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ABSTRACT

Autonomous robots promise to improve human productivity and quality of life by assist-

ing in our homes, factories, and labs to automate the dull, dirty, and dangerous. To achieve

these long-promised versatile robot assistants, robots must be able to operate robustly in un-

structured real-world environments. Environments made for humans remain challenging for

autonomous robots due to their highly unstructured nature which arises from environmental

occlusions, dynamic environments, and the diversity of possible objects a robot might en-

counter. These challenges result in a plurality of competing hypotheses present at all levels of

the system. Modelling the uncertainty inherent to the robotic system is a crucial capability

to enable robust operation in unstructured environments.

This dissertation considers the problem of scalable, robust operation under uncertainty

through distributed probabilistic inference. To handle the intractable nature of these prob-

lems, distributed probabilistic inference decomposes high-dimensional problems into sim-

pler, parallelizable subproblems. These are represented as probabilistic graphical models

and solved via message passing. Further, the resulting distributions must encompass ar-

bitrary, multi-modal uncertainty which results from competing hypotheses and noisy esti-

mates. We employ nonparametric distributions for their flexible representational capabilities.

We present novel approaches leveraging these insights and demonstrate their application to

robotic perception and planning problems.

First, we consider the problem of articulated object localization in cluttered scenes to-

wards robot manipulation of hand-tools. We take a parts-based approach, modelling object

geometries by decomposing them into their component parts. We employ Nonparametric

Belief Propagation to perform distributed inference over the resulting graphical model. A

learned observation likelihood is leveraged alongside object geometry in order to infer the be-

lief over the part poses. We demonstrate that the proposed method is robust to challenging

observations with heavy occlusion on a custom dataset.

Second, we turn to the task of robotic planning for object manipulation. Many tasks

in robotic manipulation are described by goals that are intractable to model explicitly (e.g.

stable grasping or user preferences). We present a planning framework which considers un-

certainty in the goal specification. To accomplish this, we consider robotic planning through

xv



the lens of probabilistic inference, modelling both the trajectory and goal as distributions.

We propose a novel differentiable loss over arbitrary nonparametric goals which is demon-

strated on high-dimensional robotic manipulation tasks of grasping and placement.

Third, we extend the problem of planning as inference to the high-dimensional problem

of multi-robot coordination. We propose Stein Variational Belief Propagation, an algorithm

for performing inference over graphical models. We show that the proposed algorithm is

more effective at representing the underlying distribution than sampling-based baselines.

We demonstrate the capability of this method to solve challenging, dynamic problems in

robotics through multi-robot coordination experiments.

The promise of robotics coupled with the open challenges that remain in the field as

described in this dissertation highlight the immediate need to train the next generation of

diverse talent with expertise in robotics. Towards this objective, this dissertation formalizes

recent trends in robotics undergraduate education. We present a modular introductory

robotics curriculum which involves programming a custom robotic platform appropriate for

undergraduate instructional use. Finally, we suggest best practices for teaching robotics as a

discipline at the undergraduate level based on lessons learned teaching the described course

at the University of Michigan and three partner institutions to over 100 students over the

past three years.
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CHAPTER 1

Introduction

The field of robotics has seen impressive growth over the past decades, but the promise

of ubiquitous, versatile robot assistants has yet to be fulfilled. These autonomous robots

have the potential to assist humans in home environments, factories, and laboratory envi-

ronments. Autonomous robotic execution has seen tremendous growth in structured, static

environments such as in manufacturing facilities or in highly constrained tasks (e.g. as-

sembly line automation, vacuuming a room). However, versatile operation in unstructured

environments, like those humans inhabit in their daily lives, remains an open challenge for

autonomous mobile manipulators. Reliable operation in these environments poses a plural-

ity of challenges for modern robots. Unlike structured lab environments, our unstructured

human spaces are highly challenging for robotic systems due to the variability of possible sur-

roundings and objects present. Challenging conditions such as heavy clutter lead to partial

observability in the robot’s perception. Additionally, these spaces can be highly dynamic due

to other humans and agents moving in the environment. The challenge of modern robotics

is to achieve robust operation in these natural environments.

Robotic manipulation tasks can be decomposed at a high-level into two key components:

perception and action. Robotic perception is challenging due to the high-dimensional nature

of RGB and depth camera data, and the partial observability of objects in the environment

(e.g. in Figure 1.1, the objects of interest to the robot are heavily occluded). To interact with

the environment, robots must then plan actions to manipulate objects, taking advantage of

the scene perception (e.g. in Figure 1.1, the robot manipulates the hand tools to accomplish

a task). Versatile robotic assistants require robust perception of the objects of interest and

flexible planning objectives which scale across tasks.

Uncertainty estimation is a crucial capability in robotic systems for both perception and

planning. Considering uncertainty enables robots to maintain multiple completing hypothe-

sis over time, lending robustness to uncertainty and dynamic environments. Robots exist in

a time-varying system, in which the state and observations continuously evolve in response to

changing environmental conditions and the robot’s own actions. As such, uncertainty forms

1



PERCEPTION PLANNING

SENSOR 
OBSERVATION

POSE UNCERTAINTY

TRAJECTORY 
UNCERTAINTY

Thesis intro version

Figure 1.1: Versatile robotic assistants must be capable of performing various assembly and
maintenance tasks. A robot faced with a highly cluttered scene (left) must first perceive the
objects of interest (middle). The robot must then manipulates objects to complete the task
(right), which involves performing complex interactions with the objects.

a key signal to the robot to reason over. To model such uncertainty, probabilistic inference

techniques can be employed in order to maintain belief distributions over the robot state and

action. Probabilistic approaches have a rich history of success in robotics [161, 150, 8, 61].

However, these methods often must contend with a tradeoff between the representational

capability and the computational tractability of the algorithm. For example, in the manip-

ulation task depicted in Figure 1.1, both the perception and planning problems are high-

dimensional and multi-modal, due to the plurality of possible object locations and trajec-

tory modes. While common approximations (e.g. Gaussian distributions) enable convenient

mathematical properties to be exploited, yielding efficient algorithms [179, 161, 37], these

representations are limiting. Fully specifying distributions of possible states and actions in

cases such as that in Figure 1.1 requires more flexible representations.

Probabilistic inference techniques applied to robotics pose a number of open challenges.

First, the high-dimensional nature of robotic vision and planning make it these techniques

computationally expensive. Second, maintaining multi-modal distributions with the abil-

ity to represent the multiple competing hypotheses present in the robotic tasks described

is challenging in probabilistic inference. As an alternative to limiting Gaussian or discrete

approximations, some probabilistic inference techniques opt to represent these complex dis-

tributions nonparametrically, e.g. as mixtures of Gaussians or as implicit distributions.

These approaches lend rich representational power, but often rely on expensive computa-

tional operations [26, 152, 144, 42]. Problems which suffer from both model misspecification

and computational complexity are known as doubly intractable.

This dissertation is concerned with the latter of the approaches, arguing that the chal-

lenging nature of modelling multiple, diverse competing hypotheses prevalent in robotics ap-
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plications necessitates the representational power of nonparametric distributions. This body

of work focuses on distributed solutions to robotics problems, taking a divide-and-conquer

approach to solving these complex problems by considering multiple smaller subproblems

which can be efficiently solved in parallel. Problems of particular interest are those which

can be represented as graphs and solved via graphical probabilistic inference. This is demon-

strated on both perception and planning problems in robotics. We model object localization

as graphical inference using Belief Propagation and apply the resulting approach to articu-

lated object pose estimation in cluttered scenes [126]. We explore the use of learned models

within the probabilistic framework to achieve methods that are both generalizable and ef-

ficient, and robust and explainable. We then consider manipulation planning, tackling the

challenging case in which the goal region is uncertain and challenging to model [127]. We

propose an approach based on Stein Variational Inference [92] which enables generalizable

objectives under nonparametric uncertainty. This same technique is then applied within a

graphical inference framework to solve the challenging problem of multi-robot planning. We

propose an algorithm called Stein Variational Belief Propagation [128] and demonstrate its

capabilities as an inference algorithm for robotic perception.

1.1 Uncertainty in Robotic Perception

Robotic perception for manipulation is primarily concerned with the detection and localiza-

tion of objects towards accomplishing a task. A common representation of object localization

is the object pose, consisting of the 3-dimensional (3D) position and orientation, resulting

in a 6-dimensional (6D) quantity. This problem is high-dimensional and requires process-

ing unstructured image (RGB) and sometimes depth (RGB-D) data. Object pose estimation

gained a significant boost with the advancement of data-driven methods [184, 167]. However,

robustness in highly cluttered scenes remains a challenge. Consider the scene in Figure 1.2.

The robot observation is heavily cluttered, leading to multiple possible competing hypothe-

ses for the object pose. Axes of symmetry and articulations in the object further increase

the possible hypotheses for the pose. The resulting distribution representing the belief of

the pose is therefore multi-modal.

In Chapter 3, we describe an approach to tractably solving the problem of articulated

pose estimation suitable for cluttered conditions through distributed inference. We take a

parts-based approach, representing articulated objects as a Markov Random Field (MRF)

describing geometric constraints between component parts of the object. We maintain belief

through Particle Belief Propagation (PBP) [69], a message passing-based inference algorithm

which represents the belief over each node in the graph using a nonparametric distribution
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Figure 1.2: An illustration of the challenge of robotic perception for manipulation under
uncertainty. In a cluttered scene (left), the robot observation may be occluded, leading to
partial observations of the object of interest (top right). Occlusions and properties of the
object like axes of symmetry result in a complex, multi-modal distribution over the object
pose estimate (bottom right).

in the form of a particle set. This enables the representation of complex distributions, as

illustrated in Figure 1.2. We formulate a likelihood within the framework of the MRF, using

geometric priors over the object in combination with a data-driven likelihood over the obser-

vation based on a Convolutional Neural Network (CNN). By leveraging data-driven factors

within a probabilistic framework, we obtain the representational capabilities of learning-

based methods alongside the robustness of probabilistic inference. We demonstrate that our

method yields improved pose estimation accuracy compared to baselines.

1.2 Uncertainty in Robotic Planning

Once an object is localized within the robot observation, a robotic manipulator must then

generate action trajectories in order to manipulate the object towards accomplishing a given

task. For a manipulation platform such as the Franka Emika Panda, shown in simulation

in Figure 1.3, this is a high-dimensional planning problem involving planning in 7 degree-

of-freedom (DoF) space. In the presence of obstacles, the number of possible trajectories

contains multiple competing hypotheses. In addition, the goal of such a manipulation task

is often intractible to model. In the case of stable grasping, there exist multiple valid grasp

points, as shown in Figure 1.3. This poses several challenges. First, modelling the distribu-
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Figure 1.3: Planning for robotic manipulation must consider multiple competing hypotheses
in both the trajectory and in the final goal position. Given an estimate of the pose of an
object, which may contain uncertainty (top left), and possible grasp points (bottom left),
the robot must plan a trajectory to grasp the object (right). Considering these sources of
uncertainty and obstacles in the environment results in multiple possible trajectories.

tion of stable grasps explicitly is typically intractable. Second, selecting a grasp point as a

planning objective requires considering environmental occlusions and reachability, resulting

in a computationally expensive process.

One way to model the uncertainty inherent in robotic planning is through planning as in-

ference [8, 166, 132, 181], in which the trajectory is modelled as a distribution. In Chapter 4,

we introduce a planning as inference technique which considers uncertainty in the goal. The

goal is modelled as an implicit distribution, represented by a set of valid goal samples (e.g.

stable grasps, as in Figure 1.3). In practice, these samples might come from high-fidelity sim-

ulation or user demonstration. We leverage Stein Variational Gradient Descent (SVGD) [92],

an emerging inference technique which is capable of maintaining diverse modes using a non-

parametric distribution, which has shown promise as applied to planning as inference [81].

We extend this technique to generic goal representations through the introduction of a dif-

ferentiable goal loss, based on the principles of Generalized Bayesian Inferences [18, 72, 104].

We demonstrate that this method is more effective at planning under cluttered conditions

without the need for domain-dependent, computationally expensive pre-processing steps.

Having considered the high-dimensional challenge of planning on a robotic manipulator,

we turn our attention to multi-robot coordination in order to further explore the scalability
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of SVGD for planning as inference. In multi-robot planning, uncertainty over a neighbor-

ing agent’s chosen trajectory often leads to deadlock, a failure mode in which robots select

incompatible trajectories, resulting in both agents getting stuck. We hypothesize that ex-

plicitly modelling uncertainty over the neighbors’ potential actions can mitigate these cases,

enabling the robots to find feasible paths more effectively.

In Chapter 5, we describe a solution to multi-robot planning as inference, relying on the

principles of distributed inference. By modelling the multi-robot system as an MRF, we can

apply message-passing algorithms to propagate information through the whole robot swarm.

We extend SVGD to the graphical inference setting, and introduce Stein Variational Belief

Propagation (SVBP), an inference algorithm for inferring marginal distributions on graphs.

The proposed algorithm represents the node distributions nonparametrically, and is capable

of maintaining diverse modes through the use of SVGD. We demonstrate that this algorithm

is more effective at escaping deadlock scenarios than baselines, and can better represent true

underlying multi-modal distributions compared to sampling-based baselines.

1.3 Robotics Education

The growth of the field in robotics has resulted in an increased demand for robotics education

in undergraduate and graduate education. This is fueled by the growth in the industry

demand for skilled talent in areas of robotics and artificial intelligence. Robotics has a rich

history as a tool for computing and engineering education [49, 9, 164, 105]. Following the

growth of robotics research, robotics has emerged in undergraduate and graduate curricula

through specialized courses, primarily as technical electives or advanced specializations. The

past decade has seen a growth in popularity in graduate specializations in robotics, followed

by the more recent appearance of trailblazing undergraduate robotics programs [57, 71].

These trends exemplify the expansion of robotics from an area of specialization into the

present-day emergence of robotics as a discipline. This new era in undergraduate education

creates specific demands on the development of new curricula. The majority of robotics ed-

ucational content available is intended for a graduate audience, begging the question: what

should an introductory robotics curriculum for the undergraduate level look like? We argue

that an early undergraduate course in robotics should introduce key concepts fundamental

to the discipline (e.g. programming and math) while introducing key areas of robotics. Ad-

ditionally, robotics poses unique challenges in terms of the uncertainty inherent in embodied

autonomous systems which must be introduced in the course of an undergraduate robotics

specialization.

This dissertation proposes a curriculum for a first-year undergraduate course in robotics
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Figure 1.4: Instructors collaborate on development of an introductory robotics curriculum,
offered across multiple institutions. Students at each institution complete modules which
focus on writing autonomous programs for operating a real robot platform. Photo: Brenda
Ahearn/University of Michigan, College of Engineering, Communications and Marketing.

which introduces programming and computational thinking through the lens of robotics and

artificial intelligence by programming a real robot platform. We develop an ecosystem of

tools comprised of robot hardware and educational modules which is flexible and config-

urable to the needs of a specific course. The course was developed and taught through a

Distributed Teaching Collaborative (DTC), and has served over 100 undergraduate students

across four institutions, including the University of Michigan and collaborating Historically

Black Colleges and Universities (HBCUs) and Minority Serving Institutions (MSIs). This

collaborative, distributed approach to robotics education draws on lessons from work pre-

sented in this dissertation, by taking a divide-and-conquer approach in which effort across

institutions benefits the collective. Lessons learned from the instruction of this course offer

key insights and opportunities for future developments in robotics education.

1.4 Dissertation Contributions

This dissertation examines probabilistic techniques for robust and flexible representations

of uncertainty for robotics applications. Specifically, the question this dissertation seeks to

address is: How can we apply distributed algorithms for scalable, robust robotic

operation? This question is examined through the lens of robotic perception, planning,
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and education. The contributions of each chapter are as follows:

1. Articulated object localization in cluttered scenes (Chapter 3). We consider

perception for robotic tasks in the presence of heavy clutter, specifically pose estimation

of articulated hand tools towards mobile manipulation. We propose a parts-based

approach and apply belief propagation with a data-driven likelihood to obtain robust

estimates of object location [126]. Results demonstrate improved performance under

challenging, cluttered conditions.

2. Planning to uncertain goal sets (Chapter 4). We consider the problem of planning

for a robotic manipulator in the case where the goal is a region which is intractable to

model. We propose a novel goal loss which enables flexible goal region representation

under uncertainty and apply Stein Variational Inference to plan trajectories [127].

This technique outperforms approaches which rely on domain-specific heuristics, and

generalizes to any goal that can be represented by a set of example configurations.

3. Stein Variational Belief Propagation for multi-robot coordination (Chap-

ter 5). We consider the challenging problem of multi-robot coordination through the

lens of planning as inference, building on the methods explored in Chapter 4. We

introduce a new algorithm, Stein Variational Belief Propagation (SVBP) [128], for

probabilistic graphical inference, and show its ability to maintain diverse distributions.

We demonstrate the robustness and efficiency of SVBP for multi-robot planning on

both simulation and real-robot scenes.

4. An introductory course for robotics as a discipline (Chapter 6). We formalize

the problem of robotics education as it applies to the study of robotics as a discipline

and discuss the unique challenges in teaching computational robotics at the under-

graduate level. We describe an introductory course developed as part of the Robotics

undergraduate major at the University of Michigan. The course introduces funda-

mental programming concepts through the lens of robotics and AI and employs real

robot platforms as educational tools, specifically developed for undergraduate robotics

education [56]. Drawing on insights from the distributed methods discussed in previ-

ous chapters, we propose a distributed collaborative approach to teaching robotics in

higher education which has been applied to offer the proposed course at three other

institutions. We conclude with a summary of best practices and future opportunities

based on multiple successful offerings of the proposed course.
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CHAPTER 2

Background and Related Work

This chapter summarizes the related work in probabilistic inference applied to robotics for

pose estimation and planning that motivate the contributions of this dissertation. Addi-

tionally, we introduce the fundamental concepts in nonparametric inference and graphical

inference necessary for the discussions in Chapters 3 to 5.

2.1 Probabilistic Inference for Robotics

Probabilistic inference has a long history of success in robotics [161]. This dates back to

seminal work on the Kalman Filter [74], and the Particle Filter [59], as dominant techniques

for robot localization at the beginning of the 21st century [134, 111, 54, 85]. The success of

these methods has been widely attributed to their ability to explicitly model the uncertainty

due to noise in robotic sensors (e.g. Lidar range finders, odometry). Models for the noise

distributions can be identified offline and integrated into the estimate online.

Over the past decade, advancements in data-driven deep learning [79, 4] has led to the

rise in popularity of these methods being applied to robotics [184, 80, 29]. Data-driven

methods take advantage of the growing availability of large datasets [24, 66, 27, 173]. The

representational ability of learned methods eliminates the need to hand-design and tune

likelihood functions manually. The ability to train and execute such models has benefited

greatly from advancements in Graphical Processing Unit (GPU) technology, making them

faster than traditional inference methods.

While deep learning has dominated many fields in Artificial Intelligence (AI) in the past

decade [145, 77, 1], adoption by the robotics community has encountered some key chal-

lenges. Notably, robotics domains have stronger accuracy constraints since the robot must

execute actions in the real world in 3D, leading to the need for error recovery. This has mo-

tivated the resurgence of inference in robotics, particularly hybrid learning and probabilistic

techniques [75, 40, 142]. These methods take a data-driven approach to inference, leveraging
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the representational ability and speed of deep learning alongside the robustness of inference.

2.2 Object Pose Estimation

Given a scene containing a set of objects, the problem of pose estimation is concerned with

localizing one or more objects of interest. The objective of object localization in the context

of robotic manipulation is to enable robots to interact with the objects in question, for

example to grasp them and use them towards a task. While there are many ways to express

the object localization (e.g. a set of keypoints [100], 3D bounding boxes [184], category-based

models [177]), we focus our review on pose estimation. The pose of an object is comprised of

a 3D position and 3D orientation relative to a reference frame, resulting in a 6D quantity, X.

In the context of pose estimation via probabilistic inference, the goal is to infer the posterior

distribution over possible poses, p(X | Z), where Z is the observation (e.g. camera image)

of the environment. The posterior distribution is sometimes referred to as the belief over

the pose, bel(X).

Pose estimation techniques for rigid-body objects include geometry-based registration

approaches [15], generative approaches [155, 41], and end-to-end learning approaches [184,

167, 175]. Generative approaches leverage domain-specific prior information, such as inter-

object relationships [155] and environment physics [41]. These provide robustness through

grounding, but are often challenging to define and expensive to compute. Deep learning

methods, on the other hand, eliminate the need for hand-defined models, relying instead on

data, but can be noisy, especially in challenging cluttered scenarios. Of particular interest

are hybrid approaches combining data-driven and generative methods. These have been

successful under challenging conditions such as background and foreground clutter [118, 109,

40], adversarial environment conditions [28], and uncertainty due to robot actions [156, 188].

This dissertation employs a hybrid approach, in which a learned likelihood is formulated as

a factor in a generative inference framework (see Chapter 3).

Articulated Object Pose Estimation. The works mentioned until now are primarily

concerned with objects which consist of a single rigid body. Articulated object pose estima-

tion is concerned with the problem of localizating an object with one or more movable joints.

In this case, the pose estimation can be formulated in terms of joint pose and configuration

estimation, (X, θ). Alternatively, the pose of an articulated object with N rigid parts can

be represented as a set of poses for each part s, X = {Xs}Ns=1.

Articulated pose estimation has been approached via probabilistic inference in the con-

text of tracking articulated objects [137, 136, 31]. Due to the added challenge resulting

from the higher-dimensionality of the problem, these frameworks have historically been in-
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formed by ground-truth initialization or data from joint encoders. Parts-based approaches

have been applied to human pose estimation [144, 50, 51] and hand-pose estimation [153].

Within robotics, single-frame estimation has been explored using learning [88] and infer-

ence [107, 42], but these have largely relied on large, primarily planar objects and depth

data. In Chapter 3, we draw on the success of parts-based approaches for articulated pose

estimation, and propose a general framework for estimating pose of articulated objects using

their geometric models as priors that relies on both RGB and depth information.

2.3 Planning as Inference

Trajectory planning describes the problem of finding a trajectory, τ , defined as a sequence of

actions, τ = {(ut, xt)}Tt=1, where x is the robot state, u is an action, and t is the timestep,over

a finite horizon, T . The robot state is governed by dynamics function, xt+1 = f(xt, ut). The

optimal trajectory, τ ∗, satisfies the following:

τ ∗ = argmin
τ∈T

cterm(xT ) +
T−1∑
t=1

ct(xt, ut), (2.1)

where T is the space of possible trajectories, ct(xt, ut) is the running cost and cterm(xT )

is the terminal cost.1 The costs are selected by the user based on the problem domain.

Trajectory planning has largely been considered as an optimization problem in the style of

the formulation in Equation (2.1), alongside optional constraints [131, 139].

Planning as inference [8, 166, 132, 181] instead formulates the planning problem in Equa-

tion (2.1) as an inference problem, where the objective is to infer a distribution of trajecto-

ries. More formally, given an observation of the environment, z, the trajectory optimization

problem becomes:

τ ∗ = argmax
τ∈T

p(τ | z), (2.2)

where p(τ | z) is the posterior trajectory distribution. Planning as inference is concerned

with estimating the posterior distribution. We can further reformulate the problem in terms

of the prior, p(τ), and the likelihood, p(z | τ), by applying Bayes’ rule:

p(τ | z) = p(z | τ)p(τ)
p(z)

∝ p(z | τ)p(τ). (2.3)

1This problem can also be formulated in the continuous domain, in which case the sum in Equation (2.1)
becomes an integral. This dissertation employs the discrete trajectory optimization formulation.
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Defining the likelihood in terms of the cost,

p(z | τ) ∝ exp(−αC(τ)), (2.4)

where C(τ) = cterm(xT ) +
∑T−1

t=1 ct(xt, ut), and α is a hyperparameter, yields an equivalence

between the optimization problems in Equations (2.1) and (2.2).

The planning as probabilistic inference formulation from Equation (2.2) gained popular-

ity due to its ability to represent uncertainty in planning [132, 81, 78, 181, 19]. Different

approaches exist for inferring the posterior trajectory distribution. One approach is to em-

ploy variational inference, solving an optimization problem to minimize the Kullback–Leibler

(KL) divergence between a candidate posterior and the true posterior [132, 81, 129]. Other

approaches employ a nonparametric representation, in which the posterior distribution is

approximated by a set of trajectory samples, iteratively updated through importance sam-

pling [78, 181]. Chapter 4 introduces a novel formulation of the posterior for planning as

inference, in which the goal is represented as a nonparametric distribution and solved via

differentiable nonparametric inference. Chapter 5 demonstrates an approach to multi-robot

coordination, formulated as planning as inference applied in a graphical inference context.

2.4 Background: Probabilistic Inference Techniques

In this section, we describe relevant methods for probabilistic inference in the context of

inferring a posterior distribution,2 p(x | z), where x is a random vector consisting of unknown

variables, and z is a random vector consisting of observed data. Before inference can be

performed, the form of the distribution must first be selected. This choice depends heavily

on the characteristics of the problem domain.

In the case where x is a discrete variable, then p(x | z) = Pr(x = X | z) is the probability
that the random variable x is equal to one possible value X, where Pr : R → [0, 1], which

can be explicitly evaluated for each possible discrete value of x. In the case of a continuous

random variable, x, the density of x given observed data z is described by a nonnegative

function, p(x | z). Performing probabilistic inference starts with selecting a form for the

density function, which requires introducing assumptions about the underlying data. The

problem of inference is then to infer the parameters of the density in question. For example, a

common choice is the Gaussian distribution, p(x | z) ≈ N (µ,Σ). The Gaussian distribution

is fully described by its mean, µ, and covariance, Σ. This distribution introduces convenient

2Note that we use the term distribution to refer to the probability density function describing the distri-
bution of the random variable.
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mathematical properties, but the assumption of normally distributed data can be too limiting

for certain problems.

This dissertation is primarily focused on solving inference problems related to robotic

perception and planning, which are typically multi-modal and cannot be fully captured by

single-modal Gaussian distributions. In Section 2.2, the posterior in question is the belief over

the pose given the robot camera observation, p(x | z). Clutter and object symmetries can

result in multiple competing modes (see Figure 1.2). In Section 2.3, the posterior represents

the distribution of possible trajectories given the environment representation, p(τ | z). These
distributions can include multiple valid solution modes, for example, taking different paths

around an obstacle or grasping an object from different points (see Figure 1.3). It follows

that we require a representation capable of representing multi-modal distributions.

2.4.1 Problem Statement: Nonparametric Inference

Nonparametric inference is concerned with minimizing the assumptions on the distribution

of the data. This is accomplished by using models with infinite parameters. Of course, it

is intractable to perform exact inference in these cases, so we instead consider approximate

inference techniques. Instead of estimating parameters for a closed-form distribution, we

can draw a set of samples whose density approximates the true posterior. More formally,

the posterior is approximated by a set of N independent samples, or particles :

X = {x(i)}Ni=1, where x(i) ∼ p(x | z). (2.5)

Depending on the objective, these particles might be used to compute a quantity (e.g. the

expectation), to reconstruct a parametric form of the posterior, or to estimate x by drawing

directly from the set of particles, X.
In general, this approximation can represent a broad class of distributions given a suffi-

ciently large N compared to finite parametric representations, like the normal distribution.

Practically, increasing the size of the sample set will increase the computation time and

memory requirements of the algorithm. Below, we review techniques for performing non-

parametric inference via a particle set X that are relevant to the works proposed in this

dissertation in Chapters 3 to 5.

2.4.2 Importance Sampling

Importance sampling is a Monte Carlo method [30] for generating samples from a distri-

bution. The objective is to generate samples from a target distribution, f(x), which we
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Figure 2.1: Illustration of the importance sampling procedure. The goal is to generate
samples from f . Samples are drawn from a proposal distribution, g (left). The samples are
then weighed using function f (right). Example inspired by [161].

cannot directly sample from, but which we can evaluate for a given sample, x(i). It works

by defining a proposal distribution, g(x), which can be sampled from easily. We must have

that f(x) > 0 implies g(x) > 0, meaning there is a non-zero chance of sampling from the

proposal distribution everywhere there might be a sample from f(x).

To illustrate, consider the example in Figure 2.1. We cannot directly draw samples from

the target distribution f(x), but g(x) is a Gaussian distribution, from which we can generate

samples. The left panel shows particles drawn from the proposal distribution g(x). We weigh

the particles from g(x) by the ratio:

w(i) =
f(x(i))

g(x(i))
(2.6)

The right panel shows the result, where the height of the sample represents its weight.

It is common to apply importance sampling iteratively, by randomly drawing particles

from the sample set X proportional to the weights from Equation (2.6), with replacement.

This step is called resampling. Since this process results in repeated particles, a common

practice is to slightly perturb, or jitter, particles before the next iteration. This results in a

reweigh-resample paradigm.

Derivation of the importance sampling weight. Given a random variable, x, with

density f(x), its expectation is defined as follows:

E [x] =

∫
xf(x) dx (2.7)

Monte Carlo methods are a class of numerical methods which take advantage of the following
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approximation:

E [x] ≈ 1

N

N∑
i=1

ϕ(x(i)), x(i) ∼ f (2.8)

where x(i) are independent and identically distributed (i.i.d.) samples drawn with density

f(x). Note that we assume that E [x2] <∞ [30].

Since we cannot draw from f , we can instead introduce the proposal distribution, and

express the expectation from Equation (2.8) as follows:

E [x] =

∫
x
f(x)

g(x)
g(x) dx (2.9)

This allows the Monte Carlo approximation from Equation (2.8) to be applied to approximate

the expectation from Equation (2.7) as follows:

E [x] ≈ 1

N

N∑
i=1

w(i)ϕ(x(i)), w(i) =
f(x(i))

g(x(i))
, x(i) ∼ g (2.10)

This trick allows the expectation to be approximated by a weighted average of particles

drawn from the proposal distribution, g(x).

Importance Sampling in Robotics. The reweigh-resample paradigm based on impor-

tance sampling is a has been applied to a breadth of robotics problems based on nonpara-

metric distributions, such as the particle filter for localization [54], pose estimation [41], and

planning as inference [181]. The same paradigm has also appeared in more recent work fusing

deep learning with inference techniques [89, 40]. In Chapter 3, we use importance sampling

in a reweigh-resample paradigm to approximate belief over object pose.

2.4.3 Stein Variational Inference

The objective of variational inference is to infer the parameters of a distribution q(x) such

that it is a good approximation of the true posterior of random variable x, p(x | z), where z
is observed data. Specifically, we want to minimize the KL-divergence:

q∗(x) = argmin
q∈Q

DKL (q(x) || p(x | z)) (2.11)

where Q is a family of distributions. Recently, Stein Variational Inference has been pro-

posed [92] as a method for solving for q∗(x), represented using a nonparametric distribution.
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The Stein identity says that for a density p(x) and some smooth function ϕ(x),

Ex∼p [Ap · ϕ(x)] = 0, where Ap · ϕ(x) = ϕ(x)∇x log p(x)
⊤ +∇xϕ(x) (2.12)

Ap is called the Stein operator. Given another density, q(x), Ex∼q [Apϕ(x)] ̸= 0.3 The

maximum violation of the Stein identity over all ϕ ∈ F can be used to define a discrepancy

between distributions p and q, called the Stein discrepancy :

DS(q, p) = max
ϕ∈F

Ex∼q [tr(Apϕ(x))]
2 (2.13)

where F is a function space. In practice, it is intractable to search over an arbitrary function

space F . A key insight is to select F to be a reproducing kernel Hilbert space (RKHS), Hd,

where d is dimension:

DS(q, p) = max
ϕ∈Hd

Ex∼q [tr(Apϕ(x))]
2 s.t. ∥ϕ∥Hd ≤ 1, (2.14)

then there is a closed form solution to the Stein discrepancy in Equation (2.13). Given kernel

k(x, x′) associated with RKHS Hd, the solution is:

ϕ̂(x) =
ϕ∗
q,p(x)

∥ϕ∗
q,p(x)∥Hd

, where ϕ∗
q,p(·) = Ex∼q [Apk(x, ·)] , and DS(q, p) = ∥ϕ∗

q,p(x)∥Hd

(2.15)

It can be shown that DS(q, p) = 0 ⇐⇒ p = q when k(x, x′) is a valid positive definite

kernel. We refer the reader to Lui and Wang [92] for details.

Stein Variational Gradient Descent. Lui and Wang [92] proposed Stein Variational

Gradient Descent (SVGD), an iterative approach to variational inference using the results

of Stein above. First, we define an incremental transform on x, T (x) = x + ϵϕ(x), and q[T ]

is the new density on T (x). Then,

∇ϵDKL

(
q[T ]∥ p

)∣∣∣∣
ϵ=0

= −Ex∼q [tr(Apϕ(x))] . (2.16)

This means that ϕ∗
q,p from Equation (2.15) gives the direction of steepest descent on the KL

divergence. The direction of steepest descent is given by:

ϕ∗
q,p(·) = Ex∼q

[
k(x, ·)∇x log p(x)

⊤ +∇xk(x, ·)
]
. (2.17)

3Intuitively, the gradients across all x ∼ p will average to zero, but if we imagine sampling x ∼ q, a
different distribution, and evaluating Apϕ(x), the gradients will not average to zero.
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Each step decreases the KL divergence by ϵD2
S(q, p). It follows that the KL divergence

between q[T ] and p approaches zero as the incremental transform is iteratively applied.

We can approximate Equation (2.17) using Monte Carlo integration as in Equation (2.8),

using a set of particles {x(i)}Ni=1, where x
(i) ∼ q. At an iteration k, the following update rule

is applied to each particle x(i):

x
(i)
k ← x

(i)
k−1 + γϕ(x

(i)
k−1) (2.18)

ϕ(x) =
1

N

N∑
j=1

k(x(j), x)∇x(j) log p(x(j)) +∇x(j)k(x(j), x) (2.19)

where k(x, ·) is a kernel function. Intuitively, the first part of the equation drives the par-

ticles to areas of high probability, and the second part acts as a repulsive force between

particles. Compared to sampling-based methods, SVGD is more particle-efficient and can

more effectively represent diverse modes in distributions due to the repulsive force compo-

nent. Additionally, the update steps in Equations (2.18) and (2.19) are deterministic and

can be computed in parallel, enabling efficient implementation on modern GPUs.

Stein Variational Inference in Robotics. Stein Variational Inference has been applied

across a number of robotics applications, including in control, planning, and point cloud

matching [81, 11, 98, 82]. In Chapter 4, we use Stein Variational Gradient Descent (SVGD)

in order to formulate a planning as inference problem in the case of goal uncertainty. In

Chapter 5, we extend the above formulations to infer marginal distributions on probabilistic

graphical models.

2.5 Belief Propagation

Belief Propagation (BP) is an algorithm for inferring the marginal distributions of nodes in

a graph [174]. Specifically, let X be a set of N hidden random vectors, X = {xs}Ns=1. Let

G = (V , E) be an undirected graphical model with nodes V and edges, E , describing random

variables X , known as a Markov Random Field (MRF). The power of the Markov Random

Field (MRF) model is that it allows the joint probability of the graph G can be written as

a product of its clique factors, p(X ) = 1
Z

∏
c∈C ϕc(xc), where Z is a normalizing constant.

Cliques C are defined as all fully-connected subgraphs in G, and factors are non-negative

functions defined over the random variables.

The objective is to infer the marginal distribution over a node given observed data, Z.
For ease of expression, which will prove useful later, we assume that there exists a unique,

independent observation corresponding to each hidden node, such that Z = {zs}Ns=1. At
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Figure 2.2: An example Markov Random Field (MRF), where the variables {xs}5s=1 are
hidden, and the variables {zs}5s=1 are observed.

present, we restrict our discussion to tree- or chain-structured graphs, i.e. those without

loops. An example MRF conforming to these properties with N = 5 is illustrated in Figure

2.2.

Given an MRF with the properties described, the joint probability can be written as a

product of factors as follows:

p(X ,Z) = 1

Z

∏
(s,t)∈E

ψs,t(xs, xt)
∏
s∈V

ϕs(xs, zs). (2.20)

The function ψs,t is the pairwise factor, and ϕs is the unary factor. Intuitively, the pairwise

factor describes the correspondence between neighbouring nodes and the unary factor de-

scribes the correspondence of a hidden variable xs with the observed variable zs. Given that

Z are observed variables and we are only interested in inferring hidden variables X , it will
be useful to use the fact that p(X ,Z) = p(X | Z)p(Z). In practice, we can assume p(Z) is
a constant and can be absorbed into normalization constant Z, enabling Equation (2.20) to

be written interchangeably as either the joint density p(X ,Z) or the joint posterior density

p(X | Z).

2.5.1 Sum Product Belief Propagation

Sum Product BP estimates the marginal posterior distribution of each hidden variable in

graph G, p(xs | Z). The belief for node s can be obtained via a marginalization of the
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expression in Equation (2.20):

p(xs | Z) ∝ ϕs(xs, zs)
∏

t∈ρ(s)

mt→s(xs), (2.21)

where ρ(s) denotes the neighbours of s. Given the independence relationship between xs

and zt, t ̸= s, p(xs | Z) = p(xs | zs). The message from node t to node s, mt→s, is defined

as:

mt→s(xs) =

∫
xt

ϕt(xt, zt)ψt,s(xt, xs)
∏

u∈ρ(t)\s

mu→t(xt) dxt (2.22)

The messages are derived via a straight-forward factorization of the marginalization of Equa-

tion (2.20). Sum Product BP gets its name from the integral and product in the message

in Equation (2.22). The power of this factorization is that messages can be pre-computed

and passed through the graph, using a message passing algorithm that can tractably com-

pute the marginal beliefs. Sum Product BP yields exact marginal posteriors on tree- and

chain-structured graphs.

2.5.2 Loopy Belief Propagation

Our discussion up until now has only considered graphs without loops. For loopy graphs, an

approximate algorithm known as Loopy BP has been applied [117].This algorithm does not

provide exact marginals but has proven effective in practice.4

In Loopy BP, messages are initialized to some value, m0
t→s(xs), and iteratively updated

at iteration k according to the following rule:

mk
t→s(xs) =

∫
xt

ϕt(xt, zt)ψt,s(xt, xs)
∏

u∈ρ(t)\s

mk−1
u→t(xt) dxt. (2.23)

The insight is that instead of recursing through the whole graph as in the tree case, we

instead update messages using the most recent messages until convergence. As a consequence,

Loopy BP is sensitive to the order in which messages are updated, known as the message

passing schedule.

2.5.3 Algorithms for Belief Propagation

In order to apply BP in practice, we must select a form for the distribution p(xs | zs), and
the factors in Equation (2.20). In the case that xs is discrete, the integral in Equation (2.22)

4Loopy BP has convergence guarantees under some conditions.
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becomes a sum and can be evaluated over each possible value of the variable. This dis-

sertation is primarily concerned with the case in which xs is continuous, as is the case in

many robotic applications. In the continuous case, the integral in Equation (2.22) becomes

intractable to evaluate in practice.

A number of BP algorithms have been proposed in the literature for continuous variables.

Gaussian Belief Propagation (GaBP) is an efficient algorithm when the node distributions

and their corresponding factors can be represented as Gaussian [179, 37]. This method

leverages convenient properties of Gaussians in order to perform the products and marginals

required for the evaluation of Equations (2.21) and (2.22) which are efficient to compute.

However, many applications in robotics are complex and multi-modal, and cannot be fully

represented by unimodal Gaussian uncertainty.

Nonparametric Belief Propagation. Nonparametric Belief Propagation (NBP) [152,

70] represents distributions nonparametrically as mixtures of Gaussians, yielding a flexible

representation. However, these algorithms involve expensive product operations between

mixture distributions. Particle Belief Propagation (PBP) [69] is another nonparametric

BP algorithm which relies on sampling, enabling the representation of arbitrarily complex

distributions and offering an efficient message, eliminating the need for expensive message

products.

PBP defines a sampling-based algorithm for computing the messages for cases where X
is large and the sums cannot be evaluated in practice. Instead, a set of M particles at each

node, {x(i)s }Ni=1,is obtained using importance sampling. Given samples {x(j)t }Mj=1 drawn from

a sample distribution Wt, the PBP message is defined as follows:

m̂t→s(xs) =
1

M

M∑
j=1

ϕt(x
(j)
t , zt)

Wt(x
(j)
t )

ψt,s(x
(j)
t , xs)

∏
u∈ρ(t)\s

mu→t(x
(j)
t ). (2.24)

PBP relies on the definition of a sampling distribution, Wt, typically selected by the user.

Later work proposed to estimate the sampling distribution via expectation maximization [90].

A more efficient particle-based pull message has also been proposed [42]. Importance sam-

pling is prone to mode collapse, an effect which has been mitigated by using multiple sampling

distributions [121].

2.5.4 Belief Propagation in Robotics

Gaussian belief propagation has been shown to be effective for multi-robot collision avoidance

and localization [124, 115]. Nonparametric belief propagation has been applied to robotic

perception of articulated objects, using an efficient sampling-based message product tech-

20



nique [42], learned unary factors [126], and end-to-end learned factors [120]. While these

methods enable complex representations of belief distributions, they rely on expensive se-

quential sampling operations. In Chapter 3, we apply belief propagation to the challenge of

parts-based articulated object pose estimation, in which the unary factors are learned. In

Chapter 5, we present a novel nonparametric belief propagation technique that uses SVGD

to infer the marginal distributions within the BP framework.
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CHAPTER 3

Parts-Based Articulated Pose Estimation

with Belief Propagation

Figure 3.1: The ProgressLab Fetch robot perceiving a cluttered scene with tools (articulated
objects): The top right image shows the pixelwise heatmap over the RGB observation for
the clamp object, which misses the top part of the clamp as it is occluded by another object.
Our parts-based localization method is able to use this partially informed heatmap along
with the clamp geometry to localize the 6D pose of the entire object (bottom right image).

3.1 Introduction

Robot assistants operating in real-world environments should be capable of performing main-

tenance and repair tasks. Going beyond pick-and-place actions, we aim to enable robots to

use the diversity of objects it might encounter. The ability to use commercial, off-the-shelf

hand tools is critical for robots to perform tasks in unstructured, everyday environments. In
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order to accomplish this, robots must be able to identify and localize tools in an arbitrary

cluttered scene to plan appropriate actions toward performing a task.

Recognizing hand tools and localizing their pose remains challenging in common human

environments. These challenges arise from uncertainty caused by physical clutter and the

high-dimensionality of the space of poses multiple objects in contact may occupy. Many

hand tools are articulated, adding complexity to the localization problem by introducing

additional degrees-of-freedom. Figure 3.1 shows one example of hand tools in a cluttered

scene that could be typical in a work area.

State-of-the-art object and pose recognition methods have been proposed that esti-

mate the six degree-of-freedom (6D) pose of objects using convolutional neural networks

(CNNs) [184, 167]. Other methods have accomplished pose estimation using probabilistic

inference [155, 40]. However, localizing articulated objects remains a challenge for these

methods due to both the added degrees of freedom that arise from articulations and occlu-

sions due to clutter. Parts-based representations [50] have the potential to achieve higher

levels of robustness under these conditions than whole-object based approaches. For such

methods to be suitable for robot manipulation tasks, they must be able to localize 6D pose

with reasonable computational efficiency. We suggest that generative inference methods, if

made more computationally efficient, offer compelling and complementary benefits to mod-

ern deep learning. Additionally, a parts-based representation can provide information about

the affordances of an object, because robot actions are typically applied to the object parts.

In this chapter, we present a method for recognition and localization of articulated objects

in clutter suited to robotic manipulation of object affordances. We formulate the problem of

articulated object pose estimation as a Markov Random Field (MRF), representing the 6D

poses of each rigid object part and the articulation constraints between them. We propose

a method to perform inference over the MRF based on message passing. We are inspired by

work by Desingh et al. [42], in which parts-based articulated object localization is facilitated

by combining information from both the observation as well as the compatibility with neigh-

bouring parts within the inference process. Our method is informed jointly by a learned

likelihood modelled by a CNN, as well as by the known articulation constraints between

each component part. We assume known object mesh models and kinematic constraints in

the form of a Unified Robot Description Format (URDF) file, a standard geometrical object

representation in the field of robotics.

By employing generative inference to integrate both data-driven techniques and domain

knowledge about the object models, we leverage the speed and representational abilities

of deep CNNs, while retaining the ability to reconcile noisy results and provide structure

and context to the estimate. Methods we present emphasize novel synthesis of (1) efficient
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discriminative-generative inference via nonparametric belief propagation for pose estimation

of articulated objects, and (2) a learned part-based likelihood to evaluate hypotheses of

articulated object pose against RGB observations. We present results using a custom dataset

made up of commercial, off-the-shelf hand tools with robot observations containing varying

levels of clutter.

3.2 Related Work

Pose estimation has received considerable attention in robotics. Here, we discuss related

work that focuses on rigid body, parts-based, and articulated object pose estimation.

3.2.1 Rigid Body Pose Estimation

Methods that tackle the problem of rigid body pose estimation include geometry-based

registration approaches [15], generative approaches [155, 41], approaches combining dis-

criminative and generative methods [118, 156, 28, 188, 109, 40], and end-to-end learning

approaches [184, 167]. Here, we focus on the discriminative-generative methods and end-to-

end learning methods that are most relevant to this work.

Combining the discriminative power of feature-based methods with generative inference

has been successful under challenging conditions such as background and foreground clut-

ter [118, 109, 40], adversarial environment conditions [28], and uncertainty due to robot

actions [156, 188]. We are inspired by the success of the above approaches in taking ad-

vantage of the speed of discriminative methods to perform analysis and synthesis based

generative inference.

Xiang et al. propose an end-to-end network for estimating 6D pose from RGB im-

ages [184]. This work was further extended to use synthetic data generation and augmen-

tation techniques to improve performance [167]. Wang et al. [175] propose an end-to-end

network that uses depth information along with RGB information. These methods rely sig-

nificantly on the textured appearance of objects. More importantly, the state representation

used in these methods assume rigidity. Our attempts to adapt these methods for articu-

lated objects required considerably more training data and computation time. In addition,

estimates from the end-to-end methods can be noisy, especially in challenging cluttered sce-

narios. We believe estimates from these methods will be a good prior to help generative

methods recover under challenging scenarios. Hence, in this work, we learn a likelihood

function over the observation to inform the generative inference.
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3.2.2 Parts-Based Pose Estimation

Understanding objects in terms of their parts paves the way to meaningful and purposeful

action execution, such as tool-use. Parts-based representations have been proposed to aid

scene understanding and action execution [50, 51, 183], and have recently garnered attention

within the robotics and perception communities [110, 93]. Parts-based localization has led to

research in recognizing objects and their articulated parts [186]. Parts-based perception for

objects in human environments is often limited to recognition and classification tasks. Parts-

based pose estimation is often considered for human body pose [144] and hand pose [153]

estimation with fixed graphical models. Here, we propose a general framework for estimating

pose of articulated objects, such as hand tools, that includes parts with fixed transforms as

constraints.

3.2.3 Articulated Pose Estimation and Tracking

Probabilistic inference is a popular technique in robot perception for articulated body track-

ing [31, 137, 136], where filtering-based approaches alongside novel observation models have

been proposed. These tracking frameworks are either initialized to the ground truth poses of

objects, or applied to robot manipulators, where the inference is informed by joint encoder

readings. In this work, we aim to perform pose estimation of multiple articulated objects

using a single RGB-D frame with weak initialization from pixel-wise segmentations.

Interactive perception [21] for articulated object estimation [62] has been a problem of

interest in the robotics community. Various works [103, 151, 150], propose methods for

estimating kinematic models from demonstration of manipulation or articulation examples.

We instead focus on using known kinematic models to estimate the objects in challenging

cluttered environments.

Li et al. [88] explore category-level localization of articulated bodies in a point cloud,

however their method does not consider clutter and occlusions from the environment. Michel

et al. [107] perform one-shot pose estimation of articulated bodies using 3D correspondences

with optimization over hypotheses. Desingh et al. consider pose estimation of articulated

objects in cluttered scenarios using efficient belief propagation [42], but do not consider

RGB information. All of these approaches consider large, primarily planar objects that

cover significant portion of the observation as opposed to the small objects in clutter in this

work.

Li et al. [87] developed techniques to handle the challenges of hand tools and small objects

with no articulation, however the techniques proposed require multi-viewpoint information,

as opposed to the single image approach that we propose.
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Figure 3.2: The Markov Random Field representation of the clamp object. The clamp is
broken up into four parts to fully represent both its affordances and articulations. The hidden
nodes (white) represent the pose of each part, Xs. The observed nodes (grey) correspond to
the sensor observation.

3.3 Problem Statement

This work considers the problem of object pose estimation, as described in Section 2.2. Given

a scene containing objects O, such that {Ok}Kk=1 is the set of K relevant objects, we wish to

localize each object Ok. The state of an object Ok is represented by the set of part poses

X = {Xs}Pk
s=1, where Xs is the 6D pose of an articulating rigid part s of Ok, with Pk parts.

Each object Ok in the scene is estimated independently.

This estimation problem is formulated as a Markov Random Field (MRF), G = (V , E),
an undirected graph with nodes V and edges E . An example MRF for an object considered

in this work is illustrated in Figure 3.2. The problem of pose estimation of an articulated

model Ok is interpreted as the problem of inferring the collection of part poses {Xs}Pk
s=1, that

maximizes the joint probability of the graph G. Using the results from Section 2.5, the joint

probability of the graph G for parts-based pose estimation is expressed as:

p(X ,Z) ∝
∏

(s,t)∈E

ψs,t(Xs, Xt)
∏
s∈V

ϕs(Xs, Zs), (3.1)

where X denotes the hidden pose variables to be inferred and Z = {Zs}Pk
s=1 denotes the

observed sensor information in the form of an RGB-D image for each part. The function

ψs,t is the pairwise potential, describing the correspondence between part poses based on

the articulation constraints, and ϕs is the unary potential, describing the correspondence of

a part pose Xs with its observation Zs. The problem of pose estimation of an articulated
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object Ok is interpreted as the problem of estimating the marginal distribution of each part

pose, called the belief, bel(Xs), as a marginalization of the joint probability as expressed in

Equation (3.1).

In addition to the sensor data, the articulation constraints and 3D geometry of the object,

in the form of a Unified Robot Description Format (URDF), and the 3D mesh models of

the objects are provided as inputs. We assume that the object articulations are produced

by either fixed, prismatic or revolute joints. We consider scenes which contain only one

instance of an object. In Section 3.4, our proposed inference mechanism is detailed, along

with a description of our modelling of the potentials in Equation (3.1).

3.4 Methodology

Belief propagation via iterative message passing is a common approach to infer hidden vari-

ables while maximizing the joint probability of a graphical model [42, 153]. We adopt

the sum-product iterative message passing approach to perform inference described in Sec-

tions 2.5.1 and 2.5.2, where messages are passed between hidden variables until their beliefs

converge. A message, denoted by mn
t→s(Xs), can be considered as the belief of the receiv-

ing node s as informed by its neighbor t at iteration n. An approximation of the message,

denoted by m̂n
t→s(Xs), is computed using the incoming messages to t:

m̂n
t→s(Xs) =

∑
Xt∈Xt

ϕt(Xt, Zt)ψs,t(Xs, Xt)
∏

u∈ρ(t)\s

m̂n−1
u→t(Xt) (3.2)

where ρ(t) denotes neighboring nodes of t, and Xt denotes the particle set of node t.

The marginal belief of a hidden node is a product of all the incoming messages weighted

by the node’s unary potential:

belns (Xs) ∝ ϕs(Xs, Zs)
∏

t∈ρ(s)

m̂n
t→s(Xs) (3.3)

Our particle optimization algorithm aims to approximate the joint probability of the MRF,

as in Equation (3.1), by maintaining the marginal belief, as in Equation (3.3) for each object

part. The belief of a rigid part pose, bels(Xs), is represented nonparametrically as a set of

N weighted particles Xs = {X(i)
s , w

(i)
s }Ni=1.

Section 3.4.1 describes the message passing algorithm. Section 3.4.2 describes how the

function ϕs(Xs, Zs) is represented, and Section 3.4.3 describes the function ψs,t(Xs, Xt).
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Figure 3.3: The inference pipeline. (a) The robot observes a scene as an RGB-D image,
Z = (Zrgb, ZD). (b) The RGB image is passed through a trained part segmentation network,
h(Zrgb), that generates a pixel-wise heatmap for the Pk parts of an object class of interest,
{Zrgb

s }
Pk
s=1 (in this example, the clamp, which has one fully occluded part). The heatmaps

are used to generate masked depth images, {ZD
s }

Pk
s=1 (c) The inference is initialized with

part poses using these heatmaps and the depth image. Hypotheses are iteratively reweighed
using Equation (3.4), and resampled with importance sampling. (d) The inference process
generates an estimate of the 6D pose of each part. (Best viewed in color).

3.4.1 Belief Propagation via Message Passing

Our method adopts the traditional reweigh and resample paradigm for particle refinement

methods, as described in Section 2.4.2. The particles are first reweighed using an approxi-

mated sum-product message. The particles are then resampled using importance sampling

based on the calculated weights.

The high-dimensional nature of the estimation problem and the cluttered settings with

similar parts and partial observations make the inference prone to convergence to local min-

ima. To mitigate this problem while computing messages, we can optionally add an augmen-

tation step before the reweight step to accommodate different proposals. The augmentation

technique is adapted from Pacheco et al. [122] and is discussed in Section 3.4.4.

The overall system is summarized in Figure 3.3.

Reweighing and Resampling Steps. Each particle X
(i)
s ∈ Xs is reweighed as follows:

w(i)
s = ϕs(X

(i)
s , Zs)

∏
t∈ρ(s)

m̂n
t→s(X

(i)
s ) (3.4)
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where m̂n
t→s(X

(i)
s ) is the sum-product message:

m̂n
t→s(X

(i)
s ) =

∑
X

(j)
t ∈Xt

ψs,t(X
(i)
s , X

(j)
t )ϕt(X

(j)
t , Zt) (3.5)

which only takes into account the immediate neighbors of the node. Since the number of

parts in each object is small, this approximation has negligible effect in practice and saves

computation time. For numerical stability, the log-likelihoods are used in practice. The

weights are normalized and then the particles are resampled using importance sampling.

The object pose estimate is made by selecting the maximum likelihood estimates (MLE)

from each of the marginal beliefs.

3.4.2 Unary Likelihood

The unary potential represents the compatibility of each pose hypothesis with the RGB-D

observation, Z. The RGB and depth portions of the observation, Zrgb and ZD, are treated

as independent such that the unary likelihood is:

ϕs(Xs, Zs) = ϕrgb
s (Xs, Z

rgb
s )ϕD

s (Xs, Z
D
s ) (3.6)

where ϕD
s and ϕrgb

s are the likelihoods with respect to depth and RGB parts of the observa-

tions.

RGB Unary Likelihood. The RGB portion of the unary likelihood makes use of the

Dilated ResNets architecture [187]. This architecture maintains a high dimensional feature

space which is beneficial for semantic segmentation tasks.

The CNN outputs a pixelwise score for each object part class s. We apply a sigmoid

function so the final scores lie between zero and one. This constitutes a learned heatmap

Zrgb
s = hs(Z

rgb) over an RGB observation Zrgb, where h is the Dilated ResNets model

trained on parts and hs(·) is the output indexed at class s. For each particle hypothesis

Xs, we generate a maskMs over the image for the object part at the hypothesis pose. We

transform the mesh model of the part to pose Xs and use the camera parameters to obtain

a corresponding binary mask in image space. We represent the likelihood of a particle Xs

over the heatmap Zrgb
s using the Jaccard index [113], commonly called the Intersection over

Union (IoU), between the heatmap and the rendered mask:

ϕrgb
s (Xs, Z

rgb
s ) =

|Ms ∩ Zrgb
s |

|Ms|+ |Zrgb
s | − |Ms ∩ Zrgb

s |
(3.7)
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The CNN is trained using the analagous intersection over union (IoU) loss, and as such,

ϕrgb
s (Xs) represents a learned likelihood function over the image.

Depth Unary Likelihood. For a given part s, depth observation ZD
s is generated using a

threshold over the heatmap Zrgb
s to mask the depth image ZD. For a particle Xs, ϕ

D(Xs, Z
D
s )

is the exponential of the negative average pixelwise error between ZD
s and the mesh model of

part s, rendered at pose Xs. The error is only evaluated over areas in which the two depth

images overlap. If there is no overlap between the masked observation and the hypothesis,

we assign a maximum error instead, which is a chosen constant.

3.4.3 Pairwise Likelihood

The pairwise likelihood between neighbouring particles ψt,s(Xt, Xs) measures how compatible

Xs is with respect to Xt. If Xs falls within the joint limits of s with respect to t at pose

Xt, then ψt,s(Xt, Xs) = 1. Otherwise, the likelihood is the exponential of the negative error

between Xs and the nearest joint limit. We refer to [42] for further details.

3.4.4 Particle Augmentation

At each node s, the particle set Xs can be augmented by drawing particles from various

proposal distributions. Given N particles in Xs, Gaussian noise is first added to the current

particles, then the distribution is augmented to Xprop
s = Xs∪Xaug

s , where Xaug
s represents the

particles generated from the augmentation procedure q. The set Xprop
s contains αN particles,

where α > 1. Various proposals qpairs , qunarys , and qrands , as described below can be used to

augment the particle set. This optional variant is evaluated and discussed in the results

section.

Pairwise: The pairwise proposal distribution qpairs (Xs) ∝ ψs,t(Xs, X̃t) is conditioned

on a sample X̃t, drawn from neighboring node t. Using the known geometric relationship

between nodes t and s, a compatible proposal for node s, X̃s, is generated from X̃t.

Unary: The unary proposal distribution qunarys (Xs) ∝ ϕs(Xs, Zs) draws samples based

on the unary potential ϕs.

Random: The random proposal distribution qrands (Xs) ∝ N (Xs,Σ) draws additional

noisy samples. This can be used to avoid the belief falling into a local minima due to the

high dimensionality of the orientation space, and to account for mirror symmetry in some

objects.
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Figure 3.4: Objects in our custom dataset. The clamp has one prismatic joint. The three
sets of pliers each have one revolute joint. The other four objects are treated as rigid. The
objects are separated into parts based on the presence of both affordances and articulations.

3.5 Experiments

We evaluate our methods for articulated object localization in uncluttered and cluttered

scenes. We run experiments on each component of our method and provide an analysis of

their effects. These results provide quantitative and qualitative evidence of the accuracy and

practicality of our methods.

We test on 20 uncluttered and 17 cluttered test scenes, unseen in the training data. We

localize 196 total object instances in these scenes. We do not include results on objects which

are severely or fully occluded such that there is no clear observation of any part. We remove

19 objects which fall into this category. An example of such a case is shown in the highly

cluttered scene in Figure 3.7a, where the flashlight (behind the hammer) and lineman’s pliers

(behind the clamp) are almost entirely occluded.

3.5.1 Dataset & Training

Our custom dataset consists of hand tools with eight distinct tool instances: hammer, clamp,

boxcutter, flashlight, screwdriver, longnose pliers, and two instances of lineman’s pliers (see

Figure 3.4). We collect videos of both cluttered and uncluttered scenes using the Fetch

Mobile Manipulator’s onboard Primesense Carmine 1.09 sensor. The articulated hand tools

span the full range of possible articulations in the data. Semantic masks and 6D poses for

the objects are labelled using Label Fusion [101], which generates annotations for each video
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once the first scene is manually labelled. Semantic part masks and part poses are calculated

using the object URDFs. The pixels in the images which do not correspond to a tool part

are given class label “background.” After downsampling to remove adjacent frames in the

videos, the dataset contains ∼ 6k RGB-D images of 640× 480 pixel resolution.

We train the Dilated ResNets DRN-D-22 architecture [187] to perform semantic seg-

mentation on 90% of the dataset, and reserve 10% for validation. We further augment the

training images with random crops, flips, and rotations. We increase the training set size by

applying two transforms per image. The backbone is pre-trained on ImageNet, and the last

layers are finetuned on our dataset. We employ the Intersection over Union (IoU) loss with

an Adam optimizer. We train for 10 epochs on a RTX 2080 Max-Q GPU.

3.5.2 Implementation Details

Our implementation performs efficient unary potential computation on the GPU, to evaluate

the heatmap from DRN and to generate binary masks and depth images for pose hypotheses.

The current implementation is vectorized and processes all object parts in ∼ 0.5 − 2s for

one iteration with 300 particles. The computation time could be further reduced with more

efficient implementation.

The x and y locations of particle poses are initialized randomly in areas corresponding

to high heat pixels of the heatmap over the RGB observation. The z-axis is initialized to

the corresponding depth in the observed depth image. The initial orientations are uniformly

distributed. For completely occluded parts which do not appear on the segmentation mask,

we generate compatible poses from the neighbour initializations.

3.5.3 Evaluation Metric

For evaluation, we use the average point matching error proposed by Hinterstoisser et al. [65],

which measures the average point pairwise distance between the rigid object model’s point

cloud in the ground truth and estimated poses:

m(Pgt, P̂ ) =
1

N
∑

(pgt,p̂)∈(Pgt,P̂ )

||p̂− pgt|| (3.8)

where (pgt, p̂) ∈ (Pgt, P̂ ) are corresponding points in the ground truth and estimated point

clouds respectively, each with N points in the rigid object model. We also report the sym-

metric point matching error, which measures the average pairwise distance between points
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in the estimated point cloud and the nearest point in the ground truth point cloud:

msym(Pgt, P̂ ) =
1

N
∑
p̂∈P̂

min
pgt∈Pgt

||p̂− pgt|| (3.9)

The symmetric matching error represents the error in symmetric objects, such as the screw-

driver, better by not penalizing estimates rotated around a degree of symmetry in the object.

However, it tends to provide artificially low errors for incorrect estimates.

3.5.4 Baselines

We implement two baselines, described below.

Segmentation with ICP (DRN+ICP): We initialize the 3D position of the particle

hypotheses using the depth image and segmentation mask generated by Dilated ResNets,

with random orientations. We use Iterative Closest Point (ICP) [15] to find the transform

from the initialized point cloud to the observed point cloud. ICP works best on local refine-

ments, and is prone to failure when the initial orientation is incorrect. To accommodate for

this failure, we generate N proposal poses per part, perform ICP, and select the one with

the best final fitness score as the estimate. In our experiments, N = 20. A similar method

is used by Wong et al. [182].

Part-based Particle Filter (Parts-PF): This baseline consists of independent par-

ticle filters at each tool part. We use the unary potential from Equation (3.6) to calculate

the weights for each hypothesis, and use importance sampling to select particles at each

iteration. We use 300 particles per part, and run for 85 iterations.

For both DRN+ICP and Parts-PF baselines, if a part is completely occluded in the

image, a pose estimate cannot be generated from the segmentation. In such cases, we

randomly select a neighboring part for which an estimate was made and use the object

model to generate a corresponding pose for the occluded part. If the edge between the parts

is articulated, a joint value is uniformly sampled within the joint limits.

3.5.5 Parts-Based Pose Estimation

To fully understand the performance of our method, we perform an ablation study over the

components of the proposed method. We focus on three factors: the message passing (MP),

the use of RGB only vs. the inclusion of depth (RGB-D) in the unary potential, and the

augmentation step (Aug). We use 300 particles (before augmentation) for all experiments.

The choice of particles was observed qualitatively to achieve sufficient results in most cases.

While representation of the underlying belief improves with more particles, computation
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Figure 3.5: Average pairwise distance pass rate for each described method. All tools use
the matching error described in Equation (3.8), except the screwdriver, which due to its
symmetrical nature, uses the symmetrical form (msym).

Table 3.1: Average matching errors m (cm) and symmetric matching errors msym (cm)

Method m msym

DRN+ICP 6.47 ± 6.32 3.65 ± 8.22

Parts-PF 5.23 ± 3.74 2.03 ± 2.98

MP+RGB 4.06 ± 3.40 2.41 ± 2.50

MP+RGB+ICP 4.28 ± 3.32 2.64 ± 2.44

MP+RGB-D+Aug 4.21 ± 3.23 2.51 ± 2.27

MP+RGB-D 3.08 ± 2.32 1.57 ± 1.56
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Table 3.2: Average matching errors m (cm) and symmetric matching errors msym (cm) for
cluttered and uncluttered scenes

Method Cluttered Uncluttered

m msym m msym

DRN+ICP 6.59 ± 3.36 3.31 ± 2.69 6.38 ± 8.00 3.93 ± 10.84

Parts-PF 6.03 ± 4.64 2.73 ± 4.04 4.55 ± 2.57 1.43 ± 1.33

MP+RGB 4.57 ± 3.96 2.83 ± 2.95 3.60 ± 2.75 2.04 ± 1.95

MP+RGB+ICP 4.77 ± 3.89 3.03 ± 2.88 3.85 ± 2.65 2.29 ± 1.90

MP+RGB-D+Aug 4.80 ± 3.80 2.90 ± 2.60 3.71 ± 2.55 2.18 ± 1.88

MP+RGB-D 3.58 ± 2.56 1.89 ± 1.84 2.65 ± 2.01 1.30 ± 1.21

Figure 3.6: Qualitative results for each stage of the MP+RGB-D method on cluttered
scenes. The method results in accurate pose estimates despite significant occlusions (top)
and articulations (bottom).

becomes intractable for very large particle sets. We run each method for 100 iterations, after

which we observe little change in the estimate.

The results of each method are shown in Table 3.1. We further examine the results for

cluttered and uncluttered scenes in Table 3.2. Figure 3.5 shows the results for all scenes.

Message passing leads to superior results compared to the baselines, DRN-ICP and Parts-

PF, which do not use message passing. Best performance is achieved by using the full RGB-

D observation (MP-RGB-D). Further description and analysis of each method is provided

below.

Message Passing: RGB Unary (MP+RGB): To test the effect of the depth

component of the unary potential, we evaluate using only the RGB component, informed by

the heatmap, such that Equation (3.6) becomes ϕs(Xs, Zs) = ϕrgb
s (Xs, Z

rgb
s ). We use message

passing to calculate the final likelihood for each particle using the pairwise potential, as
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(a) RGB input image (b) Segmentation mask
from CNN

(c) Localized objects in
RGB image

(d) Localized objects in
depth point cloud

Figure 3.7: Qualitative results for localization of each object in a cluttered scene using
the MP + RGB-D method. Although the segmentation map (b) is missing information for
occluded parts, our iterative method is able to recover the 6D pose of the parts (c), (d).

described in Equation (3.4). Using only the RGB image, we obtain lower accuracy on the

pose estimates. The RGB image captures the position and orientation of the objects well in

image space (see Figure 3.8(c)), but is prone to falling into local minima in the axes which

are not well represented by the image, namely z, pitch, and roll (see Figure 3.8(d)).

Message Passing: RGB Unary and ICP (MP+RGB+ICP): To attempt to

recover from the errors in z, pitch, and roll, we add an ICP step on the final estimate from

MP+RGB to align it to the masked depth image. We estimate the offset in the z-axis based

on the depth image. Since ICP is a local refinement method which relies on an accurate

estimation of the initial transform, the ICP step does not always reconcile the orientation

error in pitch and roll, for which the initial transform is unknown.

Message Passing: RGB-D Unary (MP+RGB-D): We hypothesize that by in-

cluding depth information in the unary potential, we can more reliably estimate the full 6D

pose of the parts and make up for missing information in the 2D image. The depth term

improves the estimation accuracy by discouraging all unoccluded particles from deviating

from the depth image at each iteration. This performs better than MP+RGB+ICP because

the latter only attempts to align to the depth image in the final iteration, where it often has

converged to a local minimum. This is the best performing method. Selected qualitative

results are shown in Figures 3.6 and 3.7.

Message Passing with Augmentation (MP+RGB-D+Aug): Using the unary

informed by both RGB and depth, as well as message passing, we augment the particle set at

the beginning of each iteration as described in Section 3.4.1. We use α = 1.5, with 5% of the

additional particles drawn from the unary distribution. At the first iteration, the remaining

95% of the particles are drawn from qrand. The percentage of particles drawn from qpair is

increased by 10% every 5 iterations, and the percentage from qrand is decreased, up to a

maximum of 90% of particles from qpair.
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(a) Belief for all parts
from Parts-PF.

(b) Estimate for each
part from Parts-PF.

(c) Belief for all parts
from MP+RGB

(d) Estimate for each
part from MP+RGB

Figure 3.8: Common failure cases. The first row is a common failure of the baseline method,
Parts-PF, which does not use message passing. In (a) the parts are clustered in the correct
positions in the image, but (b) shows that the part estimates are oriented incorrectly in an
incompatible configuration. The second row is a common failure case in MP+RGB. In (c),
the particles have converged in the 2D image, but in (d), the hammer 6D pose is rotated
about an axis which is not well represented in the 2D image plane.

Qualitatively, we observe that the augmentation step leads to quicker convergence in

some highly cluttered scenarios. On average, this method performs worse than MP+RGB-D

in some cases because it is susceptible to propagating incorrect estimates with artificially

inflated pairwise scores, due to the addition of perfectly compatible pose estimates. However,

these results depend on careful selection of parameters, and might be improved by further

tuning. Further analysis of the effect of the parameters on the final estimate is left to future

work.

3.5.6 Analysis on Tool Classes

The results for the MP+RGB-D and MP+RGB-D+Aug methods for each object in the

dataset are shown in Table 3.3. We present the percentage of class indices which have error

under 4 cm. We observed high error in the flashlight which is likely due to its symmetrical

nature. The unary potential does not explicitly encode texture information, so geometrically

symmetric parts can tend to flip. The clamp is among the most difficult objects to localize

due to its high-dimensionality and significant self-occlusions.

3.5.7 Qualitative Analysis

Selected examples of the MP+RGB-D method are shown in Figure 3.6. We show a selected

scene which demonstrate the effectiveness of the MP+RGB-D method at localizing hand

tools, even under partial or full occlusion of some of their parts, in Figure 3.7. While

the heatmap may provide little to no information for some parts, by leveraging geometric
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Table 3.3: Fraction of tools with matching error less than 4 cm. All objects are evaluated
with the average pairwise matching errorm, except the screwdriver which uses the symmetric
matching error, msym.

Class MP+RGB-D MP+RGB-D+Aug

clamp 0.677 0.387

hammer 0.920 0.400

longnose pliers 1.000 0.938

lineman’s pliers A 0.909 0.818

lineman’s pliers B 0.917 0.833

boxcutter 0.833 0.750

flashlight 0.640 0.640

screwdriver (msym) 0.759 0.689

information through message passing, we are able to resolve the pose of all the visible tools

in the scene.

3.6 Conclusion

In this chapter, we present an inference technique for estimating articulated parts-based

object pose in clutter. We model the part poses of each articulated object as a Markov

Random Field (MRF) and perform efficient particle-based belief propagation. We use artic-

ulation constraints between parts and a novel learned likelihood function to perform message

passing in the MRF. We perform a thorough analysis of our method and show that it per-

forms well on both uncluttered and cluttered scenes. We demonstrate that the message

passing step is highly beneficial in terms of enforcing geometric consistency to inform pose

estimation in the high dimensional space of 6D articulated object pose.
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CHAPTER 4

Stein Variational Inference for Planning to

Goal Sets

Goal Samples

Simulated Rollouts Trajectory Execution

Figure 4.1: Our goal set planner considers a discrete set of goal samples as the planning
objective. By considering multiple possible goals within the trajectory optimization process,
we can handle challenging environments with clutter and dynamic obstacles.

4.1 Introduction

In order to accomplish diverse tasks in unstructured environments, robots need the ability

to generate motion plans to different user-specified goals. Such goals are often naturally

expressed as goal regions in the workspace, rather than single point goals (e.g. navigate

to a certain room, place an object on a shelf). Traditional trajectory planning techniques

require the goal regions to be explicitly specified as planning objectives. This specification is

challenging in cases where the goal region is uncertain. Examples of uncertain goal regions
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include those which are intractable to model explicitly, such as stable grasp poses across

diverse objects [97, 114] or user preferences [135, 189].

We seek to solve planning problems under goal region uncertainty given only a fixed set

of goal demonstrations. The key insight of our approach is to model these demonstrations

as samples from an underlying goal distribution. Our goal set planner plans directly to

these goal samples, resulting in a generalizable, data-driven planning objective which can be

employed across goal regions, eliminating the need to explicitly model the goal. Planning

to goal distributions has been formulated as a flexible representation for a number of objec-

tives [34], but requires a fully specified parametric goal distribution. Our approach instead

treats the goal as an implicit distribution, from which we can obtain samples (e.g. successful

grasp poses [47]) but which cannot be evaluated explicitly. We formulate this problem as

inference-based planning [8, 166, 181], and seek a distribution of trajectories which terminate

in high-density regions of the goal distribution (see Figure 4.1). Due to the complex, multi-

modal nature of the planning problem, we consider particle-based trajectory distributions

and perform inference using Stein Variational Gradient Descent [92, 81]. In contrast to previ-

ous data-driven approaches to intractable planning objectives [97, 114, 135, 189, 47, 33, 94],

we require no upfront learning before planning begins.

We formulate the problem of goal set planning as generalized Bayesian inference (GBI), an

emerging statistical technique which enables inference for intractable likelihoods. GBI refers

to a class of problems in which the likelihood function is specified through a generic loss,

typically a divergence between two distributions evaluated against observations [18, 72, 104].

We demonstrate that divergences can be computed over implicit goal distributions, which

allows us to leverage a loss function that quantifies the divergence between the terminal

state samples and the goal samples to infer the posterior trajectory distribution [39]. We

then propose a Stein variational inference methodology to solve the problem as a sequence

of gradient updates of a set of trajectories.

We present a number of potential loss functions which can be applied within this frame-

work. We additionally compare to several previously proposed heuristic approaches [34, 185].

We demonstrate the applicability of our approach in planar navigation and in a high-

dimensional grasping task. By considering the full set of goal samples throughout the

planning process, our planner reliably finds reachable grasps in scenarios where heuristic

approaches fail to reach their selected pose from the goal set.
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4.2 Related Work
Trajectory planning to a goal can be stated as an optimization problem with the objec-

tive of finding a minimum cost path to a point in the robot workspace and can be effi-

ciently solved using differentiable costs and dynamics [131, 73, 138]. Casting planning as

probabilistic inference has become a popular technique for achieving robust control under

uncertainty [132, 81, 78, 181, 19]. One popular approach is to employ a nonparametric,

particle-based representation of the trajectory distribution, iteratively updating the poste-

rior through importance sampling [78, 181]. Other methods use variational inference to

efficiently infer the trajectory distribution [132, 81, 129].

Most related to our work is that of Conkey and Hermans, who formulate trajectory

planning to goals defined as a probability distribution [34]. Our proposed approach also

considers the goal to be a distribution, but we represent the goal as an implicit (sampled)

distribution [39] eliminating the need for the distribution to be explicitly specified by the

user. The problem of planning to a set of goals has been considered by the manipulation

community for robotic grasping. A popular approach for grasp planning to a goal set has been

to formulate trajectory optimization and grasp selection as independent steps [13, 158, 185].

These methods first select a single goal from the set prior to planning based on a scoring

metric, then treat the selected sample as a point goal. Similar approaches have been used to

heuristically guide sampling-[64] and graph-based [3] motion planners to goal samples from

sets in other contexts. Another approach is to jointly perform trajectory optimization and

grasp selection. Dragan et al. [45] add a manually defined goal set constraint to the problem

of trajectory optimization. Wang et al. [178] perform grasp selection and refinement online

by estimating the grasp distribution. These methods require domain-specific information

about the grasping problem and do not generalize across planning problems. Data-driven

approaches to represent intractable planning objectives either employ high-fidelity simulation

to measure success (e.g of grasps) [97, 114, 47, 94], or demonstrations to represent user

preferences [135, 189, 33]. In these techniques, an upfront computational cost is required

before planning begins, and must be performed again whenever environmental conditions,

such as observability or dynamic environments, necessitate replanning.

4.3 Goal Sample Set Planning as Inference

Given a robot with state xt ∈ X at time t, we consider the problem of planning to a goal set

within the state space, Xg ⊂ X . We consider the case of arbitrarily complex goal regions Xg

that do not admit explicit analytic specification. Instead we can obtain a set of valid goal

samples, G̃ = {x(i)g }Ni=1, x
(i)
g ∈ Xg. Examples of this type of goal include data labelled by
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simulation or human demonstration.

We seek a policy ut = π(xt) such that the terminal state after a time horizon T lies within

the goal region, xT ∈ Xg, given only goal samples G̃. The robot trajectory is defined as a

sequence of states and actions, τ = {(xt, ut)}Tt=0. We seek the minimum cost trajectory, τ ∗,

which solves:

τ ∗ = argmin
τ∈T

C
(
xT ; G̃

)
+

T−1∑
t=0

ct(xt, ut; z), (4.1)

where z denotes the environmental observation (e.g. the map of the environment). The

running cost, ct(xt, ut; z), is chosen based on the domain (e.g. quadratic cost, obstacle cost,

etc.). Our primary contribution is the formulation of the terminal cost, C(xT ; G̃), when the

goal region is represented only by a set of samples, G̃.

The planning objective in Equation (4.1) can be restated in terms of probabilistic inference

using the formalism of planning as inference [8, 166, 132, 181], as described in Section 2.3.

In planning as variational inference, we seek to find a distribution over trajectories q(τ) ∈ Q
that minimizes the divergence with the posterior distribution of trajectories, pO(τ | z),
defined from the cost in Equation (4.1):

q∗(τ) = argmin
q∈Q

DKL

(
q(τ) || pO(τ | z)

)
. (4.2)

We can factorize the posterior over trajectories, τ , given an environment observation, z, and

a set of goal samples, G̃ = {x(i)g }Ni=1, as:

pO(τ | z, G̃) ∝ pgoal(G̃ | xT )
T−1∏
t=1

p(z | xt)
T−1∏
t=1

p(xt+1 | xt, ut) (4.3)

= pgoal(G̃ | xT )pO(z | τ ′)p(τ ′), (4.4)

where τ ′ = {(xt, ut)}T−1
t=0 denotes the portion of the trajectory up to time T − 1, xT denotes

the terminal state of the trajectory, and pgoal(G̃ | xT ) is the goal likelihood given the implicit

goal distribution G̃. We model the likelihood pO(z | τ ′) in terms of the trajectory cost

yielding:

pO(z | τ ′) ≈
1

Z
exp

(
−α

T−1∑
t=0

ct(xt, ut; z)

)
, (4.5)

where Z is a normalization term. The likelihood pgoal(G̃ | xT ) in Equation (4.4) is intractable

due to the implicit goal distribution. The following section addresses the key technical

question of this work: how can we perform inference on the intractable posterior arising

from an implicit goal distribution?
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Figure 4.2: Our SVGD-based planner takes as input a set of goal samples, G̃, an environ-
mental observation, z, and an initial state, x0 and iteratively updates a set of trajectory
particles, τ . At each iteration, the particles are rolled out using a simulator. Each rollout is
then evaluated in terms of its running cost, c. A goal loss , Lgoal, computes the discrepancy
between the terminal points of the trajectory distribution and the goal set. SVGD updates
the trajectory particles using the gradients of the combined running and goal losses.

4.4 Planning to Implicit Goal Distributions as Gener-

alized Bayesian Inference

We propose applying generalized Bayesian inference to directly approximate the solution of

Equation (4.4). While one could fit a parametric model of p̂goal(Xg | xT ) to the sampled data

G̃, we seek a generic objective for planning directly to the implicit distribution that avoids

task-specific pre-processing. We now give a brief overview of generalized Bayesian inference

and Stein variational inference before explaining how we combine them to solve the goal set

planning problem. Figure 4.2 visualizes our approach to planning as generalized Bayesian

inference using SVGD.

Generalized Bayesian Inference. Generalized Bayesian inference (GBI) accounts for

intractable inference problems arising from evaluating a loss function instead of a likelihood

that factorizes over each observation [104]. Given a posterior p(x | Y), where x are arbitrary

random variables and Y = {y(i)}Ni=1 is a set of N observed data points, GBI approximates

the posterior as follows:

pL(x | Y) ∝ p(x) exp (−βL(x,Y)) (4.6)

where L(x,Y) defines a loss between the random variables and observed data. Typ-

ically, the loss measures divergence (e.g. KL) between the data and query variables.

The posterior pL(x | Y) recovers the conventional Bayesian posterior when β = 1 and

L(x,Y) = −
∑N

i=1 log p(y
(i) | x). We can compute the approximate posterior by solving the
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following variational optimization problem:

qL(x | Y) = argmin
q∈Q

β Ex∼q [L(x,Y)] +DKL

(
q(x) || p(x)

)
(4.7)

Stein Variational Inference. We build on work that approximately solves Equa-

tion (4.2) using Stein variational inference [81, 11]. For a complete description of this tech-

nique, see Section 2.4.3. Stein variational inference represents the candidate distribution q(τ)

nonparametrically by a set of particles, each representing a trajectory, {τ (i)}Mi=1. Stein vari-

ational gradient descent (SVGD) [92] employs gradient-based optimization over the particle

set to minimize the kernelized Stein discrepancy [91] between the true and the approximate

posterior. SVGD can solve high-dimensional planning problems involving complex, multi-

modal posteriors [81, 11]. SVGD is an iterative algorithm which applies the following update

to each particle i at iteration k:

τ
(i)
k ← τ

(i)
k−1 + γϕ(τ

(i)
k−1) (4.8)

ϕ(τ) =
1

M

M∑
j=1

k(τ (j), τ)∇τ (j) log pO(τ
(j) | z) +∇τ (j)k(τ

(j), τ) (4.9)

where k(τ (j), τ) is a kernel function between trajectories. We can interpret the first term

inside the summation of Equation (4.9) as an attractive force that moves particles according

to the gradient of the log-posterior, while the second term acts as a repulsive term keeping

particles from collapsing to a single point estimate. Thus SVGD leverages parallel gradient-

based optimization to generate a diverse set of samples more efficiently than Markov chain

Monte Carlo (MCMC) samplers [181].

Terminal Losses for Goal Sets. We leverage results from the GBI literature which

approximate the optimization problem in Equation (4.7) using a divergence metric between

two implicit distributions [39]. We define the implicit terminal distribution as X̃T = {x(i)T }Mi=1

and solve:

qL(xT | G̃) := argmin
q∈Q

Lgoal(X̃T , G̃) (4.10)

The loss function Lgoal(X̃T , G̃) measures the discrepancy between the terminal state dis-

tribution and the distribution of goal states, represented implicitly by samples X̃T and G̃

respectively.

We note that the loss defined in Equation (4.10) provides a measure over the set of terminal

states, rather than an individual likelihood per trajectory particle required by Equation (4.4).

A key insight of our approach is to solve the resulting planning as inference task with SVGD,
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which employs the gradient of the particle likelihood, without the need to explicitly evaluate

the goal loss per particle. We define the gradient in Equation (4.9) as follows, combining the

results from Equation (4.4) and Equation (4.10):

∇τ (j) log pO(τ
(j) | z) = ∇τ (j) log pO(z | τ (j)) +∇τ (j) log p(τ

(j))− β∇τ (j)Lgoal(X̃T , G̃) (4.11)

The terminal loss must be differentiable with respect to the trajectory samples and efficient

to compute so it can be used in a control loop. We consider the following two sample

tests which meet this criteria: The kernel Maximum Mean Discrepancy (MMD) [60], a KL

divergence approximation based on classification [154, 106], a smooth k-Nearest Neighbor

test [143], and the energy statistic [159]. In the following section, we describe each of these

losses.

4.4.1 Terminal Losses

This section provides detailed derivations of the different terminal loss functions,

Lgoal(X̃T , G̃), compared in our generalized Bayesian inference planner. Recall, the loss func-

tion Lgoal(X̃T , G̃) measures the discrepancy between the terminal state distribution and the

distribution of goal states, represented implicitly by samples X̃T and G̃ respectively.

Kernel Maximum Mean Discrepancy (MMD). The squared MMD [60] measures

discrepancy between two distributions p(x) and q(y), and is defined as:

MMD2(p, q) = E [k(x, x′)]− 2E [k(x, y)] + E [k(y, y′)] (4.12)

where k(·, ·) is a kernel function. In the case where distributions p and q are implicit, an

unbiased two-sample approximation given sample sets X = {x(i) ∼ p}Mi=1, and Y = {y(i) ∼
q}Ni=1 of the squared MMD is given by:

MMD2
u(X,Y) =

1

M(M − 1)

M∑
i=1

M∑
j ̸=i

k(x(i), x(j)) +
1

N(N − 1)

N∑
i=1

N∑
j ̸=i

k(y(i), y(j))

− 2

MN

M∑
i=1

N∑
j=1

k(x(i), y(j)). (4.13)

When applied to our setting we simply define Lgoal(X̃T , G̃) = MMD2(X̃T , G̃) where X̃T =

{x(i)T }Mi=1 correspond to samples from the terminal state associated with the corresponding

trajectory particle τ (i).
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KL Divergence. A differentiable two-sample KL divergence approximation can be ob-

tained through density ratio estimation via classification [154, 106]. The KL divergence

between distributions p and q is defined as:

DKL(p, q) = Ex∼p(x)

[
log

p(x)

q(x)

]
. (4.14)

This quantity can be approximated over samples {x(i) ∼ p}Mi=1 if the ratio r(x) = p(x)/q(x)

can be computed analytically:

Ex∼p(x) [log r(x)] ≈
1

M

M∑
i=1

log r(x(i)) (4.15)

In the case where the goal distribution and posterior distribution are implicit, the ratio r(x)

cannot be evaluated. Instead, the ratio can be approximated through classification, where

binary label y = 1 indicates that a sample x was drawn from p and y = 0 indicates a sample

was drawn from q. The ratio can then be approximated as:

r∗(x) =
P (x | y = 1)

P (x | y = 0)
, (4.16)

which can be further simplified to:

r∗(x) = exp(σ−1(P (y = 1 | x))). (4.17)

This approximation reduces the density ratio estimation to a classification problem. Thus,

the ratio is computed by evaluating a binary classifier for each sample which can be performed

efficiently.

Intuitively, this approach assumes that the KL divergence should be highest when the

classifier cannot distinguish between the samples from each distribution. The classifier must

be trained individually for each estimated trajectory distribution in order to use this diver-

gence. To improve computational efficiency in practice, the classifier can be initialized with

the result from the previous iteration. Finally, we can define Lgoal(X̃T , G̃) = DKL(X̃T , G̃)

where the KL divergence is approximated following Equation (4.15).

Smooth K-Nearest Neighbor. It is possible to define a differentiable two-sample test

based on the well known k-NN algorithm as demonstrated in [143]. The Smooth K-Nearest

Neighbor test possesses important statistical properties such as consistency and convergence

of its statistics to f -divergence. This is despite the complexity of having to solve a combina-

torial optimization problem (nearest neighbor match) required by the k-NN method. Let M
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be the number of samples of p, and N be the number of samples of q. The k-NN divergence

can be defined as

DNN
α (p, q) =

∫
α2p2(x) + (1− α)2q2(x)
αp(x) + (1− α)q(x)

dx, (4.18)

for M/(M +N)→ α ∈ (0, 1).

As proved in [63], the statistic

1− T (X,Y)
(M +N)k

, (4.19)

where T (X,Y) refers to the number of edges connecting samples in a set X = {x(i) ∼
p}Mi=1 to a set Y = {y(i) ∼ q}Ni=1 from a k-neighborhood graph created with points in X
and Y, converges in probability to the DNN

α divergence, and can be used as an efficient

approximation. To make the computation differentiable, the authors of [44] define

T (X,Y) =
M∑
i=1

N∑
j=1

si({x(l)}M+N
l=1 )j, (4.20)

where si({x(l)}N+M
l=1 ) denotes the softmax function computed on the Euclidean distances

between all points, except point i. As the softmax function is differentiable, the statistic

in Equation (4.19) becomes differentiable and can be used directly as our loss function

Lgoal(X̃T , G̃). To avoid specifying a particular value for α, our implementation computes the

statistic for several values and averages them as the final result.

Energy Statistic. This two-sample test is based on Newton’s gravitational potential

energy which relates two entities by the Euclidean distance between them [159]. Given two

distributions p(x) and q(y), the energy distance is defined as:

DE(p, q) = 2E
[
||x− y||2

]
− E

[
||x− x′||2

]
− E

[
||y − y′||2

]
, (4.21)

where x and y are independent random variables. The corresponding two-sample statistic

given two sets of samples X = {x(i) ∼ p}Mi=1 and Y = {y(i) ∼ q}Ni=1 can then be written as:

DE(X,Y) =
2

MN

M∑
i=1

N∑
j=1

∥x(i)− y(j)∥2− 1

M2

M∑
i=1

M∑
j=1

∥x(i)−x(j)∥2− 1

N2

N∑
i=1

N∑
j=1

∥y(i)− y(j)∥2.

(4.22)

This provides a computationally efficient statistic which can be directly used as our loss

Lgoal(X̃T , G̃) = DE(X̃T , G̃).
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4.4.2 Practical Considerations

The statistics considered in this work are good local approximations of distribution diver-

gences. In the case of trajectory optimization, when the terminal states in early planning

iterations are far from the goal set, the goal loss gradients can be uninformative. We there-

fore include a prior in our set planning method consisting of a smooth uniform distribution

constructed by placing a bounding box around the goal samples. This can be included in our

framework by multiplying a prior over the terminal state p(xT ) with the goal likelihood in

Equation (4.10) This mitigates the poor divergence approximation in early iterations. Note

that the uniform prior is insufficiently informative on its own, particularly in cases where

the goal set is multi-modal. Furthermore, the prior needs to be differentiable, which is not

the case for a standard uniform distribution. Therefore we define a smooth uniform prior in

the region R = xT : a ≤ xT ≤ b as

p(xT ) ∝ exp
(
−d(xT , R)2/

√
(2σ2)

)
(4.23)

where d (x,R) = min |x− x′|, x′ ∈ R is a distance function, and σ controls the sharpness of

the approximation.

Once inference over the trajectory distributions converges, we must select a single tra-

jectory estimate to execute. A common approach to accomplish this is by taking the mean,

or weighted mean, of the particle set. This method is ineffective when the trajectory distri-

bution is multi-modal. An alternative approach is to pick the maximum weighted particle.

Our proposed set-based terminal losses yield a single score over the whole distribution, which

does not enable weighing individual particles based on terminal loss. To select our final sam-

ple, we instead select the lowest cost trajectory. In practice, we also include the prior in the

weight computation to avoid local minima with very low-cost trajectories.

4.5 Experimental Results

We evaluate our method in a simulated 2D planar navigation problem and manipulation

experiments both in simulation and on a physical robot. For all experiments, the goal set

planner is run in MPC-style, where optimization is performed at each timestep, then the

first action of the lowest-cost trajectory is executed.

Baselines. Each baseline involves inference using SVGD [92, 81] with the same running

costs, but with different heuristic terminal costs based on previously published work, as

defined below.
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Figure 4.3: Pass rate for different distance thresholds between the final state and the nearest
goal sample. Dashed lines represent baseline methods.

– Closest Point: The nearest goal sample to the start configuration is selected as the goal.

The terminal cost is the squared Euclidean distance to this point. A dynamic version of

this cost is obtained by recomputing the closest point at the beginning of each planning

timestep [185].

– True Goal Distribution: Given the true goal distribution, the objective is formulated as

maximizing the density of the goal distribution at the terminal point [34]. This method

is only applicable to the 2D planar navigation task when the goal distribution is known.

– Mixture Model: We define a goal likelihood with a Gaussian mixture model obtained by

placing each component centered on each goal sample, with a fixed covariance, akin to a

kernel density estimator. The goal loss is then the cross entropy over the mixture model,

which is equivalent to maximizing the likelihood [34].

4.5.1 Planar Navigation

We implement a 2D planar navigation task to characterize the behavior of our approach.

We define goal distributions over 2D position for each scene using a parametric distribution

(Gaussian, mixture of Gaussians, or uniform). The goal set supplied to the planner consists

of a random set of goal samples drawn from the distribution.

The agent state xt is composed of a 2D position and velocity, and the control signal ut is

a 2D acceleration. We use known, linear dynamics in a fully observed environment for the

controller rollouts.
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Cross Entropy Closest Point

t = 9s t = 5.5s

Figure 4.4: Cross Entropy (left) and Closest Point (right) baselines fall into local minima
failing to reach the goal. The trajectory is shown in blue, the trajectory distribution in
purple, and the goal distribution in orange contours. The red ‘x’ shows the closest point.

Losses. For each method, the running cost is summed over each timestep, where the cost

for one timestep is:

ct(xt, ut, z) = x⊤t Qxt + u⊤t Rut + α cSDF(xt, z) (4.24)

where Q and R are quadratic cost parameters for the state and action, and cSDF(xt, z) is

the obstacle avoidance term, computed using the Signed Distance Function (SDF) over the

environment z. The goal loss Lgoal(X̃T , G̃) is a set goal loss which is differentiable with

respect to the trajectory τ .

Implementation Details. For each of our goal set planner ablations, N = 50 samples

are randomly selected from goal distribution, except for KL (Ratio Estimation), which uses

N = 100 samples. This method involves training a learned classifier so is aided by a higher

sample size. For the closest point methods, the goal sample with the smallest Euclidean

distance from the start state is selected. For all the methods, M = 50 particles are used

to represent the trajectory distribution. The particles represent the discrete control signals,

ut, which are 2D accelerations at each 0.1 second timestep over a horizon of 3 seconds.

All planners are initialized with the distribution from the previous timestep, shifted to the

current timestep, and run for 50 iterations. We use the Adam optimizer [76] to select the

step size in the SVGD update rule.

The KL divergence uses a 3 layer fully-connected network as the classifier, retrained at

each timestep. To mitigate computational complexity, we warm start the training with the

weights from the previous timestep. The Kernel MMD uses an RBF kernel, with a bandwidth

selected by applying the median heuristic over the goal samples [76]. The Smooth k-NN loss
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uses a value of k = 1.

We use the RBF kernel for SVGD, and set the bandwidth using the median heuristic, a

popular technique for choosing the kernel bandwidth which yields a good estimate in many

cases [55]. Without access to data consisting of trajectory samples, we assume that they

are normally distributed with covariance σ = 1. Under these assumptions, it follows that

the expected distance between samples drawn from the distribution is 2D, where D is the

trajectory dimension.

Results. To evaluate the goal set planner, we execute 10 runs per method per scene across

5 scenes. We measure the Euclidean distance between the terminal state in the trajectory and

the nearest goal sample for each run. We present the pass rate for each method in Figure 4.3,

where pass rate is defined as the percentage of runs for which the error is less than a given

error threshold. The cross entropy baseline performs close to the set-based methods with

respect to pass rate, but is prone to falling into local minima. The closest point baselines

have a high failure rate on challenging environments, particularly those with collisions near

the goal (see Figure 4.4), or those with the closest point in collision (see bottom-left in

Figure 4.6). While it would be trivial to check for collisions with the closest point in the

planar environment, we avoid this additional domain-dependent pre-processing step to better

replicate environments in which collisions are expensive or intractable to compute.

We visualize the total Euclidean path length for each method in Figure 4.5. The baselines

are shown with hatched bars. We exclude paths for which the terminal state is not within

40 cm of any goal sample. All methods achieve similar path lengths, with the closest point

baselines consistently resulting in slightly shorter paths. This is unsurprising given the

distance-based goal selection bias, but comes at the cost of being less robust to different

environments.

Figure 4.6 shows example trajectory distributions for the goal set planner using the MMD

cost. Both the Smooth k-NN and the Kernel MMD terminal losses display moment-matching

behaviour, which we posit allows them to be more robust to challenging environments. We

posit that the kernel embedding in the MMD loss enables more flexible representation of the

goal region compared to the other losses. We select MMD for all manipulation experiments.

Distribution matching. We hypothesize that our goal set planning achieves higher suc-

cess rate in challenging environments due to its ability to better approximate the underlying

goal distribution. To verify this, we measure the Chamfer distance between the terminal

states in the trajectory distribution at each timestep and the goal samples. The results are

shown in Fig. 4.7. The cross entropy baseline, using the true goal distribution, achieves lower

Chamfer distance than the other baselines, but performs worse than the goal set planner due

to its mode-seeking behavior. Kernel MMD and smooth k-NN terminal set losses perform
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Figure 4.5: Average path length for each terminal cost for the planar navigation task. The
points indicate results for individual runs. Only successful trajectories are included, where
success is defined as getting to within 40 cm from any sample within the goal set. The
numbers on the bars indicate the number of successful runs out of 50 in each category.

better on this metric than the energy statistic and the KL approximation.

4.5.2 Robotic Grasping

Stable grasping of arbitrary objects is a challenging problem since the goal distribution

consisting of stable grasp poses is intractable to model. We evaluate our goal set planner on

a grasping task using grasp samples generated in simulation [47]. We compare our method

to the Closest Point and Mixture Model baselines.

We assume that the environment and target object are fully observed. Experiments are

performed using the Franka Panda manipulator in the Isaac Gym simulator [99]. We use

the STORM library for GPU-accelerated, fully differentiable dynamics and costs [17]. The

goal set is represented by N = 100 samples of valid grasp configurations drawn from the

Acronym dataset [47]. The goal set planner is used to plan to a pre-grasp pose to offset

grasp locations in an MPC framework over a fixed horizon. The goal set planner optimizes

over all goal samples at each planning iteration, and does not require pre-processing the set

prior to planning. After convergence, we use inverse kinematics (IK) to move to the nearest

grasp sample, and then lift the object.

We evaluate over 5 runs across 10 scenes containing 8 different objects and 5 environments.

Grasp success results are shown in Table 4.1. We observe that a primary source of failure

is due to failure in the IK stage, when moving from the pre-grasp pose to the grasp pose.

IK errors can arise from collisions or singularities encountered during the grasp. To better

understand the performance of the goal set planner independent from the grasp stage, we
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Figure 4.6: Trajectory distributions for the Goal Set Planner using the MMD terminal loss
are represented as a set of samples (drawn in purple). The final trajectory is shown in the
last pane for each environment, colored with respect to the velocity (yellow is fast, purple is
slow). The red points represent the goal samples and the orange contours represent the true
goal distribution.

Figure 4.7: Chamfer Distance at each iteration for different terminal costs. (left) Comparison
between the baseline methods and our goal set planner with MMD terminal loss. (right)
Comparison between different terminal costs. The best performing baseline (Cross Entropy)
is shown for reference.

measure the planning success rate of our planner to the pre-grasp pose, computed as the

distance from the terminal end-effector pose to the nearest goal sample. We present the

pass rate for each method in Figure 4.8. The goal set planner achieves a higher pass rate

at thresholds over approximately 4 cm. The closest point method may select goal points

which are in collision in some of the example scenes, increasing the distance error, which also

accounts for the discrepancy in grasp success. The rotation error is lower for closest point

because it matches the orientation of the goal consistently, including for unreachable poses.

We posit that the mixture model poorly approximates the true goal distribution explaining

its failure.

Figure 4.10 shows a case where the goal set planner finds a reachable point from the set,

but the closest point method may select goal points which are in collision in some of the

example scenes. This phenomenon helps explain the discrepancy in grasp success at the cost
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Figure 4.8: Pass rate data for the grasping experiments: the Euclidean distance (left) and
the L2-norm of the rotation matrix (right) between the final end-effector orientation and the
goal.

Success (%)

Closest Pt. 50
Mixture Model 40

Goal Set (MMD) 54

Table 4.1: Grasp success rate

of increasing distance error.

4.5.3 Robot Demonstration

We demonstrate that our simulated manipulation experiments are transferable to the real

robot, under the assumptions of known object and obstacle locations and geometries, through

a robotic grasping demonstration. Figure 4.9 shows two successful grasping runs of the

planner, one in an environment without obstacles and one with obstacles. Goal samples are

drawn from positive stable grasp examples from the Acronym dataset [47]. We postulate

Figure 4.9: Execution runs of the goal set planner on the real robot platform in an envi-
ronment with no collisions (left three) and with collisions (right three). The robot grasps a
mug by planning over a set of successful sample grasp poses obtained from simulation [47].
Trajectories are planned offline and executed on the robot.
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Figure 4.10: Example failure execution for the closest point planner (top) compared the
the goal set planner (bottom). The closest point selected is shown in blue. The point is
not reachable in the environment, causing the robot to fail to reach it (top right). The set
planner considers all the grasp samples, shown in green. It finds a reachable grasp point and
grasps successfully (bottom right).

that since the Isaac Gym environment has high-fidelity physics simulation, our results are

transferable to the real robot environment. However, to deploy the planner presented in this

work to a real robot environment, more investigation would be required into dealing with

perception uncertainty. This is an interesting avenue for future work.

4.5.4 Placement

We posit that our planner is more effective than point selection heuristics at dealing with

multi-modal goal regions and changing environments due to its ability to consider multiple

possible goal regions within the trajectory distribution. To examine this claim, we design

a table setting experiment where mugs are placed sequentially on a surface using demon-

strations of valid configurations, inspired by demonstration-based arrangement tasks [189].

The goal region consists of three uniform distributions representing valid terminal gripper

3D positions (see Figure 4.11, left). We sample 60 points to form the goal set at the begin-

ning of the task, and keep the goal set constant until all mugs are placed. Each subsequent
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Figure 4.11: Given example demonstrations of mug placement as the goal set (green), the
robot plans a path to place a mug. The trajectory distribution (red) considers both free
goal distribution modes, and avoids the mode which has a collision due to the first mug (1),
ultimately selecting a free mode (2). The final positions of the mugs is show relative to the
goal samples over 6 runs (3). The mug colors correspond to runs.

placement operation requires the consideration of a new obstacle in the scene. We employ

the MMD terminal loss over the goal samples compared to the 3D terminal positions of the

end effector.

We perform six runs for this task, each involving placing three mugs. Figure 4.11 shows an

example trajectory distribution for the goal set planner when placing the second of 3 mugs,

which shows the multi-modality of the trajectory distribution. The final mug positions

(Figure 4.11, right) are clustered corresponding to the modes of the demonstrations. We

observe that the final mug placements may lie outside the sampled region. This can be caused

by early termination, or in some cases, trajectory distributions which converge outside the

sampled region. The latter could be caused by singularities in the robot kinematics or local

minima.

4.6 Discussion & Conclusion

In this work, we present a formulation for a goal set planner, which considers the planning

problem in which an uncertain goal region is represented as a set of samples. The planner

is generalizable across goals which can be represented by implicit distributions, without the

need for domain-specific, user-defined heuristics. We find that independent of the specific

loss used, the GBI formulation outperforms previously proposed approaches for planning

to goal sets and distributions. Our method outperforms all baselines on a 2D navigation

problem and yields improved plan-to-grasp success on a robotic manipulation platform.

In order to remain true to the general planning problem, our method does not consider

domain-specific techniques commonly used for the experiments considered. Our grasping
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results would likely be improved by integration of pre-planning steps for checking reachability

or collisions [116], or pre-grasping refinement of the final pose [178]. We hypothesize that

combining these approaches with goal set planning for the application of grasping would

improve robustness.

Limitations. Maintaining modes in the trajectory distribution can lend added robustness

in challenging environments, but it also raises challenges in selecting a single trajectory to

execute. We attribute the larger errors in the final pre-grasp pose of our method to the

challenge of detecting convergence given the multi-modality of the goal set planner. The

terminal set losses considered work best as local measures, meaning gradient information is

noisy if trajectories terminate too far from the goal. We mitigate this by applying smooth

box priors around the goal samples. Furthermore, the terminal point is not guaranteed to

be close to one of the points in the set. This could be mitigated by switching to a point-

based cost once close to the goal set. To deploy our planner in real-world applications, more

investigation is needed to explicitly handle perceptual uncertainty.
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CHAPTER 5

Stein Variational Belief Propagation for

Multi-Robot Coordination

(a) Markov Random Field

(b) Trajectory Belief

(c) Final Paths

𝝉𝟒 𝝉𝟔

𝝉𝟑
𝝉𝟐

𝝉𝟓

𝝉𝟏

Figure 5.1: Stein Variational Belief Propagation (SVBP) computes marginal trajectory dis-
tributions for each robot in a multi-robot system. SVBP represents the relationships between
robots as a Markov Random Field (a) and maintains multi-modal distributions over each
robot trajectory (b). The final trajectory generated by SVBP for each robot is shown in (c),
where the colour represents time, and the robot is shown in its final position.

5.1 Introduction

Multi-robot coordination is an essential capability for applications involving teams of robots,

such as industrial robots, delivery vehicles, and autonomous cars. Planning for multi-robot

systems is challenging due to the high-dimensionality introduced by a large number of agents.
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Decentralized algorithms enable each robot to perform local computations using information

from neighboring robots. This distributed approach is well-suited to multi-robot systems

since it involves solving lower-dimensional, local problems compared to the expensive high-

dimensional centralized approach.

Decentralized control algorithms [53, 169] are prone to deadlock scenarios which arise

from the multi-modality of the solutions that each robot must consider. Considering multiple

possible trajectories as a distribution allows us to represent diverse solutions [8, 166]. This

ability lends added robustness in dynamic environments, such as those with multiple mobile

agents. We therefore consider the problem of multi-robot coordination as a probabilistic

inference problem. We represent the robot swarm as a graphical model, where each robot is

a node in the graph, and edges connect robots in communication range [140, 163, 124]. This

representation enables distribution of possible trajectories for each robot to be inferred via

graphical inference (see Figure 5.1).

We propose Stein Variational Belief Propagation (SVBP), an algorithm for performing

probabilistic inference on a Markov Random Field (MRF) through message passing, and

demonstrate its applicability to multi-robot coordination. SVBP employs Stein Variational

Gradient Descent (SVGD) [92] to infer marginal posterior distributions as a set of particles

through nonparametric belief propagation [152, 70]. Leveraging SVGD enables effective

representation of multi-modal distributions, mitigating mode collapse compared to sampling-

based methods. Our formulation extends SVGD to graphical models by leveraging the

particle message update rules from Particle Belief Propagation (PBP) [69]. In contrast to

SVGD, SVBP approximates the marginals rather than the full posterior, and can therefore

scale to higher dimensional problems. The resulting algorithm is highly parallelizable since

the particles are deterministically updated using gradient information, making it well-suited

to efficient implementation on a GPU.

We demonstrate our approach on two applications: a simulated multi-robot perception

task, and a multi-robot Model Predictive Control (MPC) task, both in simulation and on a

real-world mobile robot swarm. We demonstrate how these problems can be formulated as

MRFs [140, 23] and solved via SVBP. The belief propagation framework enables multi-hop

information to be passed through the graph while only passing messages between immediate

neighbors. The perception experiments show that SVBP can maintain multi-modal belief

distributions in uncertain environments, leading to lower localization error compared to

baselines. The planning experiments demonstrate that SVBP is more resilient to deadlock

scenarios, and produces smoother trajectories resulting in faster time-to-goal. Our robot

experiments show that our SVBP controller is robust to noisy localization and dynamics

and asynchronous message passing.
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5.2 Related Work

Decentralized multi-robot coordination algorithms are those in which each robot executes a

controller to satisfy individual objectives considering local information from neighbors. This

technique is highly scalable to large and dynamic swarms. Optimal Reciprocal Collision

Avoidance (ORCA) [169], a variant of velocity obstacles [53], demonstrates real-time col-

lision avoidance for thousands of agents with independent objectives but are highly prone

to deadlock scenarios. We focus on decentralized Model-Predictive Control and graphical

approaches in this section and refer the reader to existing surveys [58, 133] for broader

coverage.

Multi-robot coordination with graphical models. Probabilistic graphical models

present a natural formulation for decentralized multi-robot coordination, whereby individual

robots are represented by nodes in a graph and edges connect communicating robots [140].

This formulation has been used to solve for robot localization and control with Gaussian

Belief Propagation [124]. Graphical representations have also been used to learn factors for

robot control via graph neural networks [163, 162]. This technique requires expert trajectory

demonstrations from a centralized controller for training.

Multi-robot Model Predictive Control. Decentralized model-predictive control

(DMPC) has been applied to multi-agent collision avoidance problems [112, 119, 171, 36, 95].

By planning over a horizon, these techniques mitigate deadlock scenarios issues but intro-

duce complexities due to the higher dimensionality introduced. These works consider the

problem of finding a single trajectory solution. In work most similar to ours, Patwardhan

et al. use Gaussian Belief Propagation for collision avoidance in multi-robot planning [124].

This method restricts the trajectory distributions to Gaussian forms, and requires all fac-

tors to be linearized about an estimate. In contrast, our approach can be used with any

differentiable factor and uses a more flexible nonparametric distribution.

5.3 Background

Let G = (V , E) denote a MRF with nodes V and edges E . Let X = {xs}s∈V denote the set

of all hidden nodes in the graph, and Z = {zs}s∈V denote the observed nodes corresponding

to each hidden node. We seek to infer the marginal distribution of a node, s ∈ V , given its

corresponding observation, p(xs | zs).

60



5.3.1 Belief Propagation

The marginal posteriors in an MRF can be computed using the Belief Propagation (BP)

framework:

p(xs | zs) ∝ ϕs(xs)
∏

t∈ρ(s)

mt→s(xs), (5.1)

where ρ(s) denotes the neighbors of s. The message from node t to node s, mt→s, is defined

as:

mt→s(xs) =

∫
ϕt(xt)ψts(xt, xs)

∏
u∈ρ(t)\s

mu→t(xt) dxt. (5.2)

We refer the reader to Section 2.5 for a full description of BP.

A number of belief propagation algorithms have been proposed in the literature. Gaussian

Belief Propagation (GaBP) is an efficient algorithm when the node distributions and their

corresponding factors can be represented as Gaussian [179, 37]. This method enables efficient

computation and has been shown to be effective for multi-robot collision avoidance and

localization [124, 115]. However, many applications in robotics are complex and multi-modal,

and cannot be fully represented by unimodal Gaussian uncertainty.

Particle Belief Propagation. Nonparametric Belief Propagation (NBP) [152, 70] repre-

sents distributions nonparametrically as mixtures of Gaussians and are well-suited to cases

where the integral in Equation (5.2) is intractable. NBP algorithms involves expensive

product operations between mixture distributions. NBP has been applied to robotic percep-

tion of articulated objects, using an efficient sampling-based message product technique [42],

learned unary factors [126], and end-to-end learned factors [120]. While these methods enable

complex representations of belief distributions, they rely on expensive sequential sampling

operations.

Particle Belief Propagation (PBP) defines a sampling-based algorithm for computing the

messages in Equation (5.2) for cases where the integral is intractable due to the complexity

of the state space [69]. PBP represents the belief at each node with a set of N particles,

{x(i)s }Ni=1. Given samples from node t ∈ ρ(s), {x(i)t }Mi=1 drawn from a candidate distribution

Wt, PBP defines the approximate message:

m̂t→s(x
(i)
s ) =

1

M

M∑
j=1

ϕt(x
(j)
t , zt)

Wt(x
(j)
t )

ψts(x
(j)
t , x(i)s )

∏
u∈ρ(t)\s

mu→t(x
(j)
t ). (5.3)

This message definition is used to draw samples from the marginal posterior, p(xs | zs), using
importance sampling.

PBP relies on the definition of a sampling distribution, Wt, which later work proposed to
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estimate via expectation maximization [90]. Importance sampling is prone to mode collapse,

which has been mitigated by drawing from multiple sampling distributions [121]. However,

current solutions to PBP require careful selection of sampling distributions and sequential

sampling operations.

5.3.2 Stein Variational Inference

Stein Variational Inference is an algorithm for approximating a distribution p(x) using a

candidate distribution, q(x), in the form of a set of particles, {x(i) ∼ q}Ni=1. SVGD [92]

employs gradient-based optimization over the particle set to minimize the kernelized Stein

discrepancy [91] between the true density and a candidate density represented by the particle

set. SVGD is an iterative algorithm which applies the following update to each particle i at

iteration k:

x(i)[k]← x(i)[k − 1] + ϵγ(x(i)[k − 1]) (5.4)

γ(x) =
1

N

N∑
j=1

κ(x(j), x)∇x(j) log p(x(j)) +∇x(j)κ(x(j), x) (5.5)

where κ(x(j), x) is a kernel function between particles. We can interpret the first term

inside the summation of Equation (5.5) as an attractive force that moves particles according

to the gradient of the log-density, while the second term acts as a repulsive term keeping

particles from collapsing to a single point estimate. Thus SVGD leverages parallel gradient-

based optimization to generate a diverse set of samples more efficiently than Markov chain

Monte Carlo (MCMC) samplers. For a full discussion of Stein Variational Inference, see

Section 2.4.3.

SVGD has proven useful in a number of robotic applications in recent years, including

control, planning, and point cloud matching [81, 11, 98, 82]. SVGD has been applied to

graphical models to approximate joint distributions using kernels over local node neighbor-

hoods [176] and conditional distributions over nodes [190]. Both these methods rely on the

conditional independence structure of MRFs and as such only pass messages between im-

mediate neighbors in the graph. In contrast, our proposed method computes the marginal

beliefs over nodes using belief propagation, which involves passing messages through the

whole graph.
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Algorithm 1 The SVBP Algorithm

procedure SVBP(G, Z)
Initialize particles {x(i)s }Ni=1 for s ∈ V
for k = 1, . . . , K do

Update messages (mt→s,ms→t) for (s, t) ∈ E
for s ∈ V do

for i = 1, . . . , N do
Compute γ(x

(i)
s ) ▷ Equations (5.5) and (5.6)

x
(i)
s ← x

(i)
s + ϵγ(x

(i)
s )

5.4 Stein Variational Belief Propagation

We propose Stein Variational Belief Propagation (SVBP), an algorithm for inferring marginal

beliefs in an MRF using SVGD. The marginal distribution is represented nonparametrically

using a particle set for each node in the graph, {x(i)s }Ni=1. We use SVGD gradient updates

to infer the density p(xs | zs) for each node. We define the posterior likelihood term in

Equation (5.5) using the marginal belief from Equation (5.1), p(xs | zs), to obtain the SVBP

likelihood gradient:

∇xs log p(xs | zs) = ∇xs log ϕs(xs, zs) +
∑
t∈ρ(s)

∇xs log m̂t→s(xs), (5.6)

where m̂t→s(xs) is defined via the PBP message rule from Equation (5.3). A distinct set of

Stein particles represents the posterior belief at each node.

The inference process using SVBP is described in Algorithm 1. Particles are first ini-

tialized based on the problem domain. At each iteration, messages are updated with Equa-

tion (5.3). For each node, particles are updated using Equation (5.5), computed by evaluat-

ing the gradients in Equation (5.6) and the kernel function. The process is repeated for K

iterations or until convergence.

SVBP provides several key advantages over other NBP techniques. First, it uses gradient-

based, deterministic particle updates which can be efficiently parallelized on a GPU, without

relying on sequential sampling operations. Second, SVGD is well-suited to multi-modal

applications due to its ability to maintain diverse modes with fewer particles. SVBP also

defines the kernel function in Equation (5.6) over individual nodes in the graph. This makes

SVBP well-suited to high-dimensional problems which can be represented as a graph.

Computing Gradients. SVBP requires that potentials ϕ and ψ are differentiable. The
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message gradients can be computed as follows:

∇xs log m̂t→s(xs) =
∇xsm̂t→s(xs)

m̂t→s(xs)
(5.7)

∇xsm̂t→s(xs) =
1

M

M∑
j=1

ϕt(x
(j)
t , zt)

Wt(x
(j)
t )

[
∇xsψts(x

(j)
t , xs)

] ∏
u∈ρ(t)\s

m̂u→t(x
(j)
t ) (5.8)

We note that the gradient update from Equation (5.6) only involves evaluating gradient

information from immediate neighbors, since the messages mu→t in Equation (5.3) are not

a function of xs. This enables efficient gradient updates since the algorithm only requires

backpropagating through single-hop neighbors.

Sampling Distribution. In practice, we use the current belief of the neighboring node,

p(xt), as the sampling distribution, Wt, where p(xt) is represented by Stein particles for node

t with equal weights. This enables efficient computation of the messages since it eliminates

the need to run expensive sampling algorithms like MCMC, as originally proposed.

Message Passing Schedule. We employ a synchronous message passing scheme in

which all messages are computed prior to updating each node belief. This enables efficient

batch computations of factors and messages suitable for execution on a GPU. However, our

algorithm can be employed with other message passing schedules.

Selecting an Estimate. In practice, multiple estimates exist for drawing an estimate

from the particle set. In practice, we select the highest weighted estimate for the exper-

iments described. The weights for the particles can be computed after convergence using

Equation (5.1), w
(i)
s = ϕ(x

(i)
s , zs)

∏
t∈ρ(s)mt→s(x

(i)
s ), where the messages are computed using

Equation (5.3).

5.5 SVBP for Multi-Robot Perception

The first application on which we validate our algorithm is a simulated multi-robot perception

experiment. The objective is to infer the belief, p(xs | zs), over the robot’s 2D position,

denoted xs, for each robot s for a single timestep. We consider the challenging case in which

the observation for each agent, zs, is multi-modal. Specifically, the observation consists of a

mixture of Gaussians which contains a component centered around the true position of the

robot and randomly sampled noisy components. An example observation and the associated

graphical model are shown in Figure 5.2. In addition to the observations, robots observe

the displacement to neighboring robots within communication range, creating edges in the
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Figure 5.2: SVBP better represents the underlying distribution, avoiding mode collapse.
(a) Graphical model of the multi-robot perception problem. The position of each node is
denoted xs, and the corresponding observation is denoted zs. (b) The approximate true
marginals for the graph in (a) and the observation shown in (c, d). Qualitative results for
SVBP (c) and PBP (d) at the final iteration (k). The red lines represent the true position
of the nodes, and the colored ‘x’ markers represent the maximum likelihood estimate for
each node. Lower-weighted particles are shown with lower transparency. The distributions
represent the noisy observations for each node of the corresponding color. Best viewed in
color.

graph (shown in red). The resulting marginal distributions for each robot are multi-modal,

as shown in Figure 5.2(b).

The MRF in Figure 5.2 requires the definition of the potentials in Equations (5.1)

and (5.2). We define the unary potential for each robot to be the mixture of Gaussians

corresponding to the robot observation. The pairwise potential is defined as a function of

the observed translation Lst between neighboring robots:

ψts(xt, xs) = exp
(
− α

(
∥xs − xt∥ − Lst

)2)
. (5.9)

where xs and xt are the 2D positions of neighboring robots and α is a user-selected coefficient.

Baseline. We implement PBP as a baseline approach. We employ iterative importance
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Figure 5.3: Average error for each node estimate for multi-robot localization. Results are
shown for varying levels of noise, corresponding to the number of noisy components added
to the observation.

sampling over the particles at each node, where each particle is weighted according to Equa-

tion (5.1) with the message definition of Equation (5.3). We use the current particle set at

each neighboring node as the candidate distribution for message computation, with equal

weights, as in SVBP. We apply random noise at the beginning of each iteration. The same

factor definitions and parameters are used for PBP and SVBP.

5.5.1 Results

For each run, the position of each robot is randomly selected such that the graph is connected

for a radius of 2 meters. To form the observation, a component is added at the true location

of the robot. Noisy components with uniformly sampled means are then randomly assigned

across nodes and added to the observation, making each observation a Gaussian mixture.

Particles are initialized uniformly. SVBP ran for 100 optimization iterations, and PBP ran

for 50 iterations. To generate an estimate for each node’s position, we select the highest

weighted particle.

The average error for 8 nodes over 10 runs for our SVBP algorithm against PBP is shown

in Figure 5.3. The x-axis represents the total number of noisy Gaussian components added to

the node observations. A visualization of the final belief distributions of SVBP and PBP for

the highest noise observation is shown in Figure 5.2. SVBP performs comparatively to PBP

for low observation noise, but significantly outperforms PBP in noisy cases. We observed

that PBP tends to converge quickly but was subjected to mode collapse which results in

locally optimal estimates. In contrast, SVBP maintains multiple modes, making it more

likely that the global solution is represented in the candidate particle set.
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Figure 5.4: The average Maximum Mean Discrepency (MMD) between the samples from the
true marginal distribution and the particle sets from SVBP and PBP. Both methods use 50
particles.

Comparison to True Marginals. We hypothesize that SVBP better represents the true

marginal distributions. We perform an analysis of the particle distribution of each method

compared to the true marginal beliefs. To obtain the true marginal beliefs, we run a Gibbs

simulation [26] to sample from the marginal using the density from Equation (5.1). To eval-

uate the integral for the message in Equation (5.2), we employ Monte-Carlo integration over

the full region of the observation with a high number of samples (1000). The ground truth

sampled marginals are imperfect due to the sampling procedure but provide a reasonable

baseline approximation. The visualization of the true marginal is shown in Figure 5.2(b).

We compute the kernelized Maximum Mean Discrepancy (MMD) [60] between the sam-

pled particle set and the belief particles for SVBP and PBP. The kernel bandwidth is chosen

using the median heuristic over the ground truth sample set [55]. Results are shown in Fig-

ure 5.4. SVBP obtains a lower MMD than PBP consistently across noisy environments. We

observe that some particles in SVBP get caught in local minima in very noisy cases in areas

where the unary potential is high, as in Figure 5.2(c). These particles are easily detected as

they have very low overall weights and could be reset in practice. We therefore do not include

any particles with weights less than 1% of the highest weight in the MMD computation.

Analysis of Number of Particles. We claim that SVBP can represent the marginal

beliefs with fewer particles due to SVGD’s ability to maintain modes of the distribution.

We execute both SVBP and PBP with different particle set sizes and measure the average

error across each node for the final estimate. The results are shown in Figure 5.5. For noisy

environments, PBP benefits significantly when the size of the particle set is increased from

25 to 100, whereas SVBP finds a good estimate with only 25 particles.
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Figure 5.5: Average error for each node estimate for different numbers of particles. The solid
lines correspond to experiments runs with noise added to the observation. The dashed lines
correspond to experiments with no noise added to the observation.

(a) (b) (c) (d) (e)

10
 m

Figure 5.6: Testing environments for the multi-robot control experiments with randomly
selected trajectories from SVBP. The goal positions for each robot are marked with an ‘x’.
Each environment is 10 meters by 10 meters.

5.6 SVBP for Multi-Robot Planning

Our second application involves decentralized Model Predictive Control (MPC) of a multi-

robot system. Each robot must avoid obstacles and the other robots in its trajectory to the

goal. We run experiments both in a 2D planar navigation simulation and on a decentralized

real robot system with realistic sensor and action noise.

5.6.1 Problem Formulation

We consider the problem of finding a collision-free trajectory for each robot s, τs = {us,k}T−1
k=0 ,

where us,k are control commands for time k over a fixed horizon T . We take a planning as

inference approach [8, 166] in which the nodes in the graph represent the trajectory distri-

bution, p(τs) for each robot, and the edges in the graph represent robots in communication,
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as in Figure 5.1. We assume known dynamics θs,k+1 = fs(θs,k, us,k), where θs,k is the state

of robot s at time k, and a known initial state θs,0. At each timestep, we execute the first

action in the trajectory and rerun the optimization, as in MPC. This approach is akin to a

multi-robot version of Stein MPC [81].

For this experiment, we assume the graph is fully-connected. We employ a loopy version

of belief propagation, in which the messages are initialized and iteratively updated. This

approach does not provide exact marginals but has proven to be effective in practice [117].

Potential functions. The unary potential for each robot trajectory is defined with

respect to the running cost c(θs,k, us,k) and terminal cost C(θs,T ) for a trajectory:

ϕs(τs, θs,0) = exp−

(
C(θs,T ) +

T−1∑
k=1

γk cs(θs,k, us,k)

)
(5.10)

where T is the time horizon and γk are constants, and the initial state replaces the “ob-

servation,” zs, from Equation (5.1). The running cost consists of a quadratic cost and an

obstacle avoidance cost based on the signed-distance function for the obstacles. Intermediate

state values θs,k needed to compute the costs are obtained by simulated rollouts using the

dynamics, fs(θs,k, us,k).

The pairwise potential between communicating robots employs the following collision

avoidance factor over the trajectory:

log ψts(τt, τs) = −
T∑

k=0

αk

(
1−

(
d(θs,k,θt,k)

r

)β)
d(θs,k, θt,k) ≤ r

0 d(θs,k, θt,k) > r

(5.11)

where d(θs,k, θt,k) is the distance between the robot positions at timestep k, r is the desired

collision radius, and αk and 0 < β ≤ 1 are constants. In our experiments, we use r = 0.5

and β = 0.3. We set αk to decrease linearly over the horizon.

Given differentiable dynamics, the above potential definitions allow the gradients from

Equation (5.6) to be computed with respect to the trajectories τs. We use a Gaussian kernel

which employs a distance function computed as the sum of the Euclidean distance between

states in two trajectories at corresponding times. Equation (5.5) is applied iteratively to

obtain a set of trajectories comprising the belief for each robot, {τ (i)s }Ni=1.

5.6.2 Baselines

Two baselines are employed for this scenario: the well-established Optimal Reciprocal Col-

lision Avoidance (ORCA) algorithm [169], and Gaussian Belief Propagation (GaBP), as
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in [124]. ORCA assumes that neighboring agent’s velocity are known and calculates optimal

reciprocally collision-avoiding velocities that are closest to the original preferred velocity.

The scenario was implemented using the RVO2 library [170]. We assume full connectivity.

For GaBP, potentials are expressed as a linearized Gaussian factor [37] with a bias term

that encodes the expected joint Gaussian to be observed. In contrast to the formulation by

Patwardhan et al. [124], we represent the trajectory consisting of 2D acceleration commands

for one robot as a single node, rather than inferring the state at individual timesteps. We

use similar potential functions to our SVBP implementation for fair comparison. The factors

in GaBP are restricted to the form:

Es(τs) =
1

2
(hs(τs)− bs)⊤Σ−1

s (hs(τs)− bs), (5.12)

where hs(τs) is an “observation function” over the trajectory τs, bs is a bias term, and Σs is

the covariance [37].

In order to use our non-linear, non-Gaussian costs, we set hs(τs) to be the cost for each

of our factors, with bs = 0. Since our costs are non-linear, hs(τs) must be linearized about

an estimate via a first-order Taylor series expansion. As in SVBP, the linearization requires

backpropagation through the dynamics fs(θs,k, us,k). Since the quadratic cost is already

linear, we use hs(τs) =
[
θs τs

]
, where θs is the state vector from simulated trajectory rollouts

using the dynamics model. Our GaBP implementation is able to infer optimal trajectories

without the need of a trajectory planner by making use of the dynamics function, in contrast

to the formulation by Patwardhan et al. [124].

5.6.3 Simulated Robot Experiments

We perform the simulated experiments in acceleration space, where the state θs,k consists

of 2D position and velocity, and the control commands us,k are 2D accelerations. We use

a time horizon of 20 discrete steps of 0.1 seconds each, making τs 40 dimensional for each

robot. The first control command from the lowest cost trajectory, equivalent to the heighest

weight particle, is executed at each timestep. The optimization is then rerun in MPC-style.

Results. We present the pass rate for ORCA, GaBP, and SVBP in Figure 5.7a. The

pass rate represents the percentage of trajectories (y-axis) which reached the goal within a

given error threshold (x-axis) across all robots for each run. Any robots that collided with

another robot are not counted as passed for any threshold. Since ORCA is sensitive to the

robot radius parameter, we show results for both a radius of 20 cm and 40 cm. We perform

10 runs on each of the environments in Figure 5.6. The total path time for each method is

shown in Figure 5.7b. Path time is only computed for trajectories which terminated within
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(a)

(b)

Figure 5.7: Pass rate (a) and path time (b) for each method considered for the multi-robot
control example. The pass rate represents the percentage of trajectories which finished
within a given error threshold. Only successful results are included for path time analysis.
A trajectory is successful if it reaches the goal within 30 cm without collisions.

30 cm of the goal without collisions. While all methods result in similar path lengths, the

robots move much more conservatively in the ORCA baseline, which results in higher path

times.

We observe that the failure modes in SVBP can occur due to local minima, for example

around large obstacles such as in the environments in Figure 5.6(c, e). GaBP is especially

susceptible to getting caught in local minima in the presence of challenging obstacles. A

subset of robots fail to reach their goals for every run in one environment, as illustrated

in Figure 5.8(b). ORCA is particularly prone to deadlock scenarios when it must obey a

collision tolerance (i.e. 40 cm collision radius case), failing for all runs in the environment

shown in Figure 5.8(a).
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(a) ORCA (40 cm) (b) GaBP

Figure 5.8: Failure modes for the baselines considered for the planar navigation experiment.
(a) ORCA is prone to deadlock, especially in the presence of obstacles. All run for this envi-
ronment fail with a 40 cm radius (shown with red circles). (b) Gaussian Belief Propagation
is prone to falling into local minima, especially around large objects. The four robots circled
in red cannot get around the obstacles.

5.7 Real Robot Experiments

We run our controller on a real multi-robot system comprised of omni-directional MBots [56].

We perform a collision avoidance experiment with three robots where the robots must cross

paths to reach their goal locations. The goal of this experiment is to determine the per-

formance of our controller under 1) noisy perception and dynamics, 2) limited computing

resources, 3) realistic asynchronous message passing schedules. The robots are equipped with

a single-board computer with limited processing power (a Raspberry Pi) and pass messages

through a custom websocket interface over a WiFi connection. Each robot performs SLAM

using a 2D Lidar for state estimation. The swarm is assumed to be fully-connected.

Decentralized Message Passing. Each robot independently maintains a representa-

tion of the graph and updates messages within their local graph based on neighbor belief.

At the beginning of each optimization iteration, the robots request the current trajectory

distribution from their neighbors which is used to update the local messages in each robot’s

representation of the graph. The robots pass messages using a custom API which passes

messages through websockets, inspired by rosbridge [35], which allows them to synchronously

query data from robots on a shared network.

Baseline. ORCA is implemented on the robots as a baseline. The algorithm is run in

72



Figure 5.9: An example of a trajectory for the SVBP algorithm on a real robot. The circles
highlight the final goal position for each robot.

a centralized manner on a single robot which broadcasts velocity commands to the whole

fleet. ORCA outputs a velocity command for each robot rather than a trajectory, therefore

we do not use an external trajectory tracker and execute the velocity command directly.

Implementation Details. We perform the simulated experiments in velocity space,

where the state θs,k consists of 2D position and the control commands us,k are 2D velocities.

We plan over 10 discrete timesteps, with a 0.25 second timestep. We first perform 15

initialization iterations over random trajectory particles before beginning execution. The

lowest cost trajectory is chosen and executed by a closed-loop velocity controller. The

optimization is repeated until the goal is reached in MPC-style, initializing using particles

from the previous timestep.

Results. We perform 5 runs on a scene with and without obstacles (10 runs total)

for SVBP and ORCA. The time-to-goal results are shown in Figure 5.10 for each of the

robots shown in Figure 5.9. On the scene with no obstacles, SVBP reaches the goal in all

runs with no collisions except for in one run, in which one robot has a localization failure

resulting in a collision. ORCA deadlocks at the start of the trajectory for all runs. To obtain

meaningful comparisons, we manually perturb the robots from their start positions to escape

deadlock. ORCA’s built-in random perturb for deadlock prevention fails in practice as ORCA

tends to select low speeds which are insufficient to displace the physical robots unless large
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Figure 5.10: Distance to the goal over time for each robot for runs with no obstacles (left)
and with obstacles (right).

clearances are available. Modification of the perturbation functionality for this application

could mitigate this issue. After the deadlock is resolved, ORCA and SVBP achieve similar

time-to-goal in scenarios without obstacles.

For the case with obstacles, ORCA deadlocks at the beginning of the run in two cases.

The algorithm gets stuck in deadlock for 2 of 5 runs near the obstacle, and the deadlock

results in a collision in one of the cases (robots #2 and #3 do not reach the goal in 2 cases

in Figure 5.10, right). We only apply manual perturbation for deadlocks for ORCA at the

beginning of the run. SVBP reaches the goals in all the cases with smoother paths. A

visualization of an execution of SVBP with obstacles is shown in Figure 5.9.

5.8 Discussion & Conclusion

We present Stein Variational Belief Propagation (SVBP), an algorithm for inferring nonpara-

metric marginal beliefs in graphs using Stein Variational Gradient Descent. We demonstrate
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the applicability of our algorithm on two applications: simulated multi-robot perception, and

multi-robot planning both in simulation and on real robots. Through simulated perception

experiments, we show that SVBP approximates the true marginal distributions better and

is more particle efficient than sampling-based baselines. The planning experiments show

that the algorithm is more effective at escaping local-minima and deadlock scenarios than

baselines. The real-world planning experiments show that the method is robust to realistic

noise.

A limitation of the proposed algorithm is that the computation time scales with the

number of neighbors. We limited the robot experiments to three robots in order to achieve

fast enough execution to run MPC on the single-board computers on the robots. Future

work will involve improving the implementation efficiency in order to increase the size of

the swarm. Another limitation for decentralized control is the need to time-synchronize

incoming neighbor messages from other robots. We observe that the robots are prone to

starting and stopping behavior when near other robots which we posit occurs due to lack of

time synchronization. This could be mitigated by accounting for the time delays between

messages. Further study is needed on the impact of message delays and packet loss [162].

Our robot experiments show that our method is robust to realistic perception and action

uncertainty, despite the fact that we do not explicitly model this uncertainty. Integrating

perception and action noise models into the model in order to deal with more challenging

scenarios is an interesting avenue of investigation. We hypothesize that this could also help

scale the algorithm to cases with nonlinear dynamics.
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CHAPTER 6

Hello, Robot! An Introductory Course for

Robotics Undergraduate Education

Figure 6.1: Hello, Robot! Introduction to AI and Programming is a course which teaches the
fundamentals of robotics and programming using real robot platforms. The course is taught
in a distributed teaching collaborative across institutions. Photo: Brenda Ahearn/University
of Michigan, College of Engineering, Communications and Marketing.

6.1 Introduction

The rapid growth of robotics and AI in recent years has led to a growing demand for a labor

force with specific skills relevant to these fields. This need has resulted in a corresponding

demand for training in these fields in higher education. Robotics as a tool for computing

education has a rich history, dating back to the seminal work Mindstorms by Papert [123].

Since then, Educational Robotics has been used extensively to engage students of all ages
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in computational thinking [105, 108, 48]. The study of robotics itself has a rich history

within university education [180, 164, 14]. Robotics courses have typically been offered at

the graduate level or as specialized technical electives at the upper undergraduate levels.

Advancements in robotics and AI have resulted in the need to expand education in the field

and establish robotics as a discipline within undergraduate education.

The development of robotics as a discipline is exemplified by the recent emergence of un-

dergraduate programs in robotics [57, 71]. The demand for robotics undergraduate education

created by these programs has resulted in the need for new curricula in robotics throughout

the undergraduate degree. While robotics is a broad field encompassing the intersection of

multiple domains of engineering, we focus our discussion in this chapter to treatment to the

algorithmic elements of robotics. Computational robotics is distinct from computer science

in that computer science is concerned with programming computers, while robotics is con-

cerned with programming embodied robotic devices. The latter presents unique challenges

which necessitate specialized algorithmic techniques.

This chapter is concerned with the development of the course Hello, Robot! Introduction to

AI and Programming (HelloRob), an introductory programming class presented through the

lens of robotics and AI, offered as part of the first year of the Robotics major at the University

of Michigan [71]. The development of introductory computer science courses has received

extensive attention in the field of Computing Education Research (CER), commonly referred

to as CS1 [12]. In contrast, this chapter explores the design of an introductory robotics

course, which we term ROB1. The HelloRob curriculum shares a common goal with CS1

courses in developing computational thinking and programming skills, but is concerned with

introducing key components of a robotic system and the unique challenges of programming

a robot.

The HelloRob course was first offered in 2021 at the University of Michigan, and has

subsequently been offered at Berea College, Howard University, and Morehouse College. The

course has been taught to over 100 students, in collaboration with seven instructors across

four participating institutions as of the publication of this dissertation. In this chapter, we

describe the design of this course contextualized within the existing literature on computing

and robotics education. The treatment of the design of the course is three-fold: first, we

describe the curriculum of a ROB1 course focused on computing. Second, we describe the

design of the educational robotic platform and associated tools used in the instruction of the

course. Third, we discuss the distribution of the curriculum to diverse institutions. Finally,

we conclude with a discussion of the key takeaways from the development and instruction of

a ROB1 course and recommendations of best practices for future work.
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6.2 Related Work: Robotics in Higher Education

Robotics courses have been offered in undergraduate education for decades. In many cases,

robotics courses involve hands-on learning activities, which introduce the challenge of select-

ing a real robot platform and associated tools. This section focuses on robotics curricula in

higher education and the associated hardware and software employed. We first summarize

efforts in computing education which leverage robots. Next, we describe curricula which

focus on robotics as a discipline. Finally, we turn our attention to the platforms and tools

which are an essential component of the design of curricula in robotics.

It is worth noting that many robotics education initiatives conducted in higher education

are not published in official proceedings or made public online. As a result, the works listed

here form an incomplete history of educational robotics.

6.2.1 Computing Education Through Robotics

Robots have a rich history within the field of CER, pioneered with the introduction of the

programmable “Turtle” as part of the LOGO programming language [146]. Since then,

robotics has been used extensively to teach principles of computing and engineering to stu-

dents of all ages [105, 14]. Here, we focus on computing education through robotics as it

applies to undergraduate education.

Introductory computer science (CS1) courses which employ robots typically involve pro-

gramming assignments which are accomplished on physical robot hardware. The release of

user-friendly platforms like the LEGO ® Mindstorms robot, which takes its name from Pa-

pert’s original work [123], sparked the use of such platforms for computing education [49, 147].

Today, a vast array of robotic platforms and competitions exist for robotics as an educational

tool [48, 52] (see Section 6.2.3). A pioneering work in using robots in computing education

was done as part of the Institute for Personal Robotics, a multi-institution collaboration

which aimed to provide a CS1 curriculum developed around a low-cost robot platform [9].

This initiative centered the notion that students could use personal robots as a tool for

learning computer science similar to a personal computer or textbook.

Many of the efforts in robotics for computing education motivate the use of physical robots

as a way of motivating and engaging students. The evidence to support this claim is largely

anecdotal. Notably, one study found that using physical robots did not significantly affect

student motivation [105]. The discrepancy in this result and positive anecdotal evidence

from instructors could be explained by the fact that students enrolled in university courses

which employ robots self-select based off their interest in these courses. Another key factor

is in the design of and support for the robotic platform itself. The design of robotics for
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education is largely an open problem and more investigation is needed into how the design

affects student experience [141]. We offer insights into this topic in Section 6.4.

6.2.2 Teaching Robotics as a Discipline

Robotics courses have been taught by pioneers in the field of robotics research for decades,

primarily at the graduate or senior undergraduate levels. Early courses in robotics focused

on theory and algorithms for robot modelling and control [180] and planning and localiza-

tion [164]. These curricula primarily emphasized established robotics algorithms alongside

cutting-edge research algorithms. While robotics courses are largely unpublished, the rise of

education in topics in robotics can be tracked by the publication of foundational textbooks

on robot control, planning, and localization [161, 84, 148, 46]. These textbooks and their

associated curricula achieved wide-spread popularity and are instrumental to the education

of modern roboticists.

Early efforts in robotics education have informed the creation of a vast array of mod-

ern courses in robotics which strive to keep pace with the rapidly evolving techniques in

the field [125, 149, 25]. Alongside the development of such courses, particular attention

has been placed in recent years on democratizing robotics education, following the spirit

of the open-source community. This effort was enabled in part by the Robot Operating

System (ROS) [130], an open-source framework for robot programming with an active on-

line community in research and education. Robotics courses are offered through Massively

Open Online Courseware (MOOC) platforms such as Coursera and Udacity. Duckietown

is a multi-institution collaboration which teaches concepts in robotics through the lens of

autonomous driving using real robot platforms, offering materials online to replicate the

course at other institutions [125]. The course is suited to senior undergraduate or graduate

students. Other work has focused on open-sourced, online textbooks or course material,

often published alongside programming activities and recorded lectures [160, 38].

In recent years, the evolving maturity of robotics as a discipline has enabled the de-

velopment of curricula offered throughout the undergraduate experience. Most significantly,

robotics has begun to appear as a field of study in the form of undergraduate majors [57, 71].

These curricula follow the decades of robotics education initiatives and are a natural exten-

sion of graduate degrees in robotics. The increase in demand for undergraduate education

in robotics as a discipline motivates the need to develop new curricula, platforms, and tools

suitable for students starting in the early undergraduate years.
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Table 6.1: Comparison of available robot platforms for education

Sensors Programming

Platform Ó Ì * Å Drive Type Computation Skill Level

Pololu 3Pi+ ✓ ✓ – – DD MC CS1

SparkFun RedBot ✓ ✓ – – DD MC CS1

Parallax Scribbler ✓ ✓ – – DD MC Block / CS1

Vex V5 Kit ✓ ✓ – – Multi MC Block / CS1

LEGO Mindstorms ✓ ✓ – – Multi MC Block / CS1

DuckieBot ✓ ✓ – ✓ DD SBC Adv.

JetBot ✓ ✓ – ✓ DD SBC Adv.

TurtleBot 4 Lite ✓ ✓ ✓ ✓ DD SBC Adv.

MuSHR ✓ ✓ ✓ ✓ Ack SBC Adv.

MIT Racecar ✓ ✓ ✓ ✓ Ack SBC Adv.

AgileX Limo ✓ ✓ ✓ ✓ Multi SBC Adv.

MBot (Ours) ✓ ✓ ✓ ✓ Multi SBC CS1 / Adv.

Ó = Odometry; Ì = 1D sensor; * = Lidar; Å = Camera

DD = Differential; Ack = Ackermann; Multi = Reconfigurable

MC = Micro-Controller; SBC = Single-Board Computer

6.2.3 Platforms and Tools for Robotics

The era of scalable and programmable robot platforms was catalyzed by Martin’s Robotics

Explorations book [102] and the introduction of the LEGO Mindstorms. Following the

success of LEGO Mindstorms in computing education [49, 147] were a number of highly im-

pactful mobile robot platforms for education. These platforms included the Parallax Scrib-

bler [9, 157], Sony AIBO [172], and modified versions of the iRobot Roomba [43, 32, 83, 168],

as forerunners to the Willow Garage Turtlebot [5]. Robotics education also saw the devel-

opment of its own robot programming environments, such as Pyro [20] and Tekkotsu [165],

more amenable to undergraduate teaching than common robot middleware frameworks.

When selecting a robot for education, a number of factors can be considered. A selection of

robotic platforms used for education are summarized in Table 6.1. We follow the definition

from Fine et al. [52] for computing, and expand on the proposed sensor diversity criteria

by the same authors to specify notable sensors of interest. When considering which tasks

students can accomplish using the robotic platform, the sensors available play a significant

role. Odometry (Ó) and 1D sensors (Ì), which include distance sensors, touch sensors, and

light sensors, are suitable for tasks involving simple feedback loops and state machines (e.g.

wall following, line following). Higher-dimensional sensors, like Lidars (*) and cameras
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(Å), are suitable for advanced state estimation and perception, including Simultaneous

Localization and Mapping (SLAM) and computer vision.

The computation capability available also impacts the algorithms that can be run.

Microcontroller-based platforms (MC) are capable of running one single-threaded program

at a time, whereas platforms with more advanced computing in the form of Single-Board

Computers (SBC) (e.g. Raspberry Pi, NVIDIA Jetson Nano) are capable of running full op-

erating systems. The former are therefore better suited to basic tasks like reactive control,

whereas the latter can run high-level robotic algorithms like SLAM. Educational applications

have heavily influenced development of commercially available microcontrollers [22, 10] and

single-board computers [16, 6]. Morever, the configurability of the platform itself is also

central to being customizable to a particular course objective. Some offer a configurable

drive type, while some have a fixed hardware configuration.

Programming skill required is a critical characteristic when considering a platform for

an undergraduate course. Evripidou et al. [48] categorized platforms as ‘No-code’, ‘Basic-

code’, and ‘Advanced-code’ to describe coding level. We slightly modify these to capture

the technical skills, besides coding, required. “Block” refers a platform that offers a block-

based programming interface. A CS1 programming skill level is defined as the ability to

write, compile, and execute single-threaded programs. Advanced (Adv.) programming skills

include executing multiple, multi-threaded programs, familiarity with concepts like the Linux

command line, and use of advanced frameworks (e.g. ROS [130]).

Based on the factors defined above, commercially available platforms, like the VEX

Robotics Kit, the Pololu 3Pi+ or the SparkFun RedBot, are well-suited to K-12 or CS1

classes, concerned with learning fundamentals of programming through embedded sys-

tems. Platforms in this category have been used extensively in robotics for CS1 educa-

tion [49, 9, 157]. These usually provide a simple way to program the robots, like with a

custom library in the Arduino IDE, making the technical prerequisites required suitable for

a beginner audience. However, the sophistication of behaviours students are able to program

into the robot is typically limited. Standard robotic algorithms like SLAM, path planning,

or computer vision cannot be supported by these platforms.

On the other end of the spectrum are robots like the NVIDIA JetBot, Turtlebot [5],

Duckiebot [125], MIT RaceCar, and MuSHR [149], which are capable of interfacing with

multiple high bandwidth sensors, cameras and Lidar, and utilize multi-threaded sophisticated

robotics software and algorithms. These robots typically require advanced technical skills, as

they are primarily designed for senior undergraduate- or graduate-level students, or robotics

researchers. For example, in order to control the Duckiebot, users need a Linux computer and

must use Docker and ROS via multiple command-line interfaces. These robots are therefore
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best suited to senior undergraduate or graduate curricula.

The MBot [56], a platform developed at the University of Michigan, was initially intended

for the instruction of a graduate-level course as part of the Robotics graduate program. Its

original design fell into the second category of high capability but advanced platforms. For

the instruction of the HelloRob course, we expanded the initial design of the platform to

include a beginner-friendly API and tools in order to make the platform accessible within a

ROB1 curriculum, without loss of sophistication in the platform. The design is discussed in

detail in Section 6.4.

6.3 Hello, Robot! Introduction to AI and Program-

ming

Hello, Robot! Introduction to AI and Programming (HelloRob) is an introductory program-

ming course through the lens of robotics and AI offered to first-year students as part of

the University of Michigan’s Robotics undergraduate degree [71]. The course is intended to

introduce students to computational thinking and foundational concepts in robotics which

they have the opportunity to explore in greater depth later in their studies. The course is

composed as a collection of modules, each of which culminate in a project implemented on an

omni-directional robot platform, a variant of the MBot ecosystem of educational robots [56]

(shown in Figure 6.1).

When considering curriculum design for the course, we found that existing CS1 courses

which utilized robots [9] did not include the breadth of robotics-specific algorithms that

we planned to cover. Existing robotics courses [164, 125] contained technical tools and

algorithms that were too advanced for a first-year undergratuate audience. See Sections 6.2.1

and 6.2.2 for an overview of these courses. We therefore elected to design a curriculum for

HelloRob which met the following design criteria:

DC 1 Accessible to first-year students without prerequisites in programming or math

beyond high school,

DC 2 Include modern robotic algorithms, such as feedback control and path planning,

DC 3 Scalable across diverse institutions.

In order to satisfy DC 1, the course begins with a preliminary module (Module 0) on

introductory programming in C++. The modules are designed such that the first module

involves practicing programming skills from Module 0 through execution of a project on a
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Module Contents Project

0. Intro. to C++ Variables, operators, control flow, func-
tions, arrays.

Pocket Calculator

1. Feedback Control Bang-bang control, proportional control,
sensor data, omnidrive geometry.

Wall Following

2. Autonomous Navigation State machines, coordinate frames, odom-
etry.

Bug Algorithm

3. Path Planning Graph search, structs, occupancy grids. Graph Search

4. Image Classification Image data, nearest neighbors, linear clas-
sification, neural networks, gradient de-
scent, cross-validation.

Robot Tour Guide

Table 6.2: Curriculum description for the course Hello, Robot!

real robot. The course begins with reactive control (wall following and bug navigation) which

rely on computing concepts of feedback control and state machines, typical of CS1 courses

which utilize robots. To satisfy DC 2, Modules 3 and 4 provide a high-level introduction to

path planning and image recognition, relying on the concepts of graph search and machine

learning. The modules and associated projects are detailed in Table 6.2.

The projects increase in complexity throughout the semester, however special care is taken

to provide a level of abstraction appropriate for a ROB1 course. Our working definition of

“appropriate level of abstraction” is that each project is implemented as a single-threaded

program which uses only CS1 concepts. In order to accomplish the projects in Modules 3 and

4, which rely on mapping, localization, and vision capabilities, students program the robot

through a custom, synchronous API. Details of the platform are described in Section 6.4.

Challenges & Opportunities. The abstraction provided in later modules proves chal-

lenging for some students, particularly for students with minimal prior programming expe-

rience. Another challenge commonly faced by students is using mathematical concepts (e.g.

geometry, trigonometry, and linear algebra) within the context of robotics algorithms. More

work is needed towards a standardized robotics curriculum to define the programming and

mathematical skills and prerequisites for courses at each level of a robotics curriculum.

6.3.1 The Distributed Teaching Context

DC 3 is particularly challenging to achieve given the diversity of higher-learning institutions

in the United States. To address it, HelloRob is taught in a Distributed Teaching Collabo-

rative (DTC), in which teaching partners teach the course in parallel to the University of

Michigan offering, maintaining close collaboration between instructors. Students can also
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interact via a shared messaging forum between offerings. Between 2021 and 2024, HelloRob

was offered as part of a DTC at Berea College (2021, 2023), Howard University (2023), and

Morehouse College (2024).

Each offering provides customizations depending on the audience.1 Berea and Morehouse

Colleges offered the course to an audience made up primarily of second- and third-year

engineering students. The introductory programming (Module 0) was offered as an optional

module since students have prior programming knowledge. The Howard University course

was offered to second- and third-year computer science students. In order to fit in to the

existing computer science program at Howard University, the offering was taught entirely in

Python and skipped the introductory programming module.

This demonstrates a key benefit of the distributed teaching collaborative approach: im-

provements and customizations made by another institution benefit the entire collaborative.

For example, collaborators from Berea College contributed in-class activities based on the

principles of active learning in which the college specializes. These new resources improve

the quality of the course and offer greater flexibility to future instructors. Research into

curriculum adoption has found that creating community around an educational innovation

is key to its propagation and maintenance [67].

Challenges & Opportunities. It is equally important to consider the challenges across

different institutions in teaching a ROB1 class. In teaching HelloRob, hardware issues were

common for the institutions besides the University of Michigan, which caused delays in the

course progression. This can be attributed to the fact that at other institutions, students

and faculty were responsible for robot assembly, maintenance, and repair. At the University

of Michigan, this was mitigated by allocating resources to offload hardware management

through staff support to manage robots. Without these resources, students in the other

offerings were expected to set up and maintain their robot hardware. The result is that

these offerings include learning outcomes which focus on proficiency in robot hardware. By

making hardware assembly and maintenance a key component of the course, students can

develop problem-solving skills related to the unique challenges of programming a robot.

1We note that offering HelloRob as an introductory course at the University of Michigan was made
possible by the undergraduate Robotics major. At other institutions, the course was offered as a special
topic course to senior students.
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Figure 6.2: An illustration of the four primary projects students complete as part of the
course Hello, Robot! Introduction to AI and Programming.

6.4 The MBot Ecosystem for Distributed Robotics Ed-

ucation

Central to the development of a robotics educational curriculum is the selection of robotics

hardware, software, and infrastructure to support learning. The use of real robots in com-

puting and robotics education is commonly considered to be motivational to students. Ad-

ditionally, the challenges in dealing with real-world sensor data and challenges of real-world

hardware are central to the field of robotics.

The design criteria for the robotic platform suitable for the ROB1 course described in

Section 6.3 are as follows:

DC 1 Capable of running algorithms required for ROB1 (see Section 6.3 DC 2) (e.g.

localization, mapping, vision),

DC 2 Relies on technical prerequisites appropriate for a CS1 student (see Section 6.2.3),

DC 3 Configurable for customizations across different courses.

When selecting a robot platform, a number of existing commercial and open-source platforms

existed in the robotics education community at the time of the initial offering of the course in

2021. Despite the breadth of options, existing platforms were unable to satisfy the needs of

the course. Microcontroller-based options [49, 147, 9] satisfy DC 2, but are limited in their

ability to run multi-threaded processes needed to execute Projects 3 and 4 of the course.

More sophisticated, custom options [125, 149] satisfy DC 1, but rely on advanced technical

knowledge (e.g. Linux and ROS) in order to interface with them. An overview of these

platforms is provided in Section 6.2.3.
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Figure 6.3: The MBot family of robotic education platforms.

We therefore elected to design a platform and suite of tools suitable for the ROB1 course

described in Section 6.3. We extend the MBot, a low-cost, flexible platform for robotics ed-

ucation at the undergraduate and graduate levels designed at the University of Michigan [56]

(see Figure 6.3). The platform was initially designed to teach a graduate-level robotics lab

covering mapping, localization, and planning. The design of such a robotic platform for

education is a critical component of the student experience within the course. Motivated by

recent call for deeper discussion of the design elements which form a key component of com-

puting education [141], this section examines the design considerations for a robot platform

suitable for ROB1 education.

The HelloRob DTC initiative marks the first use of the MBot platform outside of the

University of Michigan as part of the HelloRob DTC, and the first use of the MBot to teach

an introductory course. In order to use the MBot in a first-year course, we develop a com-

prehensive set of open-source software tools and a custom API for high-level programming,

alongside educational modules. This contribution is central to the versatility of the MBot as

an education platform, making it suitable for use in both advanced and introductory courses.

The robot can be programmed through multiple modes depending on the needs of the

user and on the application. The software supports advanced autonomy applications such as

mapping, localization, and perception through message-passing frameworks. Alternatively,

users can program the robot using the custom MBot Bridge API, which provides a simple,

synchronous interface to the autonomy processes and is the primary form of programming

the robot in the HelloRob course. The MBot platform also features a custom web application

for remote control and visualization, which can be accessed from any personal computer with

no dependencies. The MBot software and tools are further described in Section 6.4.1.
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Figure 6.4: Possible software configurations for different levels of robotics courses. The
Basic configuration with no single board computer can be programmed directly for basic
applications using C or MicroPython (top). Classic and Omni versions can be programmed
through the MBot Bridge API, which provides a simple interface for programming the MBot
(middle). Advanced applications can interface directly with the message passing framework
(bottom).

6.4.1 The MBot Software Stack

The MBot software architecture is designed to be both flexible and easy to use. The ar-

chitecture enables users to select an interface based on the desired application and level of

difficulty, making the platform suitable for introductory and advanced courses. The soft-

ware for various configurations is shown in Figure 6.4. The MBot comes equipped with a full

software stack, including sensor drivers, mapping and localization, and path planning, built

on the asynchronous message-passing communication protocol Lightweight Communications

and Marshalling (LCM) [68].2 For single-threaded, synchronous applications relevant to a

ROB1 course, the MBot Bridge API provides a simple interface to the MBot software stack

(see the middle row of Figure 6.4). For advanced applications, the robot can be programmed

by interfacing directly with the core software stack through an asynchronous message passing

framework (e.g. LCM [68] or ROS [130, 96]). This addresses DC 3 and enables the MBot

to be used throughout an undergraduate curriculum.

The utility of this design for ROB1 is exemplified by HelloRob Projects 3 and 4, described

in Section 6.3. These projects require students to use the MBot’s SLAM system for mapping

2While the MBot software uses LCM, the platform is also compatible with other frameworks such as the
Robot Operating System (ROS) [130, 96].
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Figure 6.5: The MBot Web App in action. The web app can be accessed through a browser
on any device connected to the robot’s network, and enables teleoperation of the robot,
control over the SLAM state, and visualization.

and localization as a prerequisite to path planning (DC 1). To make this capability accessible

for a ROB1 audience (DC 2), students interface with the mapping module through the web

app, then retrieve the localization information through the API. Students program the robot

by connecting to the MBot’s single-board computer using a remote session on a local IDE

(e.g. VSCode’s Remote extension). This enables the robots to be programmed with minimal

configuration on a personal computer, making the platform ideal for a ROB1 course.

The MBot Bridge API. The MBot supports synchronous programming in C++ and

Python through the MBot Bridge API. The API provides a simple interface for reading robot

data and sending control commands in single-threaded programs. The API depends on the

MBot Bridge Server, which manages incoming messages from the software stack and stores

them in queues. The server exposes a websocket-based protocol using a custom JavaScript

message definition inspired by ROS Bridge [35].

The MBot Web App. Core to the philosophy behind the MBot system is that the

robots should be user-friendly from the perspective of a typical undergraduate student. The

MBot Web App provides visualization of the robot’s map, position, and Lidar scan. It also

includes a driving interface and controls for the robot’s mapping system. The app is hosted

directly on the robot’s single-board computer, and can be accessed from a browser from

any device (e.g. personal computer or cell phone) connected to the same network as the

robot. As such, interfacing with the robot through the web app requires no installation or

technical prerequisites once installed on the robot. A visualization of the web app is shown

in Figure 6.5.
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6.5 Ingredients for a ROB1 Course

The growing maturity of the field of robotics has led to the need for undergraduate education

in robotics. We argue that the consideration of robotics as a discipline requires that concepts

in robotics be introduced throughout the undergraduate curriculum. Robotics as a field of

undergraduate study is a relatively recent concept, which calls for further attention from the

community to develop standards and best practices for robotics curricula. Here, we present

key lessons learned from three years of instruction of the HelloRob course to lend insight

into development of future ROB1 courses.

Development of a standardized Robotics curriculum. Robotics algorithms have

primarily been taught at higher undergraduate or graduate levels, leaving a gap in the

definition of appropriate curricula for robotics. In Section 6.3, we present a curriculum for a

ROB1 course focused on building computational skills at a CS1 level through foundational

robotics algorithms. We hope that this will spark more study study on the right curriculum

for ROB1, similarly to the standards set for computing education [7], which paved the way

for extensive development in the following decades [12].

Importance of collaborative development. Following the example of the computer

science, AI, and robotics research communities, adopting an open-source philosophy for learn-

ing robotics is essential in order to democratize access to these courses across institutions.

Our lecture materials and assignments are posted online3 and students at each institution

share common resources. A positive correlation between strong community and success-

ful curriculum adoption has been demonstrated in previous successful cases of education

innovation [67].

Robot hardware and tools that match the learning objectives. Many options

exist in selecting a platform for a ROB1 course. In contrast to a robot for CS1, a ROB1 robot

benefits greatly from the capability to support modern robotics algorithms like mapping and

localization. It is important to keep in mind the technical complexity of programming the

robot platforms selected for a ROB1 audience. In Section 6.4, we discuss the design of a

custom platform and tools towards a platform which is accessible in a ROB1 context but

can support courses beyond ROB1. A challenge in teaching with robot platforms is that

even the most well-supported, reliable robot requires maintenance and repairs. Introducing

educational modules on robot hardware into the curriculum directly enables students to

address issues and avoid frustration. If resources are unconstrained, an alternative strategy

is to offload hardware management, e.g. through dedicated course staff or through support

offered by a robotics company.

3https://hellorob.org/
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Course staff and community support. A class which centers robot platforms creates

additional demands on instructors due to the added infrastructure involved. Thorough and

actively maintained documentation for both students and instructors is essential for such a

course. Larger course staffs, including graduate and undergraduate student assistants, are

hugely beneficial. In HelloRob, offerings with smaller course staffs benefited from technical

and instructional support from the broader teaching collaborative. As robotics education

continues to grow, larger online communities (e.g. online forums) could further alleviate

these challenges.

6.6 Ingredients for a ROB1 Educational Platform

Teaching robotics involves unique challenges in terms of tools and infrastructure require-

ments. The robots, simulators, and tools used can have a significant impact on student

experience, which merits further study. Below, we summarize the key features a robot in a

ROB1 course should have, drawing from our experience designing the MBot Omni platform

to teach HelloRob.

Low floor, high ceiling. The call for a platform which is both accessible (low floor)

and extendable to advanced tasks (high ceiling) is repeated throughout robotics education

literature [9, 164, 56]. In practice, it is challenging to achieve both these goals. In HelloRob,

we began with a “high ceiling” robot capable of running localization, mapping, planning,

and vision applications on top of low-level control. To strive for a “low floor”, we leverage

web tools, a synchronous API, and a remote development environment. However, added

complexity introduces higher development demands and more potential failure modes. As a

community, we should strive to build platforms and tools than can adapt to different levels

of the undergraduate and graduate curricula, from ROB1 to beyond.

Usability and reliability. User tools and interfaces which provide control, visualiza-

tion, and diagnosis information are essential for robotics education at the undergraduate

level. Platforms designed for K-12 place a significant emphasis on user-centered design,

whereas platforms used in the undergraduate classroom tend to resemble research platforms

intended for expert users. More effort is needed to build reliable and modular tools to adapt

these advanced platforms for undergraduate education.

Resources and support. Another key factor that impacts student and faculty expe-

rience in a robotics course is the availability of quality instructional material and documen-

tation on a platform. Additionally, availability of community support is critical for trou-

bleshooting issues that arise. Strong examples of these communities include those around

Arduino and Raspberry Pi. The HelloRob website includes guides directed towards staff and
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students, as well as a debugging guide with common issues. Adding more, diverse voices to

the development community as robotics education scales will help grow these resources.

6.7 Conclusion

The emergence of robotics as a discipline requires that we rethink how robotics is taught

in the undergraduate classroom, particularly in the introductory levels. In this chapter, we

describe a ROB1 course which covers introductory computing through the lens of robotics

and AI, developed and taught at the University of Michigan as part of the recently introduced

Robotics undergraduate major. The design of the curriculum exemplifies the opportunities

and challenges of teaching robotics concepts at an early undergraduate level, a key component

of the formalization of robotics as a field of study. The use of real robot platforms is integral

to the curriculum. We present the MBot platform as a modular tool for robotics education.

The platform is adapted specifically for teaching ROB1 through the design of tools and

infrastructure. These tools include a synchronous API which can be used to write single-

threaded programs at a CS1 level while interfacing with advanced systems like mapping and

localization. This design enables modern robotic concepts like path planning to be taught

in an introductory computing course. We end with key takeaways from our experience

teaching a ROB1 course. These insights suggest opportunities and best practices for future

efforts at the intersection of robotics and undergraduate education towards training the next

generation of roboticists.
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CHAPTER 7

Conclusion

This dissertation considers distributed probabilistic inference techniques and their applica-

bility to robotic perception and planning. We argue that the consideration of uncertainty

is critical to robust operation under challenging environmental conditions such as cluttered

and dynamic scenes. Through works in perception and planning, we describe advancements

in flexible, scalable techniques for inferring belief using nonparametric distributions and dis-

tributed inference. First, we consider pose estimation of articulated hand tools in cluttered

scenes. Our key insight is that representing the tool as a collection of its component parts

enables the use of distributed inference. This approach leverages known prior information

about the object structure jointly with local information from the sensor observation and

results in improved robustness in cluttered scenes. Second, we consider the problem of plan-

ning, particularly in the case where the goal is intractable to describe, resulting in uncertainty

over the goal region. We introduce an approach which considers goal demonstrations as sam-

ples from a distribution and describe a novel framework for planning under such goals. The

proposed method generalizes across different types of goals and outperforms heuristic ap-

proaches to handling goal regions. Third, we build on the previous techniques, considering

the problem of planning for multiple coordinating robots in a decentralized framework. We

introduce Stein Variational Belief Propagation (SVBP), an algorithm for graphical inference,

and demonstrate that it is effective at maintaining multi-modal distributions.

Finally, inspired by the rapid growth of the field of robotics, we turn our attention to

robotics education. We argue that the expansion of robotics courses and programs at the

undergraduate level necessitates the formalism of a ROB1 curriculum to meet the needs of

the study of robotics as a discipline. We describe an intrpductory computing course with

a robotics context as an example of a ROB1 course, and the associated robotics hardware

and tools developed to support it. Furthermore, we propose a distributed approach to

developing and teaching the course through a Distributed Teaching Collaborative (DTC),

drawing inspiration from distributed inference techniques described in this dissertation. This

work aims to help train the next generation of roboticists with the skills to tackle to tackle
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essential open challenges in robotics. Some of these future directions are described in the

following sections.

7.1 Future Directions

In this section, we present possible future directions based on the ideas explored in this

dissertation. First, we describe future opportunities arising from the works presented in

Chapters 3 to 5. We then propose directions for robotics education based on the work

discussed in Chapter 6.

7.1.1 Opportunities in Robotic Perception and Planning under

Uncertainty

The technical contributions described in Chapters 3 to 5 suggest multiple opportunities for

future exploration towards the goal of versatile, robust robotic assistants. This dissertation

has provided evidence that the consideration of uncertainty adds robustness in challenging

conditions in both robotic perception and planning. We note, however, that we have largely

considered the treatment of perception and planning individually. Chapter 3 considered

uncertainty in pose estimation, while Chapters 4 and 5 considered uncertainty in the goal

distribution and agent trajectories respectively. Each of these problems was shown to be

computationally challenging individually.

The treatment of these problems jointly is an open challenge in robotics research which

merits further advancements. To consider these sources of uncertainty jointly will involve

both computational considerations to make this challenging problem tractable. There is

particular opportunity for innovation in the investigation of novel frameworks and algo-

rithms which encompass perception and planning jointly. We further describe specific future

directions below.

Extended Applications of SVBP. The SVBP approach proposed in Chapter 5 is a

generic algorithm for graph inference with multiple possible applications which could be

explored in future work. For example, the algorithm could be used to solve SLAM, MPC,

or planning over more complex and non-linear models as marginalizations through message

passing. Another application is the parts-based perception challenge from Chapter 3. These

applications provide opportunities for furthering the proposed algorithm.

Learning Parameters and Factors. Much of the work in this dissertation relies on the

hand-coding of functions for probabilistic factors and the selection of parameters (e.g. size
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of particle set, kernel bandwidth, etc.). Chapter 3 takes steps towards learned likelihoods.

Future work examined learning likelihoods further via implicit rendering models [86]. Stein

Variational Inference, as discussed in Chapters 4 and 5, is well-suited to learning compo-

nents of the problem due to its inherent differentiability. Exploring the intersection of this

algorithm with data-driven approaches is an interesting avenue for future work.

7.1.2 Opportunities in Robotics Education

The ROB1 course discussed in Chapter 6 paves the way for multiple opportunities for ad-

vancement in both robotics education and robotics research. Most interesting is the overlap

between the two problems. Perhaps most interesting are the opportunities that lie at the

intersection of research and teaching. To make robots suitable for the undergraduate class-

room requires significant technical innovations which in turn can aide the advancement of

robotics research and related tools. As a specific case study, the MBot platforms used to

teach HelloRob, as described in Chapter 6, proved the ideal platform for experiments in

multi-robot coordination in Chapter 5. The same tools that enabled the platforms to be

accessible to an undergraduate audience provided fast prototyping capability and easy in-

terfaces for experiments. We hope this work will inspire future developments in robotics as

a whole. Below, we enumerate specific avenues for future research which build on the ideas

in Chapter 6.

The effectiveness of ROB1. Students in HelloRob have largely been successful in

completing the course objectives, and feedback has been positive. More principled study is

needed into the effectiveness of the course, and ROB1 in general, in preparing students for

their future studies. One way to measure the effectiveness is a long-term study into student

performance in future courses after having taken ROB1 in their first year.

The effectiveness of robots as educational tools. Another avenue of exploration is to

investigate the factors which affect how the use of real robots impacts student learning. The

use of concrete representations of abstract concepts, which Papert described as “objects-to-

think-with” [123], has been studied in mathematics and computing [2]. Anecdotal evidence

suggests that the effectiveness of robots as embodied representations of computing concepts

on student learning depends heavily on platforms and tools. Future studies of particular

interest would consider physical robots in the context of their practical use. Based on

experience teaching with the MBots, we hypothesize that unreliable robots, lack of tools to

diagnose hardware issues, or lack of resources to fix them could negate the educational benefit

of the platform. Previous studies have also suggested that robots could impede learning if

the constraint of programming on the robot reduces the amount of time students can spend
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practicing the skills [9]. Studying the effects of these and other factors would enable future

development to improve educational platforms.

An Open-Source Robotics Education Platform. While the majority of educational

materials and tools discussed in Chapter 6 are freely available online, customization of the

curriculum is still mainly a task left to individual instructors based on existing case studies.

An interesting avenue for future work is the creation of a collection of modules and tools for

broad adoption of the curriculum. Investigations into curriculum adoption have shown that

community around an innovation is beneficial for propagation and maintenance [67]. The

creation of online resources and communities around the open-source ROB1 curriculum and

tools could help scale robotics education to diverse institutions.
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