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ABSTRACT

Videos have become an integral part of our daily lives, with a rapidly growing number on
YouTube, Netflix, and TikTok serving as testimony to their widespread popularity. Behind
the simplicity of their interfaces and user experiences, the systems that power these products
employ numerous video-understanding techniques, even for straightforward use cases such
as finding a video on how to cook salmon. Despite the significant progress achieved in this
area, there remains a gap between lab-setting capabilities and reality, as multiple phenomena
are not adequately designed for realistic settings, causing various issues such as domain
mismatches and the diverse way people interact in videos (e.g., sarcastically). My work aims
to bridge this gap by enabling the understanding of video content in realistic settings.

The issues that make current video understanding research unsuitable for real life can
be classified into data, methods, and evaluation. The data aspect is crucial since current
research has predominantly overlooked real-life settings. I present new datasets and bench-
marks for such domains: daily situations and in-the-wild scenarios. These benchmarks mea-
sure the effectiveness of new methods in these more realistic settings. Likewise, I introduce
a novel framework that accounts for a typical yet understudied human behavior: sarcasm.
Sarcasm is particularly suited to be studied in video since I show that leveraging what we
see and hear (as people commonly do) allows one to understand it better. For the methods
aspect, I consider a fundamental issue, which is the impracticality and lack of scalability
of the traditional in-the-lab setting, tuning one model for each newly addressed task and
domain. I propose a robust method that allows practitioners to employ a single model for
novel tasks and domains with satisfactory performance. Additionally, I present a technique
to improve the compositional generalization of existing models. Finally, I focus on current
practices for evaluation and propose a framework better suited to realistic settings. Current
benchmarks for short video understanding have drawbacks, such as employing easy-to-detect
distractor answers, not accounting for diversity when depicting the same situation, and not
considering realistic settings. I present a novel evaluation format that tackles all these issues
and a benchmark that leverages it. The benchmark shows a gap between the performance
of several methods and humans.

xiii



CHAPTER 1

Introduction

Over the last decade, we have witnessed an increasing demand for multimedia content
worldwide. We watch movies on Netflix, learn from YouTube videos, and surface diverse
content on TikTok and Instagram. We use devices at home that can listen or even look at
what happens at home.

Hidden from plain sight, plenty of video understanding methods help us achieve our goals in
this context, such as when we want to find a video to learn how to cook a salmon [158, 280, 157].
To make things even more complicated, 500 hours of video are uploaded to YouTube every
minute.1 New possibilities are routinely achieved by researchers and engineers, such as making
video editors avoid wasting several hours finding the video footage they need. Likewise, we
expect home devices and soon-to-arrive assistant robots to provide quick answers based on
what they perceive.

Similarly to how humans generally combine information from multiple sources (e.g., we
look and listen) – humans are not unimodal; the fields of Natural Language Processing and
Computer Vision have been flooded by works that borrow ideas from each other, which consider
both vision and language (more broadly, that are multimodal) [60, 235, 223, 33, 46, 183].
Several methods have been proposed in both fields to tackle different video understanding
problems [158, 157, 239, 149]. However, state-of-the-art video understanding methods are
typically effective only under ideal in-the-lab conditions and fail in realistic use cases. There
are many aspects along the video understanding pipeline that fail when faced with real-life
settings. These aspects can be classified into Data, Methods, and Evaluation.

Data. For this aspect, the domain of the data is critical. If we want to deploy robots that
assist people at home and school, we need systems that understand the situations they “see”.
However, current datasets and systems focus on domains such as movies [225, 112, 127, 128, 91]
and arbitrary user-generated content [251, 79, 2], or consider only brief activities such as
recognizing when somebody is drinking coffee [79, 108]. Likewise, we lack systems that can

1https://statista.com/statistics/259477/
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be deployed to study natural environments, as nature has been an understudied domain.
Another overlooked part of the data is how people act. We naturally express ourselves in
multiple ways, such as being deceptive, humorous, or sarcastic. If a person answers a system
at home sarcastically with “I understood everything”, the system should not act upon it as if
it were literal.

Methods. The methods researchers devise in laboratory settings are typically assumed to
perform on real-world applications as they do on standard benchmarks. Drops in performance
are expected if such methods are not tuned to the new task and domain at hand, even
when these methods take advantage of previously learned information [109]. In addition to
this reason to tune the existing methods to new tasks, practitioners regularly find that the
methods they rely on were initially adapted to a particular task format that they now need to
change, such as a method capable of recognizing an action out of a fixed set [120, 211, 79, 108].
These issues build up an expectation to produce different models for every task and domain.
While this approach may provide excellent performance in some cases, it is not practical and
does not scale. A better approach would be to leverage the similarities between the different
domains and tasks to build more general systems.

Evaluation. How can we evaluate such systems? Suppose we ask “where did I leave
my keys?” A multiple-choice approach [225, 127, 99, 128] would be inappropriate as users
would not want to provide options. Evaluating a free-form text-based answer, while ideal
in the format, is still an open research question when accounting for the diversity a correct
answer could have. In particular, Video Captioning benchmarks typically show a low human
agreement, even when employing several annotators [251, 241].

The research community should work more on multiple aspects of video understanding
in realistic settings to build systems that can work for videos in real-life use cases. This
dissertation aims to produce datasets, benchmarks, and methods that leverage language to
achieve a more realistic understanding of videos. Concretely, I look to answer the following
research questions:

1. Can we build a language-based video understanding benchmark for overlooked real-life
domains, such as daily situations and in-the-wild scenarios?

Previous work has worked on professionally-edited videos with crisp audio from movies
and TV series [225, 127, 112, 91], considered only atomic actions [120, 211, 79, 108],
or focused only on people cooking [280, 42]. The video understanding literature has
greatly overlooked real-life settings, which typically involve multiple interactions and
understanding a context and what happens in nature, such as during natural disasters.
Chapters 2 and 3 presents benchmarks that consider these situations for long videos.

2



This work contributes to the aspects of data, methods, and evaluation.

2. Does combining vision and language help better recognize naturally occurring human
behaviors in videos?

People’s daily interactions involve phenomena consistently omitted in the video un-
derstanding literature, such as deception, humor, and sarcasm. Sarcasm, in turn, has
almost uniquely been studied from an unimodal perspective in Computer Science,
especially only in text. This issue worsens when considering that text-only sarcasm
is hard to grasp even for humans [185]. I encourage the reader to think about how
often they observed somebody not getting the sarcasm on Twitter. In Chapter 4, I
explore the study of sarcasm by combining vision and speech (with both textual and
non-textual features). This work brings value to data, methods, and evaluation.

3. Can language be leveraged to build an automatic evaluation framework for video
understanding that better reflects real-life situations?

Many video understanding evaluation frameworks are based on multiple-choice answers,
making models select the single correct answer [225, 127, 99]. However, the multiple-
choice format suffers from models only learning to identify the distractors [96] and is
unrealistic – we cannot pretend people will provide AI systems such as Alexa or Siri
with answer choices. Video captioning, while flexible because it considers free-form
textual answers, inaccurately represents the diverse way a person can describe the
content of a video, mainly because of the available noisy metrics (e.g., BLEU [170]
and ROUGE [140]) to compare a predicted answer with a set of reference answers. In
Chapter 5, I present a novel evaluation framework, which accounts for the diverse ways
a person can describe the content of a ten-second video while still being challenging and
making models generate answers (as opposed to making choices). Here, my contributions
are to data, methods, and evaluation.

4. Can large pre-trained image-text alignment models be used for robust zero-shot video
understanding?

Having a single model for an arbitrary number of tasks is appealing to many production
use cases instead of having to train and deploy a model for each task and domain.
Language is a great way to use a single model for tasks that support different formats
[46, 183, 100], by employing what is known as zero-shot learning (training a model
on a specific task and domain, then evaluating it on any other ones). For zero-shot
image tasks, large pre-trained image-text models have shown remarkable performance
[183, 100]. Practitioners could replicate these same ideas for video tasks to achieve
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similar results. However, gathering a (weakly) labeled video dataset in the order of the
million videos is still an open research problem [164], and training models on such a
dataset would only be possible for the big industry players. In Chapter 6, I show a
method to leverage these large pre-trained image-text models for zero-shot video tasks
by leaning on language. This study contributes mainly to methods.

5. Can we align vision and language models so that they better generalize to unseen
verb-object compositions?

Large pre-trained image-text models are practical because a single model can be used
for multiple tasks without further training. However, evidence shows that such models
cannot generalize well to unseen compositions, such as people playing basketball on
the grass with ordinary clothes on [228, 82, 28]. In Chapter 7, I propose a method to
improve the zero-shot performance of such models on unseen verb-object compositions
while maintaining the general visual-text alignment on standard classification tasks.
With this research question, I bring contributions to methods.
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CHAPTER 2

Understanding Daily Life Situations in Videos

2.1 Introduction

Video Question Answering (Video QA) is one of artificial intelligence’s most challenging
and crucial problems. In this task, we are given a video and must answer natural language
questions about its content, such as “What game is the little girl playing?”. Answering these
questions requires a rich understanding of the video’s visual and auditory content and the
ability to relate this content to natural language concepts. Like many challenging tasks,
much of the recent progress on Video QA is due to the introduction of several large-scale
datasets, which consist primarily of movies and TV shows [225, 195, 127]. Movies and TV
shows provide countless hours of clean, crisply-edited video and accurately captioned audio
and are, therefore, easily adapted into datasets. However, these same features mean that
movies and TV are not representative of day-to-day life. Thus, these datasets cannot be used
to evaluate how well models perform when applied to realistic videos of day-to-day life.

To address this issue, we introduce Life Question Answering (LifeQA), a Video QA
benchmark dataset that consists of videos and questions about day-to-day life. LifeQA is
drawn from hand-picked YouTube videos, which depict scenarios such as children playing,
a family having a meal together, or a snapshot from a daycare. These videos are not
professionally shot, edited, or scripted, making them much more representative of daily life
than prior datasets. They also benefit from increased diversity regarding the number of people
and scenes that appear since they are not drawn for a small set of shows or films. In addition,
the questions include few proper names or references to known locations, which are commonly
referenced in TV datasets that feature well-known characters (such as “Sheldon”, or “Monica’s
apartment”), and therefore, the questions have to be answered without prior knowledge
about the scene. Moreover, the questions are challenging as they cover visual grounding
(“What color is the blanket?”), intent (“What does the father want to do with the box?”),
and commonsense reasoning (“What is in the bottle?”), all hallmarks of a comprehensive QA
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What is the name of the 
younger girl?
A.  Caitlin B.  Lucy
C.  Jane D.  Cindy

How many people are playing?

A.  2 B.  4     
C.  3 D.  1

Caitlin, are 
you gonna be 
a little helper 

on this 
challenge?

Figure 2.1: An example from LifeQA. The image shows a frame from the video, part of the
transcriptions, two questions, the candidate answers, and the correct answers in bold.

dataset.
LifeQA consists of 275 videos and 2,326 multiple-choice questions, making it a suitable

complement for existing datasets and a challenging benchmark for existing Video QA systems.
To enable future research, we are making LifeQA publicly available, along with automatically
and manually generated transcriptions (from the speech in the audio channel) and pre-
computed features for every video. In this chapter, we describe the LifeQA dataset, present
several analyses, and evaluate the performance of several baselines highlighting the task’s
difficulty.

2.2 Related Work

2.2.1 Text-based Question Answering

Question answering based on text has been extensively explored [194, 84, 243]. Early question-
answering systems were developed for restricted domains, relied on manually crafted features,
and had limited capabilities [107, 212, 13]. Recently, the rise of deep learning methods
motivated the need for large question-answering datasets to leverage the capabilities of such
models. With that goal in mind, several large-scale reading comprehension datasets were
introduced [187, 194, 12, 166]. [187] introduced the SQuAD dataset, which is composed of
Wikipedia articles. The answers are specified as spans from a text passage. Similarly, [194]
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collected the MCTest dataset, a multiple-choice open-domain reading comprehension dataset.
Given a paragraph, a question, and a set of multiple answers, the task of a QA system is to
select the correct answer.

2.2.2 Multimodal Question Answering

Recently, question-answering systems have been constructed to answer questions about other
modalities, such as images (Visual QA) and video (Video QA). For the former, several
datasets have been proposed, such as VQA [4], Visual7W [283], VisDial [43], GQA [92], and
DREAM [221]. These benchmarks aim to help build visual understanding systems that can
reason about the contents of a given image. Given an image and a question, the system
selects a correct answer from multiple choices or generates a free-form textual answer.

Video QA is more challenging because it allows for a broader range of question types
and requires temporal information. Many datasets have been proposed for Video QA,
such as LSMDC 16 [195], TGIF-QA [99], MovieQA [225], PororoQA [112], MarioQA [163],
VCQA [281], TVQA [127], and ActivityNet-QA [263]. LSMDC, TGIF-QA, PororoQA,
and MarioQA consist of short video clips (just a few seconds), which makes it difficult
to understand what is going on in a scene beyond several actions that can be identified.
Additionally, they depend entirely on visual cues, with no presence of speech and other audio
cues.

MovieQA and TVQA consist of movies and TV series. The questions and answers were
generated based on the dialog and visual information presented in short video clips from
TV shows. However, these acted and well-directed video clips are hard to find in the real
world. As them, we constructed our questions and answers based on textual and visual
cues from short video clips. However, unlike them, our proposed dataset relies on video
clips recorded naturally by people without predefined scripts. Therefore, understanding
videos requires overcoming environmental noise, camera movements, lighting conditions,
and naturally occurring dialogues, among other challenges. In addition, scenes are less
defined, with undefined characters, lack of subject permanence, and sometimes incoherent
conversations. That makes our dataset more challenging for Visual QA tasks.

2.2.3 In-the-Wild Datasets

Recent work in computer vision has focused on evaluating models “in the wild” – that is,
on realistic datasets that depict real-life situations. This phenomenon is evident in recent
video datasets, such as Charades [208] and VLOG [58], which include indoor scenes of human
activities. These datasets include rich annotations about human actions, objects, and scenes

8



but do not include questions and answers as in LifeQA. To our knowledge, our LifeQA dataset
is the first real-life dataset for Video QA.

ActivityNet-QA comprises short YouTube clips initially selected for an activity recognition
dataset [79]. Unlike our dataset, these datasets do not explicitly include videos of real-life
settings.

VCQA [281] consists of cooking and in-the-wild YouTube videos (about half of the dataset)
and clips from movies (the other half). Questions in VCQA are automatically generated
from templates and are not written by humans. Additionally, these automatically generated
questions only focus on nouns and verbs and short-term temporal reasoning questions. At the
same time, LifeQA has more challenging questions about reasons, emotions, and locations.
Moreover, VCQA does not consider dialogues, texts, and audio information equally crucial to
understanding real-life scenes.

2.3 LifeQA Dataset

2.3.1 Dataset Collection

To collect this dataset, we begin by searching for videos on YouTube, using manually chosen
keywords that lead to videos of people living out their daily lives in varied settings (e.g., “my
morning routine,” “dialogue,” “kids playing,” “class in elementary school” and “watching TV”).
We then hand-pick 59 such videos showcasing recordings of natural interactions in natural
settings. We explicitly exclude videos that do not include language interactions.

Identifying such videos turns out to be challenging, requiring significant manual effort. This
issue occurs primarily because most of the recordings available online are vlogs, which include
video recordings with voice layovers and are, therefore, not typical of natural interactions.

We manually split the source videos into 275 video clips so that each clip includes coherent
scenes and lasts 1–2 minutes. We obtain transcriptions for the video clips using the Google
Cloud Speech-to-Text platform. We also collect manual transcriptions for each video.

Next, two annotators write five questions per video. For each question, we ask the
annotators to write the correct answer and three distractors (which we define as incorrect
but semantically related answers). We instruct the annotators to formulate diverse questions
that require understanding the video’s visual and linguistic content. We then instruct a third
annotator to merge the two sets of questions from the original annotators, manually eliminate
duplicate questions, and correct typographical errors. Using this procedure, we collected
2,326 questions in total.

We present a dataset summary in Table 2.1. Figure 2.1 shows an example from the LifeQA
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Source videos 59
Clips 275

Clips per source video 4.7 ± 3.6
Clip duration 1m 14s ± 16s
Modalities video, audio, text

Questions 2326
Questions per clip 8.5 ± 2.0

Candidate answers 4

Tokens per question 6.7 ± 2.1
Tokens per correct answer 1.5 ± 1.1

Tokens per incorrect answer 1.4 ± 0.9

Table 2.1: Statistics of the LifeQA dataset. Here, we report totals and averages along with
standard deviation.

dataset, showing two sample questions that require either linguistic or visual clues to be
answered. Additional questions are illustrated in Fig. 2.5.

2.3.2 Dataset Analysis

We examine LifeQA’s common question types in Fig. 2.2. Most of the questions are “what”
questions, previously acknowledged as among the most frequent and ambiguous types of
questions. We find that “what” questions most frequently reference “color”, “number”, and
“kind”, each requiring visual clues from the video. Not pictured in Fig. 2.2: we find that
nouns referring to people, such as “girl”, “woman”, “man”, and “boy” are the first nouns in
more than 21% of the questions, and we find very few proper names.

We then analyze the data type required to answer the questions, as shown in Fig. 2.3. To
obtain these results, we manually inspect each question and answer to determine whether the
question requires the visual (video) or speech (audio or transcription) modalities to answer.
We find that 61% of questions need the video to be answered, 29% require speech or audio
information, and 10% need both modalities.

In addition, we analyze the questions based on the expected answer types, as shown in
Fig. 2.4. [225, 127] inspire this analysis to understand better the information needed to
answer each question. The graph shows that many questions reference basic visual features,
such as count (how many), color (what color), and location (where) answers. However, many
questions require both language and visual features. For example, abstract (“what”) questions
(“What is the job of the woman?”) can require more than one mode of information to answer.
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Figure 2.2: Distribution of the LifeQA questions’ tokens.

Figure 2.3: Venn diagram at scale showing the number of questions by answer type.
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Reason:action (how)
3.0%
Color (what color)
11.8%

Abstract (what)
15.3%
Causality (what 
4.4%
Object/Thing (what)
3.9%
Action (what)
19.2%

Event/time (when)
4.9%

Location (where)
8.9%

Person name (who)
5.9%

Count (how many)
20.2%

Emotion (how feel)
2.0%

Figure 2.4: Distribution of the LifeQA questions by type.

Avg Real
Dataset Task Source Answer Questions Samples dur. (s) life? D T A I V

DREAM Reading Comprehension Exams MC 10,197 6,444 - ✓ ✓
VisDial Dialog QA Images MC 1,261,510 133,351 - ✓ ✓ ✓

LSMDC 16 Video Description Movies Text 128,118 128,085 4.1 ✓ ✓ ✓
TGIF-QA Temporal Reasoning Tumblr MC/Txt 165,165 71,741 ∼3.6 ✓ ✓
MovieQA Story Underst. Movies MC 14,944 6,771 202.7 ✓ ✓ ✓ ✓ ✓
PororoQA Story Underst. Cartoons MC 8,913 16,066 4.6 ✓ ✓ ✓ ✓ ✓
MarioQA Temporal Reasoning Games MC 187,757 187,757 4.5 ✓ ✓
TVQA Story Underst. TV Series MC 152,545 21,793 76.2 ✓ ✓ ✓ ✓ ✓
VCQA Temporal Reasoning Movies/Web FB/MC 390,744 109,895 ∼30.0 ✓ ✓

LifeQA Real-life Underst. YouTube MC 2,326 275 74.0 ✓ ✓ ✓ ✓ ✓ ✓

Table 2.2: Video and Dialog QA datasets comparison. Answer = answer type, h = hours of
video, s = seconds per video clip, D = dialog, T = text, A = audio, I = image, V = video,
MC = multiple choice, FB = fill in the blanks.

Dataset Comparison. In Table 2.2, we compare our dataset with other Video QA datasets.
We highlight the presence of multiple modalities and their real-life nature, differentiating
it from prior work. Specifically, LifeQA is the only existing Video QA dataset focusing on
real-life understanding and is carefully constructed from hand-picked in-the-wild videos. In
addition, it spans all typical audio and visual modalities and contains videos that are much
longer than those in many other datasets. These qualities lead to a diverse, high-quality
video dataset that is suitable for benchmarking current video QA systems and serves as a
complement to existing QA datasets. Please refer to Section 2.2 for more details on the
comparison.

More Examples. In Fig. 2.5, we present additional examples of instances in LifeQA. These
examples demonstrate the variety of scenes and question types in LifeQA.
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What will she teach?

A.  game   B.  play
C.  greeting   D.  song

What time of day is it?

A.  afternoon B.  night     
C.  morning D.  noon

Ready? Go.

What is the pink shape 
on the car?
A.  green   B.  golden
C.  heart    D.  blue

How is the woman in the 
beginning?
A.  sweaty B.  dressed up
C.  tied D.  blindfolded

I love how 
strong of a 
woman you 
are. I love 

your laugh.

Figure 2.5: Additional instances from LifeQA. The videos capture various indoor and outdoor
scenes, and the questions refer to visual and auditory concepts.

2.4 Experiments

We implement several models to demonstrate the task’s difficulty and explore biases, and
compare their performance by measuring question-answering accuracy.

2.4.1 Baselines

We implement and evaluate several baselines, including simple heuristics and neural methods.
We categorize these baselines according to their inputs (the question, the transcriptions, or
the visual content) and whether they are trained from scratch or pretrained. By analyzing
these baselines, we demonstrate the differences between evaluations of our data versus other
non-real-life datasets.

Human baseline. We provided a human baseline, in which two workers were asked to
answer a random sample of 101 questions. One worker first listened to the audio in the video
without looking at the visual content, then answered the questions, and then repeated the
same task using both modalities (i.e., listen to the audio and watch the video). The other
worker did the same, but using the visual content – i.e., they first watched the video without
listening to the audio. They answered the questions and then repeated the same task with
both modalities. Note that this differs from the previous analysis in Fig. 2.3 as workers
answer the questions using one modality at a time without knowing the correct answer a
priori.

Question-only. We implement several baselines that use only the questions and their
candidate answers. Three of these baselines use only the answers without any question;
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Random chooses one out of the four options uniformly at random, and Longest answer and
shortest answer choose the answer with the most or fewest number of tokens, respectively.

The first two baselines using the question are based on computing some similarity measure
between the question and candidate answers. The first is Word matching, as defined by [258],
which finds the answer with the most overlapping words with the question. The second is
Most similar answer, which looks at word-level similarity, which we compute by using the
average GloVe [178] embedding of the question and each answer and selecting the answer
with the highest cosine similarity with the question. We use GloVe [178] embeddings with
size 300 pretrained on 6B tokens from Wikipedia 2014 [187] and Gigaword5 [172].

Finally, we implement ST-VQA-Text, a variant of Spatio-Temporal VQA (ST-VQA) [99],
which uses no visual information. It encodes the question with a 2-layer LSTM, then encodes
the candidate answers and assigns a score to each one. The text is tokenized and represented
using GloVe [178] embeddings of size 300 pretrained on the Common Crawl dataset.

Question + Transcriptions. We present several neural baselines that use the questions,
answers, and transcriptions but omit the videos and audio.

Text-only LSTM and text-only CNN use neural models to encode the transcript, question,
and answers separately. The former is a one-layer BiLSTM of hidden size 100. The latter is
a 1D CNN with 100 filters of size two tokens and 100 filters of size three tokens. We then
concatenate the transcript and question encodings and embed them with a two-layer network.
We compute the dot product similarity between the question + transcription encoding with
each possible answer and select the one with the highest score.

Second, we use a variant of BiDAF [205] in which we remove the component that predicts
the likelihood of each token being the start and end of the span that is needed for SQuAD [187]
because in LifeQA there are no such spans. We then compute the dot product between the
final hidden state of the Modeling Layer and the representation of each answer choice, which
serves as a score. We repeat this same process for both the question and the transcript.

Finally, we use a modified version of the end-to-end Memory Network (MemN2N) proposed
by [225] based on [218] to handle multiple-choice question answering. The input to the model
is the transcriptions, questions, and candidate answers. The transcription segments are
obtained by mean-pooling the GloVe representation of the words for each segment. Our
network has an attention layer over the transcriptions to pick the segments most relevant to
the given question and is trained in an end-to-end fashion to select the correct answer.

Question + Vision. We use two variants of ST-VQA [99]. Both encode the video using a
CNN followed by an LSTM, whose final hidden state is used as in ST-VQA-Text. ST-VQA-
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Tp. uses the concatenation of the output of an ImageNet [44] pretrained ResNet152 [78]
pool5 layer and of a Sports1M [106] pretrained C3D [230] fc6 layer as the video encoder.
ST-VQA-Sp.Tp. computes a spatial attention map to decide what parts of the image are
most useful and uses the res5c and conv5b of the two CNN encoders. Both use temporal
attention maps to pool important information across video frames. We also tried a variant
that uses RGB-I3D [24] (with avg_pool and mixed_5c layers respectively) instead of C3D,
pretrained on ImageNet [44] and Kinetics [108] but do not report it because we obtained
similar results.

Question + Transcriptions + Vision. We implement two neural models that use all
modalities, TVQA [127] and MovieQA [225]. Both models use object detection networks to
identify visual concepts in the corresponding video frames, allowing them to use the visual
modality. For both, we use as visual inputs the output predictions of a Faster R-CNN [193]
object detection model pretrained on Visual Genome [118].

Pretrained Baselines. Finally, we utilize the TVQA model pretrained on the TVQA
dataset and evaluate it on two versions: with and without fine-tuning on LifeQA.

2.5 Results

In Table 2.3, we evaluate each model with a five-fold cross-validation, grouping by source
video.1 Similar to TVQA [127], the baselines trained from scratch do not generally benefit
from visual information. Most models do not surpass ST-VQA-Text, a baseline that uses only
the question and the available answers as input. This issue shows the presence of biases in the
dataset, including the multiple-choice setup as opposed to free answer, which allows models
to overfit to obtain better-than-random performance. It also demonstrates that leveraging
real-life video data challenges existing systems.

The TVQA model shows a significant gain in performance when pretrained on the TVQA
dataset, possibly due to the significantly larger training size. However, there is still a big gap
between its performance and that of a human, providing evidence that this is a challenging
benchmark. The same model can obtain 66.5% accuracy on the TVQA dataset with five
answer choices instead of four. Moreover, the model cannot perform better even when
fine-tuning, showing that the task is still challenging when given in-domain training data and

1Note: we used 221 of the 275 video clips (50 out of 59 source videos) available when running the
experiments.
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Inputs Model Accuracy

Random 25.0

A Longest answer 30.6
Shortest answer 21.5

Q+A
Word matching 24.8

Most similar answer 35.2
ST-VQA-Text 45.4

T+Q+A

BiDAF 43.3
Text-only CNN 43.5
Text-only LSTM 44.0

Text-only Memory Network 37.9
Human 63.4

V+Q+A
ST-VQA-Tp. 45.0

ST-VQA-Sp.Tp. 44.6
Human 48.5

V+T+Q+A

Multimodal Memory Network 38.2
TVQA from scratch 41.1

Pretrained TVQA w/o fine-tuning 51.8
Pretrained TVQA w/ fine-tuning 51.6

Human 90.6

Table 2.3: Baselines on the LifeQA dataset. In the first column, “A” stands for answer, “Q”
for question, “T” for transcripts, and “V” for visual modality. When the transcripts are part
of the input, the human performance is measured by using the audio instead.
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hints that more robust models should be considered to close the gap instead of labeling a
more significant amount of data to train on.

2.6 Conclusion

In this work, we introduced LifeQA, a real-life dataset for evaluating Video QA systems
in real-life scenarios. Through several analyses and experimental evaluations, we showed
that LifeQA presents a challenging task for existing models, with a significant gap in
accuracy compared to human performance, thus suggesting that future research is necessary
to leverage the multimodal features in this domain. The dataset is publicly available at
https://lit.eecs.umich.edu/lifeqa/.2

This chapter considered video understanding in real-life settings, specifically addressing
people’s daily lives. Still, there are other overlooked real-life domains to take into account,
such as nature.

2Given the relatively small amount of video data we share and the fact that it is drawn from public
sources, the sharing of this data falls under “fair use.”
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CHAPTER 3

Video Understanding in In-The-Wild Scenarios

3.1 Introduction

Video understanding plays a vital role in developing competent AI systems, enabling the
effective processing of different modalities of information [136]. Various tasks have been
proposed to examine the ability of models to understand videos, including video question
answering (Video QA), video captioning, and fill-in-the-blank tasks [249, 229, 29]. Recent years
have witnessed significant progress in video understanding, including new benchmarks [225, 76]
and advanced sophisticated models [102, 183].

However, there are several drawbacks associated with existing video understanding research.
First, existing video understanding benchmarks focus on everyday human activities as typically
appearing in cooking videos [281] or in movies [225], leading to a limited set of video domains.
Second, most video understanding benchmarks adopt a multiple-choice format, where models
select an answer from a set of candidates [99, 26]. Models trained under such a setting cannot
be used in real-life applications because candidate answers are not provided [29]. Third,
videos included in existing benchmarks are typically short [112], and the performance of
models on longer videos is not well studied.

We address these challenges in our dataset construction process. First, we propose the
WildQA dataset in which we collect “in the wild” videos recorded in the outside world,
going beyond daily human activities. Figure 3.2 shows the difference between the WildQA

dataset and previous question answering datasets. Second, we adopt the challenging answer
generation approach, aiming to build a system that can answer questions with an open-ended
answer rather than selecting from a predefined set of candidate answers. Third, the average
video length in our dataset is one minute, longer than the video clips in most of the existing
datasets in Table 3.3, which presents a novel challenge for video understanding algorithms.

Using the WildQA dataset, we address two main tasks. First, we address the task of
video question answering (Video QA), aiming to generate open-ended answers. Second,
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Q: What is the man using as tools?
A: A saw and handaxe
E: 

00:00 00:37 00:51

Figure 3.1: An example from our WildQA dataset, showing a question (Q), an answer (A),
and evidence (E) that supports the answer. The corresponding part of the videos is provided
as evidence for the question.

Example from MovieQA (multiple-choice)
Q: How does E.T. show his happiness that he 
is finally returning home?
A: His heart lights up.

Example from WildQAours (open-ended)
Q: What sort of environment is it based on the 
landscape and plant life?
A: Temperate mountain environment.

Example from TVQA (multiple-choice)
Q: Why does Joey want Chandler to kiss 
Janice when they are in the kitchen?
A: Because then she will leave.

Figure 3.2: Examples from MovieQA [225], TVQA [127], and our WildQA dataset. The
previous datasets mostly focus on human interactions in a multiple-choice setting, while ours
focus on scenes recorded in the outside world in an open-ended setting. We only list a single
answer here for illustration purposes.
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we introduce the task of retrieving visual support for a given question and answer (Video
Evidence Selection). Finding the relevant frames in a video for a given question-answer pair
can help a system in its reasoning process. It aligns with ongoing efforts to build interpretable
models [97]. We evaluate several baseline models for each task, including multi-task models
that combine the two tasks. Figure 3.1 shows an example from our dataset, including an
example of a question, answer, and supporting video evidence. To summarize, the main
contributions of this chapter are:

1. We propose WildQA, a multimodal video understanding dataset where video scenes
are recorded in the outside world.

2. We propose two tasks for WildQA: Video QA and Video Evidence Selection, aiming
to build more interpretable systems.

3. We test several baseline models; experimental results show that our dataset poses new
challenges to the vision and language research communities.

3.2 Related Work

Multimodal Question Answering. Two popular and representative tasks are Visual
Question Answering (Visual QA) on images and Video Question Answering (Video QA) on
videos. Visual QA has attracted attention for a long time [153, 271, 192, 283]. Recently,
much progress has been made in Video QA. Researchers proposed various datasets such
as TVQA that contain videos from movies or TV series [225, 127, 128] or videos from the
Internet spanning from YouTube videos to Tumblr GIFs [268, 257, 99, 263]. Other datasets
such as MSVD-QA [249] contain videos from the existing corpus [30] or cartoon videos [112].
Recent Video QA datasets have stronger focuses such as temporal relations [163], multi-step
and non-factoid answers [38], natural interactions [265], characters in the video [36], question
answering in real life [26], incorporating external knowledge [69], and videos recorded from
the egocentric view [54, 76]. To our knowledge, we are the first to collect videos from the
outside world.

Researchers have also developed various methods to handle the Video QA task, including
joint reasoning of the spatial and temporal structure of a video [277, 66, 89, 101], integrating
memory to keep track of past and future frames [112, 63, 278, 55, 260], various attention
mechanisms [281, 273, 137, 261, 111, 102], and others. Recently, pre-trained models have
proved helpful in multiple visual and language tasks [183, 33, 267]. However, the pre-trained
visual and language models are typically encoder-only and cannot generate an answer in
natural language on their own. Thus, encoder-only models do not fit our task’s open-ended
video question-answering setting.
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Previous work has also investigated various reasoning tasks in a multimodal setting [67,
256, 68, 266]. Although it is not our focus, some questions in our dataset require a high
reasoning ability. Moreover, since domain experts created our dataset, domain knowledge is
also involved in the questions.

Moment Retrieval. Moment Retrieval is the task of retrieving a short moment from
a large video corpus given a natural language query [51, 129]. Researchers have proposed
or adapted various datasets for this task [117, 83, 64, 129]. The task of retrieving relevant
parts in the video given the question (Video Evidence Selection) in our proposed dataset
is akin to Moment Retrieval. However, moment retrieval focuses on retrieving the part of
videos that the question describes, while Video Evidence Selection is to find parts of videos
that can support the answer to the questions as shown in Fig. 3.1. Prior work such as
Tutorial-VQA [38] also adopted the setting of providing parts of the videos as answers to the
question, but they did not include any text answers in their dataset.

Few-shot Learning. Recently, there has been a trend to evaluate neural models in a
few-shot learning setting [90, 162, 222, 139, 124, 180], where the model is tuned with a small
portion of the data and tested against the rest. We adopt the few-shot learning setting for
our dataset for both Video QA and Video Evidence Selection.

3.3 WildQA Dataset

Video Selection and Processing. Following [265, 26], we start by collecting videos
from YouTube. First, we identify five domains that primarily consist of outdoor scenes
and are representative of the outside world, namely, Agriculture, Geography, Human
Survival, Natural Disasters, and Military. We then manually collected videos from
relevant YouTube channels for each domain.

Because the raw videos can be as long as an hour, we split the raw videos into short clips
using PySceneDetect,1 and concatenate these short clips so that the output video is approxi-
mately one minute. We use the output videos for the annotation process described below.
More details for the video selection and processing steps are discussed in Appendix A.1.1.

Question, Answer, and Evidence Annotation. Our annotation process has two phases,
as shown in Fig. 3.3. In Phase 1, annotators watch the video clips and develop a hypothetical
motivation. They ask one or more questions and provide an answer to each of the questions

1PySceneDetect uses the OpenCV [17] to find scene changes in video clips (py.scenedetect.com).
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Expert question 
annotation Manual review

Expert answer 
annotation

Crowd answer 
annotation

Phase 1

Phase 2

objective, question, 
answer, evidences, etc

answers, evidences, etc

Figure 3.3: The two phases of data annotation.

Domain Video count Question count

Agriculture 85 109
Human Survival 95 309
Natural Disaster 70 187

Geography 46 110
Military 73 201

Total 369 916

Table 3.1: Video and question count for each domain.

they ask. We also instruct annotators to provide all the relevant parts in videos as pieces of
evidence to support the answer to their question. After this step in the data collection, three
researchers manually reviewed all the question-answer pairs for quality purposes. Next, in
Phase 2, we collect more answers and evidences for each question from Phase 1. Over the
entire annotation process, annotators spent a total of 556.81 annotation hours, split into
77.05 hours in Phase 1 and 479.76 in Phase 2. Appendices A.1.2, A.1.3, and A.1.5 present
the annotation instructions, annotation interfaces, and reviewing process for question-answer
pairs, respectively.

Because we want to collect questions that domain experts are interested in, as opposed to
arbitrary questions, domain experts carry out the Phase 1 annotation. We conducted a pilot
study to demonstrate the difference in the quality of questions collected from domain experts
versus non-experts. Appendices A.1.4 and A.1.6 discuss the pilot study and the annotators’
expertise, respectively.
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Videos 369
Duration (in seconds) 71.22 ± 26.47

Questions 916
Question per video 2.48 ± 1.38

Question length (#tokens) 7.09 ± 2.60

Answer per question 2.22 ± 0.69
Answer length (#tokens) 9.08 ± 8.15

Evidence per answer 1.18 ± 0.80
Evidence length (s) 9.64 ± 10.96

Table 3.2: Dataset statistics for WildQA.

Dataset Domain VE? #Videos # Q Avg
dur. (s) Annotation QA Task

MovieQA [225] Movies ✓ 6.7K 6.4K 203 Manual MC
VideoQA (FiB) [281] Cooking, movies, web 109K 390K 33 Automatic MC
MSRVTT-QA [249] General life videos 10K 243K 15 Automatic OE

MovieFIB [151] Movies 128K 348K 5 Automatic OE
TVQA [127] TV shows ✓ 21.8K 152K 76 Manual MC

ActivityNet-QA [263] Human activity 5.8K 58K 180 Manual OE
TVQA+ [128] TV shows ✓ 4.2K 29.4K 60 Manual MC, ES

KnowIT VQA [69] TV shows 12K 24K 20 Manual MC
LifeQA [26] Daily life 275 2.3K 74 Manual MC

TutorialVQA [38] Instructions ✓ 76 6.2K – Manual ES
NExT-QA [248] Daily life 5.4K 52K 44 Manual MC, OE

FIBER [29] Human actions 28K 2K 10 Manual OE

WildQA In-the-wild ✓ 369 916 71 Manual OE, ES

Table 3.3: Comparison between our WildQA and other existing datasets. VE?: Whether
the dataset provides “Video Evidences”?; MC: “Multiple Choice” question answering; OE:
“Open Ended” question answering; ES: “Evidence Selection”. We adapt the comparison table
from [279].

Dataset Statistics. Tables 3.1 and 3.2 present statistics of the videos and associated
questions for each of the five domains, along with other relevant statistics. Figure 3.4 shows
the distribution of question types. Appendix A.1.7 discusses more statistics.

Dataset Comparison. Table 3.3 shows the comparison between WildQA and other
existing datasets.

3.4 Video Question Answering

Following [252], we adopt free-form open-ended video question answering for our video
question answering (Video QA) task. Given a question q and a video v, the task is to
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Figure 3.4: Percentage distribution of question types. Because one question might be classified
into multiple categories, the scale summation is larger than 100%.

generate an answer a in natural language.
We adopt a few-shot learning setting on our dataset, where models are fine-tuned on

question-answer pairs corresponding to 30% of the videos for each domain. The tuned models
are tested on data for the remaining 70% videos. The reason is that the time to annotate 30%

of the data is around 23 hours, during which there are around 50 data points annotated for
each domain, which is acceptable. We hypothesize that it is realistic to have such a setting
because the potential end-users could spend around a day or two collecting data, and we can
then quickly tune a model using it. Moreover, no repeated videos appear in different splits,
following [127]. We end up having 264 question-answer pairs for 108 videos in our dev set
and 652 pairs for 261 videos in the test set. We adopt BLEU [170] and ROUGE [140] as the
metrics to measure the quality of the generated answer. We run each model 3 times and
report the scores of mean ± standard deviation in Table 3.4.

3.4.1 Baselines

Human Baselines. We report the average BLEU and ROUGE scores by leaving one
annotator out in Table 3.4 (Human).

Text-only Models. We implement several baselines that only use the question-answer
pairs in the dev set. Random randomly chooses answers from the dev set. Common always
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Q: What type of weather is happening?
A: Flooding and rain.
     The weather is rain and flood.

Q: Where is the road at?
A: It is in a tundra environment
     The road zig-zags across the landscape.
     The road winds through a mountainous landscape.
     The road is in an elevated area.

Figure 3.5: Examples of questions (Q) and answers (A) from WildQA. The first answer is
collected during Phase 1 of the annotation process; all remaining answers are collected in
Phase 2. More analyses in Appendix A.1.7.
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Model name ROUGE-1 ROUGE-2 ROUGE-L

Random 5.0 ± 0.2 0.5 ± 0.1 4.9 ± 0.2
Common 10.6 ± 0.0 0.0 ± 0.0 10.6 ± 0.0
Closest 19.5 ± 0.0 6.2 ± 0.0 18.7 ± 0.0

T5 T0-shot 0.8 ± 0.0 0.0 ± 0.0 0.8 ± 0.0
T5 T 33.8 ± 0.2 17.7 ± 0.1 32.4 ± 0.3

T5 T+V 33.1 ± 0.3 17.3 ± 0.4 31.9 ± 0.2
MultiT+V,IO 34.0 ± 0.5 18.8 ± 0.7 32.8 ± 0.6
MultiT+V,SE 33.8 ± 0.8 18.5 ± 0.7 32.5 ± 0.8

Human 40.8 ± 0.0 18.1 ± 0.0 36.3 ± 0.0

Table 3.4: ROUGE scores for the task of Video Question Answering. For comparison, we
test the out-of-box T5 model under the zero-shot setting (T5 T0-shot).

predicts the most common answer in the dev set; Closest employs embedding produced by
a pretrained roberta-base model [144]. In the inference, Closest retrieves the answers for
the dev set question whose embedding has the highest cosine similarity to the test question.
We also fine-tune T5 [184] using question-answer pairs from the dev set (T5 T).

Text + Visual Models. Following [29], we concatenate the text features with the visual
features and input the concatenated features to the T5 model (T5 T+V). We extract I3D [24]
video features and take one feature per second.

Multi-task Learning. Multi-task learning has succeeded in various domains [39, 45, 73].
Following [25], we train MultiT+V,SE which combines T5 T+V and T5 SE (the Video Evidence
Selection model described in Section 3.5) with a shared T5 encoder between the tasks of Video
Question Answering and Video Evidence Selection. We also train MultiT+V,IO which combines
T5 T+V and T5 IO (another Video Evidence Selection model described in Section 3.5) in a
similar way. The loss function during the fine-tuning is:

L = αL1 + βL2 (3.1)

Where L1, L2 are the losses for Video Question Answering and Video Evidence Selection,
respectively; α, β are the weights for the two tasks. We present the selection process behind
the values of α and β in Appendix A.3.
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3.4.2 Results

Table 3.4 reports F1 scores of ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-L (RL) for
our baseline models. For comparison, we also test the out-of-box T5 model on our test split
under the zero-shot setting (T5 Text0-shot in Table 3.5).

T5-based models significantly outperform the random baselines and the out-of-box T5
model, suggesting that the T5-based models acquire certain levels of question-answering
ability in the tuning stage. However, adding visual features does not improve the model’s
performance. This issue might be due to the challenges of attending to the visual features at
the corresponding parts in the video because both models under multi-task learning outperform
the text-only baseline, suggesting that attending to the correct part of the video helps the
answer generation process.

All baseline models underperform human baselines on ROUGE scores, especially ROUGE-1
and ROUGE-L scores, suggesting room for improvement. However, the ROUGE-2 score for
human annotators is low because although human annotators tend to use the same word to
describe the object that appears in the video, there are significant variations in expressing the
ideas of their answers. More discussions on the diversity of the answers are in Appendix A.1.7.

3.5 Video Evidence Selection

Similar to [38], given a video v and a question q, the video evidence selection task consists
of predicting {(s1, e1), (s2, e2), . . .}, where (si, ei) represents the time for start s and end
e of a singles span within the video v. We also adopt the few-shot learning setting as
described in Section 3.4 for the task of Video Evidence Selection. Similar to [48], we design an
Intersection-Over-Union (IOU) metric borrowed from [52]. We define IOU as follows: given
two time spans in the video, IOU is defined as the length of their intersection divided by the
length of their union. The prediction matches if it overlaps with any ground truth span by
more than the threshold (0.5, following [48]). We use these partial matches to calculate an
F1 score (IOU-F1 scores). As described in Section 3.4, we run each model three times and
report the scores of mean ± standard deviation in Table 3.5.

3.5.1 Baselines

As described in Section 3.4, we compute the average IOU-F1 score on the annotations from
one annotator against the remaining annotators. We denote this metric as Human. The Random
baseline consists of randomly choosing the start and end of a part within the original video
as evidence. Similar to the structure [47] experiment on SQuAD [187], we build T5 SE; here,
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Model name IOU-F1

Random 2.5 ± 0.3

T5 IO 1.1 ± 0.2
T5 SE 4.5 ± 0.8

MultiT+V,IO 1.4 ± 0.3
MultiT+V,SE 3.7 ± 2.4

Human 18.4 ± 0.0

Table 3.5: IOU-F1 scores for Video Evidence Selection.

we feed the concatenated question embeddings and I3D visual features to the T5 encoder,
and the T5 encoder outputs a sequence of the encoded states. We treat the subsequence
corresponding to the visual features as the encoded hidden sequence Tm ∈ RH for the video
frames (H denotes the dimension of the hidden sequence). We then multiply the sequence
with two vectors S,E ∈ RH . The Ti and Tj that maximize the likelihood are predicted as
the start and the end of the evidence, respectively. During the training, we maximize
their joint probability:

PiPj =
eS·Ti∑
m eS·Tm

eE·Tj∑
m eE·Tm

where Pi and Pj are the probability for the i being the start and j the end of the evidence,
respectively.

Inspired by the Inside-Outside-Beginning (“IOB”) tagging scheme [188], we also formulate
the evidence finding as a task of tagging whether a video frame is inside (“I”) the evidence or
outside (“O”) the evidence. We then build T5 IO by feeding the concatenated features to a T5
encoder. Similar to T5 Start End, we have an encoded sequence of Tm ∈ RH corresponding
to the video frames. We then multiply the sequence with a vector L ∈ RH and apply a
sigmoid function to the multiplication result. The model predicts the frame as “I” if the value
at the corresponding position is greater than or equal to 0.5. Otherwise, it predicts “O”. We
test MultiT+V,IO and MultiT+V,SE described in Section 3.4 on Video Evidence Selection as well.

3.5.2 Results

Table 3.5 shows the performance of the baseline models on the Video Evidence Selection task.
All the baseline models perform significantly worse than the human annotators and sometimes
worse than the random baseline. This result is understandable because selecting evidence from
a long video can be complex. Additionally, multi-task learning makes the model’s performance
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Type R1 IOU-F1

Existence 33.3 ± 0.3 5.3 ± 0.3
Motion 32.8 ± 0.6 3.1 ± 2.0

Reasoning 33.3 ± 0.4 3.1 ± 1.3
Location 26.2 ± 10.7 4.4 ± 1.4
Entity 33.2 ± 0.7 5.2 ± 0.7
Spatial 32.2 ± 0.6 2.4 ± 1.7
Number 33.8 ± 0.4 4.5 ± 0.7
Temporal 33.8 ± 0.6 3.8 ± 0.5

Time 33.1 ± 0.8 5.7 ± 1.0
Other 33.2 ± 0.6 5.3 ± 0.9

Table 3.6: MultiT+V,SE performance on different question types for Video QA (ROUGE-1)
and for Video Evidence Selection (IOU-F1).

worse. However, this could be because the Video Evidence Selection is challenging, and all
the baseline models struggle with such a task. Although multi-task learning does not help
Video Evidence Selection, as mentioned in Section 3.4, training with Video Evidence Selection
does help Video QA. Thus, Video Evidence Selection is still essential to improve a model’s
ability to answer questions. We include more ablation studies in Appendix A.4.1.

3.5.3 Analysis and Discussion

Model Performance vs. Question Types. Table 3.6 shows MultiT+V,SE’s performance
on different question types for Video QA and Video Evidence Selection respectively. Other
ROUGE scores for Video QA follow similar trends as shown in Fig. A.7. According to
Table 3.6, the model achieves good ROUGE-1 scores for Video QA when the model has a
good IOU-F1 score for Video Evidence Selection such as its performance on Existence. The
model has the highest ROUGE-1 variation on Location question types, with a relatively large
variation for IOU-F1. The model’s ROUGE-1 score on Spatial questions is relatively low,
with the lowest IOU-F1 score. MultiT+V,SE excels at question type Entity and Existence with
relatively high IOU-F1 scores. One possible explanation could be that the average length
of the answers generated for Entity and Existence are around eight tokens, which might be
easier for the model to ground to the relevant part in the video.

Interestingly, even if the answers have similar lengths, the model struggles on Motion
questions (with a relatively low IOU-F1 score). A possible reason could be that this type of
question provides a very abstract description of the action, which makes it hard for the model
to attend to the relevant part of the video. For instance, an example of a Motion question is
“Are there any structure or natural features being affected?”. To attend to the corresponding
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Model name R1 R2 RL

T5 T0-shot 0.8 ± 0.0 0.0 ± 0.0 0.8 ± 0.0
T5 T0-shot

TVQA 9.1 ± 0.0 1.2 ± 0.0 8.8 ± 0.0
T5 TTVQA,ours 32.4 ± 0.2 17.5 ± 0.2 31.6 ± 0.2

T5 Tours 33.8 ± 0.2 17.7 ± 0.1 32.4 ± 0.3

T5 T+V0-shot
TVQA 20.3 ± 0.0 8.1 ± 0.0 20.1 ± 0.0

T5 T+Vours 33.1 ± 0.3 17.3 ± 0.4 31.9 ± 0.2
T5 T+VTVQA,ours 33.7 ± 0.2 18.3 ± 0.1 32.6 ± 0.1

Table 3.7: ROUGE scores for the task of Video Question Answering for few-shot learning
setting (the standard setting in our WildQA dataset introduced in Section 3.4) and zero-shot
learning setting (“0-shot” in the superscript). Subscript “TVQA” means pre-training on the
TVQA [127] dataset; subscript “TVQA,ours” means first pre-training the model on TVQA,
then tuning the model on our WildQA dataset; subscript “ours” means tuning the model
directly on our WildQA dataset.

period in the video, the model needs to understand the word “affected” and the objects that
are actually affected, which can be very difficult. The model also struggles to attend to the
correct places in the video for the Spatial type of question. This issue might occur because
there is more than one entity in Spatial type of questions, and the model needs to locate all
the objects appearing in various parts of the video, which is similarly complex. For instance,
for the question “What effects did the weather have?”, the model needs to attend to “debris
in the air”, “truck turnover” and “destruction of buildings”. For Location type of questions
such as “What sorts of terrain is the vegetation present in?”, it might be difficult to attend to
all the terrains of “forest”, “plateaus”, “mountainous”, “valleys”, and “arboreal” and to include
them in the answer.

Domain Adaptation. Furthermore, we tune the MultiT+V,SE model on the dev set data
from a single domain and test it against data from other domains. Figures 3.6 and 3.7 show
the model’s performance in different tuning and testing domains. Interestingly, the diagonal
cells do not always have the darkest color, which indicates that inter-relations exist across
domains. For instance, the model tuned on Geography performs relatively better for Video QA
on Human Survival and Agriculture rather than itself. This result suggests that the questions
and videos from Geography, Agriculture, and Human Survival exhibit some similarity so that
the model tuned on one domain can answer questions from the other domains relatively well.
But answering questions from Geography can introduce the domain knowledge; an example
of the answer is “Mountainous, temperate forest.”, where “temperate forest” is one
of the terminologies specific to Geography domain. Training on these terminologies might
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Figure 3.6: MultiT+V,SE performance (ROUGE-1) for Video QA when tuned on a single
domain (y-axis) and tested against each domain (x-axis). The performances by the rest of
the metrics for Video QA resemble the pattern here and are reported in Appendix A.4.

confuse the model and hurt the performance. Thus, future research might be needed to better
incorporate domain knowledge into multimodal question answering.

As for Video Evidence Selection, the patterns generally resemble the pattern in Fig. 3.6,
which means that the model typically answers a question better if it can attend to the relevant
part in the video. However, when tuned on Human Survival and tested on Natural Disaster,
the model performs relatively well on Video QA (with a 28.7 ROUGE-1 score) but less well
on Video Evidence Selection (with a 0.7 IOU-F1 score). This phenomenon might indicate
that the model picks up some common patterns in the text rather than reasoning about the
video and the question in an expected manner.

Pre-training on Other Datasets. We also pre-train the T5 T and T5 T+V using
TVQA [127], a large-scale multimodal question-answering dataset with videos from TV
series. We report the zero-shot learning performances as well as the few-shot learning per-
formances for T5 T and T5 T+V in Table 3.7. We can see that pre-training on TVQA for
text-only T5 T does not help, which shows that our dataset’s question styles might differ
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Figure 3.7: MultiT+V,SE performance (IOU-F1) for Video Evidence Selection when tuned on a
single domain (y-axis) and tested against each domain (x-axis).

from TVQA. For T5 T+V, which uses both text and visual features, pre-training on TVQA
does help the model, which suggests that the pre-training helps the model take advantage of
the visual features. T5 T+V pre-trained on TVQA underperforms T5 T+V trained together
with T5 IO (the MultiT+V,SE model) according to Table 3.4 and Table 3.7, suggesting that
attending to the relevant part in the video helps the model better than training the model on
more data. However, pre-training the model on the TVQA dataset reduces the variance of
model performance, which suggests that training the model with more data helps the model
perform consistently.

3.6 Conclusion

This chapter introduced a new and challenging benchmark, WildQA, to promote domain
diversity for video understanding. Specifically, we focused on five domains that involve long
videos recorded in the outside world, which can be helpful for applications in these domains.
We proposed generating open-ended answers instead of the traditional multiple-choice setting
for Video Question Answering. We believe open-ended answer generation can help construct
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systems that answer end users’ questions more naturally. We also proposed the task of video
evidence selection to help the model focus on the relevant parts of the videos. Through
experiments, we showed the feasibility of these tasks and showed that joint training for
both Video Question Answering and Video Evidence Selection can improve the models’
performance. In addition, we found that it is easier to understand models’ behavior by
knowing which part of the video they attend to when answering a question. We believe this is
a crucial step towards a trustworthy, explainable multimodal system. The dataset is available
at https://lit.eecs.umich.edu/wildqa/.

So far, we considered the study overlooked domains. Can we consider other aspects, such
as complex ways of human behavior?
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CHAPTER 4

Addressing Real-Life Human Behavior

Contributions Contents in this chapter come from a published work [27] with joint
contributions from collaborators in the University of Michigan, the Singapore University
of Technology and Design, and the National University of Singapore. The following parts
constitute novel contributions to this thesis: Sections 4.2.1, 4.3.1, 4.3.2, and 4.5.1.

4.1 Introduction

Sarcasm is a form of expression commonly used by people to express their contempt. The
speaker usually employs irony along with negativity. For instance, in the following sarcastic
utterance: “Nice perfume. How long did you marinate in it?”; the sarcasm is explicitly
expressed as the speaker appears to praise the other person when, in reality, they mean
the opposite (negative) as they associate it with food. However, in other cases, speakers
express sarcasm without explicit linguistic markers, demanding further signals to reveal the
speaker’s true intentions. For example, a speaker can express sarcasm by combining verbal
and non-verbal signals, such as changing their tone, overemphasizing a word, or with a “poker”
face. Furthermore, detecting sarcasm requires finding a linguistic or contextual contraction,
which involves further information, either from multiple modalities [200, 159] or from the
dialogue’s context history.

This chapter studies the importance of conversational context and multimodality in
detecting sarcasm and presents a new benchmark to facilitate research in this area. Concretely,
this chapter’s contributions are threefold:

1. We devise a new corpus, MUStARD, for multimodal sarcasm research with high-quality
annotations. It includes conversational context and multimodal (video, audio, and
language) features.

2. We present multiple baselines and find that multimodal models are more effective than
unimodal variants.
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3. We provide preceding turns in the dialogue as context information. Consequently, this
property of MUStARD leads to a new sub-task for future work: sarcasm detection in a
conversational context.

4.2 Dataset

Here, we present a new dataset and benchmark for studying sarcasm in short videos called
MUStARD (MUltimodal SARcasm Detection). Our data collection consisted of obtaining
and segmenting episodes of The Big Bang Theory and gathering YouTube videos from
different moments of the TV series Friends, the Golden Girls, and a one-time sketch dubbed
Sarcasmaholics Anonymous. We collected some videos from MELD [181] to obtain non-
sarcastic videos. We conducted a manual annotation as described next.

4.2.1 Annotation Process

We built a web-based annotation interface that shows each video along with its transcript
and requests annotations for sarcasm. We also ask the annotators to flag misaligned videos,
i.e., cases where the audio or video is not synchronized correctly. The interface allows the
annotators to watch a context video consisting of the previous video utterances whenever
necessary. Given the large number of videos to be annotated, we request annotations in
batches of four videos at a time. We show our web interface in Fig. 4.1.

We conduct the annotation in two steps. First, we annotate the videos from The Big Bang
Theory, as it contains the most extensive set of videos. Second, we annotate the remaining
videos belonging to the other sources. The annotation is conducted by two graduate students
who were first provided easy examples of explicit sarcastic content to illustrate sarcasm in
videos. Each annotator labeled the complete set of videos independently.

For the first step, after annotating the first part – consisting of 5,884 utterances from The
Big Bang Theory – we noticed that most were labeled as non-sarcastic (98% were considered
non-sarcastic by both). In addition, our initial inter-annotation agreement was low (Kappa
score is 0.1463). We thus decided to stop the annotation process and reconcile the annotation
differences before proceeding further. The annotators discussed their disagreements for a
subset of 20 videos and then re-annotated the videos. This time, we obtained an improved inter-
annotator agreement of 0.2326. A third annotator reconciled the annotation disagreements
by identifying the disagreement cases, watching the videos again, and deciding the correct
label for each one.

Next, we annotate the second part, comprising 624 videos drawn from Friends, The
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“Can	we	maybe	put	the	phones	down	and	have	an	actual	
human	conversa6on?”

Figure 4.1: Graphical user interface used by the annotators to label the videos in our dataset.
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Golden Girls, and Sarcasmaholics Anonymous. As before, the two annotators label each
video independently. The inter-annotator agreement has a Kappa score of 0.5877. Again, a
third annotator reconciled the differences.

The resulting set of annotations consists of 345 videos labeled as sarcastic and 6,020 videos
labeled as non-sarcastic, for a total of 6,365 videos.

4.2.2 Transcriptions

Since we collected videos from several sources, some had subtitles or transcripts readily
available. This is particularly true for videos from Big Bang Theory and MELD [181]. We
use MELD’s transcriptions directly. For Big Bang Theory, we extracted the transcript by
applying manual sub-string matching on the episode subtitles. The remaining videos are
manually transcribed.

4.3 Multimodal Feature Extraction

We extract video, text, and speech features for the videos in MUStARD. Here we describe
the process we followed to obtain the text and video features:

4.3.1 Text Features

We represent the textual utterances in the dataset using BERT [47], which provides a
sentence representation ut ∈ Rdt for every utterance u. In particular, we average the last four
transformer layers of the first token ([CLS]) in the utterance – using the BERT-base model
– to get a unique utterance representation of size dt = 768. We also considered averaging
Common Crawl pre-trained 300-dimensional GloVe [178] word vectors for each token; however,
it resulted in lower performance than BERT features.

4.3.2 Video Features

We extract visual features for each of the f frames in the utterance video using a pool5

layer of an ImageNet [44] pretrained ResNet-152 [78] image classification model. We first
preprocess every frame by resizing, center-cropping, and normalizing it. To obtain a visual
representation of each utterance, we compute the mean of the obtained dv = 2048 dimensional
feature vector uv

i for every frame: uv =
1
f
(
∑

i u
v
i ) ∈ Rdv . While we could use more advanced

visual encoding techniques (e.g., recurrent neural network encoding techniques), we decided
to use the same averaging strategy as the other modalities.
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4.4 Experiments

We perform several experiments to evaluate the modalities separately and combined. On top
of this, we study the importance of the speaker and context.

4.4.1 Experimental Setup

We split the evaluation into two parts. First, we perform a stratified five-fold cross-validation.
In some experiments, we further divide each fold’s training set to obtain a validation set
(e.g., for hyper-parameter selection; see below). Given that there is likely a speaker overlap
across training and test sets in the folds (speaker-dependent setup), the second part of our
evaluation separates training and test sets to avoid speaker overlap (speaker-independent
setup; see Section 4.5). In this case, the training set uses utterances from The Golden Girls,
Sarcasmaholics Anonymous, and The Big Bang Theory. For the test set, we use Friends.

Our evaluation metrics are micro-averaged F-score, Precision, and Recall. When performing
cross-validation, we average the results across the folds.

4.4.2 Baselines

Our baselines are the following:

Majority: Set the prediction to the majority class (non-sarcastic).

Random: Uniformly sample the binary prediction.

SVM: Our main baseline uses Support Vector Machines (SVM) [40]. According to [22],
SVMs are robust predictors in low-resource regimes, sometimes outperforming neural networks.
We leverage scikit-learn [175] for its implementation, with its default kernel setting. The
only hyper-parameter we tune per experiment is the penalty term C (1, 10, 30, 500, and
1000). We employ standardized features for the speaker-dependent setup. We concatenate
the features from the different modalities.

4.5 Multimodal Sarcasm Classification

Table 4.1 shows the classification results for binary sarcasm prediction in the speaker-dependent
setup. The Majority baseline performs worst (33.3% F-Score; 0% for sarcastic and 66.7%
for the non-sarcastic class). For the unimodal baselines, the visual modality performs best.
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Modality Precision Recall F-Score

Majority 25.0 50.0 33.3
Random 49.5 49.5 49.8

SVM

T 65.1 64.6 64.6
V 68.1 67.4 67.4
A 65.9 64.6 64.6

T+V 72.0 71.6 71.6
T+A 66.6 66.2 66.2
V+A 66.2 65.7 65.7

T+V+A 71.9 71.4 71.5

∆multi−unimodal ↑ 3.9% ↑ 4.2% ↑ 4.2%
Error rate reduction ↑ 12.2% ↑ 12.9% ↑ 12.9%

Table 4.1: Speaker-dependent setup. We conduct a five-fold cross-validation with micro-
averaged metrics.

The best results are achieved by concatenating the textual and visual features, surpassing all
unimodal baselines with a 12.9% reduction in relative error rate. Interestingly, the baseline
that uses all modalities performs slightly worse than the previously mentioned one.

We conduct error analysis for the utterances that the best unimodal baseline fails to predict
correctly while the best multimodal model succeeds. We find that the textual component
does not reveal explicit sarcasm in most of the sampled cases. Consequently, we hypothesize
that a successful classification requires more signal than text.

The second part of our evaluation, which evaluates the speaker-independent setup, is
more challenging since the model can no longer rely on speaker-distinctive features. The
classification model needs to be able to generalize to new speakers. Furthermore, this is also
a source-independent setting, given that a different show (Friends) is in the test set, which
requires the model to generalize beyond the speaker. We consider this setup a challenging
benchmark for future research in multimodal sarcasm. We also noticed the task’s increased
difficulty during the SVM baseline training, which required a small error margin (a higher C
value) for the best performance.

We present the results of the speaker-independent setup in Table 4.2. Unlike the previous
setup, the multimodal and the unimodal models have a smaller gap. In this scenario, the audio
channel is more meaningful and narrowly improves when we include text. After conducting
an error analysis of the true positive examples captured by the T+A baselines but not by
T, we see a higher mean pitch (mean fundamental frequency) regarding those incorrectly
predicted, as suggested by [10]. We observe particular patterns of high pitch for the failure
cases as well, but on average, they have a typical pitch, which is a scenario also considered by
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Modality Precision Recall F-Score

Majority 32.8 57.3 41.7
Random 51.1 50.2 50.4

SVM

T 60.9 59.6 59.8
V 54.9 53.4 53.6
A 65.1 62.6 62.7

T+V 62.2 61.5 61.7
T+A 64.7 62.9 63.1
V+A 64.1 61.8 61.9

T+V+A 64.3 62.6 62.8

∆multi−unimodal ↓ 0.4% ↑ 0.3% ↑ 0.4%
Error rate reduction ↓ 1.1% ↑ 0.8% ↑ 1.1%

Table 4.2: Speaker-independent setup.

the same authors. We encourage future work to focus on analyzing temporal pitch patterns.
Unlike the previous setup, the video modality does not seem to be quite helpful. We

believe this is the case since the visual features represent low-level object features (far from
high-level sarcasm characteristics). These features may make the classification recognize
biases that do not allow it to generalize. Figure 4.2 supports this as evidence, which we
describe in the next section. By looking at the incorrect predictions by the best model, we
infer that models should better capture the mismatches between the main speaker’s facial
expressions and the emotions of what is being said.

4.5.1 The Role of Context and Speaker Information

We investigate whether additional information, such as an utterance’s context (i.e., the
preceding utterances) and speaker identification, helps with predictions. Context features are
generated by averaging the representations of the utterances (as per Section 4.3) present in
the context. We represent the training fold speakers with a one-hot encoding vector.

Table 4.3 shows the results for both evaluation settings for the textual baseline and
the best multimodal variant. For the context features, the best variant of the speaker-
independent setup (text plus audio) shows a slight improvement; however, other models have
no improvement. A possible reason could be losing temporal information when pooling across
the conversation.

For the speaker features, we see an improvement in the speaker-dependent setup for the
textual modality. Due to the speaker overlap across splits, the model can leverage speaker
regularities for sarcastic tendencies. However, we observe a different trend for the best
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Setup Features Precision Recall F-Score

Speaker
Dependent

T 65.1 64.6 64.6
+ context 65.5 65.1 65.0
+ speaker 67.7 67.2 67.3
Best (T + V) 72.0 71.6 71.8
+ context 71.9 71.4 71.5
+ speaker 72.1 71.7 71.8

Speaker
Independent

T 60.9 59.6 59.8
+ context 57.9 54.5 54.1
+ speaker 60.7 60.7 60.7
Best (T + A) 64.7 62.9 63.1
+ context 65.2 62.9 63.0
+ speaker 64.7 62.9 63.1

Table 4.3: Role of context and utterance’s speaker. Note: T=text, A=audio, V=video.

multimodal variant (text + video), where the score barely improves. To understand this
result, we visualize the correct predictions made by this model. As seen in Fig. 4.2, the results
show a correlation between the class distributions among the overall ground truth and the
correctly predicted instances per speaker. As this model does not use speaker information,
this correlation indicates that the multimodal variant can learn speaker-specific information
transitively through the input features, rendering additional speaker input redundant. Lastly,
in the speaker-independent setup, the speaker information does not lead to improvement.
This finding is also expected as there is no speaker overlap between the splits.

4.6 Conclusions

In this chapter, we study multimodal sarcasm classification. We present a new multi-source
dataset and benchmark, MUStARD, containing videos annotated with their binary sarcastic
nature. This asset allows future research in this area. Through multiple evaluations, we show
the importance of multimodality for sarcasm detection. We develop models that leverage text,
speech, and visual signals. In addition, we studied the importance of speaker and context.

Our experiments support the premise that multimodality is essential for understanding
sarcasm. The multimodal models considerably surpass the unimodal ones several times,
reducing the relative error rate by up to 12.9%. We consider the assets from this chapter to
be essential for future research avenues in multimodal sarcasm classification.

Up to this point, we have addressed aspects of evaluation for new domains or behaviors.
In the next chapter, we propose a new evaluation procedure for already existing tasks.
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Figure 4.2: Correlation in speaker-specific sarcastic tendencies of the top-7 speakers. Predic-
tions are obtained from the best performing model from Table 4.1. Speaker identifier features
are not used.
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CHAPTER 5

Realistic and Robust Video Understanding
Evaluation

5.1 Introduction

Despite current progress in multimodal (textual and visual) representations, language-informed
video understanding is still a very challenging task for machine learning systems [274, 134].
This issue is mainly due to the task setup and the dataset construction. Current video
understanding datasets often have at least one of two significant limitations. First, they have
limited application value. For example, multiple-choice questions [127, 225, 99, 26] do not
reflect real-world tasks. Second, they are based on subjective evaluation metrics, e.g., video
captioning [229, 117, 280, 241]), and are therefore hard to evaluate automatically, as the
ground truth can be expressed in different ways. In this chapter, we address these limitations
by introducing a new dataset named FIBer that collects multiple perspectives on the same
video, focusing on noun phrases as a proxy for different entities and their interactions in the
video. Our data focuses on recall and tests the ability of models to capture a wide range of
possible interpretations for a particular aspect of a video.

We construct the FIBer dataset by systematically blanking captions from an existing
video captioning dataset named VaTeX [241] and providing additional correct answers for
the blanks. VaTeX is a video captioning dataset that contains 40,000 10-second YouTube
videos with 10 English captions per video.1 We build our video fill-in-the-blanks dataset by
blanking random noun phrases from one of the English captions for each video from a subset
of VaTeX consisting of 28,000 videos. Through extensive analyses, we show that the blanked
noun phrases are essential for understanding critical visual aspects of the video.

We propose a Transformer-based [233] multimodal model to address the fill-in-the-blanks
task. Our experiments show that our best multimodal model achieves a token-level F1 score

1Licensed under Creative Commons, more information here: https://eric-xw.github.io/vatex-website/ind
ex.html.
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Two children throw _____ at
each other as a video is captured
in slow motion.

_____ sits at a drum set and
practices playing the drums.

A boy is trying to comb his hair
while _____ dries it.

Correct answers: balloons, bal-
loons filled with water, balloons
of water, pink balloon, pink water
balloon, things, water, water bal-
loons, water-filled balloons

Correct answers: child, drum-
mer, future drummer, girl, kid, lit-
tle girl, little kid, musician, small
child, young girl

Correct answers: another per-
son, friend, girl, his sister, his sis-
ter with hairdryer, person, young
woman

Table 5.1: Three examples from the FIBer dataset, each including three video frames, the
caption, the blanked answers from the original caption together with the collected answers
(all answers normalized, see Section 5.3.2).

of 71.4 while the F1 score of crowd workers is 82.5, indicating that this task is challenging for
video and text understanding.

The contribution of this work is threefold:

1. We propose a novel fill-in-the-blanks task as an evaluation framework that addresses the
drawbacks of previous video understanding approaches. In support of this framework,
we introduce FIBer, a novel dataset of 28,000 videos and fill-in-the-blank captions
with multiple correct answers.

2. We propose several unimodal baselines and two multimodal models for solving this task.

3. We provide a detailed analysis of the data to measure the diversity and complexity
of the answers and also conduct an error analysis of the models’ performance to gain
insights into the blanked captions and videos that are hard for the models to solve.

5.2 Related Work

Language-informed video understanding is a complex task extensively addressed in the
multimodal (natural language and computer vision) machine learning research through
diverse tasks and benchmarks.

Multiple-Choice Video Understanding. Multiple-choice benchmarks consist of identify-
ing the only correct answer from a set of distractors, where the set of possible answers varies
depending on the input. Video Question Answering (Video QA), a popular format, consists
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of answering questions based on video content. Numerous multiple-choice Video Understand-
ing benchmarks have been proposed such as TVQA [127], MovieQA [225], TGIF-QA [99]
(Repetition Action and State Transition tasks), LifeQA [26], PororoQA [112], MarioQA [163],
VCQA [281], VideoMCC [229], and ActivityNet-QA [263]. However, they provide choices
and are thus easier to solve than generating arbitrary text. A further drawback is that the
performance without the visual input is generally already high as models can exploit biases
in the dataset [3] or count on other modalities that overlap functionality with the visual one.

Video Captioning. Video Captioning consists of generating text that describes a given
video. This task can be carried out using multiple datasets such as ActivityNet Captions [117]
(also features Dense-Captioning), YFCC100M [227], [6], DiDeMo [7], MSR-VTT [251],
YouCook2 [280], How2 [199], HowTo100M [158], VaTeX [241], TGIF [138], MovieNet [91],
LSMDC [195], TGIF-QA [99] (Frame QA task). Due to the diversity of captions provided,
Video Captioning benchmarks do not present a high human agreement and are thus hard to
evaluate automatically with certainty [1].

Video Understanding Based on Filling Blanks. VideoBERT [220], CBT [219],
UniVL [148], ActBERT [282], and HERO [133] methods propose masking random parts
of the input from text and video pairs for training. However, they do this only for sys-
tem training and not use the framework to test and evaluate video understanding. The
only exception is MovieFIB [151], which employs a video fill-in-the-blanks scheme based on
LSMDC [195] for training and evaluation. However, these methods have several drawbacks.
They blank a single word, which makes it easier to guess; they evaluate correctness with a
single ground-truth answer per caption; and they focus on the movies domain (we focus on
YouTube videos).

Concurrent Work. The most similar work to ours is VidQAP [197], which presents an
evaluation framework to fill in blanks with phrases using semantic roles based on ActivityNet
Captions [117] and Charades [208]; unlike this existing work, we design our benchmark
to feature a high human accuracy (avoiding ActivityNet Captions as it is contextualized,
collecting multiple correct answers, and showing a high human performance). Our work
is also close to [254] on evaluating the use of free-form QA; however, they employ a small
vocabulary and no human accuracy that serves as an upper bound for the task.

The novelty of our work lies in our use of a challenging task (a considerable gap between
human and best model performance) that measures a form of video understanding while at
the same time yielding a high human performance due to the large number of possible correct
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answers we collected (∼13 per caption) from multiple annotators (∼9 per caption).

5.3 Video Fill-in-the-Blanks Dataset

We construct FIBer – a large video understanding dataset that can evaluate the ability
of a model to interpret and use a multimodal context by requiring the models to “fill in”
(generate) a “blank” (a missing constituent) in this context. We build FIBer by following
two main steps: (1) data generation, where we compile a large set of video-caption pairs with
selectively blanked words, and (2) data annotation, where crowd workers provide additional
valid answers for these blanks.

Note that we could also develop a fill-in-the-blanks dataset by completing only the first
step: the data generation. However, this would result in only one valid answer (the original
blanked word or phrase), which can lead to unfair evaluations that are too strict because of
alternative correct answers being dismissed (e.g., “child” provided as an answer where the
blanked word was “kid”). Besides manual annotations, we found no high-quality method
to obtain additional correct answers automatically. For example, “building” and “t-shirt”
in Table B.3 are too dissimilar, but both are correct, “pink” and “yellow” in Table 5.1 are
semantically close, but only one is correct.

5.3.1 Data Generation

The dataset is constructed starting with the VaTeX [241] dataset. VaTeX is a multilingual
video captioning dataset consisting of over 41,250 video clips, each taken from a unique public
YouTube video lasting around 10 seconds. Each video clip has 10 English and 10 Chinese
captions associated with it.

We produce blanked captions by blanking noun phrases in the English captions in VaTeX.
We chose to mask only noun phrases for three main reasons. First, noun phrases often
require visual information for identification or understanding. They cover a large variety
of information regarding visual content, as their head nouns can describe people, objects,
scenes, events, and more. A model often needs to identify the related objects in the videos
and the properties of objects (e.g., color, number, or size) to fill the blank correctly.

Second, nouns are usually essential to the understanding of visual content and serve as
reliable predictors of the ability of a system to understand a video. Other phrases, such as
verbs or adjectives, can more easily be guessed from the text only while ignoring the visual
information. To illustrate, consider the example “A woman _____ in the pool,” where a
model can easily predict that the blank should be “swims” from the textual content only,
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which would not be the case for “A woman swims in _____”, where the blank could be
completed by sea, pool, lake, water, and other similar nouns.

Third, in preliminary experiments, we found that nouns lead to more robust annotations
as compared to e.g., adjectives, which can have low inter-annotator agreement due to their
subjectivity. As an example, consider the phrase “A _____ hill stands behind the house.”
where the blank could be filled with a color property, a size property, or another attribute.

For each video, we choose the first English caption containing at least one noun phrase
detected by spaCy2 [87], and randomly blank one of these noun phrases to generate an
instance. Accordingly, we generate our training, validation, and test data starting with the
VaTeX v1.1 training set, a random subset of size 1,000 from the validation set, and a random
subset of size 1,000 from the test set, respectively.

5.3.2 Data Annotation

We performed a crowdsourced annotation procedure to collect additional correct answers
for each blank in the validation and test sets. As highlighted earlier, the main reason for
collecting these additional annotations is to reflect the natural diversity of language and have
multiple alternative answers for each blank.

We use Amazon Mechanical Turk (AMT) for the annotation. Figure 5.1 shows the
annotation interface and a highlight of the data collection instructions (additional guidelines
were provided, not shown here for space reasons). Workers were presented with a video
clip and the corresponding masked caption for each blanked caption. They were then asked
to fill in the blank with a noun phrase.3 We also asked annotators to provide answers
in a confidence-descending order (the first answer should be the most natural one to the
annotator).

We presented five videos for each Human Intelligence Task (HIT). Nine workers annotated
each with at least two answers for each blank. We paid a bonus for each extra answer for each
blanked caption, from the second one to the fifth one, to encourage them to provide more
answers. We calculated a $12 hourly rate for a worker that provides at least five answers.
We estimated the time to annotate one video to be 30 seconds. Consequently, the HIT pay
rate was $0.2, which could result in a total of $0.5 with the bonus. Additionally, we offered
another type of bonus of $0.2 to the worker with the largest number of correct answers for

2We used the model en_core_web_trf from spaCy v3. An error analysis identified only three tagging
errors in a sample of 247 sentences.

3We blanked multi-word spans for the task, rather than single-word noun phrases, because blanking a
single noun at a time led to a lower annotator agreement in preliminary experiments, likely due to the lower
likelihood of overlap. For example, annotator one might write “young boy” and annotator two might write
“young child”, which would have at least some overlap compared to “boy” and “child” (no overlap).
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Figure 5.1: Annotation interface.

every HIT to encourage them to provide more than five answers.
We required workers to be in Canada or the United States,4 and to have completed at

least 1,000 HITs on AMT with at least a 92% approval rate. The interface also checked that
the answers differed for a given worker and caption. For this, we first normalized the answers
by lower-casing, stripping punctuation and extra spaces, and removing the determiners “the”,
“a”, and “an.”

During the annotation, we manually reviewed a sample to identify cases of incorrectly
tagged noun phrases (e.g., “inside” marked as a noun when it should be a preposition) and
factually incorrect noun phrases (e.g., referring to bags as “eggs” without any information
on the contents of the bags); we disqualified workers who consistently provided incorrect
annotations. After collecting annotations, we filtered for noun phrases using the same method
as before, based on whether the text is parsed as a noun phrase (including bare nouns, e.g.
“man is walking”), a wh-phrase (“who is speaking”), a simple gerund (“eating is a good way

4We restricted the task to these countries because it is a good proxy for proficient English speakers and
because our task received lower-quality responses otherwise.
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Statistic Original phrases Annotated
Noun phrases (before filtering) 100% 95%
Unique answers per caption ∼ 13.0 ± 4.14

Unique answers per caption per annotator ∼ 2.63 ± 0.49
Characters per token 5.09 ± 1.89 5.27 ± 2.00

Tokens 1.47 ± 0.68 1.36 ± 0.68
Visual word use (color, number, or size) 8.21% 3.31%

Table 5.2: Summary statistics for the originally blanked phrases and the annotated answers.
The token counts are computed after the text normalization. The statistics for the annotated
answers correspond to the ones after filtering for noun phrases (see Section 5.3.2), except for
the noun phrases percentage.

to stay healthy”), or infinitive (“to eat is wonderful”).
We compute summary statistics on the annotated data to determine the degree of similarity

with the initially blanked phrases. We show the statistics in Table 5.2. We find that, in
general, annotators tend to provide ∼3 unique answers for the provided data. Compared
to the original phrases, annotators use about the same number of tokens. Annotators also
use visual words at a much lower rate than the original phrases, possibly because the task
encouraged the annotators to generate as many distinct nouns as possible without regard to
descriptive information.

5.3.3 Data Analysis

To further validate the utility of the annotations collected in this study, we provide an
extensive analysis of the answers (which are obtained from the union of the annotations and
the initially blanked phrases).

We compute the most-frequent answers and find, as expected, that noun phrases related
to “person” are the most frequent: the word “man” appears in 5.7% of total original phrases
and 1.2% of total annotations (see Fig. B.1 in the Appendix). Note that our annotations
have a long tail distribution, as the most frequent noun phrase appears in only 1.2% of total
annotations. In addition, we find that answers related to “person”, such as “another person”
are not trivial. On the contrary, in the third example in Table 5.1, for example, a model has
to reason about the actions of both persons and distinguish between them. The other two
examples in Table 5.1 also reflect how a model must understand both the video and the text
to complete the blanks.

Figure 5.2 shows the kind of answers depicted in the videos. This analysis shows the
diversity and complexity of answers a model needs to fill in, demonstrating a strong video
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Statistic %

F1 Score first answers (per caption) 82.6 ± 15.7
Exact Match first answers (per caption) 75.3 ± 19.7

F1 Score first answers (per answer) 70.0 ± 11.9
Exact Match first answers (per answer) 58.1 ± 16.3

Table 5.3: Agreement statistics for the answers for a leave-one-worker-out comparison,
including the standard deviation.

understanding. As expected, the cluster Person-related has the most answers, followed by
the clusters: Objects (e.g., shoes, glasses), Places (e.g., mountain, street), Materials (e.g.,
metal, wood), and Body parts (e.g., fingers, head). Note also that the Person-related cluster,
among more typical answers such as “male” and “female”, also contains complex and diverse
answers such as “dancer”, “workers”, “musician” or “audience”.

5.3.4 Human Agreement

To establish a reference for the machine models, we compute the agreement among annotators
using the evaluation metrics described in Section 5.5.1, which we also use for model evaluation
(Section 5.5.2).

Specifically, we apply a leave-one-out strategy to construct the “test set” and the “ground
truth set.” We compare the first answer provided by each crowd worker (which is their most
natural/confident answer) against the complete set of answers provided by the other crowd
workers, using the maximum F1 score (token overlap) and the maximum exact match (EM)
as agreement metrics, as described in Section 5.5.1.

Table 5.3 shows the inter-annotator agreement. We show the mean values of the agreement
metrics per caption and answer (recall there are multiple answers per caption, so in the former
case, we first average among the answers within the caption and then across the captions).
Compared to the answer level, the higher rates of agreement at the caption level indicate a
high amount of answer diversity among the workers.

In Fig. 5.3, we show the agreement as a function of the number of annotations per caption,
leveraging a few captions that ended up with fewer than nine annotations. As the figure
depicts, the agreement swiftly soars when reaching 8–9 annotators. Note the plot would
always be non-decreasing as the maximum score is taken when comparing a given answer
with the set of references. Future work can have the same captions annotated further to
reach even higher agreement scores. We speculate that we could get a 90% F1 score with
up to five more annotators per caption. Still, as the number of annotators is increased, it
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Figure 5.2: The 2D t-SNE [232] representation of the clustering of the top 100 most frequent
answers provided for the blanks. The answers are first converted to a singular form to
avoid showing redundant information. The answers are represented using the pre-trained
model stsb-roberta-base [144] with Sentence-BERT [191]. Each color represents a different
cluster. One of the authors manually mapped the answers to the clusters.
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Figure 5.3: Answer agreement per caption grouped by the number of annotations of its
caption. The shaded area represents 95%-confidence intervals.

would be essential to measure the number of answers that are considered wrong by other
annotators as it may become non-trivial (i.e., consider not only the answer coverage but also
the presence of wrong answers within the ground-truth annotations).

To further validate the quality of the crowdsourced annotations, we compare them against
human annotations collected from two trusted annotators (both researchers at the University
of Michigan). We sample 200 captions from the validation set, ask these two annotators
to perform the same labeling task that the MTurk workers performed, and then compare
their agreement with the crowdsourced data. The annotators obtain a per-caption average
of 90.2% F1 score and 49.0% exact match accuracy, comparable to the workers’ agreement
scores.

5.3.5 Limitations

We identify several limitations of our benchmark, which can be the objective of future work.

NPs vs. other phrases. By looking at a video and filling a blank caption with a noun
phrase, it can sometimes indirectly capture other aspects, such as actions (verbs, adverbs)
and object quality (adjectives, modifiers). However, this is not always the case. This is
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especially true for noun phrases that are easier to guess (cf. Table 5.5).

Focus on human actions. Our data focuses primarily on human-related activities (e.g.,
sports) and may lack general representation available in other datasets related to animals,
nature, and technology, to name a few.

Availability of the videos. Some videos may become unavailable over time since we
build upon VaTeX [241] and YouTube. To mitigate this issue, the VaTeX website offers to
download pre-extracted video features.5

Efficiency of the data annotation process. Not all videos have multiple possible
captions for noun phrases. For example, “the fork” may be the only reasonable answer for a
given video and blanked caption, and annotators may not have anything else to add.

5.4 Multimodal Method for Video Fill-in-the-Blanks

We propose an encoder-decoder multimodal method to perform the task of video fill-in-
the-blanks. We first encode the text and visual modalities together to obtain a semantic
representation of the blanked caption and video. The decoder uses the semantic representation
to generate text corresponding only to the answer to the blank. To correctly generate an
answer, a model needs to learn which parts of videos relate to the missing parts of the caption.
To accomplish this, we use the original Transformer architecture [233], whose self-attention
mechanism is particularly effective for encoding relations within an input sequence and has
been shown to perform well in many language understanding tasks.

We consider two encoders: the early-fusion encoder and the late-fusion (two-stream)
encoder. The structure of our multimodal model with an early-fusion encoder is shown in
Fig. 5.4a. The input to the model consists of the tokenized blanked caption-text t1, . . . , tn, as
well as a representation of the video consisting of multiple video sequence features v1, . . . , vm
from a video feature extractor. An embedding layer embeds the blanked captions. The video
features are projected into the encoder by a linear layer. We use a special token to represent
the masked phrase and another to separate the input text and video sequences. We add
positional embeddings to each input token or video feature to represent the sequence order
and another embedding to indicate whether it belongs to the text or video sequence, similarly
to BERT [47].

5https://eric-xw.github.io/vatex-website/download.html
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Figure 5.4: (a) Early-fusion multimodal model for video fill-in-the-blanks. (b) Late-fusion
multimodal model for video fill-in-the-blanks.
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The late-fusion model is shown in Fig. 5.4b. The late-fusion model encodes the language
and video first separately and then jointly. This decision is because the modalities may
benefit from learning independently about their own context before using them together.

5.4.1 Implementation Details

For the video encoder, we use the existing I3D [24] features (size 1024 every eight consecutive
frames) provided by the VaTeX dataset [241], in which videos were sampled at 25 fps. We
initialize our multimodal model using T5 [184], given its ability to fill in variable-length
blanks. T5 is an encoder-decoder Transformer [233] model that is a good starting point
as it provides state-of-the-art performance on text-only tasks, and it was pretrained to fill
arbitrary-length text spans that were previously masked. Building upon T5 allows our model
to leverage a pre-trained large-scale language model with solid language abilities and fuse
it with visual inputs. We initialize the early-fusion model with pretrained T5-base weights.
For the late-fusion model, we use T5-base for the text encoder and the decoder. We use two
one-layer transformers to encode videos and fuse text and video features, and the weights of
these two transformers are randomly initialized. Following the T5 model implementation,
the special token <extra_id_0> is used to represent the blanked phrase, and <\s> is used
to separate the text and video sequences. The generated output follows T5 output format:
the special token <extra_id_0> followed by the predicted text for the blanked phrase. See
Appendix B.2.1 for more details.

5.4.2 Baselines

We compare our model to the following baselines.

Most Frequent Answer. The baseline uses the most frequent answer in the training set
(“a man”) to answer all the blanked captions during evaluation.

Text-based Transformer. Previous visual question-answering datasets found that a text-
only model can nearly match the performance of the multimodal system [8]. We conduct
experiments based on text-only models to analyze how language alone can contribute to our
video understanding framework. We use the off-the-shelf T5-base transformer model [184]
as our baseline model. We use both a zero-shot model (not trained on our data) and a
fine-tuned model. For the latter, we use the base model v1.1 because it performed better in
our experiments on the validation set. The decoding hyperparameters are the same as in the
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multimodal models, except the beam size is 8 for the zero-shot one and 2 for the fine-tuned
variant, as we obtained the best validation results for each one using these beam sizes.

Single video feature. We consider using a single I3D feature per video to determine how
well the model does with a small portion of the video. Based on a study of 50 randomly
sampled videos, the blanked entity in the caption appeared 95% of the time in the third
second of the video (see Fig. B.7 in the Appendix). For this method, we pick the I3D feature
that corresponds roughly to it and apply it to the proposed multimodal methods instead
of using all the video features. Note that I3D takes a window of 16 frames as input, which
corresponds to 640 milliseconds, centered at the mentioned moment within the video. This
can be seen as a small generalization of the Image Understanding task, which considers a
single image (frame).

5.5 Experiments and Results

We perform experiments and evaluations using the dataset described in Section 5.3.

5.5.1 Evaluation Metrics

We use exact match accuracy and ROUGE-1 F1 score (token-level) [140] to evaluate the
output of the generation models and to evaluate human agreement (Section 5.3.4). We count
a generated text string as correct for the exact match if it has at least one string-level match
among the provided annotations. For the token-level F1, we compute the token overlap (true
positives) between the generated text string and each annotation, normalized by the sum
of the true positives and the average of the false negatives/positives. We then compute the
maximum across all annotations. For all evaluations, we computed the metrics based on the
normalized text (i.e., without articles).

5.5.2 Results

We evaluate the visual understanding ability of our multimodal model by comparing its
performance with the text-only baseline and human performance. The results from the fill-in-
the-blanks task are shown in Table 5.4. The accuracy of the text-only model and F1 score
are low, indicating that the language bias is controlled in our dataset. The multimodal model
outperforms the text-only baselines in both exact match accuracy and F1 score, meaning that
our multimodal model can learn video features relevant to caption language during training.
We also note that the early-fusion multimodal model (T5 + I3D) slightly outperforms the
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val test
Method EM F1 EM F1

Baselines

Most Frequent Answer 15.4 45.1 16.4 45.3

T5 zero-shot 39.3 52.0 37.4 49.2
T5 fine-tuned 58.0 73.8 54.5 70.9

Our multimodal models

T5 + 1f I3D 59.2 74.7 54.3 70.5
T5 + I3D 60.2 75.0 56.2 71.4

Late-fusion T5 + 1f I3D 53.7 70.3 50.3 67.6
Late-fusion T5 + I3D 53.5 69.7 51.6 67.8

Upper bound (Human Agreement)

leave one worker out 75.3 82.6 75.0 82.5
new humans* 49.0 90.2 n/a n/a

Table 5.4: Results on the validation set. EM stands for Exact Match, and F1 is the token-level
F1 score (both in percentage). 1f refers to the variant of the multimodal model with a single
I3D feature. We measured the new humans’ performance from a random sample of 200. See
Section 5.3.4 for more details on the human baselines.

late-fusion multimodal model, which suggests that the model learns more effectively without
extra encoders (see Fig. 5.4b). The early-fusion and the late-fusion multimodal models
perform worse with a single I3D feature. This suggests that the model benefits from the
whole video in answering the caption correctly.

We also find a considerable performance gap between the multimodal model performance
and human performance. Therefore, plenty of space exists to improve human performance,
and the video fill-in-the-blanks task is worth investigating in future visual understanding
research.

5.5.3 Error Analysis

Results per Semantic Label. To measure how well the model understands different
patterns in the caption data, we compare the predictions generated for blanks corresponding
to words of different semantic categories (the rest of the answers generally belong to the same
category as the blanked words). Two authors of the paper related to this chapter annotated
the initially blanked phrases for common non-overlapping semantic categories, including
people, passive entities, and locations.

We list the categories and their distribution/size in Table 5.5, and we also show the
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Category Size (%) T5 zs T5 ft T5 + I3D

Passive entity 40.4 52.9 63.6 63.6
Person 33.4 37.0 81.8 83.2
Pronoun 6.1 73.5 85.6 84.3
Location 5.5 55.1 74.5 75.4
Preposition 4.5 81.6 95.7 97.5
Action 3.9 47.8 65.5 59.9
Audio 2.5 56.4 73.0 63.6
Abstract 2.2 59.6 70.0 77.9
Other 1.5 56.9 75.0 83.7
Event 1.0 70.0 68.0 84.0

Table 5.5: F1 scores on the validation set for blanks with different semantic categories,
in descending order based on their size. The results correspond to the best T5 zero-shot,
T5 fine-tuned, and T5 + I3D models. Person corresponds to answers related to people,
Passive entity represents passive entities such as objects, Pronoun includes subject or object
pronouns, Location corresponds to places in general, Preposition includes noun phrases inside
prepositional phrases (e.g., “order” in “in order to”), Action involves activities (“a handstand”
in “perform a handstand”), Audio refers to noun phrases indicated through audio (“the
procedure” in “the person describes the procedure”, which can only be understood through
access to the audio modality), Abstract corresponds to high-level concepts (e.g., “a great
time”), Event are long-running processes (“a party”), and Other correspond to instances hard
to label for the annotators (e.g., “a video”).

performance for the best text-only zero-shot method (T5 zero-shot), text-only fine-tuned
method (T5 fine-tuned), and multimodal method (T5 + I3D). The zero-shot results from T5
show that some categories can be easily predicted without fine-tuning on the dataset, namely
Preposition, Pronoun, and Event. However, fine-tuning T5 on our dataset yields improvements
for nearly all categories. The multimodal (T5 + I3D) model improves the categories of Person
and Abstract nouns but performs worse for others, namely Audio and Action. This finding
follows that understanding higher-order audio and visual concepts requires complex reasoning,
for which the video-aware model may need more training. In general, Action and Passive
entity will likely require extra attention in future work, considering the comparatively low
performance for these categories.

Best Model vs. Human Performance. To gain insights on improving our models for
future work, we measure where our best model (T5 + I3D) fails and humans perform well.
We find three main types of wrong predictions. The most common error is predicting “man”
instead of “woman”, followed by predicting “person” instead of “child” or “baby”. The majority
of the remaining errors are predictions close to the ground truth answers such as “dance”
instead of “exercise”, “pillow” instead of “sheets”, “rug” instead of “sand”, “floor” instead of
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“court”, “knife” instead of “spatula” or “basketball game” instead of “wrestling”.
Based on these types of errors, in future work, the model would benefit from pre-training on

unbiased data (both gender and age) and also from pre-training on a large-scale multimodal
(language and video) dataset to learn about more diverse situations and objects.

5.6 Conclusions

This chapter introduced the fill-in-the-blank evaluation framework for video understanding.
The framework addresses drawbacks of alternative video understanding tasks, such as multiple-
choice visual question answering or video captioning.

We make three noteworthy contributions. First, we introduced FIBer, which is a large
dataset consisting of 28,000 videos and tests based on filling in blanks, building upon an
existing video captioning dataset with a new set of manual annotations, and using a modified
annotation framework to encourage diverse responses among annotators. Others can easily
replicate this process to create new fill-in-the-blank data for other datasets and tasks. Second,
we conducted extensive analyses of the dataset to evaluate the quality of the annotations and
to understand the patterns and limitations of the data. Finally, we introduced a multimodal
model that fuses language and visual information and found that the video-aware models
significantly outperform the text-only models. Notably, we found a consistent gap between
model performance and human performance, which suggests room for improvement in future
models addressing video understanding through the lens of the fill-in-the-blanks task. The
FIBer dataset and our code are available at https://lit.eecs.umich.edu/fiber/.

In this chapter, we employed a pre-trained video encoder. Yet, more recent work has
shown that an image encoder can outperform it [183]. Can we leverage it and even improve
upon it? We address this question in the next chapter.
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CHAPTER 6

Practical and Scalable Video Understanding

6.1 Introduction

Imagine it is winter season, and we aim to develop an auto-tagging system that recognizes all
the activities in our winter vacation footage. Luckily, there have been tremendous advances
in the action recognition community [237, 24, 9]. For instance, we could leverage one existing
model that recognizes up to 700 human actions [115]. Sadly, our family’s favorite activity,
sledding, is not on the list of categories that these models can recognize. To train a new
model, we must collect many sledding examples in a traditional supervised setting. Such
a process is labor-intensive, costly to create, and difficult to scale to recognize further new
activities. Instead, zero-shot models [122, 210, 18] can alleviate such a burden by enabling
recognition of unseen concepts.

Large pre-trained image-text models, such as CLIP [183] and ALIGN [100], have shown
outstanding zero-shot capabilities on a handful of visual tasks, including video tasks such as
Action Recognition and Text-to-Video Retrieval. Such models have overcome the limitations
of traditional zero-shot learning algorithms by using abundant images (on the internet) with
(free) natural language supervision. Despite their remarkable zero-shot performance in video
tasks, there is room for improvement to close the image-to-video domain gap. For instance,
recent studies have shown that fine-tuning CLIP yields significant improvements in target
video tasks [149, 239]. Unfortunately, fine-tuning and improving performance in a target
dataset comes with a cost: harshly penalizing the model’s zero-shot capabilities [247].

There have been multiple efforts to train video-language models that can be employed
for various downstream video understanding tasks. Even though these approaches use video
data, their zero-shot capabilities remain poor compared to those exhibited by CLIP [183]. It
would be unfair not to mention that video-language pretraining methods train with clean
yet two orders of magnitude smaller datasets [11] or large datasets with unaligned natural
language supervision [158]. The alternative is to scale up further the amount of unaligned
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natural language supervision abundant on internet videos. In comparison, ALIGN [100] (in
the image space) has shown the ability to cope with noisy supervision by scaling up to the
billion-samples scale. However, replicating such experiments with video data would only be
possible for selected (if any) industrial players.

This work introduces FitCLIP, a fine-tuning strategy to adapt large-scale image-text
pre-trained models for zero-shot video understanding tasks. The goal of FitCLIP is to
retain the knowledge of CLIP [183] while gently adapting and learning how video data
looks. Our method leverages relatively small labeled and extensive pseudo-labeled video
data to train a student network. To validate FitCLIP’s effectiveness, we designed and set
zero-shot benchmarks for two popular video understanding tasks: action recognition and
text-to-video retrieval. Our experiments empirically validate the effectiveness of distillation
to train better and fine-tune multimodal video models and show that FitCLIP establishes a
new state-of-the-art for zero-shot video recognition and retrieval. Our design strategically
incorporates model patching, which has not been explored before, as far as we know.

Contributions. Our key idea is to develop a method to refine large-scale pretrained
image-language models to zero-shot video use cases. Our work brings two contributions:

1. We introduce FitCLIP, a refinement strategy and model for zero-shot video under-
standing. The model leverages abundant knowledge in large-scale image models and a
distillation strategy to learn new video knowledge. We describe FitCLIP in (Section 6.3).

2. We evaluate FitCLIP and competitive baselines in a newly designed zero-shot benchmark
(Section 6.4). Our experiments include results for two sets of video understanding tasks,
action recognition, and text-to-video retrieval, where we show the value of FitCLIP
(Section 6.5).

6.2 Related Work

Zero-shot Video Understanding. Multiple zero-shot methods have been proposed to
tackle popular tasks such as action recognition [18, 31], text-to-video retrieval [250], and
localization-related tasks [98, 270]. Most of the zero-shot action recognition literature either
follows an attribute-based approach or leverages word embedding to transfer knowledge
[142, 98, 62, 65, 154, 18, 31]. Differently, in the text-to-video retrieval task, zero-shot methods
leverage large-scale natural language supervision to pre-train video-language models. After
pretraining, these models can be employed and tested in text-to-video retrieval tasks. Similar
to [11, 250], our work leverages natural language supervision from video titles to unlock
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zero-shot capabilities. However, we focus on adapting well-trained image-text models to
videos rather than learning a video-language model from scratch.

One of our goals is to establish a benchmark for zero-shot action recognition and text-to-
video retrieval. Previous efforts have devoted insightful analyses to creating true zero-shot
evaluation for action recognition [75]. These efforts are valuable for the traditional zero-
shot setting, where methods use a close vocabulary of (seen) actions. Still, they do not fit
when zero-shot models learn with natural language supervision. Instead, we follow standard
(full) tests on popular action recognition datasets and well-established text-to-video retrieval
datasets.

Visual-Language Pretraining. Pretraining visual models with natural language became
a popular learning strategy in the image domain [161, 215, 104, 46, 183]. The idea of matching
images with text dates back to the late 90s when Mori et al. trained models to predict nouns
and adjectives from image-text pairs [161]. Others modernized this idea using large-scale
datasets to train CNNs [104]. However, only recently, Radford et al. took this idea to the
next level [183]. They trained CLIP, a dual image-text encoder, with more than 400M images
and text descriptions using a contrastive objective [168]. Our work builds upon CLIP and
adapts it to video use cases while preserving its zero-shot capabilities.

Video-language pretraining also gained traction in the video space. Despite the progress,
it has been hard for video-language methods to compete in zero-shot settings with image-
language pre-trained models. We argue this is due to the limited availability of videos with
clean (and aligned) natural language supervision. For instance, Frozen in Time [11] trains a
transformer-based architecture on the WebVid dataset, which contains 2.5M humanly curated
video-title pairs. The dataset is at least two orders of magnitude smaller than the dataset to
pre-train CLIP [183]. The importance of large and diverse data emerges when we compare
Frozen in Time with CLIP in zero-shot video tasks. Others [158, 157] have trained with the
relatively larger HowTo100M dataset, which contains 100M unaligned video-text pairs. Still,
the zero-shot capabilities of these models remain subpar to what CLIP can provide. Our
approach, FitCLIP, leverages the WebVid [11] dataset as a rich source to adapt CLIP for
zero-shot video understanding tasks.

Refining Large-scale Image Models. DistInit [72] explored distilling image models
for video. More recently, CLIP’s strong visual representation inspired multiple researchers
to explore its usage for video tasks [182, 149, 34, 239, 183, 56]. CLIP4Clip, for instance,
proposed a straightforward strategy to fine-tune CLIP for the text-to-video retrieval task [149].
Surprisingly, their simple method sets a new state-of-the-art in various datasets. Similarly,
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ActionCLIP introduced a novel action-recognition paradigm, harnessing CLIP’s general visual
knowledge [239]. While existing approaches effectively boost performance on target datasets
and tasks, they have not been shown to preserve the original CLIP zero-shot capabilities
(also based on early experiments we ran).

6.3 Method: FitCLIP

Our goal is to train a model that expands and complements large image-language models
[183, 100] for zero-shot video (see Fig. 6.1). To do so, we introduce FitCLIP, a refinement
strategy that leverages small labeled and extensive pseudo-labeled data and existing knowledge
acquired from large image-text pairs. FitCLIP includes two steps. The first step trains a
model in a Teacher-Student fashion, leveraging both labeled video-text pairs and pseudo-labels
generated by a teacher model. The second step fuses the existing knowledge of the teacher, a
large-scale pre-trained image-language model, with the student trained on video data. We
call the resulting model the same as our refinement strategy, FitCLIP.

6.3.1 Teacher-Student Fine-tuning

We aim to train a model using video-text pairs while leveraging knowledge from image-
language representations. One alternative is to reuse image-language encoder weights and
fine-tune them in a target dataset [149, 239]. Such an approach is effective in boosting
performance for in-distribution datasets. Still, it tends to fail at preserving the zero-shot
capabilities of the original model’s weights due to catastrophic forgetting [59]. Instead, we
gently refine the original image-language model’s weights by incorporating a two-fold strategy.
We use a small sample of labeled data to avoid model drift [196] (because of using a much
smaller batch size and less diverse dataset). We also regularize the learning process by adding
pseudo-labels generated with the original image-language model. Note that our strategy
shares intuitions with the Knowledge Distillation literature [86], where a Teacher-Student
analogy is used to describe the process of training a Student with priors derived from a robust
Teacher model. Figure 6.1 (step 1) illustrates the process to train our Student model.

Data Subsets. Our fine-tuning strategy relies upon two subsets of data: a small labeled
dataset of video-text pairs and an unlabeled (unaligned) set of video-text candidate pairs.
The labeled subset contains videos matched with one text describing their visual content.
These video-text pairs are of high quality and made by a human. The unlabeled subset also
includes a list of videos and a list of text descriptions. However, the match between a video
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Video Text

“Running women in 
a forest.”

Labeled Video-Text Pairs

Pseudo-labeled Video-Text Pairs

Videos Candidate Texts

“Serious thoughtful 
man drink beer.” 

Teacher Model

Predict

“Aerial shot of 
autumn forest field.”

Student Model

Visual Encoder

Text Encoder

FitCLIP

Teacher Model

Student Model

+

(1) Teacher-Student Fine-tuning (2) Fusing Teacher-Student Knowledge

Figure 6.1: FitCLIP refinement strategy and model. We propose a refinement strategy
to adapt large-scale image-text pretrained models. Our strategy first trains a model in a
Teacher-Student fashion. To do so, we leverage labeled and pseudo-labeled (with a teacher)
video-text pairs. This process, which we call step (1), yields a Student model that captures
video-relevant knowledge while being compatible with the teacher. In step (2), similar to
[247], we combine the Teacher and Student weights to create our final model, FitCLIP.

and the best-describing text does not exist in this subset.

Teacher Model. The teacher aims to provide soft pseudo-labels on unlabeled sets of
video-text candidate pairs. We adopt CLIP [183] as a teacher. CLIP includes an image
encoder and a text encoder, which were trained to predict the correct pairing of image-text
pairs using a contrastive objective [168]. In practice, we use CLIP to compute the similarity
between a subset of videos (within a sizable unlabeled set) and a set of candidate texts. Given
that CLIP only takes individual images as input, we pass N frames from the video through
its visual encoder and mean-pool the outputs into a single visual feature. We then use these
similarity scores as target soft pseudo-labels.

Student Model. We aim to train a student model that learns from video-text pairs and
distills knowledge from large pretrained image-language models. As the student, we choose
the same dual architecture proposed by CLIP [183]. To train the model, we leverage two
types of supervision: samples from the manually labeled video-text pairs dataset and soft
pseudo-labels from the unlabeled set. Like the Teacher model, the student’s visual stream
takes N frames from each video and mean-pools the resulting representations into a single
feature.
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Student’s Training Objective. We train the student model with two losses: a loss to learn
from labeled samples and a loss to distill the teacher’s knowledge via pseudo-labels. Given
a video-text pair denoted (v, t), our student’s dual encoder extracts a video representation
zv and a text representation zt. We use the InfoNCE [168] loss for labeled samples to
learn a video-text correspondence. We follow [11, 250] and minimize the text-to-video and
video-to-text contrastive losses:

Lv2t =
∑

(v,t)∈Bl

log
ezv ·z

+
t /σ∑

z∈{z+t ,z−t } e
zv ·z/σ

(6.1)

Lt2v =
∑

(v,t)∈Bl

log
ezt·z

+
v /σ∑

z∈{z+v ,z−v } e
zt·z/σ

(6.2)

Where σ is the temperature hyper-parameter, Bl is a batch of video-text pairs, z+t is the
positive text for the candidate video zv, z+v the positive video for candidate text zt, and
{z−v , z−t } the negatives sets to contrast the candidate video and text representations. Then
(Lv2t + Lt2v) is the final labeled (contrastive) loss.

To distill knowledge from soft pseudo-labels generated by the teacher, we use the teacher’s
predictions as pseudo-labels [86] and minimize the cross-entry of the student’s scores relative
to those from the teacher:

Ldistill,v2t =
∑

(v,t)∈Bl

exv ·xt/σ∑
x∈T exv ·x/σ

log
ezv ·zt/σ∑
z∈T ezv ·z/σ

(6.3)

Ldistill,t2v =
∑

(v,t)∈Bl

exv ·xt/σ∑
x∈V ex·xt/σ

log
ezv ·zt/σ∑
z∈V ez·zt/σ

(6.4)

Where xv and xt are the teacher’s video and text representations, and V and T are the
sets of videos and texts in the batch.

Our final objective combines the contrastive and distillation losses as in Eq. (6.5). We
scale the distillation loss with λ to prevent over-fitting to noisy pseudo-labels.

L = λ(Ldistill,v2t + Ldistill,t2v) + (1− λ)(Lv2t + Lt2v) (6.5)

6.3.2 Fusing Teacher-Student Knowledge

We aimed to train a competent student compared to the teacher. However, competing with
the 400M image-text pairs used to train CLIP [183] is challenging. Therefore, our goal is to
fuse both the general visual knowledge encapsulated by the teacher and the video-specific
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properties learned by the student. There are multiple ways to ensemble models [49]; however,
given that our fine-tuning strategy gently adapts the teacher to video use cases, we can
leverage elegant model patching techniques [70, 247, 94]. 1 We follow the same approach
in [94] to linearly combine the teacher and student weights (by α) and create our final model,
FitCLIP.

6.3.3 FitCLIP’s Implementation Details

We uniformly sample N = 4 frames from each video, similarly to TSN [238]. The Teacher
and Student models use a ViT-B/16 architecture initialized with OpenAI’s publicly released
weights [183]. We empirically set λ = 10−4 to smooth the training process (note the labeled
and pseudo-labeled loss magnitudes may be wildly different). We consistently use σ = 0.05 as
the temperature value. At training time, we randomly crop the frames to a size of 224× 224

and perform random horizontal flips. We use the AdamW [146] optimizer with a learning
rate equal to 3 × 10−5. We use the same tokenizer as in CLIP [183]. We conduct our
experiments using 8x A100 (40GB) GPUs. We use 4.5K labeled videos, randomly sampled
from the WebVid-2.5M dataset [11], to compute the losses in Eqs. (6.1) and (6.2). The entire
WebVid-2.5M dataset (which contains paired data) is used to compute the distillation losses –
Eqs. (6.3) and (6.4). We choose the (labeled) validation loss in the WebVid-2.5M dataset as
a criterion to select the best student models. Finally, to fuse the teacher and the student
weights, we use α = 0.4. We encourage the reader to refer to the Appendix analyses of some
hyperparameter values. We wrote our code in Python using PyTorch [174] and Lightning [53].

6.4 Zero-shot Video Understanding Benchmark

6.4.1 Baselines

CLIP [183]. This model has been pre-trained with the WIT dataset [214], which contains
about 400M image-text pairs. We re-implement the zero-shot inference of this baseline model.
To deal with video, we encode N = 4 uniformly sampled frames per video and average
their features to obtain the final video representation. We use the publicly released CLIP
ViT-B/16 [50] model in all our experiments. Note that our CLIP adaptation is equivalent to
ActionCLIP [239] (see the Appendix).

1In an earlier version of this manuscript, I have referred to model patching [94] as weight-space en-
sembling [247]. These two methods are very similar, but model patching is a more accurate term
here, even if this name was introduced later than the paper on which this chapter is based. See
https://github.com/mlfoundations/patching/issues/2#issuecomment-1365474483 for an explanation of their
differences.
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CLIP4Clip [149]. This method proposes changes on top of CLIP. In particular, they
suggest something the authors call post-pretraining that fine-tunes CLIP on the category
“Food and Entertaining” (380k videos) from the HowTo100M [158] dataset. The authors have
not provided this checkpoint, so we cannot evaluate it on our benchmarks. Still, we decided
to include the results they reported. Nevertheless, note the evaluation conditions are not the
same to constitute a fair comparison (e.g., the authors sample more than four frames per
video clip).

Frozen in Time [11] (Frozen). This model was pre-trained by leveraging video-text pairs
from the WebVid dataset. It has multiple pre-trained versions, including one that leverages
the well-curated CC3M image-text pairs dataset. In our (main) experiments, we use the
model that trains using the WebVid-2.5M, COCO, and CC3M datasets (note that this is
much less data than CLIP’s pretraining dataset). Results for other versions of Frozen in
Time can be found in the Appendix.

VideoCLIP [250]. This baseline uses a Transformer [233] on top of a frozen HowTo100M-
pre-trained S3D [269] video model from MIL-NCE [157] and a fine-tuned BERT [47] text
model. This method trains on HowTo100M. A notable difference is that VideoCLIP samples
32 clips of size 32 frames (1024 frames) for each video, while we sample only four for each
video.

VIOLET [61]. This method uses a video-language transformer trained end-to-end by
masking discrete visual tokens. The authors use multiple training datasets, including CC3M
and WebVid.

BridgeFormer [71] (BF). This model leverages a multimodal encoder on top of the
unimodal encoders and a method that masks the main verb and nouns as a form of multiple-
choice questions as a pre-text task. The authors find this method to be more sample-efficient
than vanilla NCE.

6.4.2 Zero-shot Tasks and Datasets

Action Recognition. We aim to classify a video with one of C possible action classes. To
do so, we form pretext language queries with predefined prompts. An illustrative example is
the prompt: “a video of a person {ci}”, where ci is the i-th class out of the C candidate action
categories. Given the visual representation of the target video, we compute its similarity
with the language feature of each candidate action class prompt. We predict the action class
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by selecting the visual-text pair with the highest similarity. We report the top-1 and top-5
accuracy. We evaluate zero-shot action recognition in two datasets:

• Moments in Time (MiT) [160] consists of 3-second YouTube clips that capture the
dynamics of actions performed by varied subjects, including animals and humans. The
dataset includes 339 categories and 33, 900 validation videos.

• UCF101 [211] contains 101 action classes. Our zero-shot experiments in this dataset
aim to classify all the 1794 available test videos from split 1.

Text-to-video Retrieval. Given a text query, text-to-video retrieval aims to find a video
from a collection that visually matches the text description. Given that the concept of classes
does not exist in this task, previous methods [11, 149] denote experiments as zero-shot when
the visual-language models are not fine-tuned on the downstream datasets. We report recall
at k = {1, 5, 10} and the median ranking (MdR) to measure performance. We evaluate
zero-shot text-to-video retrieval in three datasets:

• MSR-VTT [251] contains video clips of up to 30 seconds paired with captions. We
adopt the 1K-A test split [262], which contains 1, 000 video-text pairs.

• YouCook2 [280] comprises challenging cooking videos depicting fine-grained human
actions. We test on 3305 clip-text pairs [157].

• DiDeMo [7] contains mostly unedited video clips from Flickr. We follow [143, 126, 11]
and cast a video-paragraph retrieval problem. We evaluate on 4021 test samples.

6.5 Experimental Results

In this section, we conduct zero-shot experiments in two popular video understanding tasks
and then a diagnostic analysis of FitCLIP. First, we study the performance of the zero-shot
baselines described in Section 6.4.1 in the action recognition task. The second analysis
summarizes the baseline performance in diverse datasets for text-to-video retrieval. We run
diagnostic experiments to validate the importance of fusing teacher knowledge to a competent
zero-shot model, as in [247]. Finally, we run performance analyses on FitCLIP that study
per-class gains in the action recognition task and the shift in ranking distributions for the
text-to-video retrieval tasks.
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Method Top 1 Top 5

Supervised
VATT [5] 41.1 67.7

Zero-shot
Frozen 14.0 31.8
CLIP 19.9 40.3

FitCLIP 21.8 44.6

(a) Moments in Time (MiT)

Method Top 1 Top 5

Supervised
SMART [74] 98.6 –

Zero-shot
Frozen 51.9 76.1
BF [71] 51.1 –
CLIP 74.5 94.3

FitCLIP 73.3 95.3

(b) UCF101

Table 6.1: Zero-shot action recognition results. (a) FitCLIP improves performance
upon CLIP and significantly outperforms Frozen. (b) FitCLIP slightly improves upon CLIP;
Frozen lags in zero-shot performance. Reported numbers in both tables are percentages and
compute the top-1 and top-5 accuracy.

6.5.1 Zero-shot Action Recognition Results

We compare the zero-shot performance of FitCLIP and different baselines using two popular
action recognition datasets. We describe the results and provide our analysis.

Analysis on Moments in Time. Table 6.1a summarizes the zero-shot results in the
moments in time dataset. We also report VATT [5], the state-of-the-art using full supervision
to establish a reference point. In this dataset, FitCLIP remarkably outperforms both baselines,
CLIP and Frozen. It is noteworthy that CLIP outperforms Frozen by 11% at top-5 accuracy
without seeing video data at training time. Despite CLIP’s good performance, FitCLIP
further improves performance by 4.3% (top-5), setting a new state-of-the-art in this dataset.
While FitCLIP achieves outstanding zero-shot results, a e.g. 44.6% top-5 accuracy, there is
still an ample gap compared to approaches that leverage supervision from the target dataset.

Analysis on UCF101. Table 6.1b shows the results on the UCF101 zero-shot benchmark.
FitCLIP outperforms CLIP at Top 5 accuracy and slightly underperforms at Top 1. All the
findings remain consistent: a not-so-large gap between the best zero-shot and supervised
approaches and Frozen underperforming compared to CLIP-based methods. We attribute
FitCLIP and CLIP close performance (when looking at both top-1 and top-5) to the charac-
teristics of UCF101, which contains a lot of common actions, including many sport-related
actions. These types of actions often appear in photographs, and chances are, they are
well-represented in CLIP’s training set.
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Method R@1 R@5 R@10 MdR

Supervised
CAMoE [34] 52.9 78.5 86.5 1

Zero-shot
VideoCLIP [250] 10.4 22.2 30.0 –

Frozen 21.3 43.6 55.9 7
VIOLET [61] 25.9 49.5 59.7 –

BF [71] 26.0 46.4 56.4 7
CLIP via [149] 30.6 54.4 64.3 4
CLIP4Clip [149] 32.0 57.0 66.9 4

CLIP 30.4 55.1 64.1 4
FitCLIP 33.8 59.8 69.4 3

(a) MSR-VTT

Method R@1 R@5 R@10 MdR

Supervised
TACo [255] 29.6 59.7 72.7 4

Zero-shot
VideoCLIP [250] 22.7 50.4 63.1 –

Frozen 3.2 10.1 16.2 135
CLIP 5.3 14.6 20.9 94

FitCLIP 5.8 15.5 22.1 75

(b) YouCook2

Method R@1 R@5 R@10 MdR

Supervised
CAMoE [34] 43.8 71.4 79.9 2

Zero-shot
VideoCLIP [250] 16.6 46.9 – –

Frozen 23.2 45.8 56.8 7
VIOLET [61] 23.5 49.8 59.8 –

BF [71] 25.6 50.6 61.1 5
CLIP 26.2 49.9 60.6 5

FitCLIP 28.5 53.7 64.0 4

(c) DiDeMo

Table 6.2: Zero-shot text-to-video retrieval results. In all datasets, FitCLIP improves
upon CLIP by significant margins. (a) FitCLIP shows the best zero-shot results, though
there is an important gap with the supervised state of the art. (b) In this dataset, YouCook2,
FitCLIP exhibits the most significant gap between fully supervised approaches and VideoCLIP,
which is pretrained on HowTo100M. We attribute this result to the dataset’s fine-grained
nature. (c) FitCLIP consistently boosts upon CLIP even for the DiDeMo (paragraph-retrieval)
task, which includes extended language queries. R@k denotes recall at the top-k = {1, 5, 10}
predictions, and MdR refers to the Median Ranking metric.

6.5.2 Zero-shot Text-to-video Retrieval

To compare FitCLIP and the baselines, we report the experimental results and analysis for
the text-to-video retrieval task.

Analysis on MSR-VTT. Table 6.2a summarizes results in the MSR-VTT dataset. We
observe that Frozen performance is poor compared to CLIP’s and FitCLIP’s. Even though
Frozen was trained on video data with similar properties to MSR-VTT, it is hard for this
model to compete with the general knowledge encoded in CLIP-like models. We observe
that FitCLIP consistently improves performance upon CLIP across all the retrieval metrics.
These results suggest that FitCLIP captures complementary video-language information that
CLIP lacks. Concerning the gap to reach the performance of the best-supervised approach,
CAMoE [34], FitCLIP is not that far behind. Even though there is a 16.1% gap at R@10, we
see that FitCLIP closely approaches supervised performance at the MdR metric.

Analysis on YouCook2. We report zero-shot results for the YouCook2 dataset in Ta-
ble 6.2b. From the get-go, we observe the difficulty of this dataset. Even the state-of-the-art,
TACo [255], struggles to achieve more than 30% R@1. While we observe that FitCLIP’s per-
formance consistently outperforms other zero-shot baselines, we have observed a large overall
gap between our method and those that are supervised or pretrained on HowTo100M [158]
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(VideoCLIP [250] in the table). We hypothesize this is due to the fine-grained nature of the
language descriptions in YouCook2 and HowTo100M. Moreover, many videos in this dataset
are captured from an egocentric view.

Analysis on DiDeMo. Table 6.2c summarizes DiDeMo’s paragraph retrieval task results.
First, we observe that the performance of Frozen, VIOLET [61], and BridgeFormer [71]
approach the one achieved by CLIP in this dataset. Unlike other datasets, DiDeMo contains
unedited, human-centric footage that shares commonalities with the WebVid dataset used to
train Frozen. Conversely, FitCLIP, which leverages the knowledge from CLIP and the WebVid
dataset, achieves the best overall performance. For completeness, we report the CAMoE’s
supervised performance [34], which is 15.9% better than FitCLIP, the most competitive
zero-shot alternative.

The results of these three datasets empirically demonstrate the value of FitCLIP in pushing
the limits of zero-shot text-to-video retrieval. FitCLIP establishes a new state-of-the-art
zero-shot text-to-video retrieval across three different datasets. Despite such a milestone,
there is still room for improvement, especially in fine-grained datasets such as YouCook2.
We hope this benchmark promotes more work on zero-shot text-to-video retrieval.

6.5.3 Diagnostic Analysis

Impact of Fusing the Teacher-Student Knowledge (Table 6.3). One of FitCLIP’s
fundamental properties is its ability to incorporate student learning from video data and
the CLIP teacher’s knowledge. Here, we report the performance of both our Student and
Teacher (CLIP) and contrast that with the final zero-shot performance obtained with FitCLIP.
Table 6.3 summarizes the results. Although the Student’s performance remains inferior to
the Teacher’s, it is close enough in various datasets, e.g., MiT, MSR-VTT, and DiDeMo.
△ denotes the difference in performance between FitCLIP and the teacher and indirectly
measures the contribution of the student learning. We observe that improvements are
consistent across all tasks and datasets. These results suggest that the Student effectively
passes complementary information to the teacher after the model patching.

Additional Ablations. We include additional analysis in the Appendix. We compare the
properties of FitCLIP vs. CLIP, do a deep-dive on the impact of fusing the Teacher-Student
knowledge, ablate model patching parameters, and report comparisons with additional
methods trained on HowTo100M.
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Action Recognition Text-to-video Retrieval
UCF101 MiT MSR-VTT YouCook2 DiDeMo

Teacher (CLIP) 74.5 19.9 55.1 14.6 49.9
Student 64.7 17.7 52.6 9.7 42.4

FitCLIP 73.3 21.8 59.8 15.5 53.7
△ ↓ 1.2 ↑ 1.9 ↑ 4.7 ↑ 0.9 ↑ 3.8

Err. rate red. ↓ 4.7 ↑ 2.4 ↑ 10.5 ↑ 1.1 ↑ 7.6

Table 6.3: Impact of fusing teacher-student knowledge. △ denotes the absolute
difference in performance between FitCLIP and the Teacher model. We report the top-1
accuracy for the zero-shot action recognition datasets and the top-5 recall for the zero-shot
text-to-video retrieval ones. Even though the Student model is weaker than the Teacher, it
still provides complementary information to FitCLIP, yielding consistent improvements (△)
across datasets. Full results with all the metrics are available in the Appendix.

6.6 Conclusions

This chapter presents a fine-tuning strategy to adapt large-scale image-text pre-trained models
for zero-shot video understanding tasks, dubbed FitCLIP. FitCLIP performs well on zero-shot
settings for three Text-to-Video Retrieval and two Action Recognition tasks we evaluated.
We show the importance of doing the model patching step of our method to keep or improve
the teacher’s robust performance across different datasets, even when the student was trained
on other data. We highlight our method introduces no extra inference costs while improving
CLIP results overall.

A pending question is how well these methods perform on actions that involve understand-
ing not only the verb but also the object employed (e.g., “reading a newspaper” as opposed
to just “reading”), especially those verb-object combinations that are not usually present in
the training set).
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CHAPTER 7

Compositional Generalization with
Image-Text Models

7.1 Introduction

In the last few years, real-life video use cases have benefited enormously from large-scale
pre-trained image-text alignment models since they tend to provide an incredible zero-shot
performance across multiple video tasks and domains [183, 100, 149]. This success is due, to
a large extent, to the fact that many short-video tasks can be successfully solved by modeling
the videos as an unordered set of image frames [20, 125]). Such models have been largely
influenced by CLIP [183], which is still a state-of-the-art method on many fronts, and as
far as I am concerned, further work on the area has not achieved substantial improvements
over it. The method employs late fusion by having an image and a text “tower.” When the
image and text semantically correspond, these towers are trained to provide a high alignment
(similarity) score. Two-tower models (also known as two-stream or dual-stream models) scale
better for retrieval tasks than early-fusion multimodal models (often through cross-attention),
as they typically employ a matrix multiplication to compute the similarity score between
the image and text representations, which today’s available hardware can cheaply compute.
Counting with inexpensive and fast text-to-video retrieval systems is vital for video search
engines in real-life settings, which, in many cases, need to go through millions of videos for a
given text query.

However, such models have fundamental issues that make them impractical in realistic use
cases. An important issue is that such models cannot distinguish the object from the subject
of an action [171]. Moreover, [228] found that these models are unsuccessful at grasping
word order, as they tested CLIP [183] and other methods on examples with a pair of text
captions with the same words between each other but in a different order and they show
performance slightly above chance, with a significant gap compared to humans. This issue is
aggravated when the text gets more complex, such as when involving more than one predicate.
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Generally, these methods fail to compose known elements correctly; we say they suffer from
compositionality issues. The compositionality principle [173] states that the meaning of an
expression is a function of the meanings of its parts and of the way they are syntactically
combined.

The compositionality issue is exacerbated when the concepts are common but the compo-
sition is rare, as in “microwaving a shoe.” This aspect can be appreciated when considering
the low results models such as CLIP [183] obtained in RareAct [156], a framework built
with this purpose in mind, in comparison with benchmarks that reflect standard actions and
compositions such as UCF-101 [211] and Kinetics [108]. A model that demonstrates this skill
would be said to have compositional generalization [110], as it would be able to manipulate
known elements and compose them in uncommon ways (out-of-domain generalization since
they are infrequent in the model’s training distribution).

There is no evidence that any VLM, including large-scale single-stream models such
as GPT-4V [169], successfully identifies compositions. This assertion is supported by the
fact that existing benchmarks that test compositionality continue to be an open challenge
[228, 264, 150, 88].1

To address these limitations, previous work has introduced techniques to increase the
compositional capabilities of pre-trained VLMs, such as NegCLIP [264] and REPLACE [88].
However, such methods come at a significant cost: they sacrifice the performance on more
common object-centric recognition, as measured by ImageNet [44], EuroSAT [81, 80], and
CIFAR100 [119]. For instance, as shown in Fig. 7.2, NegCLIP showed an increase (compared
to the pre-trained model) in its ability to address SugarCrepe [88] compositionality benchmark
from 72.9% to 82.5% while, at the same time, its performance on ImageNet [44] top-1 accuracy
dropped from 63.4% to 55.8%. Similarly, [88] applied REPLACE to reach a high score of
84.7% on SugarCrepe, but at the cost of a significant drop to 52.9% on its ImageNet accuracy.

In this chapter, we introduce a framework to significantly improve the ability of existing
two-tower models to encode compositional language while keeping the performance on more
standard benchmarks, as qualitatively illustrated in Fig. 7.1 and quantitatively evaluated in
Fig. 7.2. These improvements include out-of-domain subject-verb-object compositions, which
lay at the core of video understanding. Specifically, our contributions are as follows. First, we
propose a scalable method of measuring VLMs’ limitations and use it to find multiple ones
related to compositionality and other phenomena. Second, we show that data curation can
significantly impact how a model can handle compositional knowledge. Third, we confirm
that training along with hard negatives can bring additional improvements. Fourth, we
show experimentally that model patching can be employed to preserve model performance

1See Section 7.2 for details.
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"The horse is eating the grass."
vs.

"The grass is eating the horse."

“A white horse.”
vs.

“A white cat.”

CLIP CLoVe

✅ ✅

✅❌

Figure 7.1: Example of compositions recognized by CLoVe but not by CLIP. The first row
shows a pair of compositions where one word varies, while the second one shows a pair that
uses the same words but in a different order.

on previous tasks. Finally, we combine these ideas into a new framework called CLoVe

and show that it can significantly improve compositionality over a contrastively
pre-trained VLM. As a case study, we show how our framework can effectively improve
CLIP’s compositional abilities while maintaining the performance on other tasks. Our
provided checkpoints allow others to substitute their CLIP-like model weights for a version
with significantly better language composition abilities.

7.2 Related Work

Benchmarking Compositionality. Several frameworks have been proposed to measure
model performance on language compositionality. [207] crafted a benchmark of foil image
captions generated by changing a single word from the correct captions. Models must identify
if the image-caption pair correspond to each other, among other tasks. Winoground [228]
carefully built a high-quality dataset of 400 examples, each consisting of two images and two
captions. These two captions contain the exact word but in a different order following one of
several strategies (e.g., swapping the subject and the object). Each image must match the
correct caption for the models to pass this test. Models cannot simply rely on their ability to
recognize concepts in images, as the elements repeat but are composed differently.

[228] found that successfully passing the Winoground benchmark requires composition
skills along with many others, such as commonsense reasoning and locating tiny objects. [264]
argued that Winoground is too small to draw statistically significant conclusions and built a
benchmark called ARO consisting of examples with a single image, a correct caption, and
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Figure 7.2: Our proposed framework CLoVe significantly improves the compositionality
performance (as measured by an average of SugarCrepe’s seven fine-grained tasks) of pre-
trained CLIP-like models while preserving their performance on other downstream tasks
(as measured by ImageNet). We present comparisons with more benchmarks in Tables 7.2
and 7.3. Baselines: REPLACE [88] and NegCLIP [264].

multiple automatically generated incorrect captions. CREPE [150] crafted a benchmark to
measure compositionality in terms of systematicity and productivity. It considers both seen
and unseen compounds, among other phenomena. SugarCrepe [88] is a recent benchmark
that avoids ungrammatical and nonsensical negative captions while being large. They showed
it cannot be easily solved by computing the probability of the text captions without looking
at the image.

In VALSE, [171] demonstrates that vision-language models have difficulty counting objects
and classifying spatial relations between objects. [198, 276] show that, although state-of-
the-art vision-language models can grasp color, they do not fully understand more difficult
concepts such as object size and position in the image.

[82] evaluate state-of-the-art vision-language models by building SVO-Probes, a probing
benchmark focused on verb understanding. They show that image–language transformers fail
to distinguish fine-grained differences between images and find they are worse at understanding
verbs than subjects or objects. Our work continues their proposed future work direction by
analyzing model performance on fine-grained verb categories.

Other benchmarks have also been created that consider compositionality as well as other
phenomena, such as RareAct [156], Cola [190], and CLEVR [103].
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Methods to Improve Compositionality. Several works have shown that VLMs cannot
recognize compositions successfully [207, 156, 171, 228, 82, 264, 28, 150]. For this reason,
[264] proposed NegCLIP to improve how CLIP [183] composes concepts. It consists of
adding hard negative texts by taking the captions from the training batch and automatically
generating sentences with the exact words but in a different order. This approach makes
the model distinguish between an image and the caption in the correct order compared to
the exact words in an arbitrary order (as well as the other negative captions within the
batch). [88] build upon NegCLIP and CREPE [150] and propose three ways to generate
random negatives: REPLACE, SWAP, and NEGATE. All these methods start from a Scene
Graph representation of the sentence and operate over it. REPLACE, which had the best
overall results, performs single-atom replacements. SWAP exchanges two atoms within the
scene graph. Finally, NEGATE introduces negation words (i.e., no or not). We build upon
NegCLIP [264] and REPLACE [88] while we propose to use synthetically-generated captions
to scale them up, as well as applying model patching [94] to avoid catastrophic forgetting. To
our knowledge, we introduce the first approach that significantly improves the composition
skills of contrastively trained models while preserving their zero-shot performance on other
downstream tasks.

Cap and CapPa [231] are two recently introduced models that employ captioning instead of
contrastive learning (as in CLIP) to train VLMs. [231] showed that they present an excellent
performance on compositionality as measured by ARO [264] and SugarCrepe [88]. These
models rely on captioning and thus on computing the probability of the text given an image,
making them inefficient for retrieval and classification. For ARO, they showed that they can
achieve high performance without looking at the image (they call it a “blind decoder”). For
SugarCrepe, the authors did not compute this specific baseline. Hence, we cannot infer the
extent to which these models handle compositions successfully. Our approach is different
from theirs as it builds on top of contrastive two-tower models, which are efficient for retrieval
and classification. It does not rely on computing the probability of text, which is generally
unimportant for such settings as all texts are equally likely (unlike in image captioning).

7.3 Understanding the Limitations of Vision-Language

Models: a Case Study on CLIP

Even when vision-language models are widely used [147, 135, 272, 183, 209], little is known
about their limitations. Recent work, such as Winoground [228], SVO-Probes [82], or
VALSE [171], have designed benchmark probing tasks by annotating data to follow specific
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properties (i.e., object color, location, size, swapping word order, replacing words). This line
of research led to valuable insights into the limitations of current state-of-the-art multi-modal
models such as CLIP [183] and ViLBERT [147].

Current probing benchmarks rely on time-consuming data annotation procedures, which
makes them unscalable and limited in scope. As a complementary solution, we propose a
method to probe vision-language models by relying on existing data without requiring extra
annotations. Our method consists of extracting a large set of candidate features from a
vision-language benchmark and testing their correlation with the output of the target models
on the given benchmark.

By applying our method on CLIP [183], a widely used and still state-of-the-art multi-modal
model, by leveraging the SVO-Probes [82] dataset, we arrive at several results. We find
that CLIP gets confused by concrete words and surprisingly improves performance for more
ambiguous words while noting little change from the word frequencies. We confirm the
findings of [228] of CLIP behaving like a bag of words model, and that of [171] of CLIP
performing better with nouns and verbs. To our knowledge, we are the first to conduct an
in-depth analysis of how language semantic properties influence CLIP’s performance.

We summarize our contributions as follows. First, we propose a scalable way of measuring
the limitations of vision-language models. Second, we test our method using a state-of-the-art
vision-language model (CLIP) and a popular benchmark (SVO-Probes), validate known
challenges, and uncover new ones. Third, our work allows future models to focus on solving
the new difficulties discovered.

7.3.1 Methodology

We employ a benchmark to measure how a vision-language model performs on various
semantic concepts. We aim to quantify which concepts are the most and the least challenging
for the model. We illustrate our setting in Fig. 7.3 and we separate it into three main steps.

First, we use CLIP [183] to compute scores for instances from the SVO-Probes [82] dataset
and obtain two corresponding alignment scores for each sentence and its corresponding
positive and negative image. Next, we extract and process various semantic features from
SVO-Probes. Finally, we compute the correlation coefficients between each feature and the
CLIP score. The features with the highest coefficients will represent concepts CLIP performs
well on, while features with the lowest coefficients will represent challenging concepts for
CLIP.
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Image Caption:   Girl is standing in the grass.

Pos Neg

CLIP

Features of original word (girl), replacement 

word (dog) & words in common (stand, grass)

Neg score (N)Pos score (P)

Correlation

CLIP

P - N = score diff. (D)

FEMALE  P +0.022

ANIMAL   N  -0.005

PLANT     D +0.022

Feature Score

Figure 7.3: We propose a simple framework to analyze CLIP performance on SVO-Probes
data. We test CLIP on the benchmark, extract a diverse set of semantic features from
the data, and measure the correlation between each feature and the CLIP score (P , N , or
D). Features with positive correlation (e.g., Female, Plant) positively impact the model
performance, while features with negative correlation (e.g., Animal) negatively impact the
model performance.
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7.3.1.1 Dataset

We choose the SVO-Probes [82] dataset due to its design and large scale size (421 verbs and
over 48,000 image-sentence pairs). The SVO-Probes benchmark was designed for probing
image-text models for their understanding of subject, verb, object triplets. Each instance
from the dataset consists of a text caption, a positive image that matches the caption, and a
controlled (adversarial) negative image that shares two out of three aspects (subject, verb,
and object) from the sentence but does not match the other one, as shown in Fig. 7.3. These
controlled examples enable one to probe models for their understanding of verbs, subjects,
and objects. The instances also include information about the negative image, such as a
(hidden) associated negative caption, which we leverage in this paper.

We propose to use this dataset to evaluate the CLIP [183] model. We choose to test CLIP,
as opposed to other language-vision models, due to its widely-spread use and impressive
zero-shot performance on a variety of vision-language tasks (e.g., text-to-image retrieval,
image question answering, human action segmentation, image-sentence alignment – [23]).
Furthermore, [82] test only ViLBERT-based [147] models, which are known to perform worse
than CLIP [23].

7.3.1.2 Model Output

As depicted in Fig. 7.3, we obtain three CLIP scores for each pair of positive and negative
images: a positive score (P ), computed between the caption and the positive image; a negative
score (N), calculated between the caption and the negative image; and the difference between
these scores (D = P −N).

Because the text and the positive image are aligned, P represents an absolute alignment
score. In the case of the text and the negative image, even though they are similar in some
ways (because of SVO-Probes’s design), they do not correspond. Thus, N represents an
absolute misalignment score. D represents a relative alignment score. Ideally, CLIP should
have a high P score and a low N score, and a high difference between them (a high D).
We propose to pay special attention to D given that CLIP is generally used in relative
comparisons, such as when using it for classification (choosing the class text that maximizes
the alignment score, given an image) or when using it for retrieval (finding the text/image
that maximizes the alignment score given an image/text).

7.3.1.3 Feature Extraction

We extract features from the words marked in the SVO-Probes benchmark (i.e., subject, verb,
and object) for each given sentence and corresponding image in the benchmark.
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If the corresponding image is positive, all the extracted features are from words in common,
i.e., that appear both in the image and the text. Otherwise, if the corresponding image is
negative, in addition to words in common, we also extract features from words present in
the sentence and not in the image (original word) and words present in the image but not
in the text (replacement word). As an example, in Fig. 7.3 the words in common are “sit”
and “grass”, the original word is “girl” and the replacement word is “dogs”. The original and
replacement words represent what is different between the image and the text, while the
words in common, as the name suggests, represent what the picture and the text share.

We extract the following semantic textual features: [130] verb classes, LIWC psycholinguis-
tic markers [176, 177], General Inquirer [216] semantic classes, WordNet hypernyms [57], word
presence, semantic similarity, ambiguity, frequency, sentence length, and concreteness [19].

Levin verb classes. [130] groups verbs according to their semantic content and also
according to their participation in argument alternations.

Levin’s semantic content-based taxonomy categorizes 3,024 verbs into 48 broad classes
and 192 fine-grained classes.2 A verb can belong to one or more classes. Some examples
of verb classes are: (1) broad change of state (e.g., clean, divide, soak), manner of motion
(e.g., climb, drop, run) or social interaction (e.g., marry, meet, hug); (2) fine-grained: “roll”
verbs (e.g., bounce, coil, drift), “run” verbs (e.g., amble, bolt, race) or “hug” verbs (e.g., cover,
encircle, touch)

LIWC psycholinguistic markers. Linguistic Inquiry and Word Count (LIWC) [176, 177]
is a widely used word-counting software that includes dictionaries of English words related to
human cognitive processes. Specifically, we use the LIWC2015 dictionary, which contains
6,400 words and word stems. Each word or word stem defines one or more categories: e.g.,
the word “mother” is assigned the categories: female, family, social.

General Inquirer classes. General Inquirer [216] is a resource for automatic content
analysis. More specifically, it categorizes words into emotional and cognitive states and
diverse semantic categories outlined in the Lasswell dictionary [165, pg. 46–53].

WordNet classes. WordNet [57] is an extensive lexical database of English words grouped
into cognitive synonyms called synsets. Semantic and lexical relations interlink the synsets.
The most frequent relation among synsets is the super-subordinate relation, also called
hyperonymy. It links more general synsets to specific ones: e.g., “building” is a hypernym of

2https://websites.umich.edu/~jlawler/levin.verbs

81

https://websites.umich.edu/~jlawler/levin.verbs


“house” and “school”. We collect all the hypernyms of the most common word synset for each
given word.

Word presence. For each given word, we use a marker to indicate if the word is present or
not in the sentence. Note that studying the effect of specific words does not imply that they
have no dependencies with other words. Their role may change depending on the context;
however, we study them in aggregate.

Sentence length. We measure each sentence’s length as the number of words in the
sentence.

Semantic similarity. In the case of negative images, we compute the cosine similarity
score between the original words and the corresponding replacement words. We compute the
word representations using Sentence-Transformers [191], with the model all-MiniLM-L6-v2,
which is based on MiniLM [240].

Concreteness score. We use a dataset of words with associated concreteness scores from
[19] to measure words’ concreteness. A human annotator labels each word with a value
between 1 (very abstract) and 5 (very concrete). Abstract words (e.g., “beauty”, “sadness”)
denote ideas, feelings, or other intangible concepts, while concrete words (e.g., “table”, “write”)
refer to objects and actions.

Ambiguity. We measure the ambiguity of a given word by counting the number of synsets
in WordNet [57].

Frequency. We measure the word frequency in a subset (∼13M image captions) of
LAION [203], a dataset representative of CLIP’s training data.

7.3.1.4 Feature Representation

The binary features, i.e., Levin, LIWC, General Inquirer, WordNet classes, and word
presence, are represented as binary vectors, while the numerical features i.e., sentence length,
concreteness, similarity, ambiguity, and frequency are standardized. All the features are then
concatenated together.
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7.3.1.5 Feature Selection

We measure the degree of correlation between each feature and the model performance. For
each of the binary features, we compute a two-sample, two-tailed t-test [217] along with the
model output score. This test evaluates if the means of the populations coming from each
feature value (true or false) differ significantly. If so, we compute the difference of means as a
reference value. In the case of numerical features, we compute the Pearson’s correlation
coefficient [14] between each feature and the model performance score.

Next, we employ a one-sample, two-tailed t-test to determine if the coefficient significantly
differs from zero, i.e., if there is any correlation according to this metric. We chose a p-value
threshold of 0.05 (a confidence level of 95%) to filter out the features.3

7.3.1.6 Experimental Details

We use an OpenAI pre-trained CLIP [183] ViT-L/14 [50] model.

7.3.2 Results

Our main observations and takeaways from this evaluation are the following:

(1) CLIP behaves like a bag-of-words model. As shown in Fig. 7.4, the distributions
of P and N highly overlap. The negative image’s adversarial nature may partly explain this
as it shares many elements with the text. This finding is consistent with that of [228], that
CLIP performs like a bag-of-words model.

This finding is also supported by the fact that many features from words in common
contribute to increasing both the positive (P ) and the negative scores (N): e.g., hyper-
nym_food.n.02 increases P by 0.042 and N by 0.050; LIWC “money” increases P by 0.036,
and N by 0.032. As described in Section 7.3.1.5, we measure the importance of each feature
as the difference of means between the CLIP scores when the feature is present and when it is
not. We observed that many of the features for the words in common appeared to influence
both P and N similarly, confirming this hypothesis.

(2) CLIP performs better with nouns than with verbs. When computing the number
of times CLIP assigns a higher score to the similarity between the text and the positive image
than to the similarity between the text and the negative image, the verbs obtain 81.45%
accuracy. At the same time, the subjects get 86.87% and the objects 88.78%. The number

3See the obtained scores and p-values in the web page of the paper associated with this chapter at
github.com/MichiganNLP/Scalable-VLM-Probing.
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Figure 7.4: Histogram plot of the distribution of CLIP scores between the text with the
positive image and the text with the negative image. We include a kernel density estimation
curve to aid this visualization.

obtained for verbs is relatively close to that of a similar setting experimented by the VALSE
benchmark [171], in which they reported 75.6% accuracy (also considering that we could not
determine which pre-trained CLIP variant the authors evaluated). At the same time, the
noun (objects and subjects) replacement numbers are consistent with those reported by the
same authors (88.8%), obtained from FOIL it! [207].

(3) CLIP gets confused by concrete words. Figure 7.5 shows both the positive and
negative CLIP scores improve the more concrete a word is (words from the caption represented
in both the positive and the negative images). However, this figure shows that the negative
score increases faster. This result implies that, in an image classification or image-to-text
retrieval setting, CLIP will more likely consider an incorrect text valid if it has more concrete
words than the correct text.

(4) CLIP prefers average-length sentences. We present in Fig. 7.6 how the caption
sentence word length affects the score. CLIP presents a low performance when the sentences
are very short (around three words long), improving when the sentences are longer since the
difference between the positive and negative scores (D) gets larger with the sentence length.

Figure 7.7 shows how the CLIP scores are distributed for the different number of words,
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Figure 7.5: Linear regression plot of the average concreteness for the words in the sentence
that are common to both images vs. the CLIP score. The shadowed areas are 95%-confidence
intervals for the expected value.

showing, for example, that there is a great overlap between the similarity scores between
texts of length six and a negative image and the similarity scores between texts of length
three and a positive image. This finding implies CLIP is more likely to select the wrong text
when comparing an image with a short correct text and one with long incorrect text.

(5) CLIP is affected by word frequency. Figure 7.8 studies the frequency effect on the
score for the words that represent concepts that appear in both the positive and negative
images. The higher the word frequency, the higher the CLIP score. Still, the difference in
scores is barely affected.

(6) The score improves for more ambiguous words. Surprisingly, there is a larger
gap in the score difference (D) when the words have more meanings associated with them
(for the words that represent concepts in both the positive and negative images), as shown in
Fig. 7.9. The positive score seems to remain almost constant while the negative score drops,
widening the difference. The word frequency seems not to be a confounding factor based on
(5).
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Figure 7.6: Line plot of the number of words in the caption sentence vs. the CLIP score. The
shadowed areas are 95%-confidence intervals for the expected value.
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Figure 7.7: Box plot for the number of words in the caption sentence vs. the CLIP score.
This plot shows the distributions, unlike Fig. 7.6 that shows the expected values.
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Figure 7.8: Linear regression plot of the average frequency for the words in the sentence that
are common to both images vs. the CLIP score. The shadowed areas are 95%-confidence
intervals for the expected value.

(7) Similar situations confuse CLIP. Unsurprisingly, the higher the similarity between
the caption and the negative image caption, the higher the negative CLIP score, as depicted
by Fig. 7.10.

We also studied the influence of the similarity between the original word (from the caption)
and the replacement word (from the text associated with the negative image) in Fig. 7.11.
The effect of the word change seems smaller than that of the whole sentence change.

(8) CLIP performs relatively better on nature-related and personal care concepts
and relatively worse on furniture, transportation, herbivores, sports, academia.
As mentioned in Section 7.3.1.2, score D measures the relative CLIP performance, which is
more relevant for retrieval models like CLIP. Therefore, we measure the importance of each
feature concerning D. Specifically, we compute the mean differences of the D scores when
the binary feature is present and when it is not. We show the CLIP performance analysis on
binary features in Table 7.1. Following the example of SEAL [186], we use ChatGPT to
cluster the features under a broad topic automatically.4

We find that CLIP performs relatively better on topics related to nature: Natural
4We use the following prompt: “Name a topic for the following words: . . . ”
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Figure 7.9: Linear regression plot of the average synset count for the words in the sentence
that are common to both images vs. the CLIP score. The shadowed areas are 95%-confidence
intervals for the expected value.
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Figure 7.10: Linear regression plot of the similarity between the text caption and the negative
image text caption vs. the CLIP score for the negative image. The shadowed areas are
95%-confidence intervals for the expected value. The unimodal distributions are also shown.
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Figure 7.11: Linear regression plot of the similarity between the originally replaced word
from the text caption and new word from the negative image text caption vs. the CLIP score
for the negative image. The shadowed areas are 95%-confidence intervals for the expected
value. The unimodal distributions are also shown.

90



Topic Feature Mean diff. Example Words

CLIP performs better on

Natural
Phenomenon

Hypernym physical_phenomenon.n.01 (original) 0.038 snow, fog, rain, mist
Hypernym physical_phenomenon.n.01 (replacement) 0.022 snow, rain, cloud, fog, mist

Waterfront
Infrastructure

Hypernym platform.n.01 (original) 0.038 pier, deck, podium
Hypernym horizontal_surface.n.01 (original) 0.032 pier, pavement, quay

Landscapes

Hypernym community.n.06 (original) 0.038 meadow, desert, grassland
Hypernym natural_elevation.n.01 (original) 0.035 dune, sandbar, reef
Hypernym geological_formation.n.01 (original) 0.027 beach, shore, cliff
Hypernym plant.n.02 (original) 0.025 grass, tree, flower
Hypernym natural_elevation.n.01 (replacement) 0.020 mountain, hill

Grooming

Presence of word “wash” (original) 0.035 wash
Levin “floss verbs” (original) 0.030 wash, brush, shave
Levin “wipe verbs”(original) 0.022 wear, sweep, trim, rub
Levin “dress verbs” (original) 0.027 exercise, bathe, dress

Domestic
Animals

Hypernym young.n.01 (original) 0.033 puppy, kitten, foal
Hypernym domestic_animal.n.01 (original) 0.032 puppy, retriever, pug
General Inquirer “animal” (replacement) 0.023 dog, animal, cat, goat
Hypernym canine.n.02 (replacement) 0.021 puppy, retriever, pug

CLIP performs worse on

Furniture

Presence of word “sofa” (in common) -0.032 sofa
Hypernym bedroom_furniture.n.01 (in common) -0.026 bed, sofa
Hypernym furniture.n.01 (in common) -0.017 couch, bed, sofa, chair, bench
LIWC “home” (in common) -0.015 bed, window, sofa, room

Transportation

Presence of word “ride” (original) -0.027 ride
Hypernym vessel.n.02 (in common) -0.019 boat, ship, yacht
Levin “pedal” verbs (original) -0.018 ride, drive, fly, sail, cruise
Hypernym craft.n.02 (in common) -0.018 boat, balloon, ship, scooter, kayak

Herbivores Hypernym ungulate.n.01 (in common) -0.021 horse, cow, camel, goat, deer
Presence of word “horse” (in common) -0.019 horse

Sports
Hypernym happening.n.01 (in common) -0.021 wave, win, tap, slam
Hypernym contestant.n.01 (in common) -0.020 footballer, golfer, goalkeeper, crick-

eter, tackle
Levin “admire” verbs (original) -0.017 stand, enjoy, admire, support

Academia
General Inquirer “academia” (in common) -0.020 student, classroom, library, teacher,

book, computer, conference
Presence of word “student” (in common) -0.020 student

Table 7.1: CLIP relative performance analysis on a subset of binary features: the top-5
easier topics are Natural Phenomenon, Waterfront Infrastructure, Landscapes, Grooming and
Domestic Animals, while the top-5 harder topics are Furniture, Transportation, Herbivores,
Sports and Academia.
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Figure 7.12: Our CLoVe framework consists of three steps. First, obtain synthetic captions
for a large image dataset. Second, fine-tune a pre-trained Contrastive VLM on it along with
hard negative texts. Third, patch the original model with the fine-tuned one.

Phenomenon, Waterfront Infrastructure, Landscapes, Domestic Animals, and personal care:
Grooming, and worse on topics like Furniture, Transportation, Herbivores, Sports and
Academia.

7.4 CLoVe: A Framework to Increase Compositionality

in Contrastive VLMs

To address the compositionality limitations observed in existing models, we propose strategies
for developing a contrastive VLM: data curation, contrastive learning, and model tuning.
We introduce CLoVe, a framework that leverages the strengths of an existing pre-trained
contrastive VLM and enhances it with language composition skills. Figure 7.12 shows an
overview.

CLoVe includes the following steps, presented in more detail below:

3.1 Synthetic Captions. Synthetic data generation can be effectively used to enlarge the
training data. We use a large dataset with synthetic captions.

3.2 Hard Negatives. Contrastive VLMs rely on the availability of negative training data.
We add randomly generated hard text negatives to the dataset and train a fine-tuned
model with increased compositionality capabilities.

3.3 Model Patching. The pre-trained model and the fine-tuned model are combined
through model patching. Patching allows us to keep the compositionality obtained with
the fine-tuned model while recovering the pre-trained model performance on previously
supported tasks.
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7.4.1 Synthetic Captions

Synthetic captions provide a great hybrid between the training dataset size and the quality of
the captions. We leverage LAION-COCO [202], a 600-million dataset with images from the 2-
billion-sized English subset of LAION-5B [201] that were captioned with BLIP ViT-L/14 [132],
which was fine-tuned on COCO and filtered with two versions of OpenAI-pre-trained CLIP
([183]; ViT-L/14 and RN50x64). Even though the captions are limited in style (typically
following the style of COCO captions), the LAION-COCO authors found that the synthetically
generated captions have a similar quality to those written by humans. We believe these
captions focus more on describing visual information than the captions from its original
dataset (LAION), based on multiple examples from this dataset. See Section 7.5.4 for an
ablation of the training dataset.

7.4.2 Hard Negatives

Text hard negatives can help the model to learn the meaning of each word better, as they
need to identify whether it relates to the image depending on how it is used in a caption. [264]
proposed NegCLIP, an extension of CLIP’s training procedure that generates a hard negative
text for each example in the batch by rearranging the image caption words. These generated
negatives are included within the negative test sets of the learning objective. [88] proposed
an alternative called REPLACE and showed that the model achieves better compositionality
skills if such negatives are generated from carefully selected single-word replacements. These
replacements are performed on one of the entities, relations, or attributes obtained from first
parsing the sentence as a scene graph, then selecting an alternative word from its antonyms
or co-hyponyms by leveraging WordNet [57]5. These methods rely on high-quality captions.
Otherwise, the generated negatives will have changes that cannot be visually appreciated
or will mostly be ungrammatical or nonsensical, severely affecting the model’s downstream
performance. Take the following example from LAION that accompanies an image of a
cardholder: “5x Orange Ball Wedding Party PLACE CARD HOLDER Table Name Memo
Paper Note Clip.” If we apply REPLACE, supposing we can parse the sentence correctly, the
word “table” could be replaced with “bed”. However, this would not make it a negative since
the table is additional contextual information the caption included that cannot be visually
appreciated. Such a change will introduce more noise to the model’s training process.

For this reason, these works have employed the COCO captions [141, 32] dataset. COCO
consists of images along with high-quality human-annotated captions that describe them.
Nevertheless, with 600,000 image-text pairs (five captions for each of the 120,000 unique

5More precisely, the method proposes to look for words that share a grand-co-hypernym.
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images), COCO is at least three orders of magnitude smaller than the typically used image-
text training datasets. This issue limits learning and makes models overfit. Additionally,
COCO presents a limited number of objects and actions. 700 out of the 1000 object classes
in ImageNet-1k are not present in COCO [234]. We propose combining these hard-negative
techniques with a synthetic-caption dataset, such as LAION-COCO [202] (introduced in the
previous subsection).

7.4.3 Model Patching

Model patching [94] makes a fine-tuned model recover the performance on previously supported
tasks while keeping the performance on the target task. NegCLIP [264] and REPLACE [88]
fine-tune a model to improve language compositional skills significantly. However, in exchange,
they sacrificed their performance on general object recognition, as measured by their ImageNet
performance. For this reason, we propose applying one of such methods and subsequently
employing model patching. This procedure consists of performing a weight-space average
between the pre-trained and the fine-tuned models. Concretely, for each pre-trained model
weight wPT

i and fine-tuned model weight wFT
i , we compute their weighted average to obtain

a new model weight wi:

wi = (1− α)wPT
i + αwFT

i (7.1)

In Section 7.5.4, we show that this approach helps the model gain compositionality
properties while maintaining its object-recognition performance.

7.5 Case Study on CLIP

To demonstrate the effectiveness of our framework, we apply it to CLIP [183], one of the most
widely used contrastive VLMs. Given that previous work has highlighted the tradeoff between
compositionality abilities and model performance on previous standard tasks, we evaluate
challenging compositionality benchmarks and standard benchmarks for object recognition
and image-to-text and text-to-image retrieval. To gain insights into the role played by the
three main components of the CLoVe framework, we conduct three ablations studies to (1)
determine the role of synthetic captions, (2) evaluate if employing hard negative texts during
training improves the recognition performance of compositions, and (3) test the importance
of patching the original model after training with hard negative texts. Unless otherwise
noted, all evaluations are zero-shot, meaning we do not perform in-domain fine-tuning on
benchmark-specific training splits.
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ARO SugarCrepe SVO-Probes
Attr. Rel. C-Ord. F-Ord. Repl. Swap Add. Subj. Verbs Obj. avg.

pre-trained 63.5 59.8 47.7 59.9 80.1 62.3 72.8 84.0 79.3 87.8 69.7

NegCLIP 70.5 80.1 87.0 90.1 85.1 75.3 85.9 90.9 84.7 92.3 84.2
REPLACE 71.2 72.9 80.1 86.7 88.2 74.8 89.5 92.0 84.6 93.0 83.3

CLIP+CLoVe w/o patching 69.0 77.4 91.7 93.6 88.6 76.1 90.5 88.2 83.7 91.6 85.0
CLIP+CLoVe (α = .6) 69.7 72.7 86.6 92.1 87.0 74.6 85.8 90.5 86.4 93.3 83.9

Table 7.2: Zero-shot compositional evaluation results. The best results are in bold. An
underline indicates results within 1% of best.
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pre-trained 63.4 59.7 89.8 64.2 48.9 50.5 66.6 44.4 69.3 44.3 60.1

NegCLIP 55.8 45.6 85.9 60.9 45.3 32.9 55.9 39.0 65.6 42.7 53.0
REPLACE 52.9 42.7 84.6 60.2 36.6 34.3 51.9 34.5 62.2 40.9 50.1

CLIP+CLoVe w/o patching 53.1 48.7 88.5 62.0 40.4 46.9 43.2 36.3 62.3 41.0 52.2
CLIP+CLoVe (α = .6) 62.8 56.8 91.4 68.1 48.7 57.4 61.1 41.2 70.4 46.0 60.4

Table 7.3: Zero-shot classification results. The best results are in bold. An underline
indicates results within 1% of best.

7.5.1 Experimental Setup

Pre-trained Model. Rather than starting from scratch, we aim to enhance the composition
capabilities of an existing contrastive VLM. This work uses CLIP (Contrastive Language-Image
Pre-training; [183]), a pre-training method demonstrating impressive zero-shot performance
on classification and retrieval tasks involving vision or language. It involves learning image
and text representations in a joint space by leveraging large-scale weakly-supervised datasets.
These datasets contain image-text pairs with varying degrees of correspondence. For each
image, the model must learn the corresponding positive text from a set that includes this text
and a random sample of N − 1 other texts (negative samples) by employing the InfoNCE
objective [168]. Similarly, the model must identify which image corresponds to a given text.
CLIP is trained with mini-batch gradient descent, where this objective is applied to each pair
in the N -sized batch, and the negatives are typically sourced from the rest of the batch.

Implementation Details. Unless otherwise noted, the implementation details are as
follows: We write our code on Python 3.10 using PyTorch [174] v2.1, starting from
open_clip’s [95, 35] codebase. We run the experiments using the AdamW optimizer [146],
with a linear learning rate warmup for 2000 steps to 1e-6, later decayed with a cosine sched-
ule [145]. We use a weight decay of 0.1. Our initial pre-trained model is ViT-B-32 from
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OpenAI [183]. We train the models through one billion examples by randomly sampling
with replacement from shards of up to 10 000 samples, where the final size of each depends
on the image availability at download time. We successfully downloaded about 80% of
LAION-400M [203], 80% of LAION-COCO [202], and 60% of COYO-700M [21] images. The
text captions are in English. We employ one node with 8x A100 Nvidia GPUs and 96 CPU
cores (p4d.24xlarge from AWS) for four days and a half. 6 The batch size is 256 per GPU.

The choice of learning rate was based on multiple preliminary experiments to make sure
it was not learning too slowly or that it was making the training loss go up. The training
steps and samples were selected to ensure we gave enough time for the method to learn and
converge. The choice of total batch size and compute budget was determined based on our
availability compute and considering that CLIP-like methods need a large batch size. All
reported experiments are based on a single run since they are computationally expensive.

We re-implemented REPLACE [88] with the following changes and decisions, primarily
because the code for this part is unavailable. We skip employing BERT [47] to filter the
generated negatives. Instead, they proceeded to replace words based on the frequency
of the new words, which is a first-order approximation of computing probabilities with
a contextualized model. For the replacements, given that the authors do not mention
prepositions but we find them replaced in the provided data, we proceeded to replace
prepositions. For the replacement words, we try to respect the rest of the sentence by
conjugating them (e.g., the person for the verbs, and the number for the nouns) and using a
similar casing to the replaced word. We used spaCy [87] v3.7.2 (the model en_core_web_sm)
and pyinflect v0.5.1. We employed a different Scene Graph Parsing implementation,
SceneGraphParser v0.1.0. We avoid replacing a word with a potential synonym by looking
at the synsets in common of their lemmas from WordNet [57], leveraging NLTK [16] v3.8.1.
We managed to reproduce the same numbers the original authors reported. We will make
our code publicly available to make it easy for anybody to reproduce and build on top of our
results.

We set α = 0.6 for the model patching based on the ablation from Section 7.5.4.

7.5.2 Using CLoVe to Bring Compositionality into CLIP

We compare the CLIP model enhanced with our CLoVe framework against several baselines,
as shown in Fig. 7.2: CLIP+CLoVe leads to an average 10% absolute improvement on the
challenging compositionality benchmark SugarCrepe [88] when compared to a pre-trained
CLIP model, all while maintaining its ImageNet performance within 1%. Additionally, we

6Our main results can be achieved with about 10% of the training time. We train longer to let some
ablations converge and thus establish fair comparisons.
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avg.

pre-trained 52.3 48.4 54.9 13.8 51.0 40.7 50.8 11.3 40.4

NegCLIP 50.3 48.8 56.9 13.9 47.9 41.9 48.2 09.8 39.7
REPLACE 49.6 50.2 56.2 13.6 44.8 40.8 47.9 09.7 39.1

CLIP+CLoVe w/o patching 47.3 35.0 53.1 11.4 43.4 37.8 42.7 08.0 34.8
CLIP+CLoVe (α = .6) 58.7 49.9 60.5 15.7 57.5 47.5 54.5 12.4 44.6

Table 7.4: Recall@5 for the zero-shot retrieval results. The best results are in bold. An
underline indicates results within 1% of best.

show that our model performs better than others in compositionality when we do not apply
the model patching step.

In Table 7.2, we show a comparison of our enhanced CLIP+CLoVe model on others in
three compositionality benchmarks: ARO [264], SugarCrepe [88] (over its three coarse-grained
tasks), and SVO-Probes [82]. Note that, for SugarCrepe, we employ the macro-average to
compute the coarse-grained task results like in [231] and unlike the original paper, since we
are interested in measuring the global phenomena instead of giving importance to the task
sample sizes. See Appendix D.1 for the performance on SugarCrepe for each fine-grained
task.

Since a primary concern in previous work when devising methods that increase model
compositionality was the loss in performance on other tasks, we evaluate the CLIP+CLoVe

model performance on object recognition and image-to-text and text-to-image retrieval tasks.
In Table 7.3, we compare use the following object recognition benchmarks: ImageNet [44],

Stanford Cars [116], CIFAR10 [119], CIFAR100 [119], MNIST [123], EuroSAT [81, 80], Oxford
Flowers 102 [167], Describable Textures (DTD) [37], UCF101 [211], and HMDB51 [121].
Following [183], we employ the top-1 accuracy metric, except for Oxford Flowers 102, where
we use the mean per class.

In Table 7.4, we present results on zero-shot text-to-image and image-to-text retrieval tasks.
The datasets used are: Conceptual Captions [206] (CC3M), Distinct Describable Moments [7]
(DiDeMo), MSR-VTT [251], and YouCook2 [280] (YC2). We present the results employing
Recall@5 – the same metric used by [183]. Unlike in classification, our approach improves over
the rest on average by at least 4% (absolute). We speculate this improvement comes from
retrieval captions being longer and more complex than class label templates, which allows us

97



mWAP mSAP

pre-trained 24.8 28.6

NegCLIP 23.3 27.2
REPLACE 24.0 27.7

CLIP+CLoVe w/o patching 23.3 27.4
CLIP+CLoVe (α = .6) 27.9 32.4

Table 7.5: Results on RareAct. We employ the same mean Average Precision (mAP) metrics
defined by the original benchmark [156].

to appreciate our model’s rich text representations. We also believe using multiple prompts
per class in classification tasks averages out the text representation noise from other models
(see Appendix D.2 for an analysis of this). By using our CLoVe framework on CLIP, we
obtain better performance across all tasks and metrics, except for DiDeMo in text-to-image,
whose performance is on par with REPLACE.

7.5.3 Generalization to Unseen Verb-Object Compositions

We believe that CLoVe allows CLIP to recognize compositions better, even when unseen or
unusual, and the parts that form them are widespread. For this, we rely on evaluating our
method and the baseline on RareAct [156], a dataset with more than a hundred manually
annotated actions for 7607 ten-second clips from 905 YouTube videos. The authors obtained
these actions by combining verbs and nouns that rarely co-occur. We convert these actions
into texts by conjugating the verbs into the gerund form, using an indefinite article, and
employing the noun in its singular form. We use the same templates as in UCF-101 (from
the original CLIP’s paper [183]). An example text is: “A video of a person cutting a towel.”

We present the results in Table 7.5. Our method surpasses CLIP by 3 points and
outperforms existing models as well. Surprisingly, our method without the patching step
performs worse than the baseline. We hypothesize that hard negative training introduces
a forgetting behavior necessary to succeed in this task, unlike most other compositionality
benchmarks we consider in this chapter. Under this scenario, the patching would recover
performance on both standard and compositional tasks, being better than both models even
when they perform similarly on average since they seem to commit different types of errors.
In addition, to close the gap with human performance, besides compositionality, we believe
some actions require understanding motion to close the gap with human performance besides
compositionality.
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Fine-tuning dataset Attr. Rel. C-Ord. F-Ord.

pre-trained 63.5 59.8 47.7 59.9

Without hard negative texts

COYO 63.6 55.4 34.8 43.4
LAION (L) 64.9 64.0 40.2 47.0
COCO (C) 62.5 61.6 73.8 39.8

concat. L & C 65.9 59.0 43.7 50.3
sample unif. L & C 64.6 55.7 59.8 29.7

LAION-COCO 65.4 66.0 70.5 76.9

With hard negative texts

COYO 69.5 75.6 71.7 79.7
LAION (L) 67.9 72.6 78.3 85.4
COCO (C) 70.2 67.6 90.9 74.5

concat. L & C 70.1 76.2 83.4 88.6
sample unif. L & C 69.9 71.6 82.7 60.8

LAION-COCO 69.0 77.4 91.7 93.6

Table 7.6: The zero-shot performance of fine-tuning CLIP with different datasets, with and
without hard negative texts. The best results are in bold. An underline indicates results
within 1% of best.

We note that even when we did not guarantee that our model has not seen such actions
ever before (from LAION-COCO or indirectly from COCO’s training set via LAION-COCO’s
creation method), most of RareAct’s actions are particularly unusual (e.g., “blending a phone”,
“measuring an egg”, and “drilling a laptop”). If they had appeared in any of the directly or
indirectly used training sets, we believe it would be reasonable to expect their occurrences
to have been minuscule. Still, I intended to check if they were present in LAION-COCO.
However, I have lost access to it since I finished my internship at Netflix, and it has not been
available to download for a long time.

7.5.4 Ablation Studies

The Importance of Synthetic Captions. We hypothesize that training dataset quality
is essential to model compositionality performance. For example, in LAION [203], a dataset
commonly used to train Contrastive VLMs, you can find examples that present excessive
information that cannot be easily mapped to visual concepts depicted in any image, such
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Attr. Rel. C-Ord. F-Ord.

pre-trained 63.5 59.8 47.7 59.9

fine-tuned 65.4 66.0 70.5 76.9
+ negatives 69.0 77.4 91.7 93.6

+ negatives* 69.4 75.4 77.5 86.1

Table 7.7: The importance of employing negatives to improve the zero-shot performance on
recognizing compositions. The best results are in bold. An underline indicates results within
1% of best. *The last row shows the results of using half the batch size – there are gains
even when the total device memory is the same, given that employing negatives effectively
doubles the batch size.

as: “Platinum Dance Academy T-shirt. Orders must be placed by Friday, September 26th.
Delivery approximately 2 weeks or less.”

We could employ datasets with high-quality annotations such as COCO [141, 32], but
such datasets are typically small (less than a million samples). A hybrid approach, with
high-quality data and a large dataset, can be obtained using synthetic captions, as described
in Section 7.4.1. We are interested in comparing this dataset with LAION-400M or COCO
directly, as well as two ways to combine the datasets: a) concatenation and b) sampling with
equal probability.7 Note that these strategies of combining LAION and COCO are completely
different from the LAION-COCO dataset In addition, we consider COYO-700M [21], a
large-scale dataset constructed similarly to LAION-400M.

Table 7.6 compares the performance of fine-tuning a pre-trained CLIP model on different
datasets without employing negatives. In this table and subsequent ones, the best results
are in bold, and an underline indicates results within 1% of best. LAION-COCO [202]
presents the best results overall, with a large margin on ARO. For this benchmark, it is the
only presented dataset that significantly outperforms the pre-trained model. In the case
of the SugarCrepe benchmark, we observe that all datasets provide improvements over the
pre-trained model. Interestingly, [15] also found synthetic captions helpful for text-to-image
generation models. They show synthetic captions help such models generate images that
align better with the input text.

The Importance of Hard Negatives. [264, 88] showed that employing randomly gen-
erated text negatives as part of the training process can significantly improve the language
compositionality skills of pre-trained models. We apply REPLACE [88] to obtain randomly

7Note LAION-400M is about 700 times larger than COCO.
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Figure 7.13: The effect of applying model patching to both an object-centric benchmark
(ImageNet, [44]; x-axis) and a compositionality benchmark (ARO, [264]; the four y-axes
represent its four tasks), when varying the value of the weight in the average, α. The value
of α varies from 0 (the pre-trained model) to 1 (the fine-tuned model) in 0.05 increments,
and the lines connect such points. We can obtain models with good zero-shot performance in
ImageNet and compositionality when α is around 0.4–0.7. Note the four y-axes were adjusted
to make the pre-trained and fine-tuned model points match to focus on how the lines vary
between them.
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generated hard negative text along with the LAION-COCO dataset [202] and compare it to
fine-tuning without negatives. We present the results in Table 7.7. In this setting, we can
observe that employing negatives improves performance over not using them, as measured by
the ARO benchmark [264] (its tasks are, in the order that we show them: VG-Attribution,
VG-Relation, COCO-Order, and Flickr30k-Order).

The Importance of Model Patching. Existing methods to improve CLIP’s composi-
tionality by employing negatives used by [264, 88] do so by considerably hurting the model’s
performance on more standard object-centric benchmarks such as ImageNet [44].

Figure 7.13 presents the effect of varying this value for both a compositionality benchmark
and an object-centric one. The model performs well on both when α is around 0.4–0.7.

7.6 Conclusions

In this chapter, we proposed a simple and effective method to probe vision-language models.
Our method is scalable, as it does not require data annotation and uses existing datasets.
We analyzed the performance of CLIP, a popular state-of-the-art multi-modal model, on the
SVO-Probes benchmark with our method. We confirmed the recent findings of [228] of CLIP
behaving like a bag of words model and that of [171] of CLIP performing better with nouns
and verbs. We also uncovered novel findings, such as that CLIP gets confused by concrete
words but surprisingly improves performance for more ambiguous terms or that the frequency
of words does not significantly change CLIP’s behavior. We hope our work contributes to
ongoing efforts to discover the limitations of multi-modal models and help build more robust
and reliable systems. Our framework can be easily used to analyze other benchmarks, features,
and multi-modal models, and it is publicly available at github.com/MichiganNLP/Scalable-
VLM-Probing.

We then introduced CLoVe – a framework to considerably improve the compositionality
of pre-trained Contrastive VLMs while preserving their performance on other tasks, unlike
existing methods. Our approach combines fine-tuning contrastive VLMs with hard negative
texts by leveraging synthetically captioned images, as they can provide an excellent tradeoff
between quality and quantity. Subsequently, it patches the original model with the fine-tuned
one to convey the best of two worlds: compositional skills while maintaining performance on
other tasks.

We showed experimentally that CLoVe improves the performance of CLIP-like models
on multiple benchmarks, both compositionality-related and non-compositionality-related.
We presented improvements over the baseline on RareAct [156], a dataset of actions formed
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by infrequent verb-noun pairs. We ablated the different components of our framework and
showed their importance: data quality, the use of hard negatives in training, and model
patching.

Our code and pre-trained models are publicly available at github.com/Netflix/clove. Our
code allows for effortlessly replacing CLIP-like weights with the ones we provide, considerably
boosting language composition performance.
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CHAPTER 8

Conclusions

In this dissertation, I explored different aspects to make a way through more realistic video
understanding. Throughout it, I introduced novel approaches to bring data, evaluation
frameworks, and methods that help with this goal.

8.1 Research Questions Revisited

The findings for the originally formulated research questions are the following:

1. Can we build a language-based video understanding benchmark for overlooked real-life
domains, such as daily situations and in-the-wild scenarios?

I presented two new benchmarks considering real-life domains in Chapters 2 and 3.
The first benchmark, called LifeQA, contemplates life situations within long videos,
including scenes at home, at school, and on the streets. To perform well on it (i.e.,
to answer correctly the questions related to the displayed situations), methods should
understand each real-life story and its context. I demonstrated the task’s difficulty
through multiple analyses and experimental evaluations. Existing models present
a significant performance gap compared to humans, indicating that further work is
necessary to combine multiple modalities successfully in this task.

The second presented benchmark, WildQA, evaluates models on five domains that
portray different aspects of nature. Like LifeQA, this dataset considers minute-long
videos, and its methods present a gap concerning how a typical person would perform
on them. Unlike in LifeQA, I proposed an evaluation format based on generating
open-ended answers instead of choosing the correct one and avoiding the distractors.
Open-ended answer generation can help craft systems that meet users’ needs more
intrinsically. For this benchmark, not only do methods need to be employed to generate
answers, but they also need to show video evidence of where to find them. Overall, I
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consider this evaluation format a significant step towards a more realistic assessment of
video understanding.

Besides the evaluation, I experimentally showed that multi-task training can improve
methods’ performance. Video evidence selection plays another vital role, too; choosing
moments when answering a question brings insight into what the model attends to.
This is a crucial step for explainability and interoperability in multimodal systems.

The data for both benchmarks is publicly available for anybody to use, and I also
released the code for practitioners and fellow researchers to reproduce our results.

2. Does combining vision and language help better recognize naturally occurring human
behaviors in videos?

Chapter 4 showed evidence that combining visual, speech, and language features helps
recognize sarcasm better in videos when compared to using a single modality (only
vision, only text, or only audio). I introduced a multi-source dataset and benchmark,
MUStARD, to evaluate the extent to which methods can recognize sarcasm in short
videos.

After exploring multiple approaches, I tackled the issue of collecting sarcasm in videos.
I finally gathered sarcastic videos using two approaches: annotating many samples from
one source and explicitly searching for sarcasm from other sources on the web. Two
raters annotated the videos through multiple rounds with a binary value indicating if
they were sarcastic. In cases of disagreements, we employed a third annotator to break
ties. I accomplished a suitable inter-annotator agreement, with a Kappa of 0.2326 for
the first approach and 0.5877 for the second. For each sample, MUStARD includes a
video of the utterance with its binary sarcastic value and a second video that consists
of the dialog up to that point. It also includes the transcripts for the videos.

I crafted text, audio, and visual features to conduct several experiments. Apart from
showing the importance of multiple modalities, I revealed that audio plays a more critical
role in generalizing across speakers and sources. I also experimentally demonstrated
that knowing information about the speaker and modeling the context improves results.

The dataset and code are published online for others to use and replicate.

3. Can language be leveraged to build an automatic evaluation framework for video
understanding that better reflects real-life situations?

In Chapter 5, I introduced a format of evaluating the extent to which methods under-
stand short videos by filling in a sentence with a blank. These methods must fill these
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blanks with noun phrases representing entities from the videos. After looking at various
ways we could employ language to evaluate models, I decided to use noun phrases. This
dataset and evaluation framework, FIBer, probes to be challenging for models while
preserving a higher human agreement than video captioning evaluation metrics (i.e.,
it is more precise, as it better accounts for diversity). Even though multiple-choice
evaluations can achieve a high human agreement, the presented evaluation method is
more challenging and suited for real-life situations since it forces methods to generate
arbitrary-length noun phrases.

FIBer is based on VaTeX [241], containing 28,000 ten-second videos and manual
annotations we collected for the blanked captions to consider more correct reference
answers and thus reduce the false negative rate during evaluation. I conducted multiple
analyses to evaluate the quality of the data and the annotations. Naturally, we find
that the more annotators per blanked caption, the better to consider diversity when
filling in a blank. I presented the data diversity and complexity of the task through
multiple analyses (including in Appendix B), including the long-tail distribution of
answers, many examples of them, and their par-of-speech distribution.

I proposed novel multimodal methods to tackle this task. Such methods leverage
T5 [184] in a principled manner, given that it was pre-trained to fill in text blanks.
I showed that these methods perform well, but there is still a gap regarding human
performance.

4. Can large pre-trained image-text alignment models be used for robust zero-shot video
understanding?

I revealed in Chapter 6 that a minor refinement can be applied over a large pre-trained
image-text model such as CLIP [183] to boost the performance on unseen video tasks
and domains noticeably. This method is state-of-the-art in four out of five zeros-shot
benchmarks evaluated. It allows practitioners to use a single model for multiple use
cases, making deployment scalable to new tasks and domains. This presented method
could be replicated for future image-text models, making it easy to leverage them for
video tasks, unlike methods that rely on extensive and expensive training procedures.
Practitioners can simply swap CLIP’s weights with FitCLIP’s and receive a free boost
in performance in zero-shot video tasks with no extra inference cost.

I showed the importance of the model patching step in recovering the performance
of the original model. Without it, the method underperforms the baseline. I ablated
the choice of the model patching alpha value and the ratio of pseudo-labels to labels
in Appendix B. I also compared the text-to-video retrieval ranking distribution of
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MSR-VTT between FitCLIP and CLIP, given that some methods are better in earlier
rankings while sacrificing the long tail. Still, I demonstrated that FitCLIP is better or
equal to the baseline at virtually all points. I compared the best and worst-performing
Moments-in-Time classes of FitCLIP vs. CLIP and found that the model improves on
more abstract actions while presenting a slight deterioration in low-level actions such
as “slicing.”

The code is available for anybody to reproduce.

5. Can we align vision and language models so that they better generalize to unseen
verb-object compositions?

In Chapter 7, I presented a method that improves the compositionality of CLIP [183]
while keeping or improving the performance in standard benchmarks. In particular, I
introduced a noteworthy improvement in unseen verb-object compositions.

I first proposed a method to probe CLIP. This framework, which anyone can replicate
in a different setting, consists of selecting features from images and captions (e.g., how
many words the caption has) and checking if there is a significant correlation with
CLIP’s performance. I leveraged SVO-Probes [82], a dataset of pairs of images that
differ in either their subject, verb, or object, along with their associated captions. This
dataset allowed me to consider only the difference between the images while controlling
for the other factors. By taking advantage of this framework, I arrived at several
findings.

Many factors affect CLIP’s performance, even when orthogonal to the alignment
between the visual world and language. I showed that CLIP’s performance worsens
when comparing captions containing concrete words (e.g., “dog” and “apple”, as opposed
to “mathematics” and “acceleration”). CLIP’s performance is affected by the number of
words in the caption, preferring average-length sentences. CLIP scores are higher when
the image contains some elements described by the caption, even when the caption does
not align (e.g., referring to an apple but in a completely different context).

The method I proposed to fix compositionality issues, CLoVe, succeeds at significantly
improving the baseline performance on challenging captions that test for compositional
behavior (e.g., two captions with the same words but in a different order). Most
importantly, CLoVe improves the compositionality skills while keeping the performance
on standard classification. Additionally, my method improves retrieval, which requires
understanding more complex language than class names. In Appendix D, I showed that
our method is more robust to not using prompts than the baseline.
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I ablated the different decisions and components of CLoVe. I revealed that the choice
of the dataset is essential and found that synthetic captions can be extensive and high-
quality compared to the typical training set. I experimentally proved that negative-text
training is crucial to bringing compositionality, even when keeping the total batch size
the same. I exhibited the importance of model patching and experimented with several
values for α.

My method’s code and pre-trained models are available on GitHub for other researchers
and practitioners.

8.2 Future Directions

I have carried out steps toward achieving a realistic understanding of videos in this work.
However, some critical questions remain in this domain, as well as questions I have identified
that derive from my work.

8.2.1 Other Common Realistic Human Behavior

Sarcasm is a typically manifested human behavior that I considered in this work. Still, other
forms of expression have been understudied in the video understanding area. These forms
include humor (e.g., jokes and other non-serious ways of communication), deception (e.g., lies
and misdirection), and non-verbal communication (e.g., facial expressions and gestures such
as pointing and using mime). How can we build methods that consider all these forms of
communication to understand realistic videos better? How can we holistically represent how
people express and act differently?

8.2.2 Understanding Novel Actions Compositions Through Motion

In this work, I explored methods for understanding short out-of-domain videos through
zero-shot learning, which involves representing a video as an unordered set of frames. This
approach to treating the temporal dimension often fails, particularly when considering long
videos or multiple actions. A natural extension of my work considers video-text alignments
such that the temporal dimension is represented accordingly. Given this, some interesting
questions arise. How can we build such a video-text alignment method? Can image datasets
or pre-trained models be leveraged to avoid gathering large video datasets and a resource-
intense training procedure? Can the time dimension be represented so that the actions are
understood for the right reasons instead of relying only on accidental features?
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8.2.3 Extending the Fill-in-the-Blank Framework to Other Tasks

This dissertation proposes a challenging way to evaluate methods for video understanding
that provide high human agreement. However, other tasks also suffer from noisy automatic
evaluations due to human diversity. Such tasks include Text Summarization, Story Generation,
and Image Captioning. How can we apply the fill-in-the-blank evaluation to other tasks?

8.2.4 Fixing Compositionality Generalization Root Cause with In-

ductive Biases

In this work, I presented a method to patch existing vision-language models to fix their
compositionality generalization skills. However, the performance is still far from a human’s,
and we did not provide guarantees with other types of compositions (e.g., multiple sentences).
To avoid necessitating counter-examples for every phenomenon, I speculate that part-whole
inductive biases [85] could force the model only to use the parts correctly in a composition.
For example, “wooden” should not influence “cat” in “The cat is on top of the wooden table,”
even when a model has never seen this phrase before. I believe that interventions from at
least the language encoder side are required, as reported by [105]. As evidence, [189] shows
that text-to-image generation can improve attribute binding (an adjective correctly modifying
a noun for a generated image) when restricting the attention maps to follow the sentence
structure.
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APPENDIX A

Video Understanding in In-The-Wild Scenarios:
Supplementary Material

A.1 Annotation Details

A.1.1 Video Selection and Processing

Video Selection. For the video selection part, as mentioned in Section 3.3, first, we
identify five domains, Agriculture, Geography, Human Survival, Natural Disasters,
and Military, to collect videos recorded in the outside world. We then identify eight (8)
YouTube channels and crawl videos from those channels. During crawling, we manually
substitute irrelevant videos, such as advertisements, with videos that contain scenes primarily
recorded in the outside world from the same channel.

Video Processing. As mentioned in Section 3.3, we clip the raw videos into short clips
by PySceneDetect because the raw videos can be as long as an hour. We then concatenate
these short clips so that the output video will be around 1 minute. The output videos are
used for the following annotation process. We want to include longer videos because
the videos recorded in the outside world usually contain less information than videos about
human interactions. Besides, if the concatenated video is at the end of the original video, it
is allowed to be shorter than 1 minute. We select the concatenated videos that only contain
scenes recorded in the outside world. If none of the concatenated videos satisfies, we manually
clip the original videos to get an output video.

A.1.2 Annotation Instructions

As mentioned in Section 3.3, we have 2 phases in our annotation process as shown in Fig. 3.3.
In Phase 1, annotators develop a hypothetical motivation, ask questions, and provide the
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corresponding answers with relevant parts of the video as evidence. Phase 2 is to collect
answers and evidence for questions we collect in Phase 1. The following are the instructions
for these two phases.

Instructions for Phase 1

We need help with this Video QA task based on video content (including the audio).
In this task, we suppose you can hypothetically send a robot to where you want to collect
necessary information for many hours. In this hypothetical scenario, you have an objective
that you want the robot to learn about. This robot can chart territory and can answer
questions based on recorded videos. Therefore, after it comes back, you can ask questions
to help you satisfy your objective; this robot will provide you with answers and video
evidence clips to support the answers.
In this task, to simplify, the provided videos represent places where you could potentially
have sent the robot and are much shorter (a few minutes). Given a recorded video, please
help us provide one hypothetical objective that makes sense, along with questions, answers,
and evidence. Specifically, you should pretend to be both the information-seeker and the
robot, which means that as the robot, you could watch the recorded video, and you should
provide answers and video evidence clips; as the information-seeker, you have an objective,
not watch the whole video (because of practical reasons), and you can only ask questions
and receive answers and video evidence clips as feedback.

1. Basic Instructions

• You will need to propose a hypothetical objective (or topic, intention, motivation) to
motivate the questions, such that it makes sense for the given video.

• You will need to provide as many questions as you need (to satisfy your objective)
about the content in the videos and that you seek to understand more about the
proposed objective.

• You will first watch the video, but when you are providing the objective and questions,
please pretend you haven’t seen it before.

• You must provide at least one question for each video. The more the better.

• You will need to identify the source of your question (whether it is based on the
visual scene or the audio) and classify your question accordingly.

• You will need to provide the correct answer to your question, as supported by the
content in the video.
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• You must provide video evidence (video clip) to support your question and answer.

• If one video doesn’t make sense at all, or there’s no possible objective for this video
that makes sense, please comment at the bottom of this annotation page (and fill in
the mandatory fields for the corresponding video with placeholder values).

2. How To Propose Hypothetical Objective

• For each video, you need to develop a hypothetical objective (or intention, motivation,
topic) that makes sense for this video and briefly explain it.

• Your questions should all relate to this objective.

• Example 1:

– Objective: I want to learn about the water in the territory.

– Question 1: How big is the lake?

– Question 2: Are there any boats in the lake?

– Question 3: Where is the river?

– . . .

• Example 2:

– Objective: people/life movement

– Question 1: Is there any sign that wildlife has passed this area?

– Question 2: How much traffic is there on the road?

– . . .

3. How To Ask Your Question

• Your question should relate to your proposed objective.

• For each video, after you finish one question, you could click the Add one more
question for this video button to continue to provide another question for this video.
On the contrary, if you want to delete one question, you can click the Delete this
Question button.

• Ask one question at a time.

– E.g., “Are there any people? What are they doing?” is not appropriate.

• When you provide multiple questions for the same video, make sure these questions
are independently asked.

– E.g., “What is growing on pine trees?” and “What is their color?” are not
independent.
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• The answer should be derived from the video (visual or audio).

– E.g., “Why do they run every morning?” is not a good question.

• Ask from the 3rd person point of view.

– E.g., “What do we have on this farm?” -> “What do They have on this farm?”

• Try to balance the questions such that the answers are not too repetitive (E.g., too
many ’yes’ answers).

• Ask questions matter-of-factly (as objectively as possible). Stick to what you can
see or hear from the video.

– E.g., “Does it make people feel good here?” is somehow subjective.

• Don’t ask questions about how’s the video being recorded, the camera person, or the
camera itself. Ask about the content itself. Ignore what the camera person is doing.

– E.g., “What’s the cameraman doing?” / “How fast is the camera moving?” are
not good questions.

4. How to identify the Question Category

We have some basic categories: Motion, Spatial Relationship, Temporal Rela-
tionship, Reasoning, Number, Entity, Existence, Time, Location, Other.
If your questions fall into multiple categories, please check all categories that apply.
Here are some example questions under each category:

• Motion: What is the group of soldiers doing?

• Spatial Relationship: What is driving beside the motorcycle?

• Temporal Relationship: What happens before the black smoke rises?

• Reasoning: What makes changing between targets possible for the missile?

• Number: How many fighters are flying?

• Entity: What is the bullet’s target?

• Existence: Is there a lake by the mountain?

• Time: How long can the missile fly?

• Location: Where is the tank?

• Others

5. How To Provide Correct Answer
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• Your answer should be written as full sentences (at least one).

– E.g., “Left” → “The landspout bends toward the left.”

• The answer should be derived from the video (visual or audio).

– E.g., “These plants are green because they contain chlorophyll.” is not a good
answer.

• Provide answers matter-of-factly (as objectively as possible). Stick to what you can
see or hear from the video.

– E.g., “beautiful” is likely not a good word to use within an answer.

– E.g., “This takes some bravery to do.” is somehow subjective.

• Don’t answer about how’s the video being recorded, the camera person, or the camera
itself. Answer about the content itself. Ignore what the camera person is doing.

– E.g., “There are two people, i.e. a running child, and the cameraman.” is not a
good answer.

• When you enter numbers, please enter digits instead of text.

– “Seventeen” → “17”

6. How to provide video evidence

• The video evidence consists of all the parts of the video that support the answer to
your given question.

• You need to provide at least one video evidence clip (intervals within the video) for
each question.

• You need to provide both the start point and end point for all the video evidence
you identify in the video;

• You could use your mouse or ←/→ key to click or drag the process bars of the
start and end points. When you click or drag the bar, the above video will change
accordingly so that you can locate the points according to the video screen.

• For each video evidence clip, the end point should be greater than zero, and the
end point should be greater or equal to the start point.

• The video evidence clips (the time gap between the start and end points) should be
as short as possible.
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Instructions for Phase 2

We need help with this Video Question Answering task based on video content (including
the audio).

1. Basic Instructions

• You will first watch the video, then answer each question in turn.

• You must provide at least one answer for each question (ignoring differences such as
upper/lower case or the article). The more answers, the better, but every answer
should be correct.

• You will need to identify the source of your answer (whether it is based on the visual
scene or the audio).

• For each answer, you must provide video evidence (video clip) to support your answers.
See below for additional information.

• If one video or question is unavailable, please comment at the bottom of this annotation
page (and fill in the mandatory fields for this video/question with placeholder values).

• There are five questions; you need to finish all five questions according to the content in
the video (including audio).

2. How To Answer

• Provide one or more answers for each question.

• Each answer should be written as full sentences (at least one).

– E.g., “Left” → “The landspout bends toward the left.”

• The answer should be derived from the video (visual or audio).

– E.g., “These plants are green because they contain chlorophyll.” is not a good answer.

• Respond matter-of-factly (as objectively as possible). Stick to what you can see or hear
from the video.

– E.g., “beautiful” is likely not a good word to use within an answer.

– E.g., “This takes some bravery to do.” is somehow subjective.

• Answer in 3rd person point of view.

– E.g., “We raise cattle on this farm.” -> “They raise cattle on this farm.”

• Don’t answer about how’s the video being recorded, the camera person, or the camera
itself. Answer about the content itself. Ignore what the camera person is doing.
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– E.g., “There are two people, i.e. a running child, and the cameraman.” / “The camera
is moving fast.” are not good answers.

• When you enter numbers, please enter digits instead of text.

– “Seventeen” → “17”

• Use your best judgment.

3. How to provide video evidence

• The video evidence consists of all the frame intervals of the video that support the
answer to your given question.

• You need to provide at least one video evidence clip (interval within the video) for each
question.

• You need to provide both the start point and end point for all the video evidence you
identify in the video;

• You can use your mouse or ←/→ key to click or drag the process bars of the start and
end points. When you click or drag the bar, the above video will change accordingly so
that you can locate the points according to the video screen.

• For each video evidence clip, the end point should be greater than zero, and the end
point should be greater or equal to the start point.

• The video evidence clips (the time gap between the start and end points) should only
cover the actual evidence and not more (in other words, it should be as short as possible).

A.1.3 Annotation Interface

Figure A.1 shows the annotation interface for Phase 1. Figure A.2 shows the annotation
interface for Phase 2.

A.1.4 Pilot Study Comparison between Annotations from Experts

vs. Non-Expert

Before the formal annotation, we compare the non-experts’ and experts’ annotations for both
phases. For Phase 1, we randomly selected 45 videos from each domain to be annotated by
experts and crowdworkers. Following [29], we set the AWS annotation qualification as HIT
approve rate >92%, the number of HITs approved >1000, the location is either Canada or
U.S., and the reward as $6/HIT (around $9/h).
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Figure A.1: Interface for annotation Phase 1. After watching the video, annotators provide
a motivation, ask questions, and provide corresponding answers by filling in the blank.
They provide parts of the videos as evidence to support each of the question-answer pairs
by dragging the moving bar.
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Figure A.2: Interface for annotation Phase 2. After watching the video and given the question
from Phase 1, annotators provide answers with the corresponding evidence.
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Relevance Interestingness Professionality Overall Score

expert 2.7 2.5 2.1 2.4
crowd 0.8 0.7 0.5 0.7

Table A.1: Average scores of the pilot study for Phase 1 (from 0 to 3).

Objective Question Answer

E Precipitation What types of precipitation are occurring? Rain and hail.
C Very like Nice Nice

E I want to learn about the people. What type of weapons are they carrying? M4’s
C The soldiers are caught on the ship. What are they doing in this video? They caught the ship.

E Storm Where is the storm? In a field.
C Motivation 5 Very amazing

Table A.2: Examples in pilot study for Phase 1. E: Expert; C: Crowd

After annotation, two researchers who do not know the source of annotation evaluate and
score in terms of Relevance, Interestingness, and Professionality for each annotation from 0
to 3. We define Relevance, Interestingness, and Professionality as follows:

• Relevance: how relevant a question and an answer are to the video. Good relevance
indicates that the question is related to the video and focuses on the central events, objects,
or people in the video. A relevant answer should address the question and can be derived
from this video.

• Interestingness: whether the question interests you. In other words, given a video,
whether you are interested in the question and answer.

• Professionality: how detailed and precise the question and answer are. Good profes-
sionality can be demonstrated by the exact usage of terminologies and numbers and an
accurate answer description.

• Overall Score: the average score of the score for Relevance, Interestingness, and Profes-
sionality.

For each category, the higher the score, the better the annotation demonstrates that
characteristic. Table A.1 lists the scores, and Table A.2 presents some annotation examples.
From the empirical and numerical results, we could see a significant quality gap for annotation
from experts versus crowdworkers. Therefore, we decided to employ domain experts for Phase
1.
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Annotator R1 R2 RL IOU-F1

Expert 23.63 8.05 21.22 12.24
Crowd 20.03 3.24 17.69 8.50

Table A.3: ROUGE and IOU-F1 scores for the pilot study in Phase 2. Note that the scores
here are lower than those for the human baselines in Tables 3.4 and 3.5. This is because we
only compare the collected answers to a single answer here, while in Tables 3.4 and 3.5, we
calculate the average scores of one annotator against the remaining as described in Section 3.4.

For Phase 2, we randomly select 104 Geography videos and questions from the questions
annotated in Phase 1 to be annotated by both experts and crowdworkers. Moreover, we set
the reward as $3/HIT(around $9/h) and employ the AWS Master1 as the crowdworkers.
Table A.3 lists the pilot study results for Phase 2. According to Table A.3, crowdworkers
perform similarly to experts in Phase 2. Considering the annotation efficiency, we employ
experts and crowdworkers to annotate more diversified answers for each question in Phase 2.
Note that the ROUGE scores in Table A.3 are lower than the scores for the human baselines
in Tables 3.4 and 3.5. This occurs because we only compare the collected answers to a single
answer in Table A.3, while in Tables 3.4 and 3.5, we calculate the average scores of one
annotator against the remaining as described in Section 3.4.

A.1.5 Question and Answer Correction

After we collected annotations from Phase 1, we had a group of researchers check the quality
of the collected questions and answers and modify the questions and answers accordingly.
Specifically, we:

• Delete the questions that somebody could answer without watching the video
(e.g., Q: “If water can get through the hut’s roof; can the wind go through

the hut’s roof?”, A: “Yes the wind can go through the hut’s roof.”)

• Modify the question or the answer to 3rd person view (e.g., change Q: “Do we

have aircraft that we can do a touch and go landing like a helicopter?”

to Q: “Do they have aircraft that can do a touch and go landing like a

helicopter?”)

• Exclude the man holding the camera in the answer if it is a first-person view video.
1https://www.mturk.com/worker/help#what_is_master_worker
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Annotator ID Expertise Assigned Domains (# Q)

0 Geography Geography (94) ; Natural Disaster (187)
1 Geography Geography (16) ; Human Survival (74)
2 Veteran Military (26) ; Human Survival (146)
3 Veteran Military (70) ; Human Survival (89)
4 Veteran Military (12)
5 Veteran Military (8)
6 Veteran Military (85)
7 Biology Agriculture (88)
8 Biology Agriculture (21)

Table A.4: Information about the expert annotators who annotate the questions, together
with their assigned domains and the number of questions (# Q) in the parentheses.

• Modify questions that are not independently asked (e.g., “Where are they?”, where “they”
refers to the “paved and unpaved roads” in the previous question. Therefore, we change
the question to “Where are the roads?” )

• Split questions that include multiple sub-questions into several questions.

Some of the annotators from Phase 2 do not annotate any evidence (leaving the evidence
from the start to the end of the video). Thus, we empirically filter out evidence longer than
1/4 of the video.

A.1.6 Annotator Information

Table A.4 shows the expertise of each expert, together with their assigned domains of
annotation and the number of questions they annotate in their assigned domains in Phase 1.

A.1.7 Dataset Analysis

Figure A.3 presents question distributions in terms of words.

Questions Types. Table A.5 examines the frequent words for each domain, demonstrating
the domain’s characteristics. Take Natural Disaster as an example; the three most frequent
words are used in 20.63% of sentences. Besides, Fig. 3.4 in Section 3.3 lists the annotators’
self-reported question types. We observe that questions that start with “What” possess a large
proportion of all the questions. Such questions might be hard to classify into certain question
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Figure A.3: Distribution of questions by the first four tokens. The ordering of words starts
from the center to the outside.

Domain top 1 top 2 top 3

Agriculture farm agricultural understand
Natural Disaster weather people flooding
Human Survival man determine human
Geography people topography water
Military military aircraft determine

Table A.5: Three most common words for each domain after removing stop-words.
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Figure A.4: Venn diagrams showing whether the question depends on visual (scene) or audio
from the original video. The left is for the entire dataset, while the right is for the Agriculture
domain.

types [26], so we allow annotators to choose multiple question types for a single question.
Empirically speaking, questions that start with “is(are)”/“where”/“how many” are commonly
relevant to “Existence”/“Location”/“Number” questions. In our dataset, their distribution
trend (“is(are)”: 24.13% > “where”: 7.21% > “how many”: 4.48%) is akin to the trend of
the distribution of the reported question types (“Existence”: 45.20% > “Location”: 12.23% >
“Number”: 4.59%). Moreover, although we have “human”, “man” and “people” as the most
frequent words in some domains, the most frequent words in domains such as Military are
“military”, and “aircraft”, which demonstrates that our dataset does not only focus on human
interactions as most of the existing datasets do.

Information Needed. As shown in the left Venn figure in Fig. A.4, generally, most
questions are based on the visual (scene). The distribution of the question types also justifies
such a distribution. The dominant kinds of questions we have in Fig. 3.4 are Motion, Spatial,
Existence and Entity, which typically focus on visual information. However, in Agriculture
(the Venn diagram on the right in Fig. A.4), the audio-based questions take more portion
because videos in Agriculture usually focus on farming tips, instructions for using tools, etc.
In this work, we do not experiment with models that use audio or transcripts from the video.
Future research might look into letting models use audio and transcripts on our dataset.

Answer Similarity/Diversity. We have similar and diversified answers collected in our
dataset. Figure 3.5 gives two examples: answers from the upper example are alike; for
the lower example, answers vary greatly between Phase 1 and Phase 2 annotations or even
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Videos 369
Duration (s) 71.22 ± 26.47

Questions 916
Question per video 2.48 ± 1.38

Question length (#tokens) 7.09 ± 2.60
Answer length (#tokens) 8.62 ± 8.90

Evidence per answer 1.53 ± 0.76
Evidence length (s) 9.09 ± 13.45

Table A.6: Annotation statistics for Phase 1. “#tokens” represent the number of tokens.

Crowd annotated answers 932
Expert annotated answers 182

Total 1114

Answer per question 1.22 ± 0.69
Answer length (#tokens) 9.45 ± 7.46

Evidence per answer 0.89 ± 0.72
Evidence length (s) 10.43 ± 5.81

Table A.7: Annotation statistics for Phase 2. “#tokens” represents the number of tokens.

within Phase 2. However, all of the answers are acceptable, given the video. The similarity
demonstrates the reliability of the Phase 2 annotation. Meanwhile, the diversified answers
help to evaluate models better.

A.2 Annotation Statistics

Tables A.6 and A.7 list the statistics for annotation in Phase 1 and Phase 2, respectively.

A.3 Details of Multi-task Learning

Tables A.8 and A.9 report the model performances under different sets of α, β for Eq. (3.1).
We highlight the rows we report in Table 3.4 in Section 3.4.2, Table 3.4 in Section 3.4.2,
Table 3.5 in Section 3.5.2, and Table 3.5 in Section 3.5.2.
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β R1 R2 RL IOU-F1

0.5 33.8 ± 0.8 18.5 ± 0.7 32.5 ± 0.8 3.7 ± 2.4
1.0 32.2 ± 0.7 17.6 ± 0.5 31.0 ± 0.6 1.9 ± 1.7
1.5 33.8 ± 0.3 18.0 ± 0.9 32.5 ± 0.3 1.5 ± 0.1

Table A.8: Multi-task parameter selection results for the Evidence Selection SE method.
We set α = 1 throughout all the experiments and report the corresponding MultiT+V,SE

performances on Video QA (ROUGE scores) and Video Evidence Selection (IOU-F1 scores).
We highlight the row we report in Table 3.4 in Section 3.4.2 and Table 3.4 in Section 3.4.2.

β R1 R2 RL IOU-F1

0.5 34.0 ± 0.5 18.8 ± 0.7 32.8 ± 0.6 1.2 ± 0.1
1.0 33.4 ± 0.6 18.4 ± 0.2 32.1 ± 0.6 1.4 ± 0.3
1.5 32.8 ± 0.3 18.3 ± 0.3 31.7 ± 0.2 1.0 ± 0.2

Table A.9: Multi-task parameter selection results for the Evidence Selection SE method.
We set α = 1 throughout all the experiments and report the corresponding MultiT+V,IO

performances on Video QA (ROUGE scores) and Video Evidence Selection (IOU-F1 scores).
We highlight the row we report in Table 3.5 in Section 3.5.2 and Table 3.5 in Section 3.5.2.

A.4 Experiment Results

Figures A.5 and A.6 report Multi-Task model’s performance on Video QA by ROUGE-2,
and ROUGE-L, respectively. Figure A.7 demonstrates that ROUGE scores follow a similar
trend as mentioned in Section 3.5.3.

A.4.1 Ablation Study on Video Evidence Selection

To investigate whether baseline models indeed need the vision part for the Video Evidence
Selection task, we conduct an ablation study using T5 IO and T5 SE (introduced in Sec-
tion 3.5). We take a random sequence of the same length as the original video sequence and
feed the random sequence instead of the original video sequence to the model. Table A.10
shows the comparison results between these different settings. T5 IO performs roughly the
same as T5 IOrandom, which indicates that the model struggles to utilize visual information.
T5 IO even underperforms the random baseline which can achieve an IOU-F1 score of 2.5 ±
0.3 (as shown in Table tab:few-shot-evidence-results-10-epochs). However, T5 SE outperforms
T5 SErandom, suggesting that T5 SE uses visual features to locate the evidence of the question.
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Model name IOU-F1

T5 IOrandom 1.1 ± 0.3
T5 IO 1.1 ± 0.2

T5 SErandom 2.7 ± 1.9
T5 SE 4.5 ± 0.8

Table A.10: Ablation study on the Video Evidence Selection. We feed T5 IOrandom and T5
SErandom the question concatenated with a random sequence, while we feed T5 IO and T5 SE
the question with the actual video sequence.
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Figure A.5: Multi-Task ROUGE-2 scores for Video QA when tuned on a single domain
(y-axis) and tested against each domain (x-axis).
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Figure A.6: Multi-Task ROUGE-L scores for Video QA when tuned on a single domain
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Figure A.7: MultiT+V,SE performance on different question types for Video QA. We report
ROUGE-1, ROUGE-2, and ROUGE-L scores from left to right for each question type. Different
ROUGE scores follow similar trends; therefore, we only report ROUGE-1 in Table 3.6 in
Section 3.5.3.
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APPENDIX B

Realistic and Robust Video Understanding
Evaluation: Supplementary Material

B.1 Dataset

B.1.1 Most-Frequent Noun Phrases

We report the most frequent noun phrases in the original labels and in the annotations we
collected, in Fig. B.1. The most frequent nouns in both answer sets tend to refer to people,
which makes sense considering the videos’ content. In the annotation data, we see a greater
variety of synonyms for the same kind of person (“male”, “man”, “guy”), likely due to the task
definition, which encourages paraphrasing.

B.1.2 Part-of-speech Distribution

We compare the use rate of words in different part-of-speech categories for the initially blanked
phrases and the annotations, using the same parser specified earlier to label part-of-speech
tags in the noun phrases. We show the distributions in Fig. B.2, and we see that the
annotations have roughly the same rate of part-of-speech tag use in all categories, except
among adjectives and pronouns where the initially blanked phrases have a higher rate of use.
This outcome is likely an artifact of the data collection strategy, which encouraged annotators
to generate unique noun phrases rather than phrases with adjectives or pronoun references.

B.1.3 Part-of-speech Sequence Distribution

Although the candidate answers collected from crowd workers consist of noun phrases,
they may include different part-of-speech (POS) sequences within the noun phrases. The
distributions of POS sequences in Fig. B.3 show that the annotators tended to write “bare”
nouns without extra determiners and proper nouns more than the original phrases. This
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Figure B.1: Top 20 nouns for the originally blanked phrases and the annotations in the
validation and test data.
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Figure B.2: Relative frequency of part-of-speech tags in the originally blanked phrases and
the annotated answers.

phenomenon makes sense, considering that the task asked annotators to provide many unique
nouns without consideration for the nouns’ structure.

B.1.4 Dependency Categories

Due to the sampling process, some of the answers occur in different syntactic contexts, e.g. in
a prepositional phrase in “A woman does push-ups on _____” or as a subject in “_____
at a driving range demonstrating...” (see Table 5.1). We plot the distribution of dependency
categories in Fig. B.4, showing that nouns occur in a wide range of positions but mostly in
preposition, subject, and direct object positions.

Next, we test whether specific syntactic contexts tend to attract more answers from the
annotators than others by computing the mean unique number of answers per annotator
within each syntactic context (based on the dependency parse connected to the masked
NP). We show the distribution in Fig. B.5. Captions that mask noun phrases that occur in
preposition (pobj) and direct object (dobj) positions tend to attract slightly fewer unique
answers per annotator than the runner-up most-frequent categories, subject (nsubj) and
compounds (compound). This result intuitively makes sense since annotators would likely
have fewer options for noun phrases when faced with a preposition or a direct object than
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Figure B.3: Relative frequency of POS tag sequences in the originally blanked phrases and
the annotated answers.
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Figure B.5: Average number of unique answers per caption, grouped by the dependency type
of the root word of the originally blanked phrases. We sort the categories by their frequency.
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with the less restrictive subject noun position.

B.1.5 Gender Representation

Language processing models can often learn to encode social bias due to non-representative
training data, such as image captions for photos of men and women taken in stereotypical
environments [275]. We find a slight gender gap in our data. Using a gender word list, we
find that about 10.9% of the originally blanked phrases are male-related words in contrast to
6.2% that are female-related, and 9.1% of the annotations are male-relate,d while 5.9% are
female-related. We note that the gender imbalance is less severe for the annotations than
the original phrases, and the annotations use more gender-neutral human words than the
labels (6.6% for annotations vs. 6.0% for original phrases). While some of the annotators may
undoubtedly be biased in their decisions, some of the bias may also result from the original
video clips. We acknowledge this limitation as a direction for future work collecting video
caption data.

We used the following lists for gendered words, which were chosen to be in similar semantic
categories (e.g. male “brother”, female “sister”, neutral “sibling”):

• Male-oriented words: “boy”, “brother”, “father”, “guy”, “he”, “him”, “himself”, “his”, “male”,
“man”, “son”

• Female-oriented words: “daughter”, “female”, “girl”, “her”, “herself”, “lady”, “mother”,
“she”, “sister”, “woman”

• Gender-neutral words: “adult”, “baby”, “child”, “human”, “kid”, “parent”, “people”,
“person”, “sibling”

B.1.6 Spatiotemporal Trends of the Blanked Entities

One of the authors of the original paper related to this chapter randomly sampled 50 videos to
analyze spatiotemporal information on the blanked entities. Figures B.6 to B.8 show trends
on where, when, and for how long the blanked entities appear in the videos. As expected,
the blanked entity generally appears at the center of frames, with a slight tendency to be on
the lower side. We observe that around 93% of the time, the blanked entity appears between
seconds 2 and 4 of the video but that there is still a high chance (75%) of seeing it at any
given moment. 68% of the time, the blanked entities appear for the entire duration of their
corresponding video.
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Figure B.6: Heat map showing how frequently (%) the blanked entity appears within a given
location of the video, for a sample of 50 videos. Each frame is divided into a four-by-four
grid. A blank entity is counted for a given cell if it touches the cell at any moment of a given
video. Note that multiple cells can be counted for a given video because the entity is big
enough or because the entity or the camera moves.
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Figure B.7: Frequency (%) that the blanked entity appears at each one-second interval in a
given video, for a sample of 50 videos. A time interval is counted if the entity appears at any
moment of the one-second duration interval.
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Figure B.8: Distribution of the total time that each blanked entity is seen within its video
for a sample of 50 videos.

B.2 Experiments and Results

B.2.1 More Implementation Details

We use the T5 model from the HuggingFace Transformers library [246]. We train the model
with Adam [113] on a V100-16GB with a batch size of 64 for ten epochs (4,000 steps) using
a learning rate of 1e-4 with a warm-up of one epoch and a linear decay. The training
time is short, less than an hour. We compute the loss as the cross-entropy between the
model-generated output and the initially blanked phrase.

For test-time decoding, we use beam search with a beam size of 4 for the early-fusion model
and 8 for the late-fusion one, with a maximum token length of 10. We stop the decoding
early if an example has seen as many complete hypotheses as the beam size (beam search
early-stopping1). We penalize the repetitions of bigrams within a decoded text. For each
example, we choose the first noun phrase beam, as detected by spaCy [87], or the first if none
are noun phrases. We show the effect of varying the beam size in Appendix B.2.2. Modifying
the beam search early-stopping property does not lead to significant performance changes.

1https://huggingface.co/transformers/internal/generation_utils.html#transformers.BeamSearchScorer

137

https://huggingface.co/transformers/internal/generation_utils.html#transformers.BeamSearchScorer


1 2 4 8

T5 fine-tuned 72.9 74.2 73.8 73.8
T5 + I3D 73.0 74.0 74.3 74.2

Late-fusion T5 + I3D 69.0 69.6 69.7 69.7

Table B.1: F1 scores on the validation set for the beam sizes 1 (greedy search), 2, 4, and 8.

EM F1

t5-small 20.2 37.1
t5-base 34.9 50.2
t5-large 43.5 59.5
t5-3b 44.9 62.6

Table B.2: Results on the validation set for different model sizes of the T5 text-only zero-shot
model.

B.2.2 Beam Search

Table B.1 shows the effect of varying the beam size during the beam search decoding. In
all cases, using a beam search of at least size two is better than a greedy search. However,
the results are marginally better or inconclusive when using beam size four or eight. This
behavior is probably related to the phenomenon described by Meister et al. [155] in which
beam search does get us closer to the true maximum a posteriori solution. Still, the answers
start to get worse after a certain point.

B.2.3 Model Size

In Table B.2, we show the result of changing the T5 model size for the text-only zero-shot
baseline. We could not fit the model variant t5-11b into GPU memory. As expected, we
note an increase in the evaluation metrics as the model capacity increases.

B.2.4 Qualitative Analysis

In Table B.3, we show several examples of answers correctly predicted by the best multimodal
method but incorrectly answered by the best text-only method. Even though the answers
provided by the text-only method are plausible by just looking at the text, they do not make
sense with the given videos. In the second example, one can quickly tell the person is not at
a gym but in some kind of indoor room. For these examples, the multimodal method seems
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A person at the top of
_____ with ropes hang-
ing down.

A guy is by the stairs in
_____ doing the moon-
walk in socks.

A man is showing and de-
scribing a rock sample to
_____.

correct
answers

adirondacks, cliff, climb,
frozen waterfall, gully, hill,
ice, icy cliff, ledge, moun-
tain, ravine, slope, snow

building, doors, entryway,
foyer, his home, his house,
home, house, living room,
room, shorts, t-shirt

audience, camera, con-
sider where its hinge goes,
describe how it looks, dis-
cuss its hinge, explain his
viewers, his audience, his
followers, his subscribers,
his viewers, people, stu-
dents, viewer, viewers

T5 fine-
tuned

a tree (0) a gym (0) a woman (0)

T5 + I3D a mountain (100) a room (100) a camera (100)

Table B.3: Examples of instances correctly predicted by the best multimodal method but
incorrectly predicted by the best text-only method. The F1 score obtained by each answer is
shown in parentheses. We show the correct answers normalized and separated by commas.
We show the model predictions verbatim. From each video, we show a single frame illustrating
the key moment.

to have identified what is visually relevant.
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APPENDIX C

Practical and Scalable Video Understanding with
a Single Model: Supplementary Material

C.1 Pretraining Datasets

Table C.1a summarizes existing datasets for pretraining visual-language models. CC3M [206]
is one of the first datasets to bridge images with natural language supervision leveraging the
internet (HTML image alt texts). This dataset collects about 3M clean images through a
pipeline that guarantees a clean supervision signal. The MS COCO Captions [32] (COCO)
dataset contains 500k human-curated caption-image pairs. The images come from the MS
COCO [141] dataset, which were collected from Flickr. WIT [214] contains 37.5M image-
caption pairs obtained from the Wikipedia. CLIP authors [183] constructed a dataset with
more than 400M text-image pairs scrapped from the internet. The dataset contains images
from queries formed with the 1000 most common visual concepts in Wikipedia. While the
dataset does not rely on manual cleaning to verify the image-text pairs, it is assumed that
a person provided a good enough image caption before uploading it to the internet. In the
same spirit, the WebVid-2.5M dataset [11] crawls 2.5M text-video pairs leveraging manually
curated titles from Stock footage. Differently, the HowTo100M (HT100M) dataset [158]
contains 100M pairs of noisy aligned video-text pairs. In this dataset, the video-text pairs
and their automatically transcribed speech come from long YouTube videos.

C.2 FitCLIP vs. CLIP per-class performance

Previous experiments showed that FitCLIP offers a simple strategy to boost zero-shot
performance in video understanding tasks; however, where are those improvements emerging
from? To better understand the differences between FitCLIP and CLIP (our teacher),
we compute the performance difference per class between both models in the Moments
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Dataset Domain Supervision Size

COCO [32] Images Clean 600k
CC3M [206] Images Clean 3M
WIT [214] Images Clean 37.5M
CLIP [183] Images Weak 400M
WebVid [11] Videos Weak 2.5M
HT100M [158] Videos Noisy 100M

(a) Pretraining datasets

Dataset # Classes #
Samples

MiT [160] 339 33,900
UCF101 [211] 101 1,794

(b) ZS action recognition

Dataset #
Samples

Genre

MSR-
VTT [251]

1000 UGC

YouCook2 [280] 3305 Cooking
DiDeMo [7] 4021 UGC

(c) ZS text-to-video retrieval

Table C.1: Pretraining and zero-shot datasets. (a) Diverse image and video datasets are
available for pretraining visual-language models. (b) We benchmark zero-shot (ZS) action
recognition in two popular datasets. MiT denotes Moments in Time [160]. (c) To benchmark
zero-shot (ZS) text-to-video retrieval, we rely on three well-established datasets. UGC stands
for user-generated content, and Genre refers to the type of videos in the dataset.
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Figure C.1: FitCLIP vs. Teacher per-class improvements. The plots show the per-class
difference between FitCLIP and CLIP performances (Top-1) on the Moments in Time (MiT)
dataset. Noticeably, the performance difference varies significantly across various action
classes, reinforcing our intuition that FitCLIP encodes complementary video information
compared to CLIP. Interestingly, FitCLIP improves performance for abstract action classes
such as preaching and tapping, while CLIP does so for actions involving common actions like
cycling, boxing, or skating.
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Figure C.2: FitCLIP vs. CLIP distribution of Text-to-Video Retrieval rankings.
The x-axis represents each text in the MSR-VTT validation set (1K-A split), and the y-axis
(in log scale) represents the rank each model gave to the corresponding video. We sort the
x-axis by rank (the values increase).

in Time dataset. Figure C.1 summarizes the results by plotting the largest and smallest
(including actions with worst performance) 25 changes in performance. First, we observe that
several classes’ performance accuracy (Top-1) changes drastically. This result validates our
hypothesis that the Student provides FitCLIP with complementary information concerning
the knowledge CLIP (the Teacher) already provides. Interestingly, FitCLIP obtains better
overall performance for abstract action classes such as preaching and taping. On the contrary,
CLIP tends to do better for standard actions often captured in photographs such as skating,
or boxing.

C.3 FitCLIP vs. CLIP ranking distributions

The Text-to-Video Retrieval results show that FitCLIP outperforms CLIP at multiple points
of this zero-shot setting. However, it is not clear how the methods behave for the rest of
them. Figure C.2 shows the rankings distribution for the validation set of MSR-VTT for
both methods. We can see that FitCLIP is under the CLIP curve for virtually all points.
FitCLIP ranks the videos better for this dataset, regardless of the cutting point.
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Dataset Top 1 Top 5

WebVid 11.4 27.2
CC3M+WebVid 13.2 29.3

CC3M+WebVid+COCO 14.0 31.8

(a) Moments in Time (MiT)

Dataset Top 1 Top 5

WebVid 36.9 61.1
CC3M+WebVid 49.2 61.1

CC3M+WebVid+COCO 51.9 76.1

(b) UCF101

Table C.2: Zero-shot action recognition results of Frozen in Time [11] pre-trained on different
datasets.

C.4 Frozen in Time Variants

Tables C.2 and C.3 show the results on zero-shot action recognition and text-to-video retrieval
for Frozen in Time [11] on different pre-training datasets. Its authors provide these pre-
trained checkpoints1. They use different combinations of Conceptual Captions [206] (CC3M),
WebVid [11], and Microsoft COCO Captions [32] (COCO). Combining the three of them
presents the best results. However, note the captions in COCO Captions were obtained using
an expensive data collection procedure and are richly annotated. In contrast, the other two
datasets were obtained from data available on the internet and thus have weaker annotations.

C.5 Impact of Fusing the Teacher-Student Knowledge

Tables C.4 and C.5 present all the metrics for the results on the impact of our method on
zero-shot action recognition and zero-shot text-to-video retrieval. Overall, FitCLIP presents
the best results. We highlight the importance of fusing the teacher and student’s knowledge
as they perform worse than in combination.

C.6 Alpha Value

We analyze the effect of changing the value of α necessary for the weight-space ensembling
step when fusing the teacher and student knowledge in our method. Figure C.3 shows the
effect of this hyperparameter by varying it from 0 to 1, with increments of size 0.1, where 0 is

1https://github.com/m-bain/frozen-in-time#-pretrained-weights
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Dataset R@1 R@5 R@10 MdR

WebVid 12.9 31.0 41.2 16
CC3M+WebVid 17.1 39.1 49.6 11

CC3M+WebVid+COCO 21.3 43.6 55.9 7

(a) MSR-VTT

Dataset R@1 R@5 R@10 MdR

WebVid 1.1 4.2 6.8 329
CC3M+WebVid 2.7 9.5 14.2 162

CC3M+WebVid+COCO 3.2 10.1 16.2 135

(b) YouCook2

Dataset R@1 R@5 R@10 MdR

WebVid 14.5 34.9 45.4 14
CC3M+WebVid 20.3 42.7 53.5 9

CC3M+WebVid+COCO 23.2 45.8 56.8 7

(c) DiDeMo

Table C.3: Zero-shot text-to-video retrieval results of Frozen in Time [11] pre-trained on
different datasets.

Dataset Top 1 Top 5

Teacher (CLIP) 19.9 40.3
Student 17.7 39.1

FitCLIP 21.8 44.6
△ ↑ 1.9 ↑ 4.3

Error rate reduction ↑ 2.4 ↑ 7.2

(a) Moments in Time (MiT)

Dataset Top 1 Top 5

Teacher (CLIP) 74.5 94.3
Student 64.7 90.4

FitCLIP 73.3 95.3
△ ↓ 1.2 ↑ 1.0

Error rate reduction ↓ 4.7 ↑ 17.5

(b) UCF101

Table C.4: Impact of fusing teacher-student knowledge on zero-shot action recog-
nition. △ denotes the absolute difference in performance between FitCLIP and the Teacher
model.
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Dataset R@1 R@5 R@10 MdR

Teacher (CLIP) 30.4 55.1 64.1 4
Student 28.1 52.6 63.7 4

FitCLIP 33.8 59.8 69.4 3
△ ↑ 3.4 ↑ 4.7 ↑ 5.3 ↑ 1

Error rate reduction ↑ 4.9 ↑ 10.5 ↑ 14.8 ↑ 25.0%

(a) MSR-VTT

Dataset R@1 R@5 R@10 MdR

Teacher (CLIP) 5.3 14.6 20.9 94
Student 2.9 9.7 14.1 159

FitCLIP 5.8 15.5 22.1 75
△ ↑ 0.5 ↑ 0.9 ↑ 1.2 ↑ 19

Error rate reduction ↑ 0.5 ↑ 1.1 ↑ 1.5 ↑ 20.2%

(b) YouCook2

Dataset R@1 R@5 R@10 MdR

Teacher (CLIP) 26.2 49.9 60.6 5
Student 20.7 42.4 54.0 8

FitCLIP 28.5 53.7 64.0 4
△ ↑ 2.3 ↑ 3.8 ↑ 3.4 ↑ 1

Error rate reduction ↑ 3.1 ↑ 7.6 ↑ 8.6 ↑ 20.0%

(c) DiDeMo

Table C.5: Impact of fusing teacher-student knowledge on zero-shot text-to-video
retrieval. △ denotes the absolute difference in performance between FitCLIP and the
Teacher model. To measure the error rate reduction for the median rank, we directly use its
reduction rate.
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(b) Zero-shot average across five datasets

Figure C.3: Impact of changing the value of weight-ensembling α value when fusing
the teacher and the student. We report (a) supervised text-to-video retrieval WebVid
R@5 (recall we trained on this domain) and (b) an average across five other datasets. DiDeMo,
MSR-VTT, and YouCook2 (R@5) are the zero-shot text-to-video retrieval datasets used. The
zero-shot action recognition datasets are Moments in Time and UCF-101 (top-1 accuracy).
The average value across these datasets is shown.

only the teacher, and 1 is only the student. We show the results on a different split from the
training distribution (Fig. C.3a) and on the other datasets we have reported throughout the
chapter (Fig. C.3b). For WebVid, we obtain the best value when α = 0.3. Still, we decided
to use α = 0.4, close enough, and the best value obtained by [247]. The best value we obtain
for the other datasets is when α = 0.2. For α = 0.4, the score is still high.

C.7 Impact of the Labeled Data Size

The more labeled data for training typically implies better results. However, more training
means that the obtained checkpoint in the weight landscape is further away from the point
of origin, making it harder for weight-ensembling to work well. We study the impact of
the labeled data size and try to find a good trade-off point. Figure C.4 show the results of
preliminary experiments, which are performed by fine-tuning with different subset sizes of the
training set from WebVid and applying weight-space ensembling (without distillation). Each
subset was sampled from the whole dataset (they are unlikely subsets of each other). We find
the best value when the WebVid-2.5M training subset size is 4500. We recognize that we
indirectly use other parts of WebVid, which can boost the selected subset’s in-distribution
performance. However, note that this doesn’t imply better out-of-distribution performance.
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Figure C.4: Text-to-Video top-1 recall on WebVid-2.5M (supervised) of different
training subset sizes when fine-tuning CLIP ViT-B/16 and applying weight-space
ensembling. The evaluated subset sizes are 0, 563, 1125, 1688, 2250, 3375, 4500, 9000, 18000,
and 36000. The subset size 0 represents the evaluation of the pre-trained model without
fine-tuning. We exclude large values as we have observed a great drop in performance. Note
this experiment doesn’t employ distillation.

We skip showing results for large values as we have observed a remarkable drop in performance.
In particular, we obtained results that were considerably worse than those obtained by the
pre-trained model when using the whole training set (2.5M).

C.8 Share of Pseudo-Labels/Labels

We are interested in comparing the effect of applying weight-ensembling to a distilled model
to using it with a model trained only on labeled data. Figure C.5 shows the effect of varying
the proportion of the labeled loss in the final loss in our zero-shot benchmarks. The use of the
distillation loss with λ = 10−4 outperforms the usage of only the labeled loss in YouCook2
and UCF101 and shows similar performance on MSR-VTT. In contrast, the performance
on DiDeMo and Moments in Time seems to be better when using only the labeled loss. We
hypothesize our method especially benefits from datasets whose distribution is more distant
from the training-time dataset (e.g., YouCook2 is significantly distant from WebVid-2.5M).
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Action Recognition Text-to-video Retrieval
UCF101 MiT MSR-VTT YouCook2 DiDeMo

CLIP 74.5 19.9 55.1 14.6 49.9

w/o PL 72.5 22.0 59.9 15.1 55.4
FitCLIP 73.3 21.8 59.8 15.5 53.7

Table C.6: Importance of the Pseudo-Labels. We report the top-1 accuracy for the
zero-shot action recognition datasets and the top-5 recall for the zero-shot text-to-video
retrieval ones. We show in bold the best results between w/o PL (without pseudo-labels)
and FitCLIP for each dataset.
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Figure C.5: The effect on the zero-shot performance of the share of the pseudo-
labeled and labeled losses in FitCLIP. Each plot shows how the proportion of the
pseudo-labeled loss (x-axis) affects the zero-shot performance on a given dataset. The dashed
orange line shows the performance of CLIP as a reference. We skip the sampled values greater
than 0.01 to visualize the plots better since they tend to bring a worse performance.
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APPENDIX D

Compositional Generalization with Image-Text
Models: Supplementary Material

D.1 SugarCrepe Fine-Grained Performance

In Table D.1, we show SugarCrepe’s fine-grained task results.

D.2 Classification without Prompts

CLIP-like models are evaluated with multiple prompts for classification, typically relying on
the ones originally tested by OpenAI’s CLIP [183], as we do in this chapter. For example,
there are 80 prompts (templates) used for ImageNet, such as “a photo of a {class name}”
and “itap of the {class name}”. These prompts are used because the text representations
are usually noisy, and a satisfactory average class representation can be obtained from the
embeddings for all these texts. These prompts have been carefully crafted to match the
characteristics of the classes and the dataset. In Table D.2, we show the classification results
without employing any prompts, just using the class name as the input. Without patching,
our method presents a little drop (2.5%) in performance with respect to the results from

Replacement Swap Addition

Obj. Att. Rel. avg. Obj. Att. avg. Obj. Att. avg. ta
sk

av
g.

av
g.

pre-trained 90.8 80.2 69.1 80.1 61.0 63.8 62.3 77.1 68.5 72.8 71.7 72.9

NegCLIP 92.6 85.9 76.8 85.1 75.6 75.1 75.3 88.8 83.0 85.9 82.1 82.5
REPLACE 93.5 90.2 80.9 88.2 74.0 75.5 74.8 90.9 88.0 89.5 84.2 84.7

CLIP+CLoVe w/o patching 93.0 91.0 81.6 88.6 74.4 77.9 76.1 86.2 94.7 90.5 85.1 85.5
CLIP+CLoVe (α = .6) 93.8 89.1 78.2 87.0 74.4 74.8 74.6 84.4 87.3 85.8 82.5 83.1

Table D.1: Results on SugarCrepe. The best results are in bold. An underline indicates
results within 1% of best.
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pre-trained 59.0 58.2 87.4 55.3 32.5 48.3 62.4 40.5 66.9 39.2 55.0 5.1

NegCLIP 54.4 45.6 85.1 57.9 31.8 30.3 51.3 37.2 64.1 38.4 49.6 3.4
REPLACE 52.4 41.9 83.3 58.0 29.3 32.8 45.4 33.8 60.7 39.5 47.7 2.4

CLIP+CLoVe w/o patching 50.3 50.6 85.2 61.8 37.8 39.7 37.9 36.3 61.7 35.2 49.7 2.5
CLIP+CLoVe (α = .6) 59.3 57.5 88.6 64.6 34.6 47.7 54.7 43.5 68.0 42.3 56.1 4.3

Table D.2: Zero-shot classification results without employing text prompts, which is typically
used for CLIP-like models. The best results are in bold. An underline indicates results
within 1% of best.

Text-to-Image Image-to-Text
Flickr30k COCO Captions Flickr30k COCO Captions avg.

pre-trained 83.3 56.0 94.7 75.0 77.3

NegCLIP 89.5 68.5∗ 95.2 79.3∗ 83.1
REPLACE 90.0 73.8∗ 94.8 83.6∗ 85.6

CLIP+CLoVe w/o patching 87.2 65.8 87.4 68.8 77.3
CLIP+CLoVe (α = .6) 90.3 68.1 96.3 80.0 83.7

Table D.3: Retrieval results for Flickr30k and COCO Captions. The evaluation is zero-shot
except for those marked with an asterisk (∗). The best results are in bold. An underline
indicates results within 1% of best.

Table 7.3, even when it was tuned to see fully-formed sentences (as opposed to just class
names like “husky”). When we apply the patching, it drops less in performance than the
pre-trained model in seven out of ten benchmarks and is on par in two.

D.3 Performance in Flickr and COCO Retrieval Tasks

We evaluate the retrieval performance on Flickr30k [259] and COCO Captions [32], as it is
sometimes reported with CLIP-like models [183]. We do not include these results with the
main retrieval results because we believe they are near-shot or not zero-shot (in-domain).
NegCLIP and REPLACE fine-tuned on COCO’s training set. Our method is trained on
LAION-COCO, whose captions follow a format similar to COCO’s. At the same, COCO
images come from Flickr. We present the results in Table D.3.
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