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ABSTRACT

We study the !-pullback functor and the theory of (relative) D-modules along morphisms of

qcqs schemes pX : X → S which are almost of finite presentation and finite tor-amplitude.

Key to our approach is the category of quasicoherent sheaves on X ×S X supported on the

diagonal. In particular we indicate that “reduction formulae” can be used as foundations for

the theory of Grothendieck Duality. We also set-up the theory of D-modules from scratch

using this approach and show that in cases of overlap, it agrees with classical definitions

using embeddings or the de Rham stack.
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CHAPTER 1

Introduction

For an oriented compact manifold without boundaryM, Poincaré duality tells us that the

cohomology ofM is (derived) self-dual up to a cohomological shift by the dimension. If the

manifoldM was not oriented, the cohomology ofM is instead dual to the cohomology with

coefficients in the orientation sheaf, up to the same shift. For a proper variety X over a field,

Grothendieck duality analogously equates the dual of the coherent cohomology of X with the

cohomology of the dualizing complex of X.

A common approach to proving Poincaré duality starts with the introduction of cohomology

with compact support, which allows us to formulate a generalization of Poincaré duality

to the setting of non-compact manifolds. In the appendix of [Har66], Deligne employed a

similar approach to prove Grothendieck duality, using the theory of pro-coherent sheaves.

In [Nee96], Neeman showed that Grothendieck duality also follows from adjoint functor

theorems, without needing to modify the usual category of quasicoherent sheaves. However,

it is difficult to study the dualizing complex from the latter approach as the global duality

does not arise from any local formulation.

In [AILN10], Avramov, Iyengar, Lipman, and Nayak found an interesting formula for the

dualizing complex in the local/affine setting, which they refer to as “reduction formulae”.

ωA/k = A⊗A⊗kA Homk(A,A) (1.1)

This is Corollary 4.7 in loc.cit.1. Note that the idea of using the diagonal to study the

dualizing complex goes back to Verdier.

In a paper titled Grothendieck Duality Made Simple [Nee20], Neeman related the dualizing

complex from the adjoint functor theorem directly with the formula (1.1) above. This is

in contrast to the situation prior where the two were related only through the construction

of the exceptional inverse image functor (!-pullback) in general using inputs from algebraic

1The tensor products are implicitly derived

1



geometry. This allows us to trade algebro-geometric techniques for categorical techniques

and opens the door for generalizations.

Our thesis starts with the observation that in (1.1), the ∗-pullback of the quasicoherent

sheaf Homk(A,A) on SpecA × SpecA to the diagonal is unchanged if we first take the

(derived) torsion part of Homk(A,A) with respect to the diagonal. Hence,

ωA/k = A⊗A⊗kA Γ∆Homk(A,A) (1.2)

This simple observation allows us to simplify the proof of Neeman relating the reduction

formula with the dualizing complex from the adjoint functor theorem, as we will explain in

the next section.

In [SVdB97], Smith and Van Den Bergh observed that the zeroth cohomology of

Γ∆Homk(A,A) computes the ring of Grothendieck differential operators on A relative to k,

as defined by Grothendieck in [Gro64]. In the same paper, Smith and Van Den Bergh also

study the higher cohomologies of Γ∆(Homk(A,A))– including showing they vanish when A is

smooth over k.

In fact, the entire complex Γ∆(Homk(A,A)) is always an E1-ring (which is the analogue of

an associative ring to the setting of spectra). In this thesis, we study D-modules as defined

as modules over this ring–showing that it agrees with other approaches to D-modules for

possibly non-smooth varieties. In characteristic zero, this follows from the work of [GR14]

using properties of Grothendieck duality.

1.1 Grothendieck Duality

Suppose X is a finite-type, separated, flat scheme over a Noetherian base scheme S, Propo-

sition 3.3 of [Nee18] (building on Theorem 4.6 of [AILN10] and Lemma 3.2.1 of [ILN15]),

shows the isomorphism

f !
c
∼= δ∗π×1 f

∗ (1.3)
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where the maps are defined as in the diagram

X

X ×S X X

X S

δ

π2

π1 f

f

(1.4)

Here, f !
c denotes the exceptional pullback functor in Grothendieck duality, defined in a

classical way, and π×1 denotes the right adjoint to the pushforward functor π1,∗. This formula

has the advantage over classical definitions in that it does not depend on a choice of a

compactification of X. Inspired by this, one may ask if it is possible to develop Grothendieck

Duality from scratch using this formula, and thus bypassing the issue of compactifications.

This was the approach taken by the thesis of Hafiz Khusyairi [Khu17], which proved many

properties of (1.3) in the situation of flat morphisms, as above. In [Nee20], Neeman extends

this work and gives some indication that (1.3) can be used as a foundation for Grothendieck

duality–proving Serre duality without resorting to any existing theory of Grothendieck duality.

One source of complication for developing Grothendieck duality using (1.3) appears in

Section 4.2 of [Nee20]. We need to show that the right hand side of (1.3) is local on X.

Namely, if we write f !
r for the right hand side of (1.3) and u : U → X is an open immersion,

we need to show that

u∗f !
r
∼= (uf)!r

The majority of Section 4.2 of [Nee20] is devoted to a proof of this fact. In this thesis, we

try to provide a more conceptual framework to understand statements like this one and

their proofs, by relying everywhere on the category Γ∆(QCoh(X ×S X)). We note that the

category Γ∆(QCoh(X ×S X)) appears in Neeman’s writing as well. However, though he

makes use of it more sparingly, we aim to use this category whenever possible.

The key point is that the formula δ∗π×1 f
∗ is not inherently local on X, due to the

appearance of the (non colimit-preserving) functor π×1 . Additionally, the sheaf of categories

U 7→ QCoh(U ×S U) is not a quasicoherent sheaf of categories on X (in a precise sense

which we define in Proposition 3.1.3). However, as we will see in Proposition 3.1.3, the sheaf

U 7→ Γ∆(QCoh(U×SU)) is, where the latter category is the full subcategory of QCoh(U×SU)

supported on the diagonal. Additionally, as δ∗ only sees the part of the quasicoherent sheaf
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on X ×S X that is supported on the diagonal, we can actually rewrite δ∗π×1 f
∗ in a way which

bypasses the category QCoh(X ×X). Namely,

δ∗π×1 f
∗ ∼= δ̃∗π̃×1 f

∗

where

δ̃∗ : Γ∆(QCoh(X ×S X))→ QCoh(X)

and

π̃×1 : QCoh(X)→ Γ∆(QCoh(X ×S X))

are analogues of δ∗ and π×1 involving only Γ∆(QCoh(X×S X)) (see Section 3.1 for the precise

definitions). Therefore, we achieve a rewriting of f !
r which is manifestly local. All the technical

inputs are cleanly packaged into two statements:

1. U 7→ Γ∆(QCoh(X ×S X)) is quasi-coherent sheaf of categories (Proposition 3.1.3)

2. π̃×1 is a quasicoherent map (Proposition 3.1.6)

1.2 D-modules

Modules over the ring of differential operators, or D-modules for short, were first studied

following ideas of Mikio Sato. D-modules provide an algebraic framework in which one

could study differential equations and constitute a vast generalization of the theory of flat

connections on vector bundles. Since then, D-modules have become an invaluable tool in

algebraic geometry and representation theory.

For X = SpecA, a smooth affine variety over a field k, the Grothendieck ring of differential

operators on X relative to k, DX/k, is the increasing union

DX/k :=
⋃
n≥0

D(n) ⊆ Homk(A,A)

where D(n) ⊆ Homk(A,A) is defined inductively by

D(−1) = 0

and

D(n) = {f ∈ Homk(A,A)|∀a ∈ A, [f, a] ∈ D(n−1)}

(a ∈ A is thought of as an element Homk(A,A) via multiplication by a)
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By a D-module on X, we then refer to a module over the ring DX/k. For X a general

smooth variety, we can glue this definition Zariski-locally: DX/k becomes a quasicoherent

sheaf of algebras (though with two different actions of the structure sheaf–on the left and

right), and a DX/k-module refers to a quasicoherent sheaf with an action of DX/k. If one only

studies D-modules on smooth varieties, such a definition will suffice. However, over singular

varieties, the same definition will lead to many unpleasant properties.

For this reason, two alternative definitions were proposed for studying D-modules on

singular varieties over a field k. The first stems from Kashiwara’s equivalence, which says

that if Z is embedded in a smooth variety X via a closed immersion, then the category of

D-modules on X supported on Z is independent of the choice of X and in the cases where Z

is smooth agree with the category of D-modules on Z. Therefore, when Z is singular, one

can define D-modules on Z as D-modules on X supported on Z, after a closed embedding

Z ↪→ X into a smooth ambient variety X has been chosen.

A more intrinsic definition was given by Grothendieck. Namely, for any variety X, smooth

or singular, we can consider the (small) site of infinitesimal thickenings U → T where U

varies over open subsets of X. A crystal (for the infinitesimal site) on X is then (roughly

speaking) the data of a quasicoherent OT module FT for each thickening U → T , such that

for any morphism of thickenings in the infinitesimal site, the natural map

f ∗F(T ′)→ F(T )

is an isomorphism. It is possible to show these two definitions agree (in the sense of an

equivalence of categories), giving a consistent notion of a D-module on a singular variety.

Nevertheless, one may ask whether there is a third approach, more similar to the definition

in the smooth setting, where we can explicit construct a quasicoherent sheaf of algebras DX

on a singular variety X such that DX modules will give the same category of D-modules as

the two approaches mentioned above.

In the present thesis, we will show that this is indeed possible, and that the correct

definition of DX will simply the derived version of one of the standard definitions for DX

in the smooth setting. Let us now indicate which definition of DX we intend to derive. For

simplicity, we will assume X = SpecA is an affine underived Noetherian scheme. In this

setting, it is well known that in the case A is smooth, there is an isomorphism

DA
∼= colimn(HomA((A⊗k A)/I

n
∆, A))

where I∆ is the kernel of the multiplication map µA : A⊗k A→ A, and the formula is the

same whether we read it in a derived way or not. In the case A is singular, we can simply
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take the same definition, but now require that we read it in a fully derived manner. However,

it is not extremely clear what the algebra structure on DA is in this form.

We note the following isomorphisms which follow simply from tensor-hom adjunction (all

the tensor products are derived)

colimn(HomA((A⊗k A)/I
n
∆, A))

∼= colimn(HomA((A⊗k A)⊗A⊗kA (A⊗k A)/I
n
∆, A))

∼= colimn(HomA⊗kA((A⊗k A)/I
n
∆,HomA(A⊗ A,A))

∼= colimn(HomA⊗kA((A⊗k A)/I
n
∆,Homk(A,A)))

∼= Γ∆(Homk(A,A))

where Γ∆ means taking local-cohomology (as a complex) at the diagonal of SpecA. Note

that this presentation makes the algebra structure evident. In fact, unfolding the definition

of H0(Γ∆(Homk(A,A))) recovers exactly the definition of k-linear differential operators on A

as defined by Grothendieck. This formula for the ring of differential operators first appeared

in Section 2.1 of [SVdB97], where they also briefly study the derived ring of differential

operators.

It is Γ∆(Homk(A,A)) that we will take as definition for DA. Using this ring, we will

define the category of D-modules and show that most of the constructions one can do with

D-modules in the smooth setting carry over directly. We will also show using Kashiwara’s

equivalence in our setup that it agrees with classical definitions when they overlap.

Additional discussions on the derived ring of differential operators can be found in [Jef21],

though the goals of that paper is markedly different from ours. The derived ring of differential

operators is also defined in [GR14], and expanded on in [Yan21]. However we our description

of the ring is more explicit in the non-smooth case (we also work in a larger generality).

1.3 Terminology and Conventions

The most general setting in which this thesis applies will be for a map of spectral Deligne-

Mumford stack pX : X → S which is locally almost of finite presentation and finite tor-

amplitude. The reader can find the precise definitions of these terms in [Lur18], however we

take this section to give the reader a guide to these assumptions and why we need them (or

at least think we need them).

First, we will say nothing about the definition of a spectral Deligne-Mumford stack except

that étale locally, it is isomorphic to a spectral affine scheme. In fact this is also the only

thing that we will use about them. Our theory extends to spectral Deligne-Mumford stacks

formally via étale descent. The rest of the conditions are local, so for the rest of this section
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we will stick with spectral affine schemes.

A spectral affine scheme is completely determined by a connective E∞-ring, just as usual
affine schemes are completely determined by a commutative ring. E∞-rings are a vast

generalization of commutative rings to the realms of homotopy theory. Unlike a commutative

ring, which has an underlying abelian group, a connective E∞-ring has a underlying connective
spectra. Connective spectra are to spaces (homotopy types) what abelian groups are to sets.

The reason that spectral affine schemes shows up in this thesis, even if one only cares about

the results in the classical setting, is that we work with the product X×SX. If pX : X → S is

not flat, then taking the fibre product in schemes (instead of spectral schemes) will not yield

the correct results. One explicit way to see the failure is to note that many base-change results

fail if the underived fibre product is taken (this is why the standard push-pull isomorphism for

schemes is often stated with tor-independence conditions). However, if the reader is willing

to work in the setting of pX being flat, they are free to ignore this issue. The theory is still

interesting in that case–in particular the case of a singular variety over a field will fall within

those assumptions. A fair warning that the ring of differential operators can nevertheless be

a non-connective ring in that setting (meaning it can have cohomology).

The condition that the map is almost of finite presentation is analogous to the usual

condition for a map of rings to be finitely presented, which is that it is given by adding

finitely many generators and relations. The term almost means (roughly) that we allow

infinitely many generators and relations (killing off cells) but only if the dimension of the

generators and cells goes to infinity. This condition is useful to obtain finiteness properties of

the pushforward maps which occur in the theory.

Finally, a very important condition for us is the finite tor-amplitude condition. We say

that a map k → A of E∞-rings is finite tor-amplitude if for any k-module M which is discrete

(only having π0), the tensor product M ⊗k A has vanishing homotopy groups outside of a

uniform bound independent of M . For a discrete ring k, this means that A is isomorphic to

a finite complex of flat k-modules. This is done to ensure that the exceptional inverse image

functor preserves colimits and that the category of D-modules can actually be realized as

modules over a ring.

A note on conventions: In this thesis, all categories, unless stated otherwise will be

(∞, 1)-categories. All functors, such as Hom, ⊗, colim, and lim will be fully derived/done

at the ∞-categorical level unless stated otherwise. A stable category will refer to a stable

∞-category. All modules/quasicoherent sheaves will also be assumed to be fully derived. We

will aim to follow the terminology of Lurie in [Lur09], [Lur17], and [Lur18]. For the affine

scheme corresponding to the ring R, we will abuse notation and also refer to the associated

spectral Deligne-Mumford stacks as SpecR instead of SpétR.
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1.4 Summary of Results

In this section, we summarize the main results in the thesis. Many results here are presented

with stronger assumptions than in the main text for ease of exposition.

Fix pX : X → S a map of qcqs spectral schemes which is almost of finite presentation

and finite tor-amplitude. For simplicity, let us assume pX is separated. All separatedness

conditions can be dropped with suitable modifications which we leave to the main text.

We show that the category Γ∆(QCoh(X ×S X)) is a quasicoherent sheaf of categories on

X in the following sense (see Proposition 3.1.3 in the main text).

Proposition 1.4.1. For a separated étale map u : U → X, we have

QCoh(U)⊗QCoh(X) Γ∆(QCoh(X ×S X)) ∼= Γ∆(QCoh(U ×S U))

where QCoh(X) acts on QCoh(U) via j∗ and QCoh(X) acts on Γ∆(QCoh(X ×S X)) via

Γ∆π
∗
1 (i.e. by tensoring on the left).

This in particular shows that Γ∆(QCoh(X ×S X)) satisfies étale descent. Next, we show

that the functor π̃×1 is a map of quasicoherent categories for formal reasons, see Proposition

3.1.6 in the main text.

Proposition 1.4.2. For a separated étale map u : U → X,

π̃×1,U : QCoh(U)→ Γ∆(QCoh(U ×S U))

is QCoh(U) linear and agrees with π̃×1,X for X base changed to U , i.e. tensored with QCoh(U)

over QCoh(X).

The two propositions above provide the backbone for our results developing Grothendieck

duality using 1.3. We start with the definition (Definition 3.2.1 in the main text),

Definition 1.4.3.

p!X := δ∗π×1 p
∗
X : QCoh(S)→ QCoh(X)

where the maps are as shown in the diagram (1.4).

We prove the exceptional pullback (also referred to as upper shriek) functor defined above

satisfies the following properties. The following is contained in Equation (3.2), Corollary

3.2.15, Proposition 3.2.3, and Theorem 3.2.21 in the text. Parts of this theorem are contained

in [Nee20], but we take a slightly different approach.

Theorem 1.4.4. 1. p!X is colimit-preserving (in fact QCoh(S)-linear)

8



2. If pX is proper, then p!X
∼= p×X .

3. If pX is étale, then p!X
∼= p∗X .

4. If g : X ′ → X is also finite tor-amplitude and locally almost of finite-presentation, then

g!f ! ∼= (fg)!

The theorem below can be found in the text in Theorem 4.1.12, Theorem 4.2.1, and

Theorem 4.5.3.

Theorem 1.4.5. For pX : X → S as above, there is an object

DX/S ∈ Γ∆(QCoh(X ×S X))

such that if X = SpecA and S = Spec k, then DX/S
∼= Γ∆Homk(A,A). This is what we can

the (sheaf of) ring of differential operators on X relative to S.

Γ∆(QCoh(X ×S X))

is the subcategory of QCoh(X ×S X) supported on the diagonal. It acquires a monoidal

structure via the isomorphism

QCoh(X ×S X) ∼= HomQCoh(S)(QCoh(X),QCoh(X))

where on the right hand side the Hom is taken in QCoh(S)−ModL (see Appendix A.1). It

is this convolutional monoidal product that is used in the rest of the theorem. DX/S is an

E1-algebra in Γ∆(QCoh(X ×S X)).

As Γ∆(QCoh(X ×S X)) acts on QCoh(X), DX/S defines a monad on QCoh(X) and we

can consider the category of DX/S modules

DX/S−Mod

Additionally, Γ∆(QCoh(X ×S X)) carries a natural involution via swapping the two copies

of X. The image of DX/S under this involution is called DX/S
op. We can also consider the

modules under this monad, which we call

DX/S
op−Mod

Both DX/S−Mod and DX/S
op−Mod satisfies étale (in fact fppf in the truncated setting)

9



descent with respect to X and fpqc descent with respect to S. Also, we have the following

isomorphisms

DX/S
op−Mod ∼= colim∆s

op(Γ∆(QCoh(Xn+1)), ∗)
∼= QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)

DX/S−Mod ∼= lim
∆s

(Γ∆(QCoh(Xn+1)), ∗)

∼= HomΓ∆(QCoh(X×X))(QCoh(X),QCoh(X))

where the last Hom is taken in Γ∆(QCoh(X ×S X))−ModL.

Of vital importance in D-module theory are the pushforward and pullback functors. We

define them in Section 4.3. The following is a rewriting of the beginning of Section 4.3. The

last claim below is clear from definitions, see Section 4.3 for details.

Theorem 1.4.6. Suppose S is a qcqs spectral scheme and f : X → Y is a map between qcqs

schemes which are locally almost of finite presentation and finite tor-amplitude over S. Then,

there is a natural pullback functor

f+ : DY/S−Mod→ DX/S−Mod

that when written as a map2

f+ : lim
∆s

(Γ∆(QCoh(Y n+1)), ∗)→ lim
∆s

(Γ∆(QCoh(Xn+1)), ∗)

is defined by quasicoherent pullback (upper star) termwise.

There is dually a natural pushforward functor

f+ : DX/S
op−Mod→ DY/S

op−Mod

that when written as a map

f+ : lim
∆s

(Γ∆(QCoh(Xn+1)), ∗)→ lim
∆s

(Γ∆(QCoh(Y n+1)), ∗)

is defined by quasicoherent pushforward (lower-star) termwise.

2The category of quasicoherent sheaves with diagonal support must be defined by descent if X or Y is not
separated over S
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Both functors compose well, in the sense that if f : X → Y and g : Y → Z, then

f+g+ ∼= (gf)+

and

g+f+ ∼= (gf)+

In addition, we have (see Theorem/Definition 4.3.2 for details)

Proposition 1.4.7. With the same assumptions as above, the functors f+ and f+ correspond

to the tranfer (DX/S, DY/S)-bimodule

Γf (OX ⊠ ωY ) ∈ Γf (QCoh(X ×S Y ))

where Γf means restricting to sections supported on the graph of X inside X ×S Y .

We also prove a left-right switch for D-modules with our definitions. The following is

Theorem 4.2.9 in the main text, combined with the discussion above that Theorem.

Theorem 1.4.8. There is an isomorphism

DX/S−Mod ∼= DX/S
op−Mod

induced by the (DX/S
op, DX/S)-bimodule

Γ∆(ωX/S ⊠ ωX/S)

and the inverse is induced by the (DX/S, DX/S
op)-bimodule

Γ∆(OX ⊠OX)

This isomorphism is given by tensoring with the relative dualizing complex on the underlying

quasicoherent sheaf.

Lastly in the theory of D-modules, we also prove a form of Kashiwara’s equivalence with

our definitions–this is Theorem 4.4.5 in the main text.

Theorem 1.4.9. Let pX : X → S be a locally almost of finite presentation, finite tor-amplitude

map of truncated qcqs spectral schemes. Suppose z : Z → X is a finite tor-amplitude, locally

almost of finite presentation closed immersion. Then, the functor

z+ : DX/S−Mod→ DZ/S−Mod
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restricts to an equivalence of categories on ΓZ(DX/S−Mod)–the full subcategory supported on

Z. Dually, the functor

z+ : DZ/S
op−Mod→ DX/S

op−Mod

is an equivalence onto the full subcategory ΓZ(DX/S
op−Mod) of the codomain.

Finally, we prove that D-modules agrees with quasicoherent sheaves on the de Rham stack

(note that the conditions here are more restrictive than above). This is stated as Theorem

4.6.7 in the text. For the last claim below, see Appendix C.

Theorem 1.4.10. Let S be an truncated Noetherian scheme and X be a scheme finite-type

and finite tor-amplitude over S, then there is a natural isomorphism

QCoh((X/S)dR) ∼= DX/S−Mod

The former is also naturally isomorphic to the category of quasi-coherent crystals on the small

or big infinitesimal site.

We also prove a decategorification of Proposition 4.2.5 in [Ber19] in the smooth setting.

It is (one of) the main results of Section 4.7, and we leave the explanation of the notation

to that section. It is possible to deduce the algebra statement from the category statement,

however there are some subtleties which we explore in Section 4.7.

Proposition 1.4.11. In the setting of where X = SpecA is affine and smooth over a base

S = Spec k which is discrete, we have the following isomorphism

DA
∼=

A180◦
⊗
A

HH·(A/k) (1.5)

Lastly, we provide an application of the theory to recover a main result of Ben-Zvi and

Nevins in [BZN04]. See Section 5.1 or [BZN04] for the relevant definitions. The following is

the Theorem 5.1.6 in the text and Theorem 1.4 of [BZN04].

Theorem 1.4.12. Suppose τ : X̃ → X is a good cuspidal quotient of good Cohen-Macaulay

varieties over a field k, then DX̃ and DX are concentrated in degree 0 and Morita equivalent.

12



CHAPTER 2

Preliminaries

2.1 Support of Quasicoherent Sheaves

In this section we study quasicoherent sheaves supported on a closed immersion which is

locally almost of finite presentation.

We adopt the terminology of [Lur18]. Let z : Z → X be a closed immersion almost of

finite presentation of spectral Deligne-Mumford stacks and u : U → X be the inclusion of the

complement open of Z (u is a quasicompact morphism). We define ΓZ(QCoh(X)) to be the

fibre of the functor

j∗ : QCoh(X)→ QCoh(U)

The map j∗ admits a colimit-preserving right adjoint (which is also a section), namely

j∗ : QCoh(U)→ QCoh(X)

where we use crucially the quasicompactness of u. Let

iZ : ΓZ(QCoh(X))→ QCoh(X)

denote the inclusion functor of that subcategory. Let

ΓZ : QCoh(X)→ ΓZ(QCoh(X))

be the right adjoint of iZ , or equivalently the left Kan extension of the identity functor on

ΓZ(QCoh(X)) to the entirety of QCoh(X). The fact that j∗ preserves colimits implies the

same for ΓZ which in turn shows that iZ preserves (and reflects) compact objects. The

following is a split-exact sequence of categories (in the sense of Definition A.2.3)

ΓZ(QCoh(X))→ QCoh(X)→ QCoh(U) (2.1)
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Note that ΓZ(QCoh(X)) carries a symmetric monoidal structure with unit ΓZ(OX).

If X is an affine spectral scheme, i.e. X ∼= SpecR. Then Z ∼= SpecS where π0(R)→ π0(S)

is a surjective with finitely generated kernel I. Let (t1, . . . , tn) denote a sequence (not

necessarily regular) in π0(R) generating I and let R/(t1, . . . , tn) denote the (derived) R-

module constructed from the Koszul complex on the sequence.

Lemma 2.1.1. For X ∼= SpecR and Z being cut out by finitely many equations t1, . . . , tn ∈
π0(R), the category ΓZ(QCoh(R)) is compactly generated by R/(t1, . . . , tn).

Proof. Since R/(t1, . . . , tn) is compact, we only need to show it is a generator. In this

situation, it suffices to show if HomR(R/(t1, . . . , tn),M) ∼= 0 and M is in ΓZ(QCoh(X)) then

M is zero. For a general M ∈ QCoh(X), by writing j∗j
∗M as a finite (Čech) limit, we can

calculate that the fibre of the map M → j∗j
∗M is given by

colimk HomR(R/(tk1, . . . , t
k
n),M)

Now suppose M ∈ ΓZ(QCoh(X)) and HomR(R/(t1, . . . , tn),M) ∼= 0, then the above colimit

is M . However, since each R/(tk1, . . . , t
k
n) is generated under finite colimits from R/(t1, . . . , tn),

each term in the colimit is zero. Hence, M ∼= 0. ■

Proposition 2.1.2. The category ΓZ(QCoh(X)) is compactly generated for a locally almost

of finite presentation closed immersion of qcqs algebraic spaces z : Z → X.

Proof. By Proposition 8.2.5.1 of [Lur18], we can reduce to showing the full category of

connective objects is compactly generated (same as the reduction of Proposition 9.6.1.1 to

Proposition 9.6.1.2 in loc. cit.). Then, by choosing the scallop decomposition to start with a

cover of the complement of Z, the same arguments (of Proposition 9.6.2.1 of [Lur18] which is

just a rewording of Proposition 9.6.1.2) carries through completely. ■

The following lemma crucially relies on the truncated-ness of X and will be an important

input to the theory of D-modules later.

Lemma 2.1.3. For a closed immersion z : Z → X of truncated spectral Deligne-Mumford

stacks which is locally almost of finite presentation,

z̃∗ := z∗iZ : ΓZ(QCoh(X))→ QCoh(Z)

is conservative. If X is a qcqs truncated spectral algebraic space,

z̃× := z×iZ : ΓZ(QCoh(X))→ QCoh(Z)

14



is conservative.

Proof. We first reduce to the case where X is affine. The first statement reduces immediately,

the second reduces using Proposition B.0.3. So we can let X = SpecR and Z = SpecS.

Because R/(t1, . . . , tn) has finitely many homotopy groups and each homotopy group is a

π0(S)-module, the localizing subcategory generated by π0(S) contains R/(t1, . . . , tn). Hence

the localizing subcategory generated by S does also.

For the first statement, let N be a R-module supported on Z such that S ⊗R N ∼= 0.

Consider the collection of R-modulesM such thatM⊗RN = 0, this is a localizing subcategory.

So since this collection contains S, it also contains R/(t1, . . . , tn) and hence N is zero by

Lemma 2.1.1. The second statement follows similarly. ■

Proposition 2.1.4. Suppose z : Z → X is a closed immersion of spectral Deligne-Mumford

stacks which factors through an étale map u : U → X, then u∗ induces an isomorphism

ΓZ(QCoh(X)) ∼= ΓZ(QCoh(U))

Proof. We may assume X is affine by étale descent on X. If u is an open immersion, the

statement follow from Zariski descent of quasicoherent sheaves for the covering of X consisting

of U and the complement of |Z|.
Since étale maps are open, by Zariski descent on U and the analogous result for open

immersions, we can reduce to the case where u is affine and surjective. The map |Z| → u−1(|Z|)
(coming from the fact that Z lifts to U) is open (as sections of étale maps are étale by [Lur17]

Remark 7.5.1.7), hence without loss of generality we can assume u−1(|Z|) = |Z|.
Then the statement follows from taking fibres along the Nisnevich excision square of

quasicoherent sheaves ([Lur18] Theorem 3.7.5.1 + Nisnevich descent) .

U \ Z U

X \ Z X

u

■

2.2 Adjoints and Duality in Algebraic Geometry

In this section, we explore two categorical dualities which will be relevant later. The first

duality interchanges a dualizable object in a symmetric monoidal category with its dual, which

we refer to as up-down duality. The second duality interchanges a dualizable category with its
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dual (inside V −ModL for some V ), which we refer to as left-right duality. Up-down duality

allows us to conjugate compact object preserving functors with taking duals of compact

objects to obtain new functors (when compact objects coincide with dualizable objects).

Left-right duality produces from a colimit-preserving functor between dualizable categories

a functor in the opposite direction on their duals. We will often be in a situation where

our categories are in fact self-dual, where left-right duality produces simply a functor in the

reverse direction. For up-down duality, we quote extensively from [BDS16].

Let us start with up-down duality. For a compactly generated presentable stable category

X , we denote by X c the stable subcategory of compact objects. Similarly, if f is a colimit

preserving functor between compactly generated presentable stable categories which preserves

compact objects, we let f c be the functor restricted to compact objects. Suppose f : X → Y

is a map of compactly generated stable categories with a anti-automorphism on the compact

objects which preserves compact objects (for us this will always just be taking the dual of the

object in a symmetric monoidal category where all compact objects are dualizable). Then,

we can conjugate the functor f c by the anti-automorphism to get a functor

(f c)D : (X c)op → (Y c)op

By viewing (f c)D as a functor from X c to Y c, we can extend it uniquely to a colimit

preserving functor

fD : X → Y

We record two lemmas paraphrased from [BDS16] (Lemma 2.6 in loc. cit)

Lemma 2.2.1. Suppose f : X → Y is a colimit-preserving functor of compactly generated

presentable stable categories which preserves compact objects. Then, f c : X c → Y c has a

right adjoint if and only if the right adjoint of f preserves compact objects. In which case the

right adjoint of f is induced by the right adjoint of f c.

Lemma 2.2.2. Suppose f : X → Y is a colimit-preserving functor of compactly generated

presentable stable categories which preserves compact objects. Then, f c : X c → Y c has a

left adjoint if and only if f has a left adjoint. In which case the left adjoint of f is induced

by the left adjoint of f c.

We also record the following proposition from [BDS16]

Proposition 2.2.3. Suppose f : X → Y is a colimit-preserving functor of compactly

generated presentable stable categories (with anti-automorphisms as above) which preserves

compact objects and such that fD ∼= f . Let g be the right adjoint of f . Then, f preserves

limits if and only if g preserves compact objects.
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Proof. We know that f preserves limits if and only if f has a left adjoint. By the second

lemma above, f has a left adjoint if and only if f c has a left adjoint. Now, f c has a left

adjoint if and only if it has a right adjoint because it is invariant under duality. Finally, f c

has a right adjoint if and only if g preserves compact objects by the first lemma above. ■

As a consequence, we have the following lemmas, which can be proven directly.

Lemma 2.2.4. Suppose f : X → Y is a map of compactly generated stable categories with a

anti-automorphism on the compact objects which preserves compact objects. Let g be the right

adjoint of f and suppose g preserves compact objects. Then, gD is the left adjoint of fD.

Lemma 2.2.5. Suppose f : X → Y is a map of compactly generated stable categories with

a anti-automorphism on the compact objects which preserves compact objects and limits. Let

g be the left adjoint of f . Then, gD is the right adjoint of fD.

Now let us discuss left-right duality. Suppose X and Y are dualizable V -categories, in

the notation of Appendix A.1. Then for f : X → Y a colimit-preserving V -linear functor,

there is a colimit preserving dual functor

f∨ : Y ∨ →X ∨

We refer to this duality as left-right duality. Left-right duality also interchanges adjunctions,

namely the following is easily seen.

Proposition 2.2.6. Suppose f : X → Y is left adjoint to g : Y → X and both are

colimit-preserving V -linear functors between V -dualizable categories, then g∨ is left adjoint

to f∨.

Corollary 2.2.7. Suppose f : X → Y is a V -linear colimit-preserving functor between

compactly generated V -module categories. Then f preserves compacts if and only if f∨ is

limit preserving.

Proof. f preserves compact objects if and only if it has a colimit-preserving right adjoint,

which is true if and only if f∨ has a left adjoint, which is equivalent to f∨ preserving limits. ■

Left-right duality does not change the kernels of Fourier-Mukai transforms. More precisely,

the following is also easily checked

Proposition 2.2.8. Suppose

f : X → Y
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is given by the Fourier-Mukai transform with kernel

K ∈X ∨ ⊗V Y

(all colimit-preserving V -linear functors are of this form) then

f∨ : Y ∨ →X ∨

is given by the same kernel K inside

(Y ∨)∨ ⊗V X ∨ ∼= X ∨ ⊗V Y

Remark 2.2.9. Suppose V ∼= k−Mod for a commutative ring k, X ∼= A−Mod, and

Y ∼= B−Mod for some k-algebras A and B. Let f : A−Mod → B−Mod be given by

tensoring over A with some (B,A) bimodule M . In this case f∨ : Bop−Mod→ Aop−Mod is

given by tensoring over Bop with the same M , thought of as a (Aop, Bop) bimodule.

In practice we will almost never use the superscript ∨ to denote left-right duality. We

note here that if X is a qcqs spectral algebraic space over S, QCoh(X) is always self-

dual over QCoh(S) (see [Lur18] 9.4.2.2, 9.4.3.1, 9.4.4.6, and 9.6.1.1). As a consequence of

the Proposition 2.2.8, we note that left-right duality switches quasicoherent pullback with

quasicoherent pushforward, as they are given by the same Fourier-Mukai kernels. Finally,

suppose we are given qcqs spectral algebraic spaces X over S. Let iZ : Z → X be a locally

almost of finite presentation closed immersion of X. Then

Proposition 2.2.10. ΓZ(QCoh(X)) is self-dual and left-right duality interchanges iZ with

ΓZ.

Proof. We can apply the same argument as the standard proof that QCoh(X) is self-dual

when X is a perfect stack (for example Corollary 4.8 in [BZFN10], though note that they

use a stronger than necessary definition of perfect stack). The only difference is that when

showing QCoh(X) is self-dual, the unit and counit maps are given Fourier-Mukai transforms

with the kernel

O∆ ∈ QCoh(X ×S X)

Whereas to show ΓZ(QCoh(X)) is self-dual, we use instead the kernel

ΓZ(O∆) ∈ ΓZ(QCoh(X))⊗QCoh(S) ΓZ(QCoh(X))

The rest of the proof proceeds the same way as in [BZFN10].

18



For the second part of the proposition, simply check that both functors are given by the

same Fourier-Mukai kernel, namely,

ΓZ(O∆) ∈ ΓZ(QCoh(X))⊗QCoh(S) QCoh(X)

■
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CHAPTER 3

Grothendieck Duality

3.1 Diagonally Supported Sheaves

In this section, we introduce the “quasicoherent” sheaf of categories Γ∆(QCoh(X × X)),

which is in a sense the main player of the entire thesis.

We adopt the terminology of [Lur18]. Fix a spectral affine scheme S as the base. In this

section, let X be a spectral affine scheme with a structure map pX : X → S which is almost

of finite presentation and finite tor-amplitude. By the results of this section, the theory can

be bootstrapped to the case of X a spectral Deligne-Mumford stack using étale descent, such

that the map to S is locally almost of finite presentation, finite tor-amplitude. It is also

possible to work over a much more general base because of descent of the construction with

respect to the fpqc or descendable topology on the base, see Remark 3.1.8.

Let X×SX be the pullback of pX along itself. We define π1 and π2 to be the two projection

maps of this pullback. Here is a diagram,

X ×S X X

X S

π2

π1 pX

pX

(3.1)

Let ∆ denote the diagonal inside X ×S X (which is abstractly isomorphic to X). The

inclusion δ : X → X×SX is locally almost of finite presentation by [Lur18] Proposition 4.2.1.6

and [Lur17] Corollary 7.4.3.19. Thus we can consider the subcategory Γ∆(QCoh(X ×S X))

of quasicoherent sheaves on X ×S X which is supported on the diagonal. Let us denote the

inclusion functor by i∆ and its right adjoint by Γ∆.
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We write

π̃1,∗ : Γ∆(QCoh(X ×S X))→ QCoh(X)

for the composition π1,∗i∆ and

π̃×1 : QCoh(X)→ Γ∆(QCoh(X ×S X))

for the right adjoint of π̃1,∗. Importantly, π̃×1 is a colimit-preserving functor. This follows

from the following theorem because all the categories in sight are compactly generated (see

Lemma 2.1.2).

Theorem 3.1.1. π̃1,∗ preserves compact objects.

Proof. Because i∆ preserves compact objects, any compact object

x ∈ Γ∆(QCoh(X ×S X))

can be thought of as a compact object x ∈ QCoh(X ×S X) supported at the diagonal.

By Proposition 5.6.5.2 in [Lur18], π1,∗(x) is almost perfect. Because pX : X → S is finite

tor-amplitude, π1,∗(x) is also finite tor-amplitude. Therefore, π1,∗(x) is perfect by [Lur17]

Proposition 7.2.4.23, hence compact. ■

Corollary 3.1.2. π̃×1 is a colimit-preserving QCoh(X)-linear functor, where QCoh(X) acts

on Γ∆(QCoh(X ×X)) via Γ∆π
∗
1 (i.e. tensoring on the left).

Proof. Follows from the theorem above and Theorem A.1.6. ■

Étale descent of the category Γ∆(QCoh(X ×S X)) will follow from the fact that U 7→
Γ∆(QCoh(U ×S U)) is a “quasicoherent” sheaf of categories on the affine étale site of X1.

where QCoh(U) acts on Γ∆(QCoh(U ×S U)) via Γ∆π
∗
1A (i.e. it acts by tensoring on the first

component).

Proposition 3.1.3. For an affine étale map u : U → X, we have

QCoh(U)⊗QCoh(X) Γ∆(QCoh(X ×S X)) ∼= Γ∆(QCoh(U ×S U))

where QCoh(X) acts on QCoh(U) via j∗ and QCoh(X) acts on Γ∆(QCoh(X ×S X)) via

Γ∆π
∗
1 (i.e. tensoring on the left).

1for a non separated U we have to be slightly careful with the definitions of support, but we can avoid
this issue by restricting to affine étale maps (the topos is unchanged so there’s no loss of generality).
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Proof. The left hand side is canonically

QCoh(U ×S X)⊗QCoh(X×SX) Γ∆(QCoh(X ×S X)) ∼= Γ∆(QCoh(U ×S X))

because tensor products preserve split-exact sequences of presentable stable categories (see

Proposition A.2.7). Now the result follows from the Proposition 2.1.4 applied to the diagonal

closed immersion U → U ×X which factors through the map U × U → U × U . ■

Corollary 3.1.4.

U 7→ Γ∆(QCoh(U ×S U))

is a sheaf on the affine étale site of X.

Proof. This follows from the above proposition as all quasicoherent sheaves of categories

satisfy étale descent (see Remark 10.1.2.10 of [Lur18] or Proposition 3.45 of [Mat16]), though

in this case it is easy to check directly that Γ∆(U ×S X) is an étale sheaf directly as well. ■

Remark 3.1.5. Proposition 3.1.3 and Corollary 3.1.4 admit obvious generalizations to

products of more than two terms.

Next, we show that π̃×1 is a “quasicoherent” map of (quasicoherent) sheaves of categories.

Proposition 3.1.6. For an affine étale map u : U → X,

π̃×1,U : QCoh(U)→ Γ∆(QCoh(U ×S U))

is QCoh(U)-linear, colimit-preserving, and agrees with π̃×1,X for X base changed to U , i.e.

tensored with QCoh(U) over QCoh(X).

Proof. The map above is QCoh(U)-linear and colimit-preserving by Corollary 3.1.2. The

second claim above follows because tensoring with QCoh(U) over QCoh(X) preserves adjoints

of colimit-preserving functors and π̃1,∗ for X tensored to U agrees with π̃1,∗ for U . ■

For F ∈ Γ∆(QCoh(X ×S X)), and an affine étale map u : U → X, we denote by F|U the

(quasicoherent) pullback of F in

Γ∆(QCoh(U ×S U))

Proposition 3.1.7. For F ∈ QCoh(X) and an affine étale map u : U → X,

π̃×1,X(F)|U ∼= π̃×1,U(F|U)
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Proof. This is a direct consequence of Theorem A.1.4 applied to pullback along u : U → X

and upper cross functor π̃×1 and the above proposition. ■

Remark 3.1.8. Note that from étale descent in X, we can define

Γ∆(QCoh(X ×S X))

for X a locally almost of finite presentation and finite tor-amplitude spectral Deligne Mumford

stack over S. Also because

Γ∆(QCoh(X ×S X))

admits descent with respect to the fpqc/descendable topology on S, we can even generalize to

pX : X → S being a locally almost of finite presentation, finite tor-amplitude map of sheaves

which is a relative spectral Deligne-Mumford stack.

3.2 Dualizing Complexes and the Upper Shriek Functor

This section is dedicated to defining the upper shriek functor and proving some properties

of it. Almost all of the results in this section are, in some form, contained in [ILN15] and

[Nee18]. The key differences are the order of presentation–we define the upper shriek functor

without compactifications at all and develop its properties from scratch–and the fact that

we make heavy use of the category Γ∆(QCoh(X ×S X)), which is morally “proper” over X.

We are motivated to study this subcategory for its own sake in view of its connections with

differential operators.

We begin by defining the upper shriek functor for an almost of finite presentation and finite

tor-amplitude map pX : X → S between spectral affine schemes. As before, globalization to

a more general base S will be immediate by construction and to a more general X will follow

from the results proven.

Definition 3.2.1. The upper shriek functor p!X : QCoh(S)→ QCoh(X) is defined by

p!X := δ∗π×1 p
∗
X

where δ : X → X ×S X is the diagonal map.

Remark 3.2.2. Following [BBST24], it may be possible to give an alternative definition for

this functor. Namely, we can define it by

p!X( ) := p∗X( )⊗ ωX/S
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and to define ωX/S be the (necessarily unique if it exists) unit of some symmetric monoidal

category of (quasi)-coherent sheaves on X whose monoidal structure is given by cross-pullback

along the diagonal, i.e.

F
!
⊗ G := δ×(F ⊠ G)

We don’t know how to do this in our generality (in some smaller generality one can use the

subcategory of homologically bounded quasicoherent sheaves with coherent homotopy groups).

However, using the results of this thesis, we can identify ωX/S as the unit of the category of

right DX/S modules with monoidal structure given by cross pullback along the diagonal (Note

that the definition of right D-modules as a inverse limit does not depend on the results of this

section). Similarly, we can also identify ωX/S as the image of the structure sheaf under the

left-right switch of D-modules (here also the functor from right D-modules to left D-modules

can be defined without the results of this section, as the reader can verify).

This formula (often referred to as a reduction formula) for the upper shriek functor appears

in many places in the literature, e.g. [Nee18] Proposition 3.3, however here we will take it as

a definition. The main property of upper shriek is that it behaves well under composition,

that is

(fg)! ∼= g!f !

and that it interpolates between upper-cross pullback in the proper case and upper-star

pullback in the étale case. This is what we aim to show in this section.

The pullback functor along the diagonal

δ∗ : QCoh(X ×S X)→ QCoh(X)

factors through the local cohomology functor Γ∆, namely

δ∗ ∼= δ̃∗Γ∆

Therefore,

p!X
∼= δ̃∗π̃×1 p

∗
X (3.2)

From the above we see the upper shriek functor is colimit preserving and QCoh(S)-linear.

Proposition 3.2.3. Suppose u : U → X is an affine étale map, then

u! = u∗

Proof. This follows from the Proposition 2.1.4 applied to the closed immersion U → U ×X X
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with a lift to U ×X U . Namely, we know that

π̃1,∗ : Γ∆(QCoh(U ×X U))→ QCoh(U)

is an isomorphism and its inverse and adjoint (on both sides) is Γ∆π
∗
1 (where π1 : U×XU → U

is the projection map to the first component). Therefore

u! ∼= δ̃∗π̃×1 u
∗

∼= δ̃∗Γ∆π
∗
1u
∗

∼= u∗

■

Proposition 3.2.4. Suppose u : U → X is an affine étale map, and pU : U → S is the

structure map, then

p!U
∼= u∗p!X

∼= u!p!X

Proof. The second isomorphism follows from the previous proposition, the first follows because

p!UF ∼= δ̃∗U π̃
×
1,Up

∗
UF

∼= δ̃∗U π̃
×
1,Uu

∗p∗XF
∼= δ̃∗U(π̃

×
1,Xp

∗
XF)|U

∼= u∗δ̃∗X π̃
×
1,Xp

∗
XF

where the third isomorphism uses Proposition 3.1.7. ■

Remark 3.2.5. By defining the category Γ∆(QCoh(X ×S X)) by descent on relative spectral

Deligne-Mumford stacks such that the map from X to S is locally almost of finite presentation

and finite tor-amplitude, we can define the !-pullback for all such maps. In this way we can

drop the assumption that u is an affine map in the previous propositions.

Definition 3.2.6. For any map pX : X → S of spectral Deligne-Mumford stacks which is

locally almost of finite presentation and finite tor-amplitude, we define the relative dualizing

complex of X over S to be

ωX/S := p!X(OS) (3.3)

where p!X is defined as in Remark 3.2.5.

Because of the Proposition 3.2.4 and Remark 3.2.5, for an étale u : U → X, we have

u∗ωX/S
∼= ωU/S
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Also, ω behaves well under base-change with respect to S. Namely, if q : S ′ → S is a map of

spectral affine schemes, there is an isomorphism

ωX×SS′/S′ ∼= (id× q)∗(ωX/S)

To be general,

Theorem 3.2.7. Suppose we have the following pullback diagram of spectral Deligne-Mumford

stacks where pY is locally almost of finite presentation and finite tor-amplitude

YS′ ∼= Y ×S S ′ Y

S ′ S

π2

π1 pY

pS′

where pY is finite tor-amplitude and all maps are almost of finite presentation. Then

π!
1p
∗
S′ ∼= π∗2p

!
Y

Proof. The entire construction base-changes well with respect to S, so this is clear. ■

Because p!X is colimit preserving and QCoh(S)-linear, we have

p!X(F) ∼= ωX/S ⊗ p∗XF (3.4)

Remark 3.2.8. Equation (3.4), combined with the analogous statement for the classically

defined upper-shriek functor (see [Nee14] Remark 1.22) implies via Corollary 4.7 of [AILN10]

that our upper-shriek functor agrees with the classical one for finite tor-amplitude, finite-type,

separated morphisms of non-derived Noetherian schemes.

Remark 3.2.9. The above statements generalize to relative spectral Deligne-Mumford stacks.

Proposition 3.2.10. Suppose pX : X → S is a separated map of qcqs algebraic spaces,

which is locally almost of finite presentation and finite tor-amplitude. Then there is a natural

transformation

p×X → p!X

and hence also a natural map

Hom(pX,∗F ,G)→ Hom(F , p!XG)
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for F ∈ QCoh(X) and G ∈ QCoh(S).

Proof. Consider the square

X ×S X X

X S

π2

π1 p

p

From the push-pull isomorphism ([Lur18] Proposition 6.3.4.1), there is a map

π1,∗π
∗
2p
×
X
∼= p∗XpX,∗p

×
X → p∗X

hence by adjunction, we have a map

π∗2p
×
X → π×1 p

∗
X

Pulling back along δ gives a map

p×X → δ∗π×1 p
∗
X
∼= p!X

where we use the fact that Definition 3.2.1 applies for separated, locally almost of finite

presentation, finite tor-amplitude maps of relative qcqs algebraic spaces. ■

Remark 3.2.11. This proposition can be generalized to a more general base S.

We recall the following proposition from [Lur18], which we will refer to as pull-cross

isomorphism. We note that for qcqs spectral algebraic spaces, it follows directly from the

fact ([Lur18] Theorem 6.1.3.2) that pushforward along maps which are locally almost of

finite presentation, proper, and finite tor-amplitude preserve compact objects as well as

categorical base-change results of Appendix A.1 (Theorem A.1.4) together with the fact that

colimit-preserving adjunctions of module categories are preserved under extension of scalars

[of categories]).

Proposition 3.2.12. [[Lur18] Proposition 6.4.2.1] Suppose pY is a proper, locally almost

of finite presentation, finite tor-amplitude map which is a relative spectral algebraic space.

Then, if pS′ : S ′ → S is any map of spectral Deligne-Mumford stacks,

π×1 p
∗
S′ ∼= π∗2p

×
X
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where the notation is as in the diagram

YS′ ∼= Y ×S S ′ Y

S ′ S

π2

π1 pY

pS′

Theorem 3.2.13. Suppose pX : X → S and g : Y → X are locally almost of finite

presentation, finite tor-amplitude maps of qcqs algebraic spaces. Suppose pX is separated and

the composition px ◦ g is proper. Then (this result is Lemma 3.1 in [Nee18]), the natural

transformation p×X → p!X is an isomorphism after post-composition with g×.

Proof. Consider the diagram

Y ×S X X ×S X X

Y X S

g×id

π′
1

π2

π1 pX

g pX

The outer rectangle exhibits pull-cross base-change (Proposition 3.2.12), namely,

π
′∗
1 g
×p×X

∼= (g × id)×π×2 p
∗
X

The map exhibiting the isomorphism is formed using the pull-cross base-change maps for the

two smaller squares. Now we post-compose the above isomorphism with the pullback along

the graph of g, δg : Y → Y ×S X, to get

g×p×X
∼= δ∗g(g × id)×π×2 p

∗
X

Now looking at the pull-cross base-change for the diagram (since g is also proper by Lemma
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01W6 in [Sta18])

Y Y ×S X

X X ×S X

δg

g g×id

δ

namely,

g×δ∗ ∼= δ∗g(g × id)×

We have,

g×p×X
∼= δ∗g(g × id)×π×2 p

∗
X
∼= g×δ∗π×2 p

∗
X
∼= g×p!X

One checks that the map agrees with the map in the previous proposition post-composed

with g× by staring at the following combined diagram using the fact that the base-change for

the left tall rectangle is trivial.

Y X

X ×S Y X ×S X X

Y X S

g

δg δ

g×id

π′
1

π2

π1 pX

g pX

■

Remark 3.2.14. The base S can be made more general in this proposition by descent.

Corollary 3.2.15. Suppose pX : X → S is a proper, almost of finite presentation, finite

tor-amplitude map of spectral algebraic spaces, then p×X
∼= p!X .

Theorem 3.2.16. Let pX be a separated, locally almost of finite presentation, finite tor-

amplitude map of qcqs algebraic spaces. Suppose Λ is a co-compact closed subset of |X| which
is proper over S (or rather the reduced closed subspace is proper), then

ΓΛp
×
X
∼= ΓΛp

!
X
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Proof. Repeat the argument used to prove Theorem 3.2.13, rephrased in terms of categories of

quasicoherent sheaves and then substitute ΓΛ(QCoh(X)) wherever QCoh(Y ) appears, using

the fact that pX,∗iΛ preserves compact objects. This is because iΛ preserves compacts and

pX,∗ is finite tor-amplitude and sends perfect objects supported on Λ to almost perfect objects

(see SAG Proposition 5.6.5.2). ■

Remark 3.2.17. Note that the generalization of this theorem to S being a stack needs to

require that the map from the reduced closed substack Λ to S to be proper.

Corollary 3.2.18. The map

Hom(pX,∗F ,G)→ Hom(F , p!XG)

in Theorem 3.2.10 is an isomorphism if F is supported on a proper (over S) subscheme.

Corollary 3.2.19. Suppose pX : X → S and pY : Y → S are locally almost of finite

presentation, finite tor-amplitude maps of qcqs algebraic spaces, such that pX is separated.

Suppose g : Y → X is a proper morphism over S (not necessarily finite tor-amplitude!).

Then, there is a canonical isomorphism

g×p!X
∼= p!Y

This isomorphism is compatible with the natural transformations p×X → p!X and p×Y → p!Y

Proof. Let δg : Y → Y ×S X be the graph of g and let

δ̃×g : ΓgQCoh(Y ×S X)→ QCoh(Y )

be the upper-cross pullback functor restricted to quasicoherent sheaves supported on the

graph of g.

We have

p!YF ∼= δ̃×g π̃
(Y×X),×
1 p!YF

∼= δ̃×g π̃
(Y×X),!
1 p!YF

∼= δ̃×g π̃
(Y×X),!
2 p!XF

∼= δ̃×g π̃
(Y×X),×
2 p!XF

∼= g×p!XF

where we used Theorem 3.2.16 in line 2 and 4, the compatibility with the maps follow from
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similar diagram chasing as above, using in particular the pull-cross isomorphism for the maps

g and π2 : Y ×S X → X when restricted to the subcategory ΓgQCoh(Y ×S X).

■

Remark 3.2.20. The above corollary allows us to strength Theorem 3.2.13 by dropping the

finite tor-amplitude assumption on g.

We conclude by showing that upper shriek composes well.

Theorem 3.2.21. Suppose g : Y → X and pX are almost of finite presentation and finite

tor-amplitude maps of spectral Deligne-Mumford stacks. Then,

g!p!X
∼= p!Y

Proof. By étale descent we reduce to the case where X and Y are both affine. Consider the

diagram

X ×S Y Y

X S

π2

π1 pY

pX

We have

p!Y
∼= δ̃∗Y π̃

(Y×Y ),×
2 p∗Y

∼= δ̃∗Y
˜(g × id)

×
π̃
(X×Y ),×
2 p∗Y

∼= δ̃∗Y
˜(g × id)

×
π̃
(X×Y ),!
2 p∗Y

∼= δ̃∗Y
˜(g × id)

×
π̃
(X×Y ),∗
1 p!X

where π̃
(X×Y ),!
2 := ΓY π

(X×Y ),!
2 and similarly for the π̃

(X×Y ),×
2 . The third isomorphism is

Theorem 3.2.13. The last isomorphism follows from Theorem 3.2.7. Now look at the cartesian

diagram

Y ×X Y Y ×S Y

Y X ×S Y

ϕ=id×pX
id

π2 g×id

δg
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So,

p!Y
∼= δ̃∗Y

˜(g × id)
×
π̃
(X×Y ),∗
1 p!X

∼= δ̃∗Y ϕ
∗ ˜(g × id)

×
π̃
(X×Y ),∗
1 p!X

∼= δ̃∗Y π̃
(Y×XY ),×
2 δ∗g π̃

(X×Y ),∗
1 p!X

∼= δ̃∗Y π̃
(Y×XY ),×
2 g∗p!X

∼= g!p!X

■

Remark 3.2.22. The statements of this sections indicates that Grothendieck duality, in the

sense of constructing an upper shriek functor satisfies section 2 of [Nee18], can be developed

from scratch using Definition 3.2.1 by making ample use of the category Γ∆(QCoh(X ×X)).

In Section 3.5, we follow Neeman and show that we can easily identify ωX with the sheaf of

top differential forms (shifted appropriatedly) in the smooth case.

However, one of the limitations of this thesis is that we do not include a proof of the full

homotopy coherence of the upper shriek functor. One approach could be to use the definitions

indicated in Remark 3.2.2. We leave this for a possible future work.

Remark 3.2.23. Bhargav Bhatt pointed out that the upper shriek functor is also characterized

on separated truncated qcqs algebraic spaces (up to isomorphism) by the following properties.

1. There is a map p×X → p!X such that the induced map

Hom(pX,∗F ,G)→ Hom(F , p!XG)

is an isomorphism when F has proper support over S (this is the second half of Corollary

3.2.18).

2. Theorem 3.2.7 holds.
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This observation can be deduced from the following diagram

X

X ×S X X

X S

δ

π2

π1 pX

pX

Condition (2) implies that

p!X
∼= δ∗π∗2p

!
X
∼= δ∗π!

1p
∗
X

Now condition (1) implies

id ∼= δ×π×1 → δ×π!
1

is an isomorphism. Hence

δ∗π!
1p
∗
X
∼= δ∗π×1 p

∗
X

using Lemma 2.1.3.

Remark 3.2.24. Suresh Nayak pointed out to us that it is possible to define the upper

shriek functor along arbitary maps of finitely presented separated schemes which are finite

tor-amplitude over a Noetherian base by factoring such a map

f : X → Y

as the composition of the graph of f

Γf : X → X × Y

composed with the projection map

πY : X × Y → Y

Then, we can define f ! by the composition Γ×f π
!
Y where πY is finite tor-amplitude and hence

we can define upper shriek along it using the techniques in this paper. However, for such

a definition to be compatible with compositions, we must restrict to the subcategory D+
qc of

objects with bounded below cohomology. However, we do not currently know how to adapt the
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category-theoretic proofs in this paper to this setting.

3.3 Dualizing Complexes and the Lower Shriek Functor

In this section, we introduce the lower shriek functor and prove some Hochschild-type formulas

which appear in [Nee18]. We have seen that the upper shriek functor satisfies

p!( ) ∼= p∗( )⊗ ω

Now the lower shriek functor will turn out to satisfy an analogous equation, namely,

p!( ) ∼= p∗( ⊗ ω)

In fact, these two are simply related by left-right duality. We also caution that our use of the

symbol lower shriek is not necessarily standard, in particular it is not analogous to the étale

lower shriek. However, this notation is not original either, for example see [Per19]. We insist

on this notation because it is consistent with how the rest of our notation behaves under

left-right duality. Much of this section is inspired by arguments in [BDS16] and [Nee18].

Suppose pX : X → S is a locally almost of finite presentation, finite tor-amplitude map of

qcqs algebraic spaces. Generalization to a more general base S is possible, but we ignore this

issue in this section. The following theorem is the left-right dual of Theorem 3.1.1.

Theorem/Definition 3.3.1. Denote by π̃∗1 the functor

Γ∆π
∗
1 : QCoh(X)→ Γ∆(QCoh(X ×S X))

Then, π̃∗1 preserves limits–we denote by π̃1,× its left adjoint. We remind the reader that if pX

is not separated, the right hand side is defined by descent.

Proof. π̃∗1 is the left-right dual of π̃1,∗, so the theorem follows from Corollary 2.2.7 applied to

Theorem 3.1.1. We implicitly use that QCoh(X) is self-dual as a QCoh(S)-module category

(using the same proof as in [BZFN10]). ■

Remark 3.3.2. We note that π̃1,× preserves compact objects because π̃∗1 is colimit-preserving.

Also, π̃1,× is left-right dual to π̃×1 .

Let δ : X → X ×S X be the diagonal map. Then,

δ∗ : QCoh(X)→ QCoh(X ×S X)
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factors through

i∆ : Γ∆(QCoh(X ×S X))→ QCoh(X ×S X)

Namely,

δ∗ ∼= i∆δ̃∗

We are now ready to define the lower shriek functor, in analogy to the upper shriek functor.

Definition 3.3.3. The lower shriek functor pX,! : QCoh(X)→ QCoh(S) is defined by

pX,! := pX,∗π̃1,×δ̃∗

Remark 3.3.4. By comparison with (3.2) it is clear that pX,! is the left-right dual of p!X . We

implicitly use Proposition 2.2.10.

We can now take most of the results of section 2 and apply left-right duality to them

to obtains new results about lower shriek. For example, we have the following analogue of

Proposition 3.2.4, which follows directly from left-right duality.

Proposition 3.3.5. Suppose u : U → X is an étale map , then

pU,! ∼= pX,!u∗ ∼= pX,!u!

Also, we can take the left-right dual of (3.4) to get

Proposition 3.3.6.

pX,!(F) ∼= pX,∗(F ⊗ ωX)

Remark 3.3.7. We can also show these results directly by arguing with compact objects,

however we choose to present the proofs by duality because they are cleaner.

As a preparation for the next theorem, we need the following result.

Proposition 3.3.8. For F ∈ QCoh(X),

π̃1,×δ̃∗F ∼= δ̃∗π̃×1 F ∼= F ⊗ ωX/S

as QCoh(X)-linear colimit-preserving functors.

Proof. Both the first and second expression are QCoh(X)-linear colimit preserving functors

of F by Corollary 3.1.2 and Corollary 3.3.1. QCoh(X)-linear colimit preserving functors from

QCoh(X) to itself are automatically self-dual because they are simply given by tensoring

with a quasicoherent sheaf on X, showing the first equality. In this case, it is easy to see the

functor is given by tensoring with ωX/S. This shows the claim. ■
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We are now ready to establish a Hochschild-style formula which is known in some form

since [AILN10] and is elaborated on in [Nee18].

Theorem 3.3.9. Let pX be a locally of finite presentation, finite tor-amplitude map of qcqs

algebraic spaces. For F ∈ QCoh(S) and G ∈ QCoh(X), we have

δ×π∗1 Hom (p∗XF ,G) ∼= Hom (p!XF ,G)

where Hom denotes internal Hom of quasicoherent sheaves.

Proof. Consider

δ× : QCoh(X ×S X)→ QCoh(X)

which is right adjoint to

δ∗ ∼= i∆Γ∆δ∗ ∼= i∆δ̃∗

Hence,

δ× ∼= δ̃×Γ∆

where δ̃× is right adjoint to δ̃∗.

Therefore, given H ∈ QCoh(X), we have

HomX(H, δ×π∗1 Hom (p∗XF ,G)) ∼= HomX(H, δ̃×π̃∗1 Hom (p∗XF ,G))
∼= HomX(π̃1,×δ̃∗H,Hom (p∗XF ,G))
∼= HomX(ωX/S ⊗H,Hom (p∗XF ,G))
∼= HomX(ωX/S ⊗ p∗XF ⊗H,G)
∼= HomX(p

!
XF ⊗H,G)

∼= HomX(H,Hom (p!XF ,G))

■

Notice that if X = SpecA and S = Spec k, then this theorem says (in a special case)

HomA⊗A(A,A⊗ A) ∼= HomA(ωA, A)

Corollary 3.3.10. Let pX be a locally of finite presentation, finite tor-amplitude map of qcqs

algebraic spaces.

Hom (ωX/S, ωX/S) ∼= OX
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Proof.

Hom (ωX , ωX) ∼= δ̃×π̃∗2ωX

∼= δ̃×π̃×1 OX

∼= OX

The first isomorphism comes from the theorem above and the second follows from Theorem

3.2.16. ■

Remark 3.3.11. Both statements above generalize to a more general base S.

We record here a proposition which is morally dual to Proposition 3.2.10 and Corollary

3.2.18, though we don’t know how to show it directly by duality.

Proposition 3.3.12. Let pX be a locally of finite presentation, finite tor-amplitude, and

separated map of qcqs algebraic spaces. There is a natural map

Hom(pX,!F ,G)→ Hom(F , p∗XG)

which is an isomorphism if the support of F is inside a co-compact closed subset which (the

reduced closed substack) is proper over S.

Proof. The map is constructed as follows

Hom(pX,!F ,G) ∼= Hom(pX,∗π̃1,×δ̃∗F ,G)
∼= Hom(δ̃∗F , π̃∗1p×XG)

→ Hom(δ̃∗F , π̃∗1p!XG)
∼= Hom(δ̃∗F ,Γ∆π

!
2p
∗
XG)

∼= Hom(F , δ̃×Γ∆π
!
2p
∗
XG)

∼= Hom(F , δ̃×Γ∆π
×
2 p
∗
XG)

∼= Hom(F , δ̃×π̃×2 p∗XG)
∼= Hom(F , p∗XG)

where the map in the third line comes from Proposition 3.2.10. The fourth line is base-change

for upper shriek (see Theorem 3.2.7). On the sixth line we apply Theorem 3.2.16.

If Z contains support of F , then assuming Z is proper over S, we want to show that the
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map on line three is an isomorphism. Indeed,

Hom(δ̃∗F , π̃∗1p×XG) ∼= Hom(δ̃∗F ,ΓZ×ZΓ∆π
∗
1p
×
XG)

∼= Hom(δ̃∗F ,Γ∆ΓZ×Zπ
∗
1p
×
XG)

∼= Hom(δ̃∗F ,Γ∆π
∗
1ΓZp

×
XG)

∼= Hom(δ̃∗F ,Γ∆ΓX×Zπ
×
2 p
∗
XG)

∼= Hom(δ̃∗F ,ΓZ×ZΓ∆π
×
2 p
∗
XG)

∼= Hom(δ̃∗F ,Γ∆π
×
2 p
∗
XG)

where the fourth isomorphism follows from Theorem A.1.4 applied to V = QCoh(S), X =

ΓZ(QCoh(X)), and Y = QCoh(X), where the map f = ΓZp
×
X : V →X is the right adjoint

of

pX,∗iZ : ΓZ(QCoh(X))→ QCoh(S)

f is colimit-preserving because pX,∗iZ preserves compact objects (argue as in Theorem 3.1.1).

The map g : V → Y is just the quasicoherent pullback. ■

Lastly, we record a theorem about how our functors interact with up-down duality2.

Theorem 3.3.13. Let pX be a locally of finite presentation, finite tor-amplitude map of qcqs

algebraic spaces.

(π̃1,×)
D ∼= π̃1,∗

and the isomorphism is étale local.

Proof. We can reduce to the affine case. It suffices to show there is a natural isomorphism

HomQCoh(X)(π̃1,×(K
∨), L) ∼= HomQCoh(X)((π̃1,∗K)∨, L)

2see Section 2.2
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for K compact in Γ∆(QCoh(X ×S X)) and L in QCoh(X). But this follows from

HomQCoh(X)(π̃1,×(K
∨), L) ∼= HomΓ∆(QCoh(X×X))(K

∨, π̃∗1L)

∼= HomΓ∆(QCoh(X×X))(K
∨,Γ∆π

∗
1L)

∼= HomQCoh(X×X)(K
∨, π∗1L)

∼= HomQCoh(X×X)(OX×X , K ⊗OX×X
π∗1L)

∼= HomQCoh(X)(OX , π1,∗(K ⊗OX×X
π∗1L))

∼= HomQCoh(X)(OX , π1,∗K ⊗OX
L)

∼= HomQCoh(X)((π1,∗K)∨, L)

∼= HomQCoh(X)((π̃1,∗K)∨, L)

where by abuse of notation K can also be thought of as an object in QCoh(X ×S X). ■

3.4 Grothendieck Differential Operators

In this section, we define the sheaf of Grothendieck differential operators and show that it

satisfies étale descent. Let X be a spectral affine scheme which is almost of finite presentation

and finite tor-amplitude over S, another spectral affine scheme.

Theorem/Definition 3.4.1. There is a natural convolution monoidal structure on

Γ∆(QCoh(X ×S X)). QCoh(X) has the structure of a left Γ∆(QCoh(X ×X)) module with

respect to this monoidal structure.3

Proof. We construct it by inducing it from QCoh(X ×S X). We have the isomorphism

QCoh(X ×S X) ∼= EndS(QCoh(X),QCoh(X))

The right hand side is endomorphisms of QCoh(X) inside QCoh(S)−ModL, and thus has a

natural monoidal structure. This gives the desired monoidal structure on QCoh(X ×S X).

It is easy to see that Γ∆(QCoh(X ×S X)) is closed under this product, and so inherits a

convolution monoidal structure. The second part of the theorem is clear from our construction.

To be explicit, given two quasicoherent sheaves F and G on X ×X, their convolution is

simply

F ⋆ G := π1,3,∗(π
∗
1,2F ⊗ π∗2,3G)

3As mentioned in the introduction, with this monoidal product this category is a the categorified ring of
differential operators.
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where

πi,j : X ×X ×X → X ×X

are the obvious projection maps. ■

Remark 3.4.2. If X = SpecA, this tensor product for A-bimodules is simply given by

tensoring the two A-bimodules together over A.

Remark 3.4.3. QCoh(X) as a Γ∆(QCoh(X ×S X))-module category is gives rise to an

enrichment of QCoh(X) over Γ∆(QCoh(X×SX)). One can check that under this enrichment

Hom (F ,G) ∈ Γ∆(QCoh(X ×S X)) is the spectrum of differential operators.

In particular, if X = SpecA and S = Spec k are affine, then

Hom (M,N) ∼= Γ∆(Homk(M,N))

This is a full subcategory of the category of D-modules on X (with F corresponding to

DX/S ⊗OX
F).

For U affine étale over X, it’s clear from the definition that the pullback map

Γ∆(QCoh(X ×S X))→ Γ∆(QCoh(U ×S U))

is monoidal with respect to the convolution product.

Definition 3.4.4. Let X = SpecA and S = Spec k. The sheaf of Grothendieck differential

operator on X over S is defined to be

DX/S := Γ∆(Homk(A,A)) ∼= Γ∆π
×
1 OX ∈ Γ∆(QCoh(X ×S X))

where π×1 is the right adjoint of the pushforward functor π1,∗. The first expression shows that

DX/S is a ring in the monoidal category Γ∆(QCoh(X ×S X)). Often we will suppress S from

the notation and write simply DX .

Remark 3.4.5. The functor π1,∗ : A⊗k A−Mod→ A−Mod is given by the formula

π1,∗(M) ∼= (A⊗k A)⊗A⊗kA (M)

where A acts on the left A in the tensor and A⊗ A acts on A⊗ A by multiplication inside

A⊗ A. Therefore its right adjoint is given by the formula

π×1 (M) ∼= HomA(A⊗k A,M) ∼= Homk(A,M)
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The second isomorphism follows by adjunction–the A⊗k A module structure has the left A

acting on M (the codomain) and the right A acting on A (the domain). This means the left

A acts by postcomposition of the k-linear function with multiplication by an element of A

and the right A acts by precomposition. Visually, we have

((a1 ⊗ a2)f)(x) = a1f(a2x)

for f ∈ Homk(A,M).

It is easily checked that the entire story behaves well with respect to base-change in S.

For example, suppose we have a map q : S ′ → S of spectral affine schemes, then we can

consider X ′ = X ×S S ′ living over S ′. The base-change of DX/S to Γ∆(QCoh(X ′ ×S′ X ′)) is

then DX′/S′ .

Corollary 3.4.6. For any étale map u : U → X,

DX/S|U ∼= DU/S

Proof. Follows from Proposition 3.1.7. ■

The following alternative description of the DX/S is known as the Grothendieck-Sato

formula.

Corollary 3.4.7.

DX/S
∼= Γ∆(π

∗
2(ωX)) ∼= Γ∆(OX ⊠ ωX)

Proof. By Theorem 3.2.16 we have the isomorphism

Γ∆π
×
1 (OX) ∼= Γ∆π

!
1(OX)

By base-change for upper shriek (Theorem 3.2.7) we have the desired result. ■

If we write X = SpecA and S = Spec k, then the above implies

ωA/k
∼= DA/k ⊗A⊗kA A ∼= Homk(A,A)⊗A⊗kA A

Therefore

ωA/k
∼= δ̃∗DX/S

Remark 3.4.8. Just from the definitions, we can see that Γ∆(QCoh(X ×S X)) looks like

a categorification of DX/S. Indeed this viewpoint was explored in [Ber21] and [Ber19]. The
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reason that the Grothendieck-Sato formula involves the dualizing complex and the categorified

expression does not is that one categorical level higher, the morphism pX : X → S behaves

like a 1-proper morphism with trivial 1-dualizing complex. By this I simply mean that the

the categorified pushforward and pullback maps of quasicoherent categories (see [Gai15]) are

adjoint in both directions. As a fun aside, proper morphisms with trivial dualizing complexes

also exist by considering the free loop stack of a smooth proper variety. On such schemes, the

left-right switch is literally trivial (as opposed to say for Calabi-Yau varieties where it is a

shift). In fact the D-ring on these free loop stacks are simply obtained by taking Hochschild

homology of the categorified ring of differential operators of the smooth proper variety.

3.5 Comparison with Classical Definitions for Smooth

Varieties

In this section, assume X is a smooth over a non-derived base affine scheme S = Spec k. In

this case, Grothendieck defined the ring (sheaf of rings) of Grothendieck differential operators

on X relative to S ([Gro64]). We will show in this section that our definition agrees with

this standard definition in this case. Moreover, we will show that the dualizing complex is

given by the sheaf of top differential forms homologically shifted by the dimension of the

variety, following Neeman [Nee20]. Taken together, this yields a simple and powerful method

for deducing Serre duality from scratch.

We begin by showing that the ring of Grothendieck differential operators classically defined

agrees with our definition. The following theorem is known, for example see [SVdB97], but

we provide a proof here as well.

Theorem 3.5.1. In the case of X a smooth variety over a discrete base S, our definition of

DX agrees with the classical definition of Grothendieck differential operators (and hence is

discrete).

Proof. We will show that affine locally, there is a canonical isomorphism. This will then

imply the global statement.

Suppose we have X ∼= SpecR smooth over S ∼= Spec k, both discrete rings. Our definition

in this case yields DR/k
∼= Γ∆(Homk(R,R)). We will take as the classical definition of the

Grothendieck differential operators

D :=
⋃
n≥0

D(n)
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the union of the increasing sequence of subspaces D(n) ⊆ Homk(R,R) defined inductively by

D(−1) = 0

and

D(n) = {f ∈ Homk(R,R)|∀r ∈ R, [f, r] ∈ D(n−1)}

where r ∈ R is thought of as an element Homk(R,R) via multiplication by r.

Now let I be the ideal in R⊗k R defining the diagonal. Recall that Homk(R,R) has an

action of R⊗k R via

((a1 ⊗ a2)f)(x) = a1f(a2x)

Therefore, the condition that

∀r ∈ R, [f, r] ∈ D(n−1)

is equivalent to

∀r ∈ R, (r ⊗ 1)f − (1⊗ r)f ∈ D(n−1)

which is further equivalent to

If ∈ D(n−1)

Therefore, we can conclude that

D(n) ∼= H0HomR⊗kR((R⊗k R)/In,Homk(R,R))

To remove the H0, we compute via adjunction

HomR⊗kR((R⊗k R)/In,Homk(R,R)) ∼= HomR⊗kR((R⊗k R)/In,HomR(R⊗k R,R))

∼= HomR((R⊗R)/In, R)

where the R action is on the first factor of the tensor. However, because R is smooth, we

have a noncanonical isomorphism

(R⊗R)/In ∼= ⊕n−1
i=0 (Sym

k(ΩR/k))

and hence we can remove the H0

D(n) ∼= HomR⊗kR((R⊗k R)/In,Homk(R,R))

since (R⊗k R)/In is projective.
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Therefore, as filtered colimits are exact

D ∼= colimn HomR⊗kR((R⊗k R)/In,Homk(R,R))

∼= Γ∆(Homk(R,R))

∼= DR/k

where the second isomorphism follows because I is locally generated by a regular sequence

(Lemma 067U in [Sta18]) and a standard formula for local cohomology (for example see the

proof of Lemma 0A6R in [Sta18]). ■

Now let us move on to verifying that our definition of the dualizing complex gives the top

differential forms in homological degree n in the smooth setting. The idea of the following

proof is due to Lipman and is written in [ATJLL14], it is also presented in Section 3.2 of

[Nee20].

The intermediate object connecting differential forms with ωX is Hochschild homology,

which can be written as

HH·(X/S) := δ∗δ∗OX
∼= δ̃∗δ̃∗OX

Because of the isomorphism

π̃1,∗δ̃∗ ∼= idQCoh(X)

there is a natural map (by adjunction)

δ̃∗OX → π̃×1 OX

Therefore by applying δ̃∗ on both sides there is a natural map

HH·(X/S)→ ωX

By the HKR isomorphism, in the smooth case, we also have a map

Ωn
X/S[n]

∼= π≥nHH·(X/S)→ HH·(X/S)

where Ωi
X/S is the sheaf of i-forms. These combine to form a natural map

Ωn
X/S[n]→ ωX

in the smooth case. We wish to show it’s an isomorphism.

By étale descent, it is enough to check it for An. Now, for X, Y over S satisfying our
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standing assumptions

Γ∆(QCoh((X ×S Y )×S (X ×S Y ))) ∼= Γ∆(QCoh(X ×S X))⊗ Γ∆(QCoh(Y ×S Y ))

and

π̃
(X×Y )
1,∗

∼= π̃
(X)
1,∗ ⊠ π̃

(Y )
1,∗

therefore also

π̃
×,(X×Y )
1

∼= π̃
×,(X)
1 ⊠ π̃

×,(Y )
1

Hence we have

DX×Y ∼= DX ⊠DY

Pulling back along the diagonal, we get

ωX×Y ∼= ωX ⊠ ωY

We also have similar results for Hochschild homology and Ωn
X/S[n] compatible with the maps

between them. Therefore, it suffices to show the isomorphism for A1. So the result follows

from

Lemma 3.5.2. For S a discrete affine scheme

ωA1/S
∼= OA1/S[1]

and the map

OA1 ⊕ ΩA1 [1] ∼= HH·(A1)→ ωA1

is an isomorphism in degree 1.

Proof. By base-change results, we can assume S ∼= SpecZ. We have (by Definition 3.2.6)

ωZ[x]/Z ∼= DZ[x]/Z ⊗Z[x1,x2] Z[x]

where the map

Z[x1, x2]→ Z[x]

sends x1 and x2 to x. Z[x] has the following resolution over Z[x1, x2].

Z[x1, x2]
(x1−x2)·−−−−−→ Z[x1, x2]→ Z[x]
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Hence by tensoring with DZ[x]/Z, we have the following exact triangle in QCoh(Z[x1, x2]).

DZ[x]
[x, ]−−→ DZ[x] → ωZ[x]

where the first map is conjugating by multiplication by x.

By a direct computation DZ[x]/Z is a free Z module on the generators { 1
n!

dn

dxn}n≥0. Therefore
the map

[x, ] : DZ[x]/Z → DZ[x]/Z

is surjective and the kernel is just Z[x]. Therefore,

ωZ[x] ∼= Z[x][1]

Now, we also have the triangle (by the same resolution of Z[x] above)

Z[x] [x, ]−−→ Z[x]→ HH·(Z[x])

which naturally maps to the triangle

DZ[x]
[x, ]−−→ DZ[x] → ωZ[x]

The lemma follows from direct calculation. ■

We have therefore shown

Theorem 3.5.3. For pX : X → S a smooth map of discrete schemes of relative dimension n,

there is a natural isomorphism

ωX/S
∼= Ωn

X/S[n]
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CHAPTER 4

D-Modules

4.1 The Category of DX
op-Modules

In this section we define the category of DX
op-modules and identify it with the category

of modules over a monad on QCoh(X) corresponding to the “opposite” of the sheaf DX/S

defined in 3.4.4. Our approach is somewhat similar to the approach taken in section 5 of

the paper D-modules and Crystals [GR14] by Gaitsgory and Rozenblyum. However their

starting point is de Rham stack and the completion of X × X at the diagonal (part of

what they call the infinitesimal groupoid) is defined in terms of the de Rham stack. In our

approach we do the reverse. We view their approach as more stack-theoretic and ours as

more category-theoretic. This justifies our choice to give a self-contained presentation of an

arguably well-known theory. From a pedagogical perspectively, our presentation also has the

benefit of not relying on the theory of stacks and ind-coherent sheaves. However, we do have

to limit ourselves to the finite tor-amplitude situation (roughly the eventually coconnective

situation in the language of [GR14]).

Let pX : X → S be a map between spectral affine schemes which is locally almost of finite

presentation and finite tor-amplitude (we can reduce to the affine case in general). Recall

that we defined DX/S as (if X = SpétR and S = Spét k)

DX/S := Γ∆(Homk(R,R)) ∼= π̃×1 OX ∈ Γ∆(QCoh(X ×S X))

in Definition 3.4.4, it is an algebra viewed as an element of

QCoh(X ×S X) ∼= HomQCoh(S)−ModL(QCoh(X),QCoh(X))

Here the tilde refers to fact that we apply the projection functor Γ∆ after the π×1 . In general,

we use tilde to denote modification of functors which are related to the unmodified version
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by the functors

QCoh(X ′) ΓZ′(QCoh(X ′)).
ΓZ′

iZ′

⊤

relating the category of quasicoherent sheaves supported on a locally almost finitely presented

closed subscheme Z ′ of X ′ with the entire category of quasicoherent sheaves on X ′.

We can identify DX/S with a colimit-preserving QCoh(S)-linear endofunctor of QCoh(X).

The “opposite” of DX/S corresponds to the endofunctor which is left-right dual (in the sense

of Section 2.2) to the endofunctor of DX/S. As an element of Γ∆(QCoh(X ×X)), DX/S
op is

the image of DX/S under the automorphism of Γ∆(QCoh(X ×X)), which switches the X’s.

Hence,

DX/S
op ∼= π̃×2 OX ∈ Γ∆(QCoh(X ×S X))

The corresponding endofunctor to DX/S
op is π̃1,∗π̃

×
2 .

We will show in this section that the category of modules over DX/S
op is the colimit (in

PrLSt) of the simplicial diagram

. . .Γ∆(QCoh(X ×X ×X))→→→ Γ∆(QCoh(X ×X))→→ QCoh(X)

where the transition maps are (tilde of) quasicoherent pushforward maps. For example, the

two maps

Γ∆(QCoh(X ×X))→→ QCoh(X)

are simply π̃1,∗ and π̃2,∗.

In Remark 4.1.15, we describe how to arrive at the following description from first principles,

even though this expression for the category of D-modules is well-known (see [GR14] for

instance).

To be more precise, we can consider the simplex category ∆ consisting of objects {[n]}n≥0
where [n] = {0, . . . , n}, and morphisms order-preserving (preserving ≥) maps between them.

We can define a functor

∆op → QCoh(S)−ModL

by sending

[n] 7→ Γ∆QCoh(Xn+1)

and an order preserving map [n]→ [m] to the functor

g̃∗ : Γ∆(QCoh(Xm+1))→ Γ∆(QCoh(Xn+1))

where g : Xm+1 → Xn+1 is defined in the obvious way from the map [n]→ [m]. The category
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which we propose is the category of right DX modules is then the colimit of this functor, for

which we write

colim∆op(Γ∆(QCoh(Xn+1)), ∗)

Let us denote by ∆s the subcategory of ∆ where the morphisms are required to be

injective. By [Lur09] 6.5.3.7, the category ∆s
op is cofinal in ∆op, and hence our colimit above

can be computed over ∆s
op instead, as

colim∆s
op(Γ∆(QCoh(Xn+1)), ∗) (4.1)

The advantage of using ∆s is that for any injective morphism [n] → [m], the transition

functor

g̃∗ : Γ∆(QCoh(Xm+1))→ Γ∆(QCoh(Xn+1))

described above is compact object preserving, by a mild generalization of Theorem 3.1.1.

The proof is identical so we do not repeat it here. Intuitively, when taking the colimit over

∆op, one encounters degeneracy maps of simplices which induce functors such as

δ̃∗ : QCoh(X)→ Γ∆(QCoh(X ×X))

which are not compact object preserving if X is not smooth. This problem disappears when

we use ∆s. We will see the relevance of preserving compact objects shortly.

Let us denote by

FDX
op : QCoh(X)→ colim∆s(Γ∆(QCoh(Xn+1)), ∗)

the inclusion functor into the colimit associated with the object [0] in ∆s. Denote by GDX

its right adjoint.

Recall that the underlying category of a colimit in PrLSt can also be written as a limit

in PrRSt, with the transition functors the right adjoints. This fact is due to Lurie [Lur09],

however we find Lemma 1.3.3 in [Gai12] the most convenient reference. The essence is that

adjunction provides an anti-equivalence of categories between PrLSt and PrRSt. With this in

mind, GDX
op can be written as the projection map

GDX
op : lim

∆s

(Γ∆(QCoh(Xn+1)),×)→ QCoh(X)

where the transition maps are tilde of upper cross functors (the right adjoint of tilde of lower

star) and the limit is taken in PrRSt. We remind the reader that if we are only interested in
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the underlying category of the limit we can also take the limit in Ĉat∞. The functor GDX
op

is also QCoh(S)-linear (see Theorem A.1.6).1

Our aim for the rest of the section is to show that adjunction above is monadic, with the

monad given by2

GDX
opFDX

op ∼= π̃1,∗π̃
×
2
∼= DX/S

op ⊗OX

However, we will need a few preliminary results

Lemma 4.1.1. For m,n ≥ 0, there is a canonical isomorphism

Γ∆(QCoh(Xm+n+1)) ∼= Γ∆(QCoh(Xm+1))⊗QCoh(X) Γ∆(QCoh(Xn+1))

where QCoh(X) acts on the right most copy of X in Γ∆(QCoh(Xm+1)) and the left most

copy of X in Γ∆(QCoh(Xn+1)) via tilde ∗-pullback.

Proof. Because tensor products preserves split-exact sequences (see Appendix A.2 for the

definition of a split-exact sequence), both sides are full subcategories of

QCoh(Xm+n+1) ∼= QCoh(Xm+1)⊗QCoh(X) QCoh(Xn+1)

It suffices to show they have the same objects. Let us denote by U the complement of the

diagonal in Xm+n+1. The category Γ∆(QCoh(Xm+n+1)) can then be characterized as the

subcategory of QCoh(Xm+n+1) which vanish when restricted to U .

Now let V be the complement of the diagonal in Xm+1 and W the complement of the

diagonal in Xn+1. Then, we can express U as a union

U = V ×X Xn+1 ∪Xm+1 ×X W

Therefore, vanishing on U is equivalent to vanishing on V ×X Xn+1 and Xm+1 ×X W .

It is then clear that everything in

Γ∆(QCoh(Xm+1))⊗QCoh(X) Γ∆(QCoh(Xn+1))

vanishes on U . For the reverse, suppose a quasicoherent sheaf F vanishes on U . It then lives

inside Γ∆(QCoh(Xm+1)) ⊗QCoh(X) QCoh(Xn+1) because it vanishes on V ×X Xn+1. Then,

1This limit presentation of the category of right D-modules can be seen to be the category cross quasico-
herent sheaves (see Appendix B) on the Cêch nerve of X → (X/S)dR when the de Rham stack is defined (see
Section 4.6).

2The monadic part is rather straightforward, most of the work is to identify the monad.

50



because it also vanishes on Xm+1 ×X W , it is then inside the kernel of the map

Γ∆(QCoh(Xm+1))⊗QCoh(X) QCoh(Xn+1)→ Γ∆(QCoh(Xm+1))⊗QCoh(X) QCoh(W )

Because tensor product of stable categories preserve split-exact sequences, we see that F is

inside

Γ∆(QCoh(Xm+1))⊗QCoh(X) Γ∆(QCoh(Xn+1))

■

Remark 4.1.2. The previous lemma leads to an interesting observation. The simplicial

diagram

[n] 7→ Γ∆(QCoh(Xn+1))

roughly specifies the data of category internal to QCoh(S)−ModL on the object QCoh(X),

relative to the tensor product of categories. This internal category is the categorical analogue

of the infinitesimal groupoid on X.

We move to the second preliminary result. Recall that we can equip Γ∆(QCoh(X ×X))

with the convolution monoidal structure (Definition 3.4.1). Under this monoidal structure,

QCoh(X) is naturally a left Γ∆(QCoh(X×X)) module. We will give a resolution of QCoh(X)

as a Γ∆(QCoh(X×X)) module. We exhibit this resolution as an augmented simplicial diagram

. . .Γ∆(QCoh(X ×X ×X))→→ Γ∆(QCoh(X ×X))→ QCoh(X) (4.2)

The augmentation map is

π̃1,∗ : Γ∆(QCoh(X ×X))→ QCoh(X)

The two maps

Γ∆(QCoh(X ×X ×X))→→ Γ∆(QCoh(X ×X))

are π̃1,2,∗ and π̃1,3,∗. More generally, all the transition maps preserve the left most copy of

X. We omit writing down the complete specification of this simplicial diagram and trust

that the reader is able to do so if they wish. Importantly, the action of Γ∆(QCoh(X ×X))

is always on the left most copy of X which is preserved. The following proposition shows

that this is indeed a resolution, i.e. that the geometric realization of the simplicial diagram

recovers QCoh(X).

Proposition 4.1.3. There is a natural resolution of QCoh(X) as a left Γ∆(QCoh(X ×X))-
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module category given by

. . .Γ∆(QCoh(X ×X ×X))→→ Γ∆(QCoh(X ×X))→ QCoh(X) (4.3)

where the maps are specified above.

Proof. We apply Lemma 6.1.3.17 from [Lur09]. The augmented simplicial diagram above

arises from a simplicial object

. . .Γ∆(QCoh(X ×X ×X))→→→ Γ∆(QCoh(X ×X))→→ QCoh(X)

by forgetting all the morphisms which do not preserve the left most copy of X. Therefore it

is a colimit diagram in QCoh(S)−ModL. Because the forgetful functor from Γ∆(QCoh(X ×
X))−ModL to QCoh(S)−ModL reflects colimits (because it preserves colimits by Corollary

4.2.3.7 of [Lur17] and is conservative), it is also a colimit diagram in Γ∆(QCoh(X×X))−ModL.

■

The above proposition has an important corollary.

Corollary 4.1.4.

colim∆op(Γ∆(QCoh(Xn+1)), ∗) ∼= QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X) (4.4)

Proof. Using Proposition 4.1.3, we can write the right hand side as

colim∆s
op(QCoh(X)⊗Γ∆(QCoh(X×X)) Γ∆(QCoh(Xn+2))

Using Lemma 4.1.1, we can write Γ∆(QCoh(Xn+2)) as

Γ∆(QCoh(X ×X))⊗QCoh(X) Γ∆(QCoh(Xn+1))

Therefore, the right hand side is isomorphic to

colim∆s
op(Γ∆(QCoh(Xn+1)), ∗)

as desired. ■

Remark 4.1.5. This expression for the category of right D-modules appears as Equation

(4.5) in the proof of Proposition 4.2.5 in [Ber19].
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The adjunction between FDX
op and GDX

op can be described in terms of the isomorphism

above. Because of the isomorphism

QCoh(X) ∼= QCoh(X)⊗Γ∆(QCoh(X×X)) Γ∆(QCoh(X ×X))

The map

π̃1,∗ : Γ∆(QCoh(X ×X))→ QCoh(X)

induces a functor

id⊗ π̃1,∗ : QCoh(X)→ QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)

Tracing through the proof of Corollary 4.1.4, we see this agrees with functor FDX
op , after

identifying the two sides of Corollary 4.1.4. Namely,

FDX
op ∼= id⊗ π̃1,∗ (4.5)

Now, the right adjoint of π̃1,∗,

π̃×1 : QCoh(X)→ Γ∆(QCoh(X ×X))

is also Γ∆(QCoh(X ×X)) linear. Let us spell out the reason in detail as this statement is

important in the following sections.

Proposition 4.1.6.

π̃×1 : QCoh(X)→ Γ∆(QCoh(X ×X))

is Γ∆(QCoh(X ×X)) linear in the natural way coming from the Beck-Chevalley conditions.

Proof. Let’s unwind why this should be a Beck-Chevalley condition. Consider the following

diagram which witnesses part of the the condition that π̃1,∗ is Γ∆(QCoh(X ×X))-linear.

Γ∆(QCoh(X ×X ×X)) Γ∆(QCoh(X ×X))

Γ∆(QCoh(X ×X)) QCoh(X)

π̃12,∗

π̃13,∗ π̃1,∗

π̃1,∗

This diagram is right adjointable in the terminology of [Lur17]. This follows from Theorem

A.1.1 using Theorem A.1.6 and Theorem 3.1.1 together to chasing the diagrams to show that
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the isomorphism comes from the one from the Beck-Chevalley condition. Then we observe

this is what was to be proved. ■

Remark 4.1.7. If we knew that O∆ generates Γ∆(QCoh(X×SX)) we could give an alternative

proof using the fact that Γ∆(QCoh(X ×S X)) is generated by dualizable objects (with the

convolutional product) but we do not know if it is true in our generality.

Hence, we can construct the functor

id⊗ π̃×1 : QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)→ QCoh(X)

Using the unit and counit maps of the adjunction π̃1,∗ ⊣ π̃×1 , we can see that our id⊗ π̃×1 is

right adjoint to FDX
op and hence

GDX
op ∼= id⊗ π̃×1 (4.6)

By examination, or by the involution on

colim∆s
op(Γ∆(QCoh(Xn+1)), ∗)

which reverse the order of the X’s in Xn+1 (for all n), we can also arrive at the isomorphism

(4.4) through a resolution of the left copy of QCoh(X) as a right Γ∆(QCoh(X ×X)) module

(analogously to Proposition 4.1.3) By arriving at the isomorphism this way, we can also

express FDX
op as

FDX
op ∼= π̃2,∗ ⊗ id (4.7)

This expression for FDX
op implies

GDX
op ∼= π̃×2 ⊗ id (4.8)

Finally, we can deliver on our promise

Theorem 4.1.8. The adjunction FDX
op ⊣ GDX

op is monadic and

GDX
opFDX

op ∼= π̃1,∗π̃
×
2 (4.9)

Proof. By Lurie-Barr-Beck (Theorem 4.7.3.5 in [Lur17]), to show the adjunction is monadic

it is enough to show that GDX
op is conservative and colimit-preserving. Because all the
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transition maps used to construct the cosimplicial limit

lim
∆s

(Γ∆(QCoh(Xn+1)),×)

are colimit-preserving, GDX
op is automatically colimit-preserving. To show that GDX

op is

conservative, we need to show that an object

F ∈ lim
∆s

(Γ∆(QCoh(Xn+1)),×)

is zero if the projection of F to QCoh(X) is zero. For this, it is enough to show that the

projection to Γ∆(QCoh(Xn+1)) is zero for any n. But this follows from the fact that [0] is

weakly initial in ∆s.

For the second part of the theorem, let us apply Theorem A.1.1 to X := QCoh(X),

Y := QCoh(X), and V := Γ∆(QCoh(X×X)), with functors π̃×2 : X → V and π̃1,∗ : V → Y .

Then, we have the commutative diagram

QCoh(X) QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)

Γ∆(QCoh(X ×X)) QCoh(X)

1⊗π̃1,∗

π̃×
2 π̃×

2 ⊗1

π̃1,∗

Now the theorem follows from expressions (4.5) and (4.8). ■

Remark 4.1.9. We also have

GDX
opFDX

op ∼= π̃2,∗π̃
×
1 (4.10)

Because of the isomorphism

π̃2,∗π̃
×
1
∼= π̃1,∗π̃

×
2

which can be simply explained by observing there is a symmetry which switches the order of

the two X’s in Γ∆(QCoh(X ×X)).

Remark 4.1.10. The functor FDX
op : QCoh(X)→ QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X) can

also be arrived at via the monoidal functor

δ̃∗ : QCoh(X)→ Γ∆(QCoh(X ×X))
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which by functoriality induces a functor

QCoh(X)⊗QCoh(X) QCoh(X)→ QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)

as desired. The fact that this agrees with the prior definitions can be checked using one of the

resolutions above.3

Remark 4.1.11. We can directly check that Dop
X/S as an algebra agrees with the algebra

structure corresponding to the monad π̃1,∗π̃
×
2 above.

Theorem/Definition 4.1.12. The category of DX/S
op-modules is defined to be the category

of algebras over the monad π̃1,∗π̃
×
2 corresponding to DX/S

op. We have the isomorphisms

DX/S
op−Mod ∼= colim∆s

op(Γ∆(QCoh(Xn+1)), ∗)

DX/S
op−Mod ∼= lim

∆s

(Γ∆(QCoh(Xn+1)),×)

Additionally, we have the isomorphism (where Γ∆(QCoh(X × X)) is equipped with the

convolutional monoidal product)

DX/S
op−Mod ∼= QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)

Also, DX/S
op−Mod satisfies étale descent with respect to X and fpqc/descendable descent

with respect to S.

Proof. All but the last sentence follow directly from Theorem 4.1.8 and Corollary 4.1.4. For

the last part, use the isomorphism

DX/S
op−Mod ∼= lim

∆s

(Γ∆(QCoh(Xn+1)),×)

each of the Γ∆(QCoh(Xn+1)) has étale descent with respect to X (by a variant of Corollary

3.1.4) and all the transition maps base-change correctly (by a variant of Proposition 3.1.6).

The fpqc/descendable descent relative to S follow from fpqc/descendable descent of QCoh

(Proposition 6.2.3.1 in [Lur18]) and the fact that we can write ΓZ(QCoh(X)) as the kernel in

the split-exact sequence

ΓZ(QCoh(X))→ QCoh(X)→ QCoh(U)

where U is the complement of Z in X. ■
3This presentation is the most natural one when thinking of FDX

op as the pushforward map on cross-
quasicoherent sheaves from X to the de Rham stack of X.
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Remark 4.1.13. It is also possible to prove Theorem 4.1.8 by giving an explicit description

of GDX
op as a functor

GDX
op : colim∆s

op(Γ∆(QCoh(Xn+1)), ∗)→ QCoh(X)

To specify such a functor, it suffices to specify a collection of functors

G
(n)
DX

op : Γ∆(QCoh(Xn+1), ∗)→ QCoh(X)

together with compatibility isomorphisms. We call the process of constructing GDX
op from the

G
(n)
DX

op’s assembly. By equation (4.6), we can write GDX
op as the map induced (via colimit

over ∆s
op) by the following map of simplicial diagrams

. . .Γ∆(QCoh(X ×X ×X)) Γ∆(QCoh(X ×X)) QCoh(X)

. . .Γ∆(QCoh(X ×X ×X ×X)) Γ∆(QCoh(X ×X ×X)) Γ∆(QCoh(X ×X))

π̃×
1,2,3 π̃×

1,2 π̃×
1

Therefore, we can compute

G
(n)
DX

op
∼= π̃n+2,∗π̃

×
n̂+2

where

π̃×
n̂+2

: Γ∆(QCoh(Xn+1))→ Γ∆(QCoh(Xn+2))

is defined as tilde upper cross for the projection map πn̂+2 to all but the last component of the

product.

The above remark is generalized by

Theorem 4.1.14. The identity functor

colim∆s
op(Γ∆(QCoh(Xn+1)), ∗)→ lim

∆s

(Γ∆(QCoh(Xm+1),×))

is assembled from the functors

π̃{n+2,...,n+m+2},∗π̃
×
{1,...,n+1} : Γ∆(QCoh(Xn+1))→ Γ∆(QCoh(Xm+1))

where

π̃{n+2,...,n+m+2},∗ : Γ∆(QCoh(Xn+m+2))→ Γ∆(QCoh(Xm+1))
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π̃×{1,...,n+1} : Γ∆(QCoh(Xn+1))→ Γ∆(QCoh(Xn+m+2))

with the obvious transition functors. Therefore, FDX
op is assembled from the functors

F
(n)
DX

op
∼= π̃1̂,∗π̃

×
1

Proof. Analogous to equation (4.5), the inclusion functor

im : Γ∆(QCoh(Xm+1)→ colim∆s
op(Γ∆(QCoh(Xm+1)), ∗)

can be written also as

im ∼= id⊗ π̃1,∗ : QCoh(X)⊗Γ∆(QCoh(X×X)) Γ∆(QCoh(Xm+2))

→ QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)

Hence, its right adjoint is

id⊗ π̃×1 : QCoh(X)⊗Γ∆(QCoh(X×X))QCoh(X)→ QCoh(X)⊗Γ∆(QCoh(X×X))Γ∆(QCoh(Xm+2))

Now, we can resolve the left QCoh(X) in the tensor

QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)

as a right Γ∆(QCoh(X×X)) modules (analogously to Proposition 4.1.3). Using this resolution

the right adjoint of im can be written as the assembly of

(id⊗ π̃×1 ) ◦ (π̃n+1,∗ ⊗ id)

from

Γ∆(QCoh(Xn+2))⊗Γ∆(QCoh(X×X)) QCoh(X)

to

QCoh(X)⊗Γ∆(QCoh(X×X)) Γ∆(QCoh(Xm+2))

By the functoriality of the tensor product, this is also the same as

π̃{n+2,...,n+m+2},∗π̃
×
{1,...,n+1} : Γ∆(QCoh(Xn+1))→ Γ∆(QCoh(Xm+1))

where the transition isomorphisms are obvious. As taking the right adjoint of im yields also

the identity functor in the theorem composed with the projection to the m-th component of
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the limit, we recover the theorem. ■

Remark 4.1.15. Theorem/Definition 4.1.12 shows an equivalence between right D-modules

and costratifications (the name commonly given to the category on the right)

DX
op−Mod ∼= lim

∆
(Γ∆(QCoh(Xn+1)),×)

We describe how to arrive at this equivalence naturally. Suppose M is a right DX module, so

that there is a map

π̃2,∗(π
×
1 (M))→M

By adjunction this is the same as a map

ϕ : π̃×1 M → π̃×2 M

which can also be written as

ϕ : Γ∆(M ⊠ ωX)→ Γ∆(ωX ⊠M)

Being a right DX module includes also higher compatibilities. These include things such as

the commutativity of the following diagram

Γ∆(ωX ⊠ ωX ⊠M) Γ∆(ωX ⊠M ⊠ ωX)

Γ∆(ωX ⊠ ωX ⊠M) Γ∆(M ⊠ ωX ⊠ ωX)

π̃×
2,3(ϕ)

π̃×
1,2(ϕ)

π̃×
1,3(ϕ)

where the left unlabeled map is the identity. All the maps above are also required to be

isomorphisms upon cross pullback to QCoh(X) along the diagonal map. Because upper

cross pullback along the diagonal is conservative (for quasicoherent sheaves supported on the

diagonal) all the above maps are isomorphisms. The above discussion explains the first three

terms of the limit

QCoh(X)→→ Γ∆(QCoh(X ×X))→→→ Γ∆(QCoh(X ×X ×X)) . . .

which we showed was equivalent to the category of right D modules.
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4.2 DX-Modules and Left-Right Switch

In this section we discuss left D-modules and the isomorphism between the category of right

D-modules and left D-modules, which is called the left-right switch.

Let pX : X → S be a map between spectral affine schemes which is locally almost of

finite presentation and finite tor-amplitude (we can reduce to the affine case in general). As

an algebra in Γ∆(QCoh(X ×X)) (with convolutional monoidal product), DX also defines a

monad on QCoh(X). We refer to modules over this monad as DX-modules.

If we think of quasicoherent sheaves on Γ∆(QCoh(X ×X)) as endofunctors on QCoh(X),

then by Proposition 2.2.8, we know that the involution switching the two copies of X is

equivalent to the left-right duality on endofunctors of QCoh(X) (we remind the reader that

QCoh(X) is naturally self-dual). Hence we see that the monad DX is the left-right dual

to DX
op (meaning they are interchanged by duality in the category QCoh(S)−ModL of

QCoh(S)-linear categories)4.

By Corollary A.3.2, we know that left-right duality switches left and right DX-modules.

Namely,

(DX
op−Mod)∨ ∼= DX−Mod

where ∨ denotes duality in QCoh(S)−ModL. Moreover, by Corollary A.3.3 the adjunction

FDX
op ⊣ GDX

op

becomes, under left-right duality, the adjunction

GDX
⊢ FDX

We know from the last section that

Dop
X −Mod ∼= colim∆s

op(Γ∆(QCoh(Xn+1)), ∗)

Applying the 2-functor

HomQCoh(S)( ,QCoh(S))

(the Hom is taken inside QCoh(S)−ModL) to the equation above, we get the isomorphism

DX−Mod ∼= lim
∆s

(Γ∆(QCoh(Xn+1)), ∗)

4see 2.2
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where the transition maps are tilde of quasicoherent pullbacks.5 This is because, by Proposition

2.2.10, Γ∆(QCoh(Xn+1)) is (canonically) self-dual for all n and therefore

HomQCoh(S)(Γ∆(QCoh(Xn+1)),QCoh(S)) ∼= Γ∆(QCoh(Xn+1))

Let’s record our observations in

Theorem 4.2.1. DX , as an algebra in the monoidal category Γ∆(QCoh(X×SX)), corresponds

to the monad π̃1,×π̃
∗
2 and

DX−Mod ∼= lim
∆s

(Γ∆(QCoh(Xn+1)), ∗)

∼= colim∆s
op(Γ∆(QCoh(Xn+1)),×)

∼= HomΓ∆(QCoh(X×X))(QCoh(X),QCoh(X))

Here in the second line the × refers to the fact that the transition functors are cross-

pushforward (left adjoint to upper star). In the last line, we take the convolutional monoidal

structure on Γ∆(QCoh(X ×X)). Also DX−Mod satisfies étale descent with respect to X and

fpqc descent with respect to S.

Proof. DX
op corresponds to the monad π̃2,∗π̃

×
1 by Theorem/Definition 4.1.12. Therefore by

left-right duality, DX corresponds to the monad π̃1,×π̃
∗
2

6, the first isomorphism is already

proven. The second isomorphism comes from the equivalence between colimits and limits in

the form of Lemma 1.3.3 in [Gai12]. For the third isomorphism, we give two proofs.

Proof 1. By the resolution of QCoh(X) as a left Γ∆(QCoh(X ×X)) module category

. . .Γ∆(QCoh(X ×X ×X))→→ Γ∆(QCoh(X ×X))→ QCoh(X)

(see Proposition 4.1.3), one can directly check that

HomΓ∆(QCoh(X×X))(QCoh(X),QCoh(X)) ∼= lim
∆s

(Γ∆(QCoh(Xn+1)), ∗)

analogously to Corollary 4.1.4.

5This limit presentation of the category of left D-modules can be seen to be the category quasicoherent
sheaves on the Cêch nerve of X → (X/S)dR when the de Rham stack is defined (see Section 4.6).

6Tilde lower-cross means the left adjoint of tilde upper-star and is the left-right switch of tilde upper-cross,
see Section 3.3

61



Proof 2.

DX−Mod ∼= HomQCoh(S)(DX
op−Mod,QCoh(S))

∼= HomQCoh(S)(QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X),QCoh(S))

∼= HomΓ∆(QCoh(X×X)(QCoh(X),HomQCoh(S)(QCoh(X),QCoh(S)))

∼= HomΓ∆(QCoh(X×X))(QCoh(X),QCoh(X))

The descent result is proven identically as in Theorem 4.1.12. ■

Remark 4.2.2. The reader is encouraged to compare this result with Remark 1.8.4 in [Ber19]

Remark 4.2.3. We can ask for an explicit description of the functor

FDX
: QCoh(X)→ lim

∆s

(Γ∆(QCoh(Xn+1)), ∗)

as a compatible system of functors

F
(n)
DX

: QCoh(X)→ Γ∆(QCoh(Xn+1), ∗)

In fact, we have

F
(n)
DX

∼= π̃n̂+2,×π̃
∗
n+2

by left-right duality applied to Remark 4.1.13. Here πn̂+2 means projection to all but the

n+ 2-th component.

Additonally, using the isomorphism

DX−Mod ∼= HomΓ∆(QCoh(X×X))(QCoh(X),QCoh(X))

we have the descriptions

FDX
∼= Hom(π̃×1 , id)

GDX
∼= Hom(π̃1,∗, id)

which we can prove using left-right duality, the Proof 2. above, and equations (4.5) and (4.6).

Remark 4.2.4. The limit we gave for the category of DX-modules

lim
∆

(Γ∆(QCoh(Xn+1)), ∗)

can be seen to be the category of quasicoherent crystals on the stratifying site of X. If pX is a

smooth morphism, we can use descent to see that this category is equivalent to the category of
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quasicoherent sheaves on the de Rham stack, via the Čech nerve of the map

X → XdR

In fact, DX-modules are the same as quasicoherent sheaves on XdR in more generality, as we

will show in Section 4.6. In characteristic zero this done in Proposition 3.4.3 in [GR14].

Remark 4.2.5. By expressing the category of DX-modules as the cosimplicial limit above,

we can see that DX−Mod is a symmetric monoidal category.

Now it’s time to discuss the left-right switch. We can construct an explicit functor Q from

DX
op−Mod to DX−Mod as follows. Recall

DX
op−Mod ∼= QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)

and

DX−Mod ∼= HomΓ∆(QCoh(X×X))(QCoh(X),QCoh(X))

Therefore, the functor

Γ∆ ⊗ id : QCoh(X ×X)⊗Γ∆(QCoh(X×X)) QCoh(X)→ QCoh(X)

which can also be written as

Γ∆ ⊗ id : QCoh(X)⊗QCoh(X)⊗Γ∆(QCoh(X×X)) QCoh(X)→ QCoh(X)

is Γ∆(QCoh(X×X))-linear (Γ∆(QCoh(X×X)) acts by convolution on the leftmost QCoh(X))

and therefore induces a functor

Q : DX
op−Mod→ DX−Mod

Since Q is colimit-preserving, Q can be represented by a (DX , DX
op)-bimodule. We

can determine which bimodule it is by calculating GDX
QFDX

op . By chasing through the

definitions and using equation (4.5) and its left-right dual, we can calculate

GDX
QFDX

op ∼= (π̃∗2 ⊗ id) ◦ (id⊗ π̃1,∗)

This has domain

QCoh(X) ∼= QCoh(X)⊗Γ∆(QCoh(X×X)) Γ∆(QCoh(X ×X))
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and codomain

QCoh(X) ∼= Γ∆(QCoh(X ×X))⊗Γ∆(QCoh(X×X)) QCoh(X)

Hence by Theorem A.1.1,

GDX
QFDX

op ∼= π̃1,∗π̃
∗
2

and the relevant (DX , D
op
X ) bimodule is

π̃∗1OX
∼= π̃∗2OX

∼= Γ∆(OX×X) ∼= Γ∆(OX ⊠OX)

in Γ∆(QCoh(X ×S X)).

Remark 4.2.6. Strictly speaking, we have not defined what it means to be a (DX , DX
op)-

bimodule. Γ∆(QCoh(X ×S X)) is a Γ∆(QCoh(X ×S X))-bimodule category, therefore there

is a monad obtained by combining the DX monad on the left with the DX
op monad on the

right. A (DX , DX
op)-bimodule is defined to be a module over that monad. OX is naturally a

DX module. So Γ∆(O ⊠O) has a natural structure of a (DX , DX
op)-bimodule.

Remark 4.2.7. We can also define Q by assembling the functors

Q(m,n) := p̃1,∗p̃
∗
2 : Γ∆(QCoh(Xm+1))→ Γ∆(QCoh(Xn+1))

into the functor

Q : colim∆op
s
(Γ∆(QCoh(Xm+1)), ∗)→ lim

∆s

(Γ∆(QCoh(Xn+1)), ∗)

where p1, p2 are the two projection maps of

Xm+n+2 ∼= Xn+1 ×Xm+1

so that we have the functors

p̃1,∗ : Γ∆(QCoh(Xm+n+2))→ Γ∆(QCoh(Xn+1))

p̃∗2 : Γ∆(QCoh(Xm+1))→ Γ∆(QCoh(Xm+n+2))

One can see gives the same functor as above for instance by computing the associated bimodule.
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Now we would like to construct an inverse to Q. Consider the following functor

R : lim
∆s

(Γ∆(QCoh(Xn+1)), ∗)→ lim
∆s

(Γ∆(QCoh(Xn+1)),×)

which we define by assembling

R(n)(F) := F ⊗OXn+1 ω
⊠n+1
X

This obviously commute with the transition maps by Corollary 3.2.15 because we have thrown

away the degeneracy maps (by restricting to ∆s). We note that R is a colimit-preserving

functor with associated bimodule

Γ∆(ωX ⊠ ωX)

By inspection of the associated bimodules, we have

Proposition 4.2.8. R and Q are self-dual under QCoh(S)−ModL duality (left-right duality).

The left-right switch is the following theorem.

Theorem 4.2.9. R is the inverse functor of Q, and therefore

DX−Mod ∼= DX
op−Mod

Proof. We show that RQ ∼= id, then the result will follow by duality. We will show this by

directly computing RQ using Remark 4.2.7.

Consider RQ as a functor

RQ : colim∆op
s
(Γ∆(QCoh(Xm+1)), ∗)→ lim

∆s

(Γ∆(QCoh(Xn+1)),×)

then we can regard it as assembled from functors

(RQ)(m,n) : Γ∆(QCoh(Xm+1))→ Γ∆(QCoh(Xn+1))

which are defined by

(RQ)(m,n)(F) ∼= ω⊠n+1 ⊗OXn+1 p̃1,∗p̃
∗
2F

where

p̃1,∗ : Γ∆(QCoh(Xm+n+2))→ Γ∆(QCoh(Xn+1))

p̃∗2 : Γ∆(QCoh(Xm+1))→ Γ∆(QCoh(Xm+n+2))
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then the claim follows from

ω⊠n+1 ⊗OXn+1 p̃1,∗p̃
∗
2F ∼= p̃1,∗p̃

×
2 F

together with Theorem 4.1.14. ■

4.3 Pushforward and Pullback of D-Modules

We discuss in this section how to pushforward and pullback D-modules, both left and right.

We take the perspective of defining the functors on the category of D-modules first, and

then subsequently defining the transfer bimodules using those functors. Therefore, transfer

modules take a back-seat in our story, and we approach these functors as for crystals.

Suppose f : X → Y is a map of spectral Deligne-Mumford stacks over a base spectral

affine scheme S, both finite tor-amplitude and locally almost of finite presentation over S.

More general bases can be used because of descent results. Let us define pullback of DX

modules, using the presentation of DX−Mod as a cosimplicial limit. We define the functors

f+,(n) : Γ∆(QCoh(Y n+1))→ Γ∆(QCoh(Xn+1))

by7

f+,(n) := ˜(fn+1)∗

The definition of ˜(fn+1)∗ is as follows. Since Γ∆(QCoh(Y n+1)) is defined with descent, we

can assume first that Y is affine. Then, for any U étale over X and U affine, we can define a

functor from Γ∆(QCoh(Y )n+1) to Γ∆(QCoh(Un+1)) simply by ∗-pullback and taking Γ∆, i.e.

Γ∆((fu)
n+1)∗i∆. By descent, this gives a functor from Γ∆(QCoh(Y )n+1) to Γ∆(QCoh(Xn+1))

which globalizes to a general Y as the functor from Γ∆(QCoh(Y )n+1) to Γ∆(QCoh(Un+1)) is

compatible with étale base-change. These functors are compatible with the transition maps,

so they assemble into the functor

f+ : lim
∆s

(Γ∆(QCoh(Y n+1)), ∗)→ lim
∆s

(Γ∆(QCoh(Xn+1)), ∗)

or equivalently

f+ : DY−Mod→ DX−Mod

Which is what we call pullback of DX modules. The left-right switch also gives a pullback of

7We define the category Γ∆(QCoh(Xn+1)) by defining it étale locally on X with the usual definition (same
with Y ).
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DX
op modules, which we denote by f †.

Now let us assume that X and Y are both qcqs algebraic spaces which are locally almost

of finite presentation and finite tor-amplitude over S. Left-right duality takes the pullback

functor of DX modules to the pushforward of DX
op modules, which we can also easily define

directly. Consider the functors

f
(n)
+ : Γ∆(QCoh(Xn+1))→ Γ∆(QCoh(Y n+1))

defined by

f
(n)
+ := f̃n+1

∗

where f̃n+1
∗ is right adjoint to ˜(fn+1)∗ above. This functor satisfies étale descent on Y (and

therefore this construction works for relative qcqs algebraic spaces too). One can directly

check (for example using a scallop decomposition) that these functors are colimit-preserving.

These assembles into the functor

f+ : colim∆op
s
(Γ∆(QCoh(Xn+1)), ∗)→ colim∆op

s
(Γ∆(QCoh(Y n+1)), ∗)

or equivalently

f+ : DX
op−Mod→ DY

op−Mod

Again, the left-right switch allows us to define a pushforward of DX modules (for a relative

qcqs algebraic space), which we denote by f†.

Now we will define the transfer module to compare with the classical story. For simplicity,

let us assume that pX : X → S and pY : Y → S are both separated to make the descriptions

of the transfer modules easier. As f+ and f+ are guaranteed to be colimit-preserving, these

functors have corresponding transfer modules. The transfer module for f+ and the one for f+

will be the same (up to swapping the order of X and Y ) because they are related by left-right

duality. As in the section on the left-right switch, we find the transfer module by considering

the composition

GDX
f+FDY

which simplifies to (by Remark 4.2.3)

f ∗π̃
(Y×Y )
1,× π̃

(Y×Y ),∗
2

Define

δf : X → X ×S Y
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to be the graph of f . Let us denote by Γf the local cohomology functor on QCoh(X ×S Y )

relative to this subset. Consider the split-exact sequence of presentable stable categories

Γ∆(QCoh(Y × Y ))→ QCoh(Y × Y )→ QCoh(U)

for the closed subset ∆ in Y ×Y , where U is the complement of ∆. We can apply the functor

QCoh(X) ⊗QCoh(Y ) to the above (where QCoh(Y ) acts on the left) to get the split-exact

sequence (see Remark A.2.7)

QCoh(X)⊗QCoh(Y ) Γ∆(QCoh(Y × Y ))→ QCoh(X × Y )→ QCoh(V )

where V is the complement of the graph of f in X × Y . Therefore, we have the result

Lemma 4.3.1.

Γf (QCoh(X ×S Y )) ∼= QCoh(X)⊗QCoh(Y ) Γ∆(QCoh(Y ×S Y ))

where QCoh(Y ) acts on Γ∆(QCoh(Y ×S Y )) via π̃∗1.

With the description of Γf(QCoh(X ×S Y )) above, we have (by comparing their right

adjoints) 8

π̃X×Y
1,×

∼= idQCoh(X) ⊗ π̃
(Y×Y )
1,×

Consider the diagram

X ×S Y Y ×S Y

X Y

f×id

π
(X×Y )
1 π

(Y ×Y )
1

f

Using Theorem A.1.1, we have

f ∗π̃
(Y×Y )
1,× π̃

(Y×Y ),∗
2

∼= π̃
(X×Y )
1,×

˜(f × id)
∗
π̃
(Y×Y ),∗
2

∼= π̃
(X×Y )
1,× π̃

(X×Y ),∗
2

where

π̃
(X×Y )
1,× : Γf (QCoh(X ×S Y ))→ QCoh(X)

8Note here both π̃×
1 ’s are colimit-preserving because their left adjoints are compact object preserving.
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is defined as before (as the left adjoint of π̃
(X×Y ),∗
1 ). Hence the bimodule for the pullback

functor f+ is the one corresponding to the functor

π̃
(X×Y )
1,× π̃

(X×Y ),∗
2

which is (by the left-right duals of Theorem 3.2.13 and Theorem 3.2.7 )

Γf (OX ⊠ ωY )

Hence,

Theorem/Definition 4.3.2. The transfer module DX→Y for f+ (and also f+) is

DX→Y/S := Γf (OX ⊠ ωY ) ∼= π̃X×Y,×
1 OX ∈ Γf (QCoh(X ×S Y ))

Corollary 4.3.3.

DX→Y/S
∼= ˜(f × id)

∗
DY/S

where
˜(f × id)

∗
: Γ∆(QCoh(Y ×S Y ))→ Γf (QCoh(X ×S Y ))

is induced from the pullback functor (f × id)∗.

It is clear that DX→Y/S naturally carries a left DX/S action and a right DY/S action. As

the plus pullback functors compose well, also the transfer modules must compose well.

Theorem 4.3.4.

DX→Z
∼= DX→Y ⋆DY

DY→Z

Remark 4.3.5. The star product is used here to recall that the algebra structure on D is with

respect to the convolution tensor product; but this can just be thought of as a tensor over DY

Remark 4.3.6. Suppose f is a finite tor-amplitude relative qcqs algebraic space morphism,

then one can check directly, for example using transfer modules, that

f† : DX−Mod→ DY−Mod

as a functor

f† : colim∆op
s
(QCoh(Xm+1),×)→ colim∆op

s
(QCoh(Y m+1),×)
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is simply given by assembling

f
(n)
†
∼= f̃n+1

! : QCoh(Xm+1)→ QCoh(Y m+1)

Dually, if f is a finite tor-amplitude morphism,

f † : DY
op−Mod→ DX

op−Mod

as a functor

f † : lim
∆s

(QCoh(Y m+1),×)→ lim
∆s

(QCoh(Xm+1),×)

given simply given by assembling

f †,(n) ∼= f̃n+1,! : QCoh(Y m+1)→ QCoh(Xm+1)

Therefore, if f is a proper and finite tor-amplitude relative qcqs algebraic space morphism,

then f† is left adjoint to f+ (and f † is right adjoint to f+). Here we use the !-functors defined

in Section 3.2. We note that these constructions are made easier because we restricted to ∆s.

Remark 4.3.7. We must warn the reader here that the pullback and pushforward functors

defined above differ from the standard definitions found in the literature by shifts, even when

the notation is the same! For example, if the reader is comparing to the [HTT08] book, the

translation goes as follows for a map f : X → Y between smooth varieties∫
f

∼= f+[dimX − dimY ]

and

f †HTT
∼= f+[dimX − dimY ]

where the left hand side is the in notation of [HTT08].

We finish this section by extending the adjunction in Remark 4.3.6 to all proper morphisms

(not necessarily finite tor-amplitude).

Definition 4.3.8. Let X be a locally almost of finite presentation, finite tor-amplitude

spectral Deligne-Mumford stack over S, a spectral affine scheme. Then the subcategory of

DX/S-modules supported on a closed subset Z is the subcategory of D-modules which vanish

when restricted to the complement open. We denote this subcategory by ΓZ(DX/S−Mod).

Remark 4.3.9. The colimit and limit presentations for the category of D-modules also gives

rise to analogous presentations for the subcategory supported on a closed subset.
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Lemma 4.3.10. Let S be a spectral affine scheme and let Y be an almost of finite presentation,

finite tor-amplitude spectral affine scheme over S. Then, there’s a natural isomorphism

between the functors

Γ∆π
+
1 ,Γ∆π

+
2 : DY/S−Mod→ Γ∆(DY×Y−Mod)

Proof. The functor

δ̃+ : Γ∆(DY×Y−Mod)→ DY/S−Mod

which is left inverse to both functors and is also an equivalence by general simplicial homotopy

theory. To be precise, this is because the functor

lim(QCoh(Y )→→ Γ∆(QCoh(Y × Y ))→→→ . . .)→ Γ∆(DY×Y−Mod)

given by the combinatorial subdivision of Example 2.5 in [BR16] (this is just the functor

restricting to odd cells and morphisms which preserve “pairs” of Y ’s) is an equivalence by

Theorem 2.1 in [BR16]. And the functor δ̃+ is inverse to isomorphism. ■

Theorem 4.3.11. Let S be a spectral affine scheme. Let X and Y be almost of finite

presentation, finite tor-amplitude spectral Deligne-Mumford stacks over S. Suppose g is a

proper morphism from X to Y over S which is a relative qcqs algebraic space. Then, g+ is

left adjoint to g† (left-right switch of g+).

Proof. By descent, we can assume Y is affine and thus X is a qcqs algebraic space. By abuse

of notation, let us denote by g× the right adjoint to g+, which can be described as follows.

Express the category of DX/S
op and DY/S

op modules as cosimplicial limits using, i.e.

DX/S
op−Mod ∼= lim

∆s

(Γ∆QCoh(Xn+1),×)

and

DY/S
op−Mod ∼= lim

∆s

(Γ∆QCoh(Y n+1),×)

Then, g× is the functor assembled from the functors

g̃n+1,×

which is the right adjoint to g̃n+1
∗ above.

Now note that the map g : X → Y is the composition of δg : X → X ×S Y and

πX×Y
2 : X ×S Y → Y . Hence, the functor g× can be written as the composition δ×g π

X×Y,×
2 .

Note that this composition is unaffected by adding Γδg(X) in the middle (δg is a closed
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immersion as Y is affine), where

Γδg(X) : DX×SY/S−Mod→ Γδg(X)(DX×SY/S−Mod)

Consider the composition Γδg(X)π
X×Y,×
2 . By Theorem 3.2.16, there is an isomorphism

Γδg(X)π
X×Y,×
2

∼= Γδg(X)π
X×Y,†
2

using the limit presentation of the category of right D-modules and Remark 4.3.6.

Hence we have

g× ∼= δ×g Γδg(X)π
X×Y,†
2

∼= δ×g Γδg(X)(g × id)†πY×Y,†
2

or alternatively

g× ∼= δ̃g
× ˜(g × id)†π̃Y×Y,†

2

where we restrict to the subcategories Γδg(DX×Y
op−Mod) and Γ∆(DY×Y

op−Mod).

Now by Lemma 4.3.10, there’s a natural isomorphism between the functors π̃Y×Y,†
2 and

π̃Y×Y,†
1 Therefore,

g× ∼= δ̃g
× ˜(g × id)†π̃Y×Y,†

1

We can simplify this as desired

g× ∼= δ̃g
×
π̃X×Y,†
1 g† ∼= δ̃g

×
π̃X×Y,×
1 g† ∼= g†

where again we use Theorem 3.2.16. ■

Remark 4.3.12. Let S be a spectral affine scheme and X and Y be almost of finite presenta-

tion, finite tor-amplitude spectral Deligne-Mumford stacks over S. Suppose g is a morphism

from X to Y over S which is a relative qcqs algebraic space and Λ a closed subset of |X| which
is proper over Y (as a closed substack). Then, g+iΛ is left adjoint to ΓΛg

† where iΛ ⊣ ΓΛ are

the inclusion and projection functors for the subcategory of D-modules on X supported on Λ

(these are the modules which vanish when restricted to the complement open).

4.4 Kashiwara’s Equivalence

In this section, we prove a version of Kashiwara’s equivalence which implies the statement

that for any closed immersion of a singular variety into a smooth variety, z : Z → X, the

category of DZ-modules is equivalent to the subcategory of DX-modules supported on Z.

This classical statement is often used to define the category of D-modules on a singular
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variety.

Theorem 4.4.1. Let X be a spectral affine scheme which is almost of finite presentation

and finite tor-amplitude over a spectral affine scheme S. Suppose z : Z → X be an almost of

finite presentation, finite tor-amplitude closed immersion. Then, the D-module pushforward

functor

z+ : DZ/S
op−Mod→ DX/S

op−Mod

is fully faithful.

Proof. Because z+ is left adjoint to z† by Theorem 4.3.11, it suffices to show that the natural

transformation idDZ/S
op−Mod → z†z+ is an isomorphism. Since DZ/S

op−Mod is generated by

DZ/S
op and the forgetful functor GDZ/S

op is conservative, we can reduce to showing

GDZ
opFDZ

op → GDZ
opz†z+FDZ

op

is an isomorphism.

Because of the commutative diagram

QCoh(Z) QCoh(X)

DZ
op−Mod DX

op−Mod

z∗

FDZ
op FDX

op

z+

we have the isomorphisms

GDZ
opz†z+FDZ

op ∼= z†GDX
opFDX

opz∗ ∼= z†π̃X×X
1,∗ π̃X×X,×

2 z∗

By base-changing the split-exact sequence

Γ∆(QCoh(X ×X))→ QCoh(X)→ QCoh(U) (4.11)

where U is the complement of the diagonal, we can show

Γ∆Z
(QCoh(X × Z)) ∼= Γ∆X

(QCoh(X ×X))⊗QCoh(X) QCoh(Z)
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Looking at the diagram

QCoh(Z) QCoh(X)

Γ∆Z
QCoh(X × Z) Γ∆X

(QCoh(X ×X))

z∗

π̃
(X×Z),×
2

π̃×
2

ĩd×z∗

we see that, since the π̃×2 on the left is the base-change of the π̃×2 on the right (by comparing

their left adjoints), this diagram commutes by Theorem A.1.1. Hence

π̃×2 z̃∗
∼= ˜(id× z)∗π̃

(X×Z),×
2

On the other side, we have the analogous commutative diagram (using the fact that z is a

finite tor-amplitude map so that z̃+ preserves colimits)

Γ∆X
QCoh(X ×X) Γ∆Z

(QCoh(Z ×X))

ΓZ(QCoh(X)) QCoh(Z)

˜(z×id)
×

π̃1,∗ π̃
(Z×X)
1,∗

z̃×

By Theorem A.1.1, we have

z×π̃1,∗ ∼= π̃
(Z×X)
1,∗

˜(z × id)
×

Hence

z×π̃1,∗π̃
×
2 z∗
∼= π̃

(Z×X)
1,∗

˜(z × id)
× ˜(id× z)∗π̃

(X×Z),×
2

One can check that the natural map above

GDZ
opFDZ

op → GDZ
op z̃†z̃+FDZ

op

is the same as the natural map

π̃
(Z×X)
1,∗

˜(id× z)∗
˜(z × id)

×
π̃
(X×Z),×
2 → π̃

(Z×X)
1,∗

˜(z × id)
× ˜(id× z)∗π̃

(X×Z),×
2
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coming from adjunction. Now consider the diagram

Γ∆Z
QCoh(X × Z) Γ∆Z

(QCoh(Z × Z))

Γ∆Z
(QCoh(X ×X)) Γ∆Z

(QCoh(Z ×X))

˜(z×id)
×

˜(id×z)∗ ˜(id×z)∗

˜(z×id)
×

Using the fact that Z is a closed immersion, we can show that set-theoretically

(Z ×X) ∩ (X × Z) = (Z × Z)

inside X ×X. Therefore, we have the isomorphism of categories

Γ∆Z
QCoh(Z × Z) ∼= Γ∆Z

QCoh(X × Z)⊗Γ∆Z
QCoh(X×X) Γ∆Z

QCoh(Z ×X)

(where the action is via pullback not convolution). Now the isomorphism

˜(z × id)
× ˜(id× z)∗

∼= ˜(id× z)∗
˜(z × id)

×

follows from the the diagram above via Theorem A.1.1.

■

Remark 4.4.2. The proof of Theorem 4.4.1 above also shows the following. Let y : Y → X

be a finite tor-amplitude morphism of spectral qcqs algebraic spaces which are almost of

finite presentation and finite tor-amplitude over a spectral affine scheme S. Suppose |Z| is
a co-compact closed subset of Y such that the reduced closed subspace mapping to X is a

universal homeomorphism composed with a closed immersion. Then

ỹ+ : ΓZ(DY/S
op−Mod)→ DX/S

op−Mod

is fully faithful.

Remark 4.4.2 allows us to immediately extend Theorem 4.4.1.

Theorem 4.4.3. Let X be a spectral affine scheme which is almost of finite presentation

and finite tor-amplitude over a spectral affine scheme S. Suppose z : Z → X be an almost of

finite presentation, closed immersion such that Z is finite tor-amplitude over S. Then, the
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D-module pushforward functor

z+ : DZ/S
op−Mod→ DX/S

op−Mod

is fully faithful.

Proof. Let s be the closed immersion Z → Z ×S X. Then z+ ∼= π̃Z×X
2,+ s̃+ where

s̃+ : DZ/S−Mod→ Γs(Z)(DZ×X/S−Mod)

Remark 4.4.2 implies that

π̃Z×X
2,+ : ΓZ(DZ×X/S

op−Mod)→ ΓZ(DX/S−Mod)

is fully faithful. Thus, it suffices to show that s̃+ is fully faithful. As π̃Z×X
1,+ is also fully

faithful by Remark 4.4.2, it suffices to show π̃Z×X
1,+ s̃+ is fully faithful. But this is the identity

morphism. ■

Remark 4.4.4. The above proof shows that Remark 4.4.2 holds without assuming y is finite

tor-amplitude.

Theorem 4.4.5 (Kashiwara’s Equivalence). Let X be a spectral affine scheme which is almost

of finite presentation and finite tor-amplitude over a spectral affine scheme S and z : Z → X

be an almost of finite presentation closed immersion such that Z is finite tor-amplitude over

S. Assume the pullback

z̃∗ : ΓZ(QCoh(X))→ QCoh(Z)

is conservative. Then,

z̃† : DZ−Mod→ ΓZ(DX−Mod)

is an equivalence of categories. The analogous statement for right D-modules is also true

either by left-right switch or left-right duality.

Proof. By the left-right switch of Theorem 4.4.3, z̃† is fully faithful. It suffices to show it is

essentially surjective. As z̃† is colimit preserving, if it were not essentially surjective, there

would exist a nonzero object F ∈ ΓZ(DX−Mod) which receives no map from any z̃†G, for
G ∈ DZ−Mod. However, by adjunction this would show that z+(F) ∼= 0 and thus because

the forgetful functor from D-modules to quasicoherent sheaves is conservative, F ∼= 0. ■

Remark 4.4.6. If X is truncated, the conservativeness assumption is automatic. If X

is not truncated, the inclusion z̃+ can fail to be an equivalence. One such example is

X = S = SpecQ[t] where t is in homological degree 2 and Z = SpecQ.
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Remark 4.4.7. Kashiwara’s equivalence globalizes to general S and X a relative locally

almost of finite presentation finite tor-amplitude spectral Deligne-Mumford stack over S.

Remark 4.4.8. In the case that X = S = SpecR for R a discrete ring, the ring of differential

operators on Z = SpecR/I (relative to X) is simply DZ/X = HomR(R/I,R/I) (if R/I is a

perfect R module). Theorem 4.4.5 then follows from derived Morita theory since R/I is a

compact generator of the category of I-nilpotent R modules (In the sense of Theorem 7.1.1.6

of [Lur18]).

4.5 Fppf Descent of D-modules on Truncated Schemes

In this section, we deduce descent of the category of D-modules with respect to the fppf

topology for truncated derived schemes.

We start with a general proposition which shows that the limit presentation of D-modules

on X is indeed the limit obtained from descent along the forgetful functor in the opposite

category of symmetric monoidal presentable stable categories.

Proposition 4.5.1. Let pX : X → S be almost of finite presentation and finite tor-amplitude

map of spectral affine schemes. Then,

QCoh(X)⊗DX/S−Mod QCoh(X) ∼= Γ∆(QCoh(X ×S X))

where we use the usual symmetric monoidal structure on left D-modules in the left hand side

and the symmetric monoidal structure on the right is induced from QCoh(X ×S X) (not the

convolution one).

Proof. The proof of 4.3.10 shows that there’s an isomorphism between DX−Mod and

Γ∆(DX×X−Mod) which is induced by the adjunction δ̃† ⊣ δ̃+. Now we know that

DX×X/S−Mod ∼= DX/S−Mod⊗S DX/S−Mod

for example using the fact that DX−Mod can be written as a colimit in PrL. Hence there’s a

split-exact sequence in DX×X/S−Mod-module categories

DX/S−Mod
δ̃†−→ DX/S−Mod⊗QCoh(S) DX/S−Mod

u+

−→ DU/S−Mod (4.12)

where U is the complement of the diagonal in X ×S X. This sequence corresponds to the

idempotent algebra OU in DX×X/S−Mod.
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We have (for general reasons)

QCoh(X)⊗DX/S−Mod QCoh(X) ∼= QCoh(X ×X)⊗DX×X/S−Mod DX/S−Mod

Therefore, equation (4.12) base-changes to give a split-exact sequence

QCoh(X)⊗DX/S−ModQCoh(X)→ QCoh(X×X)→ QCoh(X×X)⊗DX×X/S−ModDU/S−Mod

corresponding to the idempotent algebraOU ∈ QCoh(X×X). From this the claim follows. ■

The following proposition will be instrumental for showing fppf descent.

Proposition 4.5.2. Let S be a spectral affine scheme and X, Y , and T be qcqs derived

algebraic spaces which are locally almost of finite presentation and finite tor-amplitude over

S. Suppose OY generates Γ∆(QCoh(Y ×S Y )).9 Suppose g : T → Y is a proper morphism

over S and f : X → Y a morphism over S. Then, the diagram below commutes (where g′ is

the base-change of g and f ′ is the base-change of f)

DT/S−Mod DY/S−Mod

DT×Y X/S−Mod DX/S−Mod

g†

(f ′)+ f+

(g′)†

in the sense that the natural map

(g′)†(f
′)+ → (g′)†(f

′)+g+g† ∼= (g′)†(g
′)+f+g† → f+g†

is an isomorphism (this is an example of a Beck-Chevalley condition).

Proof. WLOG we can assume X and Y are affine. By Theorem A.1.1, this would follow if

we can show that the natural map

DT/S−Mod⊗DY/S−Mod DX/S−Mod→ DT×Y X/S−Mod

is an isomorphism–since we can immediately see that

g+ ⊗ id : DY/S−Mod⊗DY/S−Mod DX/S−Mod→ DT/S−Mod⊗DY/S−Mod DX/S−Mod

identifies with the functor (g′)+. Therefore as we are in the proper setting, by Theorem

9We do not know if this ever fails (see Remark 4.1.7).
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4.3.11 the D-module pushforward is left adjoint to pullback and this is preserved under the

tensoring.

To see the equivalence of categories, we expand out both DT/S−Mod and DX/S−Mod

using the limit presentations and note that they are in fact limits of DY/S−Mod module

categories. Because all the functors in the limit presentation of D-modules have continuous

left adjoints which are also DY/S−Mod-linear, we can commute the limit with the tensor.

Thus we can compute

DT/S−Mod⊗DY/S−Mod DX/S−Mod ∼= lim
[n]∈∆s

(ΓTQCoh(T n+1)⊗DY/S−Mod ΓXQCoh(Xn+1))

where the products are over S implicitly. Proposition 4.5.1 then shows that

DT/S−Mod⊗DY/S−Mod DX/S−Mod ∼= ΓX×Y T (DX×ST−Mod)

To finish, we need to apply Kashiwara’s Equivalence, Theorem 4.4.5, to the inclusion

X ×Y T → X ×S Y . To do this, we need to verify the hypothesis that the pullback is

conservative on the subcategory supported on X ×Y T .

The above inclusion is the base-change of the diagonal map Y → Y ×S Y along the

map X ×S T → Y ×S Y , therefore our assumption implies the structure sheaf of X ×Y T

generates the subcategory of QCoh(X ×S T ) supported on it. This then shows that pullback

is conservative on the subcategory (because ΓX×Y TOX×ST is generated by OX×Y T ). ■

Theorem 4.5.3. Let S be a truncated spectral affine scheme, then the assignment X 7→
DX/S−Mod is a sheaf on the site of derived affine schemes over S which are almost of finite

presentation and finite tor-amplitude with respect to the topology generated by étale covers

and finite locally free surjections.

Proof. Étale descent is part of Theorem 4.2.1. Suppose f : T → X is finite locally free. We

wish to show that

DX−Mod→ lim
∆

(D
T

(n)
X
−Mod)

is an isomorphism, where the transition maps are D-module pullback (+-pullback) and T
(n)
X

is the n-fold (derived) cartesian product of T over X. We will apply Corollary 4.7.5.3 of

[Lur17]. We need to check three conditions

1. DX−Mod admits geometric realizations of f+-split simplicial objects and those geo-

metric realizations are preserved by f+.
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2. For every morphism [m]→ [n] in ∆+, the diagram

D
T

(m)
X
−Mod D

T
(m+1)
X
−Mod

D
T

(n)
X
−Mod D

T
(n+1)
X
−Mod

d0

d0

is left-adjointable (see [Lur17] 4.7.4.13) where d0 : [N ] → [N + 1] denotes the map

which sends k to k + 1 for k ∈ [N ].

3. f+ is conservative.

(1) and (3) are automatic. (2) is a direct application of Proposition 4.5.2 together with

Lemma 2.1.3 (which shows the requirement that the diagonal generates the subcategory of

quasicoherent sheaves supported on the diagonal holds in the truncated setting). ■

Corollary 4.5.4. Suppose S is an underived Noetherian scheme, then the category of

D-modules (relative to S) on finite-type, finite tor-amplitude S-schemes satisfies fppf-descent.

Proof. Follows Theorem 4.5.3 above together with [Sta18] Lemma 0DET. ■

4.6 Comparison with the De Rham Stack for Truncated

Noetherian Schemes

In this section, we discuss the relationship between D-modules as defined in the previous

sections and the more classical story of quasicoherent sheaves on the de Rham stack. The

latter is the same thing as quasi-coherent crystals on the (big) infinitesimal site. Over

characteristic zero, all the results below appear in [GR14].

Suppose S is a truncated Noetherian spectral affine scheme. Let us denote by AFF ft
/S

the category of all finite-type truncated spectral affine schemes over S (as always we work

in the affine setting and globalization follows from descent properties). For any finite-type

morphism X → Y in AFF ft
/S, we can define

Definition 4.6.1. The relative de Rham stack (X/Y )dR is the presheaf on AFF ft
/S defined by

(X/Y )dR(U) := Hom(Ured, X)×Hom(Ured,Y ) Hom(U, Y )

where Ured is the reduced subscheme U and the Hom’s are computed in AFF ft
/S.
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In other words, it is the presheaf of maps from U to Y such that on Ured the map lifts

to X. This presheaf is in fact a sheaf on the Zariski (or étale) topology. A reminder to the

reader that we use the terms presheaf/sheaf to mean presheaf/sheaf of spaces, in the sense

of [Lur09]. The de Rham stack relative to S is also the shriek pushforward (left adjoint to

pullback) of the relative de Rham stack as a sheaf on AFF ft
/Y to AFF ft

/S.

The (contravariant) functor taking an affine scheme to its category of quasicoherent sheaves

QCoh : AFF ft
/S

op → Ĉat∞

is a sheaf of categories on AFF ft
/S, with respect to the Zariski, étale, or descendable topology.

Hence, we can define QCoh for any presheaf on AFF ft
/S by

QCoh(F) := Hom(F , QCoh)

where the Hom is taken in the category of presheaves of categories on AFF/S. Alternatively,

we can think of this as defining QCoh via Kan extension. We note that this agrees with the

definition given in [Sta18] Tag 0H0H, as the difference in the choice of sites does not matter

here. As (X/Y )dR is shriek extended from AFF ft
/Y , QCoh((X/Y )dR) is independent of S.

Lemma 4.6.2. For any truncated Noetherian E∞-ring R, the map

R→ Rred

is descendable.

Proof. The map R→ π0(R) is descendable by [Mat16] Proposition 3.32. The map πo(R)→
Rred is descendable by [Mat16] Proposition 3.33. Hence the composition is descendable by

[Mat16] Proposition 3.23. ■

Lemma 4.6.3. Suppose R is a truncated E∞-ring, then the Koszul quotient of R by a sequence

tN1 , . . . , t
N
n in π0(R) admits the structure of an E∞ ring over R for all sufficiently large N .

Proof. Suppose R is k-truncated, then the Koszul quotients will be uniformly k+n-truncated.

For k + n-truncated connective R-modules, the data of a Ek+n+2-algebra lifts uniquely to a

E∞-algebra by [Lur17] Corollary 5.1.1.7 (because of connectivity estimates of the Em-operad).

Now the claim follows because by [Bur22] Theorem 5.2, the Koszul quotients will admit

R-linear Ek+n+2-structures for all N ≫ 0. ■

The main input to the comparison is the fact that the map from X to the de Rham stack

(X/Y )♯dR is surjective in the descendable topology, where (X/Y )♯dR is the sheafification of

(X/Y )dR in the descendable topology.
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Lemma 4.6.4.

X → (X/Y )♯dR

is an effective epimorphism.

Proof. For any representable object U ∈ AFF ft
/S and map f : Uto(X/Y )dR in the presheaf

category, the pullback of the canonical map X → (X/Y )dR along f

U ×(X/Y )dR X → U

is a covering sieve (with respect to the descendable topology) in the sense of [KS06] Definition

16.1.13 because of the commutative diagram

Ured U

X (X/Y )dR

(where the vertical maps are induced by f) and Lemma 4.6.2.

Therefore, the colimit of the Čech nerve (in the presheaf category) of the map

U ×(X/Y )dR X → U

is a subobject of U which is a covering sieve for the descendable topology in the sense of

[Lur09]. Therefore, the colimit becomes U after sheafification.

Now the Čech nerve of the map X → (X/Y )dR is the colimit of the Čech nerves over

U , with the colimit taken over all maps f . This is because any presheaf is a colimit of

representables and colimits are universal in the presheaf category.

Thus the sheafification of the colimit of the Čech nerve of X → (X/Y )dR can be computed

as the colimit of the sheafifications of the Čech nerves over U . But this is just (X/Y )sharpdR as

sheafification is colimit-preserving. Note that this proof is shows the general fact that local

epimorphisms of presheaves in the sense of [KS06] Definition 16.1.13 become epimorphisms

of sheaves upon sheafification. ■

The following proposition is well known in the discrete setting, where the (X/Y )dR is the

sheaf corresponding to the formal scheme of Y completed at X when X → Y is a closed

immersion.
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Proposition 4.6.5. Suppose X → Y is a closed immersion between truncated Noetherian

spectral affine schemes, then

QCoh((X/Y )dR) ∼= ΓX(QCoh(Y ))

Proof. Note first that both sides only depend on the reduced part of X, so we may choose X

to be finite tor-amplitude over Y (by taking a large enough Koszul quotient using Lemma

4.6.3).

Let’s work in the site AFF ft
/Y with the descendable topology. Then the map X → (X/Y )♯dR

is an effective epimorphism by Lemma 4.6.4 above. Hence the left hand side can be written

as

lim(QCoh(X)→→ QCoh(X ×Y X)→→→ . . .)

from a direct computation. But the right hand side can also be written in this form by

Theorem 4.4.5. ■

Remark 4.6.6. There is an analogous statement where the left-hand side is replaced by

quasicoherent sheaves defined using cross-descent (see Appendix B) using Theorem 4.4.5.

However, we caution that the pushforward functor from (X/Y )dR to Y which corresponds

to the complete incarnation when we work with ∗-quasicoherent sheaves instead corresponds

to the torsion incarnation. The theorem below also has an analogue. The two versions are

related by left-right duality.

Theorem 4.6.7. Suppose X → Y is a finite tor-amplitude map in AFF ft
/S, then there is a

natural isomorphism

DX/Y−Mod ∼= QCoh((X/Y )dR)

Proof. X → (X/Y )♯dR is an effective epimorphism in the descendable topology by Lemma

4.6.4. Therefore,

QCoh((X/Y )dR) = lim(QCoh(X)→→ QCoh((X/X ×Y X)dR)
→→→ . . .)

From there the claim follows from Proposition 4.6.5 above and the limit presentation for the

category of D-modules. ■

4.7 Relation with Hochschild Cohomology

In this section, we discuss a decategorification of Corollary 4.1.4 in the case X = SpecA is a

smooth affine variety over S = Spec k, which we assume to be affine and discrete (concentrated
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in π0). Namely, we will show a result of the form

DA
∼= A⊗H A

for H being the E2 ring of Hochschild cohomology of A, where DA is the ring of differential

operators on SpecA. Corollary 4.1.4 has been known since the work of Beraldo, in [Ber21]

and [Ber19], and we are heavily influenced by those works. We will also allow A to be

noncommutative in this section, as it will not affect our proofs and may even be helpful

psychologically.

Suppose A is an E1 ring over a commutative ring spectrum k (which no longer needs to

be concentrated in π0), which is compact in the category of A-bimodules, (A⊗ Aop)−Mod.

This is a condition that we have not assumed in the previous sections and is some sort of

generalization of smoothness10 In fact, it is equivalent to A−Mod being a smooth category,

using Definition 4.5 in [Per19]. The Hochschild cohomology of A over k is the E2 ring defined

by

HH·(A/k) := HomEndk(A−Mod )(id, id) (4.13)

where Endk(A−Mod) is the monoidal category of k-linear endomorphisms of A−Mod. Notice

that

Endk(A−Mod) ∼= (A⊗ Aop)−Mod

and therefore we also have

HH·(A/k) ∼= HomA⊗Aop(A,A)

although it is harder to see the E2 structure this way. We establish a convention for the E2

ring HH·(A/k). Using equation (4.13), we call the E1 algebra structure on HH·(A/k) induced

from the monoidal structure of Endk(A−Mod) the horizontal product–µ1, and the E1 algebra

structure induced from composition of morphisms in Endk(A−Mod) the vertical product–µ2.

For

f, g ∈ HH·(A/k)

µ2(f, g) is the composition fg in HomEndk(A−Mod)(id, id) and will be denoted by f above g.

These two E1 structures are compatible and also they are noncanonically isomorphic. In

10In fact the statements about tensor products of algebras in this section also hold in the case where A is
commutative and lci over k by [BILP22]
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particular we have the following coherence diagram

HH·(A/k)⊗HH·(A/k)
⊗ ⊗

HH·(A/k)⊗HH·(A/k)
HH·(A/k)⊗ HH·(A/k)

HH·(A/k)
⊗

HH·(A/k)
HH·(A/k)

µ2⊗µ2

µ1
⊗
µ1

µ1

µ2

Let us explain the notation. The vertical tensor product mean the same as horizontal tensor,

but the author finds it clearer to reserve writing the tensor product vertically when applying

the vertical product. The upper left term is just the tensor product of four copies of HH·(A/k),

denoted as a square for the reasons we just mentioned. Normally, for a E1 ring, we can define

left and right modules over it. Because HH·(A/k) has vertical multiplication, we can also

define up and down modules over it similarly. We denote the category of modules of left

modules over HH·(A/k) by

HH·(A/k)left−Mod

and similarly for right, up, and down modules. Each of these is a monoidal category where

the monoidal structure is taken in an orthogonal direction. In particular left modules (the

module is to the right of the ring) have downwards monoidal products, etc.

Let us think of the multiplication in A, µA as being horizontal, so that we can form left

modules, right modules, and bimodules over A naturally. Then A⊗ Aop−Mod, the category

of bimodules over A, is naturally a monoidal category by tensoring over A (we think of

the monoidal product as happening in the horizontal direction. Let Γ∆((A ⊗ Aop)−Mod)

denote the subcategory of (A⊗k A
op)−Mod generated under colimits by A. We can think

of HH·(A/k) as a one object monoidal category where the endomorphisms of that object is

HH·(A/k) with µ2 product (and µ1 is responsible for the monoidal structure). Then this

monoidal category naturally maps into Γ∆((A⊗Aop)−Mod) as a map of monoidal categories,

basically by definition, where the object maps to A. This induces a map of monoidal categories

Φ : HH·(A/k)down−Mod→ Γ∆(A⊗ Aop−Mod)

which is an isomorphism because A is a compact generator whose ring of endomorphisms is

HH·(A/k) with µ2 product.
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For a down HH·(A/k) module M , Φ sends M to the A⊗ Aop module given by

M
⊗
A
HH·(A/k)

where the A on the bottom has commutating up HH·(A/k) action and left and right A

actions, i.e. a left A ⊗ Aop action. This gives an A ⊗ Aop-module structure on the tensor

product. (The vertical tensor is a normal tensor product over the E1 ring HH·(A/k) with

the µ2 product). We can think of the monoidal-ness of the functor Φ as follows. First note A

is a up HH·(A/k) algebra, because the evaluation map

A⊗ HomA⊗Aop(A,A)→ A

(which we think of as an up action because composition of functions in HH·A/k is visualized

upwards) is compatible with the horizontal monoidal product–tensoring over A. Therefore,

we have coherence diagrams such as

HH·(A/k)⊗HH·(A/k)
⊗ ⊗
A⊗A

A⊗ A

HH·(A/k)
⊗
A

A

µ1
⊗
µA

µA

where the horizontal maps are the structure maps of A as a up HH·(A/k) module. Now,

suppose M and N are both down HH·(A/k) modules. We can consider the tensor product

Φ(M)⊗A Φ(n) ∼=
(
M
⊗
A
HH·(A/k)

)
⊗A

(
N
⊗
A
HH·(A/k)

)
We rewrite this as(

M
⊗
A
HH·(A/k)

)
⊗(

HH·(A/k)
⊗
A

HH·(A/k)

) (
N
⊗
A
HH·(A/k)

)
We can instead evaluate this tensor horizontally first to get(

M⊗HH·N
⊗
A

HH·(A/k)

)
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which captures the fact that the functor Φ is monoidal. We note that the horizontal actions

of HH·(A/k) on M and N are coming from the monoidal structure on HH·(A/k)down−Mod.

In the reverse direction, for an A ⊗ Aop-module N , the down HH·(A/k) module corre-

sponding to N is

Ψ(N) := HomA⊗Aop(A,N)

as this is the right adjoint of Φ. Ψ is also monoidal since A is the unit of the monoidal

structure on A⊗ Aop−Mod. Pictorially, we can write an element of Ψ(N) as a vertical map

N

A

and the monoidal structure of Ψ is seen by tensoring horizontally over A N

A

⊗
 N ′

A

→


N ⊗A N ′

A

 (4.14)

In fact there is also a left and right HH·(A/k) naturally on Ψ(N), because we can tensor

(over A) an A-bimodule map from A to N on the left or right with a A-bimodule map from A

to A. The left, down and right actions are compatible, in the sense that any of these actions

can induce the others by rotating the E1 structure on HH·(A/k), assuming that we never

cross the direction which makes the action into an up action. We can represent these actions

by the following cartoon.

A

A

N

A

A

A

A

A

(4.15)

The fact that the drawn actions are compatible follows from the fact that we can fill in

more copies of HH·(A/k) in the lower left and lower right corners, whose actions on their

neighboring HH·(A/k)’s is compatible with the actions on Homk(A,N) indicated in the

diagram. This makes is clear that the map in (4.14) is compatible with the actions of
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HH·(A/k).

Inside Γ∆(A⊗ Aop−Mod), there is the natural ring DA which we’ve encountered,

DA := Γ∆(Homk(A,A))

which is here thought of as a ring with horizontal multiplication. DA is sent to a down

HH·A/k algebra by Ψ. To see which, we compute

HomA⊗Aop(A,DA) ∼= HomA⊗Aop(A,Γ∆(Hom(A,A)))

∼= HomA⊗Aop(A,Hom(A,A))

∼= HomA⊗Aop(A,HomA(A⊗ A,A))

where the action of A on A ⊗ A in the last line is on the left multiplication on the left A.

The right A ⊗ Aop action on A ⊗ A is via acting on the left A on the right and the right

A on the left (which is a right Aop action), inducing a left A ⊗ Aop module structure on

HomAop(A⊗ Aop, A). Therefore,

HomA⊗Aop(A,DA) ∼= HomA⊗Aop(A,HomA(A⊗ A,A))

∼= HomA((A⊗ A)⊗A⊗Aop A,A)

∼= HomA(A,A)

∼= Aop

where a direct check shows that the algebra structure on the last line is indeed the opposite

of the algebra structure on A. We would like to figure out the down HH·(A/k) action. But

before we do that, let’s streamline the computation above to just

HomA⊗Aop(A,DA) ∼= HomA⊗Aop(A,Γ∆(Hom(A,A)))

∼= HomA⊗Aop(A,Hom(A,A))

∼= HomA(A⊗A A,A)

∼= HomA(A,A)

∼= Aop

where from line two to three, we think of the isomorphism as the application of a single

“enriched” tensor-hom adjunction with the (k,A) bimodule A, both actions are on the left,

where the left A actions on both sides of the Hom just come along for the ride. Tensor-hom

adjunction in this form is probably well-known, but one can think of the computations above

as justification for this “enriched” tensor-hom adjunction as well. Let us draw a picture of
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this isomorphism.

Homk(A←− A)

A

A A
7→

A

A⊗A A

A

where the left arrow is labeled on both sides to indicate that it is required to be (A,A)-bilinear

whereas the right diagram only requires that the map is left A-linear. From this diagram it

is clear that the left HH·(A/k) action will be the most convenient to work with, because it is

unfazed by the tensor-hom adjunction. Namely, it is simply the action

A

A

A A

A

A

A (4.16)

Our diagram therefore shows the left HH·A/k action, in fact it shows a left HH·A/k algebra

structure. We would like to drag it to a down HH·A/k algebra and describe it. First, let us

start with the standard action of HH·(A/k) on A, namely A as an up HH·(A/k) algebra. We

can visualize it like so
A

A

A

A⊗k A

A A

A A

By writing it this way, we see that indeed there are compatible actions, as in the diagram

(4.15)

A

A

A A

A

A

A A

A

A⊗k A

A A

A

A

A A

Therefore, we can deduce that the action in diagram (4.16) is the standard up HH·(A/k)

algebra A rotated by 90◦ counterclockwise. We visualize HH·(A/k) staying still and the
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module rotating around it. To get to the down HH·(A/k) algebra, we further rotate by 90◦

counterclockwise. Therefore, in total we have

Ψ(DA) ∼= HomA⊗Aop(A,DA) ∼= A180◦ (4.17)

meaning that we drag the standard up HH·(A/k) algebra 180◦ degrees counterclockwise

to obtain a down HH·(A/k) algebra. Note that doing this naturally reverses the order of

multiplication on the ring, making the underlying ring Aop. We note that the order of the

dragging matters, and we do not even get the same underlying module if we drag in the

opposite direction. Using the inverse functor to Ψ, we have

DA
∼=

A180◦
⊗
A

HH·(A/k) (4.18)

We can also define the opposite ring DA
op, and by rotating equation (4.18) by 180◦

clockwise, we can see that

DA
op ∼=

A−180◦
⊗
A

HH·(A/k)

Since in general DA and DA
op are not canonically isomorphic even as A-bimodules, we must

conclude that dragging A as a down HH·(A/k) module counterclockwise by one full rotation

should genuinely yields a different HH·(A/k) module in general.

Denote by A90◦ the left HH·(A/k) algebra and A−90◦ the right HH·(A/k) algebra obtained

by draggin the standard up HH·(A/k) algebra by the corresponding angles. Then, by rotating

the isomorphism (4.18) above by 90◦ clockwise, we get

DA,−90◦ ∼= A−90◦ ⊗HH·(A/k) A90◦

We can categorify the above to get

DA
op−Mod ∼= Aop−Mod⊗HH·(A/k)down−Mod A−Mod

which was indeed what we intended to decategorify.

Remark 4.7.1. Like the collection of E2 rings, the collection of smooth and proper categories

also admits a S1 action. In fact, the action of S1 on smooth proper categories agrees in a

precise sense with the action on their Hochschild cohomology. In this way we see how the

relation with Grothendieck duality arises (recall that by the Grothendieck-Sato formula the

ring of differential operators and its opposite are related by Grothendieck duality).
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CHAPTER 5

Applications

5.1 Universal Homeomorphisms and Relation with

[BZN04]

In this section, we an application of our Kashiwara’s Equivalence for universal homeomor-

phisms and describe how to recover some results of [BZN04] from our work.

Let S be a truncated Noetherian affine scheme and suppose τ : X̃ → X is a universal

homeomorphism (on the classical truncations) of truncated affine schemes which are finite-type

(which implies almost of finite presentation in the Noetherian setting) and finite tor-amplitude

over S. By descent, we can clearly globalize X and S (as universal homeomorphisms are

always affine).

Lemma 5.1.1. Any map of truncated Noetherian E∞-rings which is a h-cover on π0 is

descendable.

Proof. Suppose R→ S is such a map. Then Rred → Sred is descendable by [BS17] Theorem

11.12 and R→ Rred is descendable by the results of [Mat16] (see Lemma 4.6.2). Therefore

the result follows from [Mat16] Proposition 3.23. ■

Theorem 5.1.2. The functor

τ+ : DX−Mod→ DX̃−Mod

is an equivalence of categories.

Proof. This follows from Remark 4.4.4 together with the fact that the quasicoherent pullback

functor τ ∗ is conservative by Lemma 5.1.1 above. ■

Remark 5.1.3. The transfer module of τ− is Γ∆(OX ⊠ ωX̃) and the transfer module of τ+ is

Γ∆(OX̃ ⊠ ωX). Note that we abuse notation to write Γ∆ to mean taking (derived) support
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along graph of the map from X̃ to X (which is topologically the diagonal as X and X̃ are

homeomorphic).

By left-right duality, we also have

Corollary 5.1.4.

z+ : DX̃
op−Mod→ DX

op−Mod

is an equivalence of categories.

To compare our results with those of [BZN04], let us recall their setup. Assuming for

the rest of this section that S = Spec k where k is a field, X and X̃ are Cohen-Macaulay

k-varieties of dimension d, and finally that

H1(Γ∆(M ⊠ ωX̃)) = 0

and

H1(Γ∆(M ⊠ ωX)) = 0

for all M ∈ QCoh(X)[0,0], so that τ is a good cuspidal quotient between good Cohen-Macaulay

varieties in the terminology of loc. cit.

Lemma 5.1.5. In the above situation,

H i(Γ∆(M ⊠ ωX̃)) = 0

and

H i(Γ∆(M ⊠ ωX)) = 0

for all i ̸= 0 and M ∈ QCoh(X)[0,0].

Proof. Without loss of generality, we can assume that X and X̃ are affine. Namely, X =

SpecR and X̃ = Spec R̃. Let π1 : X × X̃ → X be the projection to the first component.

Then, there is an isomorphism (by Theorem 3.2.16)

Γ∆(M ⊠ ωX̃)
∼= π̃×1 M

We can rewrite this as

colimn HomR⊗kR̃
((R⊗k R̃)/In,HomR(R⊗k R̃,M)) ∼= colimnHomR((R⊗k R̃)/In,M)

where I is the kernel of the surjection R ⊗k R̃ → R̃. Hence, we can see that for injective

(discrete) M , Γ∆(M ⊠ ωX̃) is discrete. Using the assumptions, we can then conclude using
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injective resolutions that for all discrete M , Γ∆(M⊠ωX̃) is discrete. The second claim follows

similarly. ■

Theorem 5.1.6 (Theorem 1.2 in [BZN04]). In the above situation, there is a Morita equiva-

lence between the (sheaf of) algebras H0(DX̃) and H0(DX) induced by

H0(DX̃→X)
∼= H0(Γ∆(OX̃ ⊠ ωX))

and

H0(DX̃←X) := H0(Γ∆(OX ⊠ ωX̃))

Proof. Without the H0’s, this is simply Theorem 5.1.2. Hence, it suffices to show all the H0’s

above are redundant, because the objects are already in degree 0 under our assumptions. But

this follows from the Grothendieck-Sato formula (Corollary 3.4.7) and the above lemma. ■
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APPENDIX A

Background in Category Theory

A.1 Tensor Products of Module Categories

In this section we collect some results in category theory which we will use throughout the

document.

We denote by PrLSt the 2-category of presentable stable categories with colimit preserving

functors. By section 4.8.3 of [Lur17], there is a tensor product on PrLSt. Therefore, let V be

a monoidal presentable stable category, X a right V module and Y a left V module (inside

PrLSt). Then, using section 4.4 of [Lur17], we can form the relative tensor product of X and

Y over V , namely,

X ⊗V Y

We record two basic properties of this tensor product here for easy use later

Theorem A.1.1. Suppose we have a functor f : X → V which is right V -linear and

colimit-preserving and g : V → Y which is left V -linear and colimit-preserving. Then, the

following diagram commutes

X ∼= X ⊗V V X ⊗V Y

V Y ∼= V ⊗V Y

1⊗g

f f⊗1

g

Proof. Follows from functoriality of the relative tensor product. ■

Remark A.1.2. We must caution the reader that when we write a functor is V -linear and

colimit-preserving, we mean that it is a map of V module categories as defined above. Being
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V -linear refers to preserving tensoring by objects of V , and does not mean V -enriched for

us.

Remark A.1.3. We can think of the above theorem as a category-theoretic analogue of the

base-change isomorphism in algebraic geometry. Suppose S is a qcqs spectral algebraic space

and X and Y are qcqs spectral algebraic spaces over S. Then we can take V := QCoh(S),

X := QCoh(X), and Y := QCoh(Y ) to recover the usual pull-push isomorphism in algebraic

geometry (here g is pullback and f is pushforward). One can also directly check by commutative

diagrams that the natural isomorphism agrees with the Beck-Chevalley one.

Theorem A.1.4. Suppose f : V →X is right V -linear and colimit-preserving and g : V →
Y is left V -linear and colimit-preserving. Then, the following diagram commutes

V Y ∼= V ⊗V Y

X ∼= X ⊗V V X ⊗V Y

g

f f⊗1

1⊗g

Proof. Follows from functoriality of the relative tensor product. ■

Theorem A.1.5. Suppose f : X → V is right V -linear and colimit-preserving and g : Y →
V is left V -linear and colimit-preserving. Then, the following diagram commutes

X ⊗V Y Y ∼= V ⊗V Y

X ∼= X ⊗V V V

f⊗1

1⊗g g

f

Proof. Follows from functoriality of the relative tensor product. ■

Now let V be a symmetric monoidal compactly generated stable category, such that the

compact objects are the same as the dualizable objects. This will happen whenever V is

the category of quasicoherent sheaves on a qcqs spectral algebraic space by Proposition

6.2.6.2 of [Lur18]. Let us consider the 2-category of presentable stable category X with

a colimit-preserving left action of V where the morphisms are colimit preserving functors

which preserve the V action. We denote this 2-category by V −ModL and we call its objects

V -module categories. In this setting, there are enriched forms of adjoint functor theorems.

95



Theorem A.1.6. Let X and Y be compactly generated V -module categories. Suppose

f : X → Y is a colimit-preserving functor between V -module categories which preserves

compact objects, then the right adjoint g can be upgraded to a colimit-preserving V -linear

functor. (Please note that the assumptions on V in this theorem are stronger than the

beginning of the section, see the previous paragraph)

Proof. See A.3.6 in [MGS21] ■

Remark A.1.7. We can think of the above as a category-theoretic analogue of the projection

formula in algebraic geometry. Suppose S is a qcqs spectral algebraic space and X is a

qcqs spectral algebraic space over S. Then, taking V := QCoh(S), X := QCoh(X), and

Y := QCoh(S) recovers the usual projection formula when f is the pullback functor from

S to X. This is because the projection formula simply says that the pushforward functor is

QCoh(S)-linear.

Theorem A.1.8. Suppose g : X → Y is a colimit-preserving functor between V -module

categories which preserves limits, then the left adjoint f can be upgraded to a V -linear functor.

(Please note that the assumptions on V in this theorem are stronger than the beginning of the

section, see the paragraph before Theorem A.1.6)

Proof. See A.3.6 in [MGS21] ■

A.2 Exact Sequences of Categories

In this section, we record what it means for a sequence of presentable stable categories

to be exact or split-exact. We use [BGT13] as our reference. Note that our definition for

split-exactness differs from theirs. In particular we require the right adjoints to commute

with colimits.

Definition A.2.1 (Definition 5.4 of [BGT13]). Let f : A → B be a fully faithful functor of

presentable stable categories (this implies that f preserves colimits). The Verdier quotient

B/A of B by A is the cofiber of f in the category PrLSt of presentable stable categories.

Definition A.2.2 (Definition 5.8 of [BGT13]). A sequence of presentable stable categories

A → B → C

is exact if the composite is trivial, A → B is fully faithful, and the map B/A → C is an

equivalence.
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Definition A.2.3. An exact sequence of presentable stable categories

A
f−→ B

g−→ C

is split-exact if the are colimit-preserving right adjoints i and j (to f and g respectively) such

that i ◦ f = id and g ◦ j = id.

Remark A.2.4. The reader is warned that this definition differs from that of [BGT13]

Definition 5.18.

Lemma A.2.5. Suppose

A
f−→ B

g−→ C

is a split-exact sequence of presentable stable categories. Let i and j be the right adjoints of f

and g respectively. Then, j is fully faithful and forM∈ B

fiM→M→ jgM

is exact in B.

Proof. g ◦ j = id implies j is fully faithful. Consider the fibre K ofM→ jgM. It is easy

to see that it is in the kernel of g, and hence the image of f . Hence we have K ∼= fiK and

therefore K is the fibre of fiM→ fijgM. Since ij = 0, we conclude K ∼= fiM. ■

In the reverse direction, we have

Lemma A.2.6. Suppose

A
f−→ B

g−→ C (A.1)

is a sequence of presentable stable categories which composes to zero, where f and g are

colimit-preserving. Let i and j be the right adjoints of f and g respectively. If i and j also

preserve colimits and i ◦ f = id and g ◦ j = id and for anyM∈ B, the sequence

fiM→M→ jgM

is exact in B, then the sequence (A.1) is split-exact.

Proof. i ◦ f = id and g ◦ j = id guarantees that f and j are fully-faithful. It remains to check

that

B/A → C

is an equivalence. Suppose

H : B → D
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is a colimit-preserving functor which vanishes on A . Then, using the sequence

fiM→M→ jgM

one can easily check that

H ∼= Hjg

and hence there is a unique functor F : C → D , namely F ∼= Hj, such that H factors as the

projection functor g composed with F . Therefore C is the desired cofibre. ■

We note that in [HSS17], this is taken as definition for a split-exact sequence.

Remark A.2.7. The above lemma is very useful as it provides a purely 2-categorical way to

check if a sequence is split-exact. For example, it implies that tensoring a split-exact sequence

of module categories with another module category gives another split-exact sequence. More

generally, after defining the notion of split-exactness in a purely 2-categorical way using the

above lemma, it will be preserved under 2-functors.

A.3 Dualizability and Monads

In this section, we give sufficent conditions for the category of modules of a colimit preserving

monad is dualizable. Let V be a symmetric monoidal presentable stable category. Let X be

a dualizable category in V −ModL and

T : X →X

be a colimit-preserving V -linear monad on X .

Theorem A.3.1. The functor which takes the pair(X , T ) (of a dualizable V -module and a

colimit preserving monad on it) to the category

T−Mod(X )

is symmetric monoidal.

Proof. As in [RV16] and known in some form since [SS86], colimit preserving monads in

V −ModL are given by 2-functors

mnd→ V −ModL
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There is another 2-category adj, such that 2-functors

adj→ V −ModL

classify adjunctions. Therefore, as V −ModL is a symmetric monoidal 2-category, it induces

a symmetric monoidal product on monads and adjunctions in V −ModL. Now because of the

inclusion

mnd→ adj

there is a natural symmetric monoidal functor which associates to an adjunction a monad

Hom(adj,V −ModL)→ Hom(mnd,V −ModL)

This functor has a lax symmetric monoidal right adjoint

Hom(mnd,V −ModL)→ Hom(adj,V −ModL)

which associates to a monad its category of modules (see also Remark 5.7 in [Hau21]). This

is the functor we wish to show is symmetric monoidal.

It is obvious the functor preserves units. As there is clearly a map⊗
Ti−Mod(Xi)→

(⊗
Ti

)
−Mod(

⊗
Xi)

coming from the fact that the functor is lax symmetric monoidal, it suffices to show this map

is an isomorphism. By induction we reduce to showing

T1−Mod(X1)⊗V T2−Mod(X2)
∼=−→ (T1 ⊗ T2)−Mod(X1 ⊗V X2)

This can be shown by Lurie-Barr-Beck (Theorem 4.7.3.5 in [Lur17]) if we can show that the

functor

G1 ⊗G2 : T1−Mod(X1)⊗V T2−Mod(X2)→X1 ⊗V X2

(where the Gi’s are the forgetful functors) is conservative. By Theorem 4.8.4.6 in [Lur17], we

have

T1−Mod(X1) ∼= T1−Mod(HomV (X1,X1))⊗HomV (X1,X1) X1

Hence, we have the isomorphism (using Theorem 4.8.5.16 of [Lur17])

T1−Mod(X1)⊗V T2−Mod(X2) ∼= (T1 ⊗ id)−Mod(X1 ⊗V T2−Mod(X2))
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So it suffices to check that the functor

X1 ⊗V T2−Mod(X2)→X1 ⊗V X2

is conservative. But here we can apply the same argument again 1. ■

Corollary A.3.2. If X is a dualizable V -module category, then for any T a V -linear colimit

preserving monad on X ,

T−Mod(X )

is dualizable with dual

T∨−Mod(X ∨)

Proof. As T is a colimit preserving V -linear monad on X , we can write T as

T ∈ HomV (X ,X ) ∼= X ∨ ⊗V X

Clearly T is a (T, T )-bimodule. Equivalently, T is a (T ⊗ T∨)-module, and hence we can

write

T ∈ (T ⊗ T∨)−Mod(X ∨ ⊗X ) ∼= T∨−Mod(X ∨)⊗V T−Mod(X )

This defines a map

T : V → T∨−Mod(X ∨)⊗V T−Mod(X )

Now, by Theorem 4.8.4.6 in [Lur17], we have the isomorphism

T∨−Mod(X ∨) ∼= T∨−Mod(HomV (X
∨,X ∨))⊗HomV (X ∨,X ∨) X ∨

However,

HomV (X
∨,X ∨) ∼= X ⊗X ∨ ∼= HomV (X ,X )

is an isomorphism of categories which reverses the monoidal structure and identifies T∨ with

T . Therefore, we also have the isomorphism

T∨−Mod(X ∨) ∼= X ∨ ⊗HomV (X ,X ) T−RMod(HomV (X ,X )) ∼= T−RMod(X ∨)

so it is isomorphic to the category of right modules over the monad T on X ∨ (T−RMod

here means right T modules). Hence, there is a map, coming from tensor product over the

monad T ,

⊗T : T∨−Mod(X ∨)⊗V T−Mod(X )→ V

1This argument is adapted from the proof of Theorem 4.8.5.16 in [Lur17]
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By a standard argument these form unit and counit maps, witnessing the dualizability of

T−Mod(X ). ■

Corollary A.3.3. Suppose

FT : X → T−Mod(X )

is the free T -module functor and

GT : T−Mod(X )→X

is the forgetful functor. Then

(FT )
∨ ∼= GT∨

and

(GT )
∨ ∼= FT∨

Proof. Direct calculation from the unit and counit maps above. ■
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APPENDIX B

Cross-Descent

In this section, we explain how to endow every stack with a category of ×-quasicoherent
sheaves. This is analogous to the standard definition of quasicoherent sheaves but using

×-pullback instead of ∗-pullback.
By [Lur18] Proposition 6.2.4.1, we know that the quasicoherent sheaves as a fpqc sheaf

on the site of affine spectral schemes corresponding to a spectral Deligne-Mumford stack

agrees with the category of quasicoherent sheaves on its functor of functor of points (defined

via Kan extension, see [Lur18] Definition 2.2.2.1. However, it is also possible to define the

×−quasicoherent sheaves on a presheaf X by right Kan extending from spectral affine

schemes the category of quasicoherent sheaves and ×-pullback. Recall that ×-pullback
refers to taking the right adjoint to pushforward instead of the left adjoint. There are some

set-theoretic issues which will not be important in most geometric applications.

The following proposition is contained in Clausen-Scholze’s video lectures on Analytic

Stacks (lectures 17 and 18) [SC20].

Proposition B.0.1. Quasicoherent sheaves with ×-pullback admit descent along descend-

able morphisms on spectral affine schemes (see [Mat16] for the definition of a descendable

morphism).

Proof. We imitate the proof of the analogous statement for usual quasicoherent sheaves (see

[Mat16] and [Ram24]). Suppose µ : R→ R′ is descendable. We need to show that the functor

induced by ×-pullback

G : QCoh(R)→ lim(QCoh(R′)→→ QCoh(R′ ⊗R R′)→→→ . . .)

(with ×-pullback functors) is an equivalence. An element of the codomain of G is a compatible

system of modules over tensor products of R′ which are compatible under ×-pullback. Such
a system can be viewed as a simplicial object in R-modules. Taking the colimit of this

simplicial object yields a left adjoint F to G.

102



To show that FG ∼= id, we note that FG(M) can be written as

colim(. . .→→→ HomR(R
′ ⊗R R′,M)→→ HomR(R

′,M))

Now, because µ is descendable, the limit diagram

R→ R′ →→ R′ ⊗R R′ →→→ . . .

is preserved by any map of stable categories (what is referred to as a Sp-absolute limit in

[Ram24]). This immediately implies FG ∼= id by applying HomR( ,M) to the limit diagram.

The more difficult part is to show that GF ∼= id. To do this, consider an element of

lim(QCoh(R′)→→ QCoh(R′ ⊗R R′)→→→ . . .)

with transition functors given by ×-pullback. By viewing this element as a compatible system

of R-modules, we obtain a simplicial diagram, which we call M•.

Consider the simplicial diagram HomR(R
′,M•). By adding its colimit, we obtain an

augmented simplicial diagram which is a Sp-absolute colimit (because it is a split colimit).

Now the collection N ’s such that HomR(N,M•) can be completed to a Sp-absolute colimit

is a tensor ideal, so it contains R. This means that M• is a Sp-absolute colimit, so it is

preserved by any ×-pullback. The finishes the proof because we only need to compute the

×-pullback of the colimit of M• to the tensor product of a nonzero number of copies of R′

over R. But after commuting the ×-pullback to be inside the colimit, the colimit diagram

becomes split (with the correct colimit). ■

Remark B.0.2. In fact ×-descent characterizes descendability on spectral affine schemes,

see [SC20].

Proposition B.0.3. If X is a qcqs algebraic space, then any quasicoherent sheaf on X will

induce a ×-quasicoherent sheaf on the sheaf corresponding to X (by ×-pullback to any affine

mapping to X). This functor in fact induces an equivalence of categories beween QCoh(X)

and ×-quasicoherent sheaves on X.

Proof. We can induct on the length of a minimal scallop decomposition. It therefore reduces

to showing that any excision square (see [Lur18] Definition 2.5.2.2) in the étale topos of X,

W U

V X

103



where U is affine, the map V → X is (−1)-truncated, and both W and V are quasicompact,

is sent to a pullback square of categories where the transition functors are ×-pullback.
It suffices to show two statments. One, given a quasicoherent sheaf F on X, then F

is a pushout of the pushforward of the ×-pullbacks to U , V and W . Now QCoh(X) is

generated by pushforwards of objects in QCoh(V ) and QCoh(U) by usual Nisnevich excision

of quasicoherent sheaves. Hence ×-pullback along the maps V → X and U → X are jointly

conservative. However the square is clearly a pushout after ×-pullback to either U or V , so

the first statement follows.

The second statement is that given ×-pullback compatible sheaves on U , V and W , the

pushout of their pushforwards to X has the original sheaves as its ×-pullbacks to U , V and

W . But this is clear because pushouts are preserved by ×-pullback. ■
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APPENDIX C

Crystals on Truncated Noetherian Schemes

In this section, we recall the definition of a crystal on the infinitesimal site, as introduced by

Grothendieck in [Gro68].

Let S be a truncated Noetherian affine scheme (the theory for a more general base S

can be reduced to this case). Denote by AFF ft
/S the category of truncated Noetherian affine

schemes which are finite-type over S (these are automatically almost of finite presentation

because S is Noetherian by [Lur18] Remark 4.2.0.4).

Definition C.0.1. Suppose X ∈ AFF ft
/S, the big infinitesimal site INF (X/S) has as objects

diagrams

U X

T S

u

b
(C.1)

in AFF ft
/S such that b is a thickening–a closed immersion inducing a homeomorphism. Mor-

phisms in INF (X/S) are defined in the obvious way. A family of morphisms in INF (X/S),

{(Ui → Ti)→ (U → T )} is a Zariski (resp. étale) covering if each

Ui U

Ti T

is a pullback square and the maps {Ti → T} is a Zariski (resp. étale) covering.

The assignment (U → T ) 7→ QCoh(T ) defines a (Zariski or étale) sheaf of categories on

INF (X/S) where the transition maps are given by quasicoherent pullback.
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Definition C.0.2. The small infinitesimal site Inf(X/S) is the full subcategory of INF (X/S)

consisting of those objects such that the map u (in the notation of (C.1)) is an open immersion.

It is also endowed with either the Zariski or étale topology induced from the big site.

Definition C.0.3. A quasicoherent crystal on the big infinitesimal site Inf(X/S) is an

object of the category

lim
INF (X/S)op

QCoh(T )

with ∗-pullback transition functors. We will call this category CRY S(X/S). Similarly we can

define the category of quasicoherent crystals on the small infinitesimal site

Crys(X/S) := lim
Inf(X/S)op

QCoh(T )

Remark C.0.4. Unwinding the definitions, it is clear that

CRY S(X/S) ∼= QCoh((X/S)dR)

in the notation of Definition 4.6.1

Note that the definition of a quasicoherent crystal does not make use of the topology at

all.

Remark C.0.5. There is an equivalence of categories

Res : CRY S(X/S) ∼= Crys(X/S)

induced by the natural restriction functor.

This is because in the big topos, the final object has a hypercovering by objects in the small

site (even in the trivial topology and with only global thickening since we are in the affine

case).
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