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ABSTRACT

Mobile health (mHealth) technology enables the collection of intensive longitudinal data

(ILD) and, as a result, serves as a rich source of information on both the short-term and long-

term dynamics of multiple outcomes measured over time. When combined with time-to-event

outcomes, ILD can provide insight into factors that elevate the risk of an event. Motivated

by mHealth studies of smoking cessation in which participants report both longitudinal data

on the intensity of many emotions multiple times per day and event-time information on

cigarette use, this dissertation presents methods for jointly modeling multivariate ILD and

time-to-event outcomes.

In the first project, we develop a dynamic factor model that summarizes ILD as a smaller

number of time-varying latent factors. The evolution of these latent factors is modeled using

a multivariate continuous-time Ornstein-Uhlenbeck stochastic process. We propose a block

coordinate descent algorithm for maximum likelihood estimation and apply our method to

mHealth data to summarize the dynamics of 18 emotions as two latent factors. These latent

factors are interpreted by behavioral scientists as the psychological constructs of positive

and negative affect.

In the second project, we extend this dynamic factor model to consider an event out-

come. Specifically, we use the latent factors as time-varying predictors of a cumulative event

outcome (e.g., the total number of cigarettes smoked across repeated intervals of time),

which we model using Poisson regression. We take a two-stage approach to estimation; we

use weights—based on importance sampling—to account for potential bias that could result

from the two-stage approach.

In the third project, we extend this dynamic factor model to model the longitudinal

process jointly with a traditional survival outcome (e.g., the time of first cigarette use after

attempted quit). In this joint longitudinal-survival model, the hazard of a time-to-event

outcome is a function of the low-dimensional latent process. Joint estimation of this model

is challenging due to the combination of ILD and the presence of a stochastic process as a

time-varying covariate in our hazard model. We fit our joint model with a Bayesian approach

and use it to analyze data from another mHealth study of smoking cessation. We summarize

the longitudinal self-reported intensity of nine emotions as the psychological states of positive

and negative affect; these time-varying latent states capture the risk of the first smoking lapse

xiv



after attempted quit.

In the fourth project, we present a model-based approach for estimating the effect of

repeatedly delivered treatments in a micro-randomized trial (MRT) via an extension of our

joint model. We discuss different ways that these repeated treatment effects can be incor-

porated into the joint model; these different model specifications correspond to different

mechanisms by which treatment is assumed to impact the longitudinal and event processes.

Taking a Bayesian approach to inference, we model the association between repeated app-

based notifications, longitudinally-measured emotions, and recurrent events of substance use

in an mHealth MRT.

xv



CHAPTER 1

Introduction

The ubiquity of smartphones presents researchers with abundant opportunities to collect

rich data and develop new and effective interventions in mobile health (mHealth) stud-

ies. mHealth methods for data collection are particularly useful for measuring longitudinal

changes in outcomes of interest, ranging from blood-based biomarkers to self-reported en-

gagement in certain health behaviors. These methods make frequent measurement possible,

allowing researchers to capture outcomes that vary rapidly. mHealth methods also allow for

real-time data collection without requiring individuals to attend in-person clinic visits. As

termed in Stone and Shiffman (1995) [105], ecological momentary assessment (EMA) is one

such mHealth method that focuses on frequently assessing outcomes of interest as they are

experienced by individuals in their natural environments. EMAs often consist of surveys sent

to smartphones that prompt study participants to respond to a set of questions assessing

numerous factors related to their current state (e.g., emotional intensity or stress levels) and

context (e.g., geographical location or social setting).

Not only do mHealth methods allow for frequent measurement of multiple outcomes of

interest, but they also facilitate delivery of interventions in real time. A just-in-time adaptive

intervention (JITAI) is a type of intervention that can be delivered at specific moments in

time; these moments may include instances when, for example, a participant is at increased

risk of engaging in a certain type of behavior, is expected to be more receptive to the inter-

vention, and/or is in a situation that presents an opportunity for positive change [70]. Often,

JITAIs take the form of app-based notifications or text messages that prompt individuals

to make certain decisions or encourage them to behave in certain ways. micro-randomized

trial (MRT)s, a specific type of trial in which individuals are repeatedly randomized to po-

tentially receive an intervention, were developed to help investigators design evidence-based

JITAIs [45]. For example, investigators may use an MRT to better understand what type

of intervention is most effective when individuals are in different states or contexts. An

MRT can also be used to learn rules that define the probability of sending an intervention
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in different contexts. Recent examples of MRTs used to develop JITAIs include Klasnja et

al. (2019) [46], Nahum-Shani et al. (2021) [68], and Jeganathan et al. (2022) [42].

Overall, the use of mHealth technology in research has resulted in an abundance of com-

plicated and rich data—on multivariate intensive longitudinal outcomes, time-to-event out-

comes, and repeated treatments—that present numerous opportunities and challenges for

statistical analysis. In this dissertation, we attempt to fill some gaps in the statistical meth-

ods available for analyzing this type of complex data. Methods appropriate for modeling

intensive longitudinal data (ILD) will only become more important as the popularity of

mHealth studies, and thus availability of this type of data, continuous to increase.

Chapter 2 focuses on the longitudinal data collected in mHealth studies; specifically, ILD.

ILD generally consist of a moderate to large number of longitudinal outcomes measured

frequently over time; this type of data tends to contain more measurement occasions than

traditional longitudinal data. In behavioral science research, ILD is common; for example,

multiple emotions are sometimes measured with the goal of understanding trends in a smaller

number of underlying and unobservable psychological states. Factor models are commonly

applied in psychology and behavioral science as a way of summarizing and understanding the

relationship between multiple outcomes [125, 20]. Traditional factor models assume that the

summarizing latent factors are cross-sectional (e.g., [8, 104, 34]), while dynamic factor models

capture the longitudinal aspects of both the measured outcomes and the latent factors (e.g.,

[113, 52, 121]).

When analyzing ILD on rapidly varying outcomes, such as emotions, it is important to

both use a model that is flexible enough to account for abrupt correlated change and a

method that is computationally efficient enough to handle ILD. Although random effect

models (e.g., models with a random slope and random intercept) are useful for capturing

smooth trends in correlated longitudinal variables, they are less suitable for modeling out-

comes that change abruptly (e.g., rapidly varying psychological states). Recent work by Tran

et al. (2021) [112] proposed a flexible modeling approach that combines a dynamic factor

with a latent stochastic process. This work was motivated by clinical data on a neurologic

disease (amyotrophic lateral sclerosis). In this dissertation, we focus on higher-dimensional

longitudinal data—specifically ILD—collected in mHealth studies; for example, 10-20 emo-

tions measured up to 4 times per day over 10 days using EMA. In Chapter 2, we present

a similar model to that in Tran et al. (2021) [112] but develop a computationally efficient

approach to estimation that facilitates use of this type of model with ILD. Our work helps

fulfill the need for methods that scale for use with large datasets consisting of many subjects

and measurements (e.g., EMAs) per subject.

While understanding the dynamics of latent variables and how they related to sources of
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variability in measured multivariate longitudinal outcomes is interesting in its own right, ILD

may also contain information on vulnerability to certain event-time outcomes. A multitude

of studies have established a link between psychological state—e.g., positive and negative

affect or self-efficacy—and engagement in risky health behaviors, such as smoking and other

drug use [39, 33, 48]. While many studies rely on events of interest to be self-reported in

EMAs, some studies also use sensors to pick up additional information (e.g., outcomes such

as stress [38] or smoking [99]). Depending on the phrasing of EMA questions, we may record

information on events either in a traditional time-to-event format or as a total number of

events experienced across some known interval of time (e.g., the time between the current

and prior EMA). In Chapter 3, we present a model that allows us to assess the association

between time-varying predictions of latent factors (e.g., positive and negative affect) and the

risk of cumulative event outcomes (e.g., total numbers of cigarettes smoked across repeated

intervals of time).

A straightforward way to connect EMA responses (e.g., emotions) with events of interest

is to first model the longitudinal trajectory of the EMA responses, and then funnel the

output of this model into another model to predict the risk of an event (e.g., numbers

of cigarettes smoked). This type of approach, originally developed in Tsiatis et al. (1995)

[115], is called a two-stage approach. Since publication of Tsiatis et al. (1995) [115], however,

numerous papers have described a well-known issue with this strategy: it does not account

for measurement error in the longitudinal outcome and can result in biased estimates of

association between the longitudinal and the event-time outcomes. Much work has been done

to develop corrections for this bias (e.g., [57, 5]), since this two-stage approach conveniently

requires less intensive computation than joint estimation. In Chapter 3, we take a similar

strategy and develop a two-stage estimation method that combines the estimation algorithm

from Chapter 2 and model-fitting functions from standard R packages for a simple and

effective approach to estimation. As in Mauff et al. (2020) [57], we use importance sampling-

based weights to reduce potential bias that could result from this two-stage method.

While the two-stage approach has the advantage of being a fast and easy way to link

longitudinal and event submodels, since the publication of Tsiatis et al. (1995) [115],

joint estimation has gained popularity as an elegant and statistically efficient alternative.

Joint models—models that are fit simultaneously to both the longitudinal and event-time

outcomes—are powerful tools for enabling less-biased estimation of the association between

temporal variations in longitudinal outcomes (e.g., emotions) and the risk of event-time out-

comes (e.g., lapses in smoking cessation). Tsiatis and Davidian (2004) [114] present a nice

overview of traditional joint models.

Much statistical work on joint models has been motivated by data arising from studies on
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human immunodeficiency virus (HIV) and cancer. In HIV, joint models have been developed

to model changes in longitudinal measurements of CD4 cell counts and the risk of disease

progression or death [22, 109, 122]. Data on prostate cancer has motivated models that allow

researchers to jointly model changes in prostate specific antigen levels and the risk of cancer

recurrence [129, 110]. Predictors in the hazard models often include the current value of the

longitudinal process, but can also include terms based on the integral or derivative of the

longitudinal process.

A major challenge in the development of joint models is their computational cost; namely,

the need to evaluate complex and often intractable integrals in the survival function and

across unobserved random effects in the longitudinal submodel. Joint models can quickly

become prohibitively computationally expensive if multiple longitudinal responses are con-

sidered simultaneously. Much existing literature has employed two general strategies for

estimation and inference of joint models; these strategies include (i) an imputation-based

approach in which values of the longitudinal outcome are estimated using either empirical

Bayes estimators or best linear unbiased predictors (BLUPs) [128, 5] and (ii) a likelihood-

based approach using an expectation maximization (EM) algorithm that involves integrating

over the latent random effects in the longitudinal submodel [127, 36]. This first approach is

computationally intensive due to its iterative nature; the second approach is computation-

ally costly because it often involves evaluating intractable integrals. Numerical approaches

to approximating integrals have been suggested and include Gauss Hermite quadrature or

Monte Carlo approximations. To reduce the computational cost of integration, discrete-time

approximations have previously been used (e.g., [122, 36]). In cases when the longitudinal

submodel involves a complicated function of high-dimensional random effects and the number

of repeated measurements per individual is high, Rizopoulos et al. (2009) [93] propose using

the fully exponential Laplace approximation. Bayesian approaches are also common when

fitting joint models, as they handle latent variables naturally. In Chapter 4, we combine

the dynamic factor model from Chapter 2 with a time-to-event model and take a Bayesian

approach to inference. In our joint model, the hazard depends on a multivariate stochastic

process, so calculating the cumulative hazard, which requires integrating over this stochastic

process as a function of time, is challenging. We present a method that can handle ILD,

filling a gap in the literature for joint models suitable for use with ILD.

In the final project of this dissertation, described in Chapter 5, we consider an additional

feature of some mHealth studies: mHealth interventions. We specifically consider JITAIs.

These types of interventions often consist of text messages or app-based notifications deliv-

ered directly to study participants’ smartphones. Standard approaches to estimating treat-

ment effects from this type of intervention are based on generalized estimating equations.
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Weighted and centered least-squares is the usual approach [9], with various adaptations of

this method also having been proposed recently (e.g., [79] and [101]). Model-based ap-

proaches to treatment effect estimation are less common in mHealth settings, but are often

used in other areas, like cancer, for example. In joint models, the risk of bias in the coefficient

estimates linking the longitudinal and event processes decreases and statistical efficiency in-

creases, as this joint approach considers dependencies between the longitudinal and survival

processes. This decrease in bias and increase in efficiency also applies to treatment effect

estimation [40]. In Chapter 5, we develop different treatment effect models and incorporate

them into our joint longitudinal event-time model. In this chapter, we also consider recur-

rent events, rather than single time-to-event outcome, since recurrent events are commonly

recorded in mHealth studies due to the high frequency of measurement.

The methods proposed in Chapters 2-5 of this dissertation are motivated by three specific

mHealth studies of smoking cessation: two observational studies [74, 14, 119] and one MRT

[68]. All studies enrolled current smokers who attempted to quit. The studies used EMAs to

record the intensity of many emotions multiple times per day over the course of the study.

The use of both cigarettes and other types of substances was also recorded. In the MRT,

participants were randomized to be sent interventions multiple times per day [68]. We use

data from the observational studies to motivate the development of the methods proposed

in Chapters 2, 3, and 4, and use data from the MRT to drive the work proposed in Chapter

5. Although these motivating datasets focus on smoking cessation, the statistical methods

proposed in this dissertation are applicable to similarly structured mHealth studies and ILD

in other domains.
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CHAPTER 2

A Continuous-Time Dynamic Factor Model

for Intensive Longitudinal Data Arising from

Mobile Health Studies

2.1 Introduction

Intensive longitudinal data (ILD) can capture rapid changes in outcomes over time. Often

in mobile health (mHealth) studies, many longitudinal outcomes are measured with the aim

of understanding the temporal dynamics of unobservable constructs related to mental or

physical health. Our work is motivated by an observational mHealth study in which the

intensity of emotions was collected over time. Participants self-reported the intensity of 18

different emotions up to four times per day over 10 days, resulting in a substantial quantity

of rich data. For behavioral scientists, understanding the temporal dynamics of the latent

psychological states that underlie these emotions—and how well these emotions measure the

specific latent states—is of scientific interest.

The volume and complexity of ILD, however, make them challenging to analyze since

longitudinal outcomes are often measured irregularly across many individuals. Thus sta-

tistical methods must be able to handle the irregular spacing of this high volume of data.

At the same time, the frequent measurements in ILD create many opportunities to discover

new information, particularly if the latent constructs of interest vary rapidly. We present

a dynamic factor model that is motivated by the need to model multiple longitudinal out-

comes measured frequently over time in a flexible yet interpretable manner. The model,

which is similar to that described in Tran et al. (2021) [112], consists of two submodels:

(i) a measurement submodel—a factor model—that summarizes the multiple observed lon-

gitudinal outcomes as lower-dimensional latent factors and (ii) a structural submodel—an

Ornstein-Uhlenbeck (OU) stochastic process—that captures the evolution of the multiple

correlated latent factors over time. Together, these components of our dynamic factor model
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are flexible enough to capture abrupt changes in the longitudinal outcomes while avoiding

use of a non-parametric or other many-parameter model that inhibits interpretability. The

low-dimensional nature of the structural submodel also greatly reduces computational com-

plexity, as opposed to fitting a high-dimensional stochastic process directly to the observed

outcomes.

One standard approach to modeling changes in multiple correlated longitudinal variables

is to use an autoregressive (AR) model. These models, which are called vector autoregres-

sive (VAR) models when data are multivariate, have been widely used to model observed

outcomes as well as latent variables. For example, Dunson (2003) [23], Cui and Dunson

(2014) [21], and Tran (2019) [113] have proposed related methods in which observed longi-

tudinal outcomes are summarized as time-varying lower-dimensional latent variables. The

correlation of these latent variables is then modeled with AR or VAR processes. VAR mod-

els, however, are specified for balanced data. This situation is often not realistic in the case

of ILD, which generally consists of irregularly-measured outcomes, and can lead to biased

estimates in cases where the assumption is made but does not hold.

Mixed models have been proposed as alternatives to discrete-time processes for modeling

the evolution of latent variables over time, and have been previously used in combination with

factor models. Unlike the AR and VAR processes, mixed models do not require balanced

data. Existing work has focused both on the development of mixed models for modeling

the evolution of a single latent factor over time (e.g., [96, 76, 77]) or multiple latent factors

(e.g., [53, 121]). Overall, these mixed model-based approaches are useful tools for capturing

smooth trends in latent factors but may have trouble capturing changes that happen rapidly

(e.g., abrupt jumps in psychological states).

The OU process, which can be thought of as a continuous-time analog of the AR or VAR

process, is a stochastic process well-suited for capturing abrupt variations over time. Existing

work has frequently focused on using the OU process or integrated OU process to model lon-

gitudinal outcomes that have been directly observed (or observed with measurement error);

e.g., [109, 106, 71, 72].

Most closely related to our proposed approach is the work in Tran et al. (2021) [112]. Like

us, the authors propose a longitudinal latent variable model that consists of two parts: a

measurement submodel to summarize observed outcomes as lower dimensional latent factors

and an OU process as the structural submodel for the latent factors. While we differ in the

exact specification of the measurement submodel, our chosen models are related. The key

distinction between this existing work and the work presented in this manuscript lies in the

approach to estimation and inference. Tran et al. (2021) [112] take a Bayesian approach,

which uses a form of the likelihood that requires sampling values of the latent factors at
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each measurement occasion. In the ILD setting, we need approaches that can scale to large

numbers of repeated measurements. Here, we choose to work in the frequentist framework

and directly maximize the marginal log-likelihood of the observed longitudinal outcome by

integrating out latent variables, resulting in a method more suitable for ILD. While Tran et

al. (2021) [112] present an approach that relies on algebraic constraints to fit models with

two or three latent factors, our maximum-likelihood approach enables us to easily extend our

model to larger numbers of latent factors through the use of penalties, rather than algebraic

constraints. Finally, although we—like Tran et al. (2021) [112]—assume that the number

of latent factors is known, our work additionally investigates the use of information criteria

to select the true model among models with misspecified numbers of latent factors in a

simulation study. The marginal log-likelihood of the observed data that we use here better

facilitates the use of information criterion to compare models with different numbers of latent

factors, as opposed to a version of the likelihood that conditions on the latent variables (see

Merkle et al. (2019) [60] for more discussion of marginal vs. conditional likelihoods for factor

models).

In this work, we build on the model from Tran et al. (2021) [112] by developing and evalu-

ating the performance of an efficient estimation algorithm that has the computational ability

to handle ILD. Our work enables the analysis of high-dimensional ILD using low-dimensional

stochastic latent variable models; as a result, these models can be used to understand how

well observed longitudinal outcomes measure underlying states, how correlated these latent

states are over time, and how much of the variation in the longitudinal outcome is related to

short-term changes within an individual vs. longer-term differences across individuals. De-

signed specifically for the ILD setting, our novel methodological contributions include (i) a

closed-form likelihood for the marginal distribution of the observed outcome, (ii) the deriva-

tion of the computationally-simpler sparse precision matrix for the multivariate OU process,

(iii) identifiability constraints imposed via scaling constants, and (iv) a block coordinate

descent algorithm for estimation and inference in a maximum likelihood framework.

The remainder of this paper is organized as such: In Section 2.2, we describe the mo-

tivating ILD from an mHealth study; in Section 2.3, we present the model and our novel

methodological contributions; in Section 2.4, we demonstrate the performance of our method

via simulation; in Section 2.5, we use our method to analyze intensive longitudinal emotion

data collected in an mHealth study; and in Section 2.6, we provide a discussion.
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2.2 Motivating Data

The ILD motivating this work consist of self-reported emotional states collected in an obser-

vational mHealth study [74]. Over a period of 10 days, ecological momentary assessments

(EMAs), which enable repeated sampling of individuals’ current states and contexts in real

time, were used to frequently track participants’ emotions as they were experienced. Specifi-

cally, participants were prompted to respond to a series of questions sent to their smartphones

multiple times per day at random occasions; the original study design intended for individu-

als to receive up to four EMAs per day. The EMAs contained a set of questions that assessed

the current intensity of multiple emotions measured on a 5-point Likert scale. We focus on a

set of 18 emotions; these emotions are active, angry, ashamed, attentive, calm, determined,

disgusted, enthusiastic, grateful, guilty, happy, irritable, joyful, lonely, nervous, proud, sad,

and scared. The resulting data contain frequent measurements of a substantial number of

longitudinal outcomes, where the number of measurement occasions per person ranges from

2 to 47 (mean = 17). The variability in total number of observations per person is due to a

combination of intermittent non-response to the EMAs and dropout.

The high rate of measurement enables us to capture rapid changes in emotions—and thus

different aspects of the latent psychological states—over time. Note that these data are the

subset of the full study data that were available at the time of drafting this manuscript (N

= 218 individuals). Additional details on the study can be found in [74].

We illustrate the variability in these longitudinal outcomes in Figure 2.1, which shows

the responses to emotion-related EMA questions over time for one participant in the study.

Understanding the dynamics of individuals’ latent psychological states that underlie the

measured responses, as well as investigating the appropriate number of latent states to

summarize the observed responses, is of scientific interest among behavioral scientists.

2.3 Methods

In this section, we present the OUF model that jointly models multiple observed longitu-

dinal outcomes (here, emotions) and the lower dimensional latent factors (representing, for

example, psychological states) assumed to generate the observed longitudinal outcomes. The

model consists of two submodels: a measurement submodel and a structural submodel.

2.3.1 Measurement Submodel

Let Yi(t) = [Yi1(t), Yi2(t), ..., YiK(t)]
⊤ be a K × 1 vector of measured longitudinal outcomes

(e.g., emotions in the motivating data) for individual i, i = 1, ..., N , at time t. Assume that
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Figure 2.1: Responses to the EMA questions over time for one participant in the mHealth
study, separated by positive and negative emotions. In this plot, a subset of three positive
emotions and three negative emotions are highlighted solely for illustrative purposes; all
18 emotions are later included in the model described in Section 2.5. Note both the high
correlation and abrupt fluctuations of these longitudinal outcomes over time.

individual i has longitudinal outcomes measured at ni occasions (e.g., at ni EMAs). Using

the measurement submodel, we model the observed longitudinal outcome Yi(t) as

Yi(t) = Ληi(t) + ui + ϵi(t) (2.1)

where ηi(t) is a vector of p time-varying latent factors (where p < K); Λ is a K × p-

dimensional time-invariant loadings matrix with elements λk,j that captures the degree of

association between the latent factors and observed longitudinal outcomes; ui ∼ N(0,Σu)

is a vector of length K of random intercepts; and ϵi(t) ∼ N(0,Σϵ) is a vector representing

measurement error, where Σϵ is assumed to be a diagonal matrix.

This model builds upon a standard factor model but also includes (i) a random inter-

cept and (ii) a multivariate model for the evolution of the correlated latent processes ηi(t)

(described in the next section). This random intercept was previously introduced in [112].

We assume that Σu is diagonal, as we include this term to account for baseline differences

across individuals, but then model the correlated change in outcomes through the structural

submodel. Allowing a non-diagonal Σu is possible, but we opt not to do so to avoid the sub-

stantial increase in computational cost associated with estimation of these extra parameters.

In the context of modeling emotions over time, we can interpret the random intercept as
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accounting for differences in psychological traits (i.e., a construct that is more stable within

a person) while the dynamic latent factors capture changes in psychological state (i.e., a

construct that varies more quickly [100]).

We also assume that Λ contains many structural zeros such that each row of the loadings

matrix contains only one non-zero element; this structure means that each observed outcome

is a measurement of only a single latent factor. The decision to incorporate structural zeros in

the loadings matrix is supported by behavioral science concepts (e.g., Positive and Negative

Affect Schedule [124]), which can be used to classify a given emotion as a measurement of a

specific category of emotional state.

2.3.2 Structural Submodel

The structural submodel captures the evolution of the latent factors, ηi(t), over time. In the

motivating data, these latent factors are psychological states (e.g., positive/negative affect,

valence, arousal, etc.) assumed to generate the measured emotions. We use a multivariate

OU process, which can be understood as a continuous-time analog of a VAR process and has

the ability to capture abrupt temporal variation. Here, we assume a bivariate OU process

(p = 2) for illustrative purposes. The stochastic differential equation (SDE) definition of the

bivariate OU process is

d

[
ηi1(t)

ηi2(t)

]
= −

[
θ11 θ12

θ21 θ22

]
︸ ︷︷ ︸

:=θ

[
ηi1(t)

ηi2(t)

]
dt+

[
σ11 0

0 σ22

]
︸ ︷︷ ︸

:=σ

d

[
Wi1(t)

Wi2(t)

]
(2.2)

where the diagonal elements of matrix θ capture the mean-reverting tendency of the latent

factors (where the mean is assumed to be 0) and the off-diagonal elements of θ capture

correlation between the latent factors. The diagonal elements of θ are required to be positive.

The matrix σ, with elements σ11 and σ22 > 0, describes the volatility of the process, where

Wi1(t) and Wi2(t) are both standard Brownian motion. In general, the standard definition

of the OU process allows σ to take non-zero values in the off-diagonal. By restricting σ to

be a simpler diagonal matrix here, we consider the Brownian motion terms as separate noise

processes for each latent factor and thus capture all correlation between the latent factors

through the θ matrix. We also require that all eigenvalues of the θ matrix have a positive

real part; this constraint ensures a mean-reverting process [112].
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2.3.3 Likelihood Definition

Rather than taking a Bayesian strategy or relying on the complete-data likelihood and tak-

ing an expectation-maximization (EM) approach to estimation, we directly maximize the

likelihood of the observed data. Direct maximization of the marginal likelihood allows us to

avoid repeatedly calculating values of the latent factors at each measurement occasion (via

posterior sampling in a Bayesian framework or via complex integrals in the E-step of the

EM algorithm). Thus, our approach is more scalable to the ILD setting.

In existing literature, the OU process is most often defined using its conditional distri-

bution. If our p latent factors for individual i, denoted by vector ηi, follow an OU process,

then the conditional distribution of the latent factors at time t given the previous value at

time s, where s < t, is

ηi(t)|ηi(s) ∼ N
(
e−θ(t−s)ηi(s),V − e−θ(t−s)V e−θ⊤(t−s)

)
This distribution assumes that the initial value of the OU process is drawn from its sta-

tionary distribution, ηi(t0) ∼ N(0,V ), where the stationary variance is V := vec−1
{
(θ ⊕

θ)−1vec{σσ⊤}
}
. Here, ⊕ denotes the Kronecker sum, defined for square matrices A and

B of sizes a and b, respectively, as A ⊕B = A ⊗ Ib + Ia ⊗B; and the vec{A} operation

consists of stacking the columns of matrix A into a column vector.

The conditional distribution can be challenging to work with in the context of ILD, as

it requires computing products sequentially across all measurement times within the like-

lihood. To simplify computation in our ILD setting, we integrate out the latent factors

so that we can simply maximize the observed data log-likelihood. This marginal like-

lihood depends on the joint distribution of the latent factors. The joint distribution of

ηi =
[
η⊤
i (t1),η

⊤
i (t2), ...,η

⊤
i (tni

)
]⊤

is

ηi ∼ N(0,Ψi)

where

Ψi =



V V e−θ⊤|t2−t1| . . . V e−θ⊤|tni−1−t1| V e−θ⊤|tni−t1|

e−θ|t2−t1|V V . . . V e−θ⊤|tni−1−t2| V e−θ⊤|tni−t2|

...
...

. . .
...

...

e−θ|tni−1−t1|V e−θ|tni−1−t2|V . . . V V e−θ⊤|tni−1−tni |

e−θ|tni−t1|V e−θ|tni−t2|V . . . e−θ|tni−tni−1|V V


The dimension of the marginal OU covariance matrix Ψi still scales with the number of
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longitudinal measurements and so to make our approach computationally amenable to the

ILD setting, we take advantage of the fact that the OU process has the Markov property.

As a result of this property, the inverse of the marginal covariance matrix—the precision

matrix—is block tri-diagonal; thus it is much simpler to evaluate the likelihood for the OU

process when written in terms of the sparse precision matrix, compared to either the dense

marginal covariance matrix or as a product of many conditional distributions. As one of

the key contribution of this paper, we derive this sparse precision matrix: Let Ωi be the

precision matrix of the OU process observed at ni occasions. Then Ωi has the structure

Ωi =



Ω11 Ω12 0 · · · 0

Ω⊤
12 Ω22 Ω23 · · · 0

0 Ω⊤
23 Ω33

. . .
...

...
...

. . . . . . Ωni−1,ni

0 0 · · · Ω⊤
ni−1,ni

Ωnini


(2.3)

and each block indexed by j for 1 < j < ni in the tri-diagonal matrix is

Ω11 =
[
V − V e−θ⊤(t2−t1)V −1e−θ(t2−t1)V

]−1

Ωj,j+1 = −
[
V − V e−θ⊤(tj+1−tj)V −1e−θ(tj+1−tj)V

]−1
V e−θ⊤(tj+1−tj)V −1

Ωjj = V −1 + V −1e−θ(tj−tj−1)V
[
V − V e−θ⊤(tj−tj−1)V −1e−θ(tj−tj−1)V

]−1
V e−θ⊤(tj−tj−1)V −1

+
[
V − V e−θ⊤(tj+1−tj)V −1e−θ(tj+1−tj)V

]−1
V e−θ⊤(tj+1−tj)V −1e−θ(tj+1−tj)

Ωnini
= V −1 + V −1e−θ(tni−tni−1)V

[
V − V e−θ⊤(tni−tni−1)V −1e−θ(tni−tni−1)V

]−1

· V e−θ⊤(tni−tni−1)V −1

(2.4)

The derivation for each block is given in Section A.3. Later, during estimation, we leverage

the sparse precision matrix to simplify computation. This sparsity becomes particularly

advantageous as the number of individuals and observations per individual (e.g., EMAs per

individual) in a dataset increases, and it is critical to the scalability of our model to the ILD

setting.

Together, the measurement and structural submodels imply that the observed longitudinal

outcomes are normally distributed with mean 0 and covariance Σ∗
i := V ar(Yi) = (Ini

⊗
Λ)V ar(ηi)(Ini

⊗ Λ)⊤ + Jni
⊗ Σu + Ini

⊗ Σϵ, where Ini
is an ni × ni identity matrix and

Jni
is an ni × ni matrix of ones. We estimate the OUF model by minimizing the following

function, which equal to twice the negative log-likelihood up to a constant: −2logL(Y ) =∑N
i=1 log|Σ∗

i |+
∑N

i=1 Y
⊤
i Σ∗−1

i Yi.
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2.3.4 Identification Issues

Before fitting our model, we must make additional assumptions to address identifiability

issues common to factor models. Because both Λ and ηi(t) are unknown, multiplying Λ by

some matrix, say A, and multiplying ηi(t) by A−1 will result in the same model. To make

a factor model identifiable, constraints must be placed on either the loadings matrix or the

latent factors. Aguilar and West (2000) [4] and Carvalho et al. (2008) [19], for example, make

the standard assumption of requiring the loadings matrix to be triangular while Tran et al.

(2019) [113], for example, fix the variance of the latent factors at 1. The main disadvantage

of assuming that Λ has a triangular structure is that the order of the longitudinal outcomes

matters, and so the structure of this matrix is less intuitive to specify based on behavioral

science literature. Assuming that the latent factors have a variance of 1 simply means that

we model the latent psychological constructs on the correlation scale.

Thus, to make our model identifiable, we fix the scale of the latent factors but propose a

novel approach for doing so. Letting ηi be the (p×ni)-length vector of latent variables values

stacked over measurement occasions, we constrain V ar(ηi) to have diagonal elements equal

to 1. This constraint means that the OU process must have a stationary variance equal to

1. By fixing the scale of the latent factors, we can allow the elements of the loadings matrix

Λ to vary almost freely during estimation. For a generic Λ (without structural zeros), the

only constraint on the loadings matrix is that the sign of the first element must be positive.

Together these constraints make our model identifiable; the constraint on the OU process

identifies the scale and the constraint on the first element of the loadings matrix identifies

the direction. Because we later make the simplifying assumption that Λ contains structural

zeros with a single non-zero loading per row, flipping the signs on both the loadings and the

latent factors results in the same model; we choose to keep the signs that correspond to the

most relevant interpretation of the model given the application. Another constraint could be

added to require that one loading per column of Λ is positive; this would avoid sign flipping.

To impose this identifiability constraint, we use a set of p constants to re-scale the OU

process parameters. We summarize this identifiability constraint for the bivariate (p = 2) OU

process as: Using a pair of positive scalar constants c1 and c2, we can re-scale an arbitrary

OU process parameterized by θ and σ to have stationary variance of 1, where this re-scaled

OU process is parameterized by θ∗ and σ∗ according to[
θ∗11 θ∗12

θ∗21 θ∗22

]
=

[
θ11

c1
c2
θ12

c2
c1
θ21 θ22

]
and

[
σ∗
11 0

0 σ∗
22

]
=

[
c1σ11 0

0 c2σ22

]
(2.5)

In Section A.4, we show why this re-scaling approach works for any mean-reverting OU
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process. This constraint can also be extended to OU processes of higher dimensions.

Although this identifiability assumption allows us to identify the magnitude of the loadings

in the factor model, it does so only up to a sign change. Consider again the case of a bivariate

OU process. To make this example more concrete, suppose also that one of the latent factors,

η1, is measured by the positive emotions and the other latent factor, η2, is measured by the

negative emotions collected in the motivating mHealth study. The likelihood for our model

is equivalent for pairs of scaling constants (c1 = 1, c2 = 1) and (c1 = 1, c2 = −1). In practice,

the model would be the same under both pairs of scaling constants (and so we restrict c1

and c2 to be positive during estimation) but interpretation of model parameters would differ.

After estimation, the signs of estimated model parameters can easily be flipped to match

the most relevant interpretation of the data by multiplying estimates of Λ and θ by a p× p

matrix with the constants along the diagonal. In this two-factor example, it would make

sense to choose signs such that η1 and η2 are negatively correlated and higher values of the

latent factors correspond to higher values of the measured emotions. As a result, η1 could

be interpreted as representing positive affect and η2 as negative affect, both of which are two

traditional psychological constructs often used in behavioral science [124].

2.3.5 Estimation Algorithm

To fit this model, we take an iterative approach to estimation in which we directly maximize

the marginal likelihood of our observed longitudinal outcome using a block coordinate descent

algorithm and rely on simpler existing models to inform the initial parameter estimates. To

increase the computational efficiency of this estimation algorithm, we (i) take advantage of

tractable analytic gradients for the measurement submodel, avoiding the need to calculate

computationally expensive numerical gradients; (ii) leverage the Markov property of the OU

process and use the computationally-simpler sparse precision matrix derived in Equation 2.3,

rather than the dense covariance matrix; and (iii) implement the code used to repeatedly

calculate these numerical gradients and the sparse precision matrix in C++, using R for the

rest of our code.

In the block coordinate descent algorithm, we split parameters into two different blocks:

one block for parameters in the measurement submodel (Λ, Σu, Σϵ) and the other for

parameters in the structural submodel (θ, σ). Note that each element of these blocks is

actually a matrix of parameters. Within each block-wise iteration, we minimize the log-

likelihood with respect to one block of parameters, given the current estimates of the other

block of parameters, using Newton algorithms as implemented in R’s stats package [81].

By updating parameters in blocks, we can leverage the availability of analytic gradients
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for parameters in the measurement submodel. The Kronecker structure of the covariance

matrix for each individual’s longitudinal outcomes Yi allows us to derive these analytic

gradients. The gradient of the log-likelihood for a single individual with respect to one of

the measurement submodel parameters, Θj, has the general form

∂logL(Yi)

∂Θj

= −1

2

[
tr

{(
I −Σ∗−1

i YiY
⊤
i

)
Σ∗−1
i

∂Σ∗
i

∂Θj

}]
(2.6)

where the exact form of
∂Σ∗

i

∂Θj
depends on the specific parameter; either λk, σuk , or σϵk .

The complete set of analytic gradients is given in Section A.5. The computational advantage

of using the analytic gradient, as opposed to a numerical approach to differentiation, is

particularly notable as the number of longitudinal outcomes—and thus parameters in the

measurement submodel—increases.

Prior to maximizing the marginal likelihood, we use a cross-sectional factor model to ini-

tialize Λ, θ, and σ, and use linear mixed models to initialize Σu and Σϵ. Then, we iteratively

update parameter estimates using the following block coordinate descent algorithm:

1. Initialize estimates of Λ(0),Σ
(0)
u ,Σ

(0)
ϵ ,θ(0),σ(0). Measurement submodel parameters are

always initialized empirically; for structural submodel parameters, two sets of initial

estimates are considered—an empirical set of values estimated from cross-sectional

factor scores and a default set of values. The set of values that corresponds to the

higher log-likelihood given the current data is used.

2. Set iteration index r = 1 and convergence indicator δ = 0. While δ = 0,

(a) Update block 1 (measurement submodel):

Λ(r),Σ(r)
u ,Σ(r)

ϵ = argmax
Λ,Σu,Σϵ

{
logL(Λ,Σu,Σϵ|Y ;θ(r−1),σ(r−1)))

}
.

Maximization is done via a Newton-type algorithm (nlm; [81]) using analytic gra-

dients (Equation 2.6).

(b) Update block 2 (structural submodel):

θ(r),σ(r) = argmax
θ,σ

{
logL(θ,σ|Y ;Λ(r),Σ(r)

u ,Σ(r)
ϵ )
}
.

Maximization is done via a quasi-Newton algorithm (nlminb; [81]) using numer-

ical gradients and takes advantage of the sparsity of the OU precision matrix to

increase the speed of this step. A large positive penalty is added to the nega-
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tive log-likelihood within the optimization algorithm if a proposed θ does not have

eigenvalues with positive real parts.

(c) Using Equation 2.5, re-scale OU parameters to satisfy the identifiability constraint.

(d) Check for block-wise convergence: Let Θ be a vector containing all elements of Λ,

Σu, Σϵ, θ, and σ. Then, calculate

δ = max
{
I
{
|Θ(r) −Θ(r−1)|/Θ(r) < 10−6

}
,

I
{
logL(Θ(r)|Y )− logL(Θ(r−1)|Y ) < 10−6

}}
where all operations on Θ are element-wise.

(e) Update r: r = r + 1

3. Estimate Fisher Information-based standard errors from numerical approximations to

the Hessian of the log-likelihood, ∂2

∂Θ∂Θ⊤ logL(Λ
(r),Σ

(r)
u ,Σ

(r)
ϵ ,θ(r)|Y ).

Note that when estimating standard errors, the parameterization of the likelihood differs

slightly: the likelihood now depends on only one of the parameter matrices in the structural

submodel, θ, and not the other, σ. This change in parameterization is a result of the

identifiability constraint that is placed on the stationary variance of the OU process. Since we

are no longer conditioning on fixed measurement submodel parameters in step (3), we restrict

σ to be a function of θ, where this function is derived from the identifiability constraint; thus,

the likelihood is not over-parameterized. Standard error estimates for σ can be calculated

quickly and easily using a parametric bootstrap. By sampling values of θ from a Normal

distribution defined by its point estimate and estimated covariance matrix, bootstrapped

values of σ are calculated as a function of θ and a confidence interval can be estimated based

on the empirical distribution. More details on the parameterization of the log-likelihood for

standard error estimation are in Section A.6.

2.4 Simulation Study

We conduct a simulation study to assess (i) the bias and variance of estimates when the OUF

model is specified with the correct number of latent factors and (ii) the ability of Akaike

information criterion (AIC) and Bayesian information criterion (BIC) to select the model

with the correct number of latent factors among models with mis-specified numbers of latent

factors and loadings matrices.
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2.4.1 Data Generation for Assessing Bias and Variance

We assume that K = 4 longitudinal outcomes (e.g., emotions) are recorded over time for

N = 200 individuals. For individual i, these longitudinal outcomes are measured at ni

different occasions (e.g., EMAs) where ni takes a random integer value between 10 and

20. The gap time between each measurement occasion is drawn from a Uniform(0.1, 2)

distribution. Although our choice of 4 longitudinal outcomes is smaller than the number of

outcomes often in seen in ILD, we chose this number to balance between the complexity of

our data and model, and the computational demands of a simulation study.

We consider simulated data in three different settings in which the true bivariate OU

process has varying degrees of autocorrelation (see Section A.7 for details). Using each true

OU process, we generate the observed longitudinal outcomes by drawing from Yi ∼ N(0,Σ∗
i )

where Σ∗
i is defined using

Λ =


1.2 0

1.8 0

0 −0.4

0 2

 , Σu =


1.1 0 0 0

0 1.3 0 0

0 0 1.4 0

0 0 0 0.9

 , and Σϵ =


0.6 0 0 0

0 0.5 0 0

0 0 0.4 0

0 0 0 0.7

 . (2.7)

When fitting this model, we assume that the zeros within the loadings matrix, random

intercept covariance matrix, and measurement error covariance matrix are known.

Importantly, some of the parameter values used to generate the data are different from

the parameters that will be estimated by the model; this difference is a side effect of the

identifiability assumption. While unbiased estimates of Σu and Σϵ will match the values

used in data generation, the values of Λ and the OU process parameters θ and σ will differ.

As a result of the re-scaling approach for identification, the estimated OU process has a

stationary variance of 1. The additional variation present in the OU process during data

generation must be absorbed by the loadings matrix Λ. Specifically, the data-generating

loadings matrix will be re-scaled according to ΛD where D :=
√
diag{V (θ,σ)} and V is

the stationary variance of the OU process. ΛD will be estimated by our algorithm. The

data-generating OU parameters θ and σ will be re-scaled according to scalar constants chosen

such that the stationary variance of the re-scaled OU process is equal to 1 via Equation 2.5.

True parameter values indicated in the simulation results have all been re-scaled to match

the values targeted by our estimation algorithm. In setting 2, the true OU process used

to generate data does have a stationary variance equal to 1 and thus the target parameter

values do match the data-generating parameter values.
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2.4.2 Bias and Variance Results

In each of the three settings, we generate 1,000 datasets and carry out the estimation algo-

rithm. Final point estimates are shown in Figure 2.2 and information-based standard errors

are summarized in Figure 2.3. In all settings, we consistently recover unbiased estimates of

the true values and find that the averages of the standard errors are similar to the empirical

standard deviations of the point estimates, indicating that confidence intervals will have

close to nominal coverage. For one dataset, numerical issues result in a negative variance

estimate; this specific case is discussed in Section A.8.

2.4.3 Data Generation for Model Selection

Because ILD consist of many different outcomes, determining the appropriate number of

latent factors for summarizing these multiple outcomes may frequently be of interest. As

such, we carry out a simulation study in which we evaluate the ability of AIC and BIC to

correctly select the true model among the misspecified models. The formulas for AIC and

BIC take into account our identifiability constraints. Letting L̂ denote the maximized value

of the marginal (observed data) likelihood of the OUF model; q be the total number of non-

zero parameters in Λ,Σu,Σϵ,θ and σ; p be the number of latent factors (which corresponds

to the number of scaling constants needed to impose the identifiability constraint); and

N be the total number of independent individuals in the data, then AIC is calculated as

2× (q − p)− 2logL̂ and BIC is calculated similarly as 2× log(N)× (q − p)− 2logL̂.

Assuming the same true measurement submodel parameters as before, we now generate

data from five different factor models: a one-factor model, a two-factor model with low

signal (i.e., high correlation between latent factors), a two-factor model with high signal

(i.e., low correlation between latent factors), a three-factor model with low signal, and a

three-factor model with high signal. The various structures of these data-generating models

can be interpreted as representing different beliefs about underlying psychological states.

Data-generating parameter values are given in the Section A.7. For 100 datasets generated

from each of these true models, we fit a one-, two-, and three-factor model and compare

information criteria. For fitted models with misspecified numbers of latent factors, the

loadings matrix is also misspecified; for fitted models with the true number of latent factors,

the structure of the loadings matrix is correctly specified. We do not consider a four-factor

model in this simulation study because our data only contain four longitudinal outcomes

and so fitting a four-factor model would no longer fall into the dimension-reduction setting

that motivates this work.
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Figure 2.2: Parameter estimates from the block coordinate descent algorithm for the three
different settings in which the true OU process differs. Point estimates are summarized
across the 1000 simulated datasets with box plots and the dots indicate the true (target)
parameter values.
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Figure 2.3: Comparison of estimated standard errors (from Fisher information) and standard
deviation of point estimates. The similarity of the standard error estimates and empirical
standard deviation suggests that the standard errors are of appropriate size. Note that the
standard error estimate for σ2

ϵ4
is missing for one datasets in setting 3 (see Section A.8 for

more details).
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# Factors Signal 1 2 3 1 2 3
1 - 99 0 1 100 0 0
2 Low 0 93 7 4 96 0
2 High 0 100 0 0 100 0
3 Low 0 0 100 0 8 92
3 High 0 0 100 0 0 100

True Model # Factors in Fitted Model with Best AIC # Factors in Fitted Model with Best BIC

Table 2.1: For datasets generated under each true model, we summarize the percent of times
that the model-selection metric chose the fitted model with the indicated number of factors.
When generating data from models with 2 and 3 factors, we considered two different settings:
a high signal setting in which latent factors have lower correlation and a low signal setting
in which latent factors have high correlation. The settings in which the fitted model has the
same number of factors as the true data-generating model are emphasized with bold orange
text. These results are presented for datasets on which the algorithm either converged or
reached the maximum number of iterations (200) for all three models. See Section A.8 for
more details.

2.4.4 Model Selection Results

We present model selection results in Table 2.1. In both the high and low signal settings, the

model with the lowest AIC and BIC most often has the same number of factors as the true

model used to generate the data. For models fit to data generated from a true model with

three factors, BIC incorrectly selects a model with two factors more often than AIC. This

difference make sense given the increased penalty that BIC places on model complexity. For

datasets of this size (N = 200), estimation becomes more difficult as the number of factors

increases and so, for a few simulated datasets, our algorithm did not converge within the

allotted maximum number of block-wise iterations (see Section A.8 for details). While AIC

and BIC perform similarly, we recommend use of BIC in practice, as the increased penalty

placed on model complexity aligns well with the dimension-reduction goal of factor models.

2.5 Application to mHealth Emotion Data

We use our method to analyze the data on momentary emotions collected in the mHealth

study. We fit three different OUF models in which we summarize the longitudinal responses

to 18 emotion-related questions as either one, two, or three latent factors. The measured

emotions that we model are: happy, joyful, enthusiastic, active, calm, determined, grateful,

proud, attentive, sad, scared, disgusted, angry, ashamed, guilty, irritable, lonely, and nervous.

Behavioral scientist have a variety of theories that describe how these measured emotions

relate to underlying psychological states (e.g., [95, 84, 85, 86, 32, 59]), and so we aim to

compare the fit of models with different numbers of latent factors using this mHealth data.
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The one-factor OUF model assumes that positive and negative emotions are generated from a

single common underlying factor (i.e., a single spectrum that ranges from positive to negative

affect) [95]. The two-factor OUF model assumes that the emotions are measurements of two

distinct-but-correlated emotional states, which we interpret as positive affect and negative

affect ([84]). In this model, happy, joyful, enthusiastic, active, calm, determined, grateful,

proud, and attentive measure positive affect; and sad, scared, disgusted, angry, ashamed,

guilty, irritable, lonely, and nervous measure negative affect. Finally, in the three-factor

OUF model, we further divide the positive emotions into two latent factors that differ by

the level of activation or arousal; we call these factors high arousal positive affect—measured

by feeling grateful, proud, enthusiastic, active, determined, attentive—and no-to-low arousal

positive affect—measured by feeling calm, happy, and joyful [85, 86, 32, 59]. The negative

emotions are still assumed to be generated from one latent factor. Specifying these three

models and comparing their fits allows us to investigate what level of dimension-reduction

is appropriate for capturing the dynamics of the emotions measured in this mHealth study.

Both AIC and BIC indicate that, of the three models considered, the two-factor model

fits best: AIC1 factor = 123, 309 vs. AIC2 factors = 121, 069 vs. AIC3 factors = 124, 957

and BIC1 factor = 123, 791 vs. BIC2 factor = 121, 577 vs. BIC3 factor = 125, 509. Some

psychological theories support our conclusion that two factors represent our data better

than one as it suggests that positive and negative affect are not opposites, rather they

capture distinct-but-correlated components of psychological state [84]. The lower AIC and

BIC of the two-factor model compared to the three-factor model suggest that the emotions

corresponding to high arousal positive affect and no-to-low arousal positive affect are not

different enough to justify the additional complexity of the three-factor model given the

current data. The strong estimated correlation (0.995) between the latent factors for high

arousal positive affect and no-to-low arousal positive affect further supports this conclusion.

For the bivariate OUF model, point estimates and 95% confidence intervals are in Figure

2.4. Coefficient estimates from the fitted one-factor and three-factor OUF models are given

in Section A.9. For the two-factor model, measures of happiness, joy, and enthusiasm are

most strongly correlated with positive affect and measures of sadness and irritability are

most strongly correlated with negative affect. We use the estimated parameters of the OU

process to understand the latent dynamics of positive and negative affect by plotting the

degree of correlation for these two latent variables across varying time intervals between

consecutive observations (see Figure 2.5). We see that positive and negative affect are

negatively correlated as expected, and that the correlation between the latent states decays

slowly.

We can also examine the variance estimates for all components of our model—the latent
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Figure 2.4: Point estimates and corresponding 95% confidence intervals (CI) for each of
the parameter matrices in our two-factor OUF model. Intervals for OU parameters σ11
and σ22 are based on a parametric bootstrap. Because we assume structural zeros in the
loadings matrix are known, each emotion has only a single loading. Parameter subscripts
1-18 correspond to the emotions as follows: 1 = happy, 2 = joyful, 3 = enthusiastic, 4 =
active, 5 = calm, 6 = determined, 7 = grateful, 8 = proud, 9 = attentive, 10 = sad, 11 =
scared, 12 = disgusted, 13 = angry, 14 = ashamed, 15 = guilty, 16 = irritable, 17 = lonely,
18 = nervous.

factors, random intercepts, and error terms—in order to help understand potential sources

of variability. The relatively high variance estimates for the random intercepts for pride

and loneliness suggest that these two emotions have higher variability across participants

and vary less within participants; this pattern is consistent across all three OUF models.

To gain further insight into the role of state vs. trait within this set of emotions, we can

calculate the proportion of total variance explained by the latent process vs. the random

intercepts for the set of 18 emotions at a fixed time point. We find that the dynamic latent

factors explain more of the variability in happy (69% from the latent factors vs. 15% from

the random intercept) and disgusted (79% vs. 11%), for example. On the other hand, the

random intercepts explain more variability in proud (30% from the latent factors vs. 35%

from the random intercept) and lonely (28% from the latent factors vs. 36% from the random

intercept). The remaining proportion of variance is attributed to measurement error.
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Figure 2.5: The top panel shows the decay in autocorrelation and cross-correlation between
latent factors that represent positive affect (η1(t)) and negative affect (η2(t)) across increasing
gap times, where time is measured in hours. Curves are calculated using OU parameters
estimated from emotions measured in the mHealth study. The shaded bands indicate the
2.5th and 97.5th percentiles of a parametric bootstrap. The bottom plot summarizes the
distribution of the observed gap times (in hours) between measurements for all individuals
in the mHealth study.
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2.6 Discussion

We developed an estimation method for a dynamic OUF model that combines a factor model

to summarize multivariate observed longitudinal outcomes (e.g., emotions) as lower dimen-

sional latent factors (e.g., psychological states) and an OU process to describe the temporal

evolution of the latent factors in continuous time. By using the OU process, instead of a dis-

crete time approach such as a VAR process, the model can be applied to irregularly-measured

ILD commonly produced by mHealth studies. Importantly, to make the model suitable for

the ILD setting, we (i) derive a close-form likelihood for the marginal distribution of the

observed longitudinal outcome that integrates over latent variables, (ii) derive the sparse

precision matrix for the multivariate OU process, and (iii) leverage a mix of analytic and

numeric gradients in our block coordinate descent algorithm. Together, these methodological

contributions enable us to use our model to study the short- and long-term dynamics of the

intensity of momentary emotions using ILD from an mHealth study. Our derivation of the

sparse precision matrix for the multivariate OU process, in particular, enables us to simplify

computation and avoid the conditional distribution of the OU process, which is often used

in practice but becomes computational costly in the ILD setting. Furthermore, the marginal

log-likelihood used in our method makes it more amenable to comparing models using in-

formation criteria, such as AIC or BIC. The Bayesian approach for fitting a similar model

developed in Tran et al. (2021) [112] uses the conditional likelihood, which has not been

marginalized over the latent factors or the random intercepts. This conditional likelihood is

quite convenient for Bayesian inference, but is less convenient for information criteria-based

comparisons of models. Generally, the marginal likelihood is preferred when calculating in-

formation criteria; the use of conditional vs. marginal likelihoods for comparisons of factor

models is discussed further in Merkle et al. (2019) [60].

Through the marginal distribution of the multivariate OU process, we parameterize our

likelihood in terms of the standard OU drift (θ) and volatility (σ) parameters. Having

estimates for these parameters enables us to understand the dynamics of the latent factors,

including generating new trajectories using the estimated values and examining the decay

in the trajectories’ correlation over time. Through examination of decay in correlation over

time, our method could help inform the design of future studies that aim to collect ILD

by providing insight into how frequently the longitudinal outcomes must be measured in

order to capture the correlation between them. In our simulation study for assessing bias

and variance, we generated data under true OU processes that showed reasonably slow

decay in correlation over time given the intervals between measurements. We found that

estimation of the OU parameters is difficult if correlation decays quickly relative to gaps
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between measurements. When longitudinal outcomes are measured frequently enough that

correlation between consecutive measurements is captured, our method consistently returns

unbiased estimates of the OU process parameters.

In addition to understanding decay in correlation, we can use the OUF model to partition

the variance of our observed outcome into contributions from different sources; specifically,

the latent factors, random intercepts, and measurement error. Comparing the relative mag-

nitude of these contributions allows us to gain insight into the importance of short-term

variations within individuals and long-term differences across individuals. In the motivating

mHealth data, these short-term variations are interpreted as emotional states and the long-

term differences are interpreted as traits. The results of our analysis of these data suggest

that it may be more important to measure certain emotions (e.g., happy and disgusted)

frequently if understanding their dynamics is of interest, while other emotions (e.g., proud

and lonely) may require less frequent measurements as they are more stable within an indi-

vidual. EMA questionnaires often ask study participants to respond multiple times per day

to numerous questions that assess their current state and context, and so understanding the

optimal frequency at which to measure certain outcomes of interest could help reduce the

burden on participants.

Because we focus on the analysis of ILD on momentary emotions, behavioral science

theories can be used to inform the placement of the structural zeros in the loadings matrix.

In a different setting, the relationship between the longitudinal outcomes and the latent

factors may be more difficult to specify based on existing domain-specific literature; in this

case, extending this work to enable learning of the location of the structural zeros could be

a useful. An easy way to use the current method to gain insight into the structure of the

loadings matrix would be to use AIC or BIC to compare models that are constant in the

number of latent factors but differ in the locations of the structural zeros.

Our model currently assumes that data are missing at random; however, given that our

emotions are self-reported, this assumption may not hold in practice. Considering additional

methods for modeling informative missingness is another important extension of this work.

In many mHealth studies, individuals tend to respond to EMAs less frequently over time

due to the gradually accumulating burden. As a result, the missingness mechanism may be

different for these individuals, compared to individuals who have intermittent missingness.

Thus, modeling various missingness mechanisms could be an important and useful direction

for future work.

Although we use the sparse OU precision matrix, leverage the availability of analytic gra-

dients for the measurement submodel parameters, and implement a portion of our algorithm

in C++, the computation time of our estimation algorithm increases rapidly as the number
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of longitudinal outcomes increases. We successfully fit our model to a dataset containing

18 longitudinal outcomes but this does require approximately 27 hours. In order to make

application of our model to datasets with larger numbers of longitudinal outcomes feasible,

computational efficiency must be increased. However, our proposed marginal likelihood-

based method has substantial computational benefits when compared to alternative meth-

ods. In comparison to the Bayesian approach proposed for fitting a similar model in Tran

et al. (2021) [112], our approach requires less computation time. In a simulation study with

K = 4 longitudinal outcomes measured at 10-20 occasions on N = 200 individuals, we found

that estimation via our block coordinate descent algorithm required approximately 5% of

the time required by the Bayesian approach proposed in Tran et al. (2021) [112] given the

same computing resources. More details on this comparison are given in Section A.11.

In the simulation study and real data analysis presented in this work, we fit OUF models

with one, two, or three latent factors, but the methods presented here extend to models

with larger numbers of latent factors. Tran et al. (2021) [112] also focus on models with

two or three latent factors. To fit their model, they derive an algebraic constraint on the θ

matrix requiring that θ has eigenvalues with positive real parts; this constraint results in a

latent process that is mean-reverting but possibly oscillating. The authors acknowledge that

a limitation of this approach is that this constraint may not be easy to derive for a larger

number of latent factors. In our work, we follow the eigenvalue constraint recommended in

Tran et al. (2021) [112] but implement this constraint by adding a penalty to the likelihood.

This penalty-based approach only requires us to calculate the eigenvalues of the θ matrix,

rather than derive an algebraic solution, and thus it is straightforward to increase the number

of factors in our model.

Finally, the mHealth dataset to which we applied our method comes from a smoking

cessation study and also contains information on demographic characteristics and on the

timing of cigarette use. Including baseline covariates in either the measurement or structural

submodel would be a useful extension. In behavioral science, specific emotional states, such

as negative affect or craving, are expected to be correlated with cigarette use and so future

work could involve combining our OUF model with a submodel for event-time outcomes.

Our model could also be modified to account for treatment or for drift in the OU process

to better capture the dynamics of the latent processes after a key event such as smoking

cessation or relapse.
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CHAPTER 3

A Latent Variable Approach to Jointly

Modeling Longitudinal and Cumulative Event

Data Using a Weighted Two-Stage Method

3.1 Introduction

Widespread use of mobile health (mHealth) technology, ranging from smartphones to wear-

able devices, has increased the availability of intensive longitudinal data (ILD). Ecological

momentary assessment (EMA), which is a data collection method often used in mHealth stud-

ies, consists of repeatedly sampling individuals’ current states and contexts. This method

allows for the collection of data in real time and in individuals’ natural environments. When

outcomes of interest are measured multiple times per day, researchers can record rich data

that capture temporal variations in individuals’ current states and contexts. These EMA

data can be particularly useful in helping researchers understand what factors (e.g., psy-

chological states or environmental stimuli) represent risk for adverse health events (e.g.,

smoking, sedentarism, unhealthy eating). We consider the setting in which researchers are

interested in examining the association between multiple dynamic latent factors—which are

measured through a larger number of observed longitudinal outcomes—and the risk of re-

peated adverse health events, where these events are indirectly observed as the total number

of events across some interval of time.

In many research areas, longitudinal outcomes are measured with error and not necessarily

at the same time as the adverse health events. Thus, simply including the longitudinal

outcomes as time-varying predictors in a time-to-event model, such as a Cox proportional

hazards model, is not appropriate [114]. A more suitable standard alternative is to jointly

fit a longitudinal and time-to-event model. However, existing joint longitudinal-survival

models are limited in their ability to flexibly model multiple longitudinal outcomes in a

computationally efficient manner. This computational challenge is of particular concern in
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the setting of ILD when many longitudinal outcomes are measured simultaneously.

Additionally, rather than recording the timing of each individual adverse health event,

the mHealth study motivating this work was designed such that we only observe cumulative

numbers of events over windows of time, further complicating our setting. Here, we take an

important first step to address these challenges—stemming from both the partial observation

of the event outcome and the computational complexity due to ILD—by developing a practi-

cally useful approach for modeling the association between multiple longitudinal factors and

the risk of repeated adverse health events. Our approach aims to take advantage of existing

software while at the same time balance flexibility, computational complexity, and scientific

utility.

3.1.1 Related Work

Much of the existing work within the field of joint longitudinal-survival models has focused

on combining univariate longitudinal processes with a single time-to-event outcome. Model-

ing multivariate longitudinal outcomes can rapidly increase the computational cost of joint

estimation. Aiming to address the computational challenges of joint modeling with mul-

tivariate longitudinal data, Rustand et al. (2023) [98] propose an approximate Bayesian

method based on the integrated nested Laplace approximation. Adaptation of this tech-

nique to fit our specific model is less than straightforward, particularly due to our use of

a multivariate continuous time stochastic process. An alternative sampling-based approach

to modeling time-varying covariates and survival outcomes was proposed by Rathbun et al.

(2013) [83]. This work was motivated by a desire to improve computational efficiency and

avoid specification of a model for the longitudinal process; however, it requires many simpli-

fying assumptions—such as lack of measurement error—that do not generally hold with use

of EMAs in practice.

An alternative strategy to joint estimation of a longitudinal-survival model for multiple

longitudinal outcomes, a two-stage approach is commonly used. Two stage estimation,

however, has the well-documented risk of introducing bias into estimates of model coefficients

[114, 88, 57]. Incorporating weights has been shown to help reduce this bias. For example,

Mauff et al. (2020) [57] recently proposed a two-stage method that leverages weights based

on importance sampling within a Bayesian framework.

To lower the high computational cost associated with directly modeling the observed

multivariate longitudinal outcomes, we reduce complexity by modeling a smaller number of

latent longitudinal factors via a dynamic factor model. Factor models have long been used

in the fields of psychology and behavioral science to represent highly correlated outcomes
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as simpler underlying states, where these states can be interpreted as affect, motivation,

vulnerability, etc. [104, 34, 8]. Numerous variations of latent variable models have been

proposed in the statistical literature, many of which involve modeling the evolution of the

latent factors over time [77, 64, 96, 23, 76, 121, 54, 107, 78, 65]. Extending this dimension-

reduction strategy to the joint model setting, McCurdy et al. (2019) [58], Liu et al. (2019)

[53], and Larsen (2000) [47] have proposed combining factor models and hazard models

to jointly model longitudinal and time-to-event data. Liu et al. (2019) [53] modeled the

evolution of the latent factors using mixed models while McCurdy et al. (2019) [58] and

Larsen (2000) [47] did not model correlation over time. Muthén and Muthén (2017) [66]

and Asparouhov and Muthén (2018) [6] have implemented methods to fit models like that

proposed by Larsen (2000) [47] in their software Mplus but suggest an approach to estimation

that relies on numerical integration. We avoid the computational complexity of numerical

integration by using a two-stage approach. Furthermore, our use of a lower-dimensional

stochastic process to model the evolution of the latent factors falls beyond the scope of the

longitudinal models considered in these prior works.

Importantly, our proposed approach differs from the standard joint model setting due to

the partially unobservable nature of our event outcome. Rather than observing the time of

each event (or censoring), we observe total numbers of events over defined windows of time.

As a result, our joint model consists of a longitudinal submodel and an event submodel

suitable for this count data—specifically, a Poisson regression model.

3.1.2 Main Contributions and Outline

Overall, there exists a need for further development of statistical methods well-suited for ILD

that can connect multiple longitudinal outcomes with the risk of adverse events in a flexible

and interpretable manner. Rather than attempting to jointly estimate the longitudinal and

risk submodels in this work, we take a two-stage estimation approach, using weights to

alleviate potential bias that can result from non-joint estimation. Our main contribution

is the development of a scientifically useful approach to modeling multiple highly variable

longitudinal outcomes and their associations with recurrent events; we do so by combining a

dynamic factor model and a Poisson regression model for cumulative risk via an approximate

method that leverages existing software in a practically useful way.

The remainder of this paper is organized as follows: in Section 3.2, we describe the

motivating data collected as part of a smoking cessation study that uses EMAs; in Section

3.3, we outline our proposed method; in Section 3.4, we demonstrate its performance via

simulation; in Section 3.5, we use our method to analyze a subset of data recorded in the
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smoking cessation study; and in Section 3.6, we discuss our results and provide concluding

remarks.

3.2 Motivating Data

Data motivating this work come from a longitudinal study examining the influence of con-

textual, biobehavioral/psychosocial, and demographic factors; social history; and acute mo-

mentary precipitants on smoking cessation among 302 African Americans attempting to

quit (Break Free II; R01MD010362). Participants answered EMAs on a pre-programmed

smartphone from 4 days prior to their quit date through 10 days post-quit. Smartphones

were programmed to deliver up to four random EMAs per day. Participants also answered

event-contingent EMAs based on whether wearable chest and wrist sensors detected possible

smoking or stress [99, 38]. Each EMA assessed smoking behaviors, mood, and other cogni-

tive, interpersonal, and contextual factors. All participants received nicotine patch therapy,

self-help materials, and brief quitting advice [28] and were compensated for their time. De-

tailed information about study procedures have been published in Potter et al. (2023) [74].

Our work uses data that were available at the time of drafting this manuscript from 218 par-

ticipants and focuses on their psychological state (measured via emotion items) and smoking

(measured via the number of cigarettes recently smoked) self-reported using EMAs over the

10 day post-quit period. The total number of random EMAs to which individuals responded

over the post-quit period varied from 2 to 47 (average = 17). Due to the non-random deliv-

ery of event-contingent EMAs, we only use event outcome (smoking) data from these EMAs

and do not use information about the longitudinal process (emotions). Data collected from

three individuals are illustrated in Figure 3.1.

An important characteristic of these data is the way that smoking information is collected.

Each EMA—whether random or event-contingent—prompts the individual to respond to a

series of questions that capture their cigarette use in the period since the previous EMA.

We use the data to partition the days into non-overlapping time intervals. In each interval,

we either observe the count outcome (taking a 0 or positive value) or we do not observe the

count outcome and mark it as unobserved. The unobserved windows include sleep times when

the individual is assumed not “at-risk”. The partitions during which counts are observed

are called “event intervals.” A general illustration of this data structure is provided in the

Appendix (see Figure B.1).
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Figure 3.1: Plot of self-reported emotions from the random ecological momentary assessments
(EMAs) and self-reported cigarette use from all EMAs for three individuals in the smoking
cessation study. A subset of the 18 positive and negative emotions are highlighted for
illustrative purposes only. In the plot summarizing reported cigarette use, the width of
each bar corresponds to the interval over which an individual reported smoking at least one
cigarette and the height of the bar corresponds to the total number of cigarettes reported
smoked. Note that any smoking reported at a rate greater than 8 cigarettes per hour has
been truncated at 8 cigarettes per hour.
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3.3 Methods

We propose a cumulative risk model for the summarized version of the event outcome (e.g.,

cigarette counts), which we model as a function of the partially latent predictors (e.g., psy-

chological state). Although we could treat each individual EMA item (e.g., emotion) as a

measurement of its own latent factor, we instead take a dimension-reduction approach to

modeling these observed longitudinal outcomes (e.g., we assume that the emotions are mea-

surements of psychological states capturing positive and negative affect). Advantages of this

dimension-reduction approach are two-fold: (i) it improves interpretability of the cumula-

tive risk model while minimizing information loss due to the high correlation between many

observed longitudinal measurements and (ii) it increases computational efficiency by using

a low-dimensional latent process to summarize the many measured longitudinal outcomes,

rather than directly modeling them via a higher-dimensional process.

Overall, our proposed approach consists of two parts: (i) a longitudinal submodel that

summarizes the observed longitudinal outcome (e.g., emotions) as lower dimensional dynamic

latent factors (e.g., psychological states) and (ii) a cumulative risk submodel that links time-

varying latent factors with risk of recurrent events (e.g., cigarette use).

In the description of these submodels, we use the following notation: Suppose that we

have N independent individuals, indexed by i = 1, ..., N . For each individual, a set of K

longitudinal outcomes, Xi(tij) = (Xi1(tij), ..., XijK(tij))
⊤, is collected at each measurement

occasion tij, where j = 1, ..., ni. This stacked vector of longitudinal outcomes is denoted as

Xi = (X⊤
i (ti1), ...,X

⊤
i (tij), ...,X

⊤
i (tini

))⊤. At each measurement occasion, individuals also

report event intensity data, denoted by Yi(tij′ ) for individual i at time j
′
. Note that we

do not require that measurement occasions are evenly spaced or that the set measurement

occasions for the longitudinal outcomes X and event intensity outcomes Y be the same

within the same individual. Our notation currently assumes that no longitudinal outcomes

are missing within a given measurement occasion, but our model could easily be adapted to

allow for such a scenario.

3.3.1 Longitudinal Submodel

To summarize the observed emotions as a smaller number of latent psychological states,

we take the approach described in Chapter 2. We first use a dynamic factor model to

summarize the K observed EMA items (emotions) as a low-dimensional multivariate latent

process (representing psychological states), given by
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Xi(tij) = Ληi(tij) + ui + ϵi(tij)

where Λ is the K×p time-invariant loadings matrix; ηi(tij) is the value of the p-dimensional

latent process at time tij, where p << K; ui ∼ N(0,Σu) is a random intercept with diagonal

covariance matrix Σu; and ϵi(tij) ∼ N(0,Σϵ) accounts for error in the measurement of the

longitudinal outcome, with covariance matrix Σϵ also assumed to be diagonal. We make

the simplifying assumption that each observed longitudinal outcome loads onto only a single

latent factor; this means that each row of Λ only contains one non-zero element (and we

furthermore assume that the locations of the non-zero elements are known). We make

this assumption to clarify the interpretation of the model, but this assumption could be

relaxed. Domain knowledge (e.g., behavioral science theories) can be incorporated into the

structure of this submodel by using it to specify the location of the non-zero elements within

the loadings matrix. We include the outcome-specific random intercepts to account for

differences in underlying levels of reported responses across individuals. By using a diagonal

Σu, we assume that these levels are independent across outcomes and instead we capture

the correlation between the observed responses using a multivariate stochastic process for

the latent factors.

The temporal evolution of the p-dimensional latent process is then modeled with a

continuous-time multivariate OU stochastic process, which can be thought of as a continuous-

time analog of a multivariate autoregressive process. Use of this process allows us to capture

correlation within and between multiple latent factors over time. The OU process implies

that, for individual i, the marginal distribution of the latent factors across all times ti1, ..., tini

is

ηi ∼ N(0,Ψi)

where ηi = (η⊤
i (ti1), ...,η

⊤
i (tini

))⊤ and Ψi is a (pni)× (pni) covariance matrix parameter-

ized by two p× p matrices of parameters, θ and σ. The exact form of the covariance matrix

is given in Section B.2. To make this dynamic factor model identifiable, we model the OU

process on the correlation scale; for additional details, see Chapter 2.

If, for example, p = 2, then the OU process parameters are
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θ =

[
θ11 θ12

θ21 θ22

]
and σ =

[
σ11 0

0 σ22

]

We assume that the off-diagonal elements of σ are 0, which effectively forces all correlation

between the latent factors to be captured via θ; diagonal elements of σ are assumed to be

positive. The diagonal elements of θ must also be positive but the off-diagonals can take

positive or negative values; θ is also constrained to have eigenvalues with positive real parts

to ensure that the latent process is mean-reverting [112]. Lastly, we assume that this process

has a marginal mean of 0 and that it is stationary.

Together, these two submodels imply that the marginal distribution of the observed lon-

gitudinal outcome Xi for individual i is

Xi ∼ N(0,Σ∗
i ) where Σ∗

i = (Ini
⊗Λ)Ψi(Ini

⊗Λ)⊤ + (Jni
⊗Σu) + (Ini

⊗Σϵ)

where Ψi is the marginal correlation matrix of the OU process parameterized by θ and

σ, Ini
is an identity matrix of dimension ni, Jni

is an ni × ni square matrix of ones, and ⊗
denotes the Kronecker product.

This approach to jointly modeling the observed longitudinal outcomes as dynamic latent

factors and modeling the evolution of the latent factors as a multivariate OU stochastic

process has the advantage of being both a flexible model and returning unbiased estimates

of the parameters that characterized the latent process.

3.3.2 Cumulative Risk Submodel

The coarseness of the adverse health event measurements makes it challenging to estimate

the association between latent longitudinal factors and the instantaneous risk of an event.

Instead of modeling instantaneous risk, we propose a cumulative risk model for the associ-

ation between the average value of the latent factors and total number of events across a

small window of time, or event interval. Specifically, we propose using a Poisson regression

model to connect the latent factors with risk of events.

Let Yi(tij) denote the cumulative number of events recorded between times ti,j−1 and tij.

To model the intensity of events over the interval from ti,j−1 to tij as a function of the latent

process, we use
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Yi(tij) ∼ Poi ((tij − ti,j−1)λi(tij)) where log(λi(tij)) = β0 + β⊤
η

[
1

(tij − ti,j−1)

∫ tij

ti,j−1

ηi(s)ds

]

Following the bivariate latent process given as an example in Section 3.3.1, ηi(s) is a

length-2 vector that contains the values of ηi1(s) and ηi2(s) for individual i at time s over

the interval from ti,j−1 to tij. We later denote the average value of the latent process over

this interval as η̄i(tij). This allows us to re-write our model as

Yi(tij) ∼ Poi ((tij − ti,j−1)λi(tij)) where log(λi(tij)) = β0 + β⊤
η η̄i(tij)

Because we assume a stationary OU process for the latent factors, we can derive the limit-

ing distribution of this integral, which is also Gaussian. Details on this limiting distribution

are given in Section B.3. The association between the cumulative event outcome and η̄i(tij)

is captured through coefficient vector βη.

3.3.3 Estimation

In our two-stage approach to estimation, we first fit the longitudinal submodel using an

iterative block coordinate descent algorithm. This block-wise approach was developed in

Chapter 2 with the goal of improving the computational efficiency of estimation by leveraging

the availability of analytic gradients for a subset of parameters. Using results from the first

stage of estimation, we then fit a weighted version of the cumulative risk model via R’s

svyglm package [55] where the weights account for uncertainty in the average values of the

latent trajectories. This approach to the second stage of estimation, which is based on

a Monte Carlo Expectation Maximization (MCEM) algorithm with importance sampling-

based weights, involves iterating between updating the cumulative risk model coefficients

and then updating the weights.

We briefly describe the motivation for using these weights: in an ideal setting, we would

like to sample values of the latent process from the conditional distribution given the event

outcome, ηi|Yi. However, sampling from this distribution is difficult. We use weights that

are proportional to this conditional distribution to adjust for the fact that, in practice, the

values of the latent process are sampled from the marginal distribution, rather than the

conditional distribution. By applying these estimated weights to up-weight or down-weight

certain values of the latent process sampled in stage 1, we avoid the need to re-sample these

values in stage 2. Additional discussion of this approximate approach is provided in Section
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B.4.

The two stages that make up the full estimation approach are outlined below, along with

a definition of the weights.

Stage 1 :

1. Let ΘL = (Λ,Σu,Σϵ,θ,σ) be a vector containing all parameter matrices for the

longitudinal submodel. Then, initialize parameters in the longitudinal submodel:

consider both empirical initial values (based on fitting simpler models) and default

initial values and select the set of initial values that correspond to the higher log-

likelihood for the longitudinal submodel.

2. Estimate the longitudinal submodel via an iterative block coordinate descent al-

gorithm.

3. Predict the factor scores η̂i using the parameter estimates, denoted Θ̂L, from the

fitted longitudinal submodel where η̂i = E
(
ηi|Xi; Θ̂L

)
= Ψ̂i

(
Ii ⊗ Λ̂⊤

)
Σ̂∗−1

i Xi.

These factor scores are observed at longitudinal measurement occasions (e.g.,

times of the random EMAs).

4. Augment observed data by drawing a value for the event interval-specific average

of the latent factors given known values of the factors scores, η̂i, at each endpoint

of the interval; that is, sample η̄i(tij)|η̂i(ti,j−1), η̂i(tij) ∼ N
(
µ̄, Σ̄

)
. For the form

of µ̄ and Σ̄, see Section B.3. We refer to these generated average values that

augment the observed data as “synthetic values”. For each of the N individuals,

we consider r = 1, ..., R possible synthetic values per event interval.

At this point, our data consists of two parts: Yi(tij), the cumulative number of cigarettes

smoked in the interval (ti,j−1, tij]; and η̄(r)(tij), r = 1, . . . , R, the set of R possible average

values of the latent process across each interval.

Stage 2 :

1. Fit the cumulative risk model.

(a) Initialize coefficients β in the cumulative risk model by fitting a model with

uniform weights. That is, fit

Y
(r)
i (tij) ∼ Poi

(
(tij − ti,j−1)λ

(r)
i (tij)

)
and log(λ

(r)
i (tij)) = β0 + β⊤

η η̄
(r)
i (tij)

and Y
(r)
i (tij) = Yi(tij)∀r = 1, ..., R.
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(b) Given estimates β̂ =
(
β̂0, β̂

⊤
η

)
, update the weights, w

(r)
ij . Calculate weights

for each set of synthetic latent factor averages (r) where the weight for each

event interval j is calculated as

w̃
(r)
ij =Pr

(
Yi (tij) = y | η̄(r)i (tij) , β̂

)
∝e−(tij−tijj−1)λ

(r)
i (tij) (tij − ti,j−1)

(
λ
(r)
i (tij)

)y
Weights are normalized such that w

(r)
ij = w̃

(r)
ij /

∑
r w̃

(r)
ij and then again such

that
∑

i

∑
j

∑
r w

(r)
ij = N .

(c) Update the coefficients in the cumulative risk model by refitting

Yi (tij) ∼ Poi
(
(tij − ti,j−1)λ

(r)
i (tij)

)
where log

(
λ
(r)
i (tij)

)
= β0 + β⊤

η η̄
(r)
i (tij)

using weights w
(r)
ij , which upweight trajectories (indexed by r) that are more

likely given the observed event counts and the current cumulative risk model

parameter estimates β̂.

(d) Let k index iterations. Then iterate between steps b. and c. until con-

vergence, where convergence is defined as a small change in the parameter

estimates, ∣∣∣β̂(k) − β̂(k−1)
∣∣∣ < 1× 10−6

2. Estimate standard errors using the final parameter estimates β̂ and weights via

the approach described in Section 3.3.3.

When implementing stage 2 in practice, we can assume a quasi-Poisson distribution to

account for potential overdispersion in the data.

3.3.4 Inference

Estimation of standard errors for the longitudinal submodel parameters in stage 1 is straight-

forward using a Fisher information-based approach (see Chapter 2). Our approach to stage

2 estimation, however, presents a challenging setting for inference due to the need to accu-

rately capture additional uncertainty from the synthetic average values of the latent factors

and the estimated weights in the cumulative risk model. Here, we focus on inference for

stage 2 and present two approaches to standard error estimation often applied in multiple

imputation settings that account for uncertainty in parameter estimates in different manners:
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standard Rubin’s rule for combining variance estimates [97] and a bootstrap-based approach

for estimating variance in multiple imputation settings with uncongeniality or model mis-

specification [120].

When applying Rubin’s rule, we generate M imputed datasets, each of which consists

of R sets of synthetic average values for the latent factors. We then apply Rubin’s rule

in a standard manner to combine point estimates and variances across the M imputed

datasets. Variance estimates from each imputed dataset are calculated using robust sandwich

estimators to account for uncertainty due to weighting of the R synthetic values. Because

we require generating multiple average values per event interval to estimate the weights that

are used to help alleviate potential bias in our two-stage method, our data do not have the

standard structure of multiply imputed datasets. We found that this implementation of

Rubin’s rule resulted in anti-conservative estimates of standard errors and so attempted to

improve our estimates of uncertainty through use of the bootstrap-based approach.

Bartlett and Hughes (2020) [7] summarize various approaches for combining bootstrap-

ping and multiple imputation that aim to improve coverage of confidence intervals in settings

of uncongeniality or model misspecification. Among these approaches is a computationally

efficient adaptation of bootstrapping followed by imputation that was originally proposed

in von Hippel and Bartlett (2021) [120]. In this approach, called the von Hippel approach,

data are bootstrapped, multiple imputation is applied to each bootstrapped dataset, and

then the variance is estimated as a weighted sum of the mean sum of squares within and

between bootstraps. In this adaptation, the authors suggest the multiple for imputation can

be low (M = 2) for a reasonable number of bootstrapped samples (B = 200) and nominal

coverage can still be achieved. We apply this method in our setting using the suggested

number of replicates for imputation and bootstrapping. As in our implementation of Ru-

bin’s rule, we consider a single imputed dataset to consist of R synthetic average values per

event interval. To pool point estimates, we simply average across results from all M × B

imputed bootstrapped datasets.

3.4 Simulation Study

We conduct a simulation study to assess the performance of our two-stage method. Motivated

by our mHealth data, here we assumeK = 18 observed longitudinal outcomes (emotions) are

measurements of p = 2 underlying latent factors. These longitudinal outcomes are observed

for N = 200 individuals at ni measurement occasions, where ni ∼ Uniform(10, 20). The

gaps between consecutive measurements range from 1 to 2 units of time and the timing of

the measurement occasions define the endpoints of the event intervals. To generate complete
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data for each individual, we take the following approach:

1. Set true values of θ∗ and σ∗, which characterize the underlying bivariate OU stochastic

process, and generate values of the latent factors at each measurement occasion.

(a) We consider two sets of true values for θ∗ and σ∗; one set corresponds to an

OU process with higher autocorrelation and the other set corresponds to an OU

process with lower autocorrelation.

2. Using the measurements of the true latent factors, generate true values for the observed

longitudinal outcome, Xi, also at the measurement occasions.

(a) In this simulation study, we consider only a single set of true values for the

parameters Λ∗,Σ∗
u,Σ

∗
ϵ in the longitudinal submodel. We assume that each row

of Λ∗ only contains one non-zero element and that Σ∗
u and Σ∗

ϵ are diagonal.

3. Using true values of θ∗ and σ∗, generate a single set of true average values of the latent

process η̄∗i , given the values of the factors at the measurement occasions, across each

event interval.

4. Then, generate cumulative numbers of events that occurred across each event interval

using the average value of each trajectory within the bivariate latent process by drawing

from a Poisson distribution with true mean,

λ∗i (tij) = (tij − ti,j−1) exp {β∗
0 + β∗

1 η̃
∗
i1 (tij) + β∗

2 η̃
∗
i2 (tij)}

where β∗
0 , β

∗
1 , β

∗
2 are chosen such that, given η∗

1 and η∗
2, the average event rate is close

to observed smoking rate in the mHealth data described in Section 3.2.

From these complete data, we then assume the observed data consist of: (a) the timing

of the measurement occasions that define the event intervals, (b) the longitudinal outcomes

measured at those occasions, and (c) the cumulative number of events that occurred within

each event interval. For the true values of the parameters used to generate these data,

see Section B.5. We then carry out the estimation and inference approaches described in

Sections 3.3.3 and 3.3.4.

In our simulations, we generate R = 50 possible values for the average of the latent factors

over each event interval (i.e., η̄
(r)
i (tij), r = 1, ..., R = 50). When calculating standard errors

using the scaled von Hippel approach, we assume M = 2 imputed datasets (each of which

consist of R = 50 synthetic average values per event interval) and B = 200 bootstrapped

samples, as recommended in Bartlett and Hughes (2020) [7].

41



−2.5

−2.4

−2.3

−2.2

−2.1

Setting 1 Setting 2
 

β̂0

−0.9

−0.7

−0.5

−0.3

Setting 1 Setting 2
 

β̂1

0.6

0.8

1.0

Setting 1 Setting 2
 

β̂2

Figure 3.2: Box plots of point estimates of cumulative risk model parameters from simulation
study. True values are indicated with black dots. Setting 1 corresponds to data generated
from a true stochastic process with low noise and high correlation (i.e., estimation should
be easier) and setting 2 corresponds to data generated with high noise and low correlation
(i.e., estimation should be more difficult in this setting).

We simulate 100 datasets and summarize results across these replicates. We only consider

100 replicates because bootstrapping is computationally expensive. Point estimates from

stage 1 are summarized in Figure B.3. For stage 2, we report point estimates in Figure 3.2 and

summarize coverage rates for confidence intervals calculated using standard error estimates

from Rubin’s rule and the von Hippel approach in Table 3.1. We find that we consistently

recover unbiased estimates of the coefficients in all submodels. For the cumulative risk

submodel, coverage rates of the confidence interval show that, in our setting, Rubin’s rule

returns confidence intervals that are occasionally anti-conservative while the von Hippel

approach results in confidence intervals with closer-to-nominal coverage. Based on additional

empirical results, we find that a large value of R (e.g., R = 50) helps reduce bias in our point

estimates. Additional discussion of the choice of R is provided in Section B.5.2.
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 1 
Table 1: Coverage rates (%) for 95% confidence intervals for the cumulative risk submodel 2 
parameters in the simulation study. Coverage rates (CRs) are averaged across 100 datasets. CRs 3 
that fall outside of the range of values expected based on a 95% binomial proportion confidence 4 
interval are in bold font. Given that we have calculated the CR for 12 coefficients in each setting 5 
(using 80% and 95% confidence intervals), we would expect 0-1 of the CRs to fall outside of the 6 
expected range of values from the 95% binomial proportion confidence interval. Abbreviations: 7 
Rubin’s Rule (RR), von Hippel (VH). 8 
 9 

CR Coef. Setting 1: high correlation Setting 2: low correlation 
RR VH RR VH 

80% 
β0 69 71 80 82 
β1 82 85 73 81 
β2 80 82 67 73 

95% 
β0 89 89 94 94 
β1 96 96 91 94 
β2 95 99 85 92 

 10 
Table 3.1: Coverage rates (%) for 95% confidence intervals for the cumulative risk submodel
parameters in the simulation study. Coverage rates (CRs) are averaged across 100 datasets.
CRs that fall outside of the range of values expected based on a 95% binomial proportion
confidence interval are in bold font. Given that we have calculated the CR for 12 coefficients
in each setting (using 80% and 95% confidence intervals), we would expect 0-1 of the CRs
to fall outside of the expected range of values from the 95% binomial proportion confidence
interval. Abbreviations: Rubin’s Rule (RR), von Hippel (VH).

3.5 Application to Smoking Cessation Data

To illustrate this method, we apply it to a subset of data collected from the Break Free

II study described earlier (Section 3.2). Our event outcome for the cumulative risk model

is the self-reported total number of cigarettes smoked over repeated event intervals, where

these intervals of time are defined by individuals’ responses to the smoking-related EMA

questions. Due to uncertainty surrounding the exact time at which each individual attempts

to quit smoking, we restrict the cumulative risk model to use only data that were collected 24

hours after the designated quit date. This approach is intended to minimize the accidental

inclusion of cigarette use that preceded quit. Furthermore, if a participant failed to respond

to any EMA for a long period of time (i.e., more than 24 hours), we designated them only

“at-risk” within the 24 hours prior to the most recent EMA. As a result, we assumed that

data were missing-at-random when fitting the cumulative risk model. We also truncated

self-reported cigarette use at a maximum rate of 8 cigarettes per hour; this value of 8 was

selected based on domain knowledge of how many cigarettes a heavy smoker could reasonably

smoke in an hour.

The observed outcomes used for the longitudinal submodel included the intensity of 18

emotions (listed in Figure 3.1). Although each random EMA assessed the intensity of a total

of 23 emotions, our illustrative analysis included only 18 emotions due to computational

constraints. These 18 emotions were selected by fitting the longitudinal submodel to the 6

emotions with the highest loadings based on a cross-sectional factor model and then gradually
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adding emotions from the remaining 17 until computational cost became prohibitive. We

assume that the 18 emotions are observed measurements of two latent factors that represent

the psychological constructs of positive affect and negative affect [86]. We also assume that

structural zeros within the loadings matrix of the longitudinal submodel are known, meaning

that positive emotions are measurements of only positive affect and negative emotions are

measurements of only negative affect. Thus, correlation between positive and negative affect

is captured entirely through the multivariate latent process representing these unobservable

affective states. The cumulative risk model is,

Yi (tij) ∼ Poi ((tij − ti,j−1)λi (tij))

log (λi (tij)) = β0 + β1PAi (tij) + β2NAi (tij) + β3qij + β4PAi (tij)× qij + β5NAi (tij)× qij

where PA indicates average positive affect across event interval tij, NA represents average

negative affect, time qij corresponds to the midpoint time of event interval tij and is in units

of weeks since quit, and the outcome Yi(tij) has units of cigarettes smoked per hour. As a

result of the identifiability constraint on the longitudinal submodel, a one-unit change in PA

or NA corresponds to one standard deviation.

We previously applied the stage 1 longitudinal submodel to all available post-quit data

in Chapter 2 and use these existing results here. Because we previously considered all

post-quit emotion data when fitting the longitudinal submodel, our analyses included N =

218 individuals. However, since in the current illustrative analysis we have restricted the

data to 24 hours post-quit, our sample size reduces to the subset of N = 214 individuals

because responses for four individuals were only available in the first 24 hours post-quit. As

these individuals contributed such limited information, we do not believe that the impact

of including/excluding their emotion data when estimating the population-level parameters

of the longitudinal submodel would substantially impact the results. Point estimates and

confidence intervals for the longitudinal submodel are given in the Appendix (Figure B.6).

Thus, we use results from previous application of the longitudinal submodel as our stage 1

results here.

In our estimation algorithm, we generate R = 50 synthetic average values of the latent

factors for each event interval. For inference, we assume M = 2 and B = 200 as in the

simulation study.

In Figure 3.3, we report point estimates and confidence intervals (on the log scale) from

the fitted cumulative risk model. These confidence intervals are based on standard errors

from the von Hippel approach. The point estimates indicate that above average levels of

negative affect (where a value of 0 corresponds to the average) are associated with increased
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Figure 3.3: Point estimates and 95% confidence intervals for cumulative risk model pa-
rameters applied to mHealth smoking cessation study data. Error bars correspond to 95%
confidence intervals calculated from von Hippel standard error estimates using R = 50,
M = 2, and B = 200. Abbreviations: positive affect (PA), negative affect (NA).

smoking but the association between negative affect and smoking decays over time. The

positive association between higher negative affect and increased smoking could be explained

by smoking being used as a tool for coping with high stress or negative feelings. But given

the observational nature of these data, and since the relative ordering of affective state and

cigarettes smoked is unknown, we can only draw conclusions about associations and not

causal effects. As such, other explanations may be plausible as this application does not

distinguish between affect as a driver of cigarette use vs. changes in affect resulting from

cigarette use.

Figure 3.4 illustrates trends in the association between smoking and positive and negative

affect over time. This figure allows us to evaluate changes over time in expected smoking

rates across hypothetical individuals with (a) average positive and negative affect (PA = 0,

NA = 0), (b) above-average positive affect and below-average negative affect (PA = 1, NA =

-1), or (c) below-average positive affect and above-average negative affect (PA = -1, NA = 1).

Based on these results, the difference in expected smoking rates by affective state increases

over time; however, all 95% confidence intervals overlap. Note that confidence intervals

presented in this figure are point-wise confidence intervals calculated using standard errors

from the von Hippel approach.
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Figure 3.4: Expected smoking rate (in units of cigarettes per 12 hour interval) using esti-
mated coefficients and assuming constant values of either (a) average positive affect (PA =
0) and average negative affect (NA = 0), (b) above-average positive affect (PA = 1) and
below-average negative affect (NA = -1), or (c) below-average positive affect (PA = -1) and
above-average negative affect (NA = 1). This figure illustrates the difference in expected
smoking rates at a fixed time point under different hypothetical levels of positive and neg-
ative affect. Dotted lines indicate 95% point-wise confidence intervals estimated using von
Hippel standard errors.
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3.6 Discussion

In this paper, we proposed a two-stage approach for analyzing longitudinal EMA data to

determine how longitudinal outcomes (in our case, emotions) are associated with increased

risk of repeated events (here, intensity of cigarette use). We present a two-stage approach to

fitting a longitudinal submodel—a dynamic factor model—that summarizes the time-varying

dynamics of multiple measured longitudinal outcomes as a lower dimensional stochastic pro-

cess and a cumulative risk model—a Poisson regression model—that captures the association

between latent factors represented by the stochastic process and a count outcome. We use

weights to address the partially unobservable nature of both the outcome and predictors and

to reduce potential bias in our two-stage approach to estimation.

Readers may be concerned that we take a two-stage approach to fitting our model, which

is commonly known to result in biased estimates of coefficients. We argue, however, that the

focus of this paper is on the development of a practical method and this two-stage approach

allows us to leverage existing methods and software. We include weights in our cumulative

risk submodel, which seems to help alleviate bias. Readers might also express concern

about our use of MCEM, which relies on approximations rather than direct maximization

of the likelihood from our model. Because we assume that our count outcome follows a

Poisson distribution, the complexity of our likelihood increases. We take advantage of the

approximations with MCEM to greatly simplify the computations involved in the second

stage of estimation. Our empirical investigations indicate that these approximations are close

enough to yield unbiased estimates in our setting; however, future work could include the

development of a computationally efficient approach for directly maximizing the likelihood in

the two-stage approach or jointly estimating the longitudinal and cumulative risk submodels.

One might argue that if computational cost is a concern that inhibits use of joint models

in practice, then why not fit a three-part model consisting of a cross-sectional factor model,

a stochastic process fit to factor scores, and then the risk model? Through simulation,

we found that treating the predicted factor scores as observed values of the latent process

and then trying to estimate the OU process using those predicted factor scores resulted in

poor estimates of the stochastic process parameters and thus biased coefficient estimates

in our risk model. Stage 1 estimation does contribute a large portion of our method’s

computation time (see Figure B.5 in the Appendix for computation by stage). However,

the method that we use for the first stage of estimation was shown in Chapter 2 (Section

A.11) to require substantially less computation time than an alternative approach to fitting

a similar model proposed in [112]. Although both the first stage of estimation and the

bootstrapping within the second stage of estimation requires a significant amount of time,
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stage 2 only takes approximately 6 minutes to return point estimates in the simulation

study. Our ability to use off-the-shelf software in stage 2 means that the computational cost

of this stage is low enough to easily allow for estimation of bootstrap-based standard errors.

That is, while the bootstrap-based method for standard error estimation is computationally

demanding, accurate estimation of standard errors is only possible because each subroutine

(i.e., fitting each weighted Poisson model) is fast enough and easy to implement. Thus,

exploration of various combinations, interactions, and parameterizations of the latent states

in the cumulative risk model is feasible from a practical point of view.

Through simulation, we found that taking a standard likelihood-based approach to infer-

ence of the cumulative risk submodel parameters via Fisher information resulted in underes-

timates of standard errors and thus confidence intervals with low coverage. To improve our

ability to fully capture the uncertainty of these point estimates, we then tried adjusting our

standard error estimates via an application of Rubin’s rule and the von Hippel approach.

Our estimation approach does not fit into standard scenarios addressed by the Rubin’s rule

and so this approach resulted in occasional under-coverage. We found that the bootstrap-

based von Hippel approach was slightly better at accurately capturing the uncertainty in

our point estimates, although future work could include developing an approach that further

improves our ability to quantify uncertainty. Through simulation studies, we found that

coverage of confidence intervals is not sensitive to the choice of R. Development of an alter-

native method for standard error estimation could be a useful direction for future work, as

it would avoid the added computation time of bootstrapping.

In our formulation of the longitudinal dynamic factor model, we assume that the loca-

tions of structural zeros within the loadings matrix are known. Behavioral science theories

regarding how emotions relate to each other can be used to justify the locations of these

zeros in our setting (e.g., [95, 84, 85, 86, 32, 59]). While our work could be extended to

allow for estimation of an entirely non-null loadings matrix, this extension would present

additional challenges related to model identifiability and interpretation; however, it would

likely be useful in other setting in which scientific evidence for informing the structure of

the loadings matrix is limited. In addition to specifying the locations of the structural ze-

ros, we also require the number of latent factors (p) to be pre-specified. In our motivating

application, use of two latent factors is a natural choice. However, if selecting the optimal

number of latent factors for summarizing the observed longitudinal data is of interest, AIC

and BIC could be used; we suggest using BIC as it tends to error on the side of selecting a

slightly simpler model. For more discussion on using AIC and BIC to compare longitudinal

submodels with different numbers of latent factors, please see Chapter 2. A further extension

could integrate a data-driven approach for selecting the number of latent factors into the
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estimation algorithm.

Importantly, our proposed method does not allow us to make any inference about the order

of the values of latent affect states and occurrence of adverse health events; the method only

provides information about associations. This limitation results, in part, from the modeling

decision that we made to account for the partially unobservable nature of both the events

of interest and longitudinal predictors recorded in the data. The observational nature of

the data limits the ability to make causal conclusions about how affect impacts smoking,

regardless of how the models are fitted (i.e., jointly or separately). Nonetheless, this method

enables investigators to model multiple dynamic states of risk and their correlation with

adverse health events in a way that can advance behavioral theory and generate hypotheses

that can be tested in future research. For example, the results can guide the construction

of JITAIs [67, 70] designed to target the newly identified states that are correlated with

increased risk, and inform the development of MRTs that investigate the utility of delivering

(vs. not delivering) these interventions.
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CHAPTER 4

A Bayesian Joint Longitudinal-Survival

Model with a Latent Stochastic Process for

Intensive Longitudinal Data

4.1 Introduction

mHealth technology enables researchers to record longitudinal changes in a variety of biomed-

ical indicators that capture temporal variations in harder-to-measure underlying states. The

potentially high frequency of these measurements allows researchers to gain insight into

short- and long-term patterns of change in underlying health-related states, such as mood,

cognitive function, or disease severity. Here, we use the existing term “intensive longitudinal

data” (ILD) to refer to data consisting of multiple outcomes recorded frequently over time.

When these ILD are combined with information on the occurrence of time-to-event outcomes,

the ILD can provide insight into factors that elevate the risk of an event. Motivated by ILD

and event-time data collected in an mHealth study of smoking cessation, we propose a novel

approach for jointly modeling a time-to-event outcome and multiple frequently measured—

and possibly rapidly varying—longitudinal outcomes. The key contribution of this work is

the development of a joint model suitable for analyzing multivariate ILD. Specifically, we

use a multivariate continuous-time stochastic process to (a) flexibly model a smaller number

of highly variable latent factors measured through a larger number of longitudinal outcomes

and (b) represent risk of a time-to-event outcome by incorporating the latent factors as a

time-varying covariates in a hazard model.

4.1.1 Related Work

Joint longitudinal-survival models are powerful tools for enabling estimation of the associ-

ation between temporal variations in longitudinal outcomes and the risk of time-to-event
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outcomes. A classic joint longitudinal-survival model consists of two parts: a longitudinal

submodel and a survival submodel. Joint models attempt to account for the intermittent

measurement of the longitudinal outcomes, measurement error, and informative drop-out.

For a comprehensive review of joint models, see Tsiatis and Davidian (2004) [114]. A ma-

jor challenge to the use of joint models in practice is their computational cost, which rises

rapidly as the number of longitudinal outcomes increases. This increasing cost is due to

the need to evaluate complex and often intractable integrals across the unobserved random

effects in the longitudinal submodel, as well as in the survival function.

Existing literature for jointly modeling multivariate longitudinal outcomes and time-to-

event outcomes contains a variety of strategies for dealing with long computation times.

These strategies work within both frequentist and Bayesian frameworks. Variations of the

two-stage approach—which involves first fitting the longitudinal submodel and then incor-

porated predicted values (e.g., BLUPS) from the longitudinal submodel as time-varying

covariates in the survival submodel—have often been used in settings with multivariate

longitudinal outcomes due to the computational speed (e.g., [49, 102, 44]). A well-known

drawback of the two-stage approach is the risk of bias in coefficient estimates and so adap-

tations with bias corrections have also been proposed (e.g., [5, 24, 57]). Despite the lower

computation time required by the two-stage approach, most existing work has not focused

on the ILD setting and so approaches have not been developed specifically for large numbers

of longitudinal outcomes.

As an alternative to the two-stage approach, strategies for joint estimation have also

been developed for modeling multiple longitudinal outcomes and a time-to-event outcome.

Many of these existing approaches have leveraged dimension-reduction tools to help lower

computation time. Li and Luo (2019) [49] and Li et al. (2021) [50], for example, proposed

joint models in which multiple longitudinal outcomes are summarized using variations of

functional principal components analysis (PCA). Factor models, and related approaches

such as item response models, have also been used to reduce the dimension of the longitudinal

outcomes in the joint model setting; e.g., [35, 52, 43]. In these instances, the latent factors

that summarize the multiple longitudinal outcomes are then used as time-varying covariates

in the survival submodel.

Regardless of whether a dimension-reduction strategy is used to help handle the multiple

longitudinal outcomes, a longitudinal submodel must also be specified (either for the latent

factors representing summary states or for the observed longitudinal outcomes directly).

Simple longitudinal submodels allow for easier integration within the joint estimation frame-

work but with ILD, the larger number of longitudinal measurements allows for specification

of a more flexible—and potentially complicated—longitudinal submodel. Numerous spline-
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based approaches have been developed as a flexible way to model the longitudinal process;

e.g., [13, 63, 90, 43, 50, 103, 108, 44, 126]. Gaussian processes have also been incorporated

into the longitudinal submodel to capture important patterns, such as serial correlation; e.g.,

[78, 37].

Although substantial developments have been made in methods for jointly modeling mul-

tivariate longitudinal outcomes and survival data, little of this work has focused specifically

on the setting of ILD. Rathbun et al. (2013) [83] propose an alternative sampling-based

approach for jointly modeling multiple longitudinal outcomes and a time-to-event outcome.

Their work is motivated by data collected in an mHealth study and is suitable for analyzing

ILD. To deal with the high computational cost of ILD, they avoid specifying a longitudinal

submodel altogether through a sampling-based approach. While this approach is computa-

tionally fast, the lack of a longitudinal submodel inhibits modeling of measurement error,

which we believe is important to account for in our—and many other—settings. More re-

cently, Wong et al. (2022) [126] developed an EM-based approach for non-parametric maxi-

mum likelihood estimation of a flexible spline-based joint model. Although this approach was

not motivated by ILD, the authors suggest that their method would work with many longi-

tudinal outcomes. This approach, however, does not involve any dimension-reduction of the

observed longitudinal outcomes, which are then modeled non-parametrically with splines.

In the ILD setting, summarizing the many—and possibly highly correlated—longitudinal

outcomes as scientifically meaningful dynamic latent factors has the potential to improve

the interpretability of states associated with changes in the risk of an event.

4.1.2 Main Contributions and Outline

We propose a joint model for ILD that is novel in its specific combination of three submodels.

As in existing literature, we take a dimension reduction strategy: rather than using PCA, we

use a factor model as it allows more incorporation of scientific understanding into the struc-

ture of the model and into the interpretation of the latent factors themselves. Rather than

using splines to model the change in multiple latent factors over time, we use a continuous-

time multivariate stochastic process; this approach allows us the flexibility to capture abrupt

changes in multiple correlated latent factors over time but avoids the complexity of specify-

ing the number and location of knots as in a spline-based approach. We then incorporate the

latent factors as time-varying covariates in a hazard regression model. To fit our model, we

take a Bayesian approach, which allows us to avoid the need to evaluate complex integrals

over a multivariate continuous-time stochastic process. Altogether, this approach enables

joint modeling of multivariate ILD and a time-to-event outcome via the novel combination
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of a dynamic factor model, multivariate stochastic process, and hazard regression model.

To the best of our knowledge, the combination of these three submodels with an estimation

approach suitable for ILD does not exist in the current literature.

The remainder of this paper is organized as follows: in Section 4.2, we briefly introduce

the mHealth smoking cessation study motivating this work; in Section 4.3, we describe

our joint model and a corresponding strategy for estimation and inference; in Section 4.4,

we demonstrate the performance of our method via simulation; in Section 4.5, we use our

method to analyze data from the smoking cessation study; and in Section 4.6, we provide a

discussion.

4.2 Motivating Data

Data motivating this work come from a Houston-based mHealth study. This longitudinal

observational cohort study, which ran between 2005 and 2007, followed established smokers

for four weeks after they attempted to quit smoking. This study, called CARE, has been

previously described in other publications (e.g., [14, 119]). During the study, the current state

and context of individuals were assessed in real time using EMAs. These EMAs were carried

out via surveys sent to mobile Palmtop Personal Computers that prompted individuals to

respond to a series of questions capturing their current emotional state and recent cigarette

use, among a variety of other social and contextual factors. These EMAs were intended

to be sent randomly at four occasions each day. In addition to random EMAs, individuals

were instructed to self-initiate EMAs in certain situations (e.g, when feeling a strong urge to

smoke, or immediately before or after smoking). We only use information on the longitudinal

emotional states reported in the random EMAs. During the four-week post-quit period,

individuals responded to an average of 34.3 random EMAs (median = 21.5, range = 1–122).

We analyze the 5-point Likert scale responses to the set of nine questions that assessed

the current intensity of six negative emotions and three positive emotions over time. The

association between smoking and both positive and negative emotions is well-documented

in the behavioral science and smoking cessation literature; for example, Vinci et al. (2017)

[119] show that positive emotions are associated with a lower likelihood of smoking lapse

and Potter et al. (2023) [73] demonstrate that negative emotions are associated with a

higher risk of lapse. As such, we aim to use our model to investigate the association between

positive and negative affect (a psychological concept related to mood), as captured by the

nine emotions measured longitudinally, and the time-to-event outcome of first smoking lapse

after attempted quit. Longitudinal responses for one individual are plotted in Figure 4.1.

We define time-to-lapse as the time until the first episode of cigarette use after attempted
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Figure 4.1: Longitudinal responses to the 9 emotion-related questions for one individual in
the smoking cessation study. This individual experienced their first post-quit lapse on day
13.9.

quit. To determine the timing of this event, we use information about cigarette use collected

from both the random and self-initiated EMAs. Due to uncertainty in the exact time of quit,

we restrict our analysis to the subset of individuals who do not report any cigarette use in

the first 12 hours after quit (i.e., within 12 hours of the pre-specified 4am quit time on their

recorded quit day). Our analytic sample consists of 238 individuals who also responded to

the emotion-related questions in at least one random EMA after the first 12 hours of the

study. The time point of 4pm on the recorded quit date serves as time zero in our analysis.

In the four weeks of follow-up, 71% of individuals are observed to have lapsed; the remaining

29% are censored either at the time of the final EMA to which they responded or at the end

of the study. A Kaplan-Meier plot of time-to-lapse is presented in Figure C.9.
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4.3 Methods

Our proposed joint model consists of three submodels: (i) a measurement submodel, (ii)

a structural submodel, and (iii) an event-time submodel. Before describing these models

in detail, we first define some notation. Suppose that our data contain information on

i = 1, ..., N individuals. For individual i, longitudinal outcomes Yi(tij) are measured at

occasions j = 1, ..., ni, where Yi(tij) is a vector of length K containing all measurements of

the K longitudinal outcomes at time tij. Let Yi be a (K × ni)-length vector that contains

all measurements of the longitudinal outcomes over the ni occasions. We assume that the

longitudinal outcomes are (possibly noisy) observations of a smaller number of p underlying

states, represented by p-length vector ηi(tij). We let Ti and δi denote the observed event

time and censoring indicator for individual i, where Ti = min(T̃i, Ci), δi = I(T̃i ≤ Ci) using

T̃i as the true event time and Ci as the censoring time.

4.3.1 Measurement Submodel

To model the set of K longitudinal outcomes observed for individual i at time tij, we use a

dynamic factor model. This model is closely related to that developed in Tran et al. (2021)

[112] and was also previously presented in Chapter 2. The dynamic factor model is written

as Yi(tij) = Ληi(tij) + ui + ϵi(tij), where Λ is a K × p-dimensional loading matrix and

ηi(tij) is p-length vector containing the current values of the p latent factors at time t, with

p << K. We make the simplifying assumption that Λ contains structural zeros and that

the location of these structural zeros are known; that is, we assume that we know which

of the longitudinal outcomes is a measurement of which of the p latent factors and that

each longitudinal outcome measures only a single latent factor. In the motivating study,

this assumed structure of Λ is supported by behavioral science theories that relate certain

emotions with certain underlying psychological states. To account for the correlation in

repeated measurements, we include ui ∼ NK(0,Σu) as an item-specified random intercept.

ϵi(tij) ∼ NK(0,Σϵ) accounts for measurement error. We assume that ui and ϵi(tij) are

independent and that Σu and Σϵ are diagonal matrices. We include the random intercept ui

to account for differences in underlying levels of the measured longitudinal outcomes across

individuals but then use the structural submodel to model correlated change over time.

4.3.2 Structural Submodel

The longitudinal evolution of the p latent factors is assumed to follow a p-dimensional mul-

tivariate OU stochastic process. The OU process can be thought of as a continuous-time
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version of a multivariate autoregressive process and thus is suitable for modeling data with

unevenly spaced measurement occasions. We assume that the OU process is stationary

with a marginal mean of 0 and is parameterized by two p × p-dimensional matrices, θOU

and σOU . To ensure a mean-reverting OU process, θOU is required to have eigenvalues

with positive real parts, as discussed in [112]. σOU must have all positive elements. As-

suming that the initial value of the latent process, ηi(ti1), is drawn from Np(0,V ), where

V = vec−1
{
(θOU ⊕ θOU)

−1vec(σOUσ
⊤
OU)
}
, then for j = 2, ..., ni,

ηi(tij)|ηi(ti,j−1) ∼ Np

(
e−θOU (ti,j−ti,j−1)ηi(ti,j−1),V − e−θOU (ti,j−ti,j−1)V e−θ⊤

OU (ti,j−ti,j−1)
)

Together, the measurement and structural model imply that

Yi(tij)|ηi(tij),ui ∼ NK (Ληi(tij) + ui,Σϵ)

When describing the joint longitudinal-survival model that will capture the risk of event-

time outcomes as a function of the time-varying latent factors, we will refer to the combined

structural and measurement submodels as our longitudinal submodel.

4.3.3 Survival Submodel

We take a parametric approach to modeling the risk of an event and use the time-varying

values of the latent factors to capture vulnerability to the outcome of interest. We define our

hazard model as: hi (t|Hi(t)) = h0(t;γ) exp
{
f(Hi(t);β) +αXi

}
where Hi(t) = {ηi(s), 0 ≤

s ≤ t} is the history of the latent process up until time t, h0(t) is a parametric baseline

hazard function with parameter vector γ, and Xi is a vector of baseline covariates with

coefficients contained in α. We write the hazard as a general function of the history of

the latent process, f(Hi(t);β), to allow for flexibility in how the association between the

instantaneous risk of an event and the latent process is modeled. For example, we could

simply use f(Hi(t);β) = β⊤ηi(t) or we could choose a more complicated function such as

f(Hi(t);β) = β⊤ ∫ t
s
ηi(u)du.

4.3.4 Likelihood

We make the following assumptions, which are variations of assumptions standard in the

joint longitudinal-survival literature: (i) the timing of the longitudinal measurements and

censoring is non-informative; (ii) given the random effects and latent factors, the observed

longitudinal outcomes and time-to-event outcomes are independent; (iii) conditional on the

random effects and latent factors, the observed longitudinal outcomes within an individual
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are also independent across time; (iv) the latent factors, random effects, and measurement

error are independent. Using these assumptions, the joint log-likelihood of our observed data

can be written as

logp(T , δ,Y ;Θ) =
N∑
i=1

log

{∫
p(Ti, δi|ηi;ΘT )

[∫
p(Yi|ηi,ui;ΘM)p(ui;ΘM)dui

]

· p(ηi;ΘS)dηi

} (4.1)

where p(Ti, δi|ηi,ΘT ) = hi(Ti|Hi(t))
δiexp

{
−
∫ Ti
0
hi(s)ds

}
and Θ = (ΘT ,ΘM ,ΘS) contains

all unknown parameters, with ΘT = (β,α,γ), ΘM = (Λ,Σu,Σϵ), and ΘS = (θOU ,σOU).

The main challenges to fitting our model stem from two integrals in the likelihood: one

over the multivariate OU stochastic process and another within the survival function. For the

integral over the multivariate OU process, we could use Monte Carlo integration or the fully

exponential Laplace approximation [93]; instead, we opt for a fully Bayesian approach. We

use Hamiltonian Monte Carlo (HMC) sampling as implemented in the software Stan [18]. In

the following paragraphs, we address additional challenges stemming from the large number

of latent variables in our model, identification of the longitudinal submodel parameters, and

calculation of the survival function.

Reducing the number of latent variables: We could write the distribution of the

observed longitudinal outcome conditional on all latent variables (i.e., the latent factors and

the random intercept) as in Equation 4.1. However, attempting to estimate so many latent

parameters within Stan is challenging and we found that using the likelihood in Equation 4.1

resulted in Monte Carlo samples with very poor mixing and high computational cost. With

this parameterization of the likelihood, the number of parameters also increases by N +2 for

each additional longitudinal outcome, which is potentially problematic in the ILD setting.

To reduce the number of parameters that we need to sample, we can instead integrate the

distribution of the observed longitudinal outcome over the random intercept so that the

likelihood is conditional only on the latent factors. That is, the longitudinal component of

the likelihood in our joint model is Yi|ηi, rather than Yi|ηi,ui. As a result, our posterior

distribution becomes

p(ηi,Θ) ∝
N∏
i=1

p(Ti, δi|ηi,Θ)p(Yi|ηi,Θ)p(ηi|Θ)p(Θ) (4.2)

where Yi|ηi ∼ NK×ni
((Ini

⊗Λ)ηi, (Jni
⊗Σu) + (Ini

⊗Σϵ)), ⊗ is a Kronecker product, Jni
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is a ni-dimensional matrix of ones, and Ini
is a ni-dimensional identity matrix. This posterior

distribution now only involves the covariance matrix of the random intercept, Σu, rather than

the random intercepts themselves.

Identifying the longitudinal submodel parameters: Because we use a dynamic factor

model as our longitudinal submodel, we require additional assumptions to identify both

the loadings matrix Λ and the structural submodel parameters θOU and σOU . Common

approaches to identifiability of factor models include either fixing the scale of the loadings

matrix or fixing the scale of the latent factors; here, we fix the scale of the latent factors by

modeling them on the correlation scale. In Tran et al. (2021) [112], the authors incorporated

an OU process into a dynamic factor model and, rather than directly estimating θOU and

σOU , they estimated θOU and the stationary correlation matrix of the OU process, V . We

take the same approach here and parameterize our OU process in terms of θOU and ρ, where

ρ is vector of unknown parameters corresponding to the off-diagonals of V . Converting

between the (θOU ,σOU) and (θOU ,ρ) parameterizations of the OU process is straightforward

(see Section C.1.1).

Calculating the survival function: The final challenge to fitting our model involves

calculating the survival function. In our likelihood, evaluating the term corresponding to

the survival submodel, p(Ti, δi|ηi;Θ), requires integrating over the hazard function, which

depends on values of the latent factors at all times from 0 to Ti. We approximate this integral

using a sum across small but discrete time intervals via a midpoint rule. For example,

consider a simple hazard model that depends on a constant baseline hazard and the current

values of two latent factors: hi(t|Hi(t)) = exp{β0+β1η1i(t)+β2η2i(t)}. Then, we approximate

the survival function as

p(Ti, δi|Hi(t)) = hi(Ti|Hi(t))
δiexp

{
−
∫ Ti

0

hi(s)ds

}
(4.3)

≈ hi(Ti|Hi(t))
δiexp

{
−

Mi∑
m=1

1

2
[hi(sm−1) + hi(sm)](sm − sm−1)

}
(4.4)

where sm,m = 1, ...,Mi correspond to times on a fine grid of Mi points going from s0 = 0

to sMi
= Ti. Note that the integral in Equation 4.3 would be straightforward to evaluate if

the latent factors were modeled using a mixed model with a linear term for time. Because

we use a continuous time OU stochastic process to model the evolution of the latent factors,

we must integrate over a complicated function of time and so we use this midpoint approach

to approximate the integral instead. In practice, this grid is made up of both measurement
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times and additional grid points. We discuss how to determine the density of this grid and

how to distribute each individual’s set of Mi points from 0 to Ti later in Section 4.4.1.

4.4 Simulation Study

To investigate the empirical performance of our proposed method, we assess the bias of

point estimates and coverage of credible intervals via simulation. We use the design of the

mHealth smoking cessation study described in Section 4.2 to inform our simulation study.

We set the sample size of a single simulated dataset to N = 200 individuals. We assume that

K = 4 longitudinal outcomes are measured repeatedly over time, where the maximum follow-

up time is 28 days and the specific pattern of measurements varies across four difference

scenarios. For each of the four measurement scenarios, we generate data under two different

sets of true parameters (called setting 1 and setting 2). Setting 1 corresponds to a true OU

process with higher correlation and setting 2 corresponds to a true OU process with lower

correlation. All data-generating parameters are given in Section C.2.2.

All individuals are assumed to have one measurement occasion at baseline. We assume

that the K = 4 observed longitudinal outcomes, Yi, are measurements of two latent factors,

η1 and η2, where Yi(t) ∼ NK (Ληi(t) + ui,Σϵ). Our placement of the structural zeros within

Λ means that Y1 and Y2 are measurements of η1 and that Y3 and Y4 are measurements of

η2. We assume that the true hazard model that underlies our observed events is hi(t) =

exp
{
β0 + β1η1i(t) + β2η2i(t)

}
.

The number of times that the longitudinal outcomes are observed varies by setting (i.e.,

true parameter values) and by measurement pattern, as summarized below.

Pattern 1: Measurements occur frequently and with constant probability. Individuals

have an average of 19 and 25 longitudinal measurements in setting 1 and 2, respectively.

Pattern 2: Measurements occur less frequently but still with constant probability.

Individuals have an average of 6 and 5 longitudinal measurements in setting 1 and 2,

respectively.

Pattern 3: Measurements are distributed according to the measurement times boot-

strapped from the motivating mHealth study, CARE. Individuals have an average of

34 and 38 longitudinal measurements in setting 1 and 2, respectively.

Pattern 4: Measurements are clustered together and distributed according to prob-

abilities following a truncated cosine function of time. Individuals have an average of

30 and 21 longitudinal measurements in setting 1 and 2, respectively.
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Across the 100 simulated datasets in each setting with measurement patterns 1, 2, and 4,

the observed event rates are, on average, 75% in setting 1 and 71% in setting 2. Simulated

datasets with measurement pattern 3 have a slightly higher observed event rate: the average

in setting 1 is 85% and in setting 2 is 81%.

4.4.1 Discrete Approximation of the Survival Function

Recall that the midpoint rule for evaluating the cumulative hazard function requires defining

a grid ofMi points from 0 to Ti for each individual. This grid can vary in both the density and

the distribution of the points. A finer grid corresponds to a more accurate approximation of

the cumulative hazard but requires increased computation time; on the other hand, a coarser

grid potentially decreases the accuracy of this approximation but is less computationally

intensive. In our simulation study, we consider various grid densities (i.e., grids that vary

in the average gap in time between grid points). We also consider strategically placing the

grid points with increased density in areas where the (estimated or true) hazard is higher.

Through simulations, we find that the posterior distributions of our parameters are not

sensitive to the distribution of the grid points (i.e., we placed the grid points closer together

where the true hazard function is higher) and so we opt to take the simpler approach of

placing these grid points at equally spaced intervals. In the following simulations, we vary

the width of the grid between 0.2, 0.8, and 1.2 days. These grid widths are used to define the

spacing of additional points that are added to the longitudinal measurement times; together,

these added points and the longitudinal measurement times make up the Mi points used to

approximate the survival function. When defining the grid, we require that grid points are

specified at all event/censoring times but drop any other grid points that are too close to the

measurement occasions, where too close is defined as within 30% of the specified grid distance

(e.g., for a grid of 1.2, any added grid points within 0.36 units of time of a measurement

occasion would be dropped). In our simulation study, we also consider a scenario in which

we only add grid points at event/censoring times and not at intermediate time points.

4.4.2 Simulation Results

For each simulated dataset generated under setting 1 and 2 with measurement patterns 1-

4, we run the HMC sampler using 1 chain for 3,000 iterations and discard the first 2,000

iterations as burn-in. The sampler allows the user to specify initial parameter estimates; we

specify reasonable initial values that have the correct sign and approximately correct order

of magnitude. Exact initial values, along with prior distributions, are given in Sections C.2.3

and C.2.4. To ensure that the OU process in our structural submodel is mean-reverting, we
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implement the constraints on θOU that are derived in Tran et al. (2021) [112] and summarized

here in Section C.1.2. We assess convergence via trace plots and find satisfactory mixing.

To summarize our point estimates, we present the distribution of the posterior medians

across the 100 simulated datasets in each setting and measurement scenario in Figure 4.2,

assuming a grid width of 0.8 when fitting the model. To assess the coverage of the 90%

credible intervals, we summarize the average coverage rate for each parameter in Figure 4.3.

As the number of added grid points increases, computation time increases substantially (see

Figure C.5).

We find that our approach, which uses the discrete approximation of the survival func-

tion, recovers unbiased estimates of the parameters and returns posterior distributions of

appropriate width. We also find that in our setting of ILD, the point estimates and credible

intervals are not particularly sensitive to the choice of grid density (see Figure C.6 and C.8 for

summaries of posterior medians and coverage rates across all grid widths). Given that grid

points would not be needed if we were to fit only the longitudinal submodels (i.e., jointly fit

the measurement and structural submodels), we do not expect these parameter estimates to

be sensitive to the grid width. In a few instances in which the measurement occasions are ir-

regular, however, adding grid points can help with convergence of the longitudinal submodel

parameters; see Section C.3 for more discussion. For the survival submodel parameters,

adding grid points at intermediate time points and not only at the event/censoring times

does appear to slightly improve our estimates when the longitudinal measurement occasions

are infrequent and the correlation of the true OU process decays quickly (i.e., setting 2 under

measurement pattern 2), as shown in Figure 4.4.

4.5 Analysis of Smoking Cessation Data

We illustrate our method by using it to jointly model the self-reported intensity of nine

different emotions recorded longitudinally and the instantaneous risk of a lapse in smoking

cessation after attempted quit. We assume that the three positive emotions—enthusiastic,

happy, and relaxed—are measurements of the latent psychological state of positive affect and

that six negative emotions—sad, angry, anxious, restless, stressed, and bored—are measure-

ments of the latent psychological state of negative affect. We then model time until first lapse

as a function of the current values of positive and negative affect. We also adjust for two

baseline covariates: pre-quit smoking history and partner status. Pre-quit smoking history

is defined here as a binary variable based on the average number of cigarettes smoked per

day, where more than 20 cigarettes/day corresponds to heavy smoking. We adjust for this

baseline covariate because tobacco dependence is likely associated with the risk of lapse after
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Figure 4.2: For data generated under settings 1 and 2 with each of the four measurement
patterns, we use box plots to summarize the distribution of the posterior medians for all
parameters across the 100 simulated datasets. When fitting the model, we assume a grid
width of 0.8. True parameter values are indicated with colored dots.
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attempted quit. Prior studies have found positive associations between partner involvement

and outcomes of smoking cessation attempts [11] and so we also adjust for partner status

here in our survival submodel.

Our survival submodel is hi(t) = h0(t)exp{β1η1i(t) + β2η2i(t) +α1Di+α2Pi}. We specify

a flexible piecewise constant baseline hazard for h0(t); η1i(t) and η2i(t) are the time-varying

latent factors interpreted as positive affect and negative affect, respectively; Di is the baseline

measure of pre-quit smoking history (1 = 20 or more cigarettes per day, 0 = less than 20

cigarettes per day); and Pi is an indicator variable for partner status (1 = lives with a partner

or spouse, 0 = everyone else). More details on the specification of this baseline hazard, along

with priors, are given in Section C.4.1 and C.4.2.

We initialize parameter estimates using a two-stage approach: we first fit only the lon-

gitudinal submodel (via Stan) and use posterior samples of the latent process to fit the

hazard regression model (via flexsurv [41]). For simplicity, we assume a constant (expo-

nential) baseline hazard during initialization. Posterior medians—for the longitudinal sub-

model parameters—and maximum likelihood estimates—for survival submodel parameters—

are used as initial parameter values for joint estimation. To fit the joint model, we run the

HMC sampler with 4 chains for 4,000 iterations and discard the first 3,000 samples as burn-in.

We assess mixing via trace plots (see Figure C.10). We also considered a survival submodel

with a Weibull baseline hazard, but after comparing the goodness-of-fit of these two joint

models via the distribution of predicted survival probabilities, we concluded that the piece-

wise constant baseline hazard better fit our data. More details on our approach to assessing

goodness-of-fit are given in Section C.4.3. We present results for the joint model with the

piecewise constant baseline hazard below.

In Figure 4.5, we plot posterior medians and 95% credible intervals for the parameters in

each submodel. From our structural submodel, we see that our two latent factors represent-

ing positive affect (η1) and negative affect (η2) have a negative correlation of approximately

-0.54. We also find that the posterior estimates of the parameters in the structural submodel

show fairly symmetric behavior across both positive and negative affect; that is, the corre-

lation shows similar patterns of decay as positive and negative affect are measured across

increasing intervals of time. From the measurement submodel, we find that measurements

of happy have the largest loading onto the latent factor representing positive affect, mea-

surements of stressed have the largest loading onto the latent factor representing negative

affect, and measurements of bored have the smallest loading onto negative affect. Finally,

from the survival submodel, we find that a one-standard deviation increase in negative affect

is associated with a 1.87-times increase (95% CI: 1.03-3.10) in the hazard of a lapse. Neither

of our baseline covariates are significantly associated with changes in the hazard of lapse.
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We can also use posterior estimates from our model to examine the trajectory of the

latent factors and understand how these latent psychological states of positive and negative

affect are linked with the risk of lapse after attempted quit. In Figure 4.6, we plot the

posterior samples of the two latent factors for positive and negative affect, and the posterior

estimates of the cumulative hazard of lapse for four study participants. For periods of follow-

up during which the measurement occasions are less frequent, we see increases in the range

of values covered by the 25-75% percentiles of our posterior samples, demonstrating our

model’s ability to capture the increased uncertainty. We also see the symmetry of our fitted

structural submodel reflected in this plot: both positive and negative affect tend to vary in

similar ways but in opposite directions. The estimated cumulative hazard functions for these

individuals show that the instantaneous risk of lapse is highest immediately after quit time

and that the cumulative hazard increases more gradually as time since quit increases.

4.6 Discussion

Motivated by ILD of self-reported emotions collected in an mHealth study of smoking cessa-

tion, we propose a joint longitudinal time-to-event model appropriate for modeling ILD. We

summarize the multiple longitudinal outcomes as a smaller number of time-varying latent

factors using a dynamic factor model with a structure informed by scientific context. These

latent factors summarize the multiple longitudinal outcomes (e.g., emotions) and capture

vulnerability to an event-time outcome (e.g., risk of lapse). This dimension-reduction ap-

proach both simplifies computation and interpretation of the factors associated with altered

risk of an event. To fit our model, we use Stan [18]. We integrate out a subset of the latent

parameters and leverage a discrete approximation for the survival function to make fitting

this model computationally feasible. This proposed approach fills a gap in the literature

as a method suitable for modeling multivariate ILD jointly with a time-to-event outcome.

While we present models with only two latent factors in this paper, a different (but small)

number of factors could also be considered. The choice of number of latent factors could be

determined by either domain knowledge or deviance information criterion (DIC). Simulated

data and code are available at github.com/madelineabbott/OUF JM.

Computational cost is a major concern when jointly fitting a multivariate longitudinal-

survival model. In our case, we incorporate a continuous-time stochastic process as a

time-varying covariate in our hazard model, increasing the complexity of our likelihood.

A Bayesian approach allows us to avoid directly evaluating the complex integrals present in

our likelihood, but still requires substantial time due to the repeated sampling within the

HMC algorithm. Fitting the joint model in Section 4.5 does require about 17 hours (with 4
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Figure 4.5: Plot of posterior medians and 95% credible intervals for parameters in the joint
model with a piecewise constant baseline hazard fit to data from the mHealth smoking
cessation study. Structural submodel parameters are presented via the estimated correlation
decay in latent factors across increasing time intervals (see Section C.4.4 for more details
on the construction of this subplot). Subscripts index the measured emotions as: 1 =
enthusiastic, 2 = happy, 3 = relaxed, 4 = bored, 5 = sad, 6 = angry, 7 = anxious, 8
= restless, 9 = stressed. η1(t) is interpreted as positive affect and η2(t) is interpreted as
negative affect.
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Figure 4.6: Posterior samples of the latent factors (interpreted as positive and negative affect)
and cumulative hazards for four individuals in the mHealth smoking cessation study. Poste-
rior estimates of the latent factors and cumulative hazards are summarized using posterior
medians; shaded bands denote the range of values between the 25th and 75th percentiles. The
black tick marks along the x-axis of the plots correspond to the longitudinal measurement
occasions observed in the data; in the cumulative hazard plots, the vertical lines indicate the
timing of observed events or censoring.
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chains run in parallel on 4 cores) and so further investigation of alternative computational

strategies that increase the speed of modeling fitting is an important area of future research.

For example, the strategies used in Murray and Philipson (2022) [62] and Rustand et al.

(2023) [98] could potentially be adapted to work in our setting.

In our approach, we use a discrete approximation of the cumulative hazard function.

We show via simulation that simply assuming a somewhat sparse and uniform grid for this

approximation works well in the setting of ILD. Furthermore, when ILD is used, our ability

to recover good point estimates is not sensitive to the width of the grid. Our specific setting

is one in which the ILD captures rapidly varying outcomes and so measurement occasions

must occur frequently so that large abrupt fluctuations are not missed. Since measurement

occasions are close together, the placement and number of additional grid points are not

as important. In other settings in which the longitudinal outcomes change more smoothly,

less frequent measurement occasions could still capture important changes over time. When

measurement occasions are farther apart, sensitivity to the choice of grid may increase. But,

if the longitudinal outcome changes more slowly, linearly interpolating the intermediate

values of the longitudinal outcome within the discrete approximation of the hazard function

might not be so problematic. Overall, we find that in our ILD setting, the grid width is not

particularly important. But one could imagine an alternative scenario where the placement

of grid points might matter more. In this scenario, further investigation of the location and

number of grid points may be warranted and methods, such as that described in Fernández

et al. (2016) [27], could be adapted to place grid points according to the intensity of the

hazard function. We leave investigation of this alternative scenario as future work.

A weakness of our approach is our assumption of non-informative measurement occa-

sions. Although this assumption is commonly made in joint longitudinal-survival models,

self-reported longitudinal outcomes are likely susceptible to informative missingness. Re-

sponses to EMA questionnaires may be missing for many reasons, ranging from non-response

due to poor mood or lack of cell phone reception. Important future work could include in-

corporating an additional submodel that accounts for important patterns in the timing of

the measurement occasions.

Finally, in our motivating mHealth data, individuals generally experience repeated smok-

ing lapses after attempted quit. We modeled the time until first lapse after attempted quit,

but our model could be adapted for the recurrent event of repeated lapses. Additionally,

current smokers who attempt to quit often progress through phases in which they are ac-

tively attempting to quit before potentially relapsing back into their prior smoking habits.

Multi-state models have previously been proposed to model transitions in long-term smoking

habits; e.g., [12]. Our joint model could potentially be extended to model short-term changes
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in cigarette use. Finally, temporal trends could also be incorporated into the longitudinal

submodel in order to account for systematic changes over time in the measured longitudinal

outcomes, which may vary according to the current state of smoking.
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CHAPTER 5

Estimation of Time-Varying Treatment

Effects in a Joint Model for Longitudinal and

Recurrent Event Outcomes in Mobile Health

Data

5.1 Introduction

As described in earlier chapters, mHealth technology enables frequent measurements of mul-

tiple outcomes over time. The resulting ILD potentially contain information on underly-

ing behavioral, psychological, or other health-related states that are indirectly measured

through this larger number of observed outcomes. Not only does mHealth technology allow

researchers to collect rich data on study participants, but it also facilitates the delivery of

repeated low-cost treatments directly to individuals. Often, these treatments take the form

of JITAIs [69]. This type of intervention is generally delivered multiple times per day and

tailored—in timing, type, and intensity—to each individual’s context and state. JITAIs

can be developed or optimized using MRTs in which individuals are randomized—possibly

multiple times per day—to either be sent or not be sent a treatment.

MRTs have gained popularity over the past few years, after their proposal in 2015 [45, 51].

This type of trial has been used to inform the development of effective JITAIs in a variety of

different settings, which range from promoting physical activity among sedentary adults [46]

to improving data collection in the context of substance use [82]. In an MRT, researchers

are often primarily interested in understanding the effect of the treatment on an outcome

measured shortly after randomization. For example, researchers might be interested in how

sending notifications affect substance use within the next 12 hours.

The treatment effect of interest—specifically, of the repeatedly sent treatment on the

repeatedly measured outcome—may account for the time-varying nature of the treatment,
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possibly other covariates, and a repeatedly-measured outcome. Boruvka et al. (2018) [9]

propose an estimator of treatment effect, specifically a causal excursion effect, that accounts

for the time-varying nature of the treatment, the outcome, and other time-varying potential

moderators. This estimator, which can be conditional on all past treatments or a different

set of potential moderators (e.g., past engagement with notifications sent to individuals’

smartphones), is designed to capture the effect of the treatment on a future measurement of

the outcome under different treatment scenarios. This treatment effect is marginal across all

data except the set of potential moderators on which the effect is conditioned. To estimate

these MRT treatment effects, approaches based on generalized estimating equations are often

used; namely, weighted and centered least-squares [9]. Various extensions of this estimating-

equation based method have also been proposed; e.g., [80] and [101].

Rather than using an estimating equation-based approach, we propose a method for

obtaining model-based estimates of treatment effect. Model-based estimates of treatment

effect have been previously used in the joint longitudinal-survival model setting in which

understanding the hazard of an event as a function of a time-varying predictor is of interest.

When a longitudinal and survival outcome are modeled jointly, rather than separately, the

risk of bias in estimates of treatment effect decreases and statistical efficiency can increase, as

this joint approach considers dependencies between the longitudinal and survival processes

[40]. Joint models often assume that the longitudinal outcome is an intermediate variable,

meaning that the treatment impacts the risk of an event by altering the longitudinal process.

Much work in this area has been motivated specifically by observational data (e.g., [129,

111, 92]). In observational data, the decision to provide treatment often depends on the

value of the longitudinal outcome. When both the risk of an event and the decision to

provide treatment depend on the value of the longitudinal outcome, the longitudinal process

is a so-called time-dependent confounder and extra considerations must be made (for more

details, see [111] and [92]). In our MRT setting, however, the decision to deliver treatment

is random, and so we avoid the situation in which the longitudinal outcome is also a time-

dependent confounder. Instead, we must consider the fact that treatment can be delivered

to participants multiple times per day; this pattern of treatment is standard among other

MRTs.

A primary advantage of using this model-based approach to estimating treatment effects is

that we can use it to disentangle the effect of treatment on both a longitudinal latent process

measured through multiple longitudinal outcomes and on the hazard of recurrent events. Our

work is motivated by an MRT that aimed to use behavioral strategies to promote smoking

cessation among current smokers attempting to quit. The design of this study is identical to

that described in Nahum-Shani et al. (2021) [68]. Over the course of the study, reminders
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to engage in certain behavioral strategies (i.e., treatments) are sent multiple times per day

to participants’ phones via app-based notifications. Multiple times per day, information on

participants’ emotions (i.e., ILD) and repeated instances of substance use (i.e., recurrent

events) is also recorded. We propose incorporating these repeated treatments into a joint

longitudinal-recurrent event model that links latent longitudinal psychological states with

the hazard of recurrent events of substance use. While this approach has similarities to

mediation analysis, we view our contribution as useful for exploratory analyses of associations

of interest. Developing a framework to simultaneously model both the time-varying effect of

the adaptive interventions on the risk of recurrent events and the underlying latent process

related to these events has the potential to provide useful insights that can help scientists

better understand how JITAIs may be impacting health events of interest and thus inform

the design of improved JITAIs.

The main contribution of this work is a model-based approach for estimating treatment

effects—on both the risk of recurrent events and the trajectory of the latent factors—in an

MRT. We consider two different mechanisms by which the treatments potentially impact the

longitudinal latent process, which we model using a continuous-time multivariate stochastic

process. Specifically, we allow treatment to impact the latent process through an additive

shift to its mean, or we allow treatment to impact the underlying dynamics of the latent

process by altering the rate at which it reverts towards the mean (i.e., as time-varying drift).

Useful consequences of this model-based approach are threefold:

1. We can disentangle the impact of treatment directly on the event outcome and through

the latent factors.

2. We can use the fitted model to predict the risk of experiencing an event within a

fixed interval of time, given the trajectory of the latent factors and different treatment

patterns.

3. We can use the fitted model to inform the development of improved JITAIs or other

treatments through increased understanding of the pathways by which treatment may

impact the recurrent event outcome.

When analyzing the motivating MRT data, we also demonstrate how information criteria can

be used to compare the fit of models that make different assumptions about the relationship

between the recurrent events, longitudinal latent process, and repeated treatment effects.

The remainder of this paper is organized as follows: in Section 5.2, we describe the

MRT motivating this work; in Section 5.3, we present the joint longitudinal-recurrent event

models that incorporate time-varying treatment effects; in Section 5.4, we demonstrate the
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statistical properties of our method via simulation; in Section 5.5, we analyze MRT data in

a case study; and in Section 5.6, we provide a discussion.

5.2 Motivating Data

This work is motivated by data from the Affective Science MRT. This study is still ongoing

and so we use data available at the time of drafting this manuscript from currently enrolled

participants. The design of this study is identical to the one described in Nahum-Shani et al.

(2021) [68] and uses EMAs to collect self-reported information on the intensity of a variety of

different positive and negative emotions, along with recent substance use. Study participants

are randomized to be sent interventions delivered via prompts to their smartphones up to six

times per day. These prompts are aimed at improving their engagement in behavioral and

self-regulatory activities known to decrease vulnerability to substance use. These prompts,

which are sent randomly with a probability of 1/2, are sent approximately 1 hour before the

EMAs are sent. A simplified diagram of the MRT design is provided in Figure 5.1. More

details on the design can be found in Nahum-Shani et al. (2021) [68].

day 0 day 1 day 2 day 3 day 10

R R R R RR
start day end day

i

Send EMA to 
assess emotions 

and substance usePrompt (p = ½)

No prompt (p = ½)
R

1 hour

day 1 day 2

Figure 5.1: Simplified diagram of the micro-randomized trial design. During each day, a
participant is randomized six times to potentially receive treatment, which comes in the
form of an app-based prompt. Approximately one hour after randomization, participants
are prompted to respond to an EMA that includes questions that assess the current intensity
of multiple emotions and the approximate time of substance use since the prior EMA, among
other things. This figure is adapted from Nahum-Shani et al. (2021) [68].

Our longitudinal outcome of interest is a set of 15 different emotions—5 positive and

10 negative—that are measured via self-report on a 5-point Likert scale at each EMA. The
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specific emotions are: happy, proud, relaxed, grateful, enthusiastic, angry, ashamed, irritable,

guilty, lonely, anxious, sad, restless, bored, and hopeless. On average, emotions are measured

28 times per person (min. = 3, max. = 53).

Our recurrent event of interest is poly-substance use, which is also measured using self-

report in the EMAs. Poly-substance use is defined as either using marijuana, vaping, or

smoking cigarettes. At each EMA, individuals are asked to report substance use since the

prior EMA; they are also asked to respond to additional questions related to the time of

use. Defining an outcome appropriate for modeling when data are collected from multiple

questions asked in EMAs is a complex challenge often encountered when analyzing data from

mHealth studies, as discussed in Potter et al. (2023) [74]. We defined a set of deterministic

rules that we use to consolidate information across the substance use-related questions to

approximate the time of recurrent events of poly-substance use. Our data wrangling approach

is described in more detail in Section D.1.1.

The within-individual average EMA completion rate is 47%, but this completion rate

varies widely across individuals (range: 5% - 88%). Although many individuals respond

frequently to the EMAs, some individuals go for multiple days without responding to an

EMA. The event submodel assumes that individuals are always at risk of experiencing an

event (up until censoring) and so to help reduce the impact of non-response on our event

submodel, we censor individuals at the time of their most recent longitudinal measurement

if they fail to respond to an EMA for a period of more than 48 hours. Otherwise, we

censor individuals at the time of their final completed EMA. Additionally, we exclude any

individuals who fail to respond to an EMA within the first 48 hours of the study, resulting

in an analytic sample size of N = 64 individuals.

The observed data, which consist of the longitudinal outcomes, recurrent events, and

treatment timings, are plotted in Figure 5.2 for a subset of individuals in the motivating

MRT. Across all individuals, we observe 1,162 events of poly-substance use, which corre-

sponds to an average of 19 events per person spread over a maximum of 10 days. Additional

plots detailing the timing of events are given in Section D.1.1.
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Figure 5.2: Responses to emotion-related questions, timing of recurrent poly-substance use
events, and timing of treatments for eight different participants in the motivating MRT.

5.3 Methods

To model the relationship between repeated treatments, a multivariate longitudinal latent

process, and the risk of recurrent events, we use a joint longitudinal-recurrent event model.

The model extends the joint longitudinal-survival model previously presented in Chapter 4

to allow for recurrent events and to include a model for the effect of treatment on the latent

process and the hazard of events.

We first introduce our joint longitudinal-recurrent event model in a setting without treat-

ment effect models. Let i = 1, ..., N index the independent individuals in our dataset, and

let j = 1, ..., ni index the longitudinal measurement occasions for individual i. This joint

model consists of the following three submodels:

Measurement submodel: The measured k longitudinal outcomes, represented by

k-length vector Yi(tij), are assumed to be noisy observations of a p-dimensional latent

process ηi(tij), where p < k. We model the measured longitudinal outcomes using a

dynamic factor model,

Yi(tij) = Ληi(tij) + ui + ϵi(tij). (5.1)
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Λ is a k × p time-invariant loadings matrix that captures the association between the

measured longitudinal outcomes and the time-varying latent process. ui is a k-length

vector of outcome-specific random intercepts that account for baseline differences in the

measured longitudinal outcomes across individuals; we assume ui ∼ Nk(0,Σu) where

Σu is a diagonal matrix. ϵi(tij) captures measurement error; we assume ϵi(tij) ∼
Nk(0,Σϵ) and that Σϵ is diagonal. In the motivating data, Yi(tij) is the set of 15

emotions measured at time tij for individual i.

Structural submodel: The p-dimensional latent process ηi(t) is assumed to be a

multivariate OU stochastic process. This process can be thought of as a continuous-

time version of a VAR process and captures correlated change within and between

multiple latent factors over time. The stochastic differential equation definition of the

OU process is

dηi(t) = [µ− θηi(t)] dt+ σdWi(t). (5.2)

θ is a p × p parameter matrix that captures the speed at which the latent process

reverts towards a constant mean µ, and σ is a p × p parameter matrix that captures

the volatility of the process. Wi(t) is a Wiener process. Often, the constant mean

is assumed to be 0 (µ = 0). Later, when we introduce interventions, we allow µ

to depend on time. For more discussion of the OU process, see Brigo and Mercurio

(2007)[10]. In the motivating data, we summarize the 15 measured emotions as a two

time-varying latent factors using a bivariate (p = 2) OU process. These latent factors

can be interpreted as capturing different aspects of psychological state, namely positive

affect and negative affect.

Event-time submodel: The hazard of the rth event for individual i can depend on the

history of the latent process Hi(t) = {ηi(s), 0 ≤ s ≤ t}, the history of recurrent events

Ri(t) = {Tir < t, r = 1, 2, ...}, and possibly baseline covariates Xi. Very generally, we

define the hazard for recurrent event r as

hir{t|Hi(t),Ri(t), Xi} = h0(t) exp
{
f(Hi(t);βH) + g(Ri(t);βR) +X⊤

i γ
}
. (5.3)

h0(t) is the baseline hazard, which may be time-varying. We take a clock-reset approach

in which we use the hazard to model the time between each recurrent event and thus

reset the clock for the baseline hazard (but not the time-dependent predictors) to 0

after the occurrence of an event. We then account for associations between repeated

events through g(Ri(t);βR); for example, g(Ri(t);βR) could be some transformation
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of the time since the most recent prior event, Ti,r−1. Xi, which is a vector containing

baseline covariates, can help capture and adjust for pre-quit substance use or other

time-independent risk factors. We discuss more concrete forms of f and g later in the

simulation study.

Due to the complexity of our model and the MRT data, we could potentially adapt our

joint model to capture the effect of these randomized treatments in up to three different ways.

Each treatment could be associated with changes in the measured longitudinal outcome,

changes in the latent process, or modifications directly to the risk of a recurrent event. We

summarize these possible pathways for treatment effect in Figure D.10. In the remainder

of this paper, we focus on the scenarios in which treatment directly impacts (a) the latent

process and (b) the risk of a recurrent event. We could potentially also allow the treatment to

directly impact the measured longitudinal outcome, but this modeling decision would imply

that the treatment changes the observed longitudinal outcome without modifying the latent

process that the longitudinal outcome is assumed to measure. This mechanism for treatment

effect is less scientifically relevant than (a) or (b) because we view the observed longitudinal

outcomes simply as noisy measurements of the latent factors of interest. Our measurement

error perspective implies that any effect of treatment on the measured outcomes should

result from changes to the latent factors themselves. Thus, our main contribution is the

development of treatment effect models for (a) and (b).

5.3.1 Modeling the Impact of Treatment on the Latent Process

We now build on the models defined in the previous section to model the effect of treatment

interventions. Let ai(tij) denote the decision to treat individual i at time tij and Ai(t) :=

{ai(s), 0 ≤ s ≤ t} be their treatment history.

We can model the impact of treatment directly on the latent process by incorporating a

model for the treatment effect into our structural submodel. The prompts in the Affective

Science MRT target engagement in behavioral activities known to decrease vulnerability to

smoking and so, through this model formulation, we assume that these vulnerability-related

behavioral states are represented by the low-dimensional latent process. This assumption

about the treatment effect implies that treatment could also impact the risk of a recurrent

event and the measured longitudinal outcomes via changes in the trajectory of the latent

process.

We consider two different approaches to modeling the impact of treatment on the trajec-

tory of the latent process, which are based on different assumptions about how the treatment

might affect the latent process. In this first approach, we assume that the impact of treat-
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ment is additive and directly shifts the OU process away from the constant mean for a short

window of time after the treatment. Returning to the setting of the motivating MRT, this

approach would assume that sending a prompt to an individual results in a shift in the level

of their behavioral state (e.g., positive and negative affect) on the scale of the state itself.

Let η∗(t) denote the OU process without treatment effect (i.e., Equation 5.2 with µ = 0).

Then, the impact of treatment is modeled as

ηi(t) = η∗
i (t) + µi(t) (5.4)

where µi(t) is a simple function that describes the short-term impact of treatment. Here,

we assume that, for each individual i, µi(t) is a simple deterministic function:

µi(t) =
∑

tia∈Ai(t)

τ

(
1− t− tia

δa

)
+

(5.5)

where Ai(t) contains the time tia of all treatments sent to individual i prior to time t, τ is a

length-p vector that captures the maximum impact of the treatment at the time at which it

is delivered, and δa defines the window over which each treatment is active. We assume that

δa is known, but that τ is estimated. Note that the deterministic function µi(t) implicitly

conditions on the treatment history Ai(t). This form for µi(t) assumes that the effect of

treatment on the latent process is largest at the time of treatment; then, this effect decays

linearly until no effect remains δa units of time after the treatment was delivered. If multiple

treatments are delivered in rapid succession, then the cumulative impact of these treatments

is additive. This model for treatment is illustrated in Figure 5.3a. Due to the complexity of

our joint model, we assume a fairly simple form for µi(t) here, but an analyst could specify

a different form for µi(t) better suited to their specific setting.

Assuming this additive treatment effect in Equation 5.4, we can write the condi-

tional distribution for our structural submodel as follows: if ηi(0) ∼ Np(0,V ) where

V = vec−1
{
(θ ⊕ θ)−1vec(σσ⊤)

}
, then for times t and s, t > s,

ηi(t)|ηi(s) ∼ Np

(
µi(t) + e−θ(t−s) (ηi(s)− µi(s)) ,V − e−θ(t−s)V e−θ⊤(t−s)

)
(5.6)

where e is the matrix exponential.

As an alternative to modeling the treatment effect as an additive shift to the mean of the

OU process, we can instead model treatment as impacting the dynamics of the latent process

through a time-varying drift term on the derivative scale. In the setting of the motivating

MRT, this approach assumes that sending a prompt to an individual alters the rate at which
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their behavioral states (e.g., positive and negative affect) change over time. For example,

sending a prompt could increase the rate at which levels of negative affect revert towards

their average level. The standard OU process assumes a constant value for µ, but the Hull-

White process, which is often used in financial math applications, extends the OU process to

allow for time-varying drift. For more discussion of the OU process and Hull-White model,

see Brigo and Mercurio (2007) [10]. The SDE for the Hull-White model is

dηi(t) = [µi(t)− θηi(t)] dt+ σdWi(t) (5.7)

where µi(t) is still a simple function that describes the short-term treatment effect. From

this SDE, it follows that the conditional distribution of ηi(t) with time-dependent drift is

ηi(t)|ηi(s) ∼ Np

(
e−θ(t−s)ηi(s) +

∫ t

s

e−θ(t−u)µi(u)du,V − e−θ(t−s)V e−θ⊤(t−s)
)

(5.8)

The mean of this distribution requires integrating across e−θ(t−u)µi(u) as a function of u.

Depending on the specific formulation of µi(t), an analytic solution to this integral may or

may not exist. If we assume that the treatment effect model takes the linear form given in

Equation 5.5, we can derive the analytic solution to the integral in the conditional mean in

Equation 5.8. In a setting in which only a single treatment impacts the drift of this latent

process, integration would be straight forward; in our setting, however, we must carefully

account for overlapping active treatments. We use Ai(s − δa, t) to denote the set of times

at which treatments were sent to individual i between time s − δa and time t; this set of

treatment times corresponds to all treatments that are active between times s and t. If we

solve the integral in Equation 5.8, then we can re-write the distribution in an analytic form:

ηi(t)|ηi(s) ∼ Np

(
e−θ(t−s)ηi(s)

+
∑

tia∈Ai(s−δa,t)

[(
1− u− tia

δa

)
e−θ(t−u)θ−1 +

1

δa
e−θ(t−u)

]
τ

∣∣∣∣∣
u=min(t,tia+δa)

u=max(tia,s)

,

V − e−θ(t−s)V e−θ⊤(t−s)

)
(5.9)

More details on this derivation are given in the Appendix (Section D.3).

If we compare the conditional distribution of ηi(t)|ηi(s) when the treatment effect is

modeled as an additive term (Eq. 5.6) to the conditional distribution when treatment effect
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is modeled as impacting the dynamics of the latent process through the drift (Eq. 5.9), we

see that the variance terms are the same but that the treatment function µi(t) shows up

differently in the conditional means:

Additive treatment effect:

E [ηi(t)|ηi(s)] = e−θ(t−s)ηi(s) + µi(t)− e−θ(t−s)µi(s)

Drift treatment effect:

E [ηi(t)|ηi(s)] =e−θ(t−s)ηi(s)

+
∑

tia∈Ai(s−δa,t)

[(
1− u− tia

δa

)
e−θ(t−u)θ−1 +

1

δa
e−θ(t−u)

]
τ

∣∣∣∣∣
u=min(t,tia+δa)

u=max(tia,s)

In the additive version, the mean reversion parameter θ and treatment effect function µi(t)

show up clearly in the terms in the sum. Using the definition of the latent process under

additive treatment effect as given in Equation 5.4, we can re-write the conditional mean as

E [ηi(t)|ηi(s)] = e−θ(t−s)η∗
i (s)+µ(t). Writing the conditional mean in this format makes the

additive impact of treatment quite clear. When treatment is incorporated into the drift of

the latent process, the impact of treatment on the conditional expectation is still additive;

however, the impacts of θ and µi(t) on the trajectory of the latent process are linked together

in a much more complicated way (see Figure 5.3b).

In some settings, it might also be reasonable to assume that the occurrence of events

alters the latent process. The impact of events on the latent process could be modeled as

a drift or additive term, similar to how we modeled the impact of treatment on the latent

process.

5.3.2 Modeling the Impact of Treatment on the Hazard of Recur-

rent Events

In the previous section, we described how treatment can modify the trajectory of the latent

process. In this section, we discuss modeling the direct impact of treatment on the hazard

of an event. Modeling the impact of treatment through a term included in the hazard model

implies that the treatment alters the risk of a recurrent event through some mechanism

that is not captured by the latent process. If the app-based notifications in the motivating

study target engagement in certain behaviors, then, by using this model formulation, we

assume that these certain behavioral states are different from those captured by the latent
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(a) The difference in means at time t between
a latent process with treatment effect modeled
as an additive shift to the mean and a latent
process without a treatment effect is µi(t) −
e−θ(t−s)µi(s), where s = 0.
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(b) The difference in means at time t between
a latent process with treatment effect modeled
on the derivative scale as time-varying drift and
a latent process without a treatment effect is∫ t
s e

−θ(t−u)µi(u)du, where s = 0.

Figure 5.3: Treatment models for the longitudinal process. The plots show the difference
between the latent process with a treatment effect model—either additive or drift—and a
latent process with a constant mean of 0. We plot this difference across times t, with s fixed
at 0, if treatments were to be sent at various times between 0 and t, as indicated by the
red dots. The shaded grey bars highlight the (potentially overlapping) regions over which
treatments may have some non-zero effect.

factors. To model this treatment effect, we can include a treatment-related term µ̃i(t) in the

event-time submodel for individual i’s rth recurrent event:

hir{t|Hi(t),Ri(t), Xi} = h0(t) exp
{
f(Hi(t);βH) + g(Ri(t);βR) + µ̃i(t) +X⊤

i γ
}

(5.10)

For simplicity, we assume that µ̃i(t) has the same form as the treatment model for the

latent process (Equation 5.5). In a different setting, the analyst may want to specify an

alternative form for µ̃i(t), but here we use:

µ̃i(t) =
∑

tia∈Ai(t)

τ̃

(
1− t− tia

δb

)
+

(5.11)

where the impact of treatment on the hazard is captured through the (scalar) parameter τ̃ ,

which is to be estimated. As before, we assume that the duration of the treatment effect δb

is known.

5.3.3 Inference

We take a Bayesian approach to fitting our joint longitudinal-recurrent event model. Com-

bining the measurement submodel (Equation 5.1), the hazard submodel (Equation 5.10),
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and the structural submodel with the treatment effect modeled either as an additive shift

(Equation 5.6) or as drift (Equation 5.8), our likelihood is

p(T , δ,Y ;ΘR,ΘM ,ΘS) =

N∏
i=1

Ri∏
r=1

∫ [
p(Tir, δir|Hi(Tir),Ri(Ti,r−1),Ai(Tir);ΘR)

×
ni∏
j=1

p(Yi(tij)|H(Tir)i,A(Tir)i;ΘM)p(ηi;ΘS)dηi

] (5.12)

where Ri is the number of events for individual i, ΘR = (βH ,βR, τ̃), ΘM = (Λ,Σu,Σϵ),

and ΘS = (θ,σ, τ ). Recall that we have defined Hi(t) as this history of the latent process

until time t, Ri(t) as the history of recurrent events until time t, and Ai(t) as the treatment

history until time t. The likelihood does depend on the treatment history, but we can factor

out this term after conditioning on the observed treatment history and so we omit it from

our likelihood definition above. We do not include baseline covariates in this definition of

the likelihood, but incorporating them is straightforward.

The likelihood contribution of the recurrent events is given by

p(Tir, δir|Hi(Tir),Ri(Ti,r−1),Ai(Tir);ΘR) = hir(Tir|Hi(Tir))
δirexp

{
−
∫ Tir

Ti,r−1

hir(s)ds

}
.

Note that in this definition of the joint likelihood, we opt to write the distribution of the

observed longitudinal outcome conditional only on the latent factors and integrate out the

random intercepts in order to decrease the number of unknown parameters that must be

sampled within the Bayesian algorithm. This distribution for the measured longitudinal

outcome is

Yi(tij)|Hi(Tir),Ai(Tir);ΘM ∼ N(Ληi(tij),Σu +Σϵ).

The distribution of the latent process p(ηi;ΘS) is the product of p-dimensional conditional

Gaussian distributions with either the form in Equation 5.6 or 5.8, depending on how treat-

ment is assumed to impact the latent process.

When fitting this joint model, we must consider (i) how to ensure both the latent process

parameters and the loadings matrix are identifiable and (ii) how to calculate the cumulative

hazard, which requires integrating over the multivariate OU process. To make sure that the

parameters in the longitudinal submodel are identifiable, we model the latent factors on the

correlation scale. This strategy is common when fitting factor models and was previously

described in Tran et al. (2021) [112] in the context of a similar factor model with a latent
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OU process. By forcing the latent factors to have a stationary variance of 1, we fix the

amount of variability in the process. The loadings matrix Λ then rescales the latent factors

to capture their association with the measured longitudinal outcomes Y . To implement this

identifiability constraint, we follow the approach described in Tran et al. (2021) [112] and

reparameterize the OU process: instead of estimating parameters θ and σ, we estimate θ

and the off-diagonal elements ρ of the stationary correlation matrix of the OU process V

(this matrix was previously defined in Section 5.3.1 as V = vec−1
{
(θ⊕θ)−1vec(σσ⊤)

}
. For

a bivariate (p = 2) OU process, the matrix that we estimate is V =

[
1 ρ

ρ 1

]
. In addition

to requiring that the OU process has a stationary variance of 1, we require that θ has

eigenvalues with positive real parts. This constraint is discussed in more detail in Tran et

al. (2021) [112]. We also require that Λ contains structural zeros and that the location of

these structural zeros are known. This constraint means that we know which of the observed

longitudinal outcomes are measurements of which of the latent factors. In practice, domain

knowledge can help inform the placement of these structural zeros. All non-zero elements of

Λ must be positive.

Calculating the cumulative hazard function as written in the likelihood in Equation 5.12

would require integrating over the multivariate continuous-time OU process. To avoid this

complex integration, we take a discrete approximation based on a midpoint rule. Specifically,

within the Bayesian algorithm, we generate values of the latent process on a fine grid and

then sum the hazard across this fine grid using a midpoint rule that allows us to closely

approximate the integral with a sum. We previously used this strategy in the context of

a joint longitudinal-survival model (for single time-to-event outcomes) and found that, in

the ILD setting, parameters’ posterior distributions were not sensitive to the choice of grid

width. This sensitivity analysis, along with a more detailed description of this midpoint

approximation to the cumulative hazard, can be found in Chapter 4.

We use Stan, a software that carries out an HMC sampling algorithm, to fit our model

[18]. The priors that we use are given in Section D.4.

After fitting the joint model, it may be of interest to compare models that specify, for

example, different mechanisms for the effect of treatment or different structures for the

loadings matrix and latent factors. To do so, DIC andWatanabe-Akaike information criterion

(WAIC) [123] can be used. Gelman et al. (2014) [30] define these information criteria as

consisting of two terms: one term for the log-likelihood and another term that captures the

effective number of parameters. Letting Θ = (ΘR,ΘM ,ΘS), DIC is defined as:

DIC = −2logp(Y, T, δ|Θ̂) + 2pDIC
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where Θ̂ is the posterior mean; pDIC is the effective number of parameters, with pDIC =

2
(
logp(Y, T, δ|Θ̂)− 1

S

∑S
s=1 logp(Y, T, δ|Θ̂s)

)
; and s indexes posterior samples. Similarly,

WAIC is computed as:

WAIC = −2̂lppd + 2pWAIC

where ̂lppd =
∑N

i=1 log
(

1
S

∑S
s=1 p(Yi, Ti, δi|Θs

R,Θ
s
M ,Θ

s
S)
)
and the effective number of pa-

rameters is pWAIC =
∑N

i=1 V
S
s=1 (logp(Yi, Ti, δi|Θs

R,Θ
s
M ,Θ

s
S)), with V

S
s=1(as) =

1
S−1

∑S
s=1(as−

ā)2. Both of these information criteria rely on evaluating the log-likelihood, either at the

posterior mean Θ̂ or each of the posterior samples Θs, s = 1, ..., S. When fitting the model

in Stan, we rely on the conditional likelihood, logp(Yi, Ti, δi|Hi;Θ), rather than a version

of the likelihood that is marginalized over the latent process. The marginal version, how-

ever, is generally recommended when comparing the fits of latent variable models [89, 60].

To compute DIC and WAIC, we must integrate the conditional likelihood in Equation 5.12

over the continuous-time multivariate stochastic process in the longitudinal and event sub-

models. Specifically, we use a Monte Carlo-based approach to sample values of the latent

process and approximate the integral, as described in Section D.6. This approach allows us

to estimate the value of the marginal log-likelihood at both the posterior mean Θ̂ and each

of the posterior samples Θs, which we then use to calculate DIC and WAIC.

5.4 Simulation Study

The goal of the simulation study is to assess the statistical properties of correctly specified

models fit to simulated datasets informed by other mHealth studies of smoking cessation.

When generating data, we use two sets of true parameter values—called setting 1 and setting

2—which are informed by parameter estimates from observational mHealth studies similar

to the motivating mHealth MRT. Our simulated data, however, are slightly simpler than

the data from these mHealth studies to modulate the computational cost of conducting the

simulation study.

5.4.1 Data Generation

A single simulated dataset consists of N = 100 individuals who are followed for 14 days.

At four random times each data, we generate observations of our measured longitudinal

outcomes, Y , which consists of k = 4 observed outcomes. We assume that these 4 observed

outcomes are measurements of p = 2 latent factors. Treatments are sent randomly once per

day and the effect of each treatment lasts for half a day (δa = 0.5, δb = 0.5). Depending
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on the exact time at which each treatment is delivered, two treatments may be active at

the same time. As discussed earlier, we do not consider the setting in which treatment

directly impacts the longitudinal outcome, so the measurement submodel always takes the

form described in Equation 5.1. For the structural submodel, we assume that the treatment

impacts the latent process as either an additive shift to the mean (Eq. 5.4) or through a

drift term (Eq. 5.7). The treatment function µi(t) is defined as in Equation 5.5. For each

version of the structural submodel, we consider two different event-time submodels:

1. Treatment impacts the hazard of event r through the latent process and treatment

modifies the hazard directly.

hir(t) = h0 exp
{
β1η1i(t) + β2η2i(t) + µ̃i(t)

}
2. Treatment impacts the hazard of event r through the latent process and treatment

modifies the hazard directly. The hazard also depends on the time since the most

recent prior (r − 1)th event, where the function relating the two is specified such that

experiencing an event (i.e., engaging in substance use) temporarily increases the risk

of a subsequent event, but this temporary increase decays to 0 after a certain amount

of time.

hir(t) = h0 exp
{
β1η1i(t) + β2η2i(t) + β3g(t− ti,r−1) + µ̃i(t)

}
For setting 1, g(x) = 1

1+exp{4(x−2)} and for setting 2, g(x) = 1
1+exp{1.5(x−2)} . We assume that

these functions are known when fitting the model. µ̃i(t) is given in Equation 5.11 with

δb = 0.5. In both of these hazard models, we assume that the baseline hazard is constant,

h0 = exp(β0).

When simulating the data, we assume that the treatment has a positive impact on one of

the latent factors and a negative impact on the other. In the motivating case study, we might

expect that receiving a prompt would temporarily increase positive affect (corresponding to

τ1 = 2) while decreasing negative affect (corresponding to τ2 = −1). These effects are

interpreted as either occurring on the scale of the mean (if the treatment effect is modeled

additively) or on the scale of the derivative (if the treatment effect is modeled as drift). We

also assume that receiving a prompt decreases the hazard of an event (via τ̃ = −0.8), which

is what the prompts in the MRT aim to do by encouraging engagement in certain behavioral

strategies. True values for the other model parameters, which are informed by models fit to

other mHealth smoking cessation studies, are given in Section D.5.

In Section D.5, we provide some plots of the simulated data. The number of observed
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events ranges from an average of 1.9 events per person in setting 2 when the treatment effect

modeled through the drift term and the hazard takes the form of model 2, to an average of

4.7 events per person in setting 2 when the treatment effect modeled as an additive shift to

the latent process and the hazard takes the form of model 1.

5.4.2 Results

For each parameterization of the treatment effect on the latent process (additive or drift) and

for each hazard model (1 or 2), we simulate 100 datasets and fit the model. We repeat this

process for the true parameter values corresponding to both setting 1 and setting 2. When

fitting the joint model, we initialize parameters at values with approximately the correct

order of magnitude and with the correct sign. In practice, a two-stage approach could be

used to determine reasonable starting values when true values are not known. For each

dataset, we run 1 chain for 2000 iterations and discard the first 1000 iterations as burn-in.

To assess bias and variance, we compare the posterior medians to the data-generating

values (see Figure 5.4) and evaluate the coverage of 95% credible intervals (see Figure 5.5).

We find that the posterior medians are close to the true values and that the posterior

distributions have close-to-nominal coverage. In hazard model 2, point estimates for β3—the

parameter that captures the association between the hazard and a known function of time

since the most recent event—show some bias and, as a result of this bias, lower-than-nominal

coverage. We further investigate the bias in this parameter with some additional simulations,

which we present in more detail in Section D.5.1. These supplemental simulations suggest

that this bias is likely related to fitting a rather complicated model to a fairly small dataset;

they also suggest that the higher temporal correlation in the latent process in setting 1,

compared to setting 2, makes recovering unbiased estimates of β3 more difficult. Overall,

however, the magnitude of the bias in our point estimates for β3 is still small and reasonable

given the complexity of this joint model.

5.5 Analysis of the MRT Data

We use our joint longitudinal recurrent event model to analyze data from the motivating

MRT. We use the longitudinal submodel to summarize the observed 15 emotions as two

latent factors that represent positive affect and negative affect. We consider two models

for the repeated treatments (i.e., the app-based prompts): one in which treatment has an

additive impact directly on the mean of the latent factors and another in which treatment

impacts the dynamics of the latent factors on the derivative scale through the time-varying

87



Setting 1 Setting 2
H

azard 1 w
ith additive treatm

ent effect
H

azard 2 w
ith additive treatm

ent effect
H

azard 1 w
ith drift treatm

ent effect
H

azard 2 w
ith drift treatm

ent effect

β0 β1 β2 β3 τ~ λ1 λ2 λ3 λ4 σu1
2 σu2

2 σu3
2 σu4

2 σe1
2 σe2

2 σe3
2 σe4

2 θ11 θ12 θ21 θ22 ρ τ1 τ2 β0 β1 β2 β3 τ~ λ1 λ2 λ3 λ4 σu1
2 σu2

2 σu3
2 σu4

2 σe1
2 σe2

2 σe3
2 σe4

2 θ11 θ12 θ21 θ22 ρ τ1 τ2

β0 β1 β2 τ~ λ1 λ2 λ3 λ4 σu1
2 σu2

2 σu3
2 σu4

2 σe1
2 σe2

2 σe3
2 σe4

2 θ11 θ12 θ21 θ22 ρ τ1 τ2 β0 β1 β2 τ~ λ1 λ2 λ3 λ4 σu1
2 σu2

2 σu3
2 σu4

2 σe1
2 σe2

2 σe3
2 σe4

2 θ11 θ12 θ21 θ22 ρ τ1 τ2
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Figure 5.4: For data generated under settings 1 and 2 with different hazards and treatment
effect models, we use box plots to summarize the distribution of the posterior medians
for all parameters across the 100 simulated datasets. When fitting the model, we assume
that the grid used in the midpoint approximation of the cumulative hazard function has a
width of 0.5 days. True parameter values are indicated with colored dots.
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Figure 5.5: For data generated under settings 1 and 2 with different hazards and treatment
effect models, we summarize the coverage rate of 95% credible intervals across the 100
simulated datasets with the colored dots. The black horizontal dashed lines indicate target
coverage and the dotted grey lines corresponds to the upper and lower bounds of a 95%
binomial proportion confidence interval for a probability of 0.95.
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drift term. In the recurrent event submodel, we model the hazard of recurrent poly-substance

use events using the time-varying predictors of positive affect, negative affect, and repeated

treatment effects. The hazard model is:

hir(t) = h0(t) exp [β1η1i(t) + β2η2i(t) + µ̃i(t)]

We assume that the duration of the treatment effect is 8 hours for both submodels (δa =

δb = 8 hours). We specify a Weibull baseline hazard; we use a clock-reset approach and

reset the baseline hazard after the occurrence of each event. The time-varying latent factors,

η1i(t) and η2i(t), are still functions of time since the start of the study. In the motivating

case study, participants are instructed to quit smoking on day 4; we account for the change

in frequency of substance use before and after day 4 by specifying a separate baseline hazard

for the pre- and post-quit periods. When modeling the impact of treatment directly on

the hazard (i.e., when specifying µ̃i(t)), we consider one version that assumes the treatment

parameter τ̃ is constant across the entire study and another other version that allows this

treatment parameter to differ between the pre- and post-quit periods (i.e., we have τ̃pre and

τ̃post). Further details on these hazard models are given in Section D.1.2.

One additional advantage of using a Weibull baseline hazard is that it is potentially

flexible enough to allow the underlying risk of an event to change as a function of the time

since the prior event. In an attempt to avoid specifying an overly-complex model given our

limited sample size, we opt to account for potential changes in the hazard of an event as

a function of time since the previous event through this Weibull baseline hazard with the

clock reset, rather than by modeling the hazard as a separate function of time since the most

recent event (i.e., by including a β3g(·) term in our hazard model).

When fitting the model, we rescale follow-up in the study so that the 10-day interval has

time units in the range of 0 to 1 (this approach is suggested in Tran et al. (2021) [112]

to help deal with potentially oscillating OU processes). This rescaling of the time interval

impacts the interpretation of the θ parameter in the structural submodel and the Weibull

shape and scale parameters in the baseline hazard.

We use a two-stage approach to set initial parameter values: we first fit the longitudinal

submodels and initialize these parameters at their posterior medians. Using the posterior

values of η, we fit a simpler hazard model to get initial estimates of the recurrent event

submodel parameters. To fit the full joint model, we use 4 chains with 3,000 samples and

discard the first 1,000 as burn-in. We find that fitting a joint model that assumes treatment

impacts the latent process in an additive way, rather on the derivative scale, is easier for a

dataset of this size. For more details on model convergence, please see Section D.1.3.
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We compare the fits of these different joint models using DIC and WAIC, which are

calculated using the marginal log-likelihood as described in Section 5.3.3. We focus on

WAIC, as this measure is generally preferred over DIC [31], and present WAIC for each

model in Table 5.1. DIC is provided in the Appendix (see Table D.3) and supports the same

conclusions as WAIC. The values of these information criteria indicate that a time-varying

drift treatment effect model for the latent process and two treatment-related parameters

in the hazard model fit our data the best. The WAIC for this model, however, is only

very slightly better (smaller) than the WAIC for the joint model with the same hazard but

an additive treatment model for the latent process. Due to the sampling-based approach

we use when calculating the marginal log-likelihood, some uncertainty does exist in the

exact value of WAIC and so we emphasize that our main motivation for presenting two

different approaches for modeling the impact of treatment on the latent process is that

these approaches correspond to different scientific beliefs about the mechanisms by which

treatment impacts the latent process. Given the somewhat limited sampled size of this MRT

data (N = 64 individuals), it may be difficult to assess which treatment model is preferred.

Posterior medians and 95% credible intervals are shown for all four joint models in Figure

5.6. We see that the estimated correlation (ρ) between the latent factor for positive affect

and the latent factor for negative affect is negative, as expected. Across all models, posterior

means for this parameter ρ range from -0.48 to -0.45. We also see that the positive emotions

have larger variance estimates for their item-specific random intercepts, compared to those

for the negative emotions. When we examine the data directly, we see that the empirical

variability in individual-specific averages for each emotion tends to be slightly higher for

positive emotions than for negative emotions, supporting this result (see Section D.1.3.3 in

the Appendix for more details).

Across all joint models, we find that the estimated effect of treatment (τ ) in the treatment

model for the latent process is near zero. This result is the same whether we model the impact

of treatment on the latent process as an additive shift to the mean or on the derivative scale.

When assuming a time-varying drift treatment effect model on the latent process, WAIC

indicates that allowing the coefficient on the treatment function in the hazard model to

differ between the pre- and post-periods improves the fit of the model, compared to assuming

a single treatment-related parameter in the hazard. When examining posterior parameter

estimates, we see a slightly stronger protective effect of sending a prompt to an individual

after they have attempted to quit (τ̃post), compared to before quit (τ̃pre).
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Figure 5.6: Posterior means and 95% credible intervals for parameters in the four different
joint models that make different assumptions about how the treatment impacts the latent
process and hazard. Hazard model A assumes a single treatment-related parameter in the
hazard model; hazard model B allows for separate pre- and post-quit treatment parameters.
Emotions are indexed as: 1 = grateful, 2 = happy, 3 = proud, 4 = relaxed, 5 = enthusiastic,
6 = angry, 7 = ashamed, 8 = guilty, 9 = irritable, 10 = lonely, 11 = anxious, 12 = sad, 13
= restless, 14 = bored, 15 = hopeless.
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WAIC Impact of treatment on latent process
Hazard model Additive Drift

Single treatment parameter 61,861.17 62,224.93
Separate pre- and post-quit treatment parameters 61,723.92 61,712.76

Table 5.1: WAIC for the joint models fit to the motivating MRT data. When approximating
the marginal log-likelihood, we subsampled every 5th iteration of the final 1,000 posterior
samples to use in our calculations. We used a value of M = 25 when generating marginal
posterior samples of the latent process. A lower value of WAIC is preferred. The lowest
value of WAIC is indicated in bold text.

5.6 Discussion

In this paper, we propose a method for jointly modeling multivariate ILD, a recurrent event

outcome, and the effect of repeatedly-delivered treatments, as often found in data from

MRTs. We present two different ways to model the impact of treatment on the longitudinal

latent process—one in which the treatment effect is modeled through an additive shift to

the mean and other in which the treatment model alters the latent process on the derivative

scale through a time-varying drift term. We consider both the additive and drift versions in

this work, as our overall goal is to present different ways to model the impact of a JITAI on

a low-dimensional stochastic latent process, which here is observed through a larger number

of measured outcomes.

In the longitudinal submodel, we only consider modeling the impact of treatments on the

latent process. In addition to allowing treatments to alter the trajectory of the latent process,

it might be reasonable to assume that the latent process is modified by the occurrence of an

event. In this case, one could use the same approach that we describe for modeling the impact

of treatment on the latent process, but substitute treatment times with event times. The

impact of treatments and events on the latent process could also be modeled simultaneously.

We do not consider this variation of the longitudinal submodel in our simulations or case

study, but mention it now as it may be of interest in other settings.

A limitation of our joint model is that this approach is computationally demanding.

For example, fitting the joint models to the case study data required between 38 hours

(when the model for treatment effect on the latent process was additive and the hazard

had two treatment-related coefficients) and 121 hours (when the model for treatment effect

on the latent process assumed the drift form and the hazard had two treatment-related

coefficients) when running four chains of 3000 samples each in parallel across four cores.

Additional time (on a scale similar to that required for model fitting) is also needed to

compute the marginal log-likelihood used in DIC/WAIC calculations, which adds to the
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overall computational burden of this approach. Parallelization can substantially speed up

DIC and WAIC calculations so that they take under an hour from the analyst’s perspective.

Although our total computation time is still small compared to the amount of time required

to design and conduct an MRT, improving the speed of inference is a practically important

area for future work. Improving computation time will also facilitate additional model

comparisons and sensitivity analyses.

In the case study, we demonstrate how DIC and WAIC can be used to compare models

that make different assumptions about how the longitudinal, recurrent event, and treatment-

related components of the joint model are associated with each other. We focus on using

these measures to compare joint models as a whole; Zhang et al. (2017) [131] propose a

version of DIC for joint longitudinal-survival models where DIC is decomposed into separate

contributions from the longitudinal and survival submodels. Adapting this version of DIC

to our setting could be a potentially interesting and useful extension.

When modeling treatment in the longitudinal submodel and the recurrent event submodel

via the functions µi(t) and µ̃i(t), we make assumptions about both the specific shape of

the treatment effect over time and the duration of active treatment, δa and δb. In both

our simulations study and the case study, we assume that the effect of treatment is at its

maximum at the time of treatment and that the treatment “dosage” decreases with the time

since delivery. We focus on estimating the maximum effect of treatment (τ and τ̃) at the

time of delivery but assume that the form of its decay is known. We do so largely because the

MRT motivating this work does not have a particularly large sample size (N = 64). Here,

DIC and WAIC can be used to compare joint models with different pre-specified treatment

decay functions, but in other settings where more data are available, we could try to estimate

additional parameters that characterize the treatment function (e.g., δa or δb).

When analyzing the MRT, we assume that the effect of treatment is non-zero for 8 hours

following delivery of the notification (δa = δb = 8 hours). This MRT was designed such

that longitudinal outcomes (i.e., emotions) were measured via EMA approximately 1 hour

after individuals were randomized to potentially receive treatment (i.e., a notification). As

a result, the data should contain enough information to detect possible associations between

treatment and changes in the latent process. One advantage of modeling the effect of treat-

ment on the latent process, as opposed to only the hazard, is that the measurement frequency

of the longitudinal outcomes—which are assumed to be generated by the latent process—is

determined, at least partially, by the design of the study. That is, in the motivating MRT,

EMAs were intended to be sent to participants up to six times per day; furthermore, the

EMAs were specified to be sent 1 hour after each randomization. As a result of the frequent

measurement occasions, we can potentially capture short term treatment effects that only

94



last, for example, for a third of a day. When modeling the impact of treatment directly on

the hazard of recurrent events, our ability to detect a potential treatment effect is somewhat

limited by the frequency of these recurrent events and their proximity to the time of treat-

ment. That is, if we assume that the effect of treatment on the hazards is non-zero for only a

third of a day and we rarely observe events occurring within half a day of treatment delivery,

then capturing the direct effect of treatment on the hazard will be difficult. In the moti-

vating MRT, events of poly-substance use are observed quite frequently: 1,162 total events

across 64 individuals, with 566 of the events occurring within eight hours of treatment. In

a different setting in which events are rarer, estimating τ̃ may be more difficult. However,

as long as the longitudinal outcomes are measured frequently enough, then one may still be

able to capture an indirect effect of treatment on the hazard through the latent process.

So far, we have assumed that treatment is binary; that is, either a notification is sent or

not sent. In reality, treatment in the motivating MRT can take three different levels: no noti-

fication, a notification encouraging engagement in a behavioral strategy requiring low effort,

or a notification encouraging engagement in a behavioral strategy requiring high effort. Ex-

tending the models presented in this paper to account for multiple levels of treatment would

be straightforward, but would require more parameters. Additionally, our current definition

of treatment depends only on the outcome of randomization. This definition corresponds

to an intent-to-treat analysis. Information on subjects’ engagement with the intervention

(i.e., whether or not they carried out the behavioral strategy suggested by the notification)

is self-reported in the EMA delivered one hour after randomizaton. Engagement with the

intervention, called treatment compliance in other settings, could also be incorporated into

the definition of treatment to enable an as-treated analysis.

Finally, in our hazard model, we use responses from the substance use-related EMA

questions to approximate the time of recurrent use. In practice, many EMA questionnaires

are designed such that event outcomes are measured in an interval censored way; that is,

questions are often phrased as, “Since the last EMA, have you [experience some sort of

event or engaged in some sort of behavior]”. Sometimes, as in the case of the substances

considered in our case study, this question is followed up with questions that prompt an

individual to provide the approximate time of the events or behaviors. Quite often, however,

this subsequent set of questions is not asked and so the data only contain information on

whether or not an event occurred within the time interval between consecutive EMAs. Thus,

extending our method to handle this type of interval censored data could be practically

useful.
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CHAPTER 6

Conclusion

In this dissertation, we propose four different methods for modeling ILD and event data

collected in mHealth studies. We present an approach for jointly modeling ILD; for modeling

ILD and cumulative event outcomes; for modeling ILD and survival times; and for modeling

ILD and recurrent event times with repeated treatment effects.

Advancements in joint modeling methods have been traditionally motivated by problems

in cancer and HIV. In these settings, a single longitudinal outcome is generally of interest.

Most often, these outcomes are measured on the scale of weeks or months and so modeling

gradual changes in their levels—and how these levels relate to the hazard of an event—

is both scientifically interesting and useful. Modeling smooth changes in the longitudinal

outcomes is straightforward with methods such as linear mixed models or generalized linear

mixed models. Splines can also be used to account for sharp transitions in the smooth

trends. Although estimation is not trivial, integrating across linear, or possibly quadratic,

functions of time in the longitudinal submodel is straightforward and can sometimes be

done analytically. In this traditional setting, a combination of high computational cost and

limited availability of user-friendly software previously inhibited the use of joint models in

practice. Over the past decade or so, high-powered computing resources have become more

accessible and, as a result, the computational cost of fitting traditional joint models is no

longer prohibitive. Development of well-documented and comprehensive R packages, such as

JM [87], JMBayes2 [91], and brms [15, 16, 17], has also enabled analysts to use joint models

while avoiding the need to implement code for estimation and inference themselves.

Although the longitudinal data considered in this dissertation are higher dimensional and

more rapidly-varying than the type of data that has traditionally motivated joint models,

our ILD are not truly big data in today’s sense. EMAs facilitate frequent collection of a

sizable number of outcomes (e.g., measurements 4-6 times per days of 10-20 emotions, plus

additional state and context variables), but the frequency at which they can be sent to

study participants is limited by the burden on the participants, as manually filling out these

many-question surveys does require both time and effort. In addition to using EMAs, some
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studies use sensors (e.g., accelerometers or GPS) to collect additional data. Longitudinal

sensor-based measurements, which may include functional data, are generally much higher

dimensional than the EMA-based ILD considered here. As a result, sensor data may con-

tain a huge amount of information about complex and granular risk factors associated with

vulnerability to events of interest. GPS data recorded by smartphones also facilitates the

collection of network data, which may contain information on social interactions known to

have an important role in influencing substance use [26]. Together with traditional EMA

data, geographical momentary assessment may provide additional insights into substance use

patterns and help researchers identify factors that increase or decrease the risk of substance

use [25]. The complexity and size of this type of data creates many opportunities for the

development of efficient and flexible methods for modeling. Developing methods to incorpo-

rate this type of information into joint models could allow researchers to further investigate

how vulnerability to substance use or other health-related events of interest fluctuates as a

function of social networks, movement, stress, or other factors related to participants’ current

state and context. Developing approaches that are computationally scalable to this type of

data, however, would be challenging.

Not only do sensors enable collection of new types of predictors, they can also improve

the measurement of events of interest. For example, Saleheen et al. (2015) [99] developed

an algorithm that uses data collected from wrist sensors that record arm movements and

respiration patterns to determine when individuals are likely to be smoking. Sensor data

can contain a lot of noise, and so complex rules for data processing are required in order

to define event outcomes suitable for modeling. Developing a joint model that can handle

complex sensor-based data as an event outcome could be an interesting direction for future

work. Such a method might allow analysts to avoid developing complicated deterministic

rules in the data processing phase.

Importantly, the complex data collected from EMAs and sensors may not satisfy the

traditional parametric assumptions of longitudinal submodels. For example, the noise in the

longitudinal measurements may not be normally distributed or responses may be severely

skewed. Some work has been done on developing model-checking approaches specifically

for joint models (e.g., [94]), but the availability of new methods will become increasingly

important as data become more and more complicated. If joint models are to be used to

inform the development and assessment of interventions, for example, then it is crucial that

a model accurately represents the data. Thus, as the complexity of data increases, and the

models used for analysis do too, having an appropriate suite of tools to easily and accurately

asses the validity of fitted models is important.

Beyond traditional biostatistical literature, the fields of finance math and econometrics
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have traditionally used a variety of different stochastic time series models. For example, the

Hull-White model used in Chapter 5 is often used to model stock market data but is less

commonly applied in biomedical settings. Future research could draw more from financial

modeling literature for additional flexible longitudinal models. Often, finance math focuses

on univariate outcomes so some work would need to be done to adapt these models to the

multivariate ILD setting. Appropriate model comparison and diagnostic measures would

also need to be determined to ensure the most appropriate choice of model.

Although it is statistically interesting to build additional submodels into joint models,

from a practical perspective, such complicated models are less likely to be used as they may

require days of computation time. With enough patience, an analyst can reasonably model

ILD without needing to put a huge amount of effort into the development of novel methods

for computationally efficient estimation and inference; the same cannot be said for functional

data. As mentioned throughout this dissertation, improving the computational efficiency of

the algorithms used to fit these models is a major area for future work. Advancements in

computational efficiency would also expand not only the types of data that could be modeled,

but also the ways in which joint models could be used in practice—for example, for prediction

purposes.

mHealth studies often include apps with dashboards that provide real-time feedback to

participants on their progress towards certain goals or their engagement in certain behaviors.

Joint models are useful for making predictions in exploratory work; for example, they can

be used to examine the risk of certain events over time under hypothetical trajectories of

a longitudinal process or under hypothetical treatment patterns. If joint models are to be

used to provide real-time feedback in an mHealth app, then computational efficiency must

be improved. Although the frequentist framework was used to fit the earliest versions of joint

models, Bayesian approaches have become more popular as computing has improved, as they

handle latent variables quite naturally. Approximate Bayesian algorithms, which are much

faster than traditional sample-based Bayesian methods, have been recently proposed for the

joint model setting (e.g., [98, 130, 116]). These types of methods could be explored further

in the future. Computation time improvements would also facilitate sensitivity analyses to

assess the assumptions required by model-based approaches for estimating treatment effects,

including the one proposed in Chapter 5. If computation time could be addressed, then

developing a flexible R package to fit the types of stochastic process joint models described

in this dissertation could be useful.

While computation is one area with room for major developments, missing data is an-

other. In mHealth studies, reasons for missing values can range from intentional pauses in

data collection due to low battery power to unplanned software malfunctions. These causes of
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missingness apply to both self-reported outcomes and sensor-based outcomes. Self-reported

outcomes, however, have their own missing data challenges, as these data are dependent on

individuals filling out surveys. These surveys can be long and repetitive and can quickly

become somewhat burdensome to study participants. While some types of missingness may

be ignorable, other types may be quite informative. In mHealth studies, the devices used for

data collection often offer a small amount of additional information about why values may be

missing. For example, many mHealth studies that prompt participants to respond to EMAs

include rules that require participants to be available before sending a notification; defining

“availability” prevents prompts from being sent in inconvenient or potentially dangerous sit-

uations, such as when someone is driving. Information on availability may be recorded in the

data. The app may also detect and record when phone battery levels are low, as this may also

impact whether or not an EMA is sent. On the other hand, participants may not respond to

surveys because they do not feel like responding. This type of nonresponse that is associated

with the level of the longitudinal outcome is distinct from the previously described types of

missingness and so would ideally be treated as so in the model. Sensor-based measurements

may help reduce some amount of missingness (for example, the work in Saleheen (2015) [99]

could help reduce missingness in reported episodes of smoking). Sensors still malfunction,

however, and so modeling missingness mechanisms is another important direction for future

research. Some work has been done to develop an imputation-based approach for addressing

missingness in longitudinal mHealth data [61], but additional contributions to the field are

needed.

Finally, while the models that we present in each chapter of this dissertation build on

those in previous chapters to become more complicated, at the same time the motivating

datasets shrink in size. In Chapter 5, the size of the dataset (N = 64 individuals) makes

both fitting the joint longitudinal-recurrent event model and estimating treatment effects

challenging. We do not detect a statistically significant association between treatment and

the longitudinal latent process; this could be because the app-based notifications do not

impact the latent psychological states of positive and negative affect, or it could be because

we have limited power to detect effects given the complexity of our model and the size of our

dataset. The MRT, called the Affective Science MRT, that motivated the work in Chapter 5,

is identical in design to another MRT, the Mobile Assistance for Regulating Smoking MRT

[68], and so integrating data across these two studies could help increase power or improve

precision. The non-interventional observational mHealth studies described in Chapters 2-4

are slightly different in design but share many similarities with the MRT. Data integration

methods could be developed for use with the types of latent variable stochastic process joint

models described in this dissertation. These data integration methods could potentially help
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improve our ability to identify the pathways and mechanisms by which treatment impacts the

longitudinal and event processes. However, increasing the size of the datasets through data

integration methods could bring additional computational challenges. This computational

concern reinforces the importance of future work focusing efficient approaches for estimation

and inference.

Overall, the combination of advances in computing power and the increasing availability of

rich data collected by mHealth technology creates interesting opportunities and important

challenges for the area of joint modeling. In this dissertation, we describe four methods

motivated by the intersection of ILD and joint modeling, but substantial opportunities and

challenges remain.
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APPENDIX A

Supplementary Material for: A

Continuous-Time Dynamic Factor Model for

Intensive Longitudinal Data Arising from

Mobile Health Studies

A.1 Derivation of the Analytic Form of the Condi-

tional Covariance Function of the OU Process

Assume η(t) is a p-dimensional OU stochastic process with a marginal mean of 0. From

Vatiwutipong and Phewchean (2019) [117], if we assume that the initial state η(t0 = 0) is

known, then the cross-covariance function of the OU process at times s and t is

Cov{η(s), η(t)|η(t0 = 0)} =

∫ min(s,t)

0

e−θ(s−u)σσ⊤e−θ
⊤(t−u)du

where eA is the matrix exponential. Note that we can assume that t0 = 0 without loss of

generality because this stochastic process is stationary. Using the identity for matrices A,

B, and C that vec(ABC) = (C⊤ ⊗ A)vec(B), we can re-write the vectorized version of the

cross-covariance function as

vec{Cov{η(s), η(t)|η(t0)}} =

∫ min(s,t)

0

e−θ(t−u) ⊗ e−θ(s−u) du vec{σσ⊤}

We can also use the identity that eA ⊗ eB = eA⊕B, so

vec{Cov{η(s), η(t)|η(t0)}} =

∫ min(s,t)

0

e[−θ(t−u)]⊕[−θ(s−u)]du vec{σσ⊤} (A.1)

Next, we simplify Equation A.1 by pulling all the u’s into a single term. For now, focus
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on the term in the exponential:

[−θ(t− u)]⊕ [−θ(s− u)]
(a)
= −θ(t− u)⊗ I + I ⊗ (−θ(s− u))

= −t(θ ⊗ I) + u(θ ⊗ I + I ⊗ θ)− s(I ⊗ θ)

= −(tθ ⊕ sθ) + u(θ ⊕ θ)

where equality (a) is by the definition of the Kronecker sum; A⊕ B = A⊗ IB + IA ⊗ A,

where IA and IB are identity matrices with dimensions of A and B, respectively. Now,

substituting this new term back into the exponential term in Equation A.1, we get

e[−θ(t−u)]⊕[−θ(s−u)] = e−(tθ⊕sθ)+u(θ⊕θ) (A.2)

We can simplify this further using the identity eA+B = eAeB if A and B commute. Letting

A = (tθ)⊕ (sθ) and B = (θ ⊕ θ), we first show that these terms commute:

A ·B = [(tθ)⊕ (sθ)] · [θ ⊕ θ]

= [tθ ⊗ I + I ⊗ sθ] · [θ ⊗ I + I ⊗ θ]

=(tθ ⊗ I)(θ ⊗ I) + (tθ ⊗ I)(I ⊗ θ) + (I ⊗ sθ)(θ ⊗ I) + (I ⊗ sθ)(I ⊗ θ)

=(tθ ⊗ I)(θ ⊗ I) + (I ⊗ θ)(tθ ⊗ I) + (θ ⊗ I)(I ⊗ sθ) + (I ⊗ sθ)(I ⊗ θ)

=(θ ⊗ I) [(tθ ⊗ I) + (I ⊗ sθ)] + (I ⊗ θ) [(tθ ⊗ I) + (I ⊗ sθ)]

= [(θ ⊗ I) + (I ⊗ θ)] · [(tθ ⊗ I) + (I ⊗ sθ)]

= [(θ ⊕ θ)] · [(tθ ⊕ sθ)]

where line 4 uses the mixed-product property of the Kronecker product.

Referring back to Equation A.2, we now have

e−(tθ⊕sθ)+u(θ⊕θ) = e−(tθ⊕sθ)eu(θ⊕θ)

We can substitute this term into Equation A.1 to get

vec{Cov{η(s), η(t)|η(t0 = 0)}} =

∫ min(s,t)

0

e−(tθ⊕sθ)eu(θ⊕θ)du vec{σσ⊤}

=

∫ min(s,t)

0

eu(θ⊕θ)du e−(tθ⊕sθ)vec{σσ⊤}

Now that we have rewritten the conditional cross-covariance function in this form, the
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only term that we need to integrate is eu(θ⊕θ). We find∫ min(s,t)

0

eu(θ⊕θ)du = (θ ⊕ θ)−1
[
emin(s,t)(θ⊕θ) − I

]
We now have an integral-free analytic form of the conditional cross-covariance function:

vec{Cov{η(s), η(t)|η(t0 = 0)}} = (θ ⊕ θ)−1
[
emin(s,t)(θ⊕θ) − I

]
e−(tθ⊕sθ)vec{σσ⊤}

Note that if s = t, then the conditional cross-covariance function simplifies to the condi-

tional covariance function given in Vatiwutipong and Phewchean (2019) [117].

A.2 Derivation of the Analytic Form of the Marginal

Covariance Function of the OU Process

The analytic form of the conditional covariance function, given in Section 2.3.3, is based

on the assumption that the initial state η(t0), with t0 = 0 is known. We now derive the

analytic form of the unconditional cross-covariance function that accounts for the additional

uncertainty of an unknown initial state. From Vatiwutipong and Phewchean (2019) [117], if

η(t0), with t0 = 0, is known, then

E{η(t)|η(t0)} = e−θtη(t0)

Assuming that s ≤ t, from Lemma 1, we have

Cov{η(s), η(t)|η(t0)} = vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
If η(t0) is unknown and t0 = 0, then using the Law of Total Covariance we can calculate

Cov{η(s), η(t)} = E
{
Cov

(
η(s), η(t)|η(t0)

)}
+ Cov

{
E
(
η(s)|η(t0)

)
,E
(
η(t)|η(t0)

)}
= vec−1

{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
+ Cov

{
e−θsη(t0), e

−θtη(t0)
}

= vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
+ e−θsV ar

{
η(t0)

}
[e−θt]⊤

If we assume that η(t0) is drawn from the stationary distribution, then V ar(η(t0)) =
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vec−1
{
(θ ⊕ θ)−1vec{σσ⊤}

}
. Then, we have

Cov{η(s), η(t)} =vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
+ e−θsvec−1

{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤

Now we simplify this function. Consider the terms involving θ in the first term of the

sum,

(θ ⊕ θ)−1
[
e(θ⊕θ)s − I

]
e−(θt⊕θs)

We can simplify this expression using the fact that eAeB = eBeA in our setting. This

property means that both

(θ ⊕ θ)−1
[
es(θ⊕θ) − I

]
e−(tθ⊕sθ) = e−(tθ⊕sθ)(θ ⊕ θ)−1

[
es(θ⊕θ) − I

]
(A.3)

and

(θ ⊕ θ)−1
[
es(θ⊕θ) − I

]
e−(tθ⊕sθ) = (θ ⊕ θ)−1e−(tθ⊕sθ)[es(θ⊕θ) − I

]
(A.4)

Setting Equations A.3 and A.4 equal and cancelling the final term implies that

e−(tθ⊕sθ)(θ ⊕ θ)−1 = (θ ⊕ θ)−1e−(tθ⊕sθ)

We will use this proof of the commutative property later and now return to our expression

for the unconditional cross-covariance function, Cov{η(s), η(t)},

Cov{η(s), η(t)} =vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)s − I

]
e−(θt⊕θs)vec{σσ⊤}

}
+ e−θsvec−1

{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤

(A.5)

Consider the second term in the sum,

e−θsvec−1
{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤

By applying the identity vec(ABC) = (C⊤ ⊗ A)vec(B), we can rewrite the vectorized

form of the expression as

vec
{
e−θsvec−1

{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤

}
= e−θt ⊗ e−θsvec

{
vec−1{(θ ⊕ θ)−1vec{σσ⊤}

}
= e−θt ⊗ e−θs(θ ⊕ θ)−1vec{σσ⊤}

= e−(θt⊕θs)(θ ⊕ θ)−1vec{σσ⊤}
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Reversing the vectorization operation and applying the commutative property, we then

get

e−θsvec−1
{
(θ ⊕ θ)−1vec{σσ⊤}

}
[e−θt]⊤ = vec−1

{
e−(θt⊕θs)(θ ⊕ θ)−1vec{σσ⊤}

}
= vec−1

{
(θ ⊕ θ)−1e−(θt⊕θs)vec{σσ⊤}

}
Plugging the term above into the second term of Equation A.5, the cross-covariance

function becomes

Cov{η(s), η(t)} = vec−1
{
(θ ⊕ θ)−1

[
e(θ⊕θ)se−(θt⊕θs) − e−(θt⊕θs)

]
vec{σσ⊤}

}
+ vec−1

{
(θ ⊕ θ)−1e−(θt⊕θs)vec{σσ⊤}

}
= vec−1

{
(θ ⊕ θ)−1e(θ⊕θ)se−(θt⊕θs)vec{σσ⊤} − (θ ⊕ θ)−1e−(θt⊕θs)vec{σσ⊤}

}
+ vec−1

{
(θ ⊕ θ)−1e−(θt⊕θs)vec{σσ⊤}

}
= vec−1

{
(θ ⊕ θ)−1

[
e(θ⊕θ)se−(θt⊕θs)]vec{σσ⊤}

}
= vec−1

{
(θ ⊕ θ)−1

[
e(θ⊕θ)s−(θt⊕θs)]vec{σσ⊤}

}
(A.6)

Equation A.6 is the marginal cross-covariance function of the OU process when the initial

state at time t0 = 0 is unknown.

A.3 Derivation of the Precision Matrix for the OU

Process

We derive the sparse precision matrix for the multivariate OU process assuming an unknown

initial state. This sparsity results from the Markov property. We use Ω to represent the

precision matrix and Ψ for the covariance matrix.

First, we start in the simplest setting in which we assume a stationary univariate OU

process with evenly spaced measurement occasions. The spacing of the measurement times

is given by |tj − tj−1| =: d > 0. The covariance matrix takes the form,

Ψ =
σ2

2θ



1 e−θd . . . e−θ(n−2)·d e−θ(n−1)·d

e−θd 1 . . . e−θ(n−3)·d e−θ(n−2)·d

...
...

. . .
...

...

e−θ(n−2)·d e−θ(n−3)·d . . . 1 e−θd

e−θ(n−1)·d e−θ(n−2)·d . . . e−θd 1


We know that the univariate OU process is equal to the AR(1) process when measure-
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ments are evenly spaced, so the OU process precision matrix (assuming evenly spaced mea-

surements) can be expressed as

Ω =
2θ

σ2

1

1− e−2θd



1 −e−θd . . . 0 0

−e−θd 1 + e−2θd . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 + e2θd −e−θd

0 0 . . . −e−θd 1


Now, consider a more general setting in which measurements do not necessarily occur at

evenly spaced intervals. Assume that t1 < t2 < · · · < tn−1 < tn. Then, the covariance matrix

takes the form

Ψ =
σ2

2θ



1 e−θ|t2−t1| . . . e−θ|tn−1−t1| e−θ|tn−t1|

e−θ|t2−t1| 1 . . . e−θ|tn−1−t2| e−θ|tn−t2|

...
...

. . .
...

...

e−θ|tn−1−t1| e−θ|tn−1−t2| . . . 1 e−θ|tn−1−tn|

e−θ|tn−t1| e−θ|tn−t2| . . . e−θ|tn−tn−1| 1


and the precision matrix can be expressed as

Ω =
2θ

σ2



1
1−e−2θ|t2−t1| − e−θ|t2−t1|

1−e−2θ|t2−t1| . . . 0 0

− e−θ|t2−t1|

1−e−2θ|t2−t1|
1−e−2θ|t3−t1|

(1−e−2θ|t2−t1|)(1−e−2θ|t3−t2|)
. . . 0 0

...
...

. . .
...

...

0 0 . . . 1−e−2θ|tn−tn−2|

(1−e−2θ|t2−t1|)(1−e−2θ|t3−t2|)
− e−2θ|tn−tn−1|

1−e−2θ|tn−tn−1|

0 0 . . . − e−2θ|tn−tn−1

1−e−2θ|tn−tn−1|
1

1−e−2θ|tn−tn−1|


Next, we move from the one-dimensional case to the two-dimensional case. We start by

re-arranging the terms in the definition of the cross-covariance function for the bivariate OU

process.
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Cov{η(s), η(t)} = vec−1
{
(θ ⊕ θ)−1es∧t(θ⊕θ)−(θt)⊕(θs)vec(σσ⊤)

}
(a)
= vec−1

{
es∧t(θ⊕θ)e−(θt)⊕(θs)(θ ⊕ θ)−1vec(σσ⊤)

}
= vec−1

{[
es∧tθ ⊗ es∧tθ

][
e−θt ⊗ e−θs

]
(θ ⊕ θ)−1vec(σσ⊤)

}
= vec−1

{[
es∧tθe−θt

]
⊗
[
es∧tθe−θs

]
(θ ⊕ θ)−1vec(σσ⊤)

}
= vec−1

{[
e−θ(t−s∧t)

]
⊗
[
e−θ(s−s∧t)

]
(θ ⊕ θ)−1vec(σσ⊤)

}
(b)
= vec−1

{[
e−θ(t−s∧t)

]
⊗ I(θ ⊕ θ)−1vec(σσ⊤)

}
= vec−1

{
(θ ⊕ θ)−1vec(σσ⊤)

}
e−θ

⊤|t−s|

:= V · e−θ⊤|t−s|

where equality (a) is because these terms commute and equality (b) holds when we assume

that min(s, t) = s. We can make this assumption without loss of generality because the

matrices are symmetric. When min(s, t) = t, Cov{η(s), η(t)} = e−θ|t−s|V ⊤ = e−θ|t−s|V .

Then, the covariance matrix is given by

Ψ =



V V e−θ
⊤|t2−t1| . . . V e−θ

⊤|tn−1−t1| V e−θ
⊤|tn−t1|

e−θ|t2−t1|V V . . . V e−θ
⊤|tn−1−t2| V e−θ

⊤|tn−t2|

...
...

. . .
...

...

e−θ|tn−1−t1|V e−θ|tn−1−t2|V . . . V V e−θ
⊤|tn−1−tn|

e−θ|tn−t1|V e−θ|tn−t2|V . . . e−θ|tn−tn−1|V V


By the definition of the OU process, we know that the precision matrix, Ω = Ψ−1,

is block tri-diagonal. We start by solving for two blocks, Ω11 and Ω12. We assume that

Ω11 = A−1 and Ω12 = A−1B, based on the form of the precision matrix in the case of

the univariate OU process. Based on patterns seen when multiplying the AR(1) precision

and covariance matrices, we assume that, for the OU process, the first row of blocks in

the precision matrix, [Ω11,Ω12, 0, . . . , 0] times the second column of blocks in the covariance

matrix, [V e−θ
⊤(t2−t1), V, . . . ]⊤, is equal to 0. So,

0 = Ω11V e
−θ⊤(t2−t1) + Ω12V

=⇒ 0 = A−1V e−θ
⊤(t2−t1) + A−1BV

=⇒ 0 = V e−θ
⊤(t2−t1) +BV

=⇒ BV = −V e−θ⊤(t2−t1)

=⇒ B = −V e−θ⊤(t2−t1)V −1

By similar logic, the first row of blocks in the precision matrix times the first column of
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blocks in the covariance matrix is equal to the identity matrix. So,

I = Ω11V + Ω12e
−θ(t2−t1)V

=⇒ I = A−1V + A−1Be−θ(t2−t1)V

=⇒ A = V +Be−θ(t2−t1)V

We know that B = −V e−θ⊤(t2−t1)V −1 so

A = V − V e−θ
⊤(t2−t1)V −1e−θ(t2−t1)V

=⇒ A−1 = [V − V e−θ
⊤(t2−t1)V −1e−θ(t2−t1)V ]−1

Now we have

Ω11 =
[
V − V e−θ

⊤(t2−t1)V −1e−θ(t2−t1)V
]−1

Ω12 = −
[
V − V e−θ

⊤(t2−t1)V −1e−θ(t2−t1)V
]−1

V e−θ
⊤(t2−t1)V −1

Continuing with this logic, we can check the first row of blocks in Ω against all other

columns of Ψ and see that

0 = Ω11V e
−θ⊤(tk−t1) + Ω12V e

−θ⊤(tk−t2)

= A−1V e−θ
⊤(tk−t1) + A−1BV e−θ

⊤(tk−t2)

= V e−θ
⊤(tk−t1) +BV e−θ

⊤(tk−t2)

= V e−θ
⊤(tk−t1) − V e−θ

⊤(t2−t1)V −1V e−θ
⊤(tk−t2)

= V e−θ
⊤(tk−t1) − V e−θ

⊤(t2−t1)e−θ
⊤(tk−t2)

= V e−θ
⊤(tk−t1) − V e−θ

⊤(tk−t1)

= 0

Now we move to the second row of blocks in Ω. Because Ω = Ω⊤, we also know that

Ω21 = Ω⊤
12. This symmetry means that we only need to derive Ω22 and Ω23. Based on

previous results, we have

Ω23 = −
[
V − V e−θ

⊤(t3−t2)V −1e−θ(t3−t2)V
]−1

V e−θ
⊤(t3−t2)V −1

Then we find the form of Ω22 by once again using the same logic to say that the second
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row of blocks in Ω times the second column of blocks in Ψ will be equal to an identity matrix:

I = Ω21V e
−θ⊤(t2−t1) + Ω22V + Ω23e

−θ(t3−t2)V

⇒ V −1 = Ω21V e
−θ⊤(t2−t1)V −1 + Ω22 + Ω23e

−θ(t3−t2)

⇒ Ω22 = V −1 + V −1e−θ(t2−t1)V
[
V − V e−θ

⊤(t2−t1)V −1e−θ(t2−t1)V
]−1⊤

V e−θ
⊤(t2−t1)V −1

+
[
V − V e−θ

⊤(t3−t2)V −1e−θ(t3−t2)V
]−1

V e−θ
⊤(t3−t2)V −1e−θ(t3−t2)

The final terms are then given by:

I = Ωn,n−1V e
−θ⊤(tn−tn−1) + ΩnnV

⇒ I = −V −1e−θ(tn−tn−1)V
[
V − V eθ

⊤(tn−tn−1)V −1e−θ(tn−tn−1)V
]−1

V e−θ
⊤(tn−tn−1) + ΩnnV

⇒ Ωnn = V −1 + V −1e−θ(tn−tn−1)V
[
V − V e−θ

⊤(tn−tn−1)V −1e−θ(tn−tn−1)V
]−1

V e−θ
⊤(tn−tn−1)V −1

Thus, the precision matrix Ω is block tri-diagonal with the following entries (indexed by

j) for 1 < j < n:

V := vec−1
{
(θ ⊕ θ)−1vec{σσ⊤}

}
Ω11 =

[
V − V e−θ

⊤(t2−t1)V −1e−θ(t2−t1)V
]−1

Ωj,j+1 = Ω⊤
j+1,j = −

[
V − V e−θ

⊤(tj+1−tj)V −1e−θ(tj+1−tj)V
]−1

V e−θ
⊤(tj+1−tj)V −1

Ωjj = V −1 + V −1e−θ(tj−tj−1)V
[
V − V e−θ

⊤(tj−tj−1)V −1e−θ(tj−tj−1)V
]−1

V e−θ
⊤(tj−tj−1)V −1

+
[
V − V e−θ

⊤(tj+1−tj)V −1e−θ(tj+1−tj)V
]−1

V e−θ
⊤(tj+1−tj)V −1e−θ(tj+1−tj)

Ωnn = V −1 + V −1e−θ(tn−tn−1)V
[
V − V e−θ

⊤(tn−tn−1)V −1e−θ(tn−tn−1)V
]−1

V e−θ
⊤(tn−tn−1)V −1

A.4 Identifiability Constraint: Re-Scaling the OU Pro-

cess

Let (θ∗, σ∗) be a pair of OU process parameters satisfying the identifiability constraint that

the stationary variance of the OU process is equal to 1; that is, diag{Ψ(θ∗, σ∗)} = 1, where

Ψ is the covariance matrix of the OU process. We show that we can always find a pair of

(θ∗, σ∗) that defines a valid mean-reverting OU process with stationary variance of 1 that

has the same correlation structure as the original unconstrained OU process defined by (θ,

σ). As an example, consider the stochastic differential equation definition of the bivariate
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OU process. For an arbitrary mean-reverting OU process, η(t),

d

[
η1(t)

η2(t)

]
= −

[
θ11 θ12

θ21 θ22

][
η1(t)

η2(t)

]
dt+

[
σ11 0

0 σ22

]
d

[
W1(t)

W2(t)

]

We could equivalently define this OU process η(t) as

d

[
η1(t)

η2(t)

]
= −

[
θ11 θ12

θ21 θ22

][
c1 0

0 c2

][
1/c1 0

0 1/c2

][
η1(t)

η2(t)

]
dt+

[
σ11 0

0 σ22

]
d

[
W1(t)

W2(t)

]

= −

[
c1θ11 c2θ12

c1θ21 c2θ22

][
1
c1
η1(t)

1
c2
η2(t)

]
dt+

[
σ11 0

0 σ22

]
d

[
W1(t)

W2(t)

]

Let η∗(t) be a scaled version of η where[
η∗1(t)

η∗2(t)

]
=

[
1
c1
η1(t)

1
c2
η2(t)

]

and [
θ∗11 θ∗12

θ∗21 θ∗22

]
=

[
c1θ11 c2θ12

c1θ21 c2θ22

]
and assume that η∗(t) has a stationary variance equal to 1. Then,

dη∗(t) = −

[
θ∗11 θ∗21

θ∗12 θ∗22

][
η∗1(t)

η∗2(t)

]
dt+

[
σ∗
11 0

0 σ∗
22

]
d

[
W1(t)

W2(t)

]

= −

[
θ∗11 θ∗21

θ∗12 θ∗22

][
c1 0

0 c2

][
η1(t)

η2(t)

]
dt+

[
σ∗
11 0

0 σ∗
22

]
d

[
W1(t)

W2(t)

]

= −

[
c1θ

∗
11 c2θ

∗
21

c1θ
∗
12 c2θ

∗
22

][
η1(t)

η2(t)

]
dt+

[
σ∗
11 0

0 σ∗
22

]
d

[
W1(t)

W2(t)

]

Looking back at the original OU process η(t),

dη(t) = d

[
1
c1

0

0 1
c2

]
η∗(t)

= −

[
1
c1

0

0 1
c2

][
c1θ

∗
11 c2θ

∗
12

c1θ
∗
21 c2θ

∗
22

]
η(t)dt+

[
1
c1
σ∗
11 0

0 1
c2
σ∗
22

]
dW (t)

= −

[
c1
c1
θ∗11

c2
c1
θ∗12

c1
c2
θ∗21

c2
c2
θ∗22

]
η(t)dt+

[
1
c1
σ∗
11 0

0 1
c2
σ∗
22

]
dW (t)
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Finally, we see that the parameters for η(t) can easily be re-scaled to satisfy our identifi-

ability assumption: [
θ11

c1
c2
θ12

c2
c1
θ21 θ22

]
=

[
θ∗11 θ∗12

θ∗21 θ∗22

]
and [

c1σ11 0

0 c2σ22

]
=

[
σ∗
11 0

0 σ∗
22

]
Thus, we have shown that for a mean-reverting bivariate OU process defined by θ and

σ with covariance matrix Ψ(θ, σ) and correlation matrix Ψ∗(θ, σ), we can re-scale this OU

process to have stationary variance equal to 1 by scaling θ12, θ21 and σ11, σ22 by a pair of

positive scalar constants, (c1, c2). This proof can easily be extended to higher dimensional

OU processes.

A.5 Derivation of the Analytic Gradients for the Mea-

surement Submodel

We have previously defined the log-likelihood for a single subject i as

ℓi = −1

2
log|Σ∗

i |+ Y ⊤
i Σ∗−1

i Yi (A.7)

where we ignore the constant terms and

Σ∗
i = (Ini

⊗ Λ)Ψi(Ini
⊗ Λ)⊤ + Jni

⊗ Σu + Ini
⊗ Σϵ (A.8)

Gradient with Respect to the Loadings: We first take the derivative of ℓi with respect

to the elements of the loadings matrix Λ, λk, k = 1, ...., p × K. The first element of the

loadings matrix is parameterized on the log scale in order to restrict this element to positive

values for identifiability purposes and so the gradient of this element looks slightly different.

For k > 1, we have

∂ℓi
∂λk

= −1

2

[
tr
{
Σ∗−1
i

∂Σ∗
i

∂λk

}
− Y ⊤

i Σ∗−1
i

∂Σ∗
i

∂λk
Σ∗−1
i Yi

]
(A.9)

where
∂Σ∗

i

∂λk
= (Ini

⊗ Λ)Ψi(Ini
⊗ Jk

⊤
) + (Ini

⊗ Jk)Ψi(Ini
⊗ Λ⊤) (A.10)

We use Jk as an indicator matrix that has the same dimension as Λ but contains all zeros
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except for a single 1 indicating the location of element λk. For k = 1, we apply the chain

rule and have

∂ℓi
∂log(λk)

=
∂ℓi
∂λk

[
∂log(λk)

∂λk

]−1

=
∂ℓi
∂λk

λk (A.11)

Gradient with Respect to the Random Effects: Next, we take the gradient of ℓi

with respect to the elements of Ru where Ru comes from the Cholesky decomposition of the

random effects covariance matrix, Σu = R⊤
uRu. For p, q = 1, ..., K and p ̸= q,

∂Σ∗
i

∂rpq
= Jni

⊗ (Jk
⊤
Ru +R⊤

u J
k) (A.12)

∂ℓi
∂rpq

= −1

2

[
tr

{
Σ∗−1
i

∂Σ∗
i

∂rpq

}
+ Y ⊤

i Σ∗−1
i

∂Σ∗
i

∂rpq
Σ∗−1
i Yi

]
(A.13)

where again Jk is an indicator matrix of the same dimensions as Σu.

For p, q = 1, ..., K and p = q,

∂ℓi
∂log(rupp)

=
∂ℓi
∂rupp

[
∂log(rupp)

∂rupp

]−1

=
∂ℓi
∂rupp

rupp (A.14)

Note that if we assume only random intercepts (i.e., a diagonal covariance matrix) then

we can avoid the Cholesky decomposition by estimating σu on the log scale. In this case,

the gradient simplifies to the form given below for the measurement error.

Gradient with Respect to the Measurement Error: Finally, we take the gradient

of ℓi with respect to the elements of the measurement error covariance matrix, Σϵ. For

k = 1, ..., K, we have
∂Σ∗

i

∂σϵk
= Ini

⊗ 2σϵkJ
k (A.15)

∂ℓi
∂σϵk

= −1

2

[
tr

{
Σ∗−1
i

∂Σ∗
i

∂σϵk

}
− Y ⊤

i Σ∗−1
i

∂Σ∗
i

∂σϵk
Σ∗−1
i Yi

]
(A.16)

∂ℓi
∂log(σϵk)

=
∂ℓi
∂σϵk

[
log(σϵk)

∂σϵk

]−1

=
∂ℓi
∂σϵk

σϵk (A.17)

where Jk is an indicator matrix of the same dimensions as Σϵ.
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A.6 Parameterization of the Log-Likelihood for Stan-

dard Error Estimation

To make our OUF model identifiable, we impose a constraint on the scale of the OU process

by forcing the stationary variance equal to 1 via a set of p positive scalar constants. These

constants are functions of OU parameters θ and σ.

When the log-likelihood is allowed to vary as a function all parameters, rather than just

a single block of parameters as in our block coordinate descent algorithm, our model is no

longer identifiable. To estimate standard errors, we take advantage of the fact that under

the identifiability constraint, σ can be written as a function of θ, as shown here:

Recall that the stationary variance of the OU process is V := vec−1
{
(θ⊕θ)−1vec{σσ⊤}

}
.

Assuming a bivariate OU process, under the identifiability constraint, V takes the form[
1 ρ

ρ 1

]
where the off-diagonal element ρ is the correlation. Then,

[
1 ρ

ρ 1

]
= vec−1

{
(θ ⊕ θ)−1vec{σσ−1}

}
=⇒


1

ρ

ρ

1

 = (θ ⊕ θ)−1


σ2
11

0

0

σ2
22

 .

Letting

(θ ⊕ θ)−1 =


x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

 ,
where each element xij is some function of the elements of θ, we can solve for σ in the (θ,

σ) pair that satisfies the identifiability constraint via

1 = x11σ
2
11 + x14σ

2
22

1 = x41σ
2
11 + x44σ

2
22

By constraining σ to be a function of θ, we take an alternative approach to identification

and no longer require use of the scaling constants here.
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A.7 Choice of True OU Process in Simulation Study

In the simulation study described in the main text (Section 2.4.1-2.4.2), we generate data in

three different settings in which the true OU process has varying degrees of auto-correlation.

We present the true OU process parameters here:

Setting 1:

θ =

[
1 0.6

4 5

]
and σ =

[
1 0

0 2

]

Setting 2:

θ =

[
1.0 0.4

1.8 3.0

]
and σ =

[
1.25 0

0 2.00

]

Setting 3:

θ =

[
1 0.5

2 5

]
and σ =

[
2 0

0 3

]

In the simulation study assessing use of AIC and BIC to select the correct number of latent

factors in a model (described in the main text in Section 2.4.3-2.4.4), the true parameters

were set to the values listed below. The true values used for Σu and Σϵ were the same as in

the original simulation study (see Section 2.4.1 in the main text).

One-Factor Model:

Λ =


1.2

1.8

−0.4

2

 , θ = 0.8, σ = 1
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Two-Factor Model with Low Signal:

Λ =


1.2 0

1.8 0

0 −0.4

0 2

 , θ =

[
2 0.5

0.4 4

]
, σ =

[
2 0

0 1

]

Two-Factor Model with High Signal:

Λ =


1.2 0

1.8 0

0 −0.4

0 2

 , θ =

[
1 1.5

2 5

]
, σ =

[
2 0

0 3

]

Three-Factor Model with Low Signal:

Λ =


1.2 0 0

1.8 0 0

0 −0.4 0

0 0 2

 , θ =

 2 0.2 0.4

0.8 1.1 0.5

0.7 0.5 1.2

 , σ =

1.2 0 0

0 0.8 0

0 0 0.4



Three-Factor Model with High Signal:

Λ =


1.2 0 0

1.8 0 0

0 −0.4 0

0 0 2

 , θ =

 1 0.4 0.6

1.8 3 0.9

0.9 1 1.2

 , σ =

1.2 0 0

0 0.8 0

0 0 0.4



A.8 Discussion of Numerical Issues in Simulation Re-

sults

Simulation Study: Bias and Variance The estimation algorithm failed to converge

due to numerical issues when applied to a few of the simulated datasets generated in the

simulation study described in Section 2.4.1-2.4.2. The failures were caused by a singular V

matrix at the start of the first block update of the structural submodel parameters. Slightly

altering the values at which the OU process parameters were initialized resolved this issue.

Point estimates were ultimately calculate for all 1000 simulated datasets in each setting. In

Setting 3, an invalid variance for the measurement submodel parameter σ2
ϵ4

was estimated
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from one dataset. In this instance, the variance estimated for this parameter was negative.

We attribute this issue to the numerical approximation used to calculate the Hessian when

applied to these this dataset of size N = 200. We anticipate that a larger dataset would

improve the approximation of the numerical Hessian but chose to simulate a dataset of this

size in order to assess model performance in a realistic setting similar to that encountered

in the motivating data application. In practical application, if a negative variance were to

be estimated, it could be rounded to 0. In the results presented in the main text, we ignore

the variance estimate for this one σ2
ϵ4
.

Simulation Study: Model Selection In our simulation studies, we aimed to assess

simulated datasets with sample sizes similar to that of our motivating dataset. For datasets

of fixed size (N = 200 subjects), we found that convergence speeds decrease and estimation

becomes more difficult as the number of factors in the model increases. We found that point

estimates of the diagonal elements of θOU hit the lower bound of 1 × 10−4 less than 1% of

the time. To improve convergence, we slightly altered the set of default parameter values

considered during the initialization steps of the block-wise estimation algorithm for a subset

of datasets. However, when assessing AIC and BIC as model selection criteria (see Section

2.4.3-2.4.4), we very occasionally encountered numerical issues and so failed to calculate

parameter estimates for a subset of models applied to the simulated datasets. The results

reported in the main paper correspond to a comparison of AIC and BIC across datasets for

which the algorithm used to fit all three models (the one-factor, two-factor, and three-factor

models) either converged or reached the maximum number of iterations prior to convergence.

We assessed whether or not including results in which the maximum number of iterations was

reached prior to convergence impacted our model selection results and found no substantial

changes. Table A.1 shows the equivalent version of Table 2.1 if only results from datasets

that had converged were shown.

In Table A.2, we summarize the number (out of 100) of datasets (in each setting) for which

the algorithm converged (using δ = 1× 10−6) or reached the maximum number of iterations

prior to convergence. When this total number does not add up to 100, the remaining datasets

correspond to situations in which the algorithm failed due to numerical issues (e.g., current

OU parameter estimates corresponded to a singular stationary covariance matrix).

After loosening the convergence criteria across the block-wise iterations, we did not find

substantially different results when evaluating AIC and BIC as model selection criteria when

compared to results under the original convergence criteria. For example, if we categorized

convergence using δ ≤ 1 × 10−3, rather than only the original δ = 1 × 10−6, the algorithm

would have converged when fitting almost every model to almost every dataset (see Table
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# Factors Signal 1 2 3 1 2 3
1 - 99 0 1 100 0 0
2 Low 0 93 7 4 96 0
2 High 0 100 0 0 100 0
3 Low 0 0 100 0 8 92
3 High 0 0 100 0 0 100

True Model # Factors in Fitted Model with Best AIC # Factors in Fitted Model with Best BIC

Table A.1: For datasets generated under each true model, we summarize the percent of
times that the model-selection metric chose the fitted model with the indicated number of
factors. The settings in which the fitted model has the same number of factors as the true
data-generating model are emphasized with bold orange text. These results are presented
for datasets on which the algorithm converged prior to reaching the maximum number of
iterations (200) for all three models.

# Factors Signal convergence iteration limit convergence iteration limit convergence iteration limit
1 - 100 0 100 0 79 20
2 Low 100 0 100 0 96 4
2 High 100 0 100 0 98 2
3 Low 100 0 99 1 100 0
3 High 99 0 100 0 99 1

True Model
# Factors in Fitted Model

1 2 3

Table A.2: For datasets generated under each true model, we summarize the number of
datasets (out of 100) on which the algorithm converged or reached the maximum number
of block-wise iterations prior to convergence (when δ = 1 × 10−6). For totals that do not
sum to 100, the remaining cases correspond to instances in which the algorithm failed due
to numerical issues prior to converging or reaching the maximum number of block-wise
iterations (200).
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# Factors Signal convergence iteration limit convergence iteration limit convergence iteration limit
1 - 100 0 100 0 94 5
2 Low 100 0 100 0 100 0
2 High 100 0 100 0 100 0
3 Low 100 0 99 1 100 0
3 High 99 0 100 0 100 0

# Factors in Fitted Model
True Model 1 2 3

Table A.3: For datasets generated under each true model, we summarize the number of
datasets (out of 100) on which the algorithm converged or reached the maximum number
of block-wise iterations prior to convergence (when δ ≤ 1 × 10−3). For totals that do not
sum to 100, the remaining cases correspond to instances in which the algorithm failed due
to numerical issues prior to converging or reaching the maximum number of block-wise
iterations (200).

# Factors Signal 1 2 3 1 2 3
1 - 99 0 1 100 0 0
2 Low 0 93 7 4 96 0
2 High 0 100 0 0 100 0
3 Low 0 0 100 0 8 92
3 High 0 0 100 0 0 100

True Model # Factors in Fitted Model with Best AIC # Factors in Fitted Model with Best BIC

Table A.4: For datasets generated under each true model, we summarize the percent of
times that the model-selection metric chose the fitted model with the indicated number of
factors. The settings in which the fitted model has the same number of factors as the true
data-generating model are emphasized with bold orange text. These results are presented
for datasets on which the algorithm converged (using δ ≤ 1 × 10−3) prior to reaching the
maximum number of iterations (200) for all three models.

A.3) but the model selection results would not have changed (see Table A.4).

We expect that increasing the size of the simulated dataset would increase the rate at

which we successfully fit models with more factors.

A.9 Application to mHealth Emotion Data

A.9.1 OUF Model with One Factor

In this model, we assume that a single latent factor generates all observed emotions of

happy, joyful, enthusiastic, active, calm, determined, grateful, proud, attentive, sad, scared,

disgusted, angry, ashamed, guilty, irritable, lonely, and nervous. We plot the point estimates

from this model in Figure A.1. Using these estimated parameters, we calculate the auto-

correlation half-life of this latent factor as approximately 27 days. This model has a total of
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Figure A.1: Point estimates for each of the parameter matrices in our one-factor OUF model.
Because we assume structural zeros in the loadings matrix are known, each emotion has only
a single loading. Parameter subscripts 1-18 correspond to the emotions as follows: 1 =
happy, 2 = joyful, 3 = enthusiastic, 4 = active, 5 = calm, 6 = determined, 7 = grateful, 8
= proud, 9 = attentive, 10 = sad, 11 = scared, 12 = disgusted, 13 = angry, 14 = ashamed,
15 = guilty, 16 = irritable, 17 = lonely, 18 = nervous.

56 free parameters, along with one constraint, which we use when calculating AIC and BIC.

A.9.2 OUF Model with Two Factors

In this model, we assume that two latent factors generate the observed emotions. The latent

factors represent positive affect (which underlies happy, joyful, enthusiastic, active, calm,

determined, grateful, proud, and attentive) and negative affect (which underlies sad, scared,

disgusted, angry, ashamed, guilty, irritable, lonely, and nervous). Results from this fitted

model are available in Section 2.5. This model has a total of 60 free parameters, along with

two constraints, which we use when calculating AIC and BIC.

A.9.3 OUF Model with Three Factors

We assume that three latent emotional states underlie the emotions observed during this

study. The emotions load on to the latent factors as follows:

1. enthusiastic, proud, active, calm, determined, attentive, grateful [η1 = high arousal

positive affect]
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Positive affect items Arousal Citation

calm no-to-low McManus (2019), Gilbert (2008), Remington (2000)
grateful high Reisenzein (1994)
proud high McManus (2019)
happy no-to-low Remington (2000)
joyful no-to-low Remington (2000)
enthusiastic high McManus (2019), Gilbert (2008), Remington (2000)
active high McManus (2019), Gilbert (2008), Remington (2000)
determined high McManus (2019)
attentive high McManus (2019)

Table A.5: Behavioral science literature supporting the division of the positive emotions into
two groups representing no-to-low arousal positive affect and high arousal positive affect.

2. calm, happy, joyful [η2 = no-to-low arousal positive affect]

3. sad, scared, disgusted, angry, ashamed, guilty, irritable, lonely, nervous [η3 = negative

affect]

We use behavioral science literature and theory—namely the circumplex model of

emotion—to inform the division of the positive affect emotions into groups representing

high arousal positive affect and no-to-low arousal positive affect [85, 86, 32, 59]. Literature

supporting the placement of each positive affect emotion is summarized in Table A.5. Happy

and joyful are also commonly placed midway between high and low arousal in the circumplex

model of emotion [86] and so we chose to assess the fit of the OUF model when these emotion

items load onto the latent factor representing no-to-low arousal positive affect. This model

converged after 211 block iterations and we present point estimates in Figure A.2. This

model has a total of 66 free parameters, along with three constraints, which we use when

calculating AIC and BIC.

A.10 Estimation Algorithm

A.10.1 Parameter Initialization

Due to the complexity of our model, our estimation algorithm is sensitive to the choice of

initial estimates. Here we present an approach to estimating reasonable starting values based

on simple existing models prior to maximizing the entire likelihood.

1. To initialize the measurement submodel parameters, fit a standard cross-sectional

factor model to the data collapsed across time (do not include a random intercept but

do assume that the positions of the non-zero loadings are known).
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Figure A.2: Point estimates for each of the parameter matrices in our three-factor OUF
model. Because we assume structural zeros in the loadings matrix are known, each emotion
has only a single loading. Parameter subscripts 1-18 correspond to the emotions as follows:
1 = happy, 2 = joyful, 3 = enthusiastic, 4 = active, 5 = calm, 6 = determined, 7 = grateful,
8 = proud, 9 = attentive, 10 = sad, 11 = scared, 12 = disgusted, 13 = angry, 14 = ashamed,
15 = guilty, 16 = irritable, 17 = lonely, 18 = nervous.
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2. Using this fitted factor model, estimate the factor scores (predicted values for η1 and

η2).

3. Fit four separate linear mixed effects models—one for each of the observed outcomes,

Y1, ..., YK—including the factor scores as fixed effects and a random intercept for

subject. We do not include a fixed effect intercept in these models. For outcome

k = 1, ..., K, subject i = 1, ..., N , and measurement occasion j = 1, ..., ni, the mixed

model is given by

Ykij = λkηi(tj) + uk0i + ϵkij

where uk0i ∼ N(0, σ2
uk
) and ϵkij ∼ N(0, σ2

ϵk
).

4. From each of these K mixed models, extract estimates of the coefficient for the fixed

effect, the variance for the random intercept, and the residual variance. Use the co-

efficients of the fixed effects to initialize the non-zero elements of Λ and the variance

estimates to initialize the diagonal components of Σu and Σϵ. In some cases, the esti-

mated variances were very small, so a lower limit of 0.1 was set for the initial parameter

values to avoid extremely negative estimates after logging. We also set the same lower

bound for initial values of the elements in the loadings matrix.

5. To initialize the structural submodel parameters, we add a term for white noise

to the OU process likelihood. This noise term will absorb some of the extra variability

in the predicted factor scores and allow for more stable estimation. Let Γi be white

noise, then ηi ∼ N(0,Ψi+Γi) where Γi is a diagonal matrix (of the same dimension as

OU covariance matrix Ψi) with constant but unknown diagonal γ. We then maximize

this likelihood and use the estimated OU process parameter values as initial values,

restricting the maximum initial values of the diagonals of θOU to be less than 7. This

maximum helps deal with instability in the initial estimate of θ.

A.10.2 Maximization of the Marginal Log-Likelihood

To maximize the log-likelihood, we use quasi-Newton optimizers as implemented in the stats

package in R [81]. To prevent the parameter estimates from diverging to infinite values, we

set the maximum allowed step size to 10.

Using the initial parameter values estimated via the approach described in the previous

section, we iteratively update measurement and structural submodel parameter estimates in

blocks:

1. Initialize estimates: Λ(0),Σ
(0)
u ,Σ

(0)
ϵ , θ(0), σ(0). Measurement submodel parameters are

122



always initialized empirically; for structural submodel parameters, two sets of initial

estimates are considered—an empirical set of values estimated as described above and

a default set of values that are based on a reasonable guess. The set of values that

corresponds to the higher log-likelihood is used.

2. Set r = 1 and δ = 0. While r ≤ 200 and δ = 0,

(a) Update block of measurement submodel parameters:

Λ(r),Σ(r)
u ,Σ(r)

ϵ = argmax
Λ,Σu,Σϵ

{
logL(Y |θ(r−1), σ(r−1))

}
.

We solve this iteratively using nlm [81] and analytic gradients with convergence

criteria set to gradtol = max(1 × 10−4/10r, 1 × 10−8) and steptol = max(1 ×
10−4/10r, 1×10−8). gradtol is the tolerance for the scaled gradient and steptol

is the tolerance for parameter estimates across iterations. We model the first

element of the loadings matrix and the variance parameters on the log scale, since

all of these estimates are required to be positive.

(b) Update block of structural submodel parameters:

θ(r), σ(r) = argmax
θ,σ

{
logL(Y |Λ(r),Σ(r)

u ,Σ(r)
ϵ )
}
.

We solve this iteratively using nlminb and numeric approximations to the gradi-

ents. For estimates of θ, the diagonal elements must be positive and the matrix

must have eigenvalues with positive real parts. The eigenvalue constraint is im-

plemented by adding a negative penalty term to the likelihood for proposed values

of θ that do not satisfy this constraint. The diagonal element of σ are estimated

on the log scale, since they are required to be positive.

(c) Check for block-wise convergence: Let Θ be a vector containing all elements of Λ,

Σu, Σϵ, θ, and σ. Then, calculate

δ = max
{
I
{
|Θ(r)−Θ(r−1)|/Θ(r) < 10−6

}
, I
{
logL(Θ(r)|Y )−logL(Θ(r−1)|Y ) < 10−6

}}
where all operations on Θ are element-wise.

(d) Rescale OU process parameters so stationary variance is equal to 1 using Equation

5 in the main paper.

(e) Update r: r = r + 1
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3. Estimate standard errors using a numerical approximation to the Hessians of the joint

negative log-likelihood for Λ(r),Σ
(r)
u ,Σ

(r)
ϵ , θ(r) at the current parameter values. Rather

than rescaling the OU parameters so the stationary variance is equal to 1, we assume

that σ is a function of θ. See Appendix A.6 for further description of this function. The

numeric approximation to the Hessians is carried out using the optimHess function in

the stats package.

4. Estimate confidence interval for OU process parameter σ based on a parametric boot-

strap of θ.

A.11 Comparison with Tran et al. (2021)

To illustrate the computational benefits of our proposed block coordinate descent algorithm

for estimation relative to the Bayesian approach taken in Tran et al. (2021) [112], we apply

both methods to simulated datasets. Because we only consider continuous outcomes in this

work, we slightly modify the original model proposed in Tran et al. (2021) [112] and do not

estimate the additional parameters used to account for non-continuous outcomes. Tran et

al. (2021) [112] also consider two different sets of constraints on the OU process drift matrix

(denoted here as θOU); we use the set of constraints that specify the eigenvalues of θOU to

have positive real parts.

We use the same simulation set-up as described in the main text (Section 2.4.1) with

the true OU process parameters corresponding to setting 1 (Section A.7). We make one

modification to the true values of the loadings parameters: we restrict all elements of the

loadings matrix to be positive. This restriction means that λ3 = 0.4, rather than the original

λ3 = −0.4. We make this assumption in order to make identification of parameters more

straightforward in this comparison of methods.

We generate 100 replicates of the simulated dataset and fit the OUF model using our

proposed estimation algorithm and the algorithm proposed in Tran et al. (2021) [112].

Tran et al. (2021) [112] use a slightly different parameterization of the OU process than

we use in this work. In our implementation of the OU process, we restrict the volatility

parameter matrix, σOU , to be a diagonal matrix. Although Tran et al. (2021) [112] do

not make this assumption, there is still a one-to-one correspondence between the set of

parameters estimated in our work and the set of posterior estimates resulting from their

Bayesian method. As a result of these differences in parameters, we do not report estimates

of σOU in the plot below and instead present parameter estimates for ρ, which is the stationary

correlation between η1 and η2. Tran et al. [112] estimate this parameter directly and we can
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Figure A.3: Computation time (in minutes) for our estimation algorithm and the Bayesian
method proposed in Tran et al. (2021) [112]. Box plots summarizes the computation time
required to fit the OU factor model using both approaches across 100 simulated datasets.
Time required to compute initial parameter estimates is not included in the total above.
For our approach, the total time includes both the time required to carry out the block
coordinate descent algorithm plus the time required to estimate standard errors.

calculate an estimate for it using θ̂OU and σ̂OU .

When applying the Bayesian approach, we use our proposed empirical approach to ini-

tializing parameter values, assume 4 chains, and allow the sampler to run for 2,000 itera-

tions. We discard the first half of these samples as burn-in. The computation time of both

approaches—excluding time required to compute initial parameter estimates—is shown in

Figure A.3. Computing resources are the same across all replicates; we use 4 cores with a

total of 4GB of memory for each replicate (this allows gradients to be evaluated or chains to

be sampled in parallel, depending on the method). We find that our approach, on average,

takes approximately 5% of the time required by the method in Tran et al. (2021) [112].

Point estimates for both estimation approaches are shown in Figure A.4. We present the

posterior means for each parameter across the 100 simulated datasets as estimated using

the method from Tran et al. (2021) [112]; maximum likelihood estimates resulting from our

block coordinate descent algorithm are also summarized across the 100 simulated datasets.

Note that the posterior estimates from the Bayesian estimate may be slightly improved by

running the sampling algorithm for additional iterations; we limit the MCMC algorithm to

2,000 iterations since our focus is on comparing computation time.
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Figure A.4: Final parameter estimates from our block coordinate descent algorithm and the
Bayesian method proposed in Tran et al. (2021) [112]. For the Bayesian method, posterior
means are used for point estimates. Each box plot summarizes point estimates across the
100 simulated datasets. True parameter values are indicated with colored dots.
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APPENDIX B

Supplementary Material for: A Latent

Variable Approach to Jointly Modeling

Longitudinal and Cumulative Event Data

Using a Weighted Two-Stage Method

B.1 Data Structure

The proposed method is motivated by data in which both the longitudinal and event out-

comes are partially unobserved. That is, we only observed the longitudinal outcome (e.g.,

emotions) at measurement occasions (e.g., random ecological momentary assessments or

EMAs) and do not directly observe the states that represent risk (e.g., latent emotional

states of positive and negative affect). For the event outcome, we only observe the total

number of events over some interval of time (e.g., number of cigarettes smoked over a win-

dow of time). In Figure B.1, we provide an illustration of the general structure of these

data.

B.2 Multivariate Ornstein-Uhlenbeck Stochastic Pro-

cess

To model the correlated evolution of the multiple latent variables, we use a multivariate

Ornstein-Uhlenbeck (OU) process. This process can be viewed as a continuous-time version

of the discrete-time vector autoregressive process. Letting η be a (np)-length vector of a

p-dimensional OU process observed at n different occasions, the joint distribution of η is
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⌘i(t3,1), ..., ⌘i(t3,4)

Figure B.1: Illustration of two event intervals as defined by three measurement occasions (i.e.,
random EMAs). We assume that the longitudinal outcomes, Xi(tj), are noisy observations of
the true latent states, ηi(tj). We also observe the total number of events that occur over the
windows of time between measurement occasions, where this cumulative number of events
is indicated by Yi(tj). In this illustration, we have Yi(t2) = 0 and Yi(t3) = 4 events. Each
individual event, which we do not observe, is indicated by Zi(tjl). Note that event interval
endpoints and measurement occasions are not required to be the same.

η ∼ N(0,Ψ)

where Ψ is a (np) × (np) covariance matrix parameterized by two p × p matrices, θ and

σ. The joint covariance matrix Ψ consists of p× p blocks that correspond to the covariance

of the OU process at measurement times s and t, s ≤ t, where the blocks take the form

Cov{η(s), η(t)} = vec−1
{
(θ ⊕ θ)−1vec(σσ⊤)

}
e−θ

⊤(t−s) (B.1)

⊕ denotes the Kronecker sum and the vec{A} operation stacks the columns of matrix A into

a column vector.

B.3 Derivation of the Distribution for the Conditional

Mean of the Latent Factors

In this section, we derive the distribution of the average value of the latent factors over

an interval of time given known values of the latent factors at each endpoint. We start by

considering a single latent factor, η, that follows a stationary univariate OU process. Suppose

that we have an interval from time 0 to time t, which we divide into J subintervals of equal
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length 1
J
. Then we end up with a grid of points defined by times 0 < t1 < ... < tJ = t.

Consider observations of the univariate OU process taken across this grid of discrete times.

Our first goal is to calculate the variance of the average value of the OU process across this

interval, which we do by considering a discrete approximation to the integral,

V ar

(
1

t

∫ t

0

η(s)ds

)
≈ V ar

{
1

J

J∑
j=1

η(tj)

}

=
J∑

j′=1

J∑
j=1

(
1

J

)2

Cov (η(tj′), η(tj))

Recall that the stationary (and unconditional) variance of the univariate OU process is

Cov(η(s), η(t)) =
σ2

2θ
e−θ|t−s|

Then, we can write the variance of the mean as

J∑
j′=1

J∑
j=1

(
1

J

)2

Cov (η(tj′), η(tj)) =
1

J2

J∑
j′=1

J∑
j=1

σ2

2θ
e−θ|tj−tj′ |

=
1

J2

σ2

2θ

J∑
j′=1

J∑
j=1

e−θ|tj−tj′ |

=
1

J

σ2

2θ

[
1 +

J−1∑
d=1

2(1− d

J
)exp

{
−θ d

J
× t

}]

=
1

J

σ2

2θ

[
1 +

J∑
d=1

2(1− d

J
)exp

{
−θ d

J
× t

}]

To make the grid finer and finer, let J → ∞. Then, we find that
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lim
J→∞

1

J

σ2

2θ

[
1 +

J∑
d=1

2(1− d

J
)exp

{
−θ d

J
× t

}]
=
σ2

2θ
2

∫ 1

s=0

(1− s)e−θtsds

=
σ2

2θ
2

[
1

(θt)2
e−θts(θts− θt+ 1)

]1
s=0

=
σ2

θ

[
e−θt

(θt)2
− 1− θt

(θt)2

]
We extend this result to the multivariate OU process for p latent factors, where η is now

a p-length column vector. Viewing θ and σ each as p× p matrices, the variance becomes

V ar

(
1

t

∫ t

0

η(s)ds

)
= V (θ⊤t)−2

(
e−θ

⊤t − I + θ⊤t
)
+ (θt)−2

(
e−θt − I + θt

)
V := Vη̄(s,t)

where V := vec−1
{
(θ ⊕ θ)−1vec(σσ⊤)

}
. We now write the distribution for the average

OU process, denoted η̄(0, t) across some interval 0 to t as

η̄(0, t) ∼ Np

(
0, V (θ⊤t)−2

(
e−θ

⊤t − I + θ⊤t
)
+ (θt)−2

(
e−θt − I + θt

)
V
)

(B.2)

Because we have assumed a stationary OU process, the distribution above holds for the

average value of η across any interval of width t.

We next derive the conditional distribution of the average over an interval from s to t,

denoted as η̄(s, t), given known values of η at the endpoints of a wider interval, say from tL

to tR, where tL ≤ s < t ≤ tR. Based on previous results, we know that

 η(tL)η̄(s, t)

η(tR)

 ∼ N


0p0p
0p

 ,
 V ? V e−θ

⊤|tR−tL|

? Vη̄(s,t) ?

e−θ|tL−tR|V ? V




However, we still need to fill in the missing blocks of this covariance matrix.

For now, we return to the univariate setting. We start by calculating the covariance of

the latent process at the left endpoint of the interval and the average value:
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Cov (η(tL), η̄(s, t)) = Cov

(
η(tL),

1

J

J∑
j=1

η(tj)

)

=
1

J
[Cov (η(tL), η(t1)) + Cov (η(tL), η(t2)) + ...+ Cov (η(tL), η(tJ))]

=
1

J

J∑
j=1

Cov (η(tL), η(tj))

=
1

J

σ2

2θ

J∑
j=1

e−θ|tj−tL|

=
1

J

σ2

2θ

J∑
d=0

e−θ|s+
d(t−s)

J
−tL|

Let J → ∞, then

lim
J→∞

1

J

σ2

2θ

J∑
d=0

e−θ|s+
d
J
(t−s)−tL| =

σ2

2θ

∫ 1

u=0

e−θ|s+u(t−s)−tL|du

=
σ2

2θ

∫ 1

u=0

e−θ[s+u(t−s)−tL]du

=
σ2

2θ

[
−1

θ(t− s)
e−θ(s+u(t−s)−tL)

]1
u=0

=
σ2

2θ

−1

θ(t− s)

[
e−θ(t−tL) − e−θ(s−tL)

]
If the OU process is multivariate, then we can write the covariance as

Cov {η(tL), η̄(s, t)} =
−1

(t− s)
V (θ⊤)−1

[
e−θ

⊤(t−tL) − e−θ
⊤(s−tL)

]

Cov {η̄(s, t), η(tR)} =
−1

(t− s)
V (θ⊤)−1

[
e−θ

⊤(tR−s) − e−θ
⊤(tR−t)

]
Putting all of this together, the joint distribution of the average value of η over the interval

from s to t and the value of η at the endpoints tL and tR, tL ≤ s < t ≤ tR, is

131



η̄(s, t)η(tL)

η(tR)

 ∼ N


0p0p
0p

 ,
 V ar{η̄(s, t)} Cov{η̄(s, t), η(tL)} Cov{η̄(s, t), η(tR)}
Cov{η(tL), η̄(s, t)} V ar{η(tL)} Cov{η(tL), η(tR)}
Cov{η(tR), η̄(s, t)} Cov{η(tR), η(tL)} V ar{η(tR)}




(B.3)

where

V ar{η̄(s, t)} =V (θ⊤(t− s))−2
(
e−θ

⊤(t−s) − I + θ⊤(t− s)
)
+

(θ(t− s))−2
(
e−θ(t−s) − I + θ(t− s)

)
V

V ar{η(tL)} = V

V ar{η(tR)} = V

Cov{η(tL), η̄(s, t)} = −1
(t−s)V (θ⊤)−1

[
e−θ

⊤(t−tL) − e−θ
⊤(s−tL)

]
Cov {η̄(s, t), η(tR)} = −1

(t−s)V (θ⊤)−1
[
e−θ

⊤(tR−s) − e−θ
⊤(tR−t)

]
Cov{η(tL), η(tR)} = V e−θ

⊤(tR−tL)

Finally, it is straightforward to derive the conditional distribution of η̄(s, t) given both

η(tL) and η(tR) using properties of multivariate normal distributions.

B.4 Justification for Approximate Estimation Algo-

rithm

In this section, we provide a justification of the approximate expectation-maximization (EM)

algorithm that motivates the weighted two-stage approach we use to fit our model.

Stage 1: In the first stage of our estimation algorithm, we fit the longitudinal submodel—

specifically a dynamic factor model—by directly maximizing the log-likelihood for the ob-

served longitudinal data, X, via a block coordinate descent algorithm. The distribution of

the observed longitudinal outcome for individual i, with parameter vector ΘL, is:

p(Xi; ΘL) =

∫
p(Xi|ηi, ui; ΘL)p(ui; ΘL)p(ηi; ΘL)dηdu

Estimation of this submodel is discussed further in Abbott et al. (2023) [1].
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Figure B.2: Illustration of data collected over a single event interval for a single individual.
In an ideal world, we would observe each individual event when it occurs, denoted by Zi(tjl),
and the value of the latent process at each event, ηi(tjl). For illustrative purposes, we assume
here that l = 1, 2, 3, 4 and that

∑
l Zi(tjl) = Yi(tj) = 4. In reality, both Zi(tjl) and ηi(tjl)

are latent.

Stage 2: In this stage, we aim to fit the cumulative risk submodel given the longitudinal

process—here, the longitudinal process that we consider is entirely latent, rather than the

intermittently measured longitudinal outcome. Suppose that we were to observe the complete

data; specifically, we observe the time of each individual repeated event, denoted by Zi(tjl),

along with the values of the latent process at each event time, ηi(tjl), for each individual

i = 1, ..., N . Here we omit the individual-specific index from our time variable t. Because

our primary interest is in understanding the association between the latent process and the

risk of an event, observing the measured longitudinal outcome, Xi, does not provide any new

information beyond what is provided by ηi.

For now, consider a single event interval from tj−1 to tj for a single individual i. We

assume for illustrative purpose that four events occur over this interval, as presented in the

diagram in Figure B.2.

In reality, we do not get to observe Zi(tjl), l = 1, ..., 4; rather only Yi(tj) =
∑

l Zi(tjl).

To fit the cumulative risk model, we need a single value of the latent process to associate

with each event interval; we take the average of the latent process over each event interval,

denoted by η̄i(tj). Then, we aim to maximize the log-likelihood of our cumulative risk model

across all N individuals; the distribution of the cumulative event outcome for individual i,

parameterized using vector β, is:

p(Yi(tj)|η̄i(tj); β) ∼ Poisson ((tj − tj−1)λi(tj)) , λi(tj) = f(η̄i(tj); β)
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where η̄i is the vector of average values of the latent process within each event interval

for individual i and f(η̄i(tj); β) is some linear combination of the average values of the p

latent factors with parameters β. In our formulation of the cumulative risk model, risk is

independent of the observed longitudinal outcome, X, given the latent process, η. To fit

the cumulative risk submodel, we need to know the corresponding value of η (or, actually,

η̄) for each event interval. Following the standard approach in an expectation maximization

algorithm, we would ideally generate values of the latent process conditional on the number

of observed cumulative events, Y . However, sampling from this conditional distribution

of ηi|Yi is not straightforward. Instead of directly sampling from ηi|Yi, we use weights

based on importance sampling to re-weight values of η drawn from the marginal distribution

(unconditional on Y ). These weights allow us to approximate samples from p(η|Y ) so that

our algorithm simply corresponds to iteratively maximizing a weighted Poisson model.

We derive the importance sampling-based weights here. Our target distribution is

p(η̄i(tj)|Yi(tj); ΘL, β)

but we can more easily sample from p(η̄i(tj); ΘL), since this is simply a multivariate normal

distribution (see Section B.3 for the exact form). So, we can re-weight the likelihood corre-

sponding to Y |η̄ (our Poisson regression model) using samples from p(η̄i(tj); ΘL) according

to weights,

w =
p(η̄i(tj)|Yi(tj); ΘL, β)

p(η̄i(tj); ΘL)
≈ p(Yi(tj)|η̄i(tj); ΘL, β) = p(Yi(tj)|η̄i(tj); β)

Importantly, uncertainty still exists in the values of η̄i(tj); we capture this uncertainty

through a Monte Carlo approach by drawing multiple samples of the average value of the

latent process, indexed by r = 1, ..., R, for each event interval. This repeated sampling means

that our weights are also indexed by r. To fit the cumulative risk model while capturing

this uncertainty, we replicate each observation of the cumulative number of events, Yi(tj),

R times. Then we fit a weighted Poisson regression model for the outcome Y
(r)
i (tj) with

predictors η̄
(r)
i (tj), where we normalize the weights to maintain our original sample size.

Putting all of this together, we can fit our cumulative risk model in the second stage of

this two-stage approach by iterating between (i) fitting a weighted Poisson regression model

for Y (r)|η̄(r) with weights w(r) to generate new estimates of β and then (ii) updating the

weights based on Pr(Y
(r)
i (tj)|η̄(r)i (tj); β̂

(k)) where k indexes the iteration number.
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B.5 Simulation Study Design

The true parameter values used to generate the data in the simulation study are given here:

Setting 1: The true OU process has higher autocorrelation and higher noise. We expect

estimation to be easier in this setting.

θ =

[
0.9 0.4

0.5 1

]
and σ =

[
1.19 0

0 1.24

]

The true values of the coefficients in the cumulative risk model are

β0 = −2.4, β1 = −0.9, β2 = 1

Setting 2: The true OU process has lower autocorrelation and higher noise. We expect

estimation to be more difficult in this setting.

θ =

[
1.8 0.4

0.2 1.5

]
and σ =

[
1.86 0

0 1.71

]

The true values of the coefficients in the cumulative risk model are

β0 = −2.2, β1 = −0.6, β2 = 0.8

In both setting 1 and setting 2, we use the same set of true values for the other parameters

in the longitudinal submodel. These true parameter matrices are:

135



Λ =



0.82 0

1.04 0

0.88 0

1.16 0

0.81 0

1.27 0

0.98 0

1.15 0

0.92 0

0 1.19

0 0.93

0 1.24

0 1.00

0 1.16

0 0.86

0 1.02

0 1.25

0 1.06



Σu = diag{0.1, 0.2, 0.3, 0.4, 0.2, 0.3, 0.1, 0.6, 0.5, 0.5, 0.05, 0.8, 0.4, 0.1, 0.2, 0.3, 0.4, 0.2}

σ2
ϵ,k = 0.1, k = 1, ..., 18

Σu in covariance matrix for the outcome-specific random intercepts and σ2
ϵ,k denotes the

measurement error variance for each of the k observed longitudinal outcomes. The values in

the true loadings matrix, Λ, are based on estimates from the smoking cessation data.

B.5.1 Stage 1 Results

For the simulation study, we present the point estimates of parameters in the longitudinal

submodel in Figure B.3. Estimated during stage 1, these parameter values are then used

in stage 2. If standard error estimates are of interest for stage 1 parameters, a Fisher
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Estimation of both stage 1 and stage 2 parameters 
 
Main paper: 

CR Coef. 
Setting 1: high correlation Setting 2: low correlation 

RR VH RR VH 

80% 
β0 69 71 80 82 
β1 82 85 73 81 
β2 80 82 67 73 

95% 
β0 89 89 94 94 
β1 96 96 91 94 
β2 95 99 85 92 

 
 
 
 

CR Coef. 
Setting 1: high correlation Setting 2: low correlation 

R = 25 R = 50 R = 100 R = 25 R = 50 R = 100 

80% 
β0 70 71 71 83 82 83 
β1 85 85 85 80 81 82 
β2 82 82 82 72 73 73 

95% 
β0 89 89 89 95 94 96 
β1 96 96 96 94 94 94 
β2 99 99 99 92 92 92 

 
 
Bolded cells fall outside of the expected range of values based on binomial proportion 
CI: 

• 95% CI for binomial proportion: 90.7284 – 99.2716 
• 80% CI for binomial proportion: 72.1601– 87.8399 
• Expected range of values calculated from: 

p +/- 1.959964 * sqrt(p * (1 - p) / 100) where p = 0.95 or 0.80 
 

Table B.1: Coverage rates (CRs; %) for 80% and 95% confidence intervals from the simulation
study assessing sensitivity to R, where confidence intervals are calculated from von Hippel
standard errors. CRs are averaged across 100 datasets. We have bolded the CRs that
fall outside of the expected range of values based on 80% and 95% binomial proportion
confidence intervals.

information-based approach can be used (see Abbott et al. (2023) [1] for more details).

B.5.2 Sensitivity Analysis: Value of R

In the simulation study and data application in the main paper, we selected a value of R with

the goal of balancing computational cost and approximation error. Here, we assess if the

von Hippel standard errors [120] result in confidence intervals with close to nominal coverage

when generating different numbers of average values of the latent process per event interval

(i.e., using different values of R). We evaluate the bias of point estimates and coverage of

confidence intervals when the true parameters of the latent process correspond to the higher

and lower correlation settings. We consider R = 25, 50, 100 and present the results in Figure

B.4 and Table B.1. Note that R = 50 was used in the original simulation study in the main

paper.

B.5.3 Computation Time by Stage

We summarize the computation time by each stage in Figure B.5. Stage 1 computation time

corresponds to the time required to fit the dynamic factor model. Stage 2 computation time

is reported twice: once if only point estimates are desired and once if both point estimates

and standard errors are required. Estimation of parameter values, without standard errors,

does not require bootstrapping and so computation time is much lower.
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Figure B.3: Stage 1 point estimates from the simulation study. True coefficient values are
indicated with colored dots. Point estimates are summarized across 100 replicates using
black boxplots.
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Figure B.4: Point estimates from simulation study assessing sensitivity to R. True coefficient
values are indicated with dashed orange horizontal lines. Point estimates are summarized
across 100 replicates using black boxplots.
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Figure B.5: Computation time (in minutes) for stage 1 and stage 2 in the simulation study,
where times are summarized across the 100 replicates using box plots. Times for stage 2
are presented twice: box plots labeled “est.” correspond to the time required to calculate
point estimates and box plots labeled “inf.” correspond to the time required to calculate
both point estimates and bootstrap-based standard errors. The computation time of stage
2 depends on the value of R.

B.6 Application to Smoking Cessation Data

In Figure B.6, we plot stage 1 point estimates and 95% confidence intervals estimated for

the longitudinal submodel fitted to the larger subset of the smoking cessation data with

N = 218 individuals. The 95% confidence intervals are based on Fisher information. In

Figure B.7, we plot stage 2 point estimates and anti-conservative 95% confidence intervals

estimated when we carried out estimation and inference using the non-bootstrapped-based

approach with Rubin’s Rule [97].
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Figure B.6: Point estimates and corresponding 95% confidence intervals (CIs) for parameters
in the longitudinal submodel applied to the mHealth smoking cessation study data with
N = 218 individuals. Intervals for σOU,11 and σOU,22 are based on a parametric bootstrap.
Subscripts for the loading, random intercept, and measurement error parameters correspond
to the following emotions: 1 = happy, 2 = joyful, 3 = enthusiastic, 4 = active, 5 = calm, 6 =
determined, 7 = grateful, 8 = proud, 9 = attentive, 10 = sad, 11 = scared, 12 = disgusted,
13 = angry, 14 = ashamed, 15 = guilty, 16 = irritable, 17 = lonely, 18 = nervous. This
figure has been previously published [1].
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Figure B.7: Point estimates and 95% confidence intervals (CIs) for cumulative risk model
parameters applied to the subset of mHealth smoking cessation study data with N = 214
individuals. Error bars correspond to 95% CIs calculated from anti-conservative standard
error estimates (using Rubin’s Rule).
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APPENDIX C

Supplementary Material for: A Bayesian

Joint Longitudinal-Survival Model with a

Latent Stochastic Process for Intensive

Longitudinal Data

C.1 Identifiability and Parameter Constraints

C.1.1 Converting Between OU Process Parameterizations

To ensure that our dynamic factor model is identifiable, we model the Ornstein-Uhlenbeck

(OU) process on the correlation scale. A p-dimensional OU process is generally parameterized

in terms of two p-dimensional OU process, θ and σ, where θ controls the speed of mean

reversion and σ controls the volatility of the process. The SDE form of a bivariate OU

process, denoted by η1 and η2, is:

d

[
η1(t)

η2(t)

]
= −

[
θ11 θ12

θ21 θ22

]
︸ ︷︷ ︸

:=θOU

[
η1(t)

η2(t)

]
dt+

[
σ11 σ21

σ12 σ22

]
︸ ︷︷ ︸

:=σOU

d

[
W1(t)

W2(t)

]

where W1(t), W2(t) are standard Brownian motion. The OU process is most often written

in terms of its conditional distribution. Assuming that the initial value of the latent process

is η(t0) ∼ Np(0,V ), where V = vec−1
{
(θOU ⊕ θOU)

−1vec(σOUσ
⊤
OU)
}
, then for j = 1, ...,

η(tj)|η(tj−1) ∼ Np

(
e−θOU (tj−tj−1)η(tj−1),V − e−θOU (tj−tj−1)V e−θ⊤

OU (tj−tj−1)
)

If the OU process is modeled on the correlation scale, then V is a correlation matrix. We

use ρ to denote the off-diagonal parameter(s) of V . For a bivariate OU process, we must
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estimate only one off-diagonal parameter in V , where

V =

[
1 ρ

ρ 1

]
.

When estimating the parameters that describe the OU process, we could do so using the

parameterization in the SDE or the parameterization of the conditional distribution. That

is, we could estimate either (θOU ,σOU) or (θOU , ρ).

While the SDE version of the OU process is a function of σOU , the conditional distribution

is a function of σOUσ
⊤
OU (that is, σOU never shows up outside of the term σOUσ

⊤
OU). We

know that σOUσ
⊤
OU is symmetric and positive definite. Because σOUσ

⊤
OU is symmetric, this

means that the conditional distribution only depends on the identifiable parameter σOUσ
⊤
OU

(plus additional parameters in θOU). In the case of the bivariate OU process, σOUσ
⊤
OU

contains three identifiable parameters (that is, the upper or lower triangle is identifiable).

Although σOU is not immediately identifiable from a known θOU and V , we can always

re-parameterized an arbitrary OU process with a full σOU to have a triangular σOU while

maintaining the same correlation structure. This fact results from the stationary covariance

formula being a function of σOUσ
⊤
OU :

V = vec−1{(θOU ⊕ θOU)
−1vec[σOUσ

⊤
OU ]}

We can decompose σOUσ
⊤
OU into σOU using the Cholesky decomposition, which says that if

matrix A is positive definite, then A can be decomposed into two lower-triangular matrices

L, where A = LL⊤. Furthermore, since σOUσ
⊤
OU is positive definite, then we know that the

Cholesky decomposition of σOUσ
⊤
OU is unique. To convert an OU process with parameters

θ∗
OU , ρ to parameters θOU ,σOU , we can simply solve the stationary variance V (containing

parameter(s) ρ) for σOUσ
⊤
OU .

C.1.2 Constraints on θOU

Tran et al. (2021) [112] discuss constraints on the OU process θOU matrix, which ensure

that θOU corresponds to a mean reverting process but does not restrict it from being non-

oscillating. We apply these constraints developed in this prior work, which constrain the

real parts of the eigenvalues of bivariate OU process parameter θOU to be positive:
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v1 = θOU11 + θOU22

v2 = θOU11θOU22 − θOU12θOU21

where v1 and v2 must be positive. Tran et al. (2021) [112] also discuss eigenvalue constraints

for a trivariate OU process.

C.2 Simulation Study Design

C.2.1 Measurement Patterns

In our simulation study, we generate observations of our longitudinal outcomes using four

different patterns in measurement occasions:

Measurement pattern 1: The measurements occur frequently and with constant

probability. To determine the timing of the measurements, we sample uniformly from

a fine grid of possible times spanning 0 to 28 days, where a maximum of 60 and 70

measurement times are drawn in settings 1 and 2, respectively. After censoring of the

longitudinal measurements due to the survival outcome, an average of 19.2 and 24.4

measurement occasions are observed per individual in settings 1 and 2, respectively.

Measurement pattern 2: The measurements occur less frequently but still with con-

stant probability. To determine the timing of the measurements, we sample uniformly

from a fine grid of possible times spanning 0 to 28 days, where a maximum of 15 and

12 measurement times are drawn in settings 1 and 2, respectively. After censoring of

the longitudinal measurements due to the survival outcome, an average of 5.5 and 5.0

measurement occasions are observed per individual in settings 1 and 2, respectively.

Measurement pattern 3: The measurements are distributed according to the mea-

surement times observed in the motivating mHealth study, CARE. To determine the

timing of the measurements, we sample (with replacement) individuals from the mo-

tivating mHealth dataset and then use their observed measurement times to define

the measurement times in the simulated dataset. After censoring of the longitudinal

measurements due to the survival outcome, an average of 33.5 and 36.9 measurement

occasions are observed per individual in settings 1 and 2, respectively.

Measurement pattern 4: The measurements are clustered together and distributed

according to probabilities following a truncated cosine function of time. To determine
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Figure C.1: Each column displays the true values of the four longitudinal outcomes for a
different individual in the simulated data under setting 1. Each row displays the different
patterns in measurement occasions, where the timing of the measurement occasions are
indicated by the location of the black tick marks along the x-axis.

the timing of the measurements, we generate measurement probabilities for each point

on the fine grid of possible measurement times going from 0 to 28 days. These mea-

surement probabilities are proportional to the absolute value of a cosine function and,

in order to induce larger gaps between clusters of measurements, are truncated to 0

when less than 0.4. After censoring of the longitudinal measurements due to the sur-

vival outcome, an average of 29.3 and 20.4 measurement occasions are observed per

individual in settings 1 and 2, respectively.

We illustrate the different patterns in measurements in Figure C.1 and C.2 for four in-

dividuals in datasets simulated under setting 1 and setting 2. Only measurements that

occurred prior to the event or censoring time are displayed in this figure.
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Figure C.2: Each column displays the true values of the four longitudinal outcomes for a
different individual in the simulated data under setting 2. Each row displays the different
patterns in measurement occasions, where the timing of the measurement occasions are
indicated by the location of the black tick marks along the x-axis.
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C.2.2 True Parameter Values

In setting 1, we assume the following true parameter values:

Measurement submodel:

θOU =

[
1.8 0.4

1.5 1.2

]
, σOU =

[
1.76 0

0 0.71

]
=⇒ ρ = −0.633

Structural submodel:

Λ =


0.9 0

0.5 0

0 1

0 0.8


σu1 = 0.4, σu2 = 0.5, σu3 = 0.8, σu4 = 1

σϵ1 = 0.2, σϵ2 = 0.6, σϵ3 = 0.3, σϵ4 = 0.7

Survival submodel:

β0 = −2.5, β1 = −0.2, β2 = 0.3

In setting 2, we assume the following true parameters values:

Measurement submodel:

θOU =

[
2.4 0.4

0.8 2

]
, σOU =

[
2.14 0

0 1.89

]
=⇒ ρ = −0.273

Structural submodel:

Λ =


0.9 0

0.5 0

0 1

0 0.8


σu1 = 0.4, σu2 = 0.5, σu3 = 0.8, σu4 = 1

σϵ1 = 0.2, σϵ2 = 0.3, σϵ3 = 0.1, σϵ4 = 0.2

Survival submodel:

β0 = −3, β1 = −0.4, β2 = 0.8

In both settings 1 and 2, the true survival submodel is hi(t) = exp(β0+β1η1i(t)+β2η2i(t)).

The true censoring distribution is Ci ∼ 10 × Exponential(rate = 0.25) for measurement

patterns 1, 2, and 4. For measurement pattern 3 in which the timing of measurements is
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Figure C.3: Kaplan-Meier curves for a single dataset with each measurement pattern (1-4)
simulated using the true set of parameters in setting 1.

based on those observed in the motivating mHealth study, the timing of an individual’s final

random EMA is used as the censoring time. Kaplan-Meier curves are plotted in Figures C.3

and C.4 for each combination of setting and measurement pattern.

C.2.3 Initial Parameter Values

When fitting the model in the simulation study (both settings 1 and 2), we specify initial

parameter values that are correct in their sign and in their order of magnitude. The specific

values are listed below. For parameters not listed below (e.g., η), we rely on the random

initial values generated by Stan [18]. In practice, we could take a two-stage approach to

initialization.

Measurement submodel:

θOU =

[
1 0.5

0.5 1

]
, ρ = −0.5
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Figure C.4: Kaplan-Meier curves for a single dataset with each measurement pattern (1-4)
simulated using the true set of parameters in setting 2.

Structural submodel:

Λ =


1 0

1 0

0 1

0 1


σuk = 0.1, k = 1, ..., 4

σϵk = 0.1, k = 1, ..., 4

Survival submodel:

β0 = −1, β1 = −1, β2 = 1

C.2.4 Prior Distributions

We specify the following prior distributions when fitting the models in our simulation study.

These priors are based on those used in Tran et al. (2021) [? ].
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λk ∼ half-N(1, σ2
λ); k = 1, ..., 4

σλ ∼ half-Cauchy(0, 5)

θOU11 , θOU21 , θOU12 , θOU22 ∼ N(0, 102)

ρ ∼ Uniform(−0.999999, 0.999999)

σuk ∼ half-Cauchy(0, 5); k = 1, ..., 9

σuϵ ∼ half-Cauchy(0, 5); k = 1, ..., 9

β0, β1, β2 ∼ N(0, 52)

C.3 Investigation of Grid Width

For the simulation study described in the main text, we present complete results in this

section for all combinations of true parameter values (settings 1 and 2), measurement patterns

(1-4), and grid widths (0.2, 0.4, 1.2, and no grid). Due to the high computation cost, we do

not fit models using the finest grid (0.2) for data generated under measurement patterns 3

and 4. Computation times are summarized in Figure C.5.

Meas. pattern 1:
uniform and frequent

Meas. pattern 2:
uniform and less frequent

Meas. pattern 3:
CARE
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Figure C.5: For data generated under settings 1 and 2 with each of the four measurement
patterns, we summarize the time required to run Stan for 3000 iterations.

Posterior medians are summarized by grid width in Figure C.6. In some cases, when we
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fit the joint model with no added grid points to data generated under measurement pattern

3, we encounter issues with convergence and the posterior medians take extreme values.

Due to the range of the y-axis in Figure C.6, the instances in which posterior medians take

extreme values do not appear in this figure. As such, we re-plot the results for this scenario

(measurement pattern 3, no added grid points) separately in Figure C.7. For both setting 1

and 2 with measurement pattern 3, we find that adding grid points resolves this issue; the

posterior medians are close to the truth when we fit the model using a grid of width 0.8 or

1.2, vs. no grid at all.

Coverage rates are summarized by grid width in Figure C.8.

C.4 Analysis of Data from Smoking Cessation Study

Our analytic sample consists of 238 individuals who did not lapse within the first 12 hours of

the post-quit period (i.e., within 12 hours of 4am on the quit day) and who also responded

to the emotion-related questions in at least one random EMA after the first 12 hours of the

study. We also required that the baseline covariates of pre-quit smoking history and partner

status be non-missing.

Definition of the Survival Outcome: In Vinci et al. (2017) [119], the authors analyze

the same dataset to assess associations between position emotions and smoking habits after

attempted quit. The authors conduct two analyses: (a) they assess the association between

pre-quit positive emotions and a binary outcome of lapse on the first day after quit and (b)

the association between post-quit positive emotions and the risk of first lapse (as a time-

to-event outcome) among individuals who did not lapse on the first day after quit. In the

first analysis, the authors used data from all individuals; in the second analysis, the authors

restricted their final dataset to the subset of individuals who did not lapse on the first day.

We take the same subsetting approach here in order to avoid uncertainty surrounding

the exact time of quit and reduce the number of lapse events that occur within minutes

of the assumed quit time. We opt to use 12 hours as our cutoff, rather than 24, since we

assume that the day of quit is known even if the exact time is not. A Kaplan-Meier curve

for time-to-first-lapse for those who did not lapse within the first 12 hours is given in Figure

C.9. Given that individuals who lapse almost immediately contribute limited information

when fitting the model, we do not expect our results to be particularly sensitive to our exact

definition of the time origin (e.g., 4pm (which we use) vs. 5pm vs. 7pm, for example).

Sensitivity analyses could be conducted to better assess the impact of our assumed quit time

on the fitted model.
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Figure C.6: For data generated under settings 1 and 2 with each of the four measurement
patterns, we use box plots to summarize the distribution of the posterior medians for all
parameters across the 100 simulated datasets. True parameter values are indicated with
colored dots. Note that the y-axis range is truncated to span -3 to 5 and so some posterior
medians corresponding to measurement pattern 3 and no added grid points are not shown;
results for this combination of measurement pattern and grid width are re-plotted separately
in Figure C.7.
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Figure C.7: For data generated under settings 1 and 2 with measurement pattern 3, we
use box plots to summarize the distribution of the posterior medians for all parameters
across the 100 simulated datasets when fitting the model without added grid points.
True parameter values are indicated with colored dots. These plots show the same set of
results as in Figure C.6 for measurement pattern 3 with no additional grid points, but here
we allow a wider range of values on the y-axis so that all posterior medians are visible in the
plot.
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Figure C.8: For data generated under settings 1 and 2 with each of the four measurement
patterns, we summarize the coverage rate of 90% credible intervals across the 100
simulated datasets with the colored dots. The black dashed line indicates target coverage
and the grey dashed lines mark the expected range of values based on a 90% binomial
proportion confidence interval.
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Figure C.9: The Kaplan-Meier curve for the time-to-event outcome of time until first lapse.
The time origin corresponds to 4pm on the reported quit day.

C.4.1 Specification of Piecewise Constant Baseline Hazard

Lázaro et al. (2021) [56] describe a regularized version of a piecewise constant baseline

hazard where the priors are specified such that the segments are correlated. The baseline

hazard, made up of B segments, is

h0(t; β0) =
B∑
i=1

β0bI(cb−1 < t ≤ cb)

where β0 = (β01 , ..., β0B), I is an indicator function, c0 = 0, and cB is the time of the final

(observed or censored) event time. We assume B = 10 and that the segments are of equal

length. Then, prior distributions are specified as
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p(log(β01)) ∼ N(0, σ2
β)

p(log(β02)) ∼ N(log(β01), σ
2
β)

...

p(log(β0B)) ∼ N(log(β0B−1
), σ2

β)

where σ2
β ∼ half-Cauchy(0, 25), as suggested in Gelman (2006) [29].

C.4.2 Prior Distributions

We report prior distributions for the remainder of the parameters here:

λk ∼ half-N(1, σ2
λ); k = 1, ..., 9

σλ ∼ half-Cauchy(0, 5)

θOU11 , θOU21 , θOU12 , θOU22 ∼ N(0, 102)

ρ ∼ Uniform(−0.999999, 0.999999)

σuk ∼ half-Cauchy(0, 5); k = 1, ..., 9

σuϵ ∼ half-Cauchy(0, 5); k = 1, ..., 9

β1, β2 ∼ N(0, 52)

α1, α2 ∼ N(0, 52)

C.4.3 Model Diagnostic Plots

For the joint model with the piecewise constant baseline hazard, we provide trace plots

and posterior densities in Figure C.10 and C.11. We also provide a plot that evaluates the

goodness-of-fit of our model in Figure C.12; this plot shows the distribution of the predicted

survival probabilities. This approach to assessing goodness-of-fit uses a strategy similar to

Cox-Snell residuals: We know that if T ∼ S(t) and F (t) = 1−S(t), then F (T ) ∼ Unif(0, 1).

So, for each set of posterior samples for β̂ and η̂ for all i = 1, ..., N , we:

1. Calculate Ŝi(Ti) using β̂ and η̂ where Ti is the observed event time

2. Fit a Kaplan-Meier curve to (1− Ŝi(Ti), δi)
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If our predicted survival probabilities are accurate, they should be approximately uniformly

distributed between 0 and 1 and so the Kaplan-Meier curve should follow a diagonal line

from (1, 1) to (1, 0).

We compared the model with the piecewise constant baseline hazard to a model with

a Weibull baseline hazard function and found that the piecewise constant baseline hazard

appeared to result in a model that better fit the data. The goodness-of-fit plot for the fitted

Weibull model is given in Figure C.13.

C.4.4 Plotting Correlation Decay in the Latent Factors

When estimating the OU process, we rely on the conditional distribution. To plot the

estimated correlation decay in the latent factors across increasing time intervals (as in Figure

4.5), we use the (unconditional) covariance formula. We provide this marginal covariance

formula below. Assuming that η(s) and η(t) are two observation of latent factors from an

OU process at times s and t, where s < t, then the marginal joint distribution is:[
η(s)

η(t)

]
∼ N

([
0

0

]
,Ψ =

[
V V e−θ⊤(t−s)

e−θ(t−s)V V

])
To calculate the estimated correlation between the latent factors across increasing time

intervals, we plug posterior samples of the structural submodel parameters into the off-

diagonal elements ofΨ along with s = 0 and increasing values of t. Because our identifiability

constraint assumes that we model the OU process on the correlation scale, the covariance

matrix above will be the correlation matrix here. In Figure 5 in the main manuscript, the

x-axis corresponds to increasing values of t and the y-axis corresponds to different elements

of Ψ.
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Figure C.10: Trace plot of posterior samples (after burn-in) for the joint model with the
piecewise constant baseline hazard fit to data from the mHealth smoking cessation
study.
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Figure C.11: Posterior densities of parameters for the joint model with the piecewise con-
stant baseline hazard applied to data from the mHealth smoking cessation study.
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Figure C.12: Goodness of fit for the joint model with the piecewise constant baseline
hazard in the survival submodel. Each solid line corresponds to the Kaplan-Meier survival
curve calculated from a single set of posterior samples; curves are plotted for 100/1000 total
posterior samples samples. If the model fits well, then we expect the Kaplan-Meier curves
to follow the dashed line going from (1, 1) to (1, 0).
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Figure C.13: Goodness of fit for the joint model with the Weibull baseline hazard in the
survival submodel. Each solid line corresponds to the Kaplan-Meier survival curve calculated
from a single set of posterior samples; curves are plotted for 100/1000 total posterior samples
samples. If the model fits well, then we expect the Kaplan-Meier curves to follow the dashed
line going from (1, 1) to (1, 0).
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APPENDIX D

Supplementary Material for: Estimation of

Time-Varying Treatment Effects in a Joint

Model for Longitudinal and Recurrent Event

Outcomes in Mobile Health Data

D.1 Case Study

D.1.1 Defining the Recurrent Event Outcomes

Poly-substance use is defined as engaging in any of the following activities: using marijuana,

vaping, or smoking cigarettes. At each EMA, participants are asked to respond to a set of

questions in which they report if they used any of these substances since the last EMA, and

if so, the approximate time of use. More details on the questions used to assess each type

of substance use, and our approach to converting these responses into event times suitable

for modeling, are given below. Note that these rules are defined specifically for the purpose

of curating an event-time outcome appropriate for modeling, and are not intended to be

used to draw general conclusions about comparable instances of substance use (for example,

cigarette vs. vaping equivalence).

Marijuana Use If participants report any marijuana use since the prior EMA, they are

also asked to provide a single time corresponding to time of use. Each reported time of

marijuana use is considered a recurrent event.

Cigarette Smoking If participants report smoking any cigarettes since the prior EMA,

then they are prompted to respond to additional questions about how many cigarettes they

smoked and approximately when they smoked the cigarettes.
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If a participant reports smoking a partial or a single cigarette since the last EMA, then

they are also asked to provide a single time corresponding to when they smoked. We consider

this time as a recurrent event time.

If a participant reports smoking more than one cigarette since the last EMA, then they

are asked to respond to two additional questions. These questions ask (i) when they smoked

the first cigarette after the last EMA and (ii) when they smoked their most recent cigarette.

These questions result in an interval of time over which a participant has smoked a known

number of cigarettes. To convert this interval into a recurrent event time appropriate for

modeling, we evenly distribute the reported number of cigarettes across the interval and then

consider each time at which a cigarette is assumed to be smoked as a recurrent event time.

For example, if two cigarettes were smoked over an interval from A to B, then we would

place one event at time A and one event at time B. If three cigarettes were smoked over an

interval from A to B, then we would place one event at time A, one event at time B, and

one event halfway between times A and B. If more than 10 cigarettes were reported smoked,

then participants do not report the exact number but instead select the option of “more

than 10 cigarettes” when filling out the EMA. For cases when “more than 10 cigarettes”

was selected, we assume that the cigarettes were smoked (and recurrent events occurred) at

a rate of approximately 1 event per hour across the reported interval of time.

In some cases, an individual might smoke multiple cigarettes in a row, which could be

viewed as a single episode of smoking, rather than multiple separate episodes. To account

for cases like these, we define an additional rule: if multiple cigarettes were reported smoked

over an interval of less than an hour, then we consolidate these events into a single event

and use the midpoint of the interval of time as the corresponding recurrent event time.

Vaping Vaping is assessed in a similar way to cigarette smoking; however, vaping is re-

ported in units of “puffs”. Before converting the responses to the vaping-related questions

into recurrent event times, we first consider how many puffs constitute a single event. One

puff delivers much less nicotine than a single cigarette, and so a single puff is not equivalent to

a single cigarette. The nicotine contained in one e-cigarette pod is approximately equivalent

to the nicotine contained in a pack of cigarettes (20 cigarettes); it also takes approximately

200 puffs to use up a pod [75]. Using these two facts, we assume that on average 10 puffs are

equivalent to smoking one cigarette, and we define a single event of vaping as 0-15 puffs. It

follows that 16-25 puffs are 2 events, 26-35 puffs are 3 events, and so on. The conversion of

puffs to events is summarized in Table D.1. After converting puffs to events, we next apply

some rules to convert the information reported in the EMAs into recurrent event times.
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VAPING CIGARETTES

# puffs count # events count
1 18
2 6
3 5
4 1
5 8
6 4
7 2
9 1

10 1
11 1
20 4
21 1
27 2 3 2
40 1
41 1
43 1
52 1 5 1

100+ 1 12 1

1

2

4

47

5

3

Table D.1: Number of times that each number of puffs was observed and conversion of puffs
to events.

Vaping is assessed using questions that have the same structure as those used to assess

cigarette smoking since the last EMA. Participants are asked to report the total number

of puffs since the prior EMA, the approximate time of the puff if only a single puff was

taken, and the approximate time of the first and most recent puff if multiple puffs were

reported. After converting puffs to events, we apply rules similar to those used when con-

verting cigarettes to event times. When more than 1 but fewer than 16 puffs are reported,

we convert these puffs into a single event; the approximate time of the event corresponds to

the midpoint of the reported interval over which the puffs were taken.

In the illustrative analysis in the main paper, we combine all instances of marijuana use,

vaping, and cigarette smoking into a single recurrent event outcome called poly-substance

use. We do not distinguish between use of specific substances in our analysis. In Figure

D.1, we plot the timing of the recurrent poly-substance use events for each individual in the

study.

In Figure D.2, we plot the mean cumulative function (MCF) estimate across days in the

study. This plot tells use the expected cumulative number of events per person by each day

in the study.

We can also look at the expected cumulative number of events per person for the pre- and

post-quit periods separately, as shown in Figure D.3.

D.1.2 Specifying the Hazard Model

In the analysis of the motivating MRT data, our hazard model is

hir(t) = h0(t) exp [β1η1i(t) + β2η2i(t) + µ̃i(t)]
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Figure D.1: Timing of recurrent poly-substance use events. Grey bars indicate time periods
when individuals are at risk of a recurrent event. The vertical grey line at day 4 indicates
the end of the quit day, which we use as the transition from the pre-quit to the post-quit
period.
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Figure D.2: Mean cumulative function for recurrent poly-substance use.
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Figure D.3: Mean cumulative function for recurrent poly-substance use by pre- and post-quit
periods. For the pre-quit period, time 0 corresponds to time since the start of the study. For
the post-quit period, time 0 corresponds to time since the end of the designated quit day
(day 4).
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The baseline hazard is assumed to be Weibull, with separate parameters for the pre-quit vs.

post-quit period. Participants are instructed to quit on day 4 and so we use the end of day

4 as the transition between the pre-quit and post-quit periods. To allow for period-specific

parameters, we specify the baseline hazard as

h0(t) = β0,preγpret
γpre−1×I(study day < 4 days)+β0,postγpostt

γpost−1×I(study day ≥ 4 days)

where, because we are using the clock-reset approach, time t corresponds to time since the

most recent event in the baseline hazard h0(t). The latent factors, η1i(t) and η2i(t), are still

functions of time since the start of the study.

In one version of the hazard model, we assume that the treatment effect parameter in the

treatment model for the hazard is constant throughout the study (i.e., we have one treatment

parameter in the hazard model, τ̃ .) In another version of the hazard model, we allow the

treatment model in the hazard to differ across the pre- and post-quit periods by re-defining

the treatment function µ̃i(t) as

µ̃i(t) =
∑

tia∈Ai(t)

τ̃pre

(
1− t− tia

δa

)
+

× I(study day < 4 days)

+
∑

tia∈Ai(t)

τ̃post

(
1− t− tia

δa

)
+

× I(study day ≥ 4 days)

In µ̃i(t), time t is the time since the start of the study.

D.1.3 Additional Results from Fitting the Joint Longitudinal Re-

current Event Model

We fit four different versions of the joint model, each of which corresponds to a different

combination of treatment effect model in the longitudinal submodel (i.e., the additive or

drift version of the treatment effect model) and hazard model (i.e., a hazard model that

assumes the effect of treatment on the hazard is the same across all 10 days of the study or

a hazard model that allows the effect of the treatment on the hazard to differ across the pre-

vs. post-quit period. Trace plots for each model are provided in Figures D.4–D.7.

D.1.3.1 Visualizing Decay in Correlation Over Time for the Latent Process

We can plot the decay in auto- and cross-correlation for the bivariate OU process estimated

from the joint models. These plots, shown in Figure D.8, are created using the posterior

means of θ and ρ.
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Figure D.4: Trace plot for the joint model with an additive model for treatment effect in
the longitudinal submodel and with a single treatment parameter in the hazard model.
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Figure D.5: Trace plot for the joint model with an additive model for treatment effect in
the longitudinal submodel and with separate pre-quit and post-quit treatment parameters
in the hazard model.
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Figure D.6: Trace plot for the joint model with a drift model for treatment effect in the
longitudinal submodel and with a single treatment parameter in the hazard model.
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Figure D.7: Trace plot for the joint model with a drift model for treatment effect in the
longitudinal submodel and with separate pre-quit and post-quit treatment parameters in
the hazard model.
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Figure D.8: Decay in cross- and auto-correlation in bivariate OU process from fitted joint
models. For the different joint models, each plot shows the estimated decay in autocorrelation
and cross-correlation between latent factors that represent positive affect (η1(t)) and negative
affect (η2(t)) across increasing gap times, where time is on the scale of days.
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D.1.3.2 Visualizing Estimates from the Treatment Effect Models

The treatment-related parameters τ in the longitudinal submodel have different interpreta-

tions when modeled as an additive effect vs. as drift and so to compare the estimates of τ

between models that assume different impacts of treatment, we can plot the terms that are

added to the conditional mean of the OU process as a result of the treatment models. That

is, when treatment is modeled as an additive effect, the conditional expectation of the latent

process is:

E [ηi(t)|ηi(s)] = e−θ(t−s)ηi(s) + µi(t)− e−θ(t−s)µi(s).

When treatment is modeled in the drift term, the conditional expectation of the latent

process is:

E [ηi(t)|ηi(s)] =e−θ(t−s)ηi(s)+∑
tia∈Ai(s−δa,t)

[(
1− u− tia

δa

)
e−θ(t−u)θ−1 +

1

δa
e−θ(t−u)

]
τ

∣∣∣∣∣
u=min(t,tia+δa)

u=max(tia,s)

.

To visualize the estimated effect of treatment on the latent process, we plot

µi(t)− e−θ(t−s)µi(s)

and ∑
tia∈Ai(s−δa,t)

[(
1− u− tia

δa

)
e−θ(t−u)θ−1 +

1

δa
e−θ(t−u)

]
τ

∣∣∣∣∣
u=min(t,tia+δa)

u=max(tia,s)

, which correspond to the terms added to the conditional mean of the OU process as a result

of our additive and drift treatment effects, respectively. When plotting these terms, we

assume that a single treatment was delivered at time s = 0. Plots of these treatment-related

terms are given in Figure D.9.

D.1.3.3 Variability in the Longitudinal Outcomes

The posterior estimates of parameters from the longitudinal submodel show a fair amount

of variability in the random intercept variance and measurement error variance components.

We can compare these estimates to the variability that we see in the observed longitudinal

outcomes. Table D.2 summarizes the average within-individual variance in the reported

emotions and the variance of the within-individual means of reported emotions. The rows are

sorted by the rightmost column, corresponding to variance of the within-individual means.
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(a) Model assumes an additive treatment effect
on the latent process and a single treatment pa-
rameter in the hazard submodel.
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(b) Model assumes an additive treatment ef-
fect on the latent process and separate pre-
and post-quit treatment parameters in the haz-
ard submodel.
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(c) Model assumes a drift treatment effect on
the latent process and a single treatment pa-
rameter in the hazard submodel.
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(d) Model assumes a drift treatment effect on
the latent process and separate pre- and post-
quit treatment parameters in the hazard sub-
model.

Figure D.9: Estimated treatment-related terms from fitted joint models. For each fitted
model, the plots show the estimated value of the difference between the fitted latent process
and an OU process with a constant mean of 0, if a single treatment were to be sent at time
0. If the treatment effect is modeled via a time-varying drift term, then this difference is∫ t
0
e−θ(t−u)µi(u)du. If the treatment effect is modeled via an additive shift, then this term is

µi(t)− e−θtµi(0)
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Model index Emotion Mean of ind.-specific variances Var. of ind.-specific means
6 angry 0.537 0.258
7 ashamed 0.290 0.287
8 guilty 0.396 0.439
15 hopeless 0.436 0.542
9 irritable 0.843 0.718
2 happy 0.646 0.796
1 grateful 0.770 0.801
12 sad 0.509 0.853
13 restless 0.749 0.989
14 bored 0.798 1.002
11 anxious 0.769 1.090
3 proud 0.622 1.096
10 lonely 0.536 1.105
4 relaxed 0.859 1.151
5 enthusiastic 0.729 1.215

Table D.2: Empirical variability in measured longitudinal outcomes in the motivating MRT.

D.2 Different Pathways for Treatment Effect

The treatment effect could potentially be incorporated into our joint model in three different

ways. As described in the main paper, treatment could (a) directly impact the latent process,

(b) alter the risk of recurrent events, or (c) change the measured longitudinal outcomes.

These potential pathways for treatment effect are summarized in Figure D.10. We only

consider models for (a) and (b).

D.3 Modeling the Impact of Treatment on the Latent

Process

If we model the impact of treatment on the latent process by incorporating a time-varying

drift term into the OU process (resulting in a process also known as a Hull-White process),

then the solution to the SDE involves a term with an integral over the treatment effect

function µi(t). As given in the main text, the conditional distribution of ηi(t) with time-

dependent drift is

ηi(t)|ηi(s) ∼ Np

(
e−θ(t−s)ηi(s) +

∫ t

s

e−θ(t−u)µi(u)du,V − e−θ(t−s)V e−θ⊤(t−s)
)

(D.1)
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ai(tj0)

Figure D.10: Diagram illustrating potential mechanisms (a)–(c) for the effect of a single
treatment at time tj′ , ai(tj′), on future values of the latent process ηi(tj+1), the measured
longitudinal outcomes Yi(tj+1), and the recurrent event outcome (Tir, δir). In the diagram,
circles indicate that variables are latent and squares denote variables that are observed. We
omit the random intercept and measurement error terms from this diagram for simplicity;
these terms are still included in the model definition.

We let Ai(s − δa, t) denote the set of times at which treatments were sent to individual i

between time s − δa and time t; this set of treatment times corresponds to all treatments

that are active at between times s and t. The analytic solution to this integral in Equation

D.1 is:

∫ t

s

e−θ(t−u)µi(u)du =

∫ t

s

e−θ(t−u)
∑

tia∈Ai(s−δa,t)

τ

(
1− u− tia

δa

)
+

du

=
∑

tia∈Ai(s−δa,t)

∫ t

s

e−θ(t−u)τ

(
1− u− tia

δa

)
+

du

=
∑

tia∈Ai(s−δa,t)

∫ min(t,tia+δa)

max(tia,s)

e−θ(t−u)τ

(
1− u− tia

δa

)
du

=
∑

tia∈Ai(s−δa,t)

[(
1− u− tia

δa

)
e−θ(t−u)θ−1 +

1

δa
e−θ(t−u)

]
τ

∣∣∣∣∣
min(t,tia+δa)

max(tia,s)

Plugging this result into Equation D.1, we can re-write the distribution in an analytic form:

177



ηi(t)|ηi(s) ∼ Np

(
e−θ(t−s)ηi(s)

+
∑

tia∈Ai(s−δa,t)

[(
1− u− tia

δa

)
e−θ(t−u)θ−1 +

1

δa
e−θ(t−u)

]
τ

∣∣∣∣∣
u=min(t,tia+δa)

u=max(tia,s)

,

V − e−θ(t−s)V e−θ⊤(t−s)

)
(D.2)

D.4 Prior Distributions

When fitting our joint model, we base our prior distributions on those used in Tran et al.

(2021) [112]. The priors we use are:

λk ∼ half-N(1, σ2
λ); k = 1, ..., K

σλ ∼ half-Cauchy(0, 5)

θOU11 , θOU21 , θOU12 , θOU22 ∼ N(0, 102)

ρ ∼ Uniform(−0.999999, 0.999999)

σuk ∼ half-Cauchy(0, 5); k = 1, ..., K

σuϵ ∼ half-Cauchy(0, 5); k = 1, ..., K

β0, β1, β2 ∼ N(0, 52)

τ1, τ2 ∼ N(0, 52)

τ̃ ∼ N(0, 52)

D.5 Simulation Study

True model parameters, which are informed by the longitudinal models fit to data from sim-

ilar mHealth smoking cessation studies, are given below. Setting 1’s longitudinal submodel

parameter values are roughly similar to those estimated in the case study in Abbott et al.

(2023) [1] and setting 2’s longitudinal submodel parameter values are roughly similar to

those estimated in the case study in Abbott et al. (2024) [2].
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Setting 1: measurement submodel

Λ =


0.9 0

0.5 0

0 1

0 0.8

 ,Σu =


0.16 0 0 0

0 0.25 0 0

0 0 0.64 0

0 0 0 1.00

 ,Σϵ =


0.04 0 0 0

0 0.36 0 0

0 0 0.09 0

0 0 0 0.49


Setting 1: structural submodel

τ = [2,−1]⊤,θ =

[
2.4 1.2

2.9 3.6

]
,σ =

[
1.78 0

0 1.80

]
=⇒ ρ = −0.68

Settings 1: event-time submodel

1. β0 = −1.8, β1 = −0.5, β2 = 0.5, τ̃ = −0.8

2. β0 = −1.5, β1 = −0.5, β2 = 0.5, β3 = 0.4, τ̃ = −0.8

Setting 2: measurement submodel

Λ =


0.4 0

0.25 0

0 0.5

0 0.6

 ,Σu =


0.16 0 0 0

0 0.16 0 0

0 0 0.25 0

0 0 0 0.16

 ,Σϵ =


0.04 0 0 0

0 0.01 0 0

0 0 0.09 0

0 0 0 0.04


Setting 2: structural submodel

τ = [2,−1]⊤,θ =

[
10.2 5.1

4.9 10

]
,σ =

[
3.92 0

0 3.89

]
=⇒ ρ = −0.50

Settings 2: event-time submodel

1. β0 = −1.8, β1 = −0.5, β2 = 0.5, τ̃ = −0.8

2. β0 = −1.5, β1 = −0.5, β2 = 0.5, β3 = 0.4, τ̃ = −0.8

The true hazard models used to generate the recurrent event outcomes are:

1. hir(t) = h0 exp
{
β1η1i(t) + β2η2i(t) + µ̃i(t)

}
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Figure D.11: Curves for the g(·) functions that capture the association between the hazard
of an event as a function of time (in days) since the most recent prior event.

2. hir(t) = h0 exp
{
β1η1i(t) + β2η2i(t) + β3g(t− ti,r−1) + µ̃i(t)

}
We generate event outcomes from both of these hazard models using the true parameter

values for setting 1 and setting 2. For setting 1, g(x) = 1
1+exp{4(x−2)} and for setting 2,

g(x) = 1
1+exp{1.5(x−2)} . In both of these hazard models, we assume that the baseline hazard

is constant, h0 = exp(β0). In Figure D.11, we plot the curves for the g(·) functions that

capture the association between the hazard of an event as a function of time since the most

recent prior event.

We also plot the trajectories of the latent bivariate OU process for a subset of individuals

in a single simulated dataset, illustrating both the case when the treatment effect is modeled

as an additive term and as drift, in Figures D.12-D.15. We just provide these plots when

using hazard model 1 to generate the recurrent event outcomes.

D.5.1 Additional Simulations for β3

In the simulation results shown in the main paper, we see some bias in the posterior medians

for parameter β3 in the recurrent event submodel when assuming hazard model 2. This bias

results in a coverage rate that is lower than nominal. The parameter β3 is the coefficient

that captures the association between the hazard of the rth recurrent event and the time

since the (r− 1)th event. We investigate two factors that might be contributing to this bias:

(a) the finite sample size of our simulated datasets and (b) the choice of grid width used

when approximating the cumulative hazard function via a midpoint rule. To investigate

(a), we generate data with a sample size of N = 300 individuals, an increase from the
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Figure D.12: Setting 1: Treatment effect is additive and the hazard takes the form of
model 1. Green lines show the trajectory of the bivariate latent process and vertical grey
bars indicate the timing of the treatments, which are sent randomly once per day and are
assumed to have an effect that lasts half a day (δa = 0.5). Events are shown as solid pink
dots and censoring times are indicated with open pink dots.
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Figure D.13: Setting 1: Treatment effect is modeled as drift and the hazard takes the form
of model 1. Green lines show the trajectory of the bivariate latent process and vertical grey
bars indicate the timing of the treatments, which are sent randomly once per day and are
assumed to have an effect that lasts half a day (δa = 0.5). Events are shown as solid pink
dots and censoring times are indicated with open pink dots.
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Figure D.14: Setting 2: Treatment effect is additive and the hazard takes the form of
model 1. Green lines show the trajectory of the bivariate latent process and vertical grey
bars indicate the timing of the treatments, which are sent randomly once per day and are
assumed to have an effect that lasts half a day (δa = 0.5). Events are shown as solid pink
dots and censoring times are indicated with open pink dots.
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Figure D.15: Setting 2: Treatment effect is modeled as drift and the hazard takes the form
of model 1. Green lines show the trajectory of the bivariate latent process and vertical grey
bars indicate the timing of the treatments, which are sent randomly once per day and are
assumed to have an effect that lasts half a day (δa = 0.5). Events are shown as solid pink
dots and censoring times are indicated with open pink dots.

184



N = 100 sample size used in the original simulation study. To investigate (b), we increase

the density of the grid used in the midpoint approximation of the cumulative hazard function

from one point approximately each 12 hours to one point about each 4 hours. We compare

the posterior medians and coverage rates for these additional simulations to a subset of the

original simulations in Figures D.16 and D.17. We consider 5 replicates.

The results of this small supplemental simulation study suggest that the bias in the

posterior median for β3 is likely related to fitting a complex model to a fairly small dataset.

The bias in the posterior median results in low coverage. In setting 2, we see a decrease in

the bias for this parameter estimate when we increase the sample size from 100 independent

individuals to 300 independent individuals. In setting 1, we see less of a decrease in bias

when increasing the sample size. This differential decrease in bias could be partially due to

the differences in the amount of temporal correlation across these two settings: in setting 1,

the longitudinal latent process has slower decay in correlation over time than in setting 2,

and so accurately estimating β3, the coefficient on another function of time, could be more

challenging in setting 1 than in setting 2. If we were to substantially increase the sample

size, perhaps to 3000, we would expect to see less bias in both settings.

We also hypothesized that the bias in β3 could be related to the coarseness of the approx-

imation used to evaluate the cumulative hazard function. As mentioned in the main text,

we approximate the cumulative hazard function by replacing the integral with a sum over a

fine grid of points; we then evaluate this sum using a midpoint rule. If the grid used in the

approximation is too coarse, then it will be poor. However, we found that decreasing the

coarseness of the grid by a factor of 3 did not substantially impact the bias in our estimates.

D.6 Model Comparisons

To compare the fit of different models, we consider two different measures of predictive

accuracy: DIC and WAIC. DIC and WAIC are both based on estimates of the log pointwise

predictive density (lppd). For a general model with data y1, ..., yN and parameters Θ, Vehtari

et al. (2017) [118] define the lppd as

lppd =
N∑
i=1

log (p(yi|y)) =
N∑
i=1

log

(∫
p(yi|Θ)p(Θ|y)dΘ

)
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Figure D.16: For data generated under settings 1 and 2 with hazard model 2 and different
treatment effect models in the longitudinal submodel, we use box plots to summarize the
distribution of the posterior medians for all parameters across the 5 simulated datasets.
The original simulation design has a sample size of N = 100 and assumes a grid width of
12-hour intervals for approximating the cumulative hazard function via a midpoint rule. We
modify this original simulation design by either increasing the sample size to N = 300 or
decreasing the grid width to 4-hour intervals. True parameter values are indicated with
colored dots.
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Figure D.17: For data generated under settings 1 and 2 with hazard model 2 and different
treatment effect models in the longitudinal submodel, we summarize the coverage rate of
95% credible intervals across the 5 simulated datasets with the colored dots. The original
simulation design has a sample size of N = 100 and assumes a grid width 12-hour intervals
for approximating the cumulative hazard function via a midpoint rule. We modify this
original simulation design by either increasing the sample size to N = 300 or decreasing the
grid width to 4-hour intervals. The black horizontal dashed lines indicate target coverage
and the dotted grey lines corresponds to the upper and lower bounds of a 95% binomial
proportion confidence interval for a probability of 0.95.
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The lppd can be computed as

̂lppd =
N∑
i=1

log

(
1

S

S∑
s=1

p(yi|Θs)

)

where Θs, s = 1, ..., S are draws from the “usual” posterior distribution, p(Θ|y) is the poste-
rior distribution, and p(yi|y) is the posterior predictive distribution. In our joint model, the

data yi would consist of the longitudinal outcomes and the recurrent event outcomes.

Continuing with generic notation using y as the data and Θ as the model parameters,

Gelman (2014) [30] define DIC and WAIC as:

• DIC:

DIC = −2logp(y|Θ̂) + 2pDIC

where Θ̂ is the posterior mean and pDIC is the effective number of parameters, with

pDIC = 2

(
logp(y|Θ̂)− 1

S

S∑
s=1

logp(y|Θs)

)

where s indexes posterior samples.

• WAIC:

WAIC = −2lppd + 2pWAIC2

where the computed log pointwise predictive density is

̂lppd =
N∑
i=1

log

(
1

S

S∑
s=1

p(yi|Θs)

)

and the effective number of parameters is

pWAIC2 =
N∑
i=1

V S
s=1 (logp(yi|Θs))

and V S
s=1(as) =

1
S−1

∑S
s=1(as − ā)2.

[30] also discusses alternative ways to calculate the effective sample size, but the definitions

above use the suggested/standard approaches.

Because our setting involves latent variables, we must carefully consider the form of

the likelihood that we would like to use in our calculations of the log pointwise predictive

density. That is, is it more appropriate to use a version of the likelihood that conditions
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on the latent factors and all other model parameters, or should we use a version of the

likelihood in which we marginalize over the latent factors? Working in the context of latent

factor models commonly used in psychometric research, Merkle et al. (2019) [60] discuss

important differences between these conditional and marginal versions of the likelihood, and

how these different definitions target different types of predictive accuracy. They recommend

working with the marginal version of the likelihood, which aligns with the recommendations

for joint models given in Rizopoulos (2023) [89]. Before we define the computed log pointwise

predictive density in our setting, we define some general notation:

• y = data (in our setting, this includes both the longitudinal and recurrent event out-

comes)

• Θ = all parameters in our model, excluding the latent process η and its parameters

θOU and σOU

• ψ = OU process parameters θOU and σOU

• fc = joint model likelihood conditional on the latent factors

• fm = joint model likelihood marginalized over the latent factors

Then, the lppd can be computed as:

̂lppd =
N∑
i=1

logEΘ,ψ|y {fm(yi|Θ, ψ)} (D.3)

=
N∑
i=1

log

[∫
fm(yi|Θ, ψ)p(Θ, ψ|y)dΘdψ

]
(D.4)

=
N∑
i=1

log

[∫
Eη|ψ {fc(yi|ηi,Θ)} p(Θ, ψ|y)dΘdψ

]
(D.5)

Focus now on Eη|ψ {fc(yi|ηi,Θ)}, which requires integrating over the latent process:

Eη|ψ {fc(yi|ηi,Θ)} =

∫
fc(yi|ηi,Θ)p(ηi|ψ)dηi

To directly approximate this integral with a sum over sampled values of η would require

having draws of η from the distribution p(ηi|ψ). The posterior samples of η that are generated

during model fitting are conditional on the data, p(ηi|y). We can use the posterior samples

and importance sampling to approximate the integral.
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Eη|ψ {fc(yi|ηi,Θ)} =

∫
fc(yi|ηi,Θ)p(ηi|ψ)dηi (D.6)

=

∫
fc(yi|ηi,Θ)

p(ηi|ψ)
p(ηi|y)

p(ηi|y)dηi (D.7)

≈ 1

M

M∑
m=1

fc(yi|ηmi ,Θ)
p(ηmi |ψ)
p(ηmi |y)

(D.8)

where ηmi is sampled from the unconditional marginal distribution of ηi|y, as given in Ap-

pendix C of Merkle et al. (2019) [60]. This unconditional marginal distribution of ηi|y is

a normal distribution with a mean and variance that are based on the marginal mean and

variance of the usual posterior samples of ηi. If we follow this approach to generate samples

of ηmi , then we can plug Equation D.6 in to Equation D.3:

̂lppd =
N∑
i=1

log

[∫
E {fc(yi|ηi,Θ)} p(Θ, ψ|y)dΘdψ

]
(D.9)

≈
N∑
i=1

log

[∫ [
1

M

M∑
m=1

fc(yi|ηmi ,Θ)
p(ηmi |ψ)
p(ηmi |y)

]
p(Θ, ψ|y)dΘdψ

]
(D.10)

≈
N∑
i=1

log

[
1

S

S∑
s=1

[
1

M

M∑
m=1

fc(yi|ηmi ,Θs)
p(ηmi |ψs)
p(ηmi |y)

]]
(D.11)

where Θs, ψs are the usual posterior samples. Then, to compute lppd for one individual, we

would:

1. sampleM values of ηmi from the unconditional marginal distribution of ηi|y, which does

not depend on Θ or ψ if we use a version of the approach in Merkle et al. (2019) [60].

Note that because we are calculating the empirical covariance matrix for the entire

vector ηi, the covariance matrix is large and can be unstable. To avoid non-positive

definite covariance matrices, we can add a very small amount to the diagonal of the

empirical covariance matrix.

2. for each posterior sample s = 1, ..., S of Θs and ψs, compute the density across the M

sampled values of ηmi

We repeat steps 1 and 2 for each individual i = 1, ..., N and sum up the values of the marginal

log-likelihood to get ̂lppd. We can make this approach more explicit in our definition of DIC
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and WAIC:

DIC =− 2logp(y|Θ̂) + 2pDIC

=− 2logp(y|Θ̂) + 4

[
logp(y|Θ̂)− 1

S

S∑
s=1

logp(y|Θs)

]

=− 2
N∑
i=1

log

[
1

M

M∑
m=1

p(yi|Θ̂, ηmi )
p(ηmi |ψ̂)
p(ηmi |y)

]

+ 4

[
N∑
i=1

log
[ 1

M

M∑
m=1

p(yi|Θ̂, ηmi )
p(ηmi |ψ̂)
p(ηmi |y)

]
− 1

S

S∑
s=1

[ N∑
i=1

log
[ 1
M

M∑
m=1

p(yi|Θs, ηmi )
p(ηmi |ψs)
p(ηmi |y)

]]]

WAIC =− 2̂lppd + 2pWAIC2

=− 2
N∑
i=1

log

[
1

S

S∑
i=1

[ 1

M

M∑
m=1

p(yi|Θs, ηmi )
p(ηmi |ψs)
p(ηmi |y)

]]

+ 2
N∑
i=1

V S
s=1

(
log
[ 1

M

M∑
m=1

p(yi|Θs, ηmi )
p(ηmi |ψs)
p(ηmi |y)

])

In the definitions above, s indexes posterior samples, Θ̂ and ψ̂ are posterior means, m

indexes samples of the latent process drawn from the approximate unconditional marginal

distribution of ηi|y, and V S
s=1(·) is the sample variance. y contains both our longitudinal

and recurrent event data (written as (Y, T, δ) in the main paper). In the main paper, we

subsample every 5th iteration of the final 1,000 posterior samples across all chains, resulting

in S = 800. We use M = 25 when calculating DIC and WAIC.

To confirm that our approximate approach to calculate the marginal log-likelihood works

reasonably well, we try calculating the marginal log-likelihood using the approximate ap-

proach described above and using the exact marginal distribution for just the longitudinal

submodel with the additive treatment effect model. For this longitudinal submodel, we

can derive the marginal distribution algebraically. We calculate the approximate and exact

log-likelihoods at the posterior means for two simulated datasets and compare the results

in Figure D.18. If our approximation works well, then we expect the value of the marginal

log-likelihood for each individual i to be roughly the same for both the approximate marginal

log-likelihood vs. the algebraic/exact marginal log-likelihod evaluated at the posterior mean.
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Figure D.18: Comparison of approximate log-likelihood values for each individual evaluated
at the posterior mean to the exact log-likelihood for each individual using the true marginal
distribution evaluated at the posterior mean. Results from two simulated datasets and two
fitted models are shown using red and blue.

Figure D.18 shows this to be true, as indicated by the colored lines and points falling along

the 0-1 axis. We do see some bias, but because this bias is consistent, it should not be

problematic for the purposes of model selection. We can also repeat the same comparison

but for the approximate and exact marginal log-likelihoods evaluated each posterior sample

Θs, rather than the posterior mean Θ̂ (see Figure D.19).

D.6.1 Case Study Results

In Table D.3, we provide DIC for each of the joint models fit to the case study data. Of the

8000 posterior samples across 4 chains, we subsampled every 5th iteration of the final 1,000
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Figure D.19: Comparison of approximate log-likelihood values for each individual evaluated
at each posterior sample to the exact log-likelihood for each individual using the true marginal
distribution evaluated at each posterior sample s. Note that we subsample 100 of the total
1000 posterior samples. Results from one simulated dataset are on the left, results from the
other dataset are on the right. Linear best-fit lines are plotted across individuals for each
set of posterior samples s.
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DIC Impact of treatment on latent process
Hazard model Additive Drift

Single treatment parameter 59,894.96 60,037.92
Separate pre- and post-quit treatment parameters 59,819.76 59,746.39

Table D.3: DIC for the joint models fit to the motivating MRT data. When approximating
the marginal log-likelihood, we subsampled every 5th iteration of the final 1,000 posterior
samples to use in our calculations. A lower value of DIC is preferred. The lowest value of
DIC is indicated in bold text.

posterior samples (resulting in S = 800) to use in our WAIC and DIC calculations. We used

M = 25 for generating marginal posterior samples of the latent process η.
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