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ABSTRACT

Although immersive experiences powered by Augmented Reality (AR) and Virtual Reality
(VR) devices are becoming increasingly engaging, democratizing their creation to empower
end-users, particularly those with limited technical skills, to create, share, and communicate,
remains a significant challenge. This dissertation explores the design and development of
end-user creation tools for immersive experiences, focusing on enhancing expressiveness,
supporting design exploration and collaboration, and fostering meaningful social interactions.
My work investigates the challenges faced by novice programmers and designers in creating
immersive content and proposes innovative solutions to democratize the creation process.

To raise the ceiling of expressiveness, the dissertation introduces FlowMatic, an immersive
authoring tool that enables novice programmers to define reactive behaviors through visual
representations of Functional Reactive Programming (FRP) in VR. This tool allows users to
create interactive virtual experiences with ease. To support design exploration and collabo-
ration, the dissertation introduce a new collaborative version control system named VRGit,
which facilitates design exploration and rapid iterations by providing rich history-keeping
and workspace awareness in VR. Furthermore, the dissertation explores the integration of
generative Al models in immersive authoring through VRCopilot, enabling creative design
explorations via human-Al co-creation. Lastly, the dissertation also examines the impact
of content created with these tools on social interactions, presenting Auggie, an AR-based
communication tool, and Jigsaw, an AR and IoT-based storytelling tool. These tools aim
to encourage effort in remote communication and engagement in immersive stories, with
positive impact on people’s social interactions via immersive content creation.

Throughout the dissertation, I demonstrate that by incorporating novel visualization and
interaction techniques in immersive environments, we can design end-user creation tools for
immersive experiences that can express reactive behaviors, facilitate design exploration and

collaboration, and foster meaningful social interactions.
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CHAPTER 1

Introduction

For decades, the idea of being able to immerse ourselves in computer-generated world has
fascinated the public, as depicted in science fictions (e.g., [240]) and movies (e.g., [236]). Ad-
vances in technologies including Augmented Reality (AR) and Virtual Reality (VR), have
brought this idea closer to reality. AR and VR originally emerged as two distinct concepts:
AR combines the physical environment with virtual information while VR replaces the physi-
cal environment with virtual information. Recent hardware advancements have merged these
concepts into a single consumer-ready computational device, known as a Head-Mounted Dis-
play (HMD), which can render 3D virtual content that either replaces (VR) or blends with
(AR) users’ physical surroundings. Using such devices, users can interact intuitively with
the virtual content with relatively high accuracy and low latency. We refer to content or ap-
plications powered by AR and VR devices as immersive experiences. Immersive experiences
have been shown to provide benefits in numerous domains including education [208], mental
health [82], social interactions [201], and many others.

Despite the proliferation of commercial AR/VR devices and the widespread availability
of immersive experiences, democratizing the creation of immersive experiences to empower
a broad range of people, particularly those with limited technical skills, to create, share,
and communicate, remains a formidable challenge. For novice programmers, immersive ap-
plications are particularly difficult to develop because they require advanced knowledge in
areas such as imperative programming, 3D modeling, and computer graphics. For example,
while tools such as Unity [260] and Unreal [261] are comprehensive and enable the creation
of high-fidelity interactive AR/VR applications, they require navigating a complex visual
editor and using programming languages like C#. This makes them more suitable for ex-
pert programmers rather than non-technical end-users, including novice programmers and
designers [185, 14]. Even desktop-based Visual Programming Languages (VPLs) such as Un-
real Blueprints [2] are designed for non-experts and still require users to mentally translate
between 2D and 3D representations and predict how their code will execute in VR. This

calls for new paradigms for end-users to create immersive experiences.



One possible solution to these challenges is a paradigm called immersive authoring, in
which users can create, edit, and evaluate 3D content directly while immersed in the 3D en-
vironment. Immersive authoring tools offer a What You See Is What You Get (WYSIWYG)
experience by enabling an intuitive and efficient workflow for end-users to create immer-
sive experiences via direct manipulation [223] and to view immediate results as they design
and program a virtual scene. In alignment with the application of WYSIWYG principles
in domains such as text and image editing, prior research has developed several immersive
authoring tools for both AR (e.g. [153, 267, 266, 280]) and VR (e.g. [239, 172, 74, 182]).
Some of these tools allow end-users to create static 3D models or sketches, while others
allow novice programmers to define dynamic relationships between 3D objects. However,
most immersive authoring tools have a low ceiling of expressiveness since they cannot ex-
press reactive behaviors, a fundamental requirement for practical immersive applications.
Reactive behaviors are behaviors where the application responds to events like user actions
and system events. Defining such behaviors are uniquely difficult in the 3D environment as
it typically requires writing text-based imperative event-action code. In addition, most im-
mersive authoring tools provide very limited support for exploring design alternatives, which
is essential to prototyping creative content [185]. Exploring design alternatives requires rich
history-keeping of versions, frequent communication with stakeholders, and access to creative
inspirations. However, these aspects are poorly supported in existing tools, underscoring the
need to rethink history tracking, workspace awareness, and creativity support in 3D immer-
sive environments. Lastly, while most immersive authoring tools have focused on offering
high ceilings and low thresholds for end-users, less research has explored the meaningful
impact of the various content produced with these tools (i.e., wide walls [213]).

To address these limitations of authoring immersive experiences, my argument in the

remainder of this chapter, and throughout this dissertation, contains three main components:

e By incorporating visualizations of declarative programming paradigms such as FRP, we
can make immersive authoring tools more expressive by allowing novice programmers

to define reactive behaviors.

e We can enable the exploration of design alternatives for novice designers in immersive
authoring, by carefully design a version control system that provides rich history-
keeping and collaboration support, and by integrating generative Artificial Intelligence

(AI) models that intelligently suggest creative inspirations.

e The content produced with end-user creation tools for immersive experiences could have
a meaningful impact in social interactions by encouraging effortful communication or

facilitating co-located storytelling experiences.



1.1 A Paradigm for Expressing Reactive Behaviors

Immersive authoring can take advantage of many of the features that make immersive appli-
cations intuitive and natural to use - users can manipulate programming primitives through
direct manipulation, immediately see the output of their programs, and use their innate
spatial reasoning capabilities when viewing a program. This dissertation starts with an em-
pirical study of the benefits and challenges of the state-of-the-art immersive authoring tools,
in Chapter 3, with a focus on programming paradigms such as dataflow programming. I will
first present an immersive authoring tool that enables dataflow programming in VR. I then
will describe findings and design implications gained from a qualitative user study.

To extend the ceiling of expressiveness of immersive authoring, I will describe a paradigm
that allows novice programmers to specify reactive behaviors—behaviors that react to dis-
crete events such as user actions, system timers, or collisions. Specifically, I introduce an
immersive authoring tool named FlowMatic based on this paradigm. FlowMatic also in-
cludes primitives for programmatically creating and destroying new objects, for abstracting
and re-using functionality, and for importing 3D models. Importantly, FlowMatic uses novel
visual representations to allow these primitives to be represented directly in VR. I will also
describe a comparative study that illustrates the advantages of FlowMatic compared to a
two-dimensional (2D) authoring tool. The study results reveal that participants were able to
build the reactive behaviors using FlowMatic without writing code, and that the immediate
feedback in VR makes it intuitive for programming VR applications and fun to play with.
I also demonstrate its expressiveness through several example applications that would be

impossible to implement with existing immersive authoring paradigm.

Figure 1.1: System preview of FlowMatic. (a) shows the edit mode. (i) is a palette menu
that allows users to browse, search, and import 3D models into the scene. (ii) is a toolbox
for the user to add programming primitives such as operators and data sources into the
Functional Reactive Programming (FRP) Diagram in (iii). (b) shows the run mode where
users can evaluate the application in real time by hiding all the programming primitives.



Figure 1.2: System Overview of VRGit. A History Graph (HG) that represents non-linear
version history is anchored on the user’s left arm, where each node is a 3D miniature of that
version. Inside each miniature, objects are highlighted using color coding if they are changed
compared to the previous version. Mini avatars are anchored in the HG to represent which
version users are in. Users can also create portals to monitor other users’ first-person views.
A shared history visualization facilitates group discussion by anchoring the HG on a surface
and allowing users to preview a version and reuse objects collaboratively.

1.2 Supporting Collaboration and Design Exploration

Another important consideration of designing end-user creation tools for immersive expe-
riences is to enable explorations of design alternatives, which requires rich history-keeping,
collaboration with stakeholders, and access to design inspirations [226]. This dissertation
presents two systems for this purpose: VRGit and VRCopilot.

Authoring immersive experiences is a creative process that involves numerous iterations,
explorations of design alternatives, and frequent communication with collaborators. Version
Control Systems (VCSs) help users achieve this by keeping track of the version history and
creating a shared hub for communication. However, most VCSs are unsuitable for managing
the version history of VR content because their underlying line differencing mechanism is
designed for text and lacks the semantic information of 3D content; and the widely adopted
commit model is designed for asynchronous collaboration rather than real-time awareness
and communication in VR. To this end, we propose VRGit, a new collaborative VCS that
visualizes version history as a directed graph composed of 3D miniatures, and enables users
to easily navigate versions, create branches, as well as preview and reuse versions directly

in VR. Beyond individual uses, VRGit also facilitates synchronous collaboration in VR by



providing awareness of users’ activities and version history through portals and shared history
visualizations. Through an exploratory lab study, I demonstrate that VRGit enables users
to easily manage non-linear version histories, communicate with collaborators, and maintain
workspace awareness in VR.

VRCopilot is another immersive authoring tool that takes advantage of recent advances in
generative Al that enables the automatic creation of realistic 3D layouts. Via this artefact,
I explore how capabilities of generative Al can be used in immersive authoring to support
design exploration, user agency, and creativity. VRCopilot is a mixed-initiative system that
integrates pre-trained generative Al models into immersive authoring to facilitate human-Al
co-creation in VR. VRCopilot presents multimodal interactions to support rapid prototyping
and iterations with Al, and intermediate representations such as wireframes to augment user
controllability over the created content. I will present two rounds of comparative studies that
evaluates the potential and challenges of human-Al co-creation including manual, scaffolded,
and automatic creation in immersive authoring. Overall, our results show that, when co-
creating with Al in VR, the design of intermediate representation in scaffolded creation can

enhance user agency, and offering multiple suggestions can increase user creativity.
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Figure 1.3: System Overview of VRCopilot. 1) Automatic Creation: Users can use voice
commands to ask the generative model to generate a full-room layout based on an empty
room. 2) Manual Creation: Users can use multimodal specification by speaking with si-
multaneous pointing to ask the system to suggest a chair (a); they can select from one of
the three suggestions offered by the system (b). 3) Scaffolded Creation: Users can create
wireframes by drawing on the floor while speaking, in addition to automatically generated
wireframes (a); They can then turn the wireframes into specific furniture (b).
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Figure 1.4: Overview of Auggie, an app that enables partners to create handcrafted AR
experiences for each other, based on customizing a 3D character.

1.3 Social Interactions via End-user Creation

In addition to building end-user creation tool for immersive experiences, my dissertation
explores the meaningful impact of content created with these tools on social interactions.
Specifically, I will present a field study where we deploy an end-user creation tool for im-
mersive communication, as well as a lab study focused on a tool for creating immersive
multi-user storytelling experiences.

I first explore how the end-user creation process of immersive experiences could encourage
effortful communication between partners such as friends and families. I will describe Auggie,
an i0S app that encourages partners to create digitally handcrafted AR experiences for each
other. Auggie is centered around crafting a 3D character with photos, animated movements,
drawings, and audio for someone else. I will present a two-week-long field study during
which participants used Auggie with their partners remotely. Our findings reveal that the
end-user creation tool, i.e. Auggie, can encourage users to engage in meaningful effort
during remote communication by evoking a sense of agency that enables them to craft gift-
like personal stories. These immersive experiences subsequently have the potential to enable
authentic, lightweight connection and feelings of presence between partners. I also discuss
design implications and future directions for content creation tools that encourage effortful
communication.

Lastly, I will describe Jigsaw, a system that empowers beginners to both experience and
craft immersive AR stories, blending virtual and physical elements. This is motivated by
the challenge that crafting immersive narratives is complex and generally beyond the reach
of amateurs due to the need for advanced technical skills. Jigsaw uniquely combines mobile
AR with readily available Internet-of-things (IoT) devices. I will present a qualitative study

to assess Jigsaw’s effectiveness in both consuming and creating immersive narratives among



Figure 1.5: An example story of Benjamin Franklin’s Kite Experiment from Jigsaw that
combines AR and IoT devices into one immersive experience: (a) The participants can
assign themselves a character by waving. (b) As the narrator reads the story, trigger words
from the narration enact changes in the physical environment (shown with a smart light,
smart fan, and smart speaker). (c) Virtual effects or objects are shown in the AR view, such
as a kite, clouds, and sparks.

groups. The results from the study reveal that the end-user creation tool, i.e. Jigsaw,
can keep users feel engaged, immersed, and connected with each other in the co-located
storytelling experiences. However, sensory overload poses a primary challenge. I will also
discuss design trade-offs and considerations for future endeavors in both the consumption

and the creation of immersive stories involving AR and IoT.

1.4 Thesis Statement and Contributions

Thesis Statement:

By incorporating novel visualization and interaction techniques in immersive environments,
we can design end-user creation tools for immersive experiences that can express reactive
behaviors, facilitate design exploration and collaboration, and foster meaningful social inter-
actions.

To achieve this, I make the following contributions in this dissertation:

e A qualitative study that evaluates the challenges and benefits of the state-of-the-art

immersive dataflow programming tools.

e A set of techniques to raise the ceiling of the expressiveness of immersive authoring
tools, including the ability to create reactive behaviors and to programmatically create

and destroy objects in a scene.

e An immersive authoring tool named FlowMatic that integrates the above techniques
and provides the first visual representation of Functional Reactive Programming (FRP)

in immersive environments.



A qualitative comparison study of FlowMatic and a desktop-based authoring tool
demonstrating its usability and benefits and a suit of example applications demon-

strating its expressiveness.

e A new multi-user multi-branch VCS named VRGit that facilitates design exploration,

rapid iterations, and collaborative content creation in VR.

e Results and design insights gained from an exploratory lab study that evaluated the
usability and utility of the VCS for content creation in VR.

e VRCopilot, an immersive authoring system that integrates a set of techniques enabling
users to interact and co-create with pre-trained generative AI models in virtual im-

mersive environments.

e Empirical results gained from two user studies that provide insights on user experiences
such as perceived agency and creativity, as well as potential and challenges of human-Al

co-creation in immersive authoring workflows.

e An end-user creation tool named Auggie that aims to encourage effortful communica-

tion via digital handcrafting in AR.

e Results and design implications gained from a two-week field study that evaluated this
system’s potential to encourage effort on an immersive medium and create meaningful

interactions.

e An end-user creation tool named Jigsaw that makes it easier to create immersive stories
combining AR and IoT.

e Findings from a lab study that highlight the advantages and difficulties of this multi-

user immersive storytelling experience.

1.5 Outline

The rest of the dissertation is structured as follows: Chapter 2 provides background infor-
mation on end-user creation tools for immersive experiences and visualization and interac-
tion techniques in immersive environments in general. Chapter 3 introduces a qualitative
user study of the state-of-the-art immersive authoring tools that utilize the visualization of
dataflow programming. Chapter 4 introduces an immersive authoring tool that raises the

ceiling of the expressiveness by allowing users to edit reactive behaviors of object via visual



FRP in VR. Chapter 5 presents a version control system called VRGit that provides con-
tent management and exploration, and workspace awareness during collaborative content
creation in VR. Chapter 6 presents how current generative models can be integrated to
improve the overall content creation experience, discusses users’ strategies of collaborating
with AT during immersive content creation. Chapter 7 presents an AR-based communication
system called Auggie for end-users to to encourage effortful communication via handcrafting
AR experiences for their partners. Chapter 8 examines an end-user creation tool named
Jigsaw for creating immersive stories that combine AR and IoT, and discusses its potential

benefits and challenges for immersive multi-user storytelling experiences.



CHAPTER 2

Background

In this chapter, I begin by positioning this dissertation within the context of prior research.
Each subsequent chapter addresses specific related work in detail, so to avoid redundancy,
this chapter focuses on providing a high-level overview of end-user creation tools for immer-

sive experiences and visualization and interaction techniques in immersive experiences.

2.1 Authoring Tools for Immersive Experiences

Despite the rapidly increasing interest in developing AR/VR applications, previous research
has revealed that creators frequently encounter various difficulties in AR/VR authoring [14].
There has been a long body of work on authoring tools that allow end-users to build the
virtual world. We first focus on immersive tools and distinguish between immersive model-
ing tools for creating static 3D scenes and immersive authoring tools for creating dynamic
3D scenes, both within immersive environments. In addition, we discuss 2D and hybrid

authoring interfaces for authoring immersive experiences.

2.1.1 Immersive Modeling Tools

Commercial 2D modeling software (e.g., Maya, Blender, Reality Composer) has been popular
for creators of different levels of technical experiences to create 3D models for years. However,
a wealth of spatial information is lost since users are constrained to view and interact through
a 2D window. Previous work has thus explored immersive modeling for building static 3D
scenes directly in the immersive environment by proposing intuitive interaction techniques
that can leverage users’ spatial reasoning skills [31, 172, 206, 173, 124, 95, 171, 188]. One of
the earliest attempts to achieve this was 3DM [31], a HMD-based modeler that allows users
to build and view 3D models in the 3D virtual environments. Along this line of research,
ISAAC [172] introduces more intuitive forms of interactions in 3D and adds constraints

to the interactions for accomplishing more precise work. Mine et al. later proposed an
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approach that combines precise 2D touch surfaces and 3D bimanual spatial inputs to build
complex 3D models in VR [173]. Lift-Off [124] explored generating 3D models from mid-
air 2D sketches drawn by users. Commercial applications such as Google Tilt Brush [95]
have enabled compelling immersive 3D sculpting experiences for end-users to craft static 3D
models. In addition, platforms such as Minecraft have enabled multi-player collaboration
for crafting 3D scenes directly in VR [53]. More recently, XRDirector supports collaborative
creation of immersive experiences among multiple designers in both AR and VR, and uses
demonstrations and simulates interactive behaviors in a Wizard of Oz style [182]. However,
a key limitation of the above systems is that they cannot create interactive experiences (that
are not Wizard of Oz), where virtual objects can be automated to react to users’ actions or

system events in the final experience.

2.1.2 Immersive Authoring Tools

Immersively adding interactivity and functionality to objects in VR can be difficult since
it normally requires writing text-based code to define logic, such as triggering reactions
in response to system events. Text-based programming languages are difficult to present
in VR, because (1) many VR systems have lower resolution displays that are acceptable
for graphics but not pages of text and (2) text entry in VR can be challenging. Further,
text-based languages usually have a steep learning curve for end users. Therefore, some
previous work has explored incorporating VPLs, especially dataflow programming languages,
into immersive authoring systems [239, 153, 151, 74, 285]. Steed et al. [239] were among
the earliest to introduce the concept of using a visual dataflow representation within the
virtual immersive environment to define behaviors of objects. In their system, users can
draw wires to connect virtual objects and virtual representations of input devices in the
immersive environment. The data would then propagate along the wires across different
objects in the scene, thus specifying their configurations. Lee et al. took the idea of immersive
dataflow programming further by providing different properties of objects and computational
primitives in the virtual dataflow representation [153, 151] and coined the term “immersive
authoring”. More recently, Ens et al. [74] built an immersive authoring system using a
visual dataflow representation in VR for specifying behaviors of Internet of Things (IoT)
devices. This pattern of embedding dataflow programming languages in the 3D immersive
environments was found to be intuitive and easy for both novice programmers and end users
[153]. However, by using basic dataflow programming, these immersive authoring tools can
only express a limited set of static relationships among pre-defined objects in a scene. More

importantly, they cannot define reactive behaviors of objects that come with a rich set of
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system events (e.g. collisions, user actions, and state changes) and behaviors triggered by
those events (e.g. color changed when being selected). More recently, there are systems
proposed that use a visual event-trigger representation for authoring reactive immersive
experiences focusing on specialized applications such as IoT and free-hand gestures (e.g.
[267, 266, 290]). One system introduced in this dissertation, FlowMatic, extends prior work
by integrating concepts from Functional Reactive Programming (FRP) and providing a rich
set of programming primitives and intuitive interactions for authoring general immersive

experiences [286].

2.1.3 2D and Hybrid Authoring Tools

Besides immersive tools mentioned in previous sections, another line of work for authoring
immersive experiences focuses on building 2D or hybrid interfaces for people to create im-
mersive experiences. Typically, creating an immersive experiences requires creating virtual
objects with their properties, arranging them in the scene, and programming their behaviors
in each frame. While some afromentioned 2D tools such as Blender can support the creation
and manipulation of 3D models, game engines such as Unity [260] and Unreal [261] are cur-
rently the most popular tools for programming immersive experiences. In recent years, the
advances of WebVR have also given rise to libraries and frameworks such as Three.js [33]
and AFRAME [1], which enable developers to build VR scenes as web applications that can
be loaded by web browsers. However, all the above tools for programming VR scenes involve
arguably complex user interfaces and imperative programming languages such as C# and
JavaScript, which require extensive training. Therefore, much of the efforts in the HCI com-
munity focus on how to make programming immersive experiences easier, which has helped
transform what was considered the “expert-only” task of programming to something that
anyone can do (e.g., [200, 131, 220, 2]). For example, earlier systems such as VRMLI7 [37]
and X3D [28] also provide a declarative format for the description of 3D content and utilize
event passing mechanisms to define user interaction. Alice [200] is a 2D block-based pro-
gramming environment that enables users to rapidly prototype 3D animations. Since then,
many commercial applications have sprung up (e.g., graph-based programming in Lens Stu-
dio [121], Blender shader graph [21], Unreal Blueprints [2]) with similar goals in mind. While
the above tools mostly focus on novice programmers with some technical experiences, another
line of research is focuses on designers to craft immersive experiences using various modalities
such as sketches [155, 183] and clay [184]. For example, 360Proto supports sketches on paper
as background for authoring 360 experiences [183]. Pronto enables capturing 3D information

that allow designers to navigate a 2D video frame in a 3D space and create of spatial layers
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for sketching and drawing [155]. ProtoAR combines modalities including paper, Play-Doh,
and mobile devices to enable early prototyping of AR experiences [184]. However, all of the
above systems produce a non-interactive video prototype as their output. Recent authoring
tools, along this line, have therefore explore visual representations that allows designers to
create interactive immersive experiences [220, 249, 154, 280]. For example, Saquib et al.
[220] developed a 2D authoring tool that uses a dataflow representation to bind user inputs
with graphical effects for AR presentations. RealitySketch analyzes and visualizes respon-
sive graph plots of behaviors of physical objects and bind them to digital sketches created
by end-users [249]. More recently, ProlnterAR [280] enables users to construct interaction
scenes by creating immersive content from the view of an AR-HMD and to script interactive

behaviors by stacking blocks from a tablet UL

2.2 VR Visualization and Interaction Techniques

Our work also builds on prior visualization and interaction techniques for object manipula-
tion and navigation in VR. Prior work has proposed several techniques for interaction and
navigation in 3D scenes of large distances [168, 207, 203, 242, 146, 23]. For instance, Mackin-
lay et al. propose the using teleportation to navigate large virtual workspaces [168]. Kunert
et al. use photos of 3D scenes as portals that allow users to navigate in space and time [146].
To interact with objects at a large distance, “go-go” interaction uses the metaphor of interac-
tively growing the user’s arm to interact with distant objects in a virtual environment [207].
Stoakley et al. introduced the concept of World in Miniature (WIM), which enables both
navigation and interaction in a large VR scene. A WIM represents the virtual environment
and allows users to manipulate objects offered by the miniature, or rapidly teleport in the
virtual environment by selecting locations directly in the miniature [242]. It also has the
benefit of allowing users to see a preview of the immersive virtual environment without hav-
ing to travel back and forth between different views. In this dissertation, we contribute to
the literature by using the techniques of WIM and portals in a few designed artefacts such
as VRGit and VRCopilot. We also extend the concept of portals to communicating and

sharing views between collaborators in VRGit.
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CHAPTER 3

Benefits and Challenges of Immersive
Authoring: A Qualitative Study'

3.1 Introduction

VR applications can enable more natural human-computer interactions by matching the
computer’s representation of an environment with the spatial processing capabilities that
humans have evolved over thousands of years [128]. By giving users a sense of presence and
immersion, VR applications can nearly eliminate the gulfs of execution (how users trans-
late intent into action) and evaluation (how users understand the state of a system) [187].
Although using VR applications can be natural and intuitive, creating VR applications
requires specialized knowledge including advanced knowledge of imperative programming
languages, 3D modeling, reactive programming, and geometry. One possible solution to the
challenges of authoring VR content is to create VPLs for immersive 3D environments—to
allow programmers to create content directly while immersed in VR. This paradigm is called
immersive authoring [153, 152]. Immersive authoring tools have several potential advantages
over traditional tools for creating VR content. First, immersive authoring environments can
be intuitive, as they allow users to manipulate programming primitives through direct ma-
nipulation [225]—reducing the gulf of execution. Second, immersive authoring environments
allow users to evaluate their code as they write it in the VR environment [152]—reducing the
gulf of evaluation. Finally, by situating programs in an easily navigable 3D world, immersive
authoring tools can leverage our natural spatial reasoning capabilities [128].

In this chapter, we evaluate the challenges and benefits of immersive dataflow program-
ming tools. One of the earliest attempts to achieve this was Steed et al.’s dataflow repre-
sentation for customizing behaviors [239]. Researchers have since built several immersive

authoring systems, including iaTAR for creating AR scenes [153, 151], Ivy [74] for program-

IPortions of this chapter were adapted from [285]
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Figure 3.1: A screenshot of our immersive dataflow programming tool. The directed arrows
specify edges that determine the direction of data propagation. Operators accept any number
of inputs and produce one or more outputs. The operator shown subtracts the position of
the light from the position of the sphere, producing a direction from the light to the sphere.
The result of the operator goes to the direction attribute of the light. This program thus
creates a scene where the light always shoots at the sphere, even as the sphere and light
move.

ming [oT devices, and Soundstage for creating music [191]. Each of these systems uses
dataflow to represent behaviors. However, none of this prior work has studied the usability
of dataflow in their immersive authoring tool, which is the focus of this chapter. Of prior im-
mersive authoring systems, only two (Ivy and Soundstage) run on modern VR hardware and
only one (Soundstage) is publicly available. However, Soundstage was designed for authoring
music. Thus, we built a new VR immersive dataflow programming language to use in our
evaluation?. However, our findings are generalizable to other immersive dataflow authoring
systems, which use similar paradigms and interactions. The results of our evaluation provide

design insights that have implications for future immersive authoring tools.

3.2 Immersive Authoring System

In our immersive authoring system, each operator is represented as a translucent box that
takes inputs and produces outputs (Fig. 3.2d, 3.2e, 3.2f). Each input has a connector on
the left side of the box and each output has a connector on the right side. For example,

the Subtract operator (Fig. 3.2d) has two connectors on the left: + (plus) and - (minus),

2Qur immersive authoring tool is open source and publicly available:
http://raynezhang.me/files/ImmersiveAuthoring.zip
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where data inputted through the + connector will be added to the result and data inputted
through the - connector will be subtracted from the result. The final result will be propagated
through the output connector on the right.

Users can also create behaviors that depend on the position of their headset and controllers
through avatars, which are proxies of their headset and controllers (Fig. 3.2c¢). Avatars
contain output nodes for the position, rotation, and each button on these devices. Each
avatar can be viewed as a node and by drawing edges between the avatar and other virtual
object in the scene, users can create interactive scenes where the attributes of the virtual
objects will depend on the the user’s tracked devices (i.e. the headset and the controllers).

Users use two controllers to interact with the immersive authoring tool. Users can create
objects, avatars, and operators through a palette tool menu, which is “attached* to the user’s
left hand controller and whose items can be selected by pointing (via raycast) and pressing
a trigger on the right hand controller. The application employs a drag-and-drop interaction
for drawing edges using the raycast and provides straight arrows as intermediate feedback

(Fig. 3.3 C).

3.3 Method

To better understand the benefits and challenges of immersive dataflow programming, we
conducted a user study with our immersive authoring tool. Although this user study was
only conducted with our tool, we believe our findings are representative of other immersive
authoring systems [239, 153, 151, 74, 191], which also employ similar dataflow metaphor,
visualizations, and node placement features in VR.

We recruited 7 participants (2 male, 4 female, and 1 prefer not to say), ages 20-27
(u = 24.1), from the authors’ university. All participants had at least basic programming
experience (having completed at least one programming class). Two participants also had
experience creating VR applications. We compensated every participant with $25 in cash
for their participation. Our application was run on the Oculus Rift on a Windows 10 system
with an Nvidia GTX 1080 GPU, Core i7 CPU and 16 GB RAM.

Every study lasted 90 minutes. Participants spent the first 30 minutes in a tutorial that
walked them through a series of small tasks including creating and manipulating objects,
drawing edges between nodes, and using different operators. The tutorial also gave partici-
pants a chance to ask questions and experiment on their own.

We then asked participants to perform two tasks:

e Tusk 1: Create three spotlights and make them shoot at and follow the user. The
three spot lights should emit light of random colors.

16



 |ight on/Off ™

Position *™

./ Light Color -
Light
‘ ‘

(a) Object: Light (b) Object: Cube

Rotation

"} Position )

(c) Avatar: Headset (d) Operator: Subtract

Vector2Number Condition: A >B

(e) Operator: Vector2Number (f) Operator: Condition A > B

Figure 3.2: Examples of objects, avatars, and operators. Objects (a&b) have several at-
tributes listed next to them that can be modified. Avatars (c) represent virtual proxies
of users’ inputs. Operators (d, e, f) are computational units that take inputs produce the

results as outputs.

o Tusk 2: Create a scene where a spot light will shoot at a cube when the user’s left

hand is higher than the user’s right hand, and the spot light will shoot at a sphere
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when the user’s left hand is lower than the user’s right hand.

We gave participants 15 minutes for each task and did not give them further instructions
on how to complete the tasks unless they specifically requested help. We then conducted a

one-on-one retrospective interview with each participant.

3.4 Results

Most participants expressed that the application is fun to play with:

P3: “I really like to play with (it). I think it’s really good to explore. It was just

really fun.”

Participants also generally enjoyed the immersive feeling of being able to place things
freely and naturally in the 3D virtual space as if they were manipulating them in the real

world:

P2: “I really enjoyed having stuff in a three-dimensional space... it just feels so

real. ”

When being asked about any confusion about the application, all participants commented
that drawing edges between nodes is difficult and annoying since they often missed the target

connector when it became too small and hard to aim at in the scene:

P1: “The aiming of putting a line on a circle was annoying. I messed up five

times or something...”

Another difficulty from most participants is the struggle to follow the execution of the
program when it gets more complicated and the lines get cluttered. Based on that, some
participants expressed desire for adding secondary notations (e.g. comments, annotations,

etc.) or grouping nodes into sub programs:

P4: “I think it will be helpful to let the user to group things together. For example,
for all the condition patch(es), I can group them together and have a note like

» o»

“this is gonna compare positions

When being asked to compare the application with their previous experiences in text-
based programming, most participants commented positively on this application and all
participants expressed that the application is easier for beginners and is therefore suitable

for educational use:

P2: “This tool reminds me of this thing called Alice. I can definitely see it being

a potential educational tool. I think it can make things so much easier.”
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3.5 Discussion

In this section, we discuss several challenges and benefits of immersive dataflow programming
based on the aggregated results above. For each challenge, we provide our insights and design
implications based the study.

1) Layout Management: From the results, users were not strategic about where they
placed the nodes in their dataflow programs. However, they typically placed related nodes
next to each other, either horizontally or vertically. They normally placed nodes in a from-
left-to-right order based on the direction of the data propagation. At the same time, users
indicated that lines became clustered and hard to follow when the program became more
complicated. This is also a challenge in general dataflow programming languages but a
compounding problem was that edges could be occluded and hidden because of the wealth
of depth information. One design implication for managing the dataflow program layout is
to automatically sort and place the nodes and edges, according to some participants. An-
other implication is to support objects customization for the users. Specifically, participants
commented that being able to group related nodes and edges together is helpful for keeping
track of the dataflow program. They also expressed that being able to add annotations or
comments would be helpful for understanding each part of the dataflow program.

2) Drawing Edges: During the retrospective interviews, most participants preferred draw-
ing edges through direct manipulation (Fig. 3.3 A), as opposed to using raycast to aim at
target connectors (Fig. 3.3 C). There are two reasons for this. One reason is that through
direct manipulation users can feel more immersed—as if the wire is in their hands. The
other reason is that it is easier to aim and connect when the connector is close to the users.
This is a challenge that is specific to 3D immersive environments since users draw edges in
a 3D space using the controllers held in their hands as opposed using the 2D Window Icon
Menus Pointer (WIMP) interfaces.

We therefore propose four mechanisms for drawing edges, as shown in Fig. 3.3. Each
mechanism has its own tradeoffs. Users can draw edges through direct manipulation as if
they are holding the wires. The first method (Fig. 3.3 A) allows users to draw edges through
direct manipulation as if they are holding the wires. One benefit of this method is that it
is intuitive by allowing users to connect edges in the same way that they do in the physical
environment. Another benefit is that it allows customized shapes of the edges, which is
helpful in avoiding occluding edges with each other. The drawback of this method is that
it is hard to draw an edge between two objects that are far away from each other without
moving in the virtual world. The second method (Fig. 3.3 B) allows users to draw edges

using a proxy at the fixed distance to the controller. This method offers custom edges but
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Figure 3.3: An illustration of four alternative techniques for specifying edges between nodes
in VR using a controller. Edges can either be drawn as custom shapes (A&B) or as a straight
line between nodes (C&D). Users could draw edges directly with their controller (A); along
two dimensions with a depth that the system computes (B); as straight edges between nodes
while showing intermediate feedback (C); or by selecting source and target nodes with no
intermediate feedback (D).

also requires them to move around the scene to connect distant nodes. The third method
(Fig. 3.3 C) allows users to draw straight edges using the raycast and shows the straight
edge as intermediate feedback. The benefit of this approach is allowing users to draw lines
beyond their reach without moving in the virtual world. However, it is hard to aim at the
connector that is too far away and appears very small in the scene. The last method (Fig.
3.3 D) is similar to mouse-clicking, where users will click at the first connector and then the
second connector in order to draw an edge. This method produces no intermediate feedback
and avoids the drag-and-drop interaction. However, the drawback of this approach is the
lack of direct manipulation.

3) Navigation: Changing the user’s viewpoint of the dataflow program is also challenging
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when the whole program is embedded in an immersive 3D space. This is also different from
dataflow programming languages on 2D WIMP interfaces where users can pan and zoom
with the mouse. Instead, in the immersive virtual environments, users have to move around
in the virtual world in order to navigate through the program. This usually causes the feeling
of lack of control of their own bodies when the locomotion of self affects the viewpoint of
the dataflow program. To cope with this challenge, we propose a 2D map-like dataflow
representation design, where users can zoom in, zoom out, and move the whole diagram
without changing their positions in the world.

4) Immersion and Natural Interaction: Immersive dataflow programming tools allow users
to manipulate and place things freely in the 3D space in the same way that they interact with
the physical world. Multiple users expressed that being able to create and place objects (such
as cubes and lights) wherever they want is the most enjoyable part of the immersive dataflow
programming tool. Participants’ sense of immersion was also enhanced by the immediate
feedback they received. Users can see the changes instantly after drawing an edge between
two nodes, which makes it faster to prototype VR scenes and faster to make changes to the
existing program.

5) Potential for Educational Use: Most participants agree that this tool is easier for
beginners and has the potential for educational use. This may be due to that existing imper-
ative programming tools have steeper learning curve than immersive dataflow programming
tools. Some participants also expressed that they found the immersive tool to be fun and
engaging to interact with.

Based on the results of our study, we do not see an advantage in allowing users to place
dataflow objects themselves in 3D space. Users in our study did not tend to spend the time
to organize their dataflow nodes and occlusion could make it difficult for them to follow the
edges. However, we do see advantages in including dataflow languages inside of immersive
authoring environments. Participants specifically liked the quick feedback loop and the
ability to connect dataflow outputs and inputs directly to objects in their environment and
objects that represented the user.

Thus, we feel that dataflow is still an effective option for immersive authoring. However,
there is little benefit to giving users complete 3D freedom in dataflow authoring. Instead,
we propose dataflow interactions that happen in 2D—where all of the nodes and operators
are visible on a 2D plane but can be connected to objects in the 3D space. For example,
one could imagine a “breadboard” metaphor where users can see their dataflow program on
a 2D plane but they can connect the output of their dataflow diagrams to objects in the

virtual world.
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3.6 Limitations & Conclusion

There are several limitations of the presented study. First, we only recruited participants
who were willing and able to use VR, which may bias the kinds of feedback that participants
give. Second, we performed a short-term study and received only the first impression of
the immersive dataflow programming tool on the participants. Despite having the training
session, some participants expressed that it was difficult to get familiar with all the features
in a short time. A longitudinal study would be necessary to better understand participants’
learning curve.

In this chapter we presented an exploratory study analyzing the benefits and challenges
of immersive dataflow programming tools. We also proposed several design implications
based on the results. We believe that dataflow programming is an effective approach for
immersive authoring and that there is ample room for future improvement to address the

design challenges brought by the freedom of 3D space.
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CHAPTER 4

FlowMatic: Raising the Expressiveness of

Immersive Authoring'

4.1 Introduction

VR applications are uniquely compelling for end users because they enable natural and
intuitive interactions in a 3D space. For novice developers, however, VR applications are
uniquely difficult to program because they require advanced knowledge of imperative pro-
gramming, 3D modeling, geometry, and reactive programming. Even desktop-based VPLs
built for non-experts, such as Unreal Blueprints [2], require that users mentally translate be-
tween 2D and 3D representations and predict how their code will execute in VR. Immersive
authoring enables a faster, more intuitive workflow by allowing users to manipulate program-
ming primitives in VR through direct manipulation [223]. Immersive authoring also enables
a more fluid workflow by offering immediate feedback as the user designs and programs a
virtual scene. Several immersive authoring tools allow users to create static 3D models or
sketches [206, 13, 95, 188], and others allow programmers to declare dynamic relationships
between object properties [239, 152, 74, 285]. However, existing immersive authoring sys-
tems cannot express reactive behaviors, a fundamental requirement for most practical VR
applications. Reactive behaviors are behaviors where the application responds to events like
user actions, system events, or collisions. Typically, programming reactive behaviors requires
writing text-based imperative event-action code, which is difficult to represent effectively in
VR.

In order to raise the ceiling of what immersive authoring systems can express, we introduce
FlowMatic, which allows novice programmers to define reactive behaviors and prototype in-
teractive VR scenes. Our techniques build on FRP, a declarative paradigm that treats

discrete events (e.g., user input) as first-class data that can be referenced, managed, and

Portions of this chapter were adapted from [286]
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transformed along with “signals”, which represent continuous values (e.g., the user’s posi-
tion). We also introduce techniques for dynamically creating new objects in the environment,
abstracting and re-using functionality, visually representing types, and easily importing 3D
models into a scene. We also propose interaction techniques that take advantage of the

intuitive and direct interactions that VR affords.

4.2 Related Work

In addition to related work in immerisve authoing, as described in Chapter 2, we describe

in this section dataflow programming and FRP that are related to our approach.

4.2.1 Dataflow Programming

Dataflow programming languages have a long history, beginning with Bert Sutherland’s
Ph.D. thesis [248]. The dataflow model is represented by a directed graph, consisting of
data sources, data sinks and nodes. The nodes are primitive operations such as arithmetic
and comparison operations. The direction of each edge represents the direction of the data
propagation across different nodes. Researchers have then improved and applied dataflow
programming in various domains [136, 180, 114, 149, 239, 152, 74]. For example, Show and
Tell [136] was one of the earliest visual dataflow languages targeted primarily at elementary
school children. Lau-Kee et al. [149] built a visual programming tool and environment
for interactive image processing. Successful commercial software that incorporates visual
dataflow programming—such as LabView [123] and Max MSP [5]—has also been popular in
the domains of hardware and music respectively.

Despite being intuitive for end users, basic dataflow programming has several weaknesses
of expressiveness such as visual cluttering when scaling to complex dataflow graphs with lots
of nodes and edges [233], and lack of support for control issues such as state transition and
initialization [279]. We address the visual cluttering issue in the domain of authoring VR
scenes by introducing techniques of abstracting and re-using behaviors. We further adopt
the FRP model and make explicit controls for defining reactive behaviors and initializing 3D

objects at run time.

4.2.2 Functional Reactive Programming

The concept of reactive programming has been proposed for implementing event-driven appli-
cations based on synchronous dataflow programming paradigms but with relaxed real-time

constraints [17]. FRP [72] integrates reactive programming into functional programming.
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The basic primitives in FRP are behaviors, which refer to different states of the system de-
fined by continuous time-varying values, and event streams, which refer to infinite streams
of discrete values. Users can define the behaviors by specifying how they should change in
response to the incoming events. Event-driven FRP (E-FRP) [263] is considered a more
efficient variant of FRP that can guarantee real-time execution of FRP programs using two
phases: 1) comparing the current state with the prior state of the computation to see whether
they are the same, and 2) updating the current state. The FRP approach is suitable for a
variety of areas such as interactive 2D animations [72], web applications [55], and data visual-
izations [221]. To our knowledge, FlowMatic is the first to exploit the expressiveness of FRP
in authoring VR scenes and further visualize FRP semantics in the 3D space. FlowMatic

also proposes a set of domain-specific operators for programming VR applications.

4.3 System Design

We have three primary design goals for FlowMatic:

e To raise the ceiling of the expressiveness of immersive authoring tools.

e To minimize its learning curve by relying on a small number of conceptual primitives

that behave consistently.

e To build visualizations and controls that are appropriate for state-of-the-art VR sys-

tems.

FlowMatic starts with a standard dataflow model that allows users to define relationships
between objects in the scene and the state of the user. The top-level primitive of FlowMatic is
called a scene (analogous to a “program”). Every scene can contain any number of elements

from the following list:

e Models represent 3D shapes in the scene that are visible to users. Every model

contains:

— Attributes, which control how the model is displayed. For example, a model
representing a stereo box might have attributes controlling its volume, position,
and color. Attributes can reference and be referenced by other elements in the

scene.

— Methods, which are discrete actions that a model might take, such as animations.
Like attributes, methods can reference or be referenced by other elements in the

scene.
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e Data sources are ways for data to enter the application. Like models, data sources
contain attributes that can be referenced by other elements in the scene. Unlike mod-
els, however, data sources are only visible to the programmer—not for users of the

applications they create. FlowMatic contains three kinds of data sources:

— Avatars provide information about the state of the user, as first introduced by
Steed and Slater [239]. For example, avatars allow programmers to reference the
position of the user’s headset and controllers in the virtual scene, the buttons the

user is pressing, and more.

— Constants represent values that never change but need to be referenced as part

of the scene. For example, in the expression “x+5”, 5 is a constant.

— Randomized Generators provide randomized data that can be referenced for
non-deterministic programs. This is analogous to how Unix systems can pipe data

from /dev/random.

e FRP diagrams represent the logic of the scene—how elements change dynamically

and react to user and system events. The FRP diagram contains four kinds of elements:

Operations, which transform and manipulate the data?. Operations can accept

any number of arguments and produce any number of outputs.

— Nodes, which are elements that can be referenced in the FRP diagram. Every

node is part of an operation, model, or data source.
— Edges between nodes that specify how data flows within the FRP diagram.

— Abstract models, which are models that can programmatically be added and
removed from the scene at runtime. Abstract models have the same attributes
and methods as normal models but are not instantiated until the abstract model

is passed into the create() operation.

Although FlowMatic is an immersive authoring tool, several aspects of immersive author-
ing are beyond its scope—particularly the ability to define new 3D models and to define
rendering functions that specify how to display a given model given its attribute states.
However, future iterations of FlowMatic could incorporate such features by building on prior
work, such as TiltBrush [95] and Medium [188].

FlowMatic consists of three User Interface (Ul) components, as Figure 3.1 (a) shows. The

palette menu (Figure 3.1 (i)) allows users to search, select, and import 3D models to the

2The operations that FlowMatic includes are based on those of the RxJS JavaScript library [218].
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Main Meny

Figure 4.1: The palette menu of FlowMatic. (a)/(i) is the interface that allows users to
import primitive models and select their colors using the color palette. (b)/(ii) is the interface
that allows users to browse, search for, and import models from online. (iii) is a toggle for
displaying the FRP diagram. (iv) allows users to create text elements in the scene.

scene. The canvas (Figure 3.1 (iii)) shows the FRP diagram that the user creates. The
toolbox (Figure 3.1 (ii)) allows users to select from a set of data sources and operators used
for the diagram. We will delve into the design of each component and use an interactive

example to showcase the workflow of FlowMatic.

4.3.1 Palette Menu

Palette Tool Menus are widely adopted in popular immersive authoring tools such as Google
Tilt Brush [95] and Microsoft Maquette [171]. In FlowMatic, the palette tool menu is always
attached to the left controller, as Figure 4.1 shows.
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4.3.1.1 Import 3D Objects

FlowMatic allows users to import both primitive models (e.g. cubes, spheres) and models
from Sketchfab®, a popular library of 3D models, as Figure 4.1 shows. Users use a raycast
shooting from one controller to select different models and then import them to the VR world
by pressing a button on the controller. Any animations associated with imported models are
represented as methods in FlowMatic, which execute the animation when called. FlowMatic
also includes models for displaying text (for example, to display a user’s current score in a

game).

4.3.1.2 Stop Mode and Run Mode

Although users enjoy liveness (where they can see the output immediately after they write
part of the program), prior work has found that they prefer having a button that allows
them to switch between running and editing the program [285]. This is partly because they
may accidentally trigger the actions in their application while they are using the controllers
to manipulate the programming primitives. As Figure 4.1 shows, users can switch between
stop mode and run mode, where stop mode shows both 3D models and the programming
primitives (e.g. operators, data sources, or attributes), whereas run mode only shows the
3D models.

4.3.2 Functional Reactive Programming Diagram

In order to represent discrete events, we incorporate concepts from FRP. We choose FRP
as a complement to the state-of-the-art immersive authoring tools for several reasons. First,
VR applications, like most graphical applications, are typically event-driven [73]. Although
previous immersive authoring tools cannot express various system events, FRP models event
streams as a first-class abstraction. Second, from an end user’s perspective, the benefits of
FRP are similar to those in favor of declarative programming over imperative programming—
ease of construction, composability, clean semantics, etc. Especially for immersive authoring
systems, FRP enables end users to focus on “what” to present instead of “how” to present
on the HMD, which they have neither expertise nor interest in. Lastly, FRP fits within the
dataflow model but also provides more expressive functionality, such as the abstractions of
event streams. In FlowMatic, the user edits the FRP diagram using a canvas, as Figure 3.1
(iii) shows. Users can also toggle whether the FRP diagram is shown (developer mode) or

not (user mode).

3https://sketchfab.com/
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Figure 4.2: The type visualization in FlowMatic. We use shapes to represent first-class
abstractions (a). We use colors to represent data types (b). The combination of shape and
color represents the abstraction and data type.

4.3.2.1 Signals & Events

The essence of FRP is the notion of signals for representing continuous time-varying values
(e.g. time, position, and rotation) and event streams for representing discrete events (e.g.
button presses and collisions). These are the only two first-class and composable abstractions.
Although signals are widely supported by the state-of-the-art immersive authoring tools,
event streams are not. For example, using current immersive authoring tools, users cannot
specify that something should happen when the user presses a button?. FlowMatic addresses
this by modeling behaviors of objects using FRP’s notion of signals and event streams.
Event streams can be attached to model methods (to specify when to call a particular
method) or composed and manipulated into more complex event streams or signals. They
can be emitted from the user’s input devices (e.g., controller button presses) or from system

events (e.g., collisions, timed intervals, or animations).

4.3.2.2 Type Visualization and Constraints

To minimize the learning curve for adopting the concept of FRP, FlowMatic also enables
type visualizations and constraints. Specifically, we represent data types using color and
first-class abstractions using shapes, as shown in Figure 4.2. In addition, we allow type
constraints on the connections so that an edge can only establish when the types of the two
ports are compatible, as shown in Figure 4.3 (a) & (b). This visual feedback can help users

avoid type errors effectively. We also introduce polymorphic ports, as shown in Figure 4.3

4This is different from expressing a relationship that holds while the user presses a button, a continuous
event.
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Figure 4.3: The type constraints in FlowMatic. (a) shows the state before making a con-
nection. (b) shows that when making a connection of type object, all ports of incompatible
types will be transparent and unconnectable. (c¢) & (d) demonstrate polymorphic ports.
The snapshot operator takes a snapshot of the input signal whenever the event is fired and
outputs event streams of the same type as the input signal.

(c) & (d), where the type of a connector can be polymorphic according to the incoming data

types.
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4.3.3 Dynamic Operations: An Interactive Example

While the state-of-the-art immersive authoring tools allow users to define the behaviors of
existing objects in the scene, they cannot dynamically operate on 3D objects, which means
that users are not able to author scenes that can programmatically create or destroy objects,
react to system events, or perform discrete actions. This is difficult in previous immersive
authoring tools because they define behaviors using the dataflow model, which specifies
continuous relationships and typically needs the objects to exist in the scene—dataflow
connections rely on the object being visible.

In order to programmatically create objects in the scene at runtime, FlowMatic includes
abstract nodes. Users can create abstract models as placeholders for objects that will be cre-
ated in the scene at some point in the future. They can draw edges to and from these abstract
models to specify dependencies and behaviors (for example, to specify the dynamics of where
it should appear in the scene when it shows up). Finally, they can use the create() opera-
tor to create any number of instances of these abstract models. Conversely, the destroy ()
operator removes an existing object from the scene. It can destroy models that were created
dynamically or ‘regular’ models that the user manually placed in the scene. We will illustrate
this with the example of how Bob uses FlowMatic to progressively program a simple shooting
game, which is impossible to build with previous immersive authoring tools. Note that in
the example we cover only a subset of all the operators in FlowMatic but we demonstrate
how a limited number of operations are sufficient for building such interactive behaviors.

The first feature towards a shooting game is to specify that a bullet should be instan-
tiated at the gun tip whenever the player presses the trigger button on the controller. In
order to achieve that, Bob first wants to get the position value of the gun tip every time
the player presses the trigger. The first operator being used is called snapshot(). The
snapshot () operator takes two inputs—an event and a signal—and produces one output.
The functionality of the operator is to always take a “snapshot” of the signal’s current value
whenever the event fires. After dynamically getting the position value of the gun tip, Bob
uses the create() operator to dynamically instantiate a sphere (that represents a bullet) at
that position. The create() operator thus takes several inputs including a class that comes
from an abstract model indicating what type of objects to create, an event that defines when
to create it, and several parameters for the instantiation such as position and scale. The
output of the create () operator is the instantiated object (an individual bullet).

The second step is to set the bullet’s trajectory so it shoots along the gun direction and
then destroy it when it collides with an object. Bob gets the instantiated object from the
output of the create() operator and uses a translate() operator to translate the bullet.

The translate() operator takes four inputs: an object that specifies which instantiated
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Figure 4.4: Resulting scene of a simple interactive example.

object to operate on, a from_position that defines the start position, a to_posttion that
defines the end position, and a speed that defines the speed of the translation. Bob sets
from_position to the position of the gun tip and to_position to the position of the
destination (an abstract node). The output of the operator is an event that will emit when
the translation completes.

As a final step, Bob wants to specify that when the bullet collides with an obstacle, both
the bullet and the obstacle should be destroyed. The collide() operator is designed to
detect collisions between two objects in the scene. It thus takes two inputs that specify the
two objects respectively and produces four outputs—an event that emits when the collision
starts, an event that emits when the collision ends, and the ids of the two collided objects.
Bob uses the destroy() operator to specify that when a bullet collides with an asteroid,

both should be destroyed. Figure 4.4 shows the scene resulting from this example.
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4.3.4 Interaction Design
4.3.4.1 Direct Manipulation of Objects

We iterated our design to directly manipulate objects in VR by matching the direct ma-
nipulations that people perform physically in real life and preliminary feedback we gathered
from user tryouts. Users use a raycast shooting from the right controller to aim and use
the trigger button on the controller to select items on the menu, analogous to conventional
WIMP interactions. Users also use the raycast to aim at connectors, press the trigger button
to start drawing an edge, and release it when aiming at the target connector, analogous to
conventional drag-and-drop interactions. Users can directly move an object and place it in
the 3D space by holding and releasing the grip button on the controller. Users can remove
an object or an edge by aiming at it with the raycast and pressing a button on the controller.
They can also rotate and scale the object using the thumbstick on the right controller while
holding the object. This is especially useful when creating abstract nodes as placeholders,

since users can inspect the positions and scales of the models directly in VR.

4.3.4.2 Abstracting and Re-using Behaviors

FlowMatic enables users to define and re-use customized operators by taking abstractions
of basic operators or data sources, as Figure 4.5 shows. To initiate an abstraction, users
can ‘pull’” an existing operator closer to them using the thumbstick on the controller. The
abstraction then contains the target operator. Users can continue to ‘absorb’ additional
operators into the abstraction. The abstraction can dynamically update its inputs and
outputs based on the operators being abstracted. Users can ‘push’ the abstraction back to
the FRP diagram again using the thumbstick once the abstraction is done. Users can also
save the abstraction in the toolbox for future use by pressing a button on the controller.
These abstractions make complex FRP diagrams easier to read and allow users to build up

higher levels of abstraction.

4.3.5 Implementation

FlowMatic is open source and publicly available for other researchers to build on and evalu-
ate®. The front-end of FlowMatic builds on AFRAME, which in turn builds on Three.js and
WebVR. The back end of FlowMatic uses Node.js and RxJS [218] to handle FRP logic.

Shttps://github.com/RayneZhang/FlowMatic
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Figure 4.5: In FlowMatic, users can create and re-use new operators as abstractions. By
‘pulling” an operator closer to the user using the thumbstick (a), they create a new abstraction

(b).

updates its inputs and outputs (d).
4.4 Study

As they pull additional operators into the abstraction (c), FlowMatic automatically

We conducted a user evaluation to evaluate the learnability, efficiency, and usability of

FlowMatic. Specifically, we designed our evaluation (1) to see whether participants are able

to build VR applications with FlowMatic, and (2) to gain insights into the advantages,

disadvantages, and usability of immersive authoring systems.
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Table 4.1: The first task given to the participants in the evaluation: Stage Animation

Steps Description
Step 1 Create three light models in the scene
Place the lights:
Step 2 1. Each light must be next to each performer on the stage
2. The lights should appear on the stage floor
Step 3 The light in the middle should always aim at the user even if the user is moving
The light in the middle should be turned off when the user presses the trigger
Step 4 button on the left controller, and be turned on when the user releases the trigger
button on the left controller

Table 4.2: The first task given to the participants in the evaluation: Shooting Game

Steps Description

Step 1 Create a gun model in the scene

To dynamically create a sphere at the gun tip, when the user presses the trigger
button on the right controller.

The created sphere should translate from the tip position to the destination that
is along the gun direction.

Step 4 The created sphere should disappear after translating to the destination

Step 2

Step 3

Because there is no existing immersive authoring tool that allows users to program re-
active behaviors, we chose AFRAME [1], a popular JavaScript framework for programming
web-based VR content, as a representation of conventional desktop methods for authoring
VR. There are two reasons we chose AFRAME as a comparison. First, AFRAME uses
entity-component architecture and an event-handler mechanism for programming VR appli-
cations, which have been a fundamental feature of developing 3D user interfaces including VR
applications [73]. Second, AFRAME has been used for several research projects [184, 183],

including FlowMatic, and has proven usable and capable of authoring event-driven behaviors.

4.4.1 Participants

We recruited 8 participants (6 female, 1 male, and 1 non-binary, age 20-26) to evaluate our
system. All participants had at least a beginner level of JavaScript (have taken at least one
web programming class) and half of them identified themselves as experts (have experience
building websites using JavaScript and are very familiar with syntax frequently used in
JavaScript). All participants reported having no or very limited experience in programming
VR applications before. Participants were paid $25 USD for an approximately 120-minute
study.
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4.4.2 Procedure

We used two different study tasks and two systems with which to implement them (AFRAME
or FlowMatic), all counterbalanced to control for learning effects. The study procedure
consisted of three sessions: 50 minutes for training and experimenting with the first system,
50 minutes for training and experimenting with the second system, and 15 minutes for
retrospective interviews and post-task questionnaires. In each 50-minute session, we spent
the first 20 minutes helping the participants go through a tutorial of the system and then
gave the participants 30 minutes to implement the task. The tutorial for AFRAME was
a document that introduced the syntax and Application Programming Interfaces (APIs)
necessary for programming VR applications. The tutorial for FlowMatic contained basic
concepts and operators necessary for the experiment. Participants also did some exercises
with each system to write basic features in addition to the tutorials, but none of the features
were the same as the actual tasks. The task descriptions were the same regardless of the
implementation system. Table ?? shows the descriptions for each task, which consisted of
four steps.

After the training, we gave participants 30 minutes for the task in each condition and
did not give them further instructions on how to complete the task unless they specifically
asked for help or we noticed they had been stuck for more than 1 minute. Participants were
allowed to freely use the tutorials for reference. In the AFRAME condition, the participants
were allowed to copy the APIs from the document directly to the Integrated Development
Environment (IDE). In both conditions, the participants were allowed to ask for clarifications
on specific concepts, APIs, or operators covered in the tutorials. The researchers would then
give the clarifications verbally. Questions that were unrelated to the contents of the tutorials,
such as what the next step in the task should be, were counted as asking for help.

To make the comparison with AFRAME fair, we tried to provide the same level of ab-
stractions of APIs. For example, when implementing the feature of translation from one
position to another, the participants only needed to specify the entity (which will translate),
the from position, and the to position in both systems. We also provided the same resources
in terms of digital models. During the tasks, we observed how often participants made errors
and what types of errors they made in both conditions.

After completing both tasks, we conducted a one-on-one retrospective interview with
each participant to obtain feedback on how the tools compared and the usability issues.
Participants next filled out a questionnaire about the systems. The questionnaire used
a b-point Likert scale (1-Strongly Disagree, 5-Strongly Agree), assessing the learnability,

usability, and other metrics of FlowMatic.
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4.5 Results

All participants were able to implement the given tasks using both systems. We observed
that participants made more errors when using AFRAME and normally spent more time
on fixing errors, though we did not quantitatively measure the time spent on error fixing.
Some common errors when using AFRAME were binding event listeners to wrong entities,

confusing init () with the tick () function, and forgetting to attach components to entities.

4.5.1 Retrospective Interviews

During the retrospective interviews, we asked participants about the comparison between
the two authoring tools and their preferences. We also asked about the advantages and
disadvantages of each tool.

No Code Required. All eight participants mentioned that one of the advantages of Flow-
Matic is that users can do programming tasks without any experience in coding. Similar

feedback also included that FlowMatic would be suitable for teaching people to program.

P8: “[FlowMatic] would be a lot easier for artists, beginners to coding, and kids

who don’t know actual coding because you have to learn the basics of Javascript
to use [AFRAME].”

Correspondence between Programs and Objects. Participants also described FlowMatic
as more “direct” and “intuitive”. More specifically, participants thought that it is “always
easier to know which object and which event you are operating on” with FlowMatic (P2),
while it is “hard to keep track of what you are doing and which variable you are working
on” using AFRAME (P3). This is because FlowMatic allows users to operate directly on the
objects in the scene so that they can establish correspondences between the program and
the objects more easily. With 2D authoring tools, on the other hand, users have to establish
the correspondences between the scripts and the objects, which requires more mental effort.

Liveness. Participants pointed out that the immediate feedback of FlowMatic, its live-
ness [254], helped them to be “more efficient” (P8). While using AFRAME, they had to
“spend time on compiling and running” (P8). Another participant also mentioned that the
liveness gave her “more sense of accomplishment” (P6).

Context Switching. Six out of eight participants mentioned that with AFRAME they had
to do “context switch” or “switching back and forth” between the HMD and the IDE. They
also preferred FlowMatic for being easier and more convenient, since “everything is in VR”

(P6).
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P4: “To test what I was doing [in AFRAME], I had to compile, reload the web-
page, wear the headset, and head back to the IDE to do bug fixing, which is very

time-consuming.”

Syntazx. Participants also said that FlowMatic is easier because the syntax for specifying

behaviors is more concise and intuitive than in AFRAME.

P7: “It seems like there is a lot of syntax involved [in AFRAME], such as having
to get the position of an object, and having to instantiate things, which I think
would be easier to get the trigger [button] for those [in FlowMatic].”

Another example of this is that participants made a lot of mistakes related to the syntax of
AFRAME, such as attaching a component, binding an event listener, etc.

Debugging. Debugging was an interesting topic throughout the interviews. It turned out
that each system has its own benefits and drawbacks in terms of debugging. Participants who
thought debugging was easier in FlowMatic claimed that “it is easier to see how I did wrong
since everything is visual (in FlowMatic) and one node is connected to another” (P8), and
that bug fixing is harder in AFRAME due to frequently switching the context, according
to P4. Participants who thought debugging was easier in AFRAME commented that it
was easier to utilize simple functions like console.log() to see whether an event had been
triggered or not, according to P2. It was also easier because users can go through the code
and see where is wrong, while using FlowMatic it is hard for the user to check if she connected

a wrong arrow and to know how to change it, according to P5.

4.5.2 Questionnaire

Figure 4.6 shows the aggregated results from the usability questionnaire. Six out of eight
participants agreed that FlowMatic is easy to learn (5 Strongly Agree, 1 Agree), while only
one participant strongly agreed that AFRAME is easy to learn. Six participants agreed that
FlowMatic is easy to use (3 Strongly Agree, 3 Agree), while five participants agreed that
AFRAME is easy to use (1 Strongly Agree, 4 Agree). All participants agreed that the design
of FlowMatic is good (5 Strongly Agree, 3 Agree). Six participants agreed that FlowMatic
is helpful in programming VR applications and that it would be easy to become skillful
at FlowMatic. Seven out of eight participants thought FlowMatic was fun to play with (6
Strongly Agree, 1 Agree), which corresponds to the interview feedback that it is interesting

to use FlowMatic.
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Figure 4.6: Results of the usability questionnaire.

4.6 Discussion

Our results indicate that our immersive authoring system, FlowMatic, is generally easy
to learn and use. We observed that participants tended to make more errors when using
desktop authoring tools, though we did not quantify them. Even though all participants
had programming experience, the errors they made were heavily linked to the programming
paradigm of each authoring system, which was outside the scope of their previous experience.
More specifically, in the AFRAME condition, the errors were mostly linked with the entity-
component system and the event-handler mechanism, which are the core of current VR
application development tools.

Participants were also able to build target reactive behaviors using FlowMatic and all of
them believed that FlowMatic was more beneficial for non-programmers and novice program-
mers. Most of them agreed that FlowMatic was more intuitive and direct and they generally
preferred the liveness of FlowMatic. Participants also thought FlowMatic was interesting
and fun to play with. Using desktop authoring methods, users often need to deal with a lot
of “chores” that are less related to their authoring intentions, such as dealing with frame-
rate-driven architecture and repeatedly switching between developing and testing. Those

chores are also less interesting to users. By integrating FRP and fusing developing and test-
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Figure 4.7: A Blaster Game created using FlowMatic, where the player presses the trigger
button on the controller to shoot spheres out and earns scores by hitting the target asteroids.

ing in the immersive environment, FlowMatic allows users to directly map their intentions

into operations and receive immediate feedback in the 3D world.

4.7 Example Applications

To demonstrate the expressiveness of FlowMatic, we use replicated examples [150] and create
three example applications. The first application, a blaster game, is one of the most common
gaming mechanisms in VR where the user shoots bullets using the controller to try to hit
the targets. The VR Whac-A-Mole game asks users to use a hammer to hit the moles that
are generated in random positions on the ground. In the last application, we replicated Beat
Saber—one of the most popular VR games, where users swing their controllers to slash the

blocks moving towards them in a certain rhythm.

4.7.1 Blaster Game

The tricky parts of creating a blaster game include dynamically creating bullets at the gun
tip position at run time, detecting collisions between targets and each bullet, and dynami-

cally destroying objects when they collide. As partly covered in the previous example, we
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Figure 4.8: A VR Whac-A-Mole game where the user holds a hammer and tries to hit the
shark models randomly generated on the water’s surface.

accomplish this by using FRP operators that can dynamically create, translate, and destroy
a bullet (represented as a sphere but can be any model from an online library) according to

different system events.

4.7.2 VR Whac-A-Mole

Whac-A-Mole is an arcade game where the user uses a hammer to hit the randomly generated
moles and earns scores. Again, this application requires dynamically creating/destroying ob-
jects and reacting to system events such as collisions between the hammer and the moles. In
addition, this application was previously hard to replicate because it requires the system to
generate objects at random positions in the space. We address this by using an aforemen-
tioned abstract node to directly specify an area and a random generator as an operator to

generate random data of type vector3 as positions within the area.

4.7.3 Beat Saber

Beat Saber is a popular rhythm game in VR. The difficult aspect of replicating this game
is to arrange the timing of each moving block according to the rhythm. We address this by
using an interval operator that can fire events based on a specified interval value. The create

operator can then subscribe to the internal clock events and generate blocks accordingly.
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Figure 4.9: A basic implementation of Beat Saber, where the blocks are created at certain
intervals and the player swings the sword and hits the cubes to earn scores.

4.8 Conclusion

Our current study has several limitations. First, we have only performed a short-term
study comparing FlowMatic and AFRAME for beginners. A long-term study or a study
with experts in VR will be needed to see whether the conclusion still holds for people
who are familiar with VR programming tools. Second, since all of our participants had an
interest in VR and FlowMatic appeared new to them, their feedback may be biased. People
who are experts in JavaScript may feel more comfortable using imperative programming
languages rather than FRP. Finally, while FlowMatic is expressive for creating different
reactive behaviors, there are several components of VR applications that are not supported
in FlowMatic yet, such as authoring particle systems and complex algorithms. However,
recreating a complex authoring tool such as game engines is beyond the scope of this chapter.
Instead, we explored the possibility of making programming VR applications easier and
proved that FlowMatic is capable of allowing novices to build relatively complex VR scenes.

In this chapter, we presented a novel immersive authoring system named FlowMatic that
raises the ceiling of the expressiveness of immersive authoring tools. To enable that, we inte-
grated concepts of FRP and modeled reactive behaviors of objects as time-varying signals or

event streams. FlowMatic introduces a set of dynamic operations, intuitive interactions, and

42



visual representations for defining reactive behaviors, reducing complexity, and program-
matically creating/destroying objects in a scene. We conducted a comparative study with
AFRAME, a desktop authoring method, to evaluate the usability, advantages and disadvan-
tages of FlowMatic. Our study results show that participants were able to build the target
reactive behaviors using FlowMatic, and that it is intuitive, fun to play with, and helpful
for programming VR applications. We also demonstrate the expressiveness of FlowMatic by
replicating three relatively complex applications that were impossible to build using prior

immersive authoring systems.
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CHAPTER 5

VRGit: Supporting Design Exploration and
Collaboration in Immersive Content

Creation!

5.1 Introduction

By leveraging people’s spatial capabilities, VR provides an effective approach for users to for-
mulate and evaluate ideas of 3D content. Research has also shown that VR provides an effec-
tive tool for users to evaluate ideas for 3D spatial content in multiple creative domains such as
game design [261], architecture [84, 199], urban planning [245], and interior design [119]. Fur-
thermore, as modern workforces in these domains are becoming diverse in terms of their skill
sets and backgrounds, better collaborative content creation support is needed for coordina-
tion among various roles including designers, developers, and customers/end-users [14, 143].

Collaborative content creation is an iterative process in which users may perform numer-
ous editing operations, explore various design alternatives, communicate with collaborators,
and shift between individual and shared activities frequently [109, 257, 104]. Keeping track
of version history in this process is important for providing the ability to revert to previ-
ous states if necessary. In addition, providing rich history-keeping can help users explore
different design alternatives in the task of creative content production [226]. In collabora-
tive settings, keeping track of version history is even more challenging since users may also
need to maintain awareness of collaborators’ activities. For example, imagine you are col-
laborating on designing a VR scene, and you would like to explore a design variant of the
current scene without interfering with your collaborators’ design. Moreover, when you and
your collaborators are working on different design variants, you would like to know which

versions your collaborators are working on and communicate ideas with them. If all the

Portions of this chapter were adapted from [282]
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versions of the scene, including different branches that collaborators are working on, are pre-
served and visualized in VR, you could easily “travel” between versions and communicate
with your collaborators across versions or branches. While existing systems enable com-
pelling experiences for creating and manipulating 3D content in VR, most only enable basic
history-keeping (e.g., a linear timeline) for single users in VR.

VCSs have been used widely for keeping track of version history of digital content among
collaborators. Most current VCSs, however, are designed for text rather than spatial data
such as 3D scenes. Research in VCS for 3D modeling has explored some effective mecha-
nisms for one or two features of a VCS such as comparing and merging scenes or models on
2D displays [66, 63, 38, 219, 34], but still lacks knowledge regarding how to enable multi-
ple users to track version history without breaking the fluidity of immersive authoring. On
the other hand, although collaboration systems in VR have long been an exploration in the
area of HCI and CSCW [205, 204, 278, 111], most of them lack version control capabilities
and keep only one version of 3D scenes at a time for all users. In this work, we aim to
explore providing visualization and interactions of version history that are appropriate for
collaborative immersive environments. We provide a complete, standalone design and im-
plementation for version control in VR in order to avoid breaking the immersion and the
workflow of collaborative content creation, to leverage intuitive interactions that VR affords,
and to harness people’s spatial skills for understanding and navigating 3D environments.
We also take a different approach by enabling collaborators to stay in different versions of
3D scenes and explore supporting awareness and communication among collaborators across
different versions.

We introduce VRGit, a new VCS for collaborative content creation in VR. VRGit enables
novel visualization and interactions for version control commands such as history navigation,
commits, branching, previewing, and re-using. VRGit is also designed to facilitate real-
time collaboration by providing workspace awareness, whether users are working on the
same version or different versions. More specifically, when users are in different versions,
our system enables shared views for understanding where collaborators are and what they
are doing. VRGit also introduces a shared visualization to reduce friction during group
discussions when users are in the same version, by providing awareness related to version
control operations such as navigating version history and re-using 3D content. Finally, we
describe an exploratory lab study with 14 participants in which we evaluate the usability
and utility of VRGit. Results show that it enables users to easily keep track of non-linear
version histories and improves the collaborative workflow of content creation in VR.

The contributions of this chapter include: (i) the design and implementation of a new VCS

for collaborative content creation in VR, and (i) results and design insights gained from an
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exploratory lab study that evaluated the usability and utility of the VCS for content creation
in VR.

5.2 Related Work

Our work draws inspiration from prior literature in VCSs for 3D scenes, graphical history vi-
sualization, collaborative virtual environments, and visualization and interaction techniques

in VR.

5.2.1 Version Control Systems for 3D Scenes

A Version Control System, also known as a Revision Control System, enables users to keep
historical versions of digital content. VCSs such as Git [89] and Subversion [12] have been
popular in the domain of software engineering to help developers keep track of the history of
source code by committing changes along with text messages that describe the changes. Most
V(CSs also support asynchronous collaboration among multiple developers at remote locations
by allowing them to manually create and merge branches. However, most existing VCSs are
unsuitable for tracking and understanding changes of 3D scenes because the underlying line
differencing mechanism is designed for tracking changes of text files and thus lacks high-
level semantic information of spatial data such as 2D images and 3D scenes. Recent work,
primarily from the Computer Graphics community, has thus explored techniques for tracking
changes in media files such as 2D images [41] and 3D scenes [66, 67, 63, 38, 219, 34], which
can be categorized into two approaches: state-based and operation-based.

State-based approaches aim to build effective mechanisms that can automatically derive
changes by comparing two states, e.g. a version and its successor, after the changes occur.
Prior work focusing on state-based approaches has strived to derive changes at different levels
of granularity [66, 67, 63, 38]. For example, Dobos and Steed version 3D assets at a coarse
granularity of individual nodes of a scene graph such as individual meshes [66, 67]. SceneGit
can derive changes at a finer granularity of vertices and faces [38]. In the domain of drawing,
techniques such as object-oriented drawing can also preserve states of individual attributes
and allow users to revert to previous states of an attribute without interfering with other
attributes [277]. The other approach is operation-based, which records changes while they
occur. This approach typically records editing operations that users make, and then applies
the operations to a state to transform it to the successor state [219, 34, 41]. For example,
MeshHisto stores and transmits mesh difference by encoding them as sequences of primitive

editing operations [219]. In our work, VRGit uses operation-based change tracking since it
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is more precise and efficient in determining the difference between two states and provides
functionality such as replay and undo. It has also been applied to prior content creation
tools such as 3D modelling [219] and sculpting [34].

Our work contributes to existing literature in VCSs for 3D scenes by introducing a full
VCS in collaborative, and immersive environments (Table 5.1). While prior work has been
focused on one or two features of a VCS such as diffing and merging and has targeted VCSs
on 2D screens, VRGit aims to explore novel visualization and interactions of a VCS and

provide real-time workspace awareness in collaborative content creation in VR.

5.2.2 Graphical History Visualization

Enabling intuitive graphical visualization and interactions for version or operation history
has long been an area of exploration in HCI. Prior work has explored visualization of his-
tory using representations such as layers of operations [178], snapshots of before-and-after
states [147], and timeline views of history [210]. Later work has then built on these repre-
sentations and explored techniques that enable users to better understand and interact with
operation history. For example, Klemmer et al. built upon snapshots of states of collabo-
rative web editing sessions and embedded non-linear branches in the timeline view [139].
Nakamura and Igarashi captured the Graphical User Interface (GUI) input and output
history of graphical documents and visualized the snapshots with annotations of detailed
operations [181]. Chronicle instead captures the video history of graphical documents and
provides users with a set of probes to filter the revision history [101]. More recently, Chen
et al. explored using a DAG for versioning image editing operations [41]. However, all the
above systems for visualizing and interacting with version history are designed for text or
2D content such as paintings and images.

Most graphical history representations for 3D scenes today have primarily focused on
viewing and interacting through 2D displays. For example, commercial Computer-Aided
Design tools such as Autodesk Maya or Vistrails are able to record modelling history and
provide a list of operation history in the editor. Another line of research in this space
is focused on interactive summary of long sequences of editing operations. For example,
MeshFlow [62] and 3DFlow [64] are proposed to summarize the history of mesh editing by
clustering editing operations. Closer to our work that visualizes history in VR, Lilija et al.
introduced techniques of visualizing objects’ trajectory in 3D scenes and allowing users to
view the history of spatial recordings in VR [159], though not in the context of a VCS. Our
work expands on prior work to explore graphical representation and interactions of non-linear

history (i.e. branching) in a VCS for immersive VR authoring.
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5.2.3 Collaborative Virtual Environments

Researchers have acknowledged the importance of designing real-time collaborative systems
that support workspace awareness, i.e. understanding of other collaborators’ interaction
with the shared workspace [104]. Prior work has explored various techniques for supporting
awareness of other users in collaborative virtual environments such as the use of gaze [205],
gestures [276, 189, 204], and pointers [71]. Recent advances of the underlying sensing tech-
nologies have also allowed for capturing and rendering full bodies of users via 2D projection
(e.g. Room2Room [201]) or 3D hologram (e.g. Holoportation [194]). Beyond the awareness
of other users, workspace awareness also involves understanding of collaborators” workspace
context. To achieve that, sharing views of the workspace has shown to be an effective tech-
nique [88, 81, 186, 258]. For instance, Fraser et al. proposed using peripheral views to
support peripheral awareness of other users in collaborative virtual environments [81].

A common limitation of the above techniques is that they are designed for providing
awareness when there is only one version of 3D scenes and all users are virtually co-located
and therefore visible to each other in that version. Highly relevant to our work, Spacetime
proposes the concept of parallel objects that allow users to create parallel versions of the
same object similar to branching [278]. However, their technique still requires users to land
on one final version and renders all parallel designs using different levels of transparency in
the same version. In this work, we take a different approach that allows users to manually
branch into different variants of the 3D scenes and make changes in those branches while
still maintaining workspace awareness when they are located in different versions or design

variants (i.e., branches) of 3D scenes.

5.3 VRGIt

VRGit is a VCS for VR that enables users to keep track of multiple versions of 3D scenes,
to create and navigate different branches, and to preview and reuse content from differ-
ent versions. Beyond supporting individual uses, VRGit also supports real-time workspace
awareness of users’ activities and version history by integrating synchronous communication
and enabling a shared history visualization. To instantiate the visualization, interaction, and
collaboration design of VRGit, we first build an immersive authoring system that enables
users to create and manipulate 3D scenes directly in VR. We choose an example of designing
the floor plan of an apartment for evaluation with end-users, because it has been a key VR
application since it requires users’ spatial capabilities and has been used to evaluate prior
collaborative VR systems [119, 195]. We also believe the design concepts behind VRGit are
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Figure 5.1: The immersive authoring environment. A menu is always attached to the left
controller. Users can select pre-made furniture models of different categories and place them
in the VR scene.

generalizable to other application domains (e.g., game scenes design) as well, because the
immersive authoring operations (e.g., manipulation of 3D objects), version control mech-
anism (e.g., commit and branching), and collaborative support (e.g., portals and shared

visualization) are independent of the task context.

5.3.1 Immersive Authoring Environment

We build an immersive authoring environment that allows users to design the spatial layout
of an apartment, as a foundation for instantiating the concepts of VRGit. Users can place
and manipulate pre-made furniture models in an empty apartment, as seen in Fig. 5.1. Our
system is scoped to authoring VR scenes at a fixed scale (e.g., city scales in urban planning or
room scales in interior design) to better focus on the challenges of visualizing and interacting
with version histories in VR, and keeping workspace awareness among collaborators across

different versions.

5.3.2 Version Control System

VRGit supports full version control of the 3D scenes during the editing process. We use
an operation-based history model that records users’ edit operations and then applies the

operations to a state to transform it to the successor state. We use this model because (7)
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Figure 5.2: The summarized version history. The upper area refers to part of the DAG
that generate a node whenever there is a new operation. The middle area shows part of the
summarized HG where V/-8 are clustered based on operation dependencies. The bottom
area shows the constraint of workspace awareness, where a version that another user is
working in will always be shown.

it has been utilized in prior editing tools such as desktop-based 3D modeling [219] and 2D
images [41], and (7i) it can be more precise and efficient in determining the difference between
two states [219] and provides functionalities such as replay and undo [41]. Our current system
supports common immersive authoring operations including creation, transformation, and
deletion. We use a Directed Acyclic Graph (DAG) as the underlying data structure where
each node represents an editing operation with its relevant parameters and each edge along

with its direction represents the temporal order between two operations.

5.3.2.1 History Visualization and Navigation.

We visualize a directed graph on the users’ left arm to represent version history as a History
Graph (HG). Each node is visualized using a miniature of the version state and each edge
represents the temporal order between two versions. We also show the version number in
text in each node. Inside each miniature, we highlight the difference with its prior version
by changing the material of the furniture with color coding: we use green to represent an
added object, yellow to represent transformation of an existing object, and red to represent
a deleted object. Because of the potential complexity and large size of the underlying DAG,

the HG only shows users the summarized version history, as shown in Fig. 5.2. Our sum-
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marization techniques take into account three parameters: (i) operation dependencies, (i)
spatial constraints, and (4ii) workspace awareness. We use a simple timeout mechanism to
determine operation dependencies, which generates a new node in the history graph after
the user has been idle for a specified amount of time (10 seconds when working alone, 15
seconds when working collaboratively—defaults that we found to work anecdotally). Spatial
constraints allow us to determine the number of miniatures and branches to display given the
amount of available space in a visualization anchor (e.g. users’ arms or a tabletop). VRGit
also always shows which versions users’ collaborators are working in, as a way to improve
workspace awareness. Users can select the previous or next version in the history graph by
pushing the thumbstick on the left controller horizontally. A cursor of a yellow square is
then shown around the miniature when a version is selected. To enter a version, users can
select the version and press a button on the controller. The layout of the environment will
then change to the state of that version. When there are multiple branches at a node (shown
as parallel siblings in the HG), users can also switch branches by pushing the thumbstick

vertically.

5.3.2.2 Commits and Branching

In VRGit, commits (checkpoints in the repository) are made automatically by the system
whenever the user performs a new operation. VRGit does not require that users explicitly
perform commits, which could interrupt their workflow, while allowing users to revert back
to previous versions if any misoperations occur. When a new commit is made, the system
will append a new node that represents the editing operation to the underlying DAG. The
summarized HG will in turn be updated based on the new DAG.

VRGit enables visualization of multiple branches and intuitive interactions for creating,
updating, and navigating different branches in the visualization, as shown in Fig. 5.3.
Creative tasks such as content creation usually involve numerous trial-and-error experiments
and design variants (branches) [109, 257] and the ability to keep multiple branches has shown
to be an important building block of creativity support tools [226]. In our system, users can
easily create a branch based on a historical version by first entering that version and then
pressing a button on the controller. The system will then create a copy of the node that
represents the historical version, and append the copy to its parent node in the underlying
DAG. The HG will then be updated by laying out the branches in a circular path that takes
advantage of depth afforded by VR displays. The user will be automatically switched to the
new branch once it is created and can update the new branch modifying the 3D scene. Users

can use the thumbstick to navigate different existing branches as mentioned above.
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Figure 5.3: Screenshots of the History Graph (HG) that visualizes multiple branches. The
user stays in the version of V17 1In 5.3a, the user is selecting V4 which belongs to the
branch highlighted in light green. Users can switch to other branches. After switching
branches (5.3b), the user is selecting V4.0 which belongs to the branch highlighted in dark
red.

5.3.2.3 Previewing and Reusing

A preview allows users to easily examine the state of a historical version without actively
entering that version, typically known as “snapshots” or “thumbnails” in 2D graphical editing
tools [147]. In our system, as the miniatures in the HG can be small for inspection depending
on the anchor of the HG, we enable users to preview of a version in the HG by showing an
expanded miniature of the version. Users can open a preview of a version by using the
raycast to aim at the version and pressing a button on the controller, as shown in Fig. 5.4a.
They can also resize the preview to better inspect changes in the version. Multiple previews
can exist at the same time and users can directly manipulate the preview for the convenience
of inspection.

Another novel functionality that previews afford is reusing spatial design from one or
more previews. In conventional VCSs, reusing or combining data between versions is done

via merging, which applies all changes of one branch to another. Along this line, prior
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Figure 5.4: Screenshots of previewing and reusing in VRGit. In 5.4a, the user is in V14 and
opening a preview of V5.11. In 5.4b, the user reuses the chair in the preview by aiming at it
using the raycast shooting from the controller and pressing a button on the controller. The
chair then appears in the environment and the system automatically creates a commit that
brings the user to V1.

work has also proposed mechanisms for merging changes and resolving conflicts of two 3D
scenes [66, 63, 38]. However, merging is typically limited to fusing all changes between
only two versions at a time. Content creation, on the other hand, is often an open-ended
design process that is subject to unexpected changes of directions or goals [51]. It is therefore
common for users conducting creative tasks to explore different design variants by selectively
mixing-and-matching changes from multiple sources [156, 39, 40, 246]. For instance, imagine
an architect who wants to mix-and-match designs of the balcony from one version, the
furniture from a second version, and decoration from a third version. It would be useful if
they can open previews of the three versions and directly reuse these specific parts of the 3D
scene. Therefore, instead of fusing all changes between two versions at a time, our system
allows users to reuse objects from multiple versions. In VRGit, users can reuse spatial design
of different versions and selecting the target item in the previews, as shown in Fig. 5.4b. The
selected furniture will then appear with the same transformations (i.e., position, rotation,
and scale) in the user’s current version. To incorporate designs from multiple versions, users

can create multiple previews and reuse objects in those previews accordingly.

54



5.3.3 Collaboration in VRGit

Collaboration is an important component in most VCSs. For instance, VCSs such as Git
and Subversion are designed for multiple developers at remote locations to collaborate with
each other, by allowing them to sync changes (e.g. commits or branches) to the repositories
through a central server. The collaboration in such VCSs is asynchronous and users typically
work in separate editing environments. Numerous synchronous 3D scene editing tools exist
(e.g. [219, 34]), but they do not support active branching or navigating history in their VCSs.
In VRGit, users can collaboratively author the 3D scene when they are in the same version,
analogous to a synchronous editing tool. They are able to see each other’s edits and avatars,
point to objects with raycasts, and talk to each other via audio communication. VRGit also
allows users to create branches and navigate to different versions, in order to explore different
design variants without interfering with each other. In this scenario, they can work on their
own branches but are not able to see each other’s avatars in the environment, analogous
to an asynchronous editing tool. In all, collaborators can easily separate or reconcile by
navigating and branching into the same or different versions.

In this work, we address the unique challenges of supporting communication and
workspace awareness in immersive authoring through a VCS. We consider two primary
scenarios: (i) when users are working in different versions and (7i) when users are working
in the same version. In most existing VCSs, being in different versions means users are
working in separate workspaces and there is little support or need for real-time workspace
awareness since there is no presence of users or activities in the workspace [252]. However, as
in VRGit, users can easily switch and work in different versions or branches, so there should
be a consistent presence of collaborators and their activities as well as a convenient way to
communicate in order to maintain workspace awareness. We incorporate mini-avatars in the
HG that indicate in which version (where) collaborators are located. We also integrate the
concept of portals and shared history visualizations in our VCS that help users understand
what collaborators are doing and communicate with each other when they are working in

different and the same version respectively. We detail the design of these two features below.

5.3.3.1 Portals

In collaborative authoring, it is common for collaborators to adopt a ‘multi-synchronous’
collaboration styles in which they work simultaneously in isolation and subsequently integrate
their contribution [69]. VRGit enables this by allowing users to create and work in different
branches, and combine their work together by reusing designs from multiple branches. An

important aspect in this process is how to enable communication between collaborators and
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Figure 5.5: The workflow of shared history visualizations. When two users are working in
the same version, one user can start a shared history by pointing at the HG on the left arm
and pressing a button (top left). The shared history visualization will then be anchored on
the table and the sharer can select a version (highlighted in dashed line) for all users (top
right). They can then enter that version collaboratively (bottom left). Finally, all users can
collaboratively preview and reuse the lamp from another version (bottom right).

awareness of their activities in order to ensure common ground [49] and to avoid redundant
work [120]. VRGit addresses this by integrating portals into the HG that allow users to easily
monitor and communicate with each other when they work in different branches. Portals are
2D video streams from collaborators’ first-person view, which have been shown to be useful
in understanding collaborator’s activities [141, 11]. Users can create a portal of another
user by using the raycast from the controller to aim at the mini-avatar appearing in the HG
and pressing a button on the controller. A 2D plane showing the target user’s first-person
view will be created next to the mini-avatar, as shown in Fig. ?? (left). Users can directly

manipulate and place the portal.

5.3.3.2 Shared History Visualization.

In VRGit, shared history visualization is designed to facilitate discussions about multiple
versions (e.g., to compare features) or about the edit history itself, as shown in Fig. 5.5.
A unique challenge for the VCS under this setting is how to maintain awareness of version
history and version control operations from collaborators. As each user keeps a local HG on
their left arm, similar to a local copy of the entire repository in VCSs such as Git, their views

of the HG may be different due to navigating versions and switching branches. Therefore,
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there is little awareness of collaborators’ version control operations such as navigating and
entering different versions, and it is difficult to refer to specific versions during discussion.
VRGit addresses this by introducing shared history visualization where the local HG orig-
inally anchored on each user’s arm moves to a shared location in the virtual scene. One
sharer is required to create the shared history visualization by using the raycast to aim at
the HG anchored on the arm and pressing a button on the controller. Then every user in the
same version will be able to see an animation of the HG moving from their arms to a shared
location in the virtual scene. Similar to screen sharing, the sharer can interact with the
shared visualization to navigate history, switch branches, and create previews. The sharer
can also move the shared history visualization through direct manipulation. The operations
on the shared history visualization are synced for all sharees who are in the same version
to ensure they have the same view and understanding of the shared history visualization.
For instance, when the sharer navigates and enter an older version, all sharees are able to
see the navigation in the shared history visualization and enter the version with the sharer.
When the sharer creates a preview and reuses objects from the preview, all sharees can see

the preview being created and the objects being reused in the current version.

5.3.4 System Implementation

VRGit is implemented using Unity 2020.2.7 and runs on Oculus Quest or Rift headsets.
The overall architecture of our system is shown in Fig. 5.6. We use the Photon Voice?
plugin in Unity to enable voice chat among users. The rest of our functionalities are mainly
synced through a Firebase server.®> More specifically, the application encodes the animation
of avatars that is tracked in Oculus in binary and updates the document linked to the user 1D
on Firebase. In VRGit, operations of each user are synced through the operation document
on Firebase and used to update the local copies of HGs in each application. We currently
support five operation types: creation, transformation, deletion, entering, and branching.
The first three are immersive authoring operations and the rest are manual operations in
the HG that need to be updated. When users start a portal to share their first-person views
and communicate with each other, we encode the video streams in binary using WebRTC*
and sync the streams through Firebase. Finally, while all of the above functionalities are
synced in both directions, the shared history visualization is in one direction. When one
user becomes the sharer by starting a shared history visualization, all the operations from

the sharer such as navigating history, switching branches, and previewing and reusing are

Zhttps://www.photonengine.com /voice
3https://firebase.google.com/
4https://webrtc.org/
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Figure 5.6: The system architecture of two applications running VRGit. VRGit uses two
servers: Photon Voice and Google Firebase. All applications write and read audio data from
the Photon Voice server to sync voice communication. Applications sync the movement of
users’ avatars by writing and reading data of Oculus headset and controllers from the Avatars
document on Firebase. Similarly, applications sync their version control operations through
the Operations document and their video data through the Portals document. Finally, for
shared history visualization, only the sharer (i.e., App 1) writes data to the Shared History
Operations document and only the receiver (i.e., App 2) reads data from the document.

sent to the server. All the sharees then pull those shared history operations and update their

shared history visualization based on the operations.

5.4 Study

We conducted a qualitative user evaluation of VRGit with two goals: (i) to evaluate the
usability and utility of the visualization and interaction of the Version Control System,
and (i) to assess how well the system support people’s communication and awareness in a

collaborative task.

5.4.1 Participants

We recruited 14 participants in seven groups (10 female and 4 male, age 20-28) from a
university in the United States through public email lists of a department. All participants
had prior experience using VR devices. Three groups of participants were friends and four

groups were strangers. Each participant was compensated with $30 USD Amazon gift cards
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for an approximately 120-minute study. Our study was approved by our institution’s IRB.

5.4.2 Procedure

Our study was divided into two sessions. The first session was completed by participants
individually and the second session was completed collaboratively by three people (two par-
ticipants and one researcher). To simulate remote collaboration settings, participants were
separated in two different rooms where they cannot verbally communicate unless using our
system. The first session began with an introduction and a walkthrough of the system
that lasted approximately 30 minutes. During the walkthrough, participants were shown
individual features and asked to complete some atomic tasks to get familiar with those fea-
tures. After the walkthrough, participants were asked to complete an individual task to
iteratively design the spatial layout of an empty apartment. The individual design iteration
task was designed to evaluate how well our system could help users navigate, understand,
create branches, and reuse designs across versions. The task took approximately 15 minutes
to complete and will be detailed in the next section. After the individual task, partici-
pants were asked to take off their headsets and fill out a survey that examines the usability
and utility of the VCS, where participants were asked to rate, on a 7-point Likert scale,
statements such as “I found it easy to use” and “I think it would be useful.” We also ex-
amined how well the system helped users make sense of version histories. Participants were
asked to rate on 7-point Likert scale statements such as “I found it easy to know what has
been changed between two consecutive versions.” After the survey, participants were given
a 5-minute break.

After the break, participants were given debriefs on the collaboration task (also detailed
in the next section), which lasted about 10 minutes. After the instruction, participants
were connected with each other online. They were reminded of the main communication
features of the system such as the usage of portals and the shared history visualization. In
the second session, participants were asked to complete a collaboration task that simulates
the communication process between a client (or buyer), acted by the first author, and two
interior designers (or sellers), acted by the two participants. The furniture designers needed
to collaboratively come up with two variants of the apartment. This collaborative task lasted
about 30 minutes.

At the end of the collaboration task, participants filled out another 5-minute survey
that focuses on our collaboration features by examining users’ workspace awareness and
their communication experience. Finally, we conducted a semi-structured interview with

the participants individually that asked about the benefits and challenges of using VRGit.
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The interview lasted about 15 minutes. We aggregated all the survey data, transcribed and

coded the recordings of interview.

5.4.3 Task

In this section, we describe in detail the individual task in the first study session, and the
collaboration task in the second study session. In both study sessions, we asked partici-
pants to act as interior designers working remotely to design the furniture layout of a new
apartment.

For the individual task, we aim to examine our VCS by asking participants to iteratively
design the layout of the living room. The design of the task aims to emphasize the usage
of the VCS including history navigation, branching, previewing and reusing content. At
the beginning of the individual task, participants were asked to act as an interior designer
working in a company and to design the room layout by following the instructions given
by the experimenters. The first design iteration was shown as a miniature in VR and
participants were asked to recreate the layout according to the miniature. Participants were
asked to verbally notify the experimenter once they finished the first iteration. After the
first iteration, participants were then asked to undo by going back to a historical version.
Based on that version, participants were then asked to create two design variants (branches).
After the two design variants were created, the experimenter would pick a random object in
a random branch in the scene and ask the participants to reuse the object in another branch.
After the object was reused, the participants then completed the individual task.

For the collaboration task, participants were placed in two different branches and asked
to freely design the room for two minutes. After that, we aim to prompt the usage of portals
between users by giving them information access to different aspects of the design principles.
More specifically, one participant was given access to principles of furnishing styles (e.g. color
matching, shape). The other participant was given access to principles of furniture arrange-
ment (e.g. required furniture, placement). The principles were incrementally shown every
two minutes and displayed on the wall in their individual virtual environments. Participants
were asked to act as if these principles were their areas of expertise. Their goal was to make
sure their designs satisfy both people’s expertise. For example, participant A should not only
make sure that the layout satisfied the arrangement principles, but also need to communicate
with participant B to make sure that the design satisfied the styling principles. In this way
we created scenarios for the participants to ask each other for design feedback through the
portal. The design principles were also flexible enough that resulted in design alternatives

that were sufficiently different from the two participants, which were spread across two sep-
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arate branches from participants A and B. Finally, the client (i.e. the researcher) joined the
session and started a group discussion involving three people. The goal of the client was
to ask for a new design option that incorporated the designs from both participants and to
make sure that a shared history visualization is created by either participant A or B. In this

way, we encouraged group discussions via shared history visualization.

5.5 Results

All participants were able to complete the tasks using VRGit and thought the system was
highly useful for managing version history in iterative design tasks and maintaining awareness
and communication with collaborators. Participants also complimented that the system was
fun and cool to use: “I thought the system is really cool; It felt like I was in a futuristic
movie” (P2a). In the following sections, we provide more detailed insights gained from the
usability and utility survey and the retrospective interview. We center our findings around
the two evaluation goals, (i) the usability and utility of VRGit, and (%) the communication

and awareness support in the collaboration task.

5.5.1 Usability and Utility of VRGit

5.5.1.1 History visualization and interaction required low effort.

Participants felt that the design of VRGit made it easy to understand historical changes
and allowed easy access to specific versions. Participants reported in the survey (on a
Likert scale of 1-7) that it was easy to track the evolution of design across various versions
(avg=6.2, sd=0.6) and see the changes between two consecutive versions (avg=>5.9, sd=1.0).
Participants compared to existing VCSs and thought that the miniature representation of
nodes in the HG costed low effort to understand the history. “I do think it is really useful.
When I use Github or Photoshop, for the previous versions you have to open up the files and
it is not very visual so you have to go through each one.” (Pla) “Compared to something like
Git, where I have struggled to make sense of things like which branch I'm on or how it differs
from other branches, I really like the visualization of the VR system, and being able to see
little preview models of the rooms and the way they branch.” (P7a) The color highlighting
mechanism also made it easy to quickly understand “what has been added and what has been
deleted” (P5a) between two consecutive versions.

Participants also found it useful to navigate and enter different versions (avg=6.4, sd=0.7).
Participants commented on the similarity to existing VCSs like Git, in which users can easily

revert to previous states if necessary. “I think the version history is very similar to Git...like
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on GitHub you can return back to previous version. That’s really easy in case you make
a mistake.” (P6a) However, the interactions of navigating and entering different versions
(avg=4.4, sd=1.7) introduced a learning curve that participants sometimes could not recall
which buttons to press on the controller for certain actions. “Some of the controls were hard
to remember, you know, there was a lot of learning in that. But the guide with most of them
written out helped.” (P5a) Another reason they found it difficult to navigate to different
versions was the potential large size of the HG. “I felt when looking at the version history,

especially when it becomes longer, it is harder to see and navigate to previous versions.”

(Pla)

5.5.1.2 Branching allowed easy exploration of multiple design variants

Participants generally thought it was easy (avg=>5.6, sd=1.2) and useful (avg=6.1, sd=1.1)
to create multiple branches. Participants thought that branching was particularly useful
when users wanted to experiment and make changes based on earlier versions. “If you
want to make a little bit of change of something, or if I proceed too much but I want to go
back and change that one a little bit. This kind of thing would be very hard for me to keep
track of the hierarchy...but if I have a branch, I can actually make different version in the
same workspace and show it to other people in that workspace.” (P7b) Users thought the
visualization of multiple branches next to in a semi-circular shape allowed easy comparison
of different design variants. “I think it [branches] is really helpful because there are projects
where I want to compare different versions. I wanna have those on hand to visualize for

clients... I think it’s really more persuasive to have the comparative visuals right next to each
other.” (Pba)

5.5.1.3 Previewing and reusing were useful for comparison and efficiency.

Participants generally found it easy (avg=>5.2, sd=1.7) and useful (avg=6.3, sd=0.6) to see
the preview of a version. Previews are suitable for closer inspection than the nodes, allowing
users to control the viewing angle by direct manipulation and to get a holistic understanding
of the floor plan. This has been mentioned by participants in comparison to portals, in
which users did not have control over the views and could only see part of the floor plan. “I
feel like for me it was a lot more useful if I pulled up a preview of their version rather than
looking through the portal because I have the bird-eye view and I can move it [the preview]
around.” (P7a) Opening previews of multiple versions were also useful for comparison. I
don’t know if it is a feature but if we were able to make previews of multiple versions at

one time and put them next to each other. I think it would be pretty useful to compare and
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get the bird-eye view of all of them next to each other.” (P2a) Participants also thought it
was easy (avg=Db.6, sd=1.4) and useful (avg=6.5, sd=0.7) to reuse objects in the preview.
Reusing objects can save time because accurate object manipulation is time-consuming in
VR [110] and reusing objects can put those objects at the same location and rotation. One
participant also reported to prefer reusing to merging in conventional VCSs such as Git
because it allowed them to utilize part of the changes. “I like it better than, say, like Git or
Google Doc because you could pull it [the preview] up and then take in just the pieces that
you wanted, versus like Git you have to kind of merge all the updates.” (P2a)

5.5.2 Communication and Awareness in Collaboration Tasks

Overall, participants felt that their overall communication with collaborators was natural
(avg=6.4, sd=0.6) and enjoyed the collaboration in the task (avg=5.6, sd=1.3). Participants
thought that the portal (avg=6.3, sd=0.9) and the shared visualization (avg=6.4, sd=0.8)

with other users were very useful.

5.5.2.1 Portals allowed easy communication on ideas

Participants found it easy to understand what their collaborators were doing (avg=6.1,
sd=0.8) and to communicate feedback with collaborators (avg=6.4, sd=0.7) through the
portal. Although we mentioned above that previews were suitable for understanding holistic
layout of the floor plan, participants thought that being able to see the first-person view of
their collaborators made it easy to understand their collaborators activities based on their
own experience. “I thought the portal was pretty good to use because I could see exactly
what they were doing...and since I had the same experience too I knew what they were doing
and why they decided to do those things.” (Pla) They thought it was easy to communicate
feedback because they could easily refer to items (avg=5.9, sd=1.4) through the portal. “It
(the portal) was especially good for, like, if I wanted to get a really close view of something
or if I wanted to make sure if it was the right item or the right color.” (P2a) In addition,
participants thought the design of the portal can save the effort of leaving for other users’
branches. “/With portals] you don’t have to step out from your room to actually go to the
second room, you can just be in your room, and just from there you can see what is happening
in the other room.” (P6b)

5.5.2.2 Shared history visualization provided common ground for discussion

Participants generally applauded the ability to see a larger scale HG laid out in the physical

environment. “It is nice that the structure of versions is larger when it is on the table. I
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can actually see how many furniture inside that version and decide whether or not to go
there.” (P4a) Participants found it easy to refer to a specific version (avg=6, sd=0.8) or
object (avg=6.4, sd=0.7) in the shared history visualization. This consensus on versions and
objects then helped facilitate participants’ discussion on their design. “..if I actually didn’t
agree with my collaborator’s final design, like for example version 5, but I see in version 3
there is something interesting. I can say ‘Okay, actually I like what you did in version 3 here,
can we branch off of version 8 and explore something else here?’ and the fact that you have
this shared wvision collectively, it gives that opportunity to branch off of the design.” (P9b)

However, the shared history visualization could be confusing sometimes when the user was
unclear who was the sharer. “The shared visualization didn’t communicate to me if I had
control of it or not. If it said that I'm observing [partner’s] visualization, I would know that
it’s her thing and I wouldn’t do anything.” (P4b)

5.6 Discussion and Future Work

Our results demonstrate that users were able to use VRGit for version control in both
individual and collaborative content creation in VR. We found that VRGit offered intuitive
visualization and interaction for understanding non-linear version history, creating branches
of design variants, and previewing and reusing design from different versions in VR. In
addition, VRGit facilitated communication and awareness in collaboration with portals and
a shared history visualization. Although the system was generally considered easy to use and
useful for most tasks, VRGit also introduced challenges of navigating longer histories more
effectively and workspace awareness understanding sharing and control among collaborators.
In this section, we detail the design considerations and future directions of building VCSs for

collaborative content creation in VR. We also discuss the current limitations of our work.

5.6.1 Lowering the Effort for Using VCS in VR

As they are originated from managing source code among developers [259], existing VCSs
could require advanced knowledge and skills of both using the system (e.g., shell commands)
and interpreting the visualization (e.g., differences between two versions and structures of
non-linear version history). Content creation in VR, however, is targeted on a diverse pop-
ulation including non-technical users such as designers and customers/end-users [14, 143].
In our research, we aimed to reduce the barrier of entry to VCSs by designing intuitive
visualization and interaction of version history in VR, and found that even people with-

out prior programming experience were able to use VRGit to manage the versions history
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of their work. This demonstrates the benefits of building graphical representations in VR
that end-users are familiar with for tracking version history. This also aligns with the spirit
of What-You-See-Is-What-You-Get in immersive authoring research, where many tools and
techniques were explored to lower the floor for novices to create content directly in VR
(172, 286]. Future work may also draw inspiration from past research that has investigated
intuitive visualization and interactions to lower the barrier for using VCS, such as by lever-
aging people’s spatial abilities using the virtual body resizing technique [144] to enable
intuitive navigation of version histories. In addition, VRGit only uses controllers as input,
which has limited capabilities, making it effortful for users to recall which buttons to press.
Future work might also draw inspiration from past research that has investigated richer in-
put modalities in VR such as gestures [13] and cross-device interactions [247, 70] for more

precise control and lower mental or physical effort.

5.6.2 Providing Efficient Comparison and Fusion of Design Vari-

ants

We found that VRGit enabled users to easily compare different versions through a combi-
nation of visualizing variants using branches, highlighting changes in colors, and previewing
versions in miniatures. This extends prior work on VCS for 3D scenes by seamlessly provid-
ing the comparison in the content creation process without explicit commands such as diff.
Our study also suggests that the design of reusing content in VRGit was helpful in quickly
copying objects from different versions and fusing ideas of multiple collaborators. This aligns
with prior work on creativity support where enabling easy exploration of possible creative
solutions such as mix-and-match is a key component [226]. This is different from prior work
on VCS that uses the merge command to combine the whole scenes of two branches instead
of part of the scene [63]. Both approaches could become inefficient when users have to man-
ually deal with a large number of content that they do or do not want to fuse (e.g., manually
resolving conflicts after merging). Therefore, future work could explore more efficient ways of
fusing multiple design variants, such as providing suggestions based on other design variants

during the creation process, or more efficient group selection techniques to facilitate fusing.
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5.6.3 Leveraging System Support for Richer Workspace Aware-

ness

Our results showed that various channels of workspace awareness were helpful for a VCS
to support fluid collaboration experiences. While portals allowed users to understand their
collaborators’ activities and communicate ideas, when they are working in different versions,
participants still sometimes preferred using previews or going directly to the collaborator’s
version for communication. This is partially because portals were only 2D video streams
and did not offer the spatial context of the layout that the other collaborators were working
on. In addition, users did not have control over the viewing angle through the portal, which
introduced friction when users were looking at their collaborator’s environment. Future work
could investigate ways to fuse different views of the collaborators’ environment in order to
support better workspace awareness (e.g. [141]).

Another challenge we found in the user study is the awareness of users’ control over the
shared history visualization. For instance, in VRGit, only the sharer had control over the
shared history visualization, but it is unclear to users in the immersive environment who is
controlling and who is not, thus resulting in less engagement by the participants. On the
other hand, introducing simultaneous control could introduce potential conflicts over the
shared history visualization. Future work should thus investigate ways to balance control
in a shared history visualization while maintaining consistency and users’ awareness of the

version history.

5.6.4 Integrating Version Control in the VR Content Creation

Process

Shneiderman suggests that rich history-keeping is an essential feature of creativity support
tools [226], and more recently, Sterman et al. [241] also suggest that version control for
creative domains should be designed based on the needs of creative processes as creative
practitioners in these domains could prioritize different values over efficiency and fidelity as
those in the software engineering domain. In line with prior research, our study suggests that
our design of history visualization and interaction that is appropriate for VR authoring can
help users revert to prior versions, compare and explore design variants, and communicate
with collaborators. Besides designing VCSs that can suit the needs of creative tasks, our
results also suggest that the design of VRGit can help shape collaboration in content creation
such as understanding collaborators’ activities without leaving their workspace and sparking

design suggestions during discussion based on shared visualization. Future researchers and
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designers should thus consider users’ creative and collaborative needs that are specific to the
workflow of collaborative VR content creation when designing VCSs. For example, future
research could further explore a hybrid VCS that can bridge different devices and platforms
as many researchers have explored cross-device and cross-platform development of VR and
AR experiences [143, 234]. More specifically, numerous aspects of VR content creation might
take place outside of the immersive environments, from 3D modeling to software engineering,
and debugging. Future research could thus explore how to integrate the design of VRGit

into current version control practices of the above aspects.

5.6.5 Limitations

Though our findings showed that our VCS is useful for collaborative content creation tasks
in VR, our work has several limitations. First, we ran an exploratory lab study of the system
with teams of three users for no more than two hours. The way that participants performed
the tasks in the lab setting could be different from that in the real-world setting. It is also
unclear how well it works for larger collaboration teams, which might reveal additional
challenges for collaboration awareness and scalability. In addition, although we did not
observe any specific novelty effect during the study, it is possible that it played a role, and
a longitudinal study would help us understand how people would use VRGit in practice.
A participant response bias could also exist when the participants thought the system was
developed by the researchers [61].

Second, we mainly evaluated the usability and utility of VRGit in the context of interior
design. Future work could further evaluate other parameters such as correctness, consistency,
and scalability and potentially compare VRGit with a control condition where users are
provided with the same tasks without using VRGit. It is also worth investigating how
different task contexts and populations could affect the usage of VRGit. For example, future
work could evaluate the usage of VRGit in contexts such as game design and architecture,
and investigate how people’s relationships (e.g. friends, colleagues) and skills (e.g. high VCS
literacy but low VR literacy) could affect their usage of VRGit.

Finally, our system was designed for synchronous collaboration in VR. It is unclear how
well the system can be extended to asynchronous collaboration where multiple users are
offline but still need to communicate and maintain awareness asynchronously. VRGit was
designed based on a limited set of content creation operations that take effect on immersive
3D scenes, which could limit its uses. Future work could look into how to extend it to
support more operations on different granularities of 3D scenes. For example, it would be

useful to be able to store operations on vertices and meshes of a 3D model, which is common
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in tasks such as 3D modeling.

5.7 Conclusion

In this chapter, we presented a new Version Control System (VRGit) for collaborative con-
tent creation in VR. VRGit enables novel visualization and interactions of History Graphs
in VR that allows users to easily view and navigate version history, create branches, pre-
view and reusing objects from multiple versions. Our system also facilitates communication
and awareness between collaborators and the version history, whether users are working in
the same version or different versions. Through an exploratory lab study, we found that
our system enabled users to easily manage non-linear version histories, communicate with

collaborators, and maintain workspace awareness in VR.
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CHAPTER 6

VRCopilot: Intelligent Support via
Generative Al in Immersive Content

Creation!

6.1 Introduction

While existing immersive authoring tools make it intuitive for users to visualize their design
concepts for 3D scenes in VR, most current 3D layouts such as architectural designs and
game scenes are laboriously created through manual placement of 3D models. This manual
process is not only tedious and time-consuming, but can also limit the user’s ability to
explore a diverse range of ideas [126]. In recent years, generative Artificial Intelligence (AI)
models have emerged as powerful means for automatic generation of intelligible text [193],
photorealistic images [209], videos [7], music [164], and 3D layouts [198, 157, 264]. By
leveraging generative models, we can potentially provide users with automatically generated
3D layouts during the process of immersive content creation, enabling users to save time and
effort while exploring alternative design possibilities.

Prior work has demonstrated promising results in generating realistic 3D layouts [198,
157, 264] and text-to-layout generation [167, 78]. However, integrating these models into
immersive authoring workflows poses unique challenges of how users can collaborate and
interact with generative models—specifically, understanding, controlling, and refining model
outputs in immersive virtual environments. This difficulty is compounded by generative
AT models’ well-known issues with transparency, controllability, and user agency. Current
generative models for 3D layouts use either room sizes (e.g., [198]) or text captions (e.g.,
[78]) as prompts. It is difficult for users to define their design objectives, such as requesting

layout designs with elements in particular locations or sizes (as specified in Fig. 1.3.b).

!Portions of this chapter were adapted from [287]
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In this chapter, we introduce VRCopilot, a mixed-initiative system that integrates pre-
trained generative models into immersive authoring workflows. VRCopilot is instantiated
in the context of layout design for indoor scenes, where users are able to co-create with
generative models via requesting, controlling, and refining generative models’ outputs in
VR. VRCopilot introduces two key interaction techniques: (1) multimodal specification and
(2) intermediate representation. Inspired by multimodal interactions such as “Put-that-
there” [22], our system enables users to use speech and simultaneous pointing to specify
their creation needs, increasing the naturalness and economy of language description in
the immersive environments. For instance, users can point to a location in the room while
saying “create a wooden chair here”. As a response, the system will generate three suggested
objects for the user to choose from. Besides, to help users co-create with the generative model
in a more transparent and controllable way, VRCopilot proposes the notion of wireframes
as intermediate representations for the generated outcomes. Inspired by the concept of
low-fidelity prototyping in Human-Computer Interaction [214, 32, 230], wireframes are 2D
representations of 3D layouts similar to floor plans in interior design. These representations
can be hand-drawn by users together with speech specifying the their types, or suggested by
generative models. VRCopilot allows users to iteratively refine the design with generative
AT by enabling them to convert between intermediate representations and 3D layouts.

Taking the above techniques together, we propose three ways of human-Al co-creation
in VR enabled by VRCopilot: (1) manual creation, where users create individual objects
to complete a layout design by creating from a catalog menu and multimodal specification;
(2) automatic creation, where users request suggestions from generative models for full-
room layouts and refine their outputs; and (3) scaffolded creation, where users co-create
intermediate representations with generative Al for guiding the final layout design.

To provide an in-depth understanding of the human-Al co-creation process in VR, we
conducted two rounds of user studies. Our first study aimed to compare user experiences of
creating 3D layouts with and without Al. Specifically, we compared creation without Al using
manual placement and creation with Al using generative models. We found that co-creating
3D layouts with generative models is generally more preferable as it could save users’ effort
while resulting in 3D layouts with more complete functionality and diverse color palette.
However, users struggled with the generative model’s non-deterministic output, where the
generated results might misalign with the user’s design goals due to the lack of controllability
of the generative model.

Based on the insights and challenges from the first study, we further evaluated VRCopilot
by comparing different levels of Al automation in the creation process, by comparing manual

creation, automatic creation, and scaffolded creation. We found that users’ sense of agency
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significantly decreases in the order of manual creation, scaffolded creation, and automatic
creation. We also found that users felt significantly higher creativity in manual creation,
compared either scaffolded creation or automatic creation, with no significant difference
found between the latter two conditions. Our qualitative interviews reveal that the design
of wireframes can increase users’ sense of agency and that having multiple suggestions in
multimodal specification can make users feel more creative.

In sum, our chapter makes the following contributions: 1) VRCopilot, an immersive
authoring system that enables users to interact and co-create with generative AI models
in virtual immersive environments; and 2) empirical results gained from two user studies
that provide insights on user experiences such as perceived agency and creativity, as well as

potential and challenges of human-Al co-creation in immersive authoring workflows.

6.2 Related Work

VRCopilot draws inspiration from prior literature on 3D scene synthesis using generative

models and creativity support with generative design.

6.2.1 Generative Models for 3D Scenes

The demand for automatically generating 3D scenes has never been higher in the domain
of gaming, AR & VR, architecture and interior design. In the field of computer vision, this
topic named 3D scene synthesis is gaining popularity and prior researchers have explored
generating new 3D scenes via various input including images [163, 87], text [281, 60], or
room shape [198]. A key line of work is 3D indoor scene synthesis, which refers to the
task of automatically generating a set of 3D furniture objects along with their positions
and orientations, given a room layout [288]. Some of the early work in this space offered
suggestions using hardware-accelerated Monte Carlo sampler based on interior design guide-
lines [170]. Follow up work has been focused on data-driven approaches, given the rise of
large 3D object datasets such as SUNCG [232] and 3D-FRONT [85]. The data-driven ap-
proaches can be approximately categorized into graph-based [264] and autoregression-based
approaches [265, 216, 268, 198]. Graph-based approaches encode 3D layouts as scene graphs,
where objects are nodes, and the spatial relationship between objects are edges. This method
treats the task of generating 3D scenes as generating directional graphs. The main motiva-
tion behind this is to process it with graph convolutional networks. Most notably, Ritchie
et al. [216] introduced a CNN-based architecture that operates on a top-down image-based

representation of a scene and inserts objects in it sequentially by predicting their category,

71



location, orientation, and size. More recently, autoregression-based approaches have been
introduced. Wang et al. introduced SceneFormer [268], a series of transformers that autore-
gressively add objects in a scene. ATISS [198] simplifies the process by proposing a single
model trained end-to-end to predict all attributes. Most notably, ATISS encodes 3D objects’
positions, rotations, and scales in transformers for training. More recently, DiffuScene uti-
lizes a denoising diffusion model that is able to generate more plausible and diverse indoor

scenes [253].

6.2.2 Creativity Support via Steering (Generative Models

The acceleration of Al capabilities has enabled human-Al co-creation in domains such as
drawing [59, 75], creative writing [48], video game content creation [105], and music compo-
sition [117, 164]. For example, Bach Doodle [117] is able to complete a music composition in
the style of J.S. Bach by requiring users to only write a few notes. While recent research has
focused on building co-creation experiences in 2D interfaces, there has been relatively little
HCI work examining how to design interactions with these state-of-the-art generative mod-
els to ensure they are effective for co-creation in the immersive environments. Our research
contributes an understanding of how interactions with these AI models can be designed, how
they affect the immersive authoring experience, and users’ attitudes towards Al co-creation
in VR.

Integrating existing generative Al models into creative work presents unique challenges
in itself such as adapting actions of Al based on users’ preferences [47, 130, 250]. Research
has also observed that users desire to take initiative in their partnership with AI, and thus
sought to provide steering tools to make AI align with users’ creative goals. For example,
TaleBrush [47] uses a combination of line sketching and natural language narration to create
stories. DreamSketch [130] uses sketches as input for the generative design of 3D models.
In the domain of 2D layouts, Scout [250] uses high-level constraints based on design con-
cepts to generate multiple designs. Building on this need, our work investigates how users
express their preferences to generative Al through multimodal creation and intermediate

representations in VR.

6.3 VRCopilot

VRCopilot is a mixed-initiative immersive authoring system that enables users to co-create
3D layouts with pre-trained generative models in VR. Users can ask generative models to
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