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ABSTRACT

In 1976, Deligne and Lusztig constructed irreducible representations for the rational points

of a reductive algebraic group over a finite field by identifying the representations within

the cohomology of a particular affine variety. We study an analogy of this construction to

the case of an inner form of an unramified group over a local field, which replaces the single

affine variety with an inverse system of affine varieties of increasing dimension defined over

the residue field. Each of these varieties is equipped with a natural stratification, and the

minimal strata, also called the closed strata, has particularly accessible structure.

We study the geometry of the closed strata. When the inner twist is given by a coxeter

element we prove that the varieties in the inverse system are all maximal, in the sense that the

variety has as many points as are permitted by the Weil bound for its Betti numbers. We also

show that the torus weight spaces of the cohomology are all supported in one degree. Despite

the relevance to representation theory, our methods almost entirely algebro-geometric, and

rely on a detailed description of the variety in terms of Lie-theoretic data.
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CHAPTER 1

Introductions

In [8], Deligne and Lusztig associate to a reductive algebraic group G over a finite field Fq

certain affine varieties, now known as Deligne-Lusztig varieties, whose cohomology realizes

the irreducible representations of the group G(Fq). Chan and Ivanov, in [5], introduce a

generalization of this to reductive groups over a local field. The construction mimics the

finite field case, but takes place in the context of parahoric subgroups and produces an

infinite sequence of varieties over the residue field. This thesis studies the geometry of these

varieties.

In sections 2 and 3 we recall the construction of these parahoric Deligne-Lusztig varieties,

and a certain subscheme referred to as XT
h , the minimal strata of a natural stratification,

then state the precise requirements for the paper’s main result:

Theorem 1.1. Let Fnq be the minimal field of definition for XT
h . Then XT

h is a maximal

scheme over this field in the sense that the action of F n on the group H i
c(Zh,Qℓ) is diago-

nalizable and has all eigenvalues equal to (−1)iqin/2.

This property is referred to as being maximal, because maximal varieties over a finite

field have the greatest number of rational points allowed by the Weil bounds and their Betti

numbers. In sections 4 through 7 we prove the main theorem. Then in section 8, we discuss

how the result can be partially extended to a broader class of parahoric Deligne-Lusztig

varieties. Section 9 overviews the main argument as it applies to the specific reductive group

GL4. It can be read independently, and will make the rest of the paper clearer.
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Despite the relevance of Deligne-Lusztig varieties to representation theory, this paper

takes most of its techniques from finite characteristic algebraic geometry. We produce a

fairly explicit description of the varieties that allows us to relate the cohomology of XT
h to

progressively simpler and simpler varieties, and eventually determine the groups directly.
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CHAPTER 2

Definitions

Let k be a nonarchimedean local field with residue field Fq and ring of integers Ok. Denote

the completion of the maximal unramified extension of k by k̆, and the residue field of k̆ by

Fq.

Let H be a split reductive group over k, S a split maximal torus of H and σ ∈ Gal(k̆/k)

be a Frobenius element which induces qth power automorphisms on Fq.

Choose an element c in the Weyl group of S and an element c̃ in the normalizer of S so

that the action of c is realized by conjugating by c̃.

Define a group scheme G over k with Gk̆ ≃ Hk̆ and the rational structure on G coming

from the endomorphism Fg = adjc σ(g).. Let T be the maximal torus in G corresponding

to S, and B a Borel subgroup containing T with unipotent radical U . T descends to a torus

over k, but B and U may have a field of definition larger than k.

In [5] the authors construct for any nonnegative integer h smooth affine group schemes

Gh and Th over Fq and Uh over Fq. We will recall the construction in more detail below.

For now, consider them as finite-type approximations of the schemes G, T , and U , and the

first two, just like their local field counterparts, are equipped with an action by F , such that

Gh(Fq) = Gh(Fq)F and similarly for T. There are natural maps from Gh to Gi for h > i and

we write Gi
h for the kernel of this map.
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Definition 2.1. The parahoric Deligne-Lusztig variety is the Fq scheme

Xh := {g ∈ Gh |g−1Fg ∈ Uh}/(Uh ∩ F−1Uh).

Every F -stable Levi subgroup of H corresponds to a k-rational twisted Levi subgroup of

G. For L ⊂ G such a subgroup, we may construct an associated subgroup Lh of Gh. Define

Uh,L as (Lh ∩ Uh)U1
h, and The L-strata of the parahoric Deligne-Lusztig variety XL

h as

XL
h := {g ∈ Gh ||g−1Fg ∈ Uh,L}/(Uh,L ∩ F−1Uh,L).

The following result is [6, Lemma 3.3.3]:

Lemma 2.2. Set Y L
h = XL

h ∩ LhG1
h. Then

XL
h =

⊔
γ∈Gh(Fq)/Lh(Fq)G1

h(Fq)

γ · Y L
h

Proof. Lang’s Theorem states that for Z an algebraic group and FZ a surjective endomor-

phism with a finite number of fixed points, the Lang map

L(x) = x−1 · FZx

is a surjection from Z to itself. Since LhG1
h and F satisfy these hypotheses, the restriction

of the Lang map to Y L
h must be a surjection onto Uh,L. For any elements x and y in Gh,

L(x) = L(y) if and only if y = γx for γ an element in Gh(Fq). Therefore

XL
h =

⋃
γ∈Gh(Fq)

γ · Y L
h

and the disjoint union in the lemma easily follows.

The torus S is a minimal F -stable Levi of H, and it corresponds to the subgroup T in
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G. For the rest of the paper, we will be focused on this strata. We may now state the main

result:

Theorem 2.3. Assume that Xh is constructed from a hyperspecial model of G (see below

for more details) and further suppose that the Weyl group element c is U-balanced (see

Definition 3.1), and let Fnq be the field of definition for Uh (and therefore XT
h ). Then X

T
h is

a maximal scheme over this field in the sense that the action of F n on the group H i
c(Zh,Qℓ)

is diagonalizable and has all eigenvalues equal to (−1)iqin/2.

Per Lemma 2.2, it suffices to show this for Y T
h , which we will refer to simply as Yh. The

balanced hypothesis is a bit awkward, but is not a highly restrictive criteria, and the set

of acceptable elements c includes all coxeter elements, assuming U is chosen appropriately.

When c is non-elliptic, there is no U for which it is U -balanced, see Section 8 for a discussion

of what happens in those cases.

In the course of proving this theorem, we will also provide an algorithm for computing

the ranks of the cohomology groups H i
c(Yh,Qℓ).

2.1: Quotients of Parahoric Models of G

Here we will detail the construction of Gh and list some relevant properties. First, we recall

the Bruhat and Tits construction of parahoric subgroups, simplifying matters greatly because

we only use the construction in the split case.

We may take a finite unramified extension K of k such that TK , and therefoe GK , is

split. Let ω : K → R be a valuation map with ω(OK) = Z+. Let Φ be the root system of

GK , and for a root α write Uα for the root subgroup of GK corresponding to α normalized

by TK .

Uα is noncanonically isomorphic to the additive group Ga over K. Given an isomorphism

ϕ : Ga → Uα. we define the subgroup Uα,r of Uα(K) by Uα,r := ϕ(ω−1([r,∞)). A Chevalley

system is a set of isomorphisms ϕα : Ga → Uα with the property that for two roots α ̸= −β
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the commutator group [Uα,r, Uβ,s] is contained in the group generated by Uiα+jβ,r+s for all

positive integers i and j with iα + jβ a root.

Define

T0 = {t ∈ T (K) | ω(χ(t)) = 0 for all χ ∈ X∗(T ) := HomK(T,Gm)}

and for a positive real number r

Tr = {t ∈ T0 | ω(χ(t)− 1) ≥ 0 for all χ ∈ X∗(T )}.

The apartment of T , written as A(T ) is the affine space under X∗(T ) ⊗ R. In [9] Tits

describes how the points in A(T ) are in bijection with the set of Chevalley systems. The

building B(G,K) is a quotient of the disjoint union of the apartments of every maximal

torus in G, and inherits an action by F . Let x be a vertex in A (T ) ∩ B(G,K)F . This

intersection is always nonempty and contains a vertex, and if c is chosen to be elliptic, as it

usually is in this paper, x is uniquely determined. Define Gx,r to be the group generated by

Tr and Uα,r and

Gx,r+ :=
⋃
s>r

Gx,s.

We may find ϵ, depending on x but not r such that Gx,r+ = Gx,r+ϵ. These are group schemes

over OK , and inherit an action of F , and therefore descend to group schemes over Ok.

For A an algebra over Fq let W(A) denote the ring of Witt vectors of A if char(k) = 0 or

the power series ring A[[t]] if char(k) ̸= 0. Now we can present a definition for Gh.

Definition 2.4. For A an Fq algebra,

Gh(A) := Gx,0(W(A))/Gx,(h−1)+(W(A)).

T0 is a subscheme of Gx,0 and we define Th as its image in Gh. Th is a group scheme

over Fq. For α a root in Φ, write Tα for the image of the coroot α∨, Tα,0 := Tα ∩ T0, and
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Tα,h the image of Tα0 in Gh.

Let Ψ be a subset of Φ for which there exists a hyperplane P ⊂ Φ⊗ R with all elements

of Ψ on one side of the plane. Then define UΨ to be the group generated by the Uα,0 for α in

Ψ. This is a subgroup of Gx,0 and define UΨ,h as its image in Gh. This new scheme is not

necessarily defined over Fq, but is defined over the residue field of K.

The scheme G1 is a reductive group over Fq, and split over Fq, and T1 is a maximal torus

inside it. For h1 < h2 there is a clear quotient map from Gh2 to Gh1 and we write Gh1
h2

for

the kernel of this map.

We will now assume that c is an elliptic element. As mentioned, this implies that there is

a unique point x in A (T )∩BF . We then further assume that the point x will be hyperspecial,

so Gx,r+ = Gx,r+1 and Uα,r+ = Uα,r+1 for all r. With this assumption, w eprove the following

statements:

Proposition 2.5. For two roots α ̸= −β the commutator subgroup [Ur
α,h,Us

β,h] is contained

in the group generated by the Ur+s
iα+jβ for all positive integers i and j with iα + jβ a root.

For x in Ur
α,h\Ur+1

α,h the map y 7→ [x, y] is an isomorphism from Us
−α,h/U

s+1
−α,h to Tr+sα,h /T

r+s+1
α,h .

Proof. This is [5, Lemma 2.8]. We summarize the argument here. Uα,h is the image of Uα,0

after quotienting by Gx,(h−1)+. Ur
α,h is the kernel of the map from Uα,h to Uα,r, so it is

isomorphic to the image of Uα,(r−1)+ ≃ Uα,r after quotienting by Gx,h−1+. The first claim

then follows from the properties of a Chevalley system. The second claim can be reduced to

the case of G = SL2 by restricting to the subgroup generated by Uα and U−α, where it is a

straightforward computation.

Proposition 2.6. For 1 ≤ r < h, the quotient Gr
h/G

r+1
h is isomorphic over the residue field

of K to g, the Lie algebra of G1.

Proof. The scheme Gr
h is the kernel of the map from Gh to Gr, which we can we can see

from the definitions is equal to Gx,r−1+/Gx,(h−1)+. Applying this for BGr+1
h as well we

can see the quotient Gr
h/G

r+1
h is to be equal to Gx,r/Gx,r+1. Since r ≥ 1, this group is

7



commutative. It is generated by Uα,r/Uα,r+1 and Tr/Tr+1. The first groups are each equal

OK/m or m the maximal ideal of OK , by our choice of normalization of ω. T is split over

K, and we may choose an isomorphism TK ≃ (GLn1 which makes Tr = (1 + mr)n. Since

(1 + mr)/(1 + mr+1) ≃ OK/m, we have that Gx,r/Gx,r+1 is a vector space with basis in

bijection with a set that is a union of the root system Φ and a spanning set of cocharacters

in X∗(TK). We can identify the latter vector space with the Lie Algebra of G1

Note that because Gh
h is trivial, Gh−1

h is isomorphic to g.

Finally, for ψ as above, there are noncanonical isomorphisms from Uψ to affine space over

K, and also from UΨ,h to affine space over the residue field of K.

8



CHAPTER 3

Preliminaries on Root Systems

Let Φ be an irreducible root system and with Weyl Group W , and ∆ a base of Φ, with

corresponding positive roots Φ+.

Definition 3.1. An element c of W is said to be ∆-balanced if

� Every orbit of c has the same size

� Every orbit of c contains a unique element of Φ+ ∩ cΦ−

Being ∆-balanced depends only on the choice of positive roots, not the base ∆. The

root systems we will encounter in this paper come to us as the roots of a maximal torus

T in a reductive group, so choosing a set of positive roots is equivalent to choosing a borel

B containing T . In a situation where we have chosen a borel containing T with unipotent

radical U we will talk about c being ∆-balanced if it is balanced for the set of positive roots

determined by U .

In the majority of the rest of this paper we will be working with a unipotent subgroup

U and a U -balanced element of the Weyl group c. Let us first observe that there are many

such elements.

Let c be a coxeter element of an irreducible Weyl group W , and let n be its order. Then

there is a base ∆ in Φ consisting of roots α1 through αr with associated reflections s1 through

sr such that

(3.1) s1 · s2 · · · sr = c
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and this is a minimal expression. We let Φ+ denote the set of positive roots with respect to

∆. The following is [1, p. VI.I.33]:

Theorem 3.2. Every orbit of the action of c on Φ has the same size. For 1 ≤ i ≤ r set

(3.2) θi = s1 · · · si+1αi.

The θi are all positive, c−1θi is always negative, and for any root β with β > 0 and c−1β < 0

β = θi for some i. Every orbit of c contains a unique θi

Corollary 3.3. The coxeter element c is ∆-balanced.

An arbitrary element of W can not balanced if it fixes some root. But noncoxeter elliptic

elements may be balanced.

Definition 3.4. Suppose c is ∆-balanced. Let n be the order of c. Negation acts by involution

on the orbits of c and therefore induces an involution on the set Φ+ ∩ cΦ− which we will

denote by ι. Then for θ ∈ Φ+ ∩ cΦ− the root −θ is in the c-orbit of the root ι(θ) and there

is a unique positive integer κ(θ) less than n such that

(3.3) cκ(θ)ι(θ) = −θ

Note that these definitions immediately imply κ(ι(θ)) = n− κ(θ).

3.1: Conjectural Generalization

The above definitions unfortunately depend on the choice of U as well as c. Further, given

an elliptic c, it is unclear how to tell if there is a ∆ for which c is ∆-balanced, and c may

not be ∆-balanced for many ∆.

We suggest a potential improvement with the following definition

10



Definition 3.5. An element c of W is said to be ∆-shifting if it is not trivial, and for any

integer k the intersection

ck
(
Φ+ ∩ cΦ−) ∩ (Φ+ ∩ cΦ−)

is either empty or the entirety of Φ+ ∩ cΦ−.

This is clearly a generalization of ∆-balanced. The proof to follow of the maximality of

H i
c(Yh,Qℓ) can be modified without much trouble to show the result for any ∆-shifting c.

The only major change required is a new definiition for ι and κ, since there is no longer a

bijection of Φ+ ∩ cΦ− with the orbits of c. The change was omitted in the paper because it

adds complexity for no gain in the strength of the theorem. However, while most c are ∆-

balanced for only some ∆, small computational evidence suggests that every elliptic element

may be ∆-shifting for every ∆. If this conjecture is true, then Theorem 2.3 could be reworked

to remove any dependence on U .
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CHAPTER 4

The Geometry of Yh

In this section we will study the geometry of Yh. Our main result will be a structural theorem

that establishes an isomorphism between the groups H i
c(Yh,Qℓ) and the cohomology of a

different sheaf on an affine space.

First, a note about lifting: There are natural projection maps from Gh to Gh−1. There

is not, in general, a morphism of schemes from G1
h−1 to G1

h that provides a section to this

projection, or a similar section of the projection map from Yh to Yh−1. The work in this

chapter can be seen as precisely identifying the obstruction to such a section.

There are, however, lifts from Wh−1 to Wh. For a k-algebra A, we parametrize Wh(A)

as a sequence of h+ 1 elements of A, and so we can construct one such lift by appending 0

to the end of our sequences. We emphasize that this is not a ring homomorphism, but does

produce a map of schemes.

The groups Uh, Uh ∩ FUh, Uh ∩ F−1Uh, or similar variants are all abstractly isomorphic

to WI
h for some integer I (depending on which group, of course). So there is a section of the

quotient map Uh → Uh−1, or any of the other quotients. In the rest of this paper, we will

make use of such sections, sometimes by constructing specific maps, but often just relying

on the existence of some map.

Note that G1
2 and Gh−1

h are both isomorphic to the Lie algebra g, and Gh−1
h is central in

G1
h. The group operation of Gh restricts to vector space addition. When discussing g, we

will use the decomposition g ≃ g+⊕h⊕ g−, where g+ (respectively g−) is the space spanned

12



by the positive (resp. negative) root subgroups corresponding to our choice of U , and h is

the Cartan subalgebra corresponding to our choice of T .

Theorem 4.1.

(4.1) Yh ≃ {x ∈ G1
h | x−1Fx ∈ U1

h ∩ FU
1

h}

Proof. First, we show this is true for h = 2. We can argue on the level of Lie algebras. There

is a Lang map L(v) = Fv − v. We need to show

(4.2) L−1(g+)/(g+ ∩ F−1g+) ≃ L−1(g ∩ Fg−).

Define an action of g+ ∩ F−1g+ on g+ given by

(4.3) v · w = −v + w + Fv = w + L(v).

Since g is commutative, L is an endomorphism. It suffices to show that the quotient of g+ by

the above action is isomorphic to g+∩Fg−. For gα a root space, the image Fgα is contained

in a root space gβ, and F induces an isomorphism of group schemes from gα to gβ. Assume

α and β are both positive. Then, for any x in gβ there is a unique y in gα with Fy = −x.

By assumption, y is in g+ ∩ F−1g+, so x is equivalent to x− y + Fy = −y under the action

of g+ ∩ F−1g+. Hence every element of gβ is equivalent to some element of gα ≃ F−1gβ.

Iterating upon this, we can see

(4.4) g+/(g+ ∩ F−1g+) ≃
⊕

gα∈g+,gα ̸∈Fg+

gα ≃ g+ ∩ Fg−.

Now, assume that the theorem holds for Yh−1. Let y be an element in Yh and y be its

projection to Yh−1. By inductive assumption there exists an element u in U1
h−1 ∩ F−1U1

h−1

13



such that

(4.5) (yu)−1F (yu) ∈ U1
h−1 ∩ FU

1

h−1.

Then if u is any lift of u to U1
h ∩ F−1U1

h we have

(4.6) (yu)−1F (yu) ∈
(
U1
h ∩ FU

1

h

)
· Uh−1

h .

But our base case argument can be repurposed to show that for any element v in Uh−1
h , there

is an element w in Uh−1
h ∩ F−1Uh−1

h such that −w + v + Fw is contained in Uh−1
h ∩ FUh−1

h .

Then we can find a w in Uh−1
h ∩ F−1Uh−1

h so that

(4.7) (yuw)−1F (yuw) ∈ (U1
h ∩ FU

1

h).

This completes the argument.

The following definitions simplify our notation to avoid clutter

Definition 4.2. Define

(4.8) Vh := U1
h ∩ FU

1

h

and

(4.9) vh := U1
h ∩ FU

1

h ∩Gh−1
h .

In terms of the Lie algebra, we have vh ≃ g+ ∩ Fg−. We will often drop the subscript on vh

when thinking of it as living inside g.
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Definition 4.3. Let n be the order of c. On any group where F is defined we define the map

(not necessarily a homomorphism)

(4.10) N(g) := F n−1g · F n−2g · · · g

This is an endomorphism if the group is abelian.

Since F = adjc ◦σ, F n = σn and we have that Uh is a Fqn rational subgroup of Gh.

Lemma 4.4. Define the map ν from hF × v to g by

(4.11) ν(s, v) := s ·N(v).

ν is an isomorphism from hF × v onto L−1v

Proof. On any commutative group we have

L ◦N(v) = F nv − v.

Since F n stabilizes v, and L(hF ) = 0 the image of ν is contained in L−1v. Further, by Lang’s

theorem, the map v 7→ F nv − v provides a surjection from v onto itself. It follows that

(4.12) L−1v = gF + hF +N(v)

since any two vectors with the same image under the Lang map differ only by an element of

gF .

Since the group operation of g is vector space addition, and therefore commutative, we

may rewrite this as

(4.13) L−1v = gF +N(hF
n

) +N(v).
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Obviously N(v) contains N(vF
n
). We will show that gF is contained in N(hF

n
)+N(vF

n
)

and the surjectivity of ν will follow.

The action of F permutes the root spaces of g. Write O for the set of orbits of this

action. If for every orbit o in O we choose one root space go in o and set Z =
⊕

O go then

N(hF
n
+ZFn

) = N(gF
n
) = gF . Our assumptions on c guarantee every orbit contains exactly

one root space in v. This also guarantees that the intersection v ∩ F iv = 0 for 1 ≤ i < n.

Therefore Ker(N) ∩ v = 0, and we have shown ν is a bijection.

Now we prove the main result of this section.

Theorem 4.5. There is a map φh from Vh to T1
h such that in the pushout

Wh Vh

T1
h T1

h.

p1

p2 φh

L

Wh is isomorphic to Yh

To do this, we will first show that Yh is almost a quotient of G1
h.

Lemma 4.6. There is a morphism ρh : G1
h → YhT1

h for which the natural inclusion YhTh ↪→

G1
h is a section.

Proof. The construction proceeds inductively. We start with h = 2 and identify G1
2 with g.

Let v be an element of g and write Fv − v = w+ +w0 +w− according to the decomposition

g ≃ g+ ⊕ h⊕ g−. We have the following:

� The Lie algebra argument in Theorem 4.1 provides us with a unique u1 in g− ∩F−1g−

such that Fu1 − u1 + w− is contained in g− ∩ Fg+.

� The Lie algebra argument in Lemma 4.4 provides us with a unique u2 in g−∩Fg+ such

that FN(u2)−N(u2) = − (Fu2 − u2 + w−). We now have that L(v + u1 +N(u2)) is

contained in g+ ⊕ h.
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� Just as in the first bullet point, we can construct a unique u3 in g+ ∩F−1g+ such that

Fu3 − u3 + w+ is contained in v.

Then v + u1 +N(u2) + u3 is contained in L−1(v⊕ h) as desired. Since our choices were all

unique we have a well defined map ρ2(v) = v+u1+T (u2)+u3. The inclusion of L−1(v) into

g is clearly a section of ρ2.

Suppose the construction works for h − 1. Let g be an element of G1
h, and g be its

projection to G1
h−1. By assumption we have unique elements

� u1 ∈ U1

h−1 ∩ F−1U1

h−1,

� u2 ∈ U1

h−1 ∩ FU1
h−1,

� u3 ∈ U1
h−1 ∩ F−1U1

h−1

such that

(4.14) gu1N(u2)u3 ∈ Yh−1T1
h−1.

For i = 1, 2 and 3 let ũi be a lift of ui to G1
h within the same unipotent subgroup as ui.

Then

(4.15) gũ1N(ũ2)ũ3 ∈ YhT1
hGh−1

h ≃ YhT1
hg.

Then our previous analysis in the Lie algebra case shows that we can find unique v1, v2 and

v3 in g− ∩ F−1g−, g− ∩ Fg+, and g+ ∩ F−1g+ respectively such that right multiplication by

v1 + N(v2) + v3 corrects the above expression to lie in YhT1
h. Setting ˜̃ui = ũi + vi we have

found unique elements of the relevant unipotent subgroups such that right multiplication

sends g into YhT1
h. This completes the construction of ρh.

Now we prove the theorem
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Proof of Theorem 4.5. We construct φh as a series of compositions. The map Nh := ρh ◦N

sends Vh to YhT1
h. Let x be an element of YhT1

h and write x = ys with y in Yh and s in T1
h,

then

(4.16) x−1Fx = (ys)−1F (ys) = s−1y−1FyFs = s−1uFs = (s−1us)s−1Fs.

So the lang map L sends YhT1
h to VhT1

h. Since T1
h normalizes Vh, this is a group, and Vh is a

normal subgroup, so there is a quotient map projT : VhT1
h to Th. Finally, take inv to be the

inversion map on T1
h. We will then define φh as the composition.

(4.17) φh := inv ◦ projT ◦L ◦ ρh ◦N.

Then from the definition of Wh as a pushout, we have a map Ñh from Wh to G1
h given by

(4.18) Ñh(w) := Nh(p1(w)) · p2(w).

Let us confirm that this map has image contained in Yh. Take v = p1(w) and s = p2(w). We

know L(s) = φh(v). Then L(Nh(v) · s) = s−1L(Nh(v))F (s) is an element in VhT1
h. Applying

the quotient q we see

(4.19) projT
(
s−1L(Nh(v))F (s)

)
= s−1φh(v)

−1F (s) = φh(v)
−1 · φh(v) = 1.

Therefore L(Ñh(w)) is contained in Vh so Ñh(w) is contained in Yh. We will show this map

is an isomorphism by showing it is injective and surjective. First observe that Nh is an

injection. When h = 2, φ2 is trivial and Ñ2 is the map η from Lemma 4.4, and therefore

an isomorphism. If Nh−1 is injective, then Nh(v1) = Nh(v2) implies that v1 = v2, and so

v1 = v2w for w ∈ V h−1
h . But Nh(v2w) = Nh(v2)N(w), so we must have N(w) = 0 and

therefore w = 0.
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Therfore if Ñh(x1) = Ñh(x2) then p1(x1) = p1(x2). It quickly follows from the formula

for Ñh that p2(x1) = p2(x2), so x1 = x2.

Now we prove surjectivity. Once again, proceed injectively and note that we have already

proven Ñ2 = ν is surjective in Lemma 4.4. Assume Ñh−1 is also surjective. For y in Yh we

may choose a w in Wh−1 with Ñh−1(w) = y. Then let v be a lift of p1(w) to Vh. There must

be an s in the Lang preimage of φh(v) and a corresponding element w in Wh with p1(w) = v

and p2(w) = s such that

Ñh(w) = ya

for a in YhT1
h ∩ Gh−1

h . We can write a uniquely as s0T (v0) for s0 in h and v0 in vh. The

element w′ in Wh corresponding to ss0 and vv0 then has T̃h(w
′) = y.

Then, applying the smooth base change theorem to the pushout diagram in the definition

of Wh, we have

Corollary 4.7.

(4.20) H i
c(Wh,Qℓ) ≃ H i

c(Vh, φ
∗
h ◦ L∗Qℓ).

There is a natural action of G1
h(Fq) on Yh by left multiplication, which means there is an

action on Wh as well, such that g ·w is the unique element of Wh with Ñh(g ·w) = g · Ñh(w).

The equality p1(w1) = p1(w2) is true if and only if Ñh(w1) = Ñh(w2)s for s ∈ T1
h. This

means that if p1(w1) = p1(w2) then p1(g · w1) = p1(g · w2), so the action of G1
h(Fq) on Wh

descends to an action on Vh.

Despite the simple description of Vh, this action is not easy to describe via a formula.

However, since the group action must be compatible with projection we can paritally describe

it in some cases.

Let g be an element of Gj
h(Fq), and let g be its projection to Gj

j+1. From Lemma 4.4 we

have g = N(v) + s for v ∈ Vj
j+1 and s in Tjj+1. Since G

j
j+1 is central in G1

j+1, the action of g
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on Vj+1 is g · u = u + v. Therefore for u an element of Vh, the projection of g · u to Vj+1 is

u+ v.
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CHAPTER 5

The Lang Torsor and Rank One Multiplicative Local

Systems

We have constructed in Theorem ?? an isomorphism Yh ≃ Wh and related in Corollary 4.7

the cohomology of Wh with a constant sheaf to the cohomology on a certain affine space of

φ∗
hL∗Qℓ we collect here some results about sheaves of the form f ∗L∗Qℓ for various functions

f . This section owes a great deal to Boyarchenko’s paper Deligne-Lusztig constructions for

unipotent and p-adic groups, [3]. The results here are generalizations of ones found in Section

6 of that paper.

Definition 5.1. Let A be an algebraic group, a rank one Qℓ local system L is said to be

multiplicative when there is an isomorphism

µ∗L ≃ pr∗1 L ⊗ pr∗2 L

where µ : A× A→ A is the group operation and the pri are the obvious projections.

Now suppose A is defined over Fq, with Frobenius ζ. For m a positive integer define the

mth power Lang Map

(5.1) Lm(x) = x−1ζm(x).

This map realizes A as an A(Fqm) torsor over itself. We call this the mth Lang Torsor, and
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write it as Lm. For χ a Qℓ-character of A(Fqm) we may apply χ to Lm to get a rank one

local system which we write as Lχ. It is easy to see that Lχ is the constant local system if

and only if χ is the trivial character.

We recall some facts about the Lχ. First, let A(Fqm)∨ be the group of Qℓ characters of

A(Fqm).

Proposition 5.2.

(5.2) (Lm)∗Qℓ ≃
⊕

χ∈A(Fqm )∨

Lχ

Let A and B both be algebraic groups defined over the same field Fqm , χ a character of

B(Fqm), Lχ the associated local multiplicative system, and f : A → B a homomorphism

also defined over Fqm . Then f induces a group homomorphism from A(Fqm) to B(Fqm) and

(5.3) f ∗Lχ ≃ Lχ◦f .

When A is commutative there is a group homomorphism Nm/1 from A(Fqm) to A(Fq)

given by

Nm/1(g) = g · ζ(g) · · · ζm−1(g).

Let χ a character of A(Fq). In [7, p. 1.7.7] Deligne shows that

(Lχ)Fqm
≃ Lχ◦Nmm

is an isomorphism of sheaves over the base changes AFq

Now, we state and prove the main result of the section, a generalization of [3, Proposition

2.10].

Lemma 5.3. Let S1 be a scheme of finite type over Fq, put S = S1 × Ga. Let R be an
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algebraic group over Fq and F be a multiplicative rank one local sysem on R. Finally, let f

be a morphism S → R that sends a point (x, y) ∈ S1 × A1 to

(5.4) f(x, y) = f1(x, y) · f2(x)

and such that at each point x in S1 the restriction to the fiber f1|Sx : Ga → R is a homomor-

phism.

Define S2 to be the subscheme of points x in S1 such that f ∗
1F |Sx is trivial. Then

(5.5) H i
c(S, f

∗F ) ≃ H i
c(S2 ×Ga, f

∗
2F ).

Proof. Let pr denote the projection map from S to S1. Since F is multiplicative, f ∗F ≃

f ∗
1F ⊗ pr∗ f ∗

2F . Then by the projection formula weh have the isomorphism

(5.6) Rpr! f
∗F ≃ f ∗

2F ⊗ Rpr! ◦f ∗
1F

in the bounded derived category of complexes of constructible sheaves on S1. Let ι be the

closed embedding from S2 into S1. We want to show

(5.7) Rpr! f
∗
1F ≃ ι∗Qℓ[2](−1).

For x in S2 we have the pullback f ∗
1F |Sx is trivial and so Rpr! ◦f ∗

1F is isomorphic to Qℓ[2]

when restricted to S2.

Now choose a point z away from S2. Then we have an isomorphism of stalks

(5.8)
(
Rj pr! ◦f ∗

1F
)
z
≃ Hj

c (pr
−1(z), f ∗

1F ) ≃ Hj
c (Ga, f

∗
1F ).

Since f1 restricts to a homomorphism on the fiber, f ∗
1F is a nontrivial rank one multiplicative

local system on Ga. But, as shown by Boyarchenko in [2, Lemma 9.4], Hj
c (Ga,G ) = 0 for
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all j and for any nontrivial multiplicative local system G .. This establishes the isomorphism

in (5.7). Since Rpr! f
∗F computes the cohomology of f ∗F , this allows us to conclude our

result.
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CHAPTER 6

Computing Cohomology

Combining Corollary 4.7 and Proposition 5.2 we see that we need to understand the coho-

mology groups

(6.1) H i
c(Vh, φ

∗
hL∗Qℓ) ≃ H i

c(Vh, φ
∗
h ⊕ Lχ) ≃ ⊕H i

c(Vh, φ
∗
hLχ)

with the sums taken of the set of all Qℓ characters of T1
h(Fq). In this section, we will study

the map φh. Since Vh is isomorphic to affine space, there are many ways of writing it as a

product of one dimensional affine space and a smaller scheme in order to apply Lemma 5.3.

Recall that Gh−1
h is central in G1

h, so if a is an element of Vh and b an element of V h−1
h

we have N(ab) = N(a)N(b). Furthermore, N(b) is in Yh, so φh(ab) = φh(a). Therefore, we

may choose a splitting Vh ≃ Vh−1 × V h−1
h satisfying the hypotheses of Lemma 5.3, though in

this case the lemma is not very interesting, because the restriction of the map to the fibers is

trivial, and therefore the result is vacuously true. We will need to understand φh explicitly

in a larger context.

Let a be an element of Vh∩Gi
h and b be an element of Vh∩Gj

h for i and j positive integers

with i+ j = h− 1 and j > h−1
2
. We list several facts about this set up that will be relevant

to the proceeding computation:

� The commutator [a, b] is contained in Gh−1
h , which is central in G1

h.

� Furthermore, this commutator only depends on a, the image of a under projection to
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Gi
i+1 and b, the of b image under projection to Gj

j+1, so we will write [a, b] = [a, b].

� Because j > h−1
2
, Gj

h is a commutative group. Therefore L ◦ N(b) = b−1F n(b), which

is contained in Vh, so Nh(b) = ρh ◦N(b) = N(b).

� Nh(ab) = ρh(N(ab)) = N(ab)u where u is the element of G1
h coming from our con-

struction of ρh. Importantly, since N(ab) is contained in Gi
h, the element u will be

contained in Gi+1
h . This implies u commutes with b, and any other element of Gj

h

Now we may determine φh(ab). We begin by computing L(N(ab)u), which we will do by

grouping all the terms involving b together, and keeping track of commutators we introduce.

This will be broken into steps to make it readable.

Expand L(N(ab)u) as u−1N(ab)−1FN(ab)Fu. Moving left to right we have

N(ab)−1 = F n−1(b−1a−1) · F n−2(b−1a−1) · · · (b−1a−1)

=
(
F n−1a−1 · F n−2a−1 · · · a−1

)
·
(
F n−1b−1 · F n−2b−1 · · · b−1

)
·

( ∑
0≤i≤j<n

[−F jb,−F ia]

)

= N(a)−1 ·N(b)−1

( ∑
0≤i≤j<n

[F jb, F ia]

)
.

Similarly, we have

FN(ab) = F (ab) · F 2(ab) · · ·F n(ab)

=
(
Fa · F 2a · · ·F na·

) (
Fb · F 2b · · ·F nb

)( ∑
1≤k<l≤n

[F kb, F la]

)

= FN(a) · FN(b)

( ∑
1≤k<l≤n

[F kb, F la]

)
.
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Finally,

N(b)−1 · FN(a) = (F n−1b−1 · F n−2b−1 · · · b−1)(Fa · F 2a · · ·F na)

= (Fa · F 2a · · ·F na)(F n−1b−1 · F n−2b−1 · · · b−1)

(
n−1∑
m=0

n∑
r=1

[−Fmb, F ra]

)

= FN(a) ·N(b)−1

(
n−1∑
m=0

n∑
r=1

[−Fmb, F ra]

)

Putting this all together, we have

L(N(ab)u) = u−1 ·N(ab)−1 · FN(ab) · Fu

= u−1 · LN(a) · Fu · LN(b)

·

( ∑
0≤i≤j<n

[F jb, F ia] +
∑

1≤k<l≤n

[F kb, F la] +
n−1∑
m=0

n∑
r=1

[−Fmb, F ra]

)

= u−1 · LN(a) · FuLN(b)

(
n−1∑
i=0

[F ib, a]−
n∑
j=1

[b, F ja]

)

From the uniqueness of u we may write u = u1u2 with u2 in Gh−1
h so that ρh ◦ N(a) =

N(a)u1 and

−u2 +

(
n−1∑
i=0

[F ib, a]−
n∑
j=1

[b, F ja]

)
+ Fu2 ∈ vh ⊕ h.

Recall φh(x) = inv ◦q ◦ L ◦Nh(x) where projT is the projection map from Vh · T1
h to T1

h,

and inv is inversion. Applying inv ◦ projT to our expression fro L ◦Nh(ab) we see

(6.2) φh(ab) = φh(a) · projT

(
−

n−1∑
i=0

[F ib, a] +
n∑
j=1

[b, F ja]

)
.
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We will abbreviate the rightmost term as

φh := q

(
n−1∑
i=0

[a, F ib, a]−
n∑
j=1

[F ja, b]

)
.

Identifying Gi
i+1 and Gj

j+1 with g, we can write

a =
∑

θ∈Φ+∩cΦ−

aθ and b =
∑

ψ∈Φ+∩cΦ−

bψ

for aθ and bψ elements of the roots space of θ or ψ. We can expand a commutator [F ib, F ja]

as a sum of commutators of the form [F ibψ, F
jaθ]. the element F ibψ is contained in the

root space of ckψ. Per Proposition 2.5, [gα, gβ] is nonzero and projects nontrivially onto h

only when α = −β, and in this case it is contained in h. Recall the functions ι and κ from

Definition 3.4, satisfying cκ(θ)ι(θ) = −θ for θ in Φ+ ∩ cΦ−. Since

v ≃
⊕

θ∈Φ+∩cΦ−

gθ,

we will write aθ for the projection of a onto the root space gθ and similarly for b. Then we

have

(6.3) φh(a, b) = q

(
n−1∑
i=0

[a, F ib, a]−
n∑
j=1

[F ja, b]

)
=

∑
θ∈Φ+∩cΦ−

[aι(θ), F
n−κ(θ)bθ]−[F κ(θ)aι(θ), bθ].

Taking a in G1
h and b ∈ Gh−2

h , it is clear that for a in Vh, the function φh(a,−) is a

homomorphism from V h−2
h to Th−1

h . Therefore the hypotheses of lemma 5.3 hold. Then

for a character χ of T1
h(Fq), we need to determine the subvariety of points a in Vh−2 where

φv(a,−)∗Lχ is trivial.

Let’s consider an extreme case first. χ restricts to a character of Th−1
h (Fq). If the restric-

tion of χ to Th−1
h (Fq) is a trivial character, then there is a unique character χ1 of T1

h−1(Fq)

such that the following commutes:

28



Vh T1
h

Vh−1 T1
h−1 Qℓ

φh

χ

φh−1 χ1

In this case we then have

(6.4) H i
c(Vh, φ

∗
hLχ) ≃ H i−2 dim(v)

c (Vh−1, φ
∗
h−1Lχ1).

If χ1 is trivial when restricted to Th−2
h−1 we repeat this reduction step. Either we find some

level where the character is no longer trivial, in which case the analysis proceeds, or we

discover that χ was the trivial character and

(6.5) H i
c(Vh, φ

∗
hQℓ) ≃ H i

c(A(h−1) dim(v),Qℓ) ≃


0 i ̸= 2(h− 1) dim(v)

Qℓ i = 2(h− 1) dim(v)

.

Now we suppose the restriction of χ to Th−1
h is not the trivial character. The scheme

Vh−2 has a Fqn-rational structure since it is stabilized by F n. Let a be a point in Vh−2(Fqnm).

We apply the results of section 5 to see

(6.6) φv(a,−)∗Lχ ≃ Lχ◦Nnm/1 ◦φv(a,−)

The norm Nnm/1 is a map from T1
h(Fqnm) to T1

h(Fq). We can factor this map as Nnm/1 =

Nn/1 ◦Nnm/n, with Nn/1 being the same map N from Definition 4.3. Then we have

(6.7) φv(a,−)∗Lχ ≃= Lχ◦N◦Nnm/n ◦φv(a,−).

The restriction of the Lie bracket to gα × g−α is a nondegenerate bilinear form whose
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image, tα, is also the image of the coroot α∨ in h.

The restriction of φh(a,−) to the subspace gθ spanned by bθ depends only on the value

of aι(θ). We will abuse notation and refer to this restriction as φ(aι(θ),−), a map that sends

gθ to either tθ or tθ ⊕ tι(θ) depending on whether or not ι(θ) = θ.

Lemma 6.1. If aι(θ) is in Fqn, then the map N ◦φ(aι(θ),−) from gθ(Fqn) to h(Fq) is trivial.

If aι(θ) is contained in some extension Fqmn but not Fqn, the map Nmn/1 ◦φ(xι(i),−) is a

surjection from gθ(Fqmn) onto Nmn/1(θ
∨(Fqmn)).

Proof. Abbreviate aι(θ) as a0, and κ(θ) as κ. Let Fqmn be an extension of Fqn Say a0 is in

gι(θ)(Fqmn) and b0 is a point in gθ(Fqmn) then

Nmn/1 ◦ φh(a0, b0) = Nmn/1

(
[a0, F

n−κb0]− [F κa0, b0]
)

= Nmn/1

(
[a0, F

n−κb0]
)
−Nmn/1 ([F

κa0, b0])

= Nmn/1

(
F n−κ[F κ−na0, b0]

)
−Nmn/1 ([F

κa0, b0])

= Nmn/1

(
[b0, F

κ−na0]
)
−Nmn/1 ([F

κa0, b0])

= Nmn/1

(
[F κ−na0 − F κa0, b0]

)
.

Then the above expression as a function of b0 is 0 if F na0 = a0 and a surjection onto

N(θ∨(Fqmn)) if F na0 ̸= a0.

Now take the opposite extreme from earlier and suppose the restriction of χ to T1
h is

nontrivial on Nθ∨(Fnq ) for every root θ. Then, applying Lemma 5.3 we see

(6.8) H i
c(Vh, φ

∗
hLχ) ≃ H i

c(Vh(Fqn) · V 2
h , φ

∗
hLχ).
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From our discussion about how G1
h(Fq) acts on Vh, we see that

(6.9) Vh(Fqn) · V 2
h ≃

⋃
g∈G1

h(Fq)

g · V 2
h

Since this action doesn’t affect φh, and has exactly qn(dim(v)) orbits, we conclude

(6.10) H i
c(Vh(Fqn) · V 2

h , φ
∗
hLχ) ≃ H i

c(V
2
h , φ

∗
hLχ)

⊕qn(dim(v)).

Generalizing, for j < h−1
2

take a in V j
h and b in V h−1−j

h . Then φh(a, b) = φh(a)φh(a, b),

for the exact same map φh from (in essence) V j
j+1 × V h−1−j

h−j to Th−1
h . Then, since χ has not

changed and remains trivial, we apply Lemma 5.3 to see

(6.11) H i
c(V

j
h , φ

∗
hLχ) ≃ H i

c(V
j
h (Fqn) · V

j+1
h , φ∗

hLχ),

and use the action of Gj
h(Fq) to conclude

(6.12) H i
c(V

j
h (Fqn) · V

j+1
h , φ∗

hLχ) ≃ H i
c(V

j+1
h , φ∗

hLχ)
⊕qn(dim(v)).

We must analyze two situations: h even and h odd. If h is even, we reduce to computing

the groups H i
c(V

h/2
h , φ∗

hLχ). But Gh/2
h is commutative, so N(V

h/2
h ) is contained in Yh and φh

is the constant map to the identity. Therefore

(6.13) H i
c(V

h/2
h , φ∗

hLχ) ≃ H i
c(V

h/2
h ,Qℓ) ≃ H i

c(A(h/2) dim(v),Qℓ) ≃


0 i ̸= h dim(v)

Qℓ i = h dim(v)

.

If h is odd, we are reduced to computing H i
c(V

(h−1)/2
h , φ∗

hLχ). We may write V
(h−1)/2
h ≃

V
(h−1)/2
(h+1)/2 × V

(h+1)/2
h in such a way that φh factors through projection onto the first term.
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φh restricted to V
(h−1)/2
(h+1)/2 takes the form φh(a) = φh(a, a). We relate the cohomology group

H i
c(V

(h+1)/2
(h−1)/2 , φ

∗
hLχ) to character sums and compute it in the next section.

Now we handle the last case, when the restriction of χ to T1
h is not trivial, but vanishes

on N(θ∨(Fqn)) for some θ. Let Λ be the set of roots α in Φ such that the restriction of χ to

Th−1
h vanishes on N(tα). If α is in Λ, so are cα and −α. If α and β are in Λ so is α+ β, if it

is a root, and therefore so is rαβ, the reflection of β over the hyperplane orthogonal to α..

Therefore Λ is a c-stabilized subroot system of Φ. The roots α are exactly the ones whose

root spaces centralize the torus in G with cartan algebra equal to the kernel of χ on Th−1
h ,

so the roots generate to an F -stable subgroup of G. Denote the subgroup by Lχ and its Lie

subalgebra of g by l. In most cases, but not always, Lχ is a Levi subgroup of Gk̆.

We further have a sequence of Gh subschemes Lχh. Proceeding in a similar manner to our

discussion of when Lχ is trivial, we see that

(6.14) H i
c(Vh, φ

∗
hLχ) ≃ H i

c(Vh(Fqn) · (Vh ∩ Lχh) · V
2
h , φ

∗
hLχ).

Now we can generalize this to all levels.

Definition 6.2. Set V χ
h := Vh ∩ Lχh and define

V χ,j−
h := V j−1

h (Fnq ) · V
j
h · V χ

h and V χ,j
h := V j

h · V χ
h

We have

(6.15) V χ,j−
h =

⋃
g∈Gj−2

h

g · Vhχ,j

which, just like before, yields

(6.16) H i
c(V

χ,j−
h , φ∗

hLχ) ≃ H i
c(V

χ,j
h , φ∗

hLχ)
M .
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In this case M = qn (dim v)− dim(l)).

Take j < h−1
2
, a in V χ,j

h , a root θ in Φ+ ∩ cΦ− but not in Lχ and b ∈ V h−1−j
h contained

in the root space of θ. If we write φh(ab) = φh(a)φh(a, b) the second factor depends only on

the projection a of a to Vj+1 and the projection b of b to V h−1−j
h−j . We may write a uniquely

as aL · a0, an element aL of L1
j+1 ∩ Vj+1 multiplied by an element a0 of v/l in Gj

j+1.

For α and β roots, recall that the commutator subgroup [Ur
h,α,Us

h,β] is contained in the

group generated by Ur+s
h,iα+jβ for all positive integers i and j with iα+jβ a root. For any root

β write Ur
h,L+β for the subgroup generated by all Ur

h,iα+jβ with α a root in Lχ and iα + jβ

a root.

By rearranging terms at the cost of adding in commutators, we relate L ◦ N(ab) to

L ◦N(a) · L ◦N(b). Observe that

F ibF ja = F jaF ibU [b, a0]

for [b, a0] an element in Gh−1
h , as before, and U an element in Uj+1

h,L+ciθ
. Further, we have that

F kb commutes with U for any k and F iaU1 = U2F
ia for U1 and U2 elements of Uj+1

h,L+ckθ
for

any integer k. Therefore there are a collection of elements Ui in Uj+1
h,L+ciθ

such that

(6.17) L ◦N(ab) = L ◦N(a) · L ◦N(b) ·
(∏

Ui

)(n−1∑
i=0

[F ib, a0]−
n∑
j=1

[b, F ja0]

)

Since θ is not a root in Lχ, the projection of each Ui to VhT1
h is contained in Vh, and

therefore, for the exact same formula for φh we have

φh(ab) = φh(a)φh(a0, b).
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Therefore

(6.18) H i
c(V

χ,j
h , φ∗

hLχ) ≃ H i
c(V

χ,(j+1)−
h , φ∗

hLχ).

We may repeat this process until all that remains is to compute the cohomology of Lχ

on V χ
h ·V h/2

h or V χ
h ·V (h−1)/2

h , depending on the parity of h. Either space may be written as a

product of L1
h and an affine space AM corresponding to the root subgroups Uh/2

h,θ or U(h−1)/2
h,θ

for θ a root in Φ+ ∩ cΦ− that is not in Lχ.

The map φh now factors as a product of maps, one from L1
h to T1

h and the other from

the affine space. If h is even, the map on the affine space factor is trivial, and we have

H i
c(V

χ
h · V h/2

h , φ∗
hLχ) ≃ H i−2M

c (V χ
h , φ

∗
hLχ).

If h is odd, the map on the affine factor is not trivial, but in the next section, we will show

that H∗
c (AM , φ∗

hLχ) is supported in only middle dimension, so we have

H i
c(V

χ
h · V (h−1)/2

h , φ∗
hLχ) ≃ H i−M

c (V χ
h , φ

∗
hLχ).

In either case, it suffices to compute the cohomology groups of L1
h. Since χ ◦N is trivial

on the intersection of Lh with Th−1
h there is a unique character χ′ on T1

h−1 such that we have

V χ
h T1

h

V χ
h−1 T1

h−1 Qℓ

φh

χ

φh−1 χ′

and can relate H i
c(V

χ
h , φ

∗
hLχ) ≃ H i−2 dim l

c (V χ
h−1, φ

∗
h−1Lχ′). If χ′ is trivial at the deepest level,

we can reduce to h − 2. If χ is nontrivial on part of the torus, we can find Lχ
′ ⊂ Lχ and

repeat the process. All that remains is to compute the cohomology of the various φ∗
hLχ on

the affine spaces we have constructed, which we will do in the next section.
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CHAPTER 7

Final Computations

We have now reduced our computations to the following problem:

Let θ be a root in Φ+ ∩ cΦ−, gθ ⊂ v the associated root space in g rand hθ the image of

the coroot θ∨ in h. Let χ be a character on h(Fq) such that χ ◦ N is not trivial on hθ. Set

R := gθ × gι(θ) if ι(θ) ̸= θ and R =: gθ if not. We have a map

φ : R → h

We need to compute the cohomology groups H i
c(R,φ

∗Lχ)

This can be done explicitly, and in this section we will show that the resulting cohomology

groups are supported in only one dimension, and have maximal eigenvalues.

Since we are interested in the pullback character χ ◦N ◦ φ, we may modify φ so long as

the composition is unchanged. As originally presented, φ sends

(a, b) → [F n−κa, b]− [a, F κb]

which is contained in hθ + hι(θ). But this has the same image under N as the function

(a, b) → F κ−n[F n−κa, b]− [a, F κb] = [a, F κ−nb− F κb]

which has image contained in hθ. Furthermore we may choose isomorphisms from gθ, gι(θ)
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and θ∨ to A1 such that this map simplifies to

(x, y) 7→ x(yq
κ−n − yq

κ

).

First, consider the case where θ ̸= ι(θ).

Write ψ for χ ◦ N , a nontrivial character of A1(Fqn). The trace formula [7][1.9] tells us

for X a separated scheme of finite type over Fqmn and f a morphism f : X → A1

∑
(−1)iTr

(
Fmn|H i

c(X, f
∗Lψ)

)
=

∑
x∈X(Fqmn )

ψ ◦ Nmnm/n ◦f(x)

Then

4∑
i=0

(−1)iTr
(
(Fmn|H i

c(A2, φ∗Lψ)
)
=

∑
y∈Fqnm

∑
x ∈ Fqnmψ

(
Nmmn/n(x(y

qκ−n − yq
κ

))
)

=
∑
y∈Fqn

∑
xy ∈ Fqnmψ(0)

+
∑

y∈Fqnm\Fqn

∑
x ∈ Fqmnψ

(
Nmmn/n(x(y

qκ−n − yq
κ

)0
)

= qnqnm +
∑

y∈Fqnm\Fqn

∑
z ∈ Fqmnψ(Nmmn/n(z))

= qnqnm

Deligne’s theorem on the Riemann Hypothesis [DL80][3.3.1] constrains the eigenvalues

of F nm acting on the cohomology groups and allows us to conclude dim (H i
c(A2, φ∗Lχ̃)) = 0

unless i = 2, in which case the dimension is qn and the action of F n has all eigenvalues equal

to qn.

Now consider the case θ = ι(θ). This immediately implies n is even and 2κ = n. The

space hθ is not F -stable, but it is stabilized by F κ, which per our isomorphism sends x to

−xqκ . Since N(x − F κx) must equal zero, we must have ψ(x + xq
κ
) = 0, so for ψ to be

nontrivial it must not have conductor dividing κ. In this case we do not need to adjust φ
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for it to land in hθ and one choice for the formula sends1

φ(x) = 2xxq
k

.

In [4, Proposition 6.2] Boyarchenko and Weinstein show

Proposition 7.1. Let f : A1 → A1 be the function x 7→ xq
κ+1 and ψ a nontrivial character

of Fq2κ that is trivial on Fqκ. Then

dimHj
c (A1, f ∗Lψ)) =


0 j ̸= 1

qκ j = 1

And qn Frobenius acts on the first cohomology group by −qκ.

This exactly describes our situation, so we have computed the cohomology groups. Note

that in all cases the cohomology groups we found were maximal, in the sense that the

eigenvalues of F n on the ith cohomology group were equal to (−1)iqin/2. We have related

every cohomology group in H i
c(Yh,Qℓ) to these groups, or the trivial group H0

c (∗,Qℓ) by a

combination of summing, shifting degree, and tensoring, so we conclude that Yh is a maximal

variety.

1Here is the only place where we need the assumption that the characteristic of the residue field is odd
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CHAPTER 8

Nonelliptic Elements

The paper has so far been concerned with the closed strata Yh for c ellptic. Here, we return

to the context of Xh, not any strata, and general c, and we show that the non-elliptic case

can be related back to the elliptic one on smaller root systems.

As in section 2, let H be a connected split reductive group, S a split maximal torus in H

and c an element of the Weyl group of S. Define F = adjc ◦σ, the group G and maximal torus

T just as before. Let L be the Levi subgroup of Gk̆ that centralizes (T
c)◦. L is preserved by

F therefore there is a subgroup L0 subgroup of G defined over k such that (L0)k̆ ≃ L. We

write Lh for the associated subschemes of Gh.

Theorem 8.1. We may choose a borel B containing T with unipotent radical U such that

(8.1) Xh = {x ∈ Gh|x−1Fx ∈ Lh ∩ Uh}/
(
(Lh ∩ Uh) ∩ F−1(Lh ∩ Uh)

)
.

Note that when c is elliptic this theorem is vacuously true becuase (T c)◦ is in the center

of G so L is the entirety of G.

Proof. To prove this we will find a U with the property that for any u ∈ U there is a v in

U ∩ F−1(U) such that v−1uFv ∈ L ∩ U .

For our theorem we will need the following lemma

Lemma 8.2. There is a unipotent U which can be decomposed as a product (L∩U) ·J where

J = U ∩ FU ∩ F 2U ∩ · · · is the largest subgroup of U stabilized by F .
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Granting the lemma, let us prove the theorem. Given u in U we want to show

(8.2) u = v−1mF (v)

for some v ∈ U ∩ F−1U and m in L. By the lemma, we may write u = m0j0 for some m0

in L ∩ U and j0 in J . Take m = m0. Define the map Fm(g) = F (mgm−1). J is a normal

subgroup of U so Fm is an isogeny and by Lang’s theorem j 7→ j−1Fm(j) yields a surjection

from J to itself. We can then find a j1 such that j−1
1 Fm(j1) = j0. If we take v = mj1m

−1

then

(8.3) v−1mF (v) = mm−1v−1mF (v) = mj−1
1 Fm(j1) = mj0 = u

Now we need to prove the lemma.

Proof. For any choice of borel B containing T , its unipotent radical U can be written as a

product of root subgroups. Such a root subgroup is in L if it corresponds to a root α with

⟨γ, α⟩ = 0 for every cocharacter γ of T whose image is contained in T c. Let Φ be the root

system of T , Φ′ be the subset of roots contained in L, and let V = Φ⊗ R and V ′ = Φ′ ⊗ R

be the vector spaces spanned by these sets. Since c is in the Weyl group of T , it acts on Φ

and V .

Choosing a U is equivalent to choosing a hyperplane H in V containing no roots and a

positive side H+. The group U ∩ FU ∩ F 2U · · · is generated by the roots in H+ that are

never sent to H− under the repeated action of c.

Then our lemma can be rephrased in the following way:

There is a hyperplane H in V containing no roots such that for any root r in H+ either r

is in V ′ or cr is also in H+
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Now we construct such an H. Choose a nonzero cocharacter γ fixed by c. (If there are

no nonzero cocharacters then V ′ = V and the theorem is clearly true.) Let H ′ = γ⊥ be the

hyperplane in V orthogonal to γ. This is not an acceptable choice for H because it contains

roots; it contains all of Φ′. (If Φ′ is empty, then w is trivial and the theorem is once again

clearly true). Nonetheless, let (H ′)+ be the set of vectors in V with ⟨γ, v⟩ > 0 for a root α

in (H ′)+ we have

(8.4) ⟨γ, w · α⟩ = ⟨w−1 · γ, α⟩ = ⟨γ, α⟩ > 0.

We can therefore perturb H ′ slightly to no longer contain any elements of Φ′ and the

result will be a hyperplane H with the desired properties.

This proves the lemma, and therefore Theorem 8.1.

Definition 8.3. For an F -rational Levi subgroup L of G define

(8.5) Xh(L) = {x ∈ Lh|x−1Fx ∈ Lh ∩ Uh}/
(
(Lh ∩ Uh) ∩ F−1(Lh ∩ Uh)

)
.

(8.6) Xh =
⊔

g∈GF
h /L

F
h

g ·Xh(L)

Any lift of c to Gk̆ will centralize T c and therefore be contained in L ∩ N(T ), so c is an

element of the Weyl group of T in L. It must be an elliptic element of the Weyl group of

T in L, because its fixed torus is central. L is isomorphic to a product of reductive groups

G1 × G2 × ·Gn with irreducible Weyl groups. We also have c = c1c2 · · · cn where the ci are

pairwise commuting lifts of Weyl group elements such that ci|Gi
is an elliptic element of the

Weyl group of Ti ⊂ Gi. and ci|Gj
is trivial for i ̸= j.
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Therefore Xh(L) can be written as a product of schemes Xh,1 × Xh,2 · · · × Xh,n where

Xh,i recreates our construction at the start of this paper for the group Gi, a twist of a split

reductive group Hi by an elliptic element. So understanding the cohomology of the Xh

construction for elliptic c suffices to cover the construction for all c.

Note that this does not imply maximality results for the closed strata. For one, we

currently require the ci to all be balanced, but even if that were the case, the scheme Yh

would not necessarily be maximal. The Yhi , even if maximal, would be maximal over separate

fields, and their product might not be maximal at all.

As an example, take H = GL6 and

c =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


Then L is a twist of GL2×GL4. Let Y

2
h and Y 4

h be the corresponding schemes for GL2 and

GL4 respectively. F
2 acts on H i

c(Y
2
h ,Qℓ) with eigenvalue (−1)iqi and F 4 acts on Hj

c (Y
2
h ,Qℓ)

with eigenvalue (−1)jq2j. The product Y 2
h × Y 4

h has cohomology groups

Hk
c (Yh,Q) ≃ ⊕i+j=kH

i
c(Y

2
h ,Qℓ)⊗Hj

c (Y
4
h ,Qℓ).

Yh is defined over Fq4 , but we can see that the action of F 4 on its cohomology groups

will not have constant eigienvalues, and in fact there is no extension field over which Yh is

maximal.
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CHAPTER 9

The Example of GL4

In this section we will walk through the arguments presented elsewhere in this thesis, but

refer throughout to the specific example of H = GL4. We will prove very little, and instead

cite the relevant theorems that occur earlier in the paper. GL4 was chosen as an example

because in this case it will be very easy to write down elements of Gh. The results for

semisimple groups, though they imply the result for GLn were modeled on work originally

done for GLn.

LEt k be a local field of characteristic p1, and write k̆ for the completion of its maximal

unramified extension. Let σ ∈ Gal(k̆/k) be the frobenius which acts on the residue field by

raising to the qth power for some q = pi. We define a σ action on H(k̆) by acting separately

on each matrix entry. We let S be the torus of diagonal matrices inH and U be the unipotent

group of lower triangular matrices2. Finally, we write U for the unipotent opposite U

The Lie algebra gl4 has root system A3. We can model A3 as the set of vectors in R4

with length
√
2, integer coordinates, and sum of all coordinates equal to 0. As a base for

the root system we may choose αi = ei+1 − ei for 1 ≤ i ≤ 3. Let si be the reflection about

αi, and take c = s1s2s3 as our choice of elliptic element in the Weyl group of S.

1The results in this paper, and even the below construction, work equally well in the case where k is
characteristic 0. We have assumed characteristic p here because under this assumption the schemes we work
with have the simplest description

2Though a somewhat nonstandard choice, this example works most cleanly if we choose these instead of
upper triangular matrices.
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If we identify X∗(S) with the cocharacter lattice of A4 via

α∨
1 (t) =



t−1 0 0 0

0 t 0 0

0 0 1 0

0 0 0 1


and similarly for α2 and α3, then we see that U is generated by all of the positive root

subgroups. This identification allows us to choose an element of N(S), so that the action of

c is realized by conjugation in SL4. We define the endomorphism adjc of H by conjugation

by 

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


.

Now define the morphism F := adjc ◦σ(g). Let G be the group scheme whose R-points,

for any k-algebra R are

G(R) = {g ∈ SL4(R⊗k k̆) | Fg = g}.

G is an inner twist of H. Let T be the group of diagonal matrices in G, a twist of the

torus S. Note that the group T (k) is isomorphic to the multiplicative group of the unique

unramified degree four extension of k.

To get a parahoric model for G, we take a point in the intersection of the apartment of

T with the F -fixed locus in the building B(G, k̆). In this case, the intersection is only one

point, x. The attached parahoric model has

Gx,0(O) ≃ SL4(O) and Gx,0(Ok) = SL4(O)F
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Then, following [5] we have for any integer h an affine group scheme Gh over Fq with

Gh(Fq) = Gx,0(O)/Gx,(h−1)+(O) and Gh(Fq) = Gx,0(Ok)/Gx,(h−1)+(Ok).

We may write this more concretely with the following definition adapted from [5]. Define

W = Spec(Fq[[t]]). The Frobenius σ acts on W(A) by σ(a0 + a1t+ · · · ) = aq0 + aq1t+ · · · . We

let V be the shift operator: V (a0 + a1t+ · · · ) = at0 + a1t
2 + · · · . and define Wh := W/V hW.

Then we can write elements of Gh explicitly with this construction, and we have

Gh(Fq) ≃ GL4(Wh−1(Fq)) and Gh(Fq) ≃ GL4(Wh−1(Fq))F .

Though F is defined as an endomorphism of GL4(k̆), it descends naturally to an endomor-

phism of GL4(Wh−1), since adjc is well defined over Fq. We also define group schemes Th

and Uh over Fq as

Th(Fq) = T (Wh−1(Fq)) and Uh(Fq) = U(Wh−1(Fq))

F stabilizes T so it gives Th the structure of a group scheme over Fq with

Th(Fq) = T (Wh−1)
F .

For i > j there is a quotient map from Wi to Wj, and thus a map from Gi to Gj, and similar

maps for Ti and Ui. We write Gj
i (or U

j
i or T

j
i ) for the kernels of these maps.

Definition 9.1. The Parahoric Deligne-Lusztig Varieties are schemes Xh defined over Fq

by

Xh = {g ∈ Gh|g−1Fg ∈ Uh ∩ F (Uh)}

The coxeter element c has order 4. For every divisor d of 4 (so d=1,2,4) let S(d) be the

subtorus of S that is fixed by adjdc . Now defineM (d) as the centralizer of S(d). These are Levi
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subgroups of H. Since adjc and F commute, M (d) is stabilized by F and yields a k-rational

subscheme of G, and an associated sequence of group schemes M(d)
h . Note that M (4) = T

and M (1) = G so only M (2) is a new scheme. We then define

U(d)
h := (M(d)

h U1
h) ∩ Uh

and

X
(d)
h = {g ∈ Gh|g−1Fg ∈ U(d)

h ∩ F (U(d)

h )}.

Our main focus of interest will be X
(4)
h . Since L(4) = T and the intersection of T and U

is trivial U(4)
h = U1

h. We can reduce even further to studying the scheme

Yh = {g ∈ G1
h|g−1Fg ∈ U1

h ∩ F (U
1

h)}

by showing that X
(4)
h is a disjoint union of copies of Yh.

Now we look at the sturcture of Yh. To simplify notation, abbreviate

Vh := U1
h ∩ FU

1

h.

The group consists of matrices of the form

v =



1 0 0 0

x⃗1 1 0 0

x⃗2 0 1 0

x⃗3 0 0 1


for x⃗i an element of Wh−1 with constant term 0. We will refer to its elements simply as

vectors [x⃗1, x⃗2, x⃗3]
T . We want to make elements of Yh from the set of such v. We define
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Nh(v) =



1 σx⃗3 σ2x⃗2 σ3x⃗1

x⃗1 1 σ2x⃗3 σ3x⃗2

x⃗2 σx⃗1 1 σ3x⃗3

x⃗3 σx⃗2 σ2x⃗1 1


Since we are able to write the original element v as Id+M , then Nh(v) = Id+M +

FM + F 2M + F 3M . Of course, we can only write elements of G1
h as Id+M because we are

exploiting the explicit presentation we chose for GL4 as our example. Even an element of

SL4 becomes much more difficult to write down so explicitly.

We could hope that Nh(v) is contained in Yh, but that is not quite true. It is easy to

check, however, that

L (Nh(v)) = Nh(v)
−1FNh(v) =



1 + s⃗ 0 0 0

y⃗1 1 0 0

y⃗2 0 1 0

y⃗3 0 0 1


where s and the y⃗i are elements of Wh−1 with the constant terms equal to 0. This means

that L(Nh(v)) is equal to an element of Vh mutiplied by an element of T1
h. We can write it

uniquely as tu.

Let g be an element of G1
h with g−1Fg = tu. For s a second element of T1

h we have

(gs)−1F (gs) = s−1g−1FgFs = s−1tuFs =
(
s−1Fst

) (
Fs−1uFs

)
Since T1

h normalizes Vh, the conjugation Fs−1uFs remains in Vh, so we see that sg is con-

tained in Yh if and only if s−1Fs = s−1.

We define a map φh from Vh to T1
h that sends v to t−1, and define a scheme Wh via the

pushout
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Wh Vh

T1
h T1

h

pr1

pr2 φh

L

Then there is a map fromWh to Yh. Given w inWh, we can send it to Nh(pr1(w))·pr2(w).

The resulting map is in fact an isomorphism from Wh to Yh. See 4.5 for more details.

The cartesian diagram lets us relate

H i
c(Wh,Qℓ) ≃

⊕
χ

H i
c(Vh, φ

∗
hLχ)

where the sum on the right is taken over Qℓ characters of T1
h(Fq), and Lχ is the rank one

multiplicative local system associated to χ, defined in section 5. We can then compute the

cohomology separately for each character.

We group the characters of T1
h(Fq) into 3 separate classes. Any character restricts to a

character of Th−1
h (Fq) ≃ Fq4 . We define the conductor of a character of Fq4 to be the smallest

integer d such that the character factors through the trace map from Fq4 to Fqd . Clearly the

only conductors we see are d = 1, 2 or 4, and we group the characters accordingly.

If χ has conductor 1, analysis of the formula for φh allows us to find a character χ1 of

T1
h−1(Fq) satisfying the following commutative diagram

Vh T1
h

Vh−1 T1
h−1 Qℓ

φh

χ

φh−1 χ1

So the cohomology groups H•
c (Vh, φ

∗
hLχ) are a shift of the groups H•

c (Vh−1, φ
∗
h−1Lχ1). The

latter groups occur in the cohomology of Yh−1 so they may be determined by induction.

For the other characters we must do more work. Lemma 5.3 says the following

Theorem (5.3). Let S1 be a scheme of finite type over Fq, put S = S1 × Ga. Let R be an

algebraic group over Fq and F be a multiplicative rank one local sysem on R. Finally let f
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be a morphism S → R that sends a point (x, y) ∈ S1 × A1 to

(9.1) f(x, y) = f1(x, y) · f2(x)

and such that at each point x in S1 the restriction to the fiber f1|Sx : Ga → R is a homomor-

phism.

Define S2 to be the subscheme of points x in S1 such that f ∗
1F |Sx is trivial. Then

(9.2) H i
c(S, f

∗F ) ≃ H i
c(S2 ×Ga, f

∗
2F ).

Since Vh is isomorphic as an Fq scheme to the affine space A3(h−1) there are many ways

to write it as a product of a smaller scheme and Ga. For i = 1, 2, 3 expand

x⃗i = xi,1t+ · · ·+ xi,h−1t
h−1.

Then for i = 1, 2, 3 and 1 ≤ j ≤ h− 1 we may write

Vh ≃ V i,j
h × Spec(Fq[xi,j])

for V i,j
h a scheme isomorphic to affine 3(h− 1)− 1 space. We think of elements of V i,k

h as a

collection of coefficients xa,b for a = 1, 2, 3 and 1 ≤ b ≤ h−1 except the pair a = i and b = j.

There are many choices for such isomorphisms, but we will need to take care to find ones

such that the restriction of φh to the fibers is a group homomorphism, so that we satisfy the

hypotheses of lemma 9.

When j = h− 1 we can choose such an isomorphism. In this case, regardless of the

conductor of χ, we find the homomorphism from Ga → T1
h is always trivial.

This does not much help us compute cohomology, but it is a necessary step for us to find

the right splitting of Vh into a smaller scheme times an affine space when j = h− 2. In this

case we see a few options. Let x be a point in V i,h−2
h .

48



� If χ has conductor 4, the induced character on Spec(Fq[xi,h−2]) is trivial if and only if

x4−i,1 is fixed by σ4.

� If χ has conductor 2, the induced character on Spec(Fq[x2,h−2]) is always trivial and

the inducted character on Spec(Fq[xi,h−2]) for odd i is trivial if and only if x4−i,1 is

fixed by σ4.

Then if χ has conductor 4 we may compute the cohomology of φ∗
hLχ on the subscheme

of Vh consisting of vectors

v =


a1,1t+ x1,2t

2 + · · ·x1,h−1t
h−1

a2,1t+ x2,2t
2 + · · ·x2,h−1t

h−1

a3,1t+ x3,2t
2 + · · ·x3,h−1t

h−1


with the as fixed by σ4. A further reductive step lets us compute cohomology on the sub-

scheme of vectors

v =


x1,2t

2 + x1,3t
3 + · · ·x1,h−1t

h−1

x2,2t
2 + x2,3t

3 + · · ·x2,h−1t
h−1

x3,2t
2 + x3,3t

3 + · · ·x3,h−1t
h−1


On this subscheme, we can once again find a product decomposition as in Lemma 9, this

time taking Spec(Fq[xi,h−3]) as the affine space. When we do this, we see once again that

the pullback of the character χ is trivial if and only if x4−i,2 is fixed by σ4.

We may repeat this process over and over until we have cleared away the xi,k for k <
h−1
2
.

We have now reduced to two cases. If h is even, we are left with the subscheme consisting of

v =


x1,h/2t

h/2 + · · ·x1,h−1t
h−1

x2,h/2t
h/2 + · · ·x2,h−1t

h−1

x3,h/2t
h/2 + · · ·x3,h−1t

h−1

 .

Observe that Gh/2
h is a commutative group, which implies that for v as above, Nh(v) is
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contained in Yh, not YhT1
h. Then φh restricted to this scheme is the constant map to 0, so

the pullback of Lχ is trivial and the desired cohomology groups are exactly those of affine

3(h− h
2
) space with the constant sheaf.

If h is odd, we are left with the subscheme consisting of

v =


x1,(h−1)/2t

(h−1)/2 + · · ·x1,h−1t
h−1

x2,(h−1)/2t
(h−1)/2 + · · ·x2,h−1t

h−1

x3,(h−1)/2t
(h−1)/2 + · · ·x3,h−1t

h−1

 .

Note that φh is not trivial when restricted to this subscheme. However, we may write

the scheme as a product

Spec(Fq[x1,(h−1)/2, x2,(h−1)/2, x3,(h−1)/2])× A3(h−3)/2

and then see that φh factors through projection onto the first factor. We are reduced to

computing H i
c(A3, φ∗

hLχ), and the dimensions of these cohomology groups can be written

out explicitly as some simple character sums.

The process is similar if χ has conductor 2. However, this time in our first reduction step

we may only truncate rows 1 and 3, arriving at the subscheme consiting of

v =


0 + x1,2t

2 + · · ·+ x1,mt
m + · · ·x1,h−1t

h−1

x2,1t+ x2,2t
2 + · · ·x2,h−1t

h−1

0 + x3,2t
2 + · · ·+ x3,mt

m + · · ·x3,h−1t
h−1


In this situation, we can continue with our truncation process, but only for the first and

third entries. We are left with the scheme of vectors of the form
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v =


0 + · · ·+ x1,mt

m + · · ·+ x1,h−1t
h−1

x2,1t+ x2,2t
2 + · · ·x2,h−1t

h−1

0 + · · ·+ x3,mt
m + · · · x3,h−1t

h−1


with m equal to h

2
or h−1

2
depending on the parity of h, just like before. This scheme can be

decomposed as a product

(M(d)
h ∩ Vh)× A2(h−m).

On this scheme, φh can be expressed as a product of separate maps from each of the

factors to T1
h, and we may compute the cohomology of φ∗

hLχ separately on each factor.The

computation on the right factor is handled exactly the the same way as in the conductor 4

case: If h is even the pullback is trivial and if h is odd it reduces to the exact same character

sums. For the left factor we have a commutative diagram

M(2)
h ∩ Vh T1

h

M(2)
h−1 ∩ Vh−1 T1

h−1 Qℓ

φh

χ

φh−1 χ1

for a unique character χ1. If the restriction of χ1 to Th−2
h−1 has conductor 4, the cohomology

groups H i
c(M

(2)
h−1 ∩ Vh−1, φ

∗Lχ1) can be expressed via character sum. If the conductor is 1

or 2, we will be able to project down to Vh−2 and repeat the process. If we make it all the

way down to T1
1, we will know the cohomology is trivial.

Though this process is lengthy, it is not overly difficult to keep track of which cohomology

groups occur in H i
c(Yh,Qℓ), and the eigenvalues of Frobenius on these groups are determined

by explicit character sums.
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