have here considered it a child of systematic error because of 
its ability to induce selection bias and misclassification. The yellow boxes with dashed outlines indicate the 
analytic methods applied in this manuscript to address each bias. 
 

 
Supplementary Figure 5.2 Pairwise complete observation correlation matrix of relevant variables observed 
in MGI. 
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Supplementary Table 5.1 Intercept values for exposure only and exposure and outcome missingness 
generation models by missing data mechanism. 

  Exposure and outcome Exposure only 

Mechanisms n Exposure Outcome Exposure 

MAR 1,000 -5.53 -4.09 -5.58 

 2,500 -5.36 -4.02 -5.36 

 5,000 -5.15 -3.90 -5.15 

 10,000 -4.88 -3.79 -4.88 

 n Exposure Outcome Exposure 

MNAR 1,000 -7.36 -7.36 -7.41 

 2,500 -7.05 -7.05 -7.04 

 5,000 -6.74 -6.74 -6.72 

 10,000 -6.32 -6.32 -6.31 
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Supplementary Table 5.2 Performance of missing data methods for estimating covariate-adjusted BMI 
coefficient for glucose by missing data mechanism, metric, and sample size in random sampling simulations 
with exposure only missingness. 

      Sample size 

Mechanism Metric Method 1,000 2,500 5,000 10,000 

MCAR 

Percent bias 

Complete case 0.613 0.668 0.054 0.157 

woPRS-imputed 0.773 0.806 0.095 0.254 

PRS-imputed 0.807 0.811 0.071 0.125 

Coverage rate 

Complete case 0.956 0.961 0.947 0.956 

woPRS-imputed 0.958 0.958 0.945 0.949 

PRS-imputed 0.949 0.963 0.943 0.959 

Average width 

Complete case 0.135 0.085 0.060 0.042 

woPRS-imputed 0.139 0.088 0.062 0.044 

PRS-imputed 0.138 0.087 0.061 0.043 

RMSE 

Complete case 0.033 0.021 0.016 0.011 

woPRS-imputed 0.033 0.022 0.016 0.011 

PRS-imputed 0.033 0.022 0.016 0.011 

MAR 

Percent bias 

Complete case 8.861 8.231 8.240 7.801 

woPRS-imputed 2.892 0.904 0.736 0.100 

PRS-imputed 1.538 0.555 0.465 0.041 

Coverage rate 

Complete case 0.916 0.887 0.798 0.689 

woPRS-imputed 0.931 0.919 0.926 0.924 

PRS-imputed 0.951 0.951 0.940 0.945 

Average width 

Complete case 0.129 0.081 0.058 0.041 

woPRS-imputed 0.147 0.093 0.065 0.045 

PRS-imputed 0.143 0.091 0.064 0.045 

RMSE 

Complete case 0.038 0.026 0.022 0.019 

woPRS-imputed 0.040 0.025 0.017 0.012 

PRS-imputed 0.036 0.022 0.016 0.011 

MNAR 

Percent bias 

Complete case 41.080 41.174 40.905 40.615 

woPRS-imputed 36.115 35.437 34.986 34.598 

PRS-imputed 31.946 31.670 31.391 31.074 

Coverage rate 

Complete case 0.337 0.035 0.002 0.000 

woPRS-imputed 0.561 0.217 0.034 0.000 

PRS-imputed 0.637 0.278 0.055 0.001 

Average width 

Complete case 0.136 0.086 0.061 0.043 

woPRS-imputed 0.159 0.101 0.071 0.050 

PRS-imputed 0.156 0.098 0.069 0.049 

RMSE 

Complete case 0.089 0.084 0.083 0.081 

woPRS-imputed 0.082 0.074 0.072 0.070 

PRS-imputed 0.074 0.067 0.065 0.063 

Abbreviations: BMI, body mass index; CC, complete case; MAR, missing at random; MCAR, missing 
completely at random; MNAR, missing not at random; PRS, polygenic risk score; RMSE, root mean 
square error; woPRS, without polygenic risk score 
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Supplementary Table 5.3 Performance of missing data methods for estimating covariate-adjusted BMI 
coefficient for glucose by missing data mechanism, metric, and sample size in random sampling simulations 
with exposure and outcome missingness. 

      Sample size 

Mechanism Metric Method 1,000 2,500 5,000 10,000 

MCAR 

Percent bias 

Complete case 0.320 0.234 0.125 0.217 

woPRS-imputed 0.628 0.256 0.286 0.151 

PRS-imputed 0.109 0.429 0.120 0.043 

Coverage rate 

Complete case 0.938 0.956 0.961 0.951 

woPRS-imputed 0.939 0.950 0.946 0.956 

PRS-imputed 0.941 0.951 0.956 0.951 

Average width 

Complete case 0.156 0.098 0.069 0.049 

woPRS-imputed 0.170 0.107 0.076 0.054 

PRS-imputed 0.167 0.107 0.074 0.053 

RMSE 

Complete case 0.042 0.025 0.017 0.012 

woPRS-imputed 0.043 0.026 0.018 0.013 

PRS-imputed 0.042 0.026 0.018 0.012 

MAR 

Percent bias 

Complete case 7.021 7.506 7.489 7.009 

woPRS-imputed 2.061 2.140 1.828 1.319 

PRS-imputed 1.877 1.395 1.364 0.968 

Coverage rate 

Complete case 0.925 0.914 0.857 0.784 

woPRS-imputed 0.929 0.952 0.945 0.946 

PRS-imputed 0.930 0.946 0.948 0.947 

Average width 

Complete case 0.145 0.091 0.064 0.046 

woPRS-imputed 0.180 0.113 0.078 0.056 

PRS-imputed 0.166 0.104 0.075 0.053 

RMSE 

Complete case 0.041 0.028 0.022 0.018 

woPRS-imputed 0.044 0.027 0.019 0.013 

PRS-imputed 0.042 0.026 0.018 0.013 

MNAR 

Percent bias 

Complete case 62.273 62.237 62.420 62.177 

woPRS-imputed 55.679 54.781 54.450 54.180 

PRS-imputed 53.889 53.148 53.282 52.867 

Coverage rate 

Complete case 0.117 0.000 0.000 0.000 

woPRS-imputed 0.296 0.025 0.001 0.000 

PRS-imputed 0.299 0.022 0.002 0.000 

Average width 

Complete case 0.149 0.094 0.066 0.047 

woPRS-imputed 0.172 0.109 0.076 0.053 

PRS-imputed 0.167 0.107 0.074 0.052 

RMSE 

Complete case 0.130 0.126 0.125 0.124 

woPRS-imputed 0.118 0.112 0.109 0.108 

PRS-imputed 0.115 0.108 0.107 0.106 

Abbreviations: BMI, body mass index; CC, complete case; MAR, missing at random; MCAR, missing 
completely at random; MNAR, missing not at random; PRS, polygenic risk score; RMSE, root mean 
square error; woPRS, without polygenic risk score 
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Supplementary Table 5.4 Biased/covariate-informed sampling simulation performance of missing data 
methods for estimating unweighted and covariate-adjusted BMI coefficient for glucose by missing data 
mechanism, metric, and sample size with exposure only missingness. 

      Sample size 

Mechanism Metric Method 1,000 2,500 5,000 10,000 

MCAR 

Percent bias 

Complete case 36.873 51.226 63.133 73.374 

woPRS-imputed 29.057 44.652 58.862 71.132 

PRS-imputed 35.796 50.593 62.758 73.435 

Coverage rate 

Complete case 0.456 0.005 0.000 0.000 

woPRS-imputed 0.690 0.065 0.001 0.000 

PRS-imputed 0.500 0.013 0.000 0.000 

Average width 

Complete case 0.137 0.087 0.062 0.043 

woPRS-imputed 0.155 0.099 0.071 0.050 

PRS-imputed 0.142 0.090 0.064 0.046 

RMSE 

Complete case 0.081 0.104 0.126 0.146 

woPRS-imputed 0.070 0.092 0.118 0.142 

PRS-imputed 0.080 0.103 0.125 0.146 

MAR 

Percent bias 

Complete case 34.998 48.445 60.272 71.844 

woPRS-imputed 39.082 54.004 69.995 85.814 

PRS-imputed 41.165 55.207 68.433 81.637 

Coverage rate 

Complete case 0.452 0.005 0.000 0.000 

woPRS-imputed 0.659 0.103 0.000 0.000 

PRS-imputed 0.450 0.014 0.001 0.000 

Average width 

Complete case 0.132 0.083 0.059 0.042 

woPRS-imputed 0.186 0.121 0.083 0.058 

PRS-imputed 0.154 0.097 0.070 0.050 

RMSE 

Complete case 0.077 0.098 0.120 0.143 

woPRS-imputed 0.092 0.113 0.142 0.171 

PRS-imputed 0.091 0.113 0.137 0.163 

MNAR 

Percent bias 

Complete case 67.098 80.842 93.566 106.255 

woPRS-imputed 84.533 99.765 113.517 127.188 

PRS-imputed 77.451 91.727 105.719 119.905 

Coverage rate 

Complete case 0.034 0.000 0.000 0.000 

woPRS-imputed 0.085 0.000 0.000 0.000 

PRS-imputed 0.052 0.000 0.000 0.000 

Average width 

Complete case 0.138 0.087 0.062 0.044 

woPRS-imputed 0.177 0.109 0.075 0.052 

PRS-imputed 0.160 0.101 0.072 0.050 

RMSE 

Complete case 0.138 0.162 0.186 0.211 

woPRS-imputed 0.175 0.200 0.226 0.253 

PRS-imputed 0.160 0.184 0.211 0.238 

Abbreviations: BMI, body mass index; CC, complete case; MAR, missing at random; MCAR, missing 
completely at random; MNAR, missing not at random; PRS, polygenic risk score; RMSE, root mean 
square error; woPRS, without polygenic risk score 
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Supplementary Table 5.5 Biased/covariate-informed sampling simulation performance of missing data 
methods for estimating weighted and covariate-adjusted BMI coefficient for glucose by missing data 
mechanism, metric, and sample size with exposure only missingness. 

      Sample size 

Mechanism Metric Method 1,000 2,500 5,000 10,000 

MCAR 

Percent bias 

Complete case 32.506 17.254 12.133 6.518 

woPRS-imputed 1.842 11.046 11.583 12.559 

PRS-imputed 6.144 3.518 5.327 7.055 

Coverage rate 

Complete case 0.709 0.773 0.792 0.821 

woPRS-imputed 0.874 0.899 0.926 0.925 

PRS-imputed 0.859 0.907 0.931 0.941 

Average width 

Complete case 0.356 0.286 0.229 0.177 

woPRS-imputed 0.346 0.266 0.208 0.163 

PRS-imputed 0.349 0.270 0.213 0.165 

RMSE 

Complete case 0.157 0.108 0.084 0.061 

woPRS-imputed 0.112 0.084 0.065 0.052 

PRS-imputed 0.114 0.081 0.063 0.048 

MAR 

Percent bias 

Complete case 32.936 19.958 15.178 10.345 

woPRS-imputed 11.881 0.514 2.535 4.511 

PRS-imputed 14.274 2.992 0.715 3.800 

Coverage rate 

Complete case 0.693 0.747 0.766 0.784 

woPRS-imputed 0.779 0.831 0.866 0.877 

PRS-imputed 0.774 0.828 0.867 0.883 

Average width 

Complete case 0.343 0.274 0.219 0.173 

woPRS-imputed 0.327 0.258 0.205 0.160 

PRS-imputed 0.328 0.259 0.206 0.161 

RMSE 

Complete case 0.151 0.107 0.082 0.063 

woPRS-imputed 0.129 0.093 0.071 0.056 

PRS-imputed 0.130 0.093 0.070 0.055 

MNAR 

Percent bias 

Complete case 40.836 28.779 25.531 23.222 

woPRS-imputed 29.135 17.697 14.954 14.002 

PRS-imputed 29.067 17.204 14.151 12.657 

Coverage rate 

Complete case 0.662 0.705 0.702 0.639 

woPRS-imputed 0.705 0.754 0.766 0.739 

PRS-imputed 0.705 0.758 0.770 0.761 

Average width 

Complete case 0.347 0.278 0.224 0.179 

woPRS-imputed 0.337 0.269 0.215 0.170 

PRS-imputed 0.336 0.268 0.214 0.170 

RMSE 

Complete case 0.160 0.117 0.093 0.077 

woPRS-imputed 0.145 0.103 0.080 0.065 

PRS-imputed 0.145 0.103 0.079 0.063 

Abbreviations: BMI, body mass index; CC, complete case; MAR, missing at random; MCAR, 
missing completely at random; MNAR, missing not at random; PRS, polygenic risk score; 
RMSE, root mean square error; woPRS, without polygenic risk score 
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Supplementary Table 5.6 Biased/covariate-informed sampling simulation performance of missing data 
methods for estimating unweighted and covariate-adjusted BMI coefficient for glucose by missing data 
mechanism, metric, and sample size with exposure and outcome missingness. 

      Sample size 

Mechanism Metric Method 1,000 2,500 5,000 10,000 

MCAR 

Percent bias 

Complete case 37.159 51.197 63.088 73.468 

woPRS-imputed 21.696 34.714 49.350 64.485 

PRS-imputed 31.311 44.849 57.490 69.527 

Coverage rate 

Complete case 0.563 0.027 0.000 0.000 

woPRS-imputed 0.850 0.476 0.077 0.022 

PRS-imputed 0.703 0.147 0.003 0.000 

Average width 

Complete case 0.159 0.100 0.071 0.050 

woPRS-imputed 0.196 0.132 0.107 0.092 

PRS-imputed 0.180 0.114 0.084 0.061 

RMSE 

Complete case 0.084 0.105 0.126 0.146 

woPRS-imputed 0.068 0.077 0.103 0.132 

PRS-imputed 0.078 0.094 0.116 0.139 

MAR 

Percent bias 

Complete case 32.508 46.041 58.330 70.157 

woPRS-imputed 38.110 50.608 69.346 90.519 

PRS-imputed 40.978 53.365 68.150 83.145 

Coverage rate 

Complete case 0.596 0.026 0.000 0.000 

woPRS-imputed 0.754 0.306 0.025 0.003 

PRS-imputed 0.579 0.080 0.000 0.000 

Average width 

Complete case 0.148 0.093 0.066 0.047 

woPRS-imputed 0.223 0.149 0.114 0.083 

PRS-imputed 0.185 0.117 0.087 0.062 

RMSE 

Complete case 0.075 0.094 0.117 0.140 

woPRS-imputed 0.102 0.111 0.145 0.184 

PRS-imputed 0.098 0.111 0.138 0.167 

MNAR 

Percent bias 

Complete case 85.115 98.036 110.564 124.209 

woPRS-imputed 120.797 135.571 149.429 164.005 

PRS-imputed 109.921 122.884 138.468 155.203 

Coverage rate 

Complete case 0.014 0.000 0.000 0.000 

woPRS-imputed 0.064 0.002 0.000 0.000 

PRS-imputed 0.032 0.000 0.000 0.000 

Average width 

Complete case 0.152 0.096 0.068 0.048 

woPRS-imputed 0.217 0.141 0.094 0.063 

PRS-imputed 0.195 0.122 0.086 0.060 

RMSE 

Complete case 0.173 0.196 0.220 0.247 

woPRS-imputed 0.249 0.272 0.298 0.326 

PRS-imputed 0.227 0.247 0.277 0.309 

Abbreviations: BMI, body mass index; CC, complete case; MAR, missing at random; MCAR, missing 
completely at random; MNAR, missing not at random; PRS, polygenic risk score; RMSE, root mean 
square error; woPRS, without polygenic risk score 
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Supplementary Table 5.7 Biased/covariate-informed sampling simulation performance of missing data 
methods for estimating weighted and covariate-adjusted BMI coefficient for glucose by missing data 
mechanism, metric, and sample size with exposure and outcome missingness. 

      Sample size 

Mechanism Metric Method 1,000 2,500 5,000 10,000 

MCAR 

Percent bias 

Complete case 37.174 20.417 14.551 8.517 

woPRS-imputed 25.938 33.332 31.954 28.911 

PRS-imputed 17.280 25.151 24.982 24.115 

Coverage rate 

Complete case 0.684 0.761 0.791 0.810 

woPRS-imputed 0.863 0.831 0.793 0.748 

PRS-imputed 0.890 0.896 0.875 0.834 

Average width 

Complete case 0.375 0.303 0.246 0.189 

woPRS-imputed 0.381 0.281 0.222 0.169 

PRS-imputed 0.384 0.289 0.228 0.171 

RMSE 

Complete case 0.172 0.119 0.090 0.066 

woPRS-imputed 0.123 0.104 0.087 0.073 

PRS-imputed 0.115 0.093 0.078 0.065 

MAR 

Percent bias 

Complete case 35.885 21.217 16.427 10.861 

woPRS-imputed 1.039 8.231 9.369 7.404 

PRS-imputed 3.671 5.991 7.541 7.380 

Coverage rate 

Complete case 0.682 0.754 0.769 0.776 

woPRS-imputed 0.842 0.863 0.890 0.884 

PRS-imputed 0.840 0.860 0.895 0.906 

Average width 

Complete case 0.360 0.289 0.232 0.185 

woPRS-imputed 0.350 0.271 0.213 0.166 

PRS-imputed 0.348 0.273 0.214 0.166 

RMSE 

Complete case 0.160 0.114 0.087 0.068 

woPRS-imputed 0.125 0.092 0.072 0.058 

PRS-imputed 0.124 0.092 0.069 0.055 

MNAR 

Percent bias 

Complete case 49.811 37.496 34.837 33.700 

woPRS-imputed 33.674 23.788 23.089 25.463 

PRS-imputed 32.404 21.942 21.067 23.194 

Coverage rate 

Complete case 0.627 0.655 0.636 0.542 

woPRS-imputed 0.685 0.723 0.705 0.599 

PRS-imputed 0.695 0.725 0.720 0.621 

Average width 

Complete case 0.357 0.287 0.233 0.189 

woPRS-imputed 0.339 0.270 0.217 0.172 

PRS-imputed 0.338 0.269 0.216 0.171 

RMSE 

Complete case 0.174 0.129 0.108 0.094 

woPRS-imputed 0.151 0.110 0.089 0.079 

PRS-imputed 0.149 0.108 0.087 0.076 

Abbreviations: BMI, body mass index; CC, complete case; MAR, missing at random; MCAR, missing 
completely at random; MNAR, missing not at random; PRS, polygenic risk score; RMSE, root mean 
square error; woPRS, without polygenic risk score 
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Supplementary Figure 5.3 Average 95% CI width (panels A and B) and RMSE (panels C and D) diagnostics 
for BMI coefficient for glucose by missing data mechanism and method and sample size under random 
sampling with exposure only (panels A and C) and exposure and outcome missingness (panels B and D). 
Analyses were adjusted for age, sex, non-Hispanic White, and smoking status (ever/never). Corresponding 
coverage rate, percent bias, average confidence interval width, and root mean squared error diagnostics 
are reported in Supplementary Table 5.2 and Supplementary Table 5.3. Abbreviations: MAR, missing at 
random; MCAR, missing completely at random; MNAR, missing not at random; PRS, polygenic risk score; 
RMSE, root mean square error; woPRS, without polygenic risk score. 
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Supplementary Figure 5.4 Average 95% CI width for unweighted (left) and weighted (right) BMI coefficient 
for glucose by missing data mechanism and method and sample size under biased sampling with exposure 
only (panel A) and exposure and outcome missingness (panel B). For biased sampling simulations, 
unweighted and weighted diagnostics are reported in Supplementary Table 5.4, Supplementary Table 5.5, 
Supplementary Table 5.6, and Supplementary Table 5.7. Analyses were adjusted for age, sex, non-
Hispanic White, and smoking status (ever/never). Abbreviations: MAR, missing at random; MCAR, missing 
completely at random; MNAR, missing not at random; PRS, polygenic risk score; RMSE, root mean square 
error; woPRS, without polygenic risk score.  
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Supplementary Figure 5.5 RMSE for unweighted (left) and weighted (right) BMI coefficient for glucose by 
missing data mechanism and method and sample size under biased sampling with exposure only (panel 
A) and exposure and outcome missingness (panel B). For biased sampling simulations, unweighted and 
weighted diagnostics are reported in Supplementary Table 5.4, Supplementary Table 5.5, Supplementary 
Table 5.6, and Supplementary Table 5.7. Analyses were adjusted for age, sex, non-Hispanic White, and 
smoking status (ever/never). Abbreviations: MAR, missing at random; MCAR, missing completely at 
random; MNAR, missing not at random; PRS, polygenic risk score; woPRS, without polygenic risk score. 
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Supplementary Table 5.8 Comparison of demographic, health measurements, and polygenic risk score 
values overall and among adults 40 or older without diabetes, with and without any missing values in the 
Michigan Genomics Initiative. 

 Overall 
Incomplete 

observations 
Complete 

observations  Non-missing PRS 
Characteristic N = 50,026a N = 20,799a N = 29,227a p-valueb N = 35,353a 

Age 62.9 (12.5) 61.9 (12.4) 63.5 (12.5) <0.001 63.1 (12.6) 
Female 54.5 (27,261) 55.1 (11,465) 54.0 (15,796) 0.017 54.0 (19,100) 
Non-Hispanic 
White 86.0 (42,999) 84.0 (17,479) 87.3 (25,520) <0.001 87.5 (30,942) 
Smoking 
status (ever) 48.1 (20,561) 44.8 (6,071) 49.6 (14,490) <0.001 49.1 (16,022) 
    Missing 7,238 7,238 0  2691 
BMI 29.1 (6.0) 29.1 (6.0) 29.0 (6.0) 0.7 29.0 (6.0) 
    Missing 292 292 0   156 
Glucose 99.0 (14.1) 98.8 (14.6) 99.1 (13.9) <0.001 99.3 (14.2) 
    Missing 5,467 5,467 0  3991 
BMI PRSc 0.000 (1.000) 0.008 (1.023) -0.002 (0.995) 0.3 0.000 (1.000) 
    Missing 14,673 14,673 0   0 
Glucose PRSc 0.000 (1.000) 0.013 (0.996) -0.003 (1.001) 0.2 0.000 (1.000) 
    Missing 14,673 14,673 0   0 
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Supplementary Figure 5.6 Estimation of the coefficient for BMI with glucose as the outcome by missing 
data method and weighting approach among all MGI adults age 40 or older without diabetes (i.e., not 
stratified by race/ethnicity; n=50,026). The PRS-imputed subset sample (n=35,353) was restricted to 
individuals with non-missing genotype data before multiple imputation. Analyses were adjusted for age, 
sex, smoking status (ever/never), and a non-Hispanic White indicator. Gray shaded regions represent 
corresponding 95% confidence interval from National Health Interview Survey-weighted All of Us data to 
make All of Us data more representative of the US population (target population). Abbreviations: PRS, 
polygenic risk score. 
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Supplementary Table 5.9 Potential bias in intercept, exposure, and confounder regression coefficients in complete case analysis of linear and logistic 
regression by reason for missing data. 

 Linear regression coefficient  Logistic regression coefficient 

Variables missingness is dependent 
upon Intercept Exposure Confounder   Intercept Exposure Confounder 

None (e.g., missing completely at 
random) Unbiased Unbiased Unbiased   Unbiased Unbiased Unbiased 
Outcome (Y) only Biased Biaseda Biaseda  Biased Unbiased Unbiased 
Exposure (X) and/or other 
covariates (C) Unbiased Unbiased Unbiased   Unbiased Unbiased Unbiased 
Outcome (Y) and confounders (C) Biased Biased Biased  Biased Unbiased Biased 
Outcome (Y), exposure (X), and 
possible confounders (C) Biased Biased Biased   Biased Biasedb Biased 
a Biased in general, except when in truth there is no association between the outcome and the exposure or confounding in question (i.e., 
the true value of the regression coefficient is zero) 
b Biased in general, except when missingness depends on the outcome and exposure independently 
Adapted from Supplementary Table 1 from Hughes and colleagues (2019, doi: 10.1093/ije/dyz032) and Table 1 from Bartlett and 
colleagues (2015; doi: 10.1093/aje/kwv114) 

https://www.doi.org/10.1093/ije/dyz032
https://www.doi.org/10.1093/aje/kwv114
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Chapter 6 Conclusion 

6.1 Summary of the dissertation 

6.1.1 Aim 1: To weight or not to weight? The effect of selection bias in three large 

EHR-linked biobanks and recommendations for practice 

EHR-linked biobanks can often be subject to different forms of selection bias such 

as healthy volunteer bias (as in UKB4), have recruitment strategies such as oversampling 

groups historically underrepresented in biomedical research (as in AOU2) or recruiting 

patients at pre-/peri-operative appointments requiring anesthesia (as in MGI45). Such 

non-probability sampling makes them unrepresentative of presumptive target 

populations. This lack of representativeness threatens the generalizability of results from 

EHR-linked biobank analyses. Weighting-based approaches like IP and PS weights, 

which rely on estimating the probability of someone in the analytic sample representing 

someone in the target population, are commonly used to address selection bias. Van 

Alten and colleagues estimated “selection weights” in the UKB.8 However, determining 

what factors go into weighting models and how vital weighting is in different types of EHR-

linked biobank analyses are open questions. 

Aim 1 of this dissertation sought to make recommendations on whether and when 

to use weights to reduce selection bias in three EHR-linked biobanks with different 

recruitment strategies: AOU, MGI, and UKB.  We estimated IPW and PS weights in AOU 

(n=244,071) and MGI (n=81,243) using the 2019 National Health Interview Survey to 
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make the cohorts more similar to the US adult population. Using these weights, alongside 

those previously calculated in UKB (n=401,167),8 we compared the impact of weighting 

on four common analyses: prevalence, dimensionality, and association estimation and 

large-scale hypothesis testing. 

Estimated phecode prevalences decreased in AOU (weighted-to-unweighted 

median prevalence ratio [MPR]: 0.82) and MGI (0.61) and increased in UKB (1.06). 

Prevalence ratios less than 1 indicate that phecodes are overrepresented in the sample 

compared to the target population. Weighting minimally impacted latent phenome 

dimensionality estimation, which has implications for determining the number of 

independent tests used in Bonferroni multiple testing corrected p-values. Weighting 

impacted targeted association estimation, aligning coefficient estimates more closely with 

national registry-based estimates in MGI. Weighted analyses of AOU data could not 

recover benchmark estimates, likely due to significant racial/ethnic heterogeneity, 

highlighting the need for expert knowledge and data exploration during the analytic 

process. Large-scale hypothesis testing, captured by a phenome-wide association study 

(PheWAS), demonstrated considerable overlap of significant hits between weighted and 

unweighted PheWAS. 

Our findings show that researchers should use weight analyses to reduce bias in 

prevalence and association estimation. Weights should be curated when conducting 

association estimation. On the other hand, weighting is less crucial for dimensionality 

estimation and large-scale hypothesis testing, where specific signals should be followed 

up by weighted analysis when effect size estimation is of interest. EHR-linked biobanks 

should report selection mechanisms and make selection weights available for 
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researchers, who should carefully consider their analytic goals and target populations and 

weight analyses accordingly. This manuscript has been published in JAMIA.215 

6.1.2 Aim 2: The impact of sample-weighting on risk prediction and risk 

stratification properties of prediction models trained in one EHR-linked biobank 

when applied to another biobank with a different recruitment strategy: A case study 

in the United States 

Risk prediction models are classical tools in public health and precision medicine. 

EHR-linked biobanks are multi-modal data sources that link EHR and genetic information 

with other linkable data like cancer and vital status registries, neighborhood-level 

environmental exposures, and complementary survey data, presenting an ideal 

environment for more holistic risk prediction and stratification. Salvatore and colleagues 

developed a framework for summarizing diagnosis history into a single-number risk score 

called a phenotype risk score (PheRS).18 However, should weights be considered in risk 

prediction/stratification models (e.g., PheRS) when the external cohort has a different 

sampling strategy than the internal training sample? Because EHR-linked biobanks have 

sampling mechanisms like recruiting patients awaiting surgery (MGI)45 and oversampling 

groups historically underrepresented in biomedical research (AOU),2 they are not 

representative of presumptive target populations. When there are differences in data 

distributions between the sample used to develop the model and the sample to which the 

model is applied, a reduction in prediction performance called lack of transferability can 

occur. Iparragirre and colleagues developed a framework for tuning model 

hyperparameters in weighted settings,17 allowing us to explore weighting-based methods 

for addressing transferability. 
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In Aim 2, we developed PheRS for esophageal, liver, and pancreatic cancers in 

MGI (n=76,757), a cohort enriched for cancer, and evaluated their performance in the 

external AOU cohort (n=226,764). Our goals were to (a) compare different PheRS 

construction approaches, (b) determine whether using weights improved PheRS 

performance, and (c) contrast PheRS performance with other data domains. First, we 

estimated poststratification (PS) weights to make MGI more like AOU (PSBASIC accounting 

for age, sex, race/ethnicity; PSFULL additionally accounting for smoking, alcohol 

consumption, BMI, depression, hypertension, and the Charlson Comorbidity Index). 

Then, adapting the framework from Iparragirre and colleagues,17 we tuned model 

hyperparameters (𝜆 and 𝛼 for regularized regression; the number of randomly sampled 

features as each split and minimum number of observations in a leaf node in the random 

forest) using these weights. Next, we developed weighted and unweighted one- (lasso, 

ridge, and elastic net regression and random forest) and two-step (analogous to pruning-

and-thresholding) PheRS for esophageal, liver, and pancreatic cancer outcomes, 

restricting data to 0, 1, 2, and 5 years prior to the cancer diagnosis. Finally, we assessed 

PheRS performance in terms of risk stratification, discriminatory ability, accuracy, and 

calibration alongside and in combination with other domains: basic sociodemographic 

covariates, risk factors, and presenting symptoms. 

We found that no single PheRS construction approach uniformly performed better 

in terms of risk stratification or discrimination, though elastic net and random forest tended 

to exhibit good properties. We also observed that using weights in model development 

did not consistently or meaningfully improve PheRS risk stratification performance. Health 
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history summarized as PheRS appeared to be the most important domain in risk 

stratification compared to the other three domains. 

Our findings show that PheRS contributes to risk stratification and discriminatory 

ability alongside demographic covariates, risk factors, and a presenting symptom. PheRS 

should be considered when developing risk prediction models using EHR-linked biobank 

data. We also found that weighting-based approaches to PheRS construction do not 

improve model performance in an external cohort. Other methods to address 

transferability may be more worthwhile (e.g., transfer learning). In addition, we expanded 

on Iparragirre and colleagues’17 framework to perform hyperparameter tuning for 

regularized regression and random forest in weighted settings. We further contributed to 

the adoption of these methods by providing R code. 

6.1.3 Aim 3: Impact of polygenic risk score-informed multiple imputation and 

sample weighting for handling missing data and selection bias on association 

estimation in EHR-linked biobanks 

EHR-linked biobanks are subject to multiple cooccurring biases, including those 

due to missing data and selection bias. Regarding missing data, Bell and colleagues 

found that 95% of RCTs published in top-tier journals in late 2013 reported missing 

outcome data.305 Understanding why the data are missing (the missing data mechanism) 

and whether the data are MCAR, MAR, or MNAR has implications for analysis. For 

example, complete case analyses are expected to give unbiased estimates when data 

are MCAR. However, the MCAR assumption is strong and often not reasonable in 

practice. MAR is a less stringent assumption that is more common in real-life data, where 

complete case analyses can result in biased parameter estimation, leading to invalid 
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conclusions. Unfortunately, complete case analyses of missing data are the most 

common in RCTs305 and epidemiologic studies.21 Multiple imputation is the most common 

method for handling missing data. It fills in missing data several times, informed by 

relationships between observed data. EHR-linked biobanks contain missing data, but they 

also contain non-missing genetic data. Li and colleagues leveraged genetic information 

to improve imputation of missing cardiovascular data in EHR-linked biobanks.44 However, 

whether the use of genetic information in multiple imputation can improve association 

estimation is an open question. Simultaneously, EHR-linked biobanks are subject to 

selection bias because of recruitment mechanisms (e.g., recruitment through specific 

clinics45) and participant-driven factors (e.g., healthy volunteers4). 

In Aim 3, we explored (a) whether PRS-informed multiple imputation reduces bias 

due to missing data and (b) the joint impact of PRS-informed multiple imputation and 

sample weighting on exposure-outcome association estimation when both missing data 

and selection bias are at play. First, we curated an analytic sample containing 

demographic, anthropometric, lifestyle, and genetic information in MGI to estimate the 

BMI coefficient for glucose. We simulated 100,000 observation multivariate-normal 

datasets using observed variance-covariance information and induced ~25% 

missingness in (a) BMI only and (b) BMI and glucose under MCAR, MAR, and MNAR 

mechanisms. We estimated the unadjusted and covariate-adjusted BMI coefficient for 

glucose using complete case, woPRS-imputed, and PRS-imputed analyses on random 

and biased samples of sizes 1,000, 2,500, 5,000, and 10,000. After 1,000 iterations, we 

calculated the coverage rate, percent bias, average 95% confidence interval width, and 

RMSE. For our case study, we estimated unadjusted and covariate-adjusted unweighted 
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and weighted BMI coefficients for glucose in non-Hispanic White and non-Hispanic Black 

adults (aged 40 or older) without diabetes in MGI, calculating stratum-specific weights 

using the approach described in Salvatore and colleagues.215 To our knowledge, this is 

the first study to consider missing data and selection bias jointly. 

We found that PRS-imputed analyses exhibited better properties than woPRS-

imputed in simulations of MAR data in random samples. This observation was also true 

in weighted analyses in our simulations of MAR data in biased samples. In our MGI case 

study, we found only small changes in coefficient estimates between complete, woPRS-

imputed, and PRS-imputed analyses. However, performing weighted analyses changed 

the estimates considerably. 

Our findings highlight the utility of genetic information in reducing bias due to 

missing data in EHR-linked biobanks. Researchers must carefully apply appropriate 

missing data methods alongside approaches to reduce other simultaneous biases like 

selection bias.  

6.2 Public health relevance 

As EHR-linked biobanks grow in size, number, and use for research, researchers 

must grapple with fundamental data issues to obtain impactful results that translate to 

specific groups. This dissertation addresses two issues – selection bias and missing data 

– and provides users with valuable guidance in performing principled analyses. 

In the first aim, I explored the impact of selection weights on several common 

analyses conducted in EHR-linked biobanks. In doing so, I discovered that weights are 

crucial for prevalence and association estimation. Improving prevalence estimation, 

which describes the burden of diseases and informs areas needing public health 
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attention, increases the utility of EHR-linked biobanks as a real-time surveillance tool. 

Addressing selection bias in association estimation, which captures the strength of the 

relationship between an exposure and outcome (or two diseases), is paramount because 

it can have indeterminate effects and lead to invalid conclusions. I also constructed 

selection weights for two US-based cohorts that are commonly used but in which weights 

are not available. Moreover, code for reproducing these weights or calculating weights in 

other cohorts is shared to promote the adoption of weighted analyses. Now more than 

ever, it is critical to think about the representativeness of samples and their intended 

target populations and apply methods to reduce selection bias as EHR-linked biobank 

data are reaching a broader range of researchers. 

In my second aim, I found no single approach to summarizing health history in 

EHR data as a phenotype risk score (PheRS) that results in uniformly better risk 

stratification. Critically, as EHR-linked biobanks are used to develop risk prediction 

models for use in populations with different data distributions, weighting-based 

approaches to PheRS development do not improve stratification performance. However, 

diagnosis health history summarized as PheRS was the most important data domain in 

risk stratification compared to demographic covariates, risk factors, and presenting 

symptoms. Additionally, PheRS contributed to risk stratification alongside these domains, 

meaning researchers should consider the breadth of data domains in EHR-linked 

biobanks to improve risk prediction and stratification models. Resulting models can better 

identify individuals with higher-than-average risk for whom primary prevention, screening, 

or potentially invasive diagnostic procedures should be considered. 
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In my third aim, PRS-informed multiple imputation improved association estimation 

in EHR-linked biobanks with missing data. Missing data is a chronic problem in public 

health and EHR-linked biobank research.21,300,305 My results demonstrate that leveraging 

a unique feature of EHR-linked biobanks – non-missing genetic information – reduces 

percent bias and improves and maintains the nominal coverage rate of association 

estimation relative to multiple imputation without PRS. This finding suggests EHR-linked 

biobanks should make PRS for common exposures available to researchers to reduce 

biases due to missing data. My case study, which also employed weighted analyses for 

reducing selection bias, suggested that bias due to missing data plays a relatively smaller 

role. However, this result highlights the importance of jointly considering and addressing 

the impacts of multiple simultaneous biases. 

 My aims address fundamental issues in EHR-linked biobank data and provide 

recommendations to achieve less biased and potentially more generalizable results, 

enhancing translation and improving public health impact. My work will be instrumental in 

leading to higher-quality EHR-linked biobank analyses. 

6.3 Recommendations for future studies 

 There are natural continuations and extensions for future studies resulting from the 

findings in this dissertation. The first aim introduces methodological and substantive 

works. Methodologically, the weights we developed used factors that the cohorts explicitly 

stated influenced recruitment. However, these factors may not capture participant-driven 

factors impacting selection. Future work can use data-driven approaches, like that 

employed by van Alten and colleagues,8 and can be compared with weights based on 

stated recruitment factors. Substantively, the first aim ignored analyses focused on or 
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combined with genetic data. While Schoeler and colleagues explore the impact of 

selection weights on genetic analyses,97 future research should explore the effect of 

selection bias on the genome-by-phenome landscape. 

 Future studies should also investigate non-weighting-based methods to enhance 

PheRS risk stratification transferability to explicit external populations. Other model-

building approaches, like neural networks, support vector machines, and 

SuperLearner,153 can be considered alongside methods to improve generalizability, 

including transfer, semi-supervised, and federated learning.173,174,265,267 Again, while 

PheRS was evaluated alongside demographic covariates, risk factors, and presenting 

symptoms, we did not consider genetic predictors. We previously demonstrated that 

PheRS and PRS independently improve risk prediction,18 meaning incorporation of 

genetic information in future work is warranted. 

 Finally, in Aim 3, we began to explore the joint impacts of missing data and 

selection bias in EHR-linked biobank data. Beesley and Mukherjee developed methods 

for jointly addressing selection bias and outcome misclassification.7,11 Future studies 

should explore the relative impacts of multiple simultaneous biases more thoroughly. This 

should include evaluations across several exposure-outcome associations with gold 

standard estimates, in more missing data settings (e.g., multivariate missingness), and in 

more cohorts, and to ultimately develop recommendations for dealing with multiple biases 

jointly in practice. 

 My PhD dissertation has equipped me with invaluable skills and experience in 

designing and applying methods-based EHR-linked biobank data analysis, a frontier in 

epidemiology. But more than that, it holds the promise of a significant role in advancing 
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the translation into practice of results from EHR-linked biobank cohorts. These cohorts, 

often needing to be more representative of the intended target population, can benefit 

greatly from the insights of this dissertation. This work can inspire progress in our field by 

paving the way for more meaningful impacts in healthcare and medical research tailored 

to the specific needs and characteristics of the intended groups. 
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