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Abstract

The entropy of the universe might decrease if black holes did not have entropy. Hawking’s

derivation of black hole temperature and the first law of thermodynamics suggest that black

holes indeed have entropy. However, Einstein’s classical gravity does not allow black holes to

have internal degrees of freedom that entropy implies. Thus it is the central mission of quan-

tum gravity to uncover the many quantum microstates of black holes. Via the AdS/CFT

correspondence, black holes in Anti-de-Sitter (AdS) spacetimes are dual to ensembles of

quantum states in conformal field theories (CFTs). Recently, the number of supersymmetric

quantum states in CFTs has been counted to successfully account for the supersymmetric

AdS black hole entropy. We take a step forward by studying properties of such supersym-

metric quantum states dual to black holes. First, a supersymmetric AdS black hole may

exist only if its charges obey a certain relation. We reproduce the same relation from a cer-

tain ensemble of the supersymmetric states in CFT. This gives a heuristic derivation of the

supersymmetric black hole charge constraint for AdS black holes in 3, 4, 5, and 7 dimensions

from the respective microscopic theories. Second, we find explicit expressions for the black

hole cohomologies in the weakly coupled 4d maximal Super-Yang-Mills theory with gauge

groups SU(2) and SU(3). These are connected to the actual microstates of quantum black

holes in the 5-dimensional AdS spacetime.
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Chapter 1

Introduction

It took around a century from the beginning of quantum physics to complete the standard

model [1,2], that provides a fairly accurate theoretical framework for electromagnetic, weak

and strong interactions. Many valuable questions remain, including the dark sectors, neutri-

nos, strongly coupled QCD, precision of the electroweak sector, baryogenesis and naturalness

to name a few, but a major goal of fundamental understanding of Nature has moved towards

quantum gravity in the last several decades.

Unfortunately, Einstein’s theory of general relativity is not directly compatible with the

framework of quantum field theory. Gravity is not renormalizable, meaning that nonsensical

divergences that occur at very high energies cannot be separated from physics of ordinary

energy scale that we experience. Superstring theory has been developed and established itself

as an improved and plausible theory of quantum gravity, but it also poses many difficulties,

both conceptually and technically.

The AdS/CFT correspondence [3] opened a new window towards understanding gravity.

Of many versions, it states that the quantum gravity theory in the Anti-de-Sitter space

of d + 1 dimensions is ‘dual’ to a conformal field theory without gravity in d dimensions.

The Anti-de-Sitter space, AdS in short, is the maximally symmetric space with constant

negative curvature. It can be considered the vacuum spacetime for a negative cosmological

constant. The AdS/CFT correspondence is not proven, but is widely accepted throughout

the physics community. In fact, it is hard to imagine how one would prove it without

completely understanding theories on both sides. We refer to [4–7] for reviews of the subject.

One important arena of the AdS/CFT correspondence pertains to the black hole solutions

of the gravity theories and the conformal field theories with finite temperature. It has been

known that a black hole is a thermal system that has temperature [8], so naturally it is

dual to a finite temperature ‘solution’ of the conformal field theory. This statement is made
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precise by identification of the partition functions of both sides of the duality:

ZAdS = ZCFT . (1.1)

In fact, the black holes are believed to be extremely well suited for a window to new

physics, because of the no-hair theorem [9–12]. According to the no-hair theorem, which

is again not a proved theorem but a conjecture that represents conventional wisdom about

gravity, black holes are completely described by a few macroscopic quantities such as the

energy, angular momenta and charges, and do not possess any internal degrees of freedom.

Provided the no-hair theorem, black holes allow physicists to study gravity via a model with

few parameters, akin to a toy model. Therefore, it is a very approachable but interesting

goal to understand black holes in AdS spacetimes through CFTs.

Meanwhile, black holes are extremely interesting objects that intermingle all areas of

physics. This fact is concisely symbolized by the Hawking temperature of a black hole [8]

T =
~c3

8πGNkBM
, (1.2)

that puts together

~ : Planck’s constant, the fundamental constant of quantum mechanics,

c : Speed of light, the fundamental constant of special theory of relativity,

GN : Newton’s constant, the fundamental constant for general theory of relativity, and

kB : Boltzmann’s constant, the fundamental constant of statistical mechanics.

Black holes originated as the first non-trivial solution to the classical Einstein gravity [13],

but many mysteries regarding the event horizon have been properly raised and addressed

several decades later. For example, if one throws in a cup of hot tea into the black hole, the

black hole grows slightly larger but the entropy of the universe seems to decrease. It was

then realized that if one attributes to a black hole a temperature proportional to its surface

gravity and an entropy proportional to the area of its event horizon [14–16], then all laws of

thermodynamics including the first and the second fit perfectly [17–21].

Hawking showed that the attribution of temperature is not merely an analogy to the laws

of thermodynamics, but that the black hole in fact radiates as if it were a blackbody with

that temperature [8, 22].

Similarly, if the Bekenstein-Hawking entropy of the black hole is indeed the entropy that

is known from thermodynamics, then the black hole must be an ensemble that consists of a

2



corresponding — in fact, an enormous — number of microscopic degrees of freedom. This

is contrary to the no-hair theorem of classical gravity, that the black hole is completely

described by several macroscopic parameters and does not have any internal structure. This

is what a successful theory of quantum gravity, if any, must address [23–26].

One of the biggest successes of superstring theory is exactly this. In the seminal work [27],

the authors considered a particular setup of string theory, namely the type-IIB string theory

compactified on K3 × S1. It yields supersymmetric black hole solutions in 5 non-compact

dimensions with finite horizon area, and thus finite Bekenstein-Hawking entropy. These

solutions are realized by D-branes that source the charge of the black hole, and the number

of their bound states was matched with the entropy.

With the advent of the AdS/CFT correspondence, it looked hopeful that microscopic

accounting of the entropy of AdS black holes from the dual CFTs, which are arguably more

thoroughly understood than systems of strings and branes, may shed brighter light on quan-

tum gravity. Supergravity solutions for AdS black holes were found in various dimensions,

including [28–33] for 5 dimensions. However, despite various attempts including [34–41], the

success had to wait until recently.

The difficulties encountered in the early attempts and overcome recently, are strongly

tied to a property of the AdS/CFT correspondence that weakly coupled theory on one side

is dual to strongly coupled theory on the other. The black holes as supergravity solutions

are valid in the quantum gravity side of the duality, namely the superstring theory, when the

string coupling constant gs is small and the string length scale `s is smaller than the length

scale of the curvature. These limits translate in the CFT side of the correspondence to large

gauge group N → ∞ and large ’t Hooft coupling λ → ∞. Strongly coupled gauge theories

are much harder to work on analytically than the weakly coupled. In order to circumvent

this difficulty, an index [35,36], which is a coupling independent function of a CFT, has been

devised. One can compute the index in the more approachable weakly coupled field theory

but still argue that it counts the same number of states as in the strongly coupled theory.

However, the index only contains information about the number of bosonic states minus the

number of fermionic states, while the total number of microstates that accounts for the black

hole entropy should be a sum over both. It was realized only during the recent advances

that it is possible to faithfully count the total number of microstates using the index by

complexifying the chemical potentials, the variables that the index depends on. Based on

various approaches, entropies of various supersymmetric black holes in different dimensions

of AdS space with different limits and precisions have been matched with enumerations of

microscopic states in the dual conformal field theories, see [42–69] among the vast sea of

literature.
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Extending the remarkable match between the black hole entropy and the number of

microstates in the dual conformal field theory, we now aim to anatomize the microstates

beyond counting them.

First, we study how the quantum numbers of the field theory microstates match the

conserved quantities of the black hole. All supersymmetric AdS black holes that we study

have a property that their conserved quantities, also known as charges, obey a certain relation

between themselves. This relation is non-linear and quite non-trivial except in AdS3, and

its interpretation is not yet clear. It is sometimes linked to the absence of closed timelike

curves, but one clear and simple way to put it is that no regular, supersymmetric black hole

solutions are known away from the constraint.

If the black hole is dual to an ensemble of black hole microstates in the field theory via

(1.1), then the charges, or quantum numbers, of the microstates must reproduce the black

hole charge constraint. Apparently, the supersymmetric states in the dual field theories that

are believed to be the black hole microstates according to the counting, exist all over the

charge configuration space and do not obey any particular constraint. We interpret the

supersymmetric black hole charge constraint as a property of the ensemble, rather than of

individual black hole microstates, and present a heuristic derivation of the charge constraint

from an ensemble of supersymmetric states in the dual field theory.

Second, we look for explicit expressions of black hole microstates in the field theory

language. Although supergravity black holes are dual to microstates in the large-N , strongly

coupled limit of the field theory, the fact that the black hole entropy is counted by a coupling-

independent quantity suggests that there are as many analogous states in the weakly coupled

field theory as there are black hole microstates in the strongly coupled theory. From a

different point of view, one may argue that microstates in the finite-N , weakly coupled

regime of the field theory hint towards black hole microstates in the quantum gravity theory,

as opposed to its supergravity approximation.

In this light, we explore the Hilbert space of supersymmetric states in the 4-dimensional

N = 4 Yang-Mills theory with finite gauge group SU(N), dual to black holes in the 5-

dimensional AdS space, and identify supersymmetric states that corresponds to the black

holes. In the weakly coupled, or perturbative field theories, there is an established way of

assembling basic elements of the theory to compose the Hilbert space. In particular, the

supersymmetric states can be represented by cohomologies with respect to the preserved

supercharge. We shall find some of these cohomologies that are dual to the supersymmetric

black hole in AdS5, but not to the gas of super-graviton particles that are more trivial.
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1.1 Overview of the Dissertation

This dissertation is organized as follows.

In chapter 2 that belongs to the introductory part, we introduce black holes in AdS3 and

AdS5 spacetimes in gravity perspective. We will focus on the macroscopic quantities includ-

ing the energy, charges and the entropy that describe the black holes, and thermodynamic

relations between these quantities. We also illustrate the supersymmetric limits of the black

holes, which will reveal two properties, namely the entropy and the charge constraint, that

will be the target of the next part. For AdS3 black holes we also discuss its classical stability

property. The AdS3 part of this chapter is largely based on [65].

The rest of the dissertation is divided into two main parts. The first part is about the

microscopic accounting of the entropy and the charge constraint of supersymmetric black

holes. The second part is about the black hole cohomology problem, an attempt to find

explicit expressions for supersymmetric black hole microstates in the language of perturbative

field theory.

The first part consists of two chapters: chapter 3 on the entropy and chapter 4 on the

charge constraint.

We start in section 3.1 by reviewing the early attempts, including the introduction of

the index that will be the core concept throughout the dissertation. As explained in the

introduction, complexifying the chemical potentials in the index has been the key to the

recent success. In section 3.2 we demonstrate how the complex chemical potentials overcome

the issue of boson/fermion cancellation, in a simplified setup with the U(1) gauge group.

Then in section 3.3 we present a derivation of the black hole entropy given the index, for

AdS3 and AdS5 black holes. The AdS3 part of this section is based on [65].

In section 4.1 we present a microscopic argument for the supersymmetric charge con-

straint of AdS3 black holes. This section is based on [65]. In section 4.2 we develop the

argument for the AdS3 black holes into a generic prescription for deriving the supersymmet-

ric charge constraints of higher dimensional AdS black holes heuristically. Then in sections

4.3 through 4.5, we apply the generic prescription to black holes in AdS5, AdS4 and AdS7. In

section 4.6, we discuss some future directions that may reinforce our derivation to be more

complete and rigorous. The sections on higher dimensions are based on [70].

The second part consists of three chapters: chapter 5 on formulation of the black hole

cohomology problem, chapter 6 on computing the non-graviton index, and chapter 7 on

constructing the black hole cohomologies.

We start in section 5.1 by arguing how the writing of black hole microstates can be turned

into a problem of finding cohomologies with respect to the preserved supercharge. In section

5



5.2, we introduce the BMN sector where the computations can be done more easily while

allowing nearly as powerful answers as in the full sector. We define the index as a tool for

counting the cohomologies in section 5.3, define the graviton cohomologies to be ruled out

from the search of black hole cohomologies in section 5.4, and lay out the strategy for solving

this problem in section 5.5.

Then we explain some ideas for computing the index over graviton coholomogies in section

6.1. Using these ideas, we compute the graviton index, and therefore the non-graviton index,

for the BMN sector of the SU(2) theory, the full SU(2) theory, the BMN sector of the SU(3)

theory and the BMN sector of the SU(4) theory in sections 6.2 through 6.5.

In section 7.1, we construct the expressions for all core black hole cohomologies detected

by the index in the BMN sector of the SU(2) theory. In section 7.2, we show that there must

be a new black hole cohomology in the SU(2) theory that is not in the BMN sector. We also

discuss the partial no-hair behavior of the black hole cohomologies. Finally in section 7.3,

we construct the expression for the threshold black hole cohomology in the SU(3) theory.

The second part is based on two papers [71, 72].

We conclude in chapter 8 with a brief summary and future directions.
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Chapter 2

Black Holes in AdS Spacetime

In this chapter, we review black holes in asymptotically AdS3 and AdS5 spacetimes as grav-

itational objects. The focus will be on their thermodynamic properties, including energy,

temperature, charges, chemical potentials and entropy. The supersymmetric limits of the

black holes will be also important, as most parts of this thesis will take advantage of the

supersymmetry to study quantum aspects of the black holes. With the AdS3 black hole as

an example, we also comment on the stability of black holes.

2.1 AdS3 Black Holes

In this section we consider asymptotically AdS3 black hole solutions and review its semi-

classical properties. This section is largely based on [65] in collaboration with Finn Larsen.

The AdS3 black hole derives from rotating black hole solutions [73] to the 5-dimensional

N = 4 or N = 8 supergravity, by interpreting it as a system of rotating black strings in 6

dimensions and taking the decoupling limit [74]. The local geometry of the black hole is a

direct product between a BTZ black hole solution [75, 76] to the 2 + 1-dimensional gravity

and a three-sphere S3 with equal but opposite constant curvatures. The global structure

enables rotation of the S3 with respect to the time in AdS3.

Regardless of its string theoretical origin or the structure of the transverse space, it is

important for our purposes that the solution can be understood as a black hole in the AdS3

spacetime, and that it is described by four conserved quantities. There are energy, or mass,

E and angular momentum J from the isometry SO(2, 2) of AdS3, and there are two charges

QL and QR from the isometry SO(4) ∼ SU(2)L × SU(2)R of S3. We consider the isometry

of the transverse space as the internal symmetry, and therefore name the corresponding

conserved quantities as charges. Often throughout this thesis, we will use the term ‘charges’

to collectively refer to the charges and the angular momenta.
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This black hole is known to be dual to the 2-dimensional conformal field theory with (4, 4)

supersymmetry [3]. The symmetry algebra of this theory consists of two copies of the small

N = 4 Virasoro algebra su(2|1, 1) [77, 78]. Each copy includes two Cartans: one related to

su(1, 1), a half of the 2-dimensional conformal algebra so(2, 2), and one related to the su(2)

R-symmetry. The four Cartans from both copies are identified with the four Cartans of the

isometry of AdS3×S3, or with the four conserved quantities of the black hole. In particular,

EL ≡ E − J and QL are identified with one copy of the algebra, while ER ≡ E + J and

QR are with the other. More precisely, the eigenvalues of Virasoro generators are introduced

through

L0 −
kR
4

=
ε+ j

2
, L̃0 −

kL
4

=
ε− j

2
. (2.1)

The constants kL,R are levels of the SU(2) R-currents. They are related to the central charges

as cL,R = 1
6
kL,R by N = 4 supersymmetry. In the absence of gravitational anomaly, that is

when k = kL = kR, they are related to the 3-dimensional Newton’s constant by [79]

6k = c =
3R

2G3

. (2.2)

The quantum numbers ε, j, qR, qL characterize individual states. The corresponding macro-

scopic charges, evaluated as averages over many states, are denoted E, J , QR, QL. The

unique SL(2)×SL(2) invariant ground state annihilated by L0 and L̃0 has strictly negative

energy Evac = −1
4
(kR + kL) and corresponds to the AdS3 vacuum. It is separated by a gap

from the black holes which have non-negative energy in the CFT2 terminology.

2.1.1 Thermodynamics

The entropy of the black hole as a function of the charges, or the microcanonical density of

states, contains all essential information about the black hole as a thermal system:

S = 2π

√
1

2
kR(E + J)− 1

4
Q2
R + 2π

√
1

2
kL(E − J)− 1

4
Q2
L . (2.3)

From the entropy (2.3), the chemical potentials conjugate to the charges and the temperature

conjugate to the energy can be derived using the first law of thermodynamics,

TdS = dE − µdJ − ωLdQL − ωRdQR . (2.4)
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The potentials written as functions of charges (E, J,QL, QR) are

β =
∂S

∂E
=

1

2

√√√√ 2π2kL

E − J − Q2
L

2kL

+
1

2

√√√√ 2π2kR

E + J − Q2
R

2kR

,

µ = − 1

β

∂S

∂J
=
−
√

E−J
kL
− Q2

L

2k2
L

+
√

E+J
kR
− Q2

R

2k2
R√

E−J
kL
− Q2

L

2k2
L

+
√

E+J
kR
− Q2

R

2k2
R

,

ωR = − 1

β

∂S

∂QR

=

√
E−J
kL
− Q2

L

2k2
L√

E−J
kL
− Q2

L

2k2
L

+
√

E+J
kR
− Q2

R

2k2
R

· QR

kR
,

ωL = − 1

β

∂S

∂QL

=

√
E+J
kR
− Q2

R

2k2
R√

E−J
kL
− Q2

L

2k2
L

+
√

E+J
kR
− Q2

R

2k2
R

· QL

kL
. (2.5)

One can invert these relations to write the charges in terms of the potentials:

ER ≡ E + J =
2kR

β2(1− µ)2

(
π2 + β2ω2

R

)
,

EL ≡ E − J =
2kL

β2(1 + µ)2

(
π2 + β2ω2

L

)
,

QR =
2kR

1− µ
ωR ,

QL =
2kL

1 + µ
ωL . (2.6)

The grand canonical partition function in thermodynamics is defined from the micro-

canonical ensemble by a weighted sum over microstates:

Z(β, µ, ωR, ωL) = Tr
[
e−β(E−µJ−ωRQR−ωLQL)

]
. (2.7)

It is a function of the inverse temperature β and chemical potentials µ, ωR and ωL, which

determine the weight with which each microstate with certain charges E, J , QR and QL

contributes to the partition function. It is possible to write the grand canonical partition

function from the information about the thermodynamic system presented thus far:

logZ = S − β (E − µJ − ωRQR − ωLQL)

=
kR

β(1− µ)

(
π2 + β2ω2

R

)
+

kL
β(1 + µ)

(
π2 + β2ω2

L

)
. (2.8)

Although we have not presented in that order, one may alternatively take (2.8) as the
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starting point for describing the thermodynamic system and derive all quantities from it.

For example, the macroscopic energy and charges as ensemble averages are

E − µJ − ωRQR − ωLQL = −∂ logZ

∂β

=
kR

β2(1− µ)

(
π2 − β2ω2

R

)
+

kL
β2(1 + µ)

(
π2 − β2ω2

L

)
,

J =
1

β

∂ logZ

∂µ

=
kR

β2(1− µ)2

(
π2 + β2ω2

R

)
− kL
β2(1 + µ)2

(
π2 + β2ω2

L

)
,

QL,R =
1

β

∂ logZ

∂ωL,R
=

2kL,R
1± µ

ωL,R . (2.9)

These are equivalent to (2.6).

Note that (2.3) does not make sense unless [74]

E − J − 1

2kL
Q2
L ≥ 0 ,

E + J − 1

2kR
Q2
R ≥ 0 . (2.10)

It implies that there is simply no black hole solution for energy and charges that violate either

of (2.10), and all of the thermodynamic formulae above have assumed these inequalities.

Saturation of both inequalities corresponds to β →∞ with generic −1 < µ < 1, but leads to

zero entropy. Saturation of only one of the two corresponds to β →∞ with either β(1± µ)

kept finite, as we will elaborate in the next subsection.

2.1.2 Supersymmetry

Up to this point we did not impose any conditions on the black hole parameters. We now

impose supersymmetry and show that the resulting BPS black holes satisfy two conditions.

In the 2d superconformal theory with (4, 4) supersymmetry, there are four 1
4
-BPS sectors.

Each sector preserves two real supersymmetries that are either holomorphic (R) or anti-

holomorphic (L), and that either raise or lower the corresponding R-charge. We focus

without loss of generality on the 1
4
-BPS sector which preserves supersymmetries that are anti-

holomorphic (L) and raise the R-charge. Then the unitarity bound from the anticommutator

of the supercharges on individual CFT states in the NS sector is:

ε− j +
1

2
kL ≥ qL , (2.11)
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from which a bound for black hole energy and charges follows:

E − J +
1

2
kL ≥ QL . (2.12)

Microscopic states whose quantum numbers saturate the inequality (2.11) are called chiral

primaries. Unitarity further requires that chiral primaries have 0 ≤ qL ≤ 2kL [80, 81].

Saturation of the inequality (2.12) is a necessary condition for a supersymmetric black

hole but it is not sufficient. Recall that the black hole charges must obey (2.10). A hypothet-

ical black hole solution that violates this inequality would have event horizon with imaginary

area. Such geometries are not regular so black holes with these quantum numbers simply do

not exist. This regularity condition is variously referred to as the cosmic censorship bound

or the condition for absence of closed timelike curves.

The BPS condition demands that the inequality (2.12) be saturated but then compati-

bility with regularity (2.10) gives

QL = kL . (2.13)

This is the charge constraint on BPS black holes in AdS3. Thus BPS black holes have

the same quantum numbers as the particular chiral primaries situated in the middle of the

interval 0 ≤ qL ≤ 2kL allowed by unitarity.

We established that BPS black holes in AdS3 are co-dimension 2 in parameter space:

saturation of two inequalities (2.10) and (2.12) introduces two relations between the four

parameters E, J , and QR,L. Now recall the formulae (2.6) that relate the quantum numbers

to potentials, reproduced here for convenience:

E =
kR

β2(1− µ)2

(
π2 + β2ω2

R

)
+

kL
β2(1 + µ)2

(
π2 + β2ω2

L

)
, (2.14a)

J =
kR

β2(1− µ)2

(
π2 + β2ω2

R

)
− kL
β2(1 + µ)2

(
π2 + β2ω2

L

)
, (2.14b)

QL,R =
2kL,R
1± µ

ωL,R . (2.14c)

In the canonical ensemble the extremal limit amounts to vanishing temperature β → ∞.

However, we must be careful with what remains finite in this limit.
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Consider a pair of particular combinations of these charges:

E + J − Q2
R

2kR
=

2kRπ
2

β2(1− µ)2
≥ 0 , (2.15a)

E − J − Q2
L

2kL
=

2kLπ
2

β2(1 + µ)2
≥ 0 . (2.15b)

If one näıvely takes β → ∞ with the chemical potential µ finite and generic, both of these

inequalities will be saturated. However, when the expressions on the left hand sides of both

equations in (2.15) vanish, the black hole entropy (2.3) will be zero as well. Therefore, the

limit taken this way yields an extremal “black hole” with an event horizon that has vanishing

area. Such a geometry is singular, it is not a black hole solution.

In order to circumvent this obstacle, we need to saturate only one of the inequalities

(2.15). We pick the latter without loss of generality. To avoid also saturating (2.15a), we

take β →∞ while rescaling µ so that µ̃ ≡ β(µ− 1) remains finite. Note that µ̃ ≤ 0 because

µ ≤ 1. It further follows from (2.14c) that, in order to describe black holes with generic

values of QR, the limit must also take ωR → 0 with ω̃R ≡ βωR kept finite. In contrast, ωL

does not require any rescaling, it can be kept finite by itself.

In summary, the extremal limit of a general AdS3 black hole is:

Extremal limit:



β →∞ ,

µ→ 1 with µ̃ ≡ β(µ− 1) finite,

ωR → 0 with ω̃R ≡ βωR finite,

ωL finite.

(2.16)

This limit was designed so that (2.14) gives expressions that are finite:

E =
kR
µ̃2

(
π2 + ω̃2

R

)
+
kL
4
ω2
L , (2.17a)

J =
kR
µ̃2

(
π2 + ω̃2

R

)
− kL

4
ω2
L , (2.17b)

QR = −2kR
µ̃
ω̃R , (2.17c)

QL = kLωL . (2.17d)

The explicit sign in the formula for QR compensates µ̃ < 0 so that the angular momentum

QR has the same sign as the rescaled angular velocity ω̃R, as expected. These formulae for
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the conserved charges give the energy as a function of the charges

Eext = J +
1

2kL
Q2
L . (2.18)

This is the ground state energy for these conserved charges. It saturates (2.10) and is

identified with the extremal black hole mass. The extremal entropy becomes

Sext = −2kRπ
2

µ̃
= 2π

√
1

2
kR(Eext + J)− 1

4
Q2
R

= 2π

√
kRJ +

kR
4kL

Q2
L −

1

4
Q2
R . (2.19)

The last equation eliminated the energy using the extremality condition (2.18).

As we have stressed, the extremal black holes are not necessarily supersymmetric. As

the second and last step of implementing the BPS limit, we now examine supersymmetry.

Recall from (2.12) that charges of supersymmetric black holes must saturate the inequality

E − J −QL +
1

2
kL ≥ 0 .

The left hand side can be recast as a sum of two squares

E − J −QL +
1

2
kL =

2kLπ
2

β2(1 + µ)2
+
kL
2

(
1− 2ωL

1 + µ

)2

, (2.20)

using (2.14). The first square is precisely (2.15b) so it vanishes in the extremal limit. In

order to saturate the BPS bound (2.12) the second square must vanish as well so we demand

that the potentials satisfy

ϕ ≡ 1 + µ− 2ωL = 0 , (2.21)

in addition to conditions for extremality. We defined the parameter ϕ for future use. Since

µ = 1 at extremality we must have ωL = 1 in the BPS limit. However, just as the extremal

limit is taken with µ̃ ≡ β(µ − 1) kept finite there is no obstacle to taking the BPS limit

ωL → 1 so ω̃L ≡ β(ωL−1) remains finite. The value of ω̃L is, like µ̃ and ω̃R, not constrained.

To summarize, the BPS AdS3 black holes are limits of generic AdS3 black holes as

T = β−1 → 0 , (2.22)
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while the potentials

µ̃ = β(µ− 1) , ω̃R = βωR , ω̃L = β(ωL − 1) , (2.23)

are kept finite. In this limit two inequalities (2.12) and (2.10) are saturated.

The definition of the grand canonical partition function can be adapted to the BPS limit

(2.22)-(2.23) as

Z(β, µ, ωR, ωL) = Tr
[
e−β(E−µJ−ωRQR−ωLQL)

]
= e

1
2
βkLTr

[
e
−β
(
E−J−QL+

kL
2

)
+µ̃J+ω̃RQR+ω̃LQL

]
. (2.24)

The second line manifests that in the BPS limit (2.22)-(2.23), contribution to the partition

function from non-BPS states such that E − J −QL + 1
2
kL > 0 will be suppressed, and the

partition function will have an overall divergent factor e
1
2
βkL which is its sole dependence on

β →∞. This factor can be interpreted as the supersymmetric Casimir energy [82]

ESUSY = −1

2
kL , (2.25)

that is common to all states. Note that it is not the conventional Casimir energy EC =

−1
4
(kL + kR) that enters here and the two notions of Casimir energy agree only when the

levels kL = kR. The Casimir energy appears explicitly because we study the partition

function defined as a path integral rather than as a trace over a Hilbert space normalized

such that the vacuum contributes unity.

Therefore, the BPS partition function as the limit (2.22)-(2.23) of the grand canonical

partition function, can be written as

ZBPS(β, µ̃, ω̃R, ω̃L) = lim
β→∞

e
1
2
βkLTr

[
e
−β
(
E−J−QL+

kL
2

)
+µ̃J+ω̃RQR+ω̃LQL

]
=

(
lim
β→∞

e
1
2
βkL

)
TrBPS

[
eµ̃J+ω̃RQR+ω̃LQL

]
. (2.26)

In the second line, we have restricted the trace to BPS states only, as non-BPS states are

suppressed by β →∞.

For the black hole system, the BPS partition function is obtained by taking the limit

(2.22)-(2.23) on the grand canonical partition function (2.8):

logZBPS =
1

2
βkL −

kR
µ̃

(
π2 + ω̃2

R

)
+ kL

(
ω̃L −

1

4
µ̃

)
. (2.27)
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The BPS limit of the macroscopic energy and charges can be obtained by differentiating

(2.27) as in (2.9), or by taking the BPS limit of the potentials (2.22)-(2.23) from (2.9):

E =
kR
µ̃2

(
π2 + ω̃2

R

)
+
kL
4
, (2.28a)

J =
kR
µ̃2

(
π2 + ω̃2

R

)
− kL

4
, (2.28b)

QR = −2kR
µ̃
ω̃R , (2.28c)

and notably,

QL = kL . (2.29)

The extremal black hole entropy (2.19) also simplifies further in the BPS limit

SBPS = 2π

√
kR

(
J +

1

4
kL

)
− 1

4
Q2
R . (2.30)

In the BPS limit, the four macroscopic quantities E, J,QL,R are parametrized by only

two potentials µ̃ and ω̃R, they are independent of the third potential ω̃L. This confirms the

expectation that the parameters of a BPS black hole form a co-dimension 2 surface in the

space of all possible charges. On the other hand, there really are three independent rescaled

potentials µ̃, ω̃L,R. This is possible because ω̃L parametrizes a flat direction along which the

BPS black hole does not change.

2.1.3 Stability

So far we have discussed the AdS3 black hole solutions that are described by 4 charges

(E, J,QL, QR) or equivalently by 4 chemical potentials (β, µ, ωL, ωR). The charges must obey

the extremality bound (2.10) as well as the unitarity bound (2.12), and we have discussed

in detail the saturation of these bounds. In this subsection we touch on another issue of

semi-classical black holes, namely stability.

A quick way to determine the stability condition is from the first law of thermodynamics

(2.4):

TdS = dE − µdJ − ωRdQR − ωLdQL . (2.31)

Consider a particle with generic quantum numbers (ε, j, qR, qL). We assume that these quan-
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tum numbers are infinitesimal compared to corresponding macroscopic charges of the black

hole. Change of black hole entropy under the emission of such a particle is proportional to

TdS = −ε+ µj + ωRqR + ωLqL . (2.32)

If this quantity is positive, the black hole gains entropy by emitting this particle, and thus

it is unstable against decaying into this particle.

There are several candidate stability bounds, depending on the quantum numbers of

particles to which the black hole may emit.

• First, consider particles with (ε, j, qR, qL) ∝ (1, 0, 1, 0) or (ε, j, qR, qL) ∝ (1, 0, 0, 1). The

stability bounds against these particles, as obtained from (2.31), are

ωR ≤ 1 , ωL ≤ 1 , (2.33)

respectively. These stability bounds are analogous to those for black holes in higher

dimensions [83,84].

• Next, consider particles with (ε, j, qR, qL) ∝ (1/2, 1/2, 1, 0). In CFT2, these correspond

to chiral primaries, because they have (L0, qR) ∝ (1/2, 1) and L̄0 = qL = 0. The black

hole stability bound against chiral primaries is

0 ≥ ωR −
1− µ

2
⇔ QR ≤ kR . (2.34)

• Similarly, consider particles with (ε, j, qR, qL) ∝ (1/2,−1/2, 0, 1). In CFT2, these corre-

spond to anti-chiral primaries, because they have (L̄0, qL) ∝ (1/2, 1) and L0 = qR = 0.

The black hole stability bound against anti-chiral primaries is

0 ≥ ωL −
1 + µ

2
⇔ QL ≤ kL . (2.35)

The question of stability can be rephrased as follows. Given a black hole with given

total charges, it is unstable if a system with another black hole and a gas of particles but

with same total charges has bigger entropy than the original system. Therefore, given a

microcanonical system with given total charges, it is important to find a configuration of

a black hole and particles that maximizes the entropy. We neglect the entropy of the gas

of the particles, so the problem reduces to maximizing the entropy of the black hole piece.

Phrased in this way, the microcanonical system in question does not have to be realized by

a black hole alone. For example, one may consider a system with total charges that violate
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the extremality bound (2.10). Then there is no such system that contains only a black hole

and no others, but it is still meaningful to ask what is the most entropic configuration of a

black hole and particles.

In the rest of this subsection, we address this question while assuming existence of chiral

and anti-chiral primaries in the theory.

For our purposes in this subsection, it is advantageous to use ER = E + J , EL = E − J ,

QR and QL as the four charges of a system, emphasizing chirality. Suppose that a system

has total charges ER,tot, EL,tot, QR,tot and QL,tot. These need to satisfy the unitarity bound

for both holomorphic and antiholomorphic sectors:

E − J +
1

2
kL ≥ QL , E + J +

1

2
kR ≥ QR , (2.36)

but the extremality (2.10) is not imposed.

The system consists of a black hole (bh) and gas of particles (gp), so ER,tot = ER,bh+ER,gp

and similarly for the other charges. We assume that the entropy of the gas of particles is

negligible to that of the black hole. Therefore, the entropy of the system is

Sbh = 2π

√
1

2
kRER,bh −

1

4
Q2
R,bh + 2π

√
1

2
kLEL,bh −

1

4
Q2
L,bh . (2.37)

Meanwhile, each chiral and anti-chiral primary carries charges (εR, εL, qR, qL) ∝ (1, 0, 1, 0)

and (εR, εL, qR, qL) ∝ (0, 1, 0, 1), respectively. We use the proportionality sign because the

macroscopic charges of the black hole scale differently from those of the microscopic particles.

In fact, we expect the macroscopic charges to scale with the large central charge. It follows

that ER,gp = QR,gp and EL,gp = QL,gp. Thus, the contribution to the entropy (2.37) from

the right (holomorphic) sector is

SR,bh = 2π

√
1

2
kRER,bh −

1

4
Q2
R,bh

= 2π

√
1

2
kR(ER,tot − ER,gp)− 1

4
(QR,tot − ER,gp)2

= π

√
2kL

(
ER,tot −QR,tot +

kR
2

)
− (QR,tot − kR − ER,gp)2 . (2.38)

For the entropy to be maximized,

ER,gp =

QR,tot − kR
0

⇒ SR,bh =

2π
√

1
2
kL
(
ER,tot −QR,tot + kR

2

)
(QR,tot > kR)

2π
√

1
2
kRER,tot − 1

4
Q2
R,tot (QR,tot ≤ kR)
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The upshot is that if the total charges are such that they violate the stability bound QR,tot >

kR, the excessQR must be taken up by the particles so that the black hole sits at the threshold

of the stability bound: ER,bh = kR. The same logic applies to the anti-holomorphic (left)

sector independently.

We have only considered the chiral and anti-chiral primaries. However, the descendants

do not play a role even if they are included. This is because emission of a descendant

necessarily deprives the black hole of more energy (either left or right) than a primary with

same QR or QL would, which necessarily results in the smaller entropy.

2.2 AdS5 Black Holes

In this section we consider asymptotically AdS5 black hole solutions and review its semi-

classical properties.

Asymptotically AdS5 black holes arise as solutions to type-IIB supergravity in AdS5×S5

[28–33]. They carry the mass, or energy E and two angular momenta J1,2 for the isometry

SO(2, 4) of AdS5, and three charges Q1,2,3 for the isometry SO(6) of S5. The black hole

solution with all 5 charges independent is known. Similarly to the AdS3 black holes, we

consider the isometry of the transverse space S5 as an internal symmetry for the AdS5 black

hole and therefore name the corresponding conserved quantities as charges.

The type-IIB theory in AdS5 × S5 is known to be dual to the 4-dimensional maximally

supersymmetric (N = 4) Yang-Mills theory, in fact it is the original and most well understood

case of the AdS/CFT correspondence [3]. The symmetry group of the N = 4 SYM is the

4d N = 4 superconformal group PSU(2, 2|4), whose maximal bosonic subalgebra is the 4d

conformal group SU(2, 2) ∼ SO(4, 2) times the R-symmetry SU(4). The three Cartans of

the conformal group correspond to the mass and the two angular momenta of the black hole,

while the three Cartans of the R-symmetry group correspond to the three charges of the

black hole.

Thermodynamic quantities such as energy, temperature, charges, potentials and entropy

and their relations are algebraically complicated. We shall present only some of those with a

simplification by restricting to the case of equal charges Q1 = Q2 = Q3, following [85]. The

goal of this section is to illustrate the followings.

• Supersymmetric AdS5 black holes are co-dimension 2 in the space of AdS5 black holes.

• The two conditions for supersymmetry translates to vanishing temperature and a re-

lation between the charges, that we shall refer to as the supersymmetric charge con-

straint.
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• The formulae for the entropy of the black hole, as well as for the supersymmetric charge

constraint, are known without restriction to Q1 = Q2 = Q3.

2.2.1 Thermodynamics

As anticipated, we restrict to the AdS5 black holes with equal charges Q ≡ Q1 = Q2 = Q3.

This does not qualitatively alter the main arguments of this section. It is algebraically

convenient to express the mass and the three charges (two angular momenta J1 and J2,

and one synchronized charges Q) of the AdS5 black holes using four auxiliary parameters

(r+, q, a, b) as

E =
π

4G5

m(2(1− a2) + 2(1− b2)− (1− a2)(1− b2)) + 2qab((1− a2) + (1− b2))

(1− a2)2(1− b2)2
,

Q =
π

4G5

q

(1− a2)(1− b2)
,

J1 =
π

4G5

2ma+ qb(1 + a2g2)

(1− a2)2(1− b2)
,

J2 =
π

4G5

2mb+ qa(1 + b2g2)

(1− a2)(1− b2)2
. (2.39)

Here G5 is five-dimensional Newton’s gravitational constant, we have set g = `−1
5 = 1 where

g is the coupling of gauged supergravity and `5 is the AdS5 radius, and

2m =
(r2

+ + a2)(r2
+ + b2)(1 + g2r2

+) + q2 + 2abq

r2
+

. (2.40)

The entropy of the black hole can be expressed using the same parameters:

S = 2π · π

4G5

(r2
+ + a2)(r2

+ + b2) + abq

(1− a2)(1− b2)r+

. (2.41)

Implicitly via the auxiliary parameters, (2.39)-(2.41) yield the entropy as a function of the

mass and the charges. This defines the microcanonical density of states, which contains all

essential information about the black hole as a thermal system. From the entropy (2.41), the

chemical potentials conjugate to the charges and the temperature conjugate to the energy

can be derived using the first law of thermodynamics as in (2.5):

TdS = dE − ΦdQ− Ω1dJ1 − Ω2dJ2 . (2.42)
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For example, the temperature can be derived as

T =

(
∂S

∂E

)−1

=
r4

+[1 + (2r2
+ + a2 + b2)]− (ab+ q)2

2πr+[(r2
+ + a2)(r2

+ + b2) + abq]
. (2.43)

2.2.2 Supersymmetry

The general AdS5 black holes introduced in the last subsection have independent thermody-

namic quantities (E,Q, J1, J2). Now we discuss the conditions that these black holes become

supersymmetric.

Unitarity guarantees that their mass and the charges satisfy

E − (3Q+ J1 + J2) ≥ 0 , (2.44)

where the coefficient 3 stands for the three redundant charges Q ≡ Q1 = Q2 = Q3. The

black hole is supersymmetric, i.e. it is 1
16

-BPS when its charges saturate this inequality:

E∗ − 3Q∗ − J∗1 − J∗2 = 0 . (2.45)

We use the starred symbols (E∗, Q∗, J∗1 , J
∗
2 ) instead of (E,Q, J1, J2) when we stress that the

variables refer to the BPS case.

Collecting (2.39), the left hand side of (2.44) can be written in terms of the auxiliary

parameters as

E − (3Q+ J1 + J2) =
π

4G5

3 + (a+ b)− ab
(1− a)(1 + a)2(1− b)(1 + b)2

[m− q(1 + a+ b)] , (2.46)

where m is a placeholder for the expression (2.40) in terms of r+. The coefficient in front

of the square bracket is always positive, so the BPS condition (2.45) is equivalent to the

following relation between the BPS (starred) quantities:

q∗ =
m∗

1 + a+ b
. (2.47)

A very interesting result of [85] is that the factor in the square bracket of (2.46), when

m is replaced by the corresponding expression in terms of r+ via (2.40), can be reorganized

as

m− q(1 + a+ b) =
r2

+(q − q∗)2 +
(
((1 + a+ b)2 + r2

+)(r2
+ − r∗2)− (1 + a+ b)(q − q∗)

)2

2r2
+ ((1 + a+ b)2 + r2

+)
,

(2.48)
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where

q∗ = (a+ b)(1 + a)(1 + b) , r∗ ≡ r+ =
√
a+ b+ ab . (2.49)

Note that the right hand side of (2.48) is a sum of two squares. It thus amplifies the

BPS condition (2.45), which is a single relation between real auxiliary parameters, into two

relations q = q∗ and r+ = r∗.

As a result of the two relations between the four auxiliary parameters that describe

the AdS5 black holes, the BPS black hole is parametrized by only two remaining auxiliary

parameters (a, b). The energy and the charges (2.39) of BPS black holes are

E∗ =
π

4G5

(3(a+ b)− (a3 + b3)− ab(a+ b)2)

(1− a)2(1− b)2
,

Q∗ =
π

4G5

a+ b

(1− a)(1− b)
,

J∗1 =
π

4G5

(a+ b)(2a+ b+ ab)

(1− a)2(1− b)
,

J∗2 =
π

4G5

(a+ b)(a+ 2b+ ab)

(1− a)(1− b)2
. (2.50)

These expressions satisfy the BPS condition (2.45) for any (a, b), as they must.

We highlight two consequences for the BPS black holes.

First, the temperature of a BPS black hole vanishes. The temperature of the black hole

(2.43) can be rewritten using the BPS values (2.49) of parameters q∗ and r∗ as

T =
[1 + 3(a+ b) + (a2 + b2 + 3ab)] (r2

+ − r∗2)− (1 + a+ b) (q − q∗)
πr∗q∗

. (2.51)

This expression makes it clear that the temperature vanishes for BPS black holes, for which

q = q∗ and r+ = r∗.

Second, the charges Q∗, J∗1 and J∗2 of a BPS black hole obeys a constraint among them-

selves. This can be seen from the fact that the three charges (2.50) are parametrized by only

two variables. For future reference, we present a more general charge constraint where Q1,2,3

are not identified.(
Q1Q2Q3 +

π

4G5

J1J2

)
=

(
Q1 +Q2 +Q3 +

π

4G5

)(
Q1Q2 +Q2Q3 +Q3Q1 −

π

4G5

(J1 + J2)

)
. (2.52)
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The relation between the three charges in (2.50) is obtained by simply setting Q = Q1 =

Q2 = Q3 in (2.52).

The BPS limit of AdS5 black holes is in complete analogy with that of AdS3 black holes

introduced in the previous section. Supersymmetry requires saturation of a linear bound

between the energy and the charges that derives from unitarity, namely (2.12) and (2.44).

However, parametrization of the black hole solutions is non-linear in such a way that the

saturation of the unitary bound translates to a vanishing sum of two squares, namely (2.20)

and (2.48), when written in terms of black hole parameters. Therefore the supersymmetry of

the black hole is amplified into two relations: vanishing of temperature and charge constraints

(2.13) and (2.52).

The entropy of the BPS black hole can be also obtained by substituting the BPS values

(2.49) for the auxiliary parameters in (2.41):

S∗ = 2π · π

4G5

a+ b

(1− a)(1− b)
√
a+ b+ ab . (2.53)

Ideally, we would like to have a formula for the entropy as a function of its charges, which

was not feasible in (2.41) where we did so only implicitly via the auxiliary parameters. For

the BPS black holes, this can be done, i.e. a and b in (2.53) can be replaced by the charges

Q∗, J∗1 and J∗2 via (2.50). Note that there is not a unique way to do so, because the charges

parametrize a and b redundantly, up to the relation (2.52). A particularly nice expression

has been found in [86], which in fact applies to a more general BPS black holes whose Q1,2,3

are not identified:

S∗ = 2π

√
Q∗1Q

∗
2 +Q∗2Q

∗
3 +Q∗3Q

∗
1 −

π

4G5

(J∗1 + J∗2 ) . (2.54)
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Chapter 3

Black Hole Entropy from the Index

In the first main part of this thesis that consists of this and the next chapter, we derive two

important properties of the supersymmetric black holes in AdS space, namely the entropy

and the charge constraint, from the dual conformal field theories.

As we reviewed in chapter 2 for AdS3 and AdS5 black holes, the supersymmetric AdS

black holes have large entropy, and their charges cannot take arbitrary values but must obey

one constraint. The asymptotically AdS black holes in gravity theories are known to be dual

to ensembles of quantum states in superconformal field theories in one fewer dimensions [3].

Therefore, reproducing the properties of the black hole from the microstates in the field

theory will shed light on understanding the gravity through quantum theories.

In this chapter, we address that the entropy of the black holes can be accounted for by

degeneracy of quantum states in the field theory. We will first introduce the index, a powerful

tool for enumerating quantum states in supersymmetric field theories. We will review some

early attempts on using the index to count the black hole microstates, then demonstrate how

the difficulties encountered were overcome recently. This chapter will conclude with a review

of the entropy extremization principle, which derives the black hole entropy by treating the

index as a partition function and performing Legendre transformation.

3.1 Early Attempts

Given the central position of the 5-dimensional type-IIB supergravity and the 4-dimensional

maximally supersymmetric Yang-Mills theory in the AdS/CFT correspondence [3], it is not

surprising that there have been many attempts to account for the entropy of the AdS5 black

holes from the gauge theory. In this section, we review some important developments [34–36]

that have paved the way for the later progress.
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3.1.1 The Superconformal Index

Perhaps the most important development towards microscopic accounting of the AdS black

hole entropy is the introduction of the index, also referred to as the superconformal index

[35,36]. It can be understood as a special case of the grand canonical partition function for

the Hilbert space of the theory, that has the remarkable property of being invariant under

continuous deformations of the theory, thus allowing one to learn about the strongly coupled

theory by studying the weakly coupled theory.

Consider the N = 4 Super-Yang-Mills theory in 4 dimensions. Its symmetry group is

the 4d N = 4 superconformal group PSU(2, 2|4), that consists of the 4d conformal group

SO(4, 2) ∼ SU(2, 2), the R-symmetry group SU(4), and fermionic generators that transform

under both bosonic groups and complete the graded Lie group.

As we have mentioned in the context of AdS5 black holes in section 2.2, we define the

three Cartans of the conformal group as E, J1 and J2. E corresponds to the timelike part

and therefore plays the role of energy, and J1,2 corresponds to each factor of SU(2) in the

SU(2)×SU(2) ∼ SO(4) Lorentz group. We also define the three Cartans of the R-symmetry

group as Q1,2,3, in such a way that they correspond to rotations within orthogonal 2-planes

among 6-dimensional rotations SO(6) ∼ SU(4).

In group theoretic contexts, it is often useful to use the Dynkin basis instead of the or-

thogonal bases introduced in the previous paragraph. The Dynkin basis (E, j1, j2, R1, R2, R3)

is linearly related to the orthogonal basis (E, J1, J2, Q1, Q2, Q3) above by

J1 =
j + j̄

2
, J2 =

j − j̄
2

,

Q1 = R2 +
R1 +R3

2
, Q2 =

R1 +R3

2
, Q3 =

R1 −R3

2
. (3.1)

The energy E is common to the two bases.

Every state in the Hilbert space, or every local operator of the theory, must be grouped

into representations of the symmetry algebra. Therefore, it is always possible to find a basis

of the states/operators that diagonalize all 6 Cartans of the symmetry algebra. Since we

will always assume this diagonalization, we do not distinguish notations for the symmetry

operators and for the corresponding eigenvalues. So every state/operator has definite values

of six quantum numbers (E, J1, J2, Q1, Q2, Q3), or equivalently (E, j1, j2, R1, R2, R3) in the

Dynkin basis, and it is possible to define the grand canonical partition function of the theory

as the following trace over the Hilbert space:

Z(β, ∆I , ωi) ≡ Tr
[
e−βEe∆IQI+ωiJi

]
. (3.2)
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The partition function is a function of 6 variables: β which is usually understood as the

inverse temperature, and five chemical potentials ∆1,2,3 and ω1,2. The role of the chemical

potentials, as well as the inverse temperature, is to weigh different states within the partition

function. We shall often refer to the factors e−β, e∆I and eωi as fugacities.

The supersymmetric AdS5 black holes discussed in section 2.2.2 preserve 1
16

of the su-

persymmetries, so are referred to as 1
16

-BPS. Similarly, we expect the dual microstates in

the gauge theory to preserve the same amount of supersymmetries. There are 32 Hermi-

tian supersymmetry generators in PSU(2, 2|4): 16 Poincaré supercharges Qi
α, Qiα̇ and 16

conformal supercharges Siα, S
i

α̇, that are Hermitian conjugates of the Poincaré supercharges

in a radially quantized theory. i = 1, 2, 3, 4 is the fundamental or anti-fundamental in-

dex for the SU(4) R-symmetry and α and α̇ are the doublet indices for the Lorentz group

SU(2)L × SU(2)R ∼ SO(4). We choose 2 of them, Q ≡ Q4
− and S = Q† ≡ S−4 , as the pre-

served supercharges. An important commutation relation among the PSU(2, 2|4) algebra

is

2{Q,Q†} = E − (Q1 +Q2 +Q3 + J1 + J2) , (3.3)

for our choice of the preserved supercharges.

For any state |ψ〉 of the SYM, the norm of Q|ψ〉 must be non-negative. It follows that

the eigenvalues of the 1
16

-BPS states must obey

E ≥ Q1 +Q2 +Q3 + J1 + J2 . (3.4)

Moreover, the 1
16

-BPS states |ψBPS〉 of the SYM are annihilated by the chosen supercharge:

Q|ψBPS〉 = 0. It follows that the eigenvalues of the 1
16

-BPS states saturate (3.4):

E = Q1 +Q2 +Q3 + J1 + J2 . (3.5)

We can adapt the grand canonical partition function (3.2) to the BPS states that satisfy

(3.5). First rewrite (3.2) as

Z(β, ∆I , ωi) = Tr
[
e−β(E−Q1−Q2−Q3−J1−J2)e∆̃IQI+ω̃iJi

]
. (3.6)

where ∆̃I ≡ ∆I−β and ω̃i ≡ ωi−β. Then, take the limit β →∞ while keeping the redefined

chemical potentials ∆̃I and ω̃i finite. As a result, non-BPS states that do not saturate (3.4)
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will be suppressed, and effectively the trace will sum only over the 1
16

-BPS states.

ZBPS(∆̃I , ω̃i) = lim
β→∞

Tr
[
e−β(E−Q1−Q2−Q3−J1−J2)e∆̃IQI+ω̃iJi

]
= TrBPS

[
e∆̃IQI+ω̃iJi

]
(3.7)

This BPS partition function depends only on 5 chemical potentials. Dependence on one

fewer variables reflects that the 1
16

-BPS states have only 5 independent charges due to (3.5).

Now let us introduce another way to restrict the trace to the BPS states. Consider a

generic state |ψ〉 that has certain eigenvalues E, QI and Ji. Since all states of the theory

must organize into representations of the symmetry algebra, it follows that another state

Q|ψ〉 must also exist in the Hilbert space. Our choice of Q is such that the eigenvalues of

Q|ψ〉 is E + 1
2
, QI + 1

2
and Ji − 1

2
. Note from (3.4) that if |ψ〉 does not saturate the BPS

bound, nor does Q|ψ〉: the value of E −Q1−Q2−Q3− J1− J2 is the same for both states.

Due to the nilpotency of the fermionic operator Q, Q may be applied to |ψ〉 only once. All

non-BPS states in the theory must appear in such a pair: |ψ〉 and Q|ψ〉, while the 1
16

-BPS

states appears alone because Q|ψBPS〉 = 0. Therefore, if one tunes the chemical potentials

in (3.6) such that

e
∆̃1+∆̃2+∆̃3−ω̃1−ω̃2

2 = −1 , (3.8)

then contributions to (3.6) from |ψ〉 and from Q|ψ〉 exactly cancel each other, so (3.6)

receives contributions only from 1
16

-BPS states and the β-dependence automatically vanishes.

The grand canonical partition function defined as such is the index, also known as the

superconformal index to emphasize that this is an adaptation of the Witten index [87] to

the superconformal field theory.

I(∆̃I , ω̃i) = Tr
[
e−β(E−Q1−Q2−Q3−J1−J2)e∆̃IQI+ω̃iJi

]
= TrBPS

[
e∆̃IQI+ω̃iJi

]
, where e

∆̃1+∆̃2+∆̃3−ω̃1−ω̃2
2 = −1 . (3.9)

It is important to notice that, due to the condition (3.8), the index is a function of only

4 independent chemical potentials, one fewer than the partition function (3.7) with a similar

definition, so the index contains less information than the partition function. For example,

suppose there are two BPS states in the Hilbert space whose charges QI differ by n
2

and Ji

by −n
2
, where n is an integer. If n is even, the index will not distinguish contributions from

both states and only tell us that there are two states along a line in the 5-dimensional charge

space. If n is odd, contributions from both states will cancel each other and the index will
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not notice these states in any way even though they are BPS states.

Despite this loss of information, the index has a remarkable advantage over the partition

function, in that it is coupling independent. A superconformal field theory may receive

continuous deformations due to interactions, and as a result the spectrum of the Hilbert

space is shifted. In this process, it is possible that a BPS state is lifted by an anomalous

dimension and become non-BPS. The grand canonical partition function (3.7) will change

under this process, as a state suddenly drops out of the range of summation. However, such

a process may only happen in a limited manner. Since all states in the Hilbert space must

organize into representations of PSU(2, 2|4) in any case, such transitions between BPS and

non-BPS states may occur only if there is a set of representations that contain a BPS state

that is continuously isomorphic to a set of representations that do not. Such limited relations

between sets of representations are called recombination rules, see [88] for an extensive list

of them.

The index (3.9), unlike the partition function (3.7), is invariant under the recombinations.

If a BPS state may be lifted, i.e. it is not protected under recombination rules, then it must

be that there is another BPS state whose charges differ from the former as in the example

of the previous paragraph with odd n, and that they must participate in the recombination

rule together. This is to guarantee that a lift from the BPS state |ψ〉 has its superpartner

Q|ψ〉 somewhere in the Hilbert space. The index had not depended on these two BPS states

even though they were BPS states, so it does not change under the recombination process.

From this, it is clear that the loss of information for the index is precisely what gives it the

powerful property of coupling independence.

Historically, the minus sign on the right hand side of (3.8) has been replaced with an

explicit factor (−1)F where F is a fermion number operator. That is, the index was originally

defined as

I(∆̃I , ω̃i) = Tr
[
(−1)F e∆̃IQI+ω̃iJi

]
, where e

∆̃1+∆̃2+∆̃3−ω̃1−ω̃2
2 = 1 . (3.10)

The two definitions are ultimately equivalent because the (−1)F factor can be replaced by

e2πiJ1 among many other possible choices [64, 89], effectively shifting ω̃1 by 2πi and flipping

the sign on the right hand side of (3.8). However, the modern definition (3.9) is more

suggestive that the chemical potentials may be complex numbers, which has been the key

to the recent advance as will be reviewed later in this chapter.
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3.1.2 The Index as a Matrix Integral

Taking advantage of the coupling independence of the index, attempts have been made to

count the number of microstates of the weakly coupled N = 4 SYM to account for the AdS5

black hole entropy, which is dual to the strongly coupled N = 4 SYM with a large-N gauge

group SU(N). We review an early attempt of [35] where the index has been computed using

a unitary matrix model.

The free N = 4 SYM consists of six real scalars, eight fermions and a gauge field. Each

of them transforms in the adjoint representation of the gauge group SU(N):

vector : Aµ ∼ Aαβ̇ , (µ = 1, 2, 3, 4 , α = ± , β̇ = ±̇)

scalar : Φij(= −Φji) , Φ
ij ∼ 1

2
εijklΦkl , (i, j, k, l = 1, 2, 3, 4)

fermion : Ψiα , Ψ
i

α̇ . (3.11)

As explained above (3.3), α, α̇ are the doublet indices for the Lorentz group, µ is the vector

index, superscripts i, j are for the fundamental representation of the SU(4) R-symmetry,

while the subscripts are for the anti-fundamental representation. Of these, 3 scalars φ̄m =

Φ
4m

where m = 1, 2, 3, 3 chiralini ψm+ = −iΨm+, 2 gaugini λ̄α̇ = Ψ
4

α̇ and the gauge field

f++ = (σµν++)Fµν are 1
16

-BPS at the free, i.e. zero-loop O(g0
YM), level. The 1

16
-BPS states

are those whose charges satisfy (3.5).

Each field also has a spacetime argument, and a field localized at different points in the

spacetime are considered separate degrees of freedom. Equivalently, a field and its derivatives

at the origin are separate degrees of freedom. Therefore, any numbers of 4 derivatives ∂αα̇

in the 4d spacetime may act on each field. Of these, only 2 derivatives ∂+α̇ preserve the
1
16

-BPSness, i.e. commute with the preserved supercharge Q.

Finally, the free fields obey equations of motion. Of these, only one equation of motion

concerning gaugini:

∂+α̇λ̄
α̇ = 0 ⇔ ∂+[α̇λ̄β̇] = 0 , (3.12)

is 1
16

-BPS.

These define the 1
16

-BPS letters: the 9 free fields and any numbers of 2 derivatives acting

on them, modulo the gaugino equation of motion.

The free fields belong to a single super-representation of PSU(2, 2|4), known as the free

vector multiplet. It is a representation that has 6 real scalars as its superconformal primaries,

and consists of descendants that can be obtained by acting the PSU(2, 2|4) generators

on the primary. The descendants include other free fields, by action of supercharges, and

their derivatives, by action of momentum operators, modulo the equation of motions which
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Bosonic Rep. E j j̄ R1 R2 R3 J1 J2 Q1 Q2 Q3

Free fields

[0; 0]
[0,1,0]
1

1 0 0 0 1 0 0 0 1 0 0
1 0 0 1 −1 1 0 0 0 1 0
1 0 0 1 0 −1 0 0 0 0 1

[1; 0]
[0,0,1]
3
2

3
2

1 0 0 0 1 1
2

1
2

1
2

1
2
−1

2
3
2

1 0 0 1 −1 1
2

1
2

1
2
−1

2
1
2

3
2

1 0 1 −1 0 1
2

1
2
−1

2
1
2

1
2

[0; 1]
[1,0,0]
3
2

3
2

0 1 1 0 0 1
2
−1

2
1
2

1
2

1
2

3
2

0 −1 1 0 0 −1
2

1
2

1
2

1
2

1
2

[2; 0]
[0,0,0]
2 2 2 0 0 0 0 1 1 0 0 0

Eq. of motion [1; 0]
[1,0,0]
5
2

5
2

1 0 1 0 0 1
2

1
2

1
2

1
2

1
2

Derivatives [1; 1]
[0,0,0]
1

1 1 1 0 0 0 1 0 0 0 0
1 1 −1 0 0 0 0 1 0 0 0

Table 3.1: Components of the BPS operators in the free vector multiplet B1B̄1[0; 0]
[0,1,0]
1 .

The first 9 rows are free fields, followed by the equation of motion and 2 derivatives.

is derived from the symmetry algebra. This representation has the name B1B1[0; 0]
[0,1,0]
1

following notation of [88], to which we refer for extensive information on representations of

superconformal algebras. [0; 0] indicates that the superconformal primary is a singlet under

the Lorentz group, [0, 1, 0] indicates that it is a representation 6 of the R-symmetry group

SU(4) ∼ SO(6), and the subscript 1 indicates its conformal dimension. The letters and

the subscripts B1 and B1 indicate the structure of the representation. We summarize the
1
16

-BPS contents of the representation B1B1[0; 0]
[0,1,0]
1 , as well as their charges in both bases,

in Table 3.1. In the Table, the charges of each entry were displayed in two bases: the Dynkin

basis (j, j̄, R1, R2, R3) and the orthogonal basis (J1, J2, Q1, Q2, Q3). They are related by

J1 =
j + j̄

2
, J2 =

j − j̄
2

,

Q1 = R2 +
R1 +R3

2
, Q2 =

R1 +R3

2
, Q3 =

R1 −R3

2
, (3.13)

and E is common in both bases.

The BPS letters freely generate the Fock space. That is, a product of arbitrary numbers

of each bosonic BPS letter, times a product of either 0 or 1 of each fermionic BPS letter is a

BPS operator included in the Fock space. Note that there are infinite numbers of BPS letters:

corresponding to each free field, any of its derivatives is a new BPS letter. Furthermore, each

field transforms as an adjoint representation of the gauge group SU(N), so a field should

be understood as a set of N2 − 1 independent degrees of freedom each with its own gauge
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charges. Finally, only the gauge singlets are considered the physical degrees of freedom.

Therefore, the Hilbert space of the N = 4 SYM is a projection onto gauge singlets of the

BPS Fock space.

Now, let us translate the structure of the Hilbert space into the index (3.10) defined in

the previous subsection.

Suppose there is a bosonic BPS letter. Let its contribution to the trace be xB ≡
e

∆̃1+∆̃2+∆̃3−ω̃1−ω̃2
2 . The contribution from an arbitrary number of the letter is

1 + xB + x2
B + · · · =

1

1− xB
= exp[− log(1− xB)]

= exp

[
∞∑
n=1

xnB
n

]
≡ PE[xB] . (3.14)

In the last line we have defined the Plethystic exponential. Instead, suppose there is a

fermionic BPS letter, and let its contribution to the trace be xF . Here we pull out the (−1)F

factor explicitly, using the definition of the index as in (3.10). Therefore, the contribution

from all allowed number of the letter is

1− xF = exp[log(1− xF )]

= exp

[
−
∞∑
n=1

xnF
n

]
≡ PE[−xF ] . (3.15)

Note that the plethystic exponential follows the rule of ordinary exponentials: PE[−xF ] =

(PE[xF ])−1 and PE[x1 + x2] = PE[x1] × PE[x2]. Therefore, the index over the BPS Fock

space will be a Plethystic exponential of the sum over all bosonic BPS letters minus the sum

over all fermionic BPS letters:

IFock = PE

[ ∑
bosonic letters

xB −
∑

fermionic letters

xF

]
(3.16)

Let us temporarily introduce the gauge fugacities eiαa (a = 1, · · · , N) conjugate to the

gauge charges ζa into the index, that we will shortly project away. Furthermore, let us

replace the chemical potentials e∆̃I and eω̃i in favor of the fugacities

x2 = e∆̃1 , y2 = e∆̃2 , z2 = e∆̃3 , p2 = eω̃1 , q2 = eω̃2 . (3.17)
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So we define the index over the Fock space as

IFock(x, y, z, p, q; ζa) = TrFock

[
(−1)Fx2Q1y2Q2z2Q3p2J1q2J2

∏
a

eiαaζa

]
, (3.18)

where xyz
pq

= 1. From Table 3.1, we can read off the appropriate factors that correspond to

xB or to xF of the BPS letters. Also including the gauge factor, we have

IFock(x, y, z, p, q; ζa) = PE
[
f(x, y, z, p, q) · χadj.(αa)

]
, (3.19)

where

f(x, y, z, p, q) =
x2 + y2 + z2 − xyzpq

(
1
x2 + 1

y2 + 1
z2 + 1

p2 + 1
q2 − 1

)
+ p2q2

(1− p2)(1− q2)

= 1− (1− x2)(1− y2)(1− z2)

(1− p2)(1− q2)
(3.20)

is the single particle index, and

χadj.(αa) =
N∑

a,b=1

ei(αa−αb) (3.21)

is the character of the U(N) adjoint representation. Note the role of the equation of motion

and the derivatives in (3.20): the −1 inside the parenthesis and the geometric series of p2

and q2. For the second line of (3.20), we used xyz = pq.

Finally, the index is a projection of (3.19) onto gauge singlets. The projection can be

done by integrating over the gauge fugacities with the Haar measure:

I(x, y, z, p, q) =

∮
dµ[αa] IFock(x, y, z, p, q;αa) , (3.22)

where ∮
dµ[αa] =

1

N !
·
∫ 2π

0

N∏
a=1

dαa
2π
·

N∏
a,b=1

(
1− ei(αa−αb)

)
=

1

N !
·
∫ 2π

0

N∏
a=1

dαa
2π
· PE

[
−

N∑
a,b=1

ei(αa−αb)

]
(3.23)

Collecting (3.19)-(3.23), one obtains the following matrix integral formula for the index of
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the N = 4 SYM:

I(x, y, z, p, q) =
1

N !

∫ 2π

0

N∏
a=1

dαa
2π
· PE

[
−(1− f(x, y, z, p, q)) ·

N∑
a,b=1

ei(αa−αb)

]
, (3.24)

=
1

N !

∫ 2π

0

N∏
a=1

dαa
2π
· exp

[
−
∞∑
n=1

N∑
a,b=1

1

n
(1− f(xn, yn, zn, pn, qn)) · ein(αa−αb)

]
.

(3.24) is an integral over N angles, but we take N to be very large because the validity

of supergravity approximation of the string theory, i.e. the small string length scale limit,

is related to the large-N limit via the AdS/CFT correspondence. Since the large number

of integration variables αa appear symmetrically in the integrand, it is useful to think of a

distribution of N variables within the range [0, 2π) instead of their individual values. Let

ρ(α) be the distribution function of the angles αa, normalized such that
∫ 2π

0
dθρ(α) = 1.

(3.24) becomes a functional integral over the distribution function:

I(x, y, z, p, q) =
1

N !

∫
[dρ]e−S[ρ(α)] , (3.25)

where S[ρ(α)] can be thought of as an effective action functional:

S[ρ(α)] = N2

∞∑
n=1

∫ 2π

0

dα1dα2ρ(α1)ρ(α2)ein(α1−α2) · 1

n
(1− f(xn, yn, zn, pn, qn))

= N2

∞∑
n=1

1

n
(1− f(xn, yn, zn, pn, qn)) · |ρn|2 , (3.26)

where

ρn ≡
∫ 2π

0

dαρ(α)einα , (3.27)

is a Fourier coefficient of the distribution function ρ(α).

Since ρ(α) has been normalized so that it is independent of N , S[ρ(α)] is proportional

to N2. Thus, as N → ∞, the functional integral (3.25) will be strongly dominated by a

function ρ(α) that minimizes the effective action S[ρ(α)].

Meanwhile, note from (3.20) that

1− f(xn, yn, zn, pn, qn) =
(1− x2n)(1− y2n)(1− z2n)

(1− p2n)(1− q2n)
> 0 , (3.28)

as long as 0 < x, y, z, p, q < 1. The assumption that each fugacity is smaller than 1 is natural,
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since otherwise the index defined as a trace over infinite dimensional Hilbert space would

be divergent. For example, suppose x > 1. Among the bosonic BPS letters (3.20), there is

one that contributes x2, then the contribution from arbitrary numbers of this letter would

be divergent, x2 + x4 + x6 + · · · .
Therefore, the minimum of the action S[ρ(α)] corresponds to all Fourier coefficients

vanishing: ρ1 = · · · = 0. This indicates a constant function ρ(α), or the uniform distribution

of the eigenvalues αa, also known as the confined phase [90–92]. Importantly, S[ρ(α)] = 0

for such a distribution, and therefore the index scales as

I(x, y, z, p, q) = eO(N0) . (3.29)

Recall from (2.50) that the charges QI and Ji of the AdS5 black holes all scale as π
4G5

,

and therefore the entropy (2.54) also scales as such π
4G5

. This factor is related to the rank of

the gauge group N via the AdS/CFT correspondence:

π

4G5

=
N2

2
. (3.30)

Therefore, it is expected for a successful microscopic accounting of the black hole entropy,

that the index scales as eO(N2). In this sense (3.29) does not account for the black hole

entropy.

[35] went further to evaluate the right hand side of (3.29), and showed that the result

corresponds to a gas of supergravitons. The gas of supergravitons will be discussed in some

detail in section 5.4. However, both here and there, the important point is that the gas of

supergravitons do not exhibit a large enough degeneracy to account for the microscopics of

the black hole entropy, and our goal is to find contributions other than the supergravitons.

As noted in [35], it is not a contradiction that the index (3.29) does not capture the black

hole entropy. The index counts the BPS states only up to cancellations between bosons and

fermions whose charges differ in certain direction. For this reason, there have been various

efforts to study the BPS operators themselves — not just counting them — that are counted

by the index, for example [37, 39–41], but those have not been fully successful either. The

last part of this thesis addresses progress in this direction.
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3.2 Amplifying the Index by Complex Chemical Po-

tentials

The AdS black hole entropy has finally been accounted for by the number of microstates in the

gauge theories only very recently. Initiated by successes in magnetically charged black holes

in AdS4 × S7 from the topologically twisted index and supersymmetric localization [42–46]

and hinted by [47], a major success for the AdS5 black holes has been made in [48–50],

followed by many contributions for AdS black holes in various dimensions. See [51–69]

among many others.

Although different methods have been explored, the key difference that distinguishes the

modern approach from the early attempts introduced in section 3.1 was to let the chemical

potentials take complex values. It turns out that, by attributing appropriate complex values

to the chemical potentials in (3.9) while still respecting the condition e
∆̃1+∆̃2+∆̃3−ω̃1−ω̃2

2 = −1

for the index, it is possible to reduce the effect of cancellations between bosonic and fermionic

pairs dramatically, so much that the index scales as eO(N2). It is not just the scaling of the

index, but its actual value in some subleading orders in various limits and approximations

that were matched with the black hole entropy, for example [60,67,68].

In this section, we illustrate how a complex fugacity can ‘amplify’ the index by reducing

the effect of cancellations. We consider the index for an abelian theory with U(1) gauge

group, and unrefine the fugacities as far as possible so the index becomes a function of a

single variable. Coefficients of the series expansion of the index oscillate, in a pattern that has

essentially been observed in [62]. We show that they can be made to add up constructively

by giving the fugacity a resonating phase.

For this section, we take the following simplified definition of the index:

I(x) = Tr
[
(−1)Fx2Q1+2Q2+2Q3+3J1+3J2

]
≡ Tr

[
(−1)FxJ

]
(3.31)

where we have defined the ‘overall’ charge

J ≡ 2Q1 + 2Q2 + 2Q3 + 3J1 + 3J2 , (3.32)

for the last equality. (3.31) is nothing more than the index (3.10) where we have taken

x2 = e∆1 = e∆2 = e∆3 and x3 = eω1 = eω2 . Note that this is compatible with the condition

e
∆̃1+∆̃2+∆̃3−ω̃1−ω̃2

2 = 1.

One can compute the index on a computer using the formula (3.24), except that there is
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no matrix integral since we take the U(1) gauge group, so simply

I(x) = exp

[
−
∞∑
n=1

1

n
(1− f(xn))

]
,

where

f(x) =
3x2 − 2x3 − 3x4 + 2x6

(1− x3)2

= 1− (1− x2)3

(1− x3)2
. (3.33)

For generic N , even for moderate values of N , the matrix integral for projecting out the

gauge singlets is the bottleneck for computing the index as a series expansion [61, 62]. So

for N = 1, the computation simplifies greatly and one can series expand I(x) until very

high orders of x. For discussions in this section, we have computed until x10000. Also, as

can be anticipated from (3.33), the series expansion is regular: there is no fractional powers

of x. The fractional powers of x and their analogues in various setups have confused many

researchers. For example, in [64] the authors used our x3 as their x, and as a result their

log x acquired a period 6πi, causing confusions with branch cuts.

Let us denote the coefficients of the series expansion by ΩJ :

I(x) =
∞∑
j=0

ΩJx
J . (3.34)

All ΩJ are integers, not necessarily non-negative because fermions contribute negatively. We

plot the growth of |ΩJ | in the left panel of Figure 3.1, in logarithmic scale. It is concave

down in the logarithmic scale, indicating that the growth of |ΩJ | with J is sub-exponential.

As a result, for any given 0 < x < 1, |ΩJ xJ | initially grows with J but after a certain

point where the slope of log ΩJ compensates the negative log xJ = −J log(1/x), it starts

to attenuate. Therefore, for each 0 < x < 1 there exists some value Jmax(x) that maximizes

|ΩJ xJ |. This value of J , as a function of x, is plotted in the right panel of Figure 3.1, again

in logarithmic scale. For x . 0.79, Ω2 x
2 = 3x2 is the largest contribution to the index. Such

small values of x yield non-generic situations and are uninformative. For higher values of x,

Jmax(x) grows super-exponentially, and for x & 0.96, Jmax(x) is larger than 104, so it is not

captured in Figure 3.1.

Now let us take x = 0.95. As one can read from Figure 3.1, |ΩJ 0.95J | is maximized

around J ≈ 4500. We plot ΩJ 0.95J , not its magnitude but with sign, in Figure 3.2. At its

maximum which is around J ≈ 4500, the magnitude |ΩJ 0.95J | ≈ 2× 1044. However, if one
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Figure 3.1: Index coefficients |ΩJ | for each 0 ≤ J ≤ 10000 (left), Jmax(x) that maximizes
|ΩJ xJ | for given 0.75 < x < 0.97 (right). Both drawn in log scale.

Figure 3.2: ΩJ x
J where x = 0.95, for each J , in linear scale.
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Figure 3.3: Figure 3.2 zoomed into 4000 < J < 5000 (left), the same figure color-coded
according to J mod 3 (right).

Figure 3.4: ΩJ x
J + ΩJ+1 x

J+1 + ΩJ+2 x
J+2 where x = 0.95, for each J .

looks at the individual coefficients around J ≈ 4500, the sign and even the magnitude of

each ΩJ 0.95J oscillates wildly. If one sums over the contributions from different J simply

by
∑
J ΩJ 0.95J to compute the index as a single number, there will be massive cancellations

between adjacent terms.

However, if one zooms in closely into around J ≈ 4500, a clear pattern of oscillation

arises, see the left panel of Figure 3.3. The pattern is such that three sine waves are super-

imposed, equally spaced between each other. The right panel of Figure 3.3 is designed to

illustrate this pattern. It is the same plot as the left, but dots corresponding to different

values of J mod 3 are color-coded respectively. Clearly, the values of ΩJ 0.95J for same

values of J mod 3 form a sine wave.

This pattern of oscillation has a direct implication. For any J , consider the sum of the
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Figure 3.5: ΩJ x
J + ΩJ+1 x

J+1 + ΩJ+2 x
J+2 where x = 0.95 · ei(

2π
3 ), for each J . The

magnitude (left) and the phase (right).

three adjacent contributions to the index: ΩJ 0.95J + ΩJ+1 0.95J+1 + ΩJ+2 0.95J+2. The

three terms are basically the three points of an equilateral triangle centered at the origin in

the complex plane, then projected onto one axis. Therefore, the sum over the three terms

will be much smaller than each individual term. In fact, Figure 3.4 illustrates this fact: the

sum is indeed smaller by more than an order of magnitude than individual terms.

There is a simple way to turn this destructive sum into a constructive one. If we give x

a complex phase of 2π
3

, the three points of the triangle will gather around one of them. We

plot the magnitude and the phase of the sum

ΩJ x
J + ΩJ+1 x

J+1 + ΩJ+2 x
J+2 , where x = 0.95 · exp

(
2πi

3

)
, (3.35)

in Figure 3.5. The magnitude of this sum is now consistently larger than individual term,

indicating a constructive sum of the three terms.

This is not the end, however. The right panel of Figure 3.5 shows that the sum (3.35)

over the three terms, while being a constructive sum over three adjacent terms, also slowly

oscillate in its phase. This is because of the sine wave pattern shown in Fig 3.3: the equilateral

triangle slowly rotates as a whole. Therefore, although the phase 2π
3

ensures constructive

sum over 3 adjacent terms, such sums may destruct each other between a more distant values

of J .

Fortunately, the rate of rotation of the phase of (3.35) is close to a constant. So it is

possible to cancel this rotation effect by adjusting the phase of x slightly from 2π
3

. For

x = 0.95, the ideal phase is found to be

x = 0.95 · exp i

(
2π

3
+ 0.0313458

)
. (3.36)
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Figure 3.6: ΩJ x
J + ΩJ+1 x

J+1 + ΩJ+2 x
J+2 where x = 0.95 · ei(

2π
3

+0.0313458), for each J .
The magnitude (left) and the phase (right).

(3.35) with this ideal phase of (3.36), both its magnitude and its phase, is plotted in Figure

3.6. The magnitudes are similar to that in Figure 3.5, because both are a constructive sum

over 3 adjacent terms, but in Figure 3.6 the phase of the sum is also close to being stationary.

Therefore, with the optimal phase of x given by (3.36), finally the sum over all contributions∑
J ΩJx

J to the index will add up constructively.

As a result of this careful tuning of the phase of x given |x| = 0.95, the numerical value

of the index evaluates to

I
(

0.95 · ei(
2π
3

+0.0313458)
)

= 1.33× 1047 . (3.37)

This is a very sensible result considering that each J around 4500 contributes ∼ 1044 in

magnitude, and there are ∼ 103 orders that contribute to the index significantly, recall

Figure 3.2. This rough comparison that the sum is close to a magnitude of each term times

the number of significant terms, supports that the sum in the index has been completely

constructive. For comparison, we note the numerical value of the index for real x = 0.95:

I (0.95) = 2.1× 1031 . (3.38)

Its smallness compared to (3.37) shows that for real x, the destructiveness of the sum is

extremely thorough.

The phase of x needed to optimize the sum, which was 2π
3

+ 0.0313458 for |x| = 0.95, is

a function of |x|. In fact, for higher J , the phase approaches 2π
3

. We expect that the phase

indeed converge to 2π
3

as J → ∞. This expectation is aligned with the new Cardy limit

discussed in [93]. In the rest of this section, let us make a quantitative comparison.

It was found in [93] that as x → 1 · ei(
2π
3 ), what is called the new Cardy limit, the
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Figure 3.7: Left: log IU(1) for the optimal phase of x given |x|. Right: the optimal phase of
x in excess of 2π

3
given |x|. Blue lines represent the numerical U(1) index and yellow lines

represent corresponding expectations (3.41) and (3.40).

asymptotic behavior of the index is given by

log I =
8(5a− 3c)

27ω2
(−πi+ ω)3 +

8π2(a− c)
3ω2

(−πi+ ω) , (3.39)

where a and c are the central charges of the 4d superconformal field theory, and ω translates

to our x via x3 = e−ω, so it is a small parameter. It was also found that the index (3.39) is

extremized, for a given |x|, when the phase of x is such that

Reω =
√

3 · Imω ↔ − log |x| =
√

3 ·
(

arg(x)− 2π

3

)
(3.40)

Under this condition, the magnitude of the extremized index is given by

Re (log I) =
2π2(3c− 2a)

9
√

3(Imω)2
(3.41)

In Figure 3.7, we plot the expected results (3.41) for the value of the index (left) and

(3.40) for the extra phase from 2π
3

(right) for 3c− 2a = 1. In blue solid and dotted lines, we

plot the corresponding results from the numerical analysis of the U(1) index. The comparison

on the left panel is not perfect, but we believe that it demonstrates the 1
ω2 behavior that was

expected in the new Cardy limit [93] as opposed to the 1
ω

behavior that had been expected

from the ‘old’ Cardy limit [94].
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3.3 The Entropy Extremization Principle

It was demonstrated in the previous section that it is possible to overcome the cancellations

between bosons and fermions to obtain the microcanonical degeneracy faithfully from the

index. One way or another, the index is obtained as a function of complex chemical poten-

tials. In this section, we review the derivation of the black hole entropy from the index, often

referred to as the entropy extremization principle. This derivation has universality across

dimensions, including AdS3 [65], AdS4 [43, 44], AdS5 [47, 49] and AdS7 [49, 51], but we only

illustrate it in AdS3 and AdS5, in respective subsections.

3.3.1 AdS3

We first present the entropy extremization principle for AdS3 black holes. AdS3 is special

from higher dimensions, in line with CFT2 being special from CFTs in higher dimensions.

For the AdS3 black holes, the grand canonical partition function, as opposed to the index,

is known, as reviewed in section 2.1. Recall that grand canonical partition function is more

general than the index in that it depends on one more chemical potentials. Furthermore,

the partition function is known beyond its BPS limit, whereas the index only contains

information about the BPS states. However, in this subsection we shall focus on the index

and reproduce the entropy of BPS black holes (2.30) in AdS3 spacetime from the index. This

subsection is based on [65].

The grand canonical partition function was defined in (2.7), as a trace over all states:

Z(β, µ, ωR, ωL) = Tr
[
e−β(E−µJ−ωRQR−ωLQL)

]
= e

1
2
βkLTr

[
e
−β
(
E−J−QL+

kL
2

)
+µ̃J+ω̃RQR+ω̃LQL

]
. (3.42)

In the second line we have simply replaced the chemical potentials with their rescaled versions

with tildes using (2.23). In subsection 2.1.2 we isolated the BPS states by taking β → ∞
with the rescaled potentials kept finite. This gave the BPS partition function (2.26):

ZBPS(β, µ̃, ω̃R, ω̃L) =

(
lim
β→∞

e
1
2
βkL

)
TrBPS

[
eµ̃J+ω̃RQR+ω̃LQL

]
. (3.43)

In this subsection, we study the supersymmetric index, also known as the elliptic genus

in CFT2, rather than the partition function. Recall from section 3.1.1, in particular around

(3.8), that the index is a special case of the partition function where the chemical potentials

are such that a pair |ψ〉 and Q|ψ〉 contributes equal but opposite weights. We choose the

supercharge Q in the anti-holomorphic (left) sector of CFT2, in line with saturation of (2.12).
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This condition for the index is equivalent to the complex constraint

µ̃− 2ω̃L = 2πi , (3.44)

on the potentials. Thus, the index is the grand canonical partition function (3.42) under

the condition (3.44). We also pull out the Casimir energy factor e
1
2
βkL from the index. It is

conventional to omit this overall factor from the definition of the supersymmetric index, or

of the elliptic genus.

To summarize, the index is

I ≡ eβESUSYZ
∣∣
ω̃L= µ̃

2
−iπ

= TrBPS

[
eµ̃J+ω̃RQR+ω̃LQL

]∣∣
ω̃L= µ̃

2
−iπ , (3.45)

where ESUSY = −1
2
kL was given in (2.25). Going from the first to the second line, we used

the aforementioned cancellation for non-BPS states to get rid of the β-dependent term in

the trace of the second line of (3.42) and restrict the trace to BPS states only, then cancelled

the Casimir energy factor. Note that β → ∞ is not needed in the definition of the index,

but β-dependence was eliminated by the cancellation that is enabled by (3.44).

The BPS partition function ZBPS (3.43) depends on three independent potentials: µ̃ and

ω̃L,R, apart from the formal e−βESUSY
∣∣
β→∞ factor. On the other hand the index I depends

on only two independent parameters due to (3.44) which we take as µ̃ and ω̃R.

We can compute the index for supersymmetric black holes in AdS3 explicitly by starting

from the general partition function (2.8), introducing tilde potentials through (2.23), and

then imposing the index constraint (3.44):

log I = −kL
2
β +

kR
β(1− µ)

(
π2 + β2ω2

R

)
+

kL
β(1 + µ)

(
π2 + β2ω2

L

)
= −kL

2
β − kR

µ̃

(
π2 + ω̃2

R

)
+

kL
µ̃+ 2β

(
π2 + (ω̃L + β)2

)
= −kR

µ̃

(
π2 + ω̃2

R

)
+
kL
4

(µ̃− 4πi)

= −kR
µ̃

(
π2 + ω̃2

R

)
+
kL
µ̃

(π2 + ω̃2
L) . (3.46)

We present the manipulations in detail to highlight that they are exact, the dependence on β

disappears without any limit taken, as anticipated. The final expression with the constraint

(3.44) implied agrees with the BPS partition function (2.27), again as anticipated. A simpler

but less illuminating route to the formula for the index given in the last line of (3.46) is to
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evaluate the partition function and take the high temperature limit β → 0 with the tilde

variables kept fixed. In other words, the last line of (3.46) follows from the second line by

taking β = 0. This uses the β-independence of the index rather than showing it.

The computation illustrates how the index (3.45) and the BPS partition function (3.43)

are closely related, yet they are different in significant ways such that they complement one

another:

• The BPS partition function restricts the trace to the chiral primary states by an explicit

limit β →∞. In contrast, the index is independent of β, the limit β →∞ is possible

but not mandatory. This is one aspect of the index being protected under continuous

deformations of the theory, while the BPS partition function is not.

• The supersymmetric index is defined with chemical potentials constrained by (3.44) or

else it is not protected under continuous deformations. In contrast, the BPS partition

function keeps all three potentials µ̃ and ω̃R,L independent. It is possible to focus on

variables that satisfy the constraint, but the general case incorporates more information

about the theory.

• The supersymmetric index is defined with the supersymmetric Casimir energy stripped

off, while the partition function retains it.

In the non-chiral case kL = kR = k in the absence of gravitational anomaly, we can recast

our result for the index (3.46) as

log I = k
ω̃1ω̃2

µ̃
, (3.47)

by choosing the basis ω̃L,R = 1
2
(ω̃1 ± ω̃2) for the potentials. This result is aligned with the

form of the index that plays a central role in discussions of black hole entropy in higher

dimensional AdS spaces, as we will see in (3.63) for AdS5.

Whereas we have derived the supersymmetric index (3.46) for AdS3 black holes by impos-

ing a complex condition (3.44) on the more general BPS partition function (2.8), in higher

dimensional AdS spaces it is only the index that can be reliably computed. In that context

a procedure to extract the entropy and the charge constraint of supersymmetric black holes

directly from the index has been developed [47]. We now apply this procedure to the AdS3

case and show that it reproduces the results derived from the BPS partition function in

section 2.1.

The claim that is now standard in higher dimensional AdS spaces is that we can process

the index as if it was an ordinary partition function. According to this prescription [47], the

black hole entropy is given by the Legendre transform of the index (3.46), subject to the
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complex constraint (3.44). That is, the entropy function is defined by

S(µ̃, ω̃R, ω̃L) ≡ log I − ω̃LQL − ω̃RQR − µ̃J , (3.48)

and we extremize this function subject to (3.44). This can be done efficiently by introducing

the Lagrange multiplier Λ that enforces the condition (3.44), thus extremizing

S = S(µ̃, ω̃R, ω̃L)− Λ(µ̃− 2ω̃L − 2πi)

=
kL (ω̃2

L + π2)− kR (ω̃2
R + π2)

µ̃
− ω̃LQL − ω̃RQR − µ̃J − Λ(µ̃− 2ω̃L − 2πi) , (3.49)

with respect to the potentials µ̃, ω̃R,L and the Lagrange multiplier Λ.

S is homogeneous of degree one in the potentials µ̃, ω̃R,L, except for 2πiΛ which is

constant, and for the terms proportional to π2 which are homogeneous of degree minus one.

Keeping track of the inhomogeneous terms, the extremization conditions give

0 = (ω̃L∂ω̃L + ω̃R∂ω̃R + µ̃∂µ̃)S = S − 2πiΛ +
2π2(kR − kL)

µ̃
, (3.50)

so that

S = 2πiΛ− 2π2(kR − kL)

µ̃
. (3.51)

The second term vanishes only when kR = kL. It represents a novel refinement when com-

pared to analogous computations in higher dimensional AdS spaces.

The individual entropy extremization conditions are

∂ω̃LS = kL
2ω̃L
µ̃

+ (2Λ−QL) = 0 , (3.52a)

∂ω̃RS = −kR
2ω̃R
µ̃
−QR = 0 , (3.52b)

∂µ̃S = −kL (ω̃2
L + π2)− kR (ω̃2

R + π2)

µ̃2
− (Λ + J) = 0 . (3.52c)

Using the constraint (3.44), the first equation gives

kL
µ̃− 2πi

µ̃
= QL − 2Λ ⇒ πikL

µ̃
= Λ− 1

2
(QL − kL) . (3.53)

The entropy function therefore becomes

S = 2πi

[
Λ +

iπ

µ̃
(kR − kL)

]
= 2πi

[
kR
kL

Λ− 1

2kL
(kR − kL)(JL − kL)

]
≡ 2πiΛeff , (3.54)
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where we defined

Λeff =
kR
kL

Λ− 1

2kL
(kR − kL)(QL − kL) . (3.55)

Rewriting the last extremization condition (3.52c) using the others (3.52a-3.52b) and the

expression for µ̃ (3.53) we find

− 1

kL
(Λ− 1

2
QL)2 +

1

4kR
Q2
R − (Λ + J)− 1

k2
L

(kR − kL)

(
Λ− 1

2
(QL − kL)

)2

= 0 , (3.56)

which we reorganize into a quadratic equation for Λeff :

Λ2
eff − (QL − kL)Λeff +

1

4
(QL − kL)2 + kR

(
J +

QL

2
− kL

4

)
− 1

4
Q2
R = 0 . (3.57)

Selecting the root with negative imaginary part we find the extremized entropy function in

terms of charges:

S = 2πiΛeff = 2π

√
kR

(
J +

QL

2
− kL

4

)
− Q2

R

4
+ πi(QL − kL) . (3.58)

For BPS black holes in higher dimensional AdS the standard prescription posits that

charges must be constrained such that the extremized entropy function is real [47, 49]. Ap-

plying this rule in AdS3 as well, we find

QL = kL , (3.59)

in agreement with the charge constraint (2.29) that we inferred from gravitational consider-

ations. Only after fixing the charges this way, the entropy function (3.58) is real with the

value

SBPS = 2π

√
kR

(
J +

1

4
kL

)
− 1

4
Q2
R , (3.60)

in agreement with the entropy (2.30) of a BPS black hole in AdS3 .

In summary, in this subsection we defined the supersymmetric index for the AdS3 black

holes, and applied the entropy extremization procedure to recover thermodynamic properties

from the index (3.46). The computation is novel in that the index (3.46) used here is more

refined than the version (3.47) that is directly analogous to higher dimensional cases.
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3.3.2 AdS5

In this subsection, we demonstrate the entropy extremization principle for AdS5 black holes

[47, 49]. In fact, in this context was the principle first established [47] based on a similar

extremization principle used for AdS4 black hole entropy [43, 44]. Shortly after, the index

required for this principle to reproduce the AdS5 black hole entropy was computed [48–50].

As we reviewed in section 3.1.1, the AdS5 black holes and the dual 4d N = 4 SYM

are described by six quantum numbers, namely the energy or the scaling dimension E, two

angular momenta J1,2, and three charges Q1,2,3. The index of the 4d N = 4 SYM is defined

by (3.9):

I(∆̃I , ω̃i) = Tr
[
e−β(E−Q1−Q2−Q3−J1−J2)e∆̃IQI+ω̃iJi

]
= TrBPS

[
e∆̃IQI+ω̃iJi

]
, (3.61)

where ∆̃I ≡ ∆I − β and ω̃i ≡ ωi − β satisfy e
∆̃1+∆̃2+∆̃3−ω̃1−ω̃2

2 = −1, which is the condition

that ensures independence on β as well as the coupling independence of the index. This

condition is realized by

∆̃1 + ∆̃2 + ∆̃3 − ω̃1 − ω̃2 = 2πi . (3.62)

The index (3.61) with complex chemical potentials subject to (3.62) has been computed

in various limits and approximations. For example, [49] took the Cardy-like limit |ωi| � 1

while [50] took two equal angular momenta for the Bethe Ansatz approach. The regime of

applicability has broaden in [66] but not completely. In one way or another, the leading term

in large N of the index is evaluated to be

log I = −N
2

2

∆̃1∆̃2∆̃3

ω̃1ω̃2

. (3.63)

Let us now derive the AdS5 black hole entropy from this index, following the entropy extrem-

ization principle [47], in which the index is treated as an ordinary grand canonical partition

function that yields the entropy via Legendre transformation.

First, the entropy function is defined by

S(∆̃I , ω̃i) ≡ log I −
∑
I

∆̃IQI −
∑
i

ω̃iJi , (3.64)

and we extremize this function subject to (3.62). This can be done efficiently by introducing
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the Lagrange multiplier Λ that enforces the condition (3.62), thus extremizing

S = S(∆̃I , ω̃i)− Λ

(∑
I

∆̃I −
∑
i

ω̃i − 2πi

)

= −N
2

2

∆̃1∆̃2∆̃3

ω̃1ω̃2

−
∑
I

∆̃IQI −
∑
i

ω̃iJi − Λ

(∑
I

∆̃I −
∑
i

ω̃i − 2πi

)
, (3.65)

with respect to the potentials ∆̃I , ω̃i and the Lagrange multiplier Λ.

The entropy function is homogeneous of degree one in the potentials except for the 2πiΛ

which is constant. Therefore,

0 =

(∑
I

∆̃I∂∆̃I
+
∑
i

ω̃i∂ω̃i

)
S = S − 2πiΛ , (3.66)

so that

S = 2πiΛ . (3.67)

This is analogous to (3.51), where the kR − kL term does not have a higher dimensional

analogue.

The individual entropy extremization conditions are

−∆̃I∂∆̃I
S =

N2

2

∆̃1∆̃2∆̃3

ω̃1ω̃2

+ ∆̃I(QI + Λ) = 0 ,

ω̃i∂ω̃iS =
N2

2

∆̃1∆̃2∆̃3

ω̃1ω̃2

+ ω̃i(−Ji + Λ) = 0 , (3.68)

It follows that

∆̃I = − 1

QI + Λ
· N

2

2

∆̃1∆̃2∆̃3

ω̃1ω̃2

,

ω̃i = − 1

−Ji + Λ
· N

2

2

∆̃1∆̃2∆̃3

ω̃1ω̃2

, (3.69)

so

N2

2

∆̃1∆̃2∆̃3

ω̃1ω̃2

=
N2

2
·

(
−N

2

2

∆̃1∆̃2∆̃3

ω̃1ω̃2

)3−2

· (−J1 + Λ)(−J2 + Λ)

(Q1 + Λ)(Q2 + Λ)(Q3 + Λ)
,

⇒ 0 = (Q1 + Λ)(Q2 + Λ)(Q3 + Λ) +
N2

2
(−J1 + Λ)(−J2 + Λ) . (3.70)

This is a cubic equation on Λ.
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Now, the entropy extremization principle posits that charges must be constrained such

that the extremized entropy function is real [47, 49]. This requires, via (3.67), that Λ must

be purely imaginary. Since the coefficients of the cubic equation (3.70) are all real, it must

be that terms in orders Λ3 and Λ1, and terms in orders Λ2 and Λ0, must separately add up

to zero. Therefore,

Λ3 +

(
Q1Q2 +Q2Q3 +Q3Q1 −

N2

2
(J1 + J2)

)
Λ = 0 , (3.71)(

Q1 +Q2 +Q3 +
N2

2

)
Λ2 +

(
Q1Q2Q3 +

N2

2
J1J2

)
= 0 . (3.72)

One consequence of both equations of (3.71) is

Q1Q2Q3 +
N2

2
J1J2

=

(
Q1Q2 +Q2Q3 +Q3Q1 −

N2

2
(J1 + J2)

)(
Q1 +Q2 +Q3 +

N2

2

)
, (3.73)

and taking one of the solutions of the first equation to make S = 2πiΛ positive, we have for

the extremized entropy function,

S = 2π

√
Q1Q2 +Q2Q3 +Q3Q1 −

N2

2
(J1 + J2) . (3.74)

The rank (plus one) of the gauge group N in the 4d N = 4 SYM is related to the

5-dimensional Newton’s gravitational constant by [3]

N2 =
π

2G5

. (3.75)

Through this dictionary, (3.73) is the constraint (2.52) between the charges QI and Ji that

a supersymmetric black hole must satisfy, and (3.74) is the entropy (2.54) of the supersym-

metric AdS5 black hole.

To summarize, the entropy extremization principle directs us to extremize the entropy

function (3.64) determined from the index, and demand that the complex result be real. As

a result, one obtains the value of the extremized entropy function as well as a constraint

between the charges. The former gives the entropy of the supersymmetric black hole, while

the latter gives its charge constraint.
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Chapter 4

The Supersymmetric Charge

Constraints

In this chapter we turn to another important property of supersymmetric AdS black holes,

the charge constraint. We present a heuristic derivation of the constraint from the dual

field theories as a relation between macroscopic charges of an ensemble that is classically

generated by free fields, up to a uniform rescaling of all charges. After a brief introduction,

we shall first present the derivation for AdS3 black holes. Motivated by this example, we

develop a generic prescription to derive the charge constraint from the field theories and

apply to the AdS5, AdS4 and AdS7 black holes in the subsequent sections. We obtain the

correct functional form of the fully refined charge constraint in each of the dimensions. We

conclude this chapter by discussing various shortcomings and implications of our arguments.

Section 4.1 is based on [65] and the rest of this chapter is based on [70], both in collaboration

with Finn Larsen.

As we have addressed in the previous section, the entropies of supersymmetric AdS black

holes in different dimensions have been matched with the number of supersymmetric states

in their dual conformal field theories. The supersymmetric states are counted using the

index, which can be understood as a special case of the grand canonical partition function

for the ensemble of supersymmetric microstates.

Importantly, the supersymmetric index inevitably depends on one less chemical potentials

than there are independent charges, recall the discussion after (3.9). In other words, the index

as a grand canonical partition function does not distinguish microstates along the direction in

the space of conserved charges generated by the preserved supercharge. This fundamentally

prevents the index from addressing the charge constraint, which contains information about

the location in the space of charges. Indeed, the charge constraint is surprising from the

CFT side of the duality, because numerous local supersymmetric operators exist also for
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charges that violate the constraint.

Curiously, the charge constraint emerges in the microscopic accounting of the supersym-

metric black hole entropy from the condition that the extremum of the complex entropy

function is real [47, 49, 52]. This is suggestive, but given the intrinsic shortcoming of the

index, it does not provide a satisfying microscopic explanation.

In section 4.1, we make a proposal for the microscopic origin of the charge constraints for

supersymmetric AdS3 black holes. In any unitary supermultiplet of the small N = 4 super-

Virasoro algebra, whether short or long, all weights appear in pairs. The two weights in each

pair are separated in the charge configuration space along the direction of the preserved

supercharge Q, and the R-charges of the two weights average to k, the level of the SU(2)R

algebra. This is precisely the condition that an extremal BTZ black hole is supersymmetric.

This proposal goes beyond the scope of the index, in that the index does not see both states

in a pair individually.

Generalization of this argument to higher dimensions is not straightforward. Supercon-

formal algebras in higher dimensions are not as large and constraining as the super-Virasoro

algebra in CFT2, so they are consistent with more diverse multiplet structures. Moreover,

in AdSd+1 with d > 2, the constraints on conserved charges that we want to illuminate are

non-linear and highly non-trivial.

In sections 4.2 through 4.5, we offer a heuristic derivation of the charge constraints for

higher dimensions. In each dimension, we start from the free multiplet of the corresponding

superconformal algebra. We then construct a grand canonical partition function that depends

on as many chemical potentials as there are charges, thereby overcoming the fundamental

limitation of the index. We define a supersymmetric ensemble that gives equal weight to

all states along the direction generated by the supercharge, and compute the macroscopic

charges of the ensemble. This procedure gives the correct functional form of the fully refined

charge constraint in AdS5, AdS4, and AdS7. The major heuristic element of our computation

is the number of free multiplets in the theory, which we simply put in by hand. For example,

for the SU(N) SYM in d = 4, we need 1
2
N2 free multiplets, compared with N2 in a genuinely

free theory. This number sets the scale of all conserved charges.

4.1 AdS3

In this section we discuss BTZ black holes in AdS3×S3 that are dual to 2d CFT with (4, 4)

superconformal symmetry. This section is based on section 5 of [65].
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4.1.1 The BTZ Black Hole and its Charge Constraint

Thermodynamic properties of the AdS3 black holes as well as their BPS limit have been

reviewed in section 2.1. Let us briefly recall relevant information. The BTZ black holes in

AdS3×S3 carry an energy E and an angular momentum J that both arise from the isometry

of AdS3, as well as two charges QL and QR associated with the isometry SU(2)L × SU(2)R

of S3.

One choice of 1
4
-BPS sector in this theory corresponds to energy that saturates the uni-

tarity bound:

E ≥ J +QL −
kL
2
. (4.1)

In this formula kL is the level of the SU(2)L current which, because ofN = 4 supersymmetry,

is related to the central charge as cL = 6kL. On the other hand, all black hole solutions in

AdS3 × S3 satisfy the extremality bound,

E ≥ J − Q2
L

2kL
, (4.2)

which is saturated at vanishing temperature. This formula is entirely gravitational, but

we have simply expressed Newton’s constant G3 in terms of the level kL using the Brown-

Henneaux formula for the central charge [79].

A BTZ black hole can only be 1
4
-BPS if it saturates both of (4.1) and (4.2). That is only

possible if

QL = kL . (4.3)

This is the charge constraint on supersymmetric AdS3 black holes. In a charge sector that

violates (4.3) there are no supersymmetric black holes.

4.1.2 Multiplets of CFT2 with (4, 4) Supersymmetry

The dual 2d CFT has (4, 4) supersymmetry. Its superconformal algebra factorizes into two

independent copies of super-Virasoro algebra, and includes a bosonic subgroup SO(2, 2) ×
SU(2)L×SU(2)R that matches the isometry of AdS3×S3. To make progress, we first review

representations of one chiral copy of the small N = 4 super-Virasoro algebra with SU(2)

R-symmetry [77,80,81,95].

The maximal bosonic subalgebra of the small N = 4 super-Virasoro algebra has two

Cartans: L0 of the Virasoro algebra and QL of the SU(2) R-symmetry. Every weight in a
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representation of the super-Virasoro algebra can be chosen to diagonalize the Cartans of the

bosonic subalgebra, so it is described by its L0 and QL eigenvalues (h, qL). Each unitary

representation of the super-Virasoro algebra is labeled by the L0 and QL eigenvalues (h, qL)

of its superconformal primary. Given a superconformal primary, the entire contents of the

multiplet is determined, as the descendants are obtained by applying various operators of

the algebra to the primary. We can focus on states that satisfy NS boundary conditions,

because representations in the Ramond sector are isomorphic through spectral flow by a

half-integral unit.

There are two qualitatively different types of representations: long multiplets whose

primary has h > qL and short multiplets whose primary has h = qL. The allowed values

for qL of the primary are 0, 1, · · · , kL − 1 for long multiplets, and 0, 1, · · · , kL for short

multiplets. The content of either type of representation can be summarized by its character

defined by Tr qL0yQL , a function of two fugacities q and y. The characters of the two types

of representations are [81]:

Long : chh,qL(q, y) = qhFNS

∞∑
m=−∞

(
y2(kL+1)m+qL+1 − y−2(kL+1)m−qL−1

) q(kL+1)m2+(qL+1)m

y − y−1
,

Short : χqL(q, y) = q
qL
2 FNS

∞∑
m=−∞

(
y2(kL+1)m+qL+1

(1 + yqm+ 1
2 )2
− y

−2(kL+1)m−qL−1

(1 + y−1qm+ 1
2 )2

)
q(kL+1)m2+(qL+1)m

y − y−1
,

(4.4)

where

FNS =
∏
n≥1

(
1 + yqn−

1
2

)2 (
1 + y−1qn−

1
2

)2

(1− y2qn)(1− qn)2(1− y−2qn)
, (4.5)

accounts for the action of creation operators, i.e. the negative frequency modes {Gr<0} and

{Ln<0, J
i
n<0} of the four fermionic and four bosonic generators.

4.1.3 The Supersymmetric Ensemble and the Charge Constraint

The long and short multiplets discussed in the previous subsection are the only unitary

representations of the small N = 4 super-Virasoro algebra. Since the supersymmetry algebra

of the 2d (4, 4) theory is a direct sum of two copies of the small N = 4 super-Virasoro

algebra, any representation thereof is a direct product between two representations of the

small N = 4 super-Virasoro algebra. Therefore, the microscopic duals of AdS3 black holes

must also organize themselves into such representations.
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The long and short multiplet characters (4.4) both exhibit the following property:

χqL(q, y) = χqL(q, q−1y−1) · qkLy2kL ,

chh,qL(q, y) = chh,qL(q, q−1y−1) · qkLy2kL . (4.6)

This shows that, within any representation, a weight with (h, qL) is always paired with

another one with (h + kL − qL, 2kL − qL). To see this, suppose that there is a weight with

(h, qL) either in the short or the long multiplet. This contributes to the right hand side of

(4.6) by

qh(q−1y−1)qL · qky2kL = qh+kL−qLy2kL−qL . (4.7)

Then it follows from the equation that the character must contain a term qh+kL−qLy2kL−qL ,

which can only be true if a weight (h+ kL − qL, 2kL − qL) belonged to the multiplet.

The pair is characterized by the R-charges being mirrored about kL and the conformal

weights in excess of the unitarity bound L0 − 1
2
QL being the same:

h− 1

2
qL = (h+ kL − qL)− 1

2
(2kL − qL) . (4.8)

Therefore, if both weights contribute equally to the grand canonical partition function, then

the macroscopic charge QL obtained as a statistical average over the ensemble will necessarily

be kL.

The condition that the weights (h, qL) and (h+ kL − qL, 2kL − qL) in the pair contribute

equally to the grand canonical partition function is

yq1/2 = 1 . (4.9)

Therefore, when this condition is satisfied, the average 〈QL〉 = kL. Indeed, explicit compu-

tation shows that

〈QL〉 = y
∂ logZ

∂y

∣∣∣
y=q−

1
2

= kL , (4.10)

for any partition function that is a product of characters satisfying (4.6). We refer to grand

canonical partition function with yq1/2 = 1 as the supersymmetric ensemble.

Geometrically, the condition yq1/2 = 1 defining the supersymmetric ensemble means all

quantum states along a straight line in the (h, qL) plane are counted equally. This is precisely

the direction generated by the preserved supercharge, corresponding to one of the factors in

the numerator of (4.5).

The definition of the supersymmetric ensemble is reminiscent of imposing yq1/2 = −1,

the substitution that turns the grand canonical partition function into the index, or the

54



elliptic genus. With the condition yq1/2 = −1, two microstates related by the supercharge

Q contribute equal magnitude, but with opposite signs. Therefore, the only non-vanishing

contributions are from short multiplets where the primary is annihilated by the supercharge.

Moreover, combinations of short multiplets along the direction of the supercharge combine

to a long multiplet

χh,qL−1(q, y) + 2χh,qL(q, y) + χh,qL+1(q, y) = chh,qL(q, y)
∣∣∣
h= 1

2
qL
, (4.11)

and also cancel automatically in the index. With these cancellations, the index is unable

to assign relative probabilities to the charges in this direction, and so it cannot account for

the constraint. In contrast, the supersymmetric ensemble avoids massive cancellations and

controls the direction generated by the supercharge by taking the average over all configu-

rations. This prescription reproduces the charge constraint 〈QL〉 = kL (4.3) that is satisfied

for all supersymmetric black holes in AdS3 × S3.

4.2 Prescription for Higher Dimensions and Summary

We now turn to the charge constraints in higher dimensions. Before we present specific

examples, let us briefly outline the generic prescription for a heuristic derivation of the

charge constraints from dual CFTs across dimensions. We shall follow this prescription in

sections 4.3 through 4.5 to obtain charge constraints of AdS5, AdS4 and AdS7 black holes

from respective CFTs.

AdS black holes are dual to ensembles of quantum states in a superconformal field theory

in one fewer dimensions that all preserve the same amount of supersymmetry as the black

holes. The local operators in the dual theory organize themselves into representations of

the applicable superconformal algebra. Our starting point is the field content of the free

representation, which provides the basic building blocks of the CFTs. It consists of free

fields, both bosons and fermions, as well as derivatives that generate conformal descendants,

and equations of motion that impose physical conditions. In a free CFT the particle number

operator is well-defined, and so the free fields correspond to single particle states. There are

infinitely many, because an arbitrary number of derivatives may act on the fields.

Every single particle state can be chosen as eigenstates of the Cartan generators of the

bosonic subalgebra. The corresponding eigenvalues are the conformal dimension E, angular

momenta Ji, and the R-symmetry charges QI , where the ranges of i and I depend on the

dimension and on the amount of supersymmetry. The totals of the microscopic quantum

numbers for the entire ensemble give the E, Ji, and QI that we identify with the black hole
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charges. We only pick microscopic states that individually preserve the same supersymme-

tries as the black hole. These single particle BPS states are referred to as BPS letters. Since

they are annihilated by the chosen supercharges, Q|ψ〉 = 0, the BPS states must saturate

the unitarity bound {Q,Q†} ≥ 0. The superalgebra expresses the left hand side as a sum

over the bosonic Cartan operators, so, schematically,

BPS : {Q,Q†} = E −
∑
i

Ji −
∑
I

QI = 0 . (4.12)

The quantum numbers of the BPS letters must satisfy the equality on the right, giving a

linear BPS relation between the energy and the other conserved charges.1

The grand canonical partition function is the trace over all quantum states, with weights

assigned to each state by chemical potentials that couple to the conserved charges. We define

it with an explicit restriction to BPS states:

Z ≡ TrBPS

[
e−β{Q,Q

†}e
∑
i ωiJi+

∑
I ∆IQI

]
= TrBPS

[
e
∑
i ωiJi+

∑
I ∆IQI

]
. (4.13)

The second line is because the superalgebra (4.12) gives {Q,Q†} = 0. This removes the

dependence on conformal dimension, but the partition function retains dependence on all

chemical potentials ωi and ∆I , there are as many of them as there are charges. Therefore,

it is sensitive to the distribution of microstates along all directions in the charge space.

It is useful to define the grand canonical partition function over the BPS letters only.

This gives the single particle BPS partition function Zsp. However, in a quantum field theory,

general states belong to a multiparticle Fock space that is generated by the single particle

states in the usual way, with occupation numbers restricted by fermion or boson statistics.

In the free theory any quantum number of a multiparticle state, including its energy, is the

sum over the corresponding single particle quantum numbers. Therefore, the BPS partition

function Z over the entire BPS Hilbert space can be derived from the single particle BPS

partition function Zsp, by taking combinatorics into account.

For example, for a single particle bosonic or fermionic BPS state that yields the single

particle partition function xB or xF , the partition function for the full Fock space is

1 + xB + x2
B + · · · =

1

1− xB
, (4.14)

1Depending on normalization of the charges, one or more terms in the sum (4.12) may contain numerical
coefficients that differ from one. An example is (4.51) for the 6d (2, 0) superconformal algebra. Throughout
this paper, we use the notation of [88], to which we refer for details on the algebra and representations.
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D Charges Constraint SCA Free multiplet N GD

4 J, Q1,2,3,4 (4.35) 3d N = 8 B1[0]
[0,0,1,0]
1/2

√
2

3
N

3
2 = 1 G4 = 1

2

5 J1,2, Q1,2,3 (4.19) 4d N = 4 B1B̄1[0; 0]
[0,1,0]
1

1
2
N2 = 1 G5 = π

4

7 J1,2,3, Q1,2 (4.52) 6d (2, 0) D1[0, 0, 0]
[1,0]
2

2
3
N3 = 1 G7 = π2

8

Table 4.1: Summary of sections 4.3–4.5.

and 1 + xF , respectively. If there are NB bosonic and NF single particle BPS states, each

of which yields the single particle partition function xB,i and xF,j, the full partition function

becomes

Z =

∏NF
j=1(1 + xF,j)∏NB
i=1(1− xB,i)

. (4.15)

These formulae are simply the standard Bose-Einstein and Fermi-Dirac distributions from

elementary statistical physics, but expressed in a notation commonly used when discussing

supersymmetric indices. In our prescription, we compute the multiparticle partition function

as a simple exponential of the single particle partition function:

Z = eZsp = exp

(
NB∑
i=1

xB,i +

NF∑
j=1

xF,j

)
. (4.16)

This is the limit of classical statistical physics. It is justified when the occupation number

for any single particle state is so small that it is likely to be either 0 or 1. This assumption

may be realized by the large number of gauge degrees of freedom for each single particle

state. An improved treatment of such gauge degrees of freedom would project onto gauge

singlets at the end, and that we do not do.

Given the grand canonical partition function Z for the full Hilbert space, we can derive

the macroscopic charges as ensemble averages in a standard manner. (4.13) gives

QJ =
TrBPS

[
QJ · e

∑
i ωiJi+

∑
I ∆IQI

]
TrBPS

[
e
∑
i ωiJi+

∑
I ∆IQI

] =
∂

∂∆J

logZ ,

Jj =
TrBPS

[
Jj · e

∑
i ωiJi+

∑
I ∆IQI

]
TrBPS

[
e
∑
i ωiJi+

∑
I ∆IQI

] =
∂

∂ωj
logZ . (4.17)

These formulae express all the charges in terms of an equal number of chemical potentials.

Denoting by Q the supercharge that is preserved by the black hole and by the dual BPS

states, we now impose a linear relation between the chemical potentials such that quantum

states that differ by the charges of Q are given the same weight. The statistical computations
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of macroscopic charges (4.17) were done prior to this stage, and included the gradient of the

partition function in the direction along the constraint between the potentials. Therefore,

the computation reflects the dependence of the partition function on all chemical potentials.

After the constraint on the chemical potentials is imposed, the statistical formulae (4.17)

express all macroscopic charges in terms of one variable less than there are charges. Equiv-

alently, the charges that are realized form a co-dimension one surface in the space of all

charges, i.e. they satisfy a constraint. We find that the constraint on charges arrived at this

way, from the field content of the microscopic theory, has the same highly non-trivial form

as the non-linear charge constraint of the supersymmetric black holes.

The black hole charges that satisfy the non-linear constraint in the gravitational theory,

are in units of Newton’s gravitational coupling constant. In contrast, in its simplest form, the

microscopic computation considers a single free field. Our results are incomplete, because

we do not determine the relative scale of the charges in the two computations. Compari-

son between the computations gives a value for Newton’s constant or, equivalently, for the

effective number of free fields. The summary in Table 4.1 records these values.

4.3 AdS5

In this section we discuss how the charge constraint of supersymmetric, rotating and charged

black holes in AdS5, emerges from its dual N = 4 Super-Yang-Mills theory in 4d. We follow

the prescription outlined in section 4.2.

4.3.1 The Black Hole and the Charge Constraint

Asymptotically AdS5 black holes arise as solutions to type-IIB supergravity in AdS5 × S5

[28–33]. They carry the mass E and two angular momenta J1,2 for the isometry SO(2, 4) of

AdS5, and three charges Q1,2,3 for the isometry SO(6) of S5. The black hole solution with

all 6 conserved quantities independent is known.

The black hole is supersymmetric when the unitarity bound between the mass and the

charges

E ≥ J1 + J2 +Q1 +Q2 +Q3 , (4.18)

is saturated. We have set the AdS5 radius `5 = 1. Importantly, saturation is possible only
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when the charges obey an additional relation [49,85,86](
Q1Q2Q3 +

N2

2
J1J2

)
=

(
Q1 +Q2 +Q3 +

N2

2

)(
Q1Q2 +Q2Q3 +Q3Q1 −

N2

2
(J1 + J2)

)
. (4.19)

We have traded the 5d Newton’s constant G5 into the field theory variable N via

1

2
N2 =

π`3
5

4G5

,

for future convenience, but we stress that the origin of the charge constraint (4.19) is purely

gravitational. (4.19) is the charge constraint for supersymmetric AdS5 black holes.

We also present an unrefined (J1 = J2 = J and Q1 = Q2 = Q3 = Q, where Q should

not be confused with the preserved supercharge) version of (4.19) that is more approachable,

but still quite non-trivial:(
Q3 +

N2

2
J2

)
−
(

3Q+
N2

2

)(
3Q2 −N2J

)
= 0 .

(4.20)

4.3.2 The 4d N = 4 Free Vector Multiplet

The charged, rotating AdS5 black holes introduced in the previous subsection are dual to

quantum states in the N = 4 Super-Yang-Mills theory in 4d. In this subsection we introduce

the free vector multiplet of the 4d N = 4 superconformal algebra psu(2, 2|4) that generates

the single particle states.

Local operators can be organized into super-representations of the 4d N = 4 supercon-

formal algebra. A super-representation consists of a superconformal primary and its descen-

dants. Following the notation of [88], we identify representations by the Dynkin labels of

the superconformal primary under the maximal bosonic subalgebra:

[j; j̄]
[R1,R2,R3]
E .

Here E is the conformal weight, j, j̄ are the integer-quantized Dynkin labels for the SU(2)×
SU(2) Lorentz group, and R1,2,3 are the Dynkin labels for the SU(4) R-symmetry group.

The black hole charges used in section 4.3.1 refer to the SO(2, 4)×SO(6) isometry group

of the AdS5×S5 geometry. They are charges of SO(2) rotations in orthogonal 2-planes. The

59



orthogonal basis are related to the Dynkin basis as:

J1 =
j + j̄

2
, J2 =

j − j̄
2

,

Q1 = R2 +
R1 +R3

2
, Q2 =

R1 +R3

2
, Q3 =

R1 −R3

2
. (4.21)

The energy E is common to the two bases. We further note that [R1, R2, R3] are SU(4)

Dynkin labels, not to be confused with SO(6) Dynkin labels that are related via R1 ↔ R2.

In our conventions [1, 0, 0] is 4 (fundamental of SU(4) but spinor of SO(6)) and [0, 1, 0] is 6

(fundamental of SO(6) but antisymmetric tensor of SU(4)).

The supersymmetric black holes discussed in section 4.3.1 preserve 1
16

of the supersym-

metry, so they correspond to BPS states that are annihilated by 2 out of 32 Hermitian

supercharges. We choose Q and Q† that obey the algebra

2{Q,Q†} = E −
(
j +

3

2
R1 +R2 +

1

2
R3

)
= E − (Q1 +Q2 +Q3 + J1 + J2) ≥ 0 , (4.22)

which plays the role of (4.12) in the generic prescription. As explained in section 4.2, any

field component can be identified with a weight in a representation, and so it is an eigenstate

with respect to the operators E, QI and Ji. It is BPS if the corresponding eigenvalues

saturate (4.22).

In 4d superconformal theories, a field [j; j̄]
[R1,R2,R3]
E is a free field if at least one of j and j̄

is zero and, in addition, E = 1+ j+j̄
2

. There is one multiplet of the 4d N = 4 superconformal

algebra that contains a free field: the free vector multiplet, B1B̄1[0; 0]
[0,1,0]
1 . All that we

need is Table 3.1, where we summarize the BPS content of the free vector multiplet, i.e. all

weights in the multiplet that saturate the unitarity bound (4.22).

There are 9 field components that satisfy the BPS condition. The BPS bosons are 3 of

the 6 scalars in the theory, and 1 of the 2 gauge field components. The fermions are, in

the language of N = 1 supersymmetry, 3 chiralini and 2 gaugini. The entry below the first

double line is an equation of motion that relates the two gaugini. It should be counted as

a “negative” field that serves to cancel some gaugini operators with derivatives acting on

them. There are equations of motion for other free fields as well, but this component of the

gaugino equation of motion is the only one that is consistent with the BPS condition. The

last two entries in Table 3.1 are derivatives that may act on any of the fields, and on the

equation of motion, to produce BPS descendants. The gradient operator has 4 components

in 4 dimensions, but only 2 preserve the BPS-ness of the field. The 9 − 1 = 8 free fields
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and their derivatives generate the entire list of supersymmetric operators in the free vector

multiplet. From a bulk point of view, these are the single particle BPS states.

4.3.3 The Supersymmetric Ensemble

Given the exhaustive list of single particle BPS states generated by the supersymmetric

operators in Table 3.1, we can now define a grand canonical partition function Zsp over the

single particle states. Rather than the chemical potentials as in (4.13), we use fugacities

(p, q, x, y, z) that are related by

eω1 = p2 , eω2 = q2 , e∆1 = x2 , e∆2 = y2 , e∆3 = z2 , (4.23)

and so define the single particle BPS partition function by

Zsp ≡ TrBPS

[
p2J1q2J2x2Q1y2Q2z2Q3

]
. (4.24)

The maneuver doubling the exponents avoids fractional powers, although the subtle feature

of non-analyticity and “second sheet” [89] is not relevant to our purpose.

We read off the single particle partition function Zsp from Table 3.1. The sum over the

weights of the 8 = 9− 1 free fields gives

x2 + y2 + z2 + xyzpq

(
1

x2
+

1

y2
+

1

z2
+

1

p2
+

1

q2
− 1

)
+ p2q2 . (4.25)

Any number of the two derivatives that preserve the BPS condition can act on each of the

free fields, and on the equation of motion. Each derivative contributes a factor of p2 or q2, so

we need a geometric sum over these. We then find the single particle BPS partition function

Zsp =
x2 + y2 + z2 + xyzpq

(
1
x2 + 1

y2 + 1
z2 + 1

p2 + 1
q2 − 1

)
+ p2q2

(1− p2)(1− q2)
. (4.26)

According to our prescription discussed in section 4.2, the full partition function is equal to

the exponential of the single particle partition function (4.26):

Z ≡ exp[Zsp] . (4.27)

From this grand canonical partition function, we obtain the macroscopic charges as en-

semble averages in the standard manner. Changing variables (∆I , ωi) → (p, q, x, y, z), (4.17)
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becomes

2Q1 = x
∂

∂x
logZ , 2J1 = p

∂

∂p
logZ , (4.28)

and analogously for the charges with different indices. The charges obtained from (4.27) in

this way are

Q1 =
2x2 + xyzpq

(
− 1
x2 + 1

y2 + 1
z2 + 1

p2 + 1
q2 − 1

)
2(1− p2)(1− q2)

, (4.29)

J1 =
2p2(q2 + x2 + y2 + z2) + xyzpq(1 + p2)

(
1
x2 + 1

y2 + 1
z2 − 1

p2 + 1
q2 − 1

)
+ 4xyzpq

2(1− p2)2(1− q2)
,

and similarly for the permutations. (4.29) express the 5 average charges of the ensemble

in terms of 5 potentials. BPS states are populated throughout the five-dimensional charge

space, not just on some specific hypersurface thereof. Thus, the 5 average charges may take

generic values without any particular constraint as well, as the 5 potentials are varied.

We now define the supersymmetric ensemble as a grand canonical ensemble where the

operators that are separated in the charge space along the direction of the preserved su-

percharge are weighed equally. The preserved supercharge Q carries quantum numbers

(E, J1, J2, Q1, Q2, Q3) =
(

1
2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2

)
, so the supersymmetric ensemble corresponds to

the relation

xyz

pq
= 1 , (4.30)

between the fugacities. For the supersymmetric ensemble satisfying (4.30), there is one

relation between the five charges (4.29):

(Q1Q2Q3 + J1J2)− (Q1 +Q2 +Q3 + 1) (Q1Q2 +Q2Q3 +Q3Q1 − J1 − J2) = 0 . (4.31)

This is precisely the supersymmetric AdS5 black hole charge constraint (4.19) with

1

2
N2 = 1 ↔ π`3

5

4G5

= 1 . (4.32)

Equivalently, the statistical constraint (4.31) agrees with the macroscopic constraint (4.19) if

macroscopic charges are in units of 1
2
N2. A truly free SU(N) theory would have N2 identical

copies of the free fields. We interpret the remaining relative factor 1
2

as a reduction that is

due to interactions, but we claim no quantitative understanding of this factor. This feature
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non-withstanding, our computation establishes the functional dependence on charges of the

constraint (4.19) from the combinatorics of free fields.

The unrefined charges are defined by taking x = y = z and p = q in (4.29):

Q =
2x2 + 2x3 + xp2 − x3p2

2(1− p2)2
,

J =
3x(1 + x)2p2 + (2 + 3x− x3)p4

2(1− p2)3
. (4.33)

It follows automatically that, upon picking the supersymmetric ensemble x3 = p2, these

charges satisfy the unrefined charge constraint (4.20) with 1
2
N2 = 1.

4.4 AdS4

In this section we derive the charge constraint for the supersymmetric AdS4 black holes.

The AdS4 theory and its dual CFT3 have features that are absent in AdS5/CFT4, such as

magnetic charges and the Chern-Simons term. Such complications are not directly relevant

to our computation. We find the charge constraint of the supersymmetric, rotating and

electrically charged black holes in AdS4 from the free hypermultiplet of the 3d N = 8

superconformal algebra.

4.4.1 The Black Hole and the Charge Constraint

Asymptotically AdS4 black holes arise as solutions to the 4d gauged supergravity theories

[96, 97]. They carry the mass E and an angular momentum J for the isometry SO(2, 3) of

AdS4, and four electric charges Q1,2,3,4 for the isometry SO(8) of S7. The solution with the

four electric charges pairwise equal (Q1 = Q3 and Q2 = Q4) was found in [96], and the most

general solution with all four electric charges independent was found in [97].

The black hole is supersymmetric when the unitarity bound between the mass and the

charges

E ≥ J +
1

2
(Q1 +Q2 +Q3 +Q4) , (4.34)

is saturated. However, the saturation is possible only when the charges obey the additional
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relation [52,97]2

(Q3)2 − (Q1)(Q2)(Q3) + (Q1)2(Q4) = 0 , (4.35)

where we have used the shorthand notation

(Q1) ≡ Q1 +Q2 +Q3 +Q4 ,

(Q2) ≡ Q1Q2 +Q1Q3 +Q1Q4 +Q2Q3 +Q2Q4 +Q3Q4 +
2N3

9
,

(Q3) ≡ Q1Q2Q3 +Q1Q2Q4 +Q1Q3Q4 +Q2Q3Q4 −
4N3

9
J ,

(Q4) ≡ Q1Q2Q3Q4 +
2N3

9
J2 . (4.36)

In the formulae above, we set the AdS4 radius `4 = 1. We traded the 4d Newton’s constant

for the field theory variable N via

N
3
2 =

3

2
√

2G4

,

for future convenience, but we stress that the origin of the charge constraint (4.35) is purely

gravitational. (4.35) is the supersymmetric AdS4 black hole charge constraint.

To make the formulae more approachable and to make the connection to the literature,

we also present the charge constraint (4.35) with pairwise equal electric charges (see e.g. [52])

Q1Q2(Q1 +Q2)2 − (Q1 +Q2) · 2N3

9
J − 2N3

9
J2 = 0 . (4.37)

as well as the version with all four electric charges equal (see e.g. [98]):

4Q4 − 2Q · 2N3

9
J − 2N3

9
J2 = 0 . (4.38)

The formulae simplify greatly, but they remain quite nontrivial. The unrefined charge Q in

this formula should not be confused with the preserved supercharge.

2Although the solution with all four electric charges independent was found in [97], its charge constraint
had been correctly conjectured earlier [52], based on the solution with pairwise equal charges [96] and the
structure of the entropy function.
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4.4.2 The 3d N = 8 Free Hypermultiplet

In this subsection we present the free hypermultiplet of the 3dN = 8 superconformal algebra,

from which the AdS4 charge constraint (4.35) will be derived in the next subsection.

The 3d N = 8 superconformal algebra has maximal bosonic subalgebra so(2, 3)⊕ so(8),

matching the isometry of AdS4 × S7. Local operators in the theory are organized into

representations of this subalgebra. A super-representation of the 3d N = 8 superconformal

algebra is uniquely specified by the Dynkin labels of its superconformal primary. Following

the notation of [88], we write representations of the bosonic subalgebra as

[j]
[R1,R2,R3,R4]
E ,

where E is the conformal weight, j is the integer-quantized SO(3) Dynkin label, and

[R1, R2, R3, R4] are the SO(8) Dynkin labels so that [1, 0, 0, 0] is the vector 8.

The black hole charges used in section 4.4.1 refer to the orthogonal basis that is related

to the Dynkin basis as

J =
j

2
, (4.39)

Q1 = R3 +R2 +
R1 +R4

2
, Q2 = R2 +

R1 +R4

2
, Q3 =

R1 +R4

2
, Q4 =

R1 −R4

2
.

This relation between the orthogonal and the Dynkin bases of SO(8) differs from the more

conventional one by R1 ↔ R3. We have exploited the S3 outer automorphism of SO(8) to

match the convention (4.34) with that of [88].

A (not necessarily the highest) weight [j]
[R1,R2,R3,R4]
E is annihilated by our choice of su-

percharge Q if it saturates the unitarity bound

E ≥ 1

2
j +R1 +R2 +

1

2
R3 +

1

2
R4

= J +
1

2
(Q1 +Q2 +Q3 +Q4) , (4.40)

that every weight must satisfy. Such weights correspond to local BPS operators.

In 3d superconformal theories, a field [j]
[R1,R2,R3,R4]
E is free if j ≤ 1 and E = j+1

2
. There

are two multiplets of the 3d N = 8 superconformal algebra that contain a free field [88]. The

free hypermultiplets B1[0]
[0,0,1,0]
1
2

and B1[0]
[0,0,0,1]
1
2

are related by a Z2 subgroup of the outer

automorphism of SO(8), so we can choose B1[0]
[0,0,1,0]
1
2

without loss of generality. The rest of

this section would be reproduced with minimal relabeling had we chosen otherwise.

In Table 4.2 we summarize all weights in this free hypermultiplet that saturate the uni-
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Bosonic Rep. E j R1 R2 R3 R4 J Q1 Q2 Q3 Q4

Free fields

[0]
[0,0,1,0]
1
2

1
2

0 0 0 1 0 0 1 0 0 0
1
2

0 0 1 −1 0 0 0 1 0 0
1
2

0 1 −1 0 1 0 0 0 1 0
1
2

0 1 0 0 −1 0 0 0 0 1

[1]
[0,0,0,1]
1

1 1 0 0 0 1 1
2

1
2

1
2

1
2
−1

2

1 1 0 1 0 −1 1
2

1
2

1
2
−1

2
1
2

1 1 1 −1 1 0 1
2

1
2
−1

2
1
2

1
2

1 1 1 0 −1 0 1
2
−1

2
1
2

1
2

1
2

Derivative [2]
[0,0,0,0]
1 1 2 0 0 0 0 1 0 0 0 0

Table 4.2: Components of the BPS operators in the free hypermultiplet B1[0]
[0,0,1,0]
1
2

. The

first 8 rows are free fields, followed by one derivative that preserves BPS.

tarity bound (4.40). There are 8 free fields: 4 scalars and 4 spinors. There is no equation of

motion that is compatible with the BPS condition. The last entry is a derivative that can act

on any of the fields and so produce its BPS descendants. Note that out of 3 derivatives in 3

dimensions, only 1 preserves the BPS-ness of the field. The 8 free fields and their derivatives

are the exhaustive list of supersymmetric operators in the free hypermultiplet.

4.4.3 The Supersymmetric Ensemble

We now compute the single particle BPS partition function as a trace over the free hyper-

multiplet states given in Table 4.2, with fugacities (p, x, y, z, w) conjugate to each charge:

Zsp ≡ TrBPS

[
p2Jx2Q1y2Q2z2Q3w2Q4

]
=

x2 + y2 + z2 + w2 + pxyzw
(

1
x2 + 1

y2 + 1
z2 + 1

w2

)
1− p2

. (4.41)

It is the derivative that gives rise to the geometric series in p2. (4.41) is the single particle

partition function.

The grand canonical partition function over the full Hilbert space is given by the ordinary

exponential of the single particle partition function: Z ≡ exp[Zsp]. We then compute the
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macroscopic charges as statistical averages. They are

Q1 =
pxyzw

(
1
x2 + 1

y2 + 1
z2 + 1

w2

)
+ 2x2 − 2pxyzw

x2

2(1− p2)
, (4.42)

J =
pxyzw

(
1
x2 + 1

y2 + 1
z2 + 1

w2

)
2 (1− p2)

+
p2
(
x2 + y2 + z2 + w2 + pxyzw

(
1
x2 + 1

y2 + 1
z2 + 1

w2

))
(1− p2)2 ,

Analogous expressions for Q2, Q3, and Q4 follow by simple permutations of indices.

Finally, we define the supersymmetric ensemble as a grand canonical ensemble where

the operators that are separated in the charge space along the direction of the preserved

supercharge are weighed equally. The preserved supercharge Q carries quantum numbers

(E, J,Q1, Q2, Q3, Q4) =
(

1
2
,−1

2
, 1

2
, 1

2
, 1

2
, 1

2

)
, so the supersymmetric ensemble corresponds to

imposing the relation

xyzw

p
= 1 , (4.43)

between the fugacities.

Because of the relation (4.43) between the 5 potentials, in the supersymmetric ensemble

the 5 charges Q1,2,3,4 and J are not independent. The expressions (4.42) give the relation:

(Q3)2
9
2
− (Q1) 9

2
(Q2) 9

2
(Q3) 9

2
+ (Q1)2

9
2
(Q4) 9

2
= 0 , (4.44)

where

(Q1) 9
2
≡ Q1 +Q2 +Q3 +Q4 ,

(Q2) 9
2
≡ Q1Q2 +Q1Q3 +Q1Q4 +Q2Q3 +Q2Q4 +Q3Q4 + 1 ,

(Q3) 9
2
≡ Q1Q2Q3 +Q1Q2Q4 +Q1Q3Q4 +Q2Q3Q4 − 2J ,

(Q4) 9
2
≡ Q1Q2Q3Q4 + J2 . (4.45)

It is precisely the supersymmetric AdS4 black hole charge constraint (4.35) with the numer-

ical values

√
2

3
N

3
2 = 1 ↔ G4 =

1

2
. (4.46)

We interpret this relative scale of all charges as the effective number of free multiplets needed

to account for the constraint.

The formulae simplify significantly when we do not distinguish between all 4 electric

67



charges. First, let z = x and w = y in (4.42):

Q1 = Q3 =
x2

1− p
,

Q2 = Q4 =
y2

1− p
,

J =
p(x2 + y2)

(1− p)2
. (4.47)

The definition of the supersymmetric ensemble (4.43) simplifies to p = x2y2, and then the

charges (4.47) satisfy

Q1Q2(Q1 +Q2)2 − (Q1 +Q2)J − J2 = 0 . (4.48)

This is the pairwise unrefined version of the charge constraint (4.37) with
√

2
3
N

3
2 = 1.

To treat all 4 electric charges as identical, we further let x = y in (4.47):

Q ≡ Q1,2,3,4 =
x2

1− p
,

J =
2px2

(1− p)2
. (4.49)

These charges, with the equation p = x4 defining the supersymmetric ensemble, satisfy

4Q4 − 2QJ − J2 = 0 . (4.50)

This is the fully unrefined version of the charge constraint (4.38) with
√

2
3
N

3
2 = 1.

4.5 AdS7

In this section we derive the charge constraint for the supersymmetric, rotating and charged

black holes in AdS7. from the dual (2, 0) theory in 6d.

4.5.1 The Black Hole and the Charge Constraint

Asymptotically AdS7 black holes arise as solutions to a consistent truncation of the 11d

supergravity on S4. They carry the mass E and three angular momenta J1,2,3 for the isometry

SO(2, 6) of AdS7, and two charges Q1,2 for the isometry SO(5) ∼ Sp(4) of S4. Particular

solutions with equal angular momenta [99], those with equal charges [100] and those with
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two vanishing angular momenta and two independent charges [101, 102] were constructed

some time ago, but the solution with all angular momenta and charges independent was

found only recently in [103].

These black holes are supersymmetric when the unitarity bound between the mass and

the charges

E ≥ J1 + J2 + J3 +Q1 +Q2 , (4.51)

is saturated. However, the saturation is possible only when the charges obey the additional

relation [98,103]3

1

2
(Q2

1 +Q2
2 + 4Q1Q2) +

N3

3
(J1 + J2 + J3)−

Q1Q2(Q1 +Q2)−N3

3
(J1J2 + J2J3 + J3J1)

Q1 +Q2 − N3

3

=

√(
1

2
(Q2

1 +Q2
2 + 4Q1Q2) +

N3

3
(J1 + J2 + J3)

)2

−
(
Q2

1Q
2
2 +

2N3

3
J1J2J3

)
. (4.52)

In the formulae above, we set the AdS7 radius `7 = 1. We traded the 7d Newton’s constant

for the field theory variable N via

N3 =
3π2

16G7

,

for future convenience, but we stress that the origin of the charge constraint (4.52) is purely

gravitational. (4.52) is the supersymmetric AdS7 black hole charge constraint. We also

present an unrefined (J1 = J2 = J3 = J and Q1 = Q2 = Q, where Q should not be confused

with the preserved supercharge) version of (4.52) to make the formula more approachable:(
Q4 +

2N3

3
J3

)(
Q− N3

6

)2

= 2(3Q2 +N3J)

(
Q3 − N3

2
J2

)(
Q− N3

6

)
−
(
Q3 − N3

2
J2

)2

.

(4.53)

4.5.2 The 6d (2, 0) Free Tensor Multiplet

The charged, rotating AdS7 black holes introduced in the previous subsection are dual to

the 6d (2, 0) theory. In this subsection we present the free tensor multiplet of the (2, 0)

superconformal algebra needed to construct the single particle partition function.

The 6d (2, 0) superconformal algebra has maximal bosonic subalgebra so(2, 6) ⊕ sp(4),

3The convention for charges differ from that of [103] by Jherei = J therei and Qherei =
Qthere

i

2 .
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matching the isometry of AdS7 × S4. Local operators in the theory are organized into

representations of this subalgebra. A super-representation of the 6d (2, 0) superconformal

algebra is uniquely specified by the Dynkin labels of its superconformal primary. For easy

comparison with black hole spacetimes, we use SO(6) for the Lorentz group and SO(5) for

the R-symmetry group, instead of SU(4) for Lorentz and Sp(4) for R-symmetry used in [88].4

So we write representations of the bosonic subalgebra as

[j1, j2, j3]
[R1,R2]
E ,

where E is the conformal weight, [j1, j2, j3] are the SO(6) Dynkin labels so that [1, 0, 0] is

the vector 6, and [R1, R2] are the SO(5) Dynkin labels so that [1, 0] is the vector 5.

The black hole charges used in section 4.5.1 refer to the orthogonal basis that is related

to the Dynkin basis as

J1 = j1 +
j2 + j3

2
, J2 =

j2 + j3

2
, J3 =

−j2 + j3

2
,

Q1 = R1 +
R2

2
, Q2 =

R2

2
. (4.54)

A (not necessarily the highest) weight [j1, j2, j3]
[R1,R2]
E , is annihilated by our choice of a

supercharge Q if it saturates the unitarity bound

E ≥ j1 +
1

2
j2 +

3

2
j3 + 2R1 + 2R2

= J1 + J2 + J3 + 2Q1 + 2Q2 , (4.55)

that every weight must satisfy. Such weights correspond to local BPS operators.

In 6d superconformal theories, a field [j1, j2, j3]
[R1,R2]
E is free if j1 = 0, at least one of j2

and j3 is zero, and E = 2+ j2+j3
2

. There is only one multiplet of the 6d (2, 0) superconformal

algebra that contains a free field: the free tensor multiplet D1[0, 0, 0]
[1,0]
2 [88]. In Table 4.3 we

summarize all weights in the free tensor multiplet that saturate the unitarity bound (4.55).

In Table 4.3, we have listed 5 free fields: 2 scalars and 3 spinors. The entry below is an

equation of motion that implements a relation between two spinors, so it can be counted as

a negative field. The three last entries are derivatives that may act on any of the fields and

on the equation of motion, to produce their BPS descendants. The gradient in 6 dimensions

has 6 components but only 3 preserve the BPS-ness of the field. The 5 free fields, modulo

the equation of motion, and with possible derivatives taken into account, are the exhaustive

list of supersymmetric operators in the free tensor multiplet.

4This amounts to the interchanges j1 ↔ j2 and R1 ↔ R2.
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Bosonic Rep. E j1 j2 j3 R1 R2 J1 J2 J3 Q1 Q2

Free fields

[0, 0, 0]
[1,0]
2

2 0 0 0 1 0 0 0 0 1 0
2 0 0 0 −1 2 0 0 0 0 1

[0, 1, 0]
[0,1]
5
2

5
2

0 1 0 0 1 1
2

1
2
−1

2
1
2

1
2

5
2

1 −1 0 0 1 1
2
−1

2
1
2

1
2

1
2

5
2
−1 0 1 0 1 −1

2
1
2

1
2

1
2

1
2

Eq. of motion [0, 0, 1]
[0,1]
7
2

7
2

0 0 1 0 1 1
2

1
2

1
2

1
2

1
2

Derivatives [1, 0, 0]
[0,0]
1

1 1 0 0 0 0 1 0 0 0 0
1 −1 1 1 0 0 0 1 0 0 0
1 0 −1 1 0 0 0 0 1 0 0

Table 4.3: Components of the BPS operators in the free tensor multiplet D1[0, 0, 0]
[1,0]
2 . The

first 5 rows are free fields, followed by the equation of motion and 3 derivatives.

4.5.3 The Supersymmetric Ensemble

We now compute the single particle BPS partition function as a trace over the free tensor

multiplet states given in Table 4.3, with fugacities (p, q, r, x, y) conjugate to each charge:

Zsp ≡ TrBPS

[
p2J1q2J2r2J3x2Q1y2Q2

]
=

x2 + y2 + xypqr
(

1
p2 + 1

q2 + 1
r2 − 1

)
(1− p2)(1− q2)(1− r2)

. (4.56)

The −1 inside the parenthesis in the numerator is due to the equation of motion. The

geometric series in p2, q2, and r2 are from the derivatives. (4.56) is the single particle

partition function.

The grand canonical partition function over the full Hilbert space is given by the ordinary

exponential of the single particle partition function: Z ≡ exp[Zsp]. We use it to compute

the macroscopic charges as statistical averages:

Q1 =
2x2 + xypqr

(
1
p2 + 1

q2 + 1
r2 − 1

)
2(1− p2)(1− q2)(1− r2)

,

J1 =
2p2(x2 + y2) + xypqr(1 + p2)

(
− 1
p2 + 1

q2 + 1
r2 − 1

)
+ 4xypqr

2(1− p2)2(1− q2)(1− r2)
, (4.57)

Analogous expressions for Q2, J2 and J3 follow by permutations of indices.

Finally, we define the supersymmetric ensemble as a grand canonical ensemble where

the operators that are separated in the charge space along the direction of the preserved
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supercharge are weighed equally. The preserved supercharge Q carries quantum numbers

(E, J1, J2, J3, Q1, Q2) =
(

1
2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2

)
, so the supersymmetric ensemble corresponds

to imposing the relation

xy

pqr
= 1 , (4.58)

between the fugacities.

In the supersymmetric ensemble defined by (4.58), there is one relation between the 5

charges (4.57):

1

2
(J1 + J2 + J3) +

1

2
(Q2

1 +Q2
2 + 4Q1Q2)−

Q1Q2(Q1 +Q2)− 1
2
(J1J2 + J2J3 + J3J1)

Q1 +Q2 − 1
2

=

√(
1

2
(J1 + J2 + J3) +

1

2
(Q2

1 +Q2
2 + 4Q1Q2)

)2

− (J1J2J3 +Q2
1Q

2
2) . (4.59)

It is precisely the supersymmetric AdS7 black hole charge constraint (4.52) with the numer-

ical values

2

3
N3 = 1 ↔ π2

8G7

= 1 . (4.60)

We interpret this relative scale of all charges as the effective number of free multiplets

needed to account for the constraint. It is satisfying that the numerical factor 2
3
< 1 since

the interpolation from weak to strong coupling is expected to decrease the effective number

of degrees of freedom.

The formulae simplify significantly when we do not distinguish between the 3 angular

momenta and between the 2 electric charges. Let x = y and p = q = r in (4.57)):

Q =
2x2 + 3x2p− x2p3

2(1− p2)3
,

J =
x2p+ 4x2p2 + 4x2p3 − x2p5

2(1− p2)4
. (4.61)

The definition of the supersymmetric ensemble (4.58) simplifies to x2 = p3, and then the

charges (4.61) satisfy the unrefined charge constraint (4.53) with 2
3
N3 = 1.
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4.6 Discussions

In this chapter, we derived the supersymmetric charge constraint for the AdS4,5,7 black

holes using the simple prescription given in section 4.2. We think the computations are

illuminating, especially because they are so simple. However, we acknowledge that, in its

current form, the argument is heuristic and subject to significant concerns. These challenges

are the subject of this final section. We divide them into four issues, even though their

possible resolutions are interrelated:

1) Coupling dependence. Unlike the index, the partition function depends on the coupling

gYM. We study an ensemble of states generated by free fields and, even so, we compare

the result to black holes that correspond to strong coupling.

2) Gauge dynamics. In each case, we consider a single free field, rather than the dynamics

due to gauge degrees of freedom.

The dependence on Newton’s constant is determined by dimensional analysis in gravity,

while the dependence on the rank in the dual CFT is reproduced by assuming that it

is in its deconfined phase. However, a numerical constant of O(1) is put in by hand.

3) Classical statistics. We consider a classical gas of BPS particles. Technically, we take

the multiparticle partition function to be the simple exponential of the single particle

partition function, rather than the plethystic exponential. We did not justify why this

approximation is sufficient.

4) The supersymmetric ensemble: is defined so states that differ by the charges of the

preserved supercharge Q are given equal weight. This is motivated by the real part

of the supersymmetry constraint on complex fugacities, which are well established

in supersymmetric black hole spacetimes [47–49, 65, 85]. We did not provide a self-

contained justification of this ensemble in the CFT, except for the CFT2 argument

presented in section 4.1.

The numerical factor mentioned in 2) presents a concrete goal that involves several of

these issues. If all fields were genuinely free, the number of independent multiplets would

be N2 in AdS5/CFT4, from the dimension of the SU(N) gauge group of N = 4 SYM, and

similarly in other dimensions. This type of a näıve count of multiplets would not even take

the projection onto gauge singlets for the physical Hilbert space into account. This can

in principle be addressed by upgrading to a matrix model and, in particular, confronting

3) [34]. However, this still leaves 1), the dependence on the coupling constant: some of

the BPS states in the free theory may gain anomalous dimensions and be lifted from being
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BPS. The projection onto singlets and the dependence on the coupling both suggest that

the näıve scaling in N overcounts the microscopic states rather than undercounts. It is

therefore encouraging that all the needed O(1) adjustments are smaller than 1. Table 4.1

records the rescaling factors
√

2
3
N3/2, 1

2
N2 and 2

3
N3 for the AdS4, AdS5, and AdS7 charge

constraints, respectively. The situation is reminiscent of the famous 3/4-renormalization of

high temperature D3-brane entropy as the coupling is taken from weak to strong [104].

Our discussion of supersymmetric black holes in AdS3 is on more solid footing than in the

higher dimensions. That is because the superalgebra is much stronger, it gives a complete

basis of characters for both short and long supermultiplets of the N = 4 super-Virasoro

algebra, and so no free field assumption is needed. In this context the supersymmetric

ensemble is justified by a symmetry, and the constraint we find agrees precisely with the

black hole side, with no numerical factor put in by hand. These results offer a template for

higher dimensions that we have pursued, especially when addressing 4), but it is possible

that other lessons remain hidden in plain sight.

Our approach is fundamentally limited by us studying the partition function, rather than

the supersymmetric index. Therefore, our computation is unavoidably subject to dependence

on the coupling constant that is beyond our control. On the other hand, although the index

is an invaluable tool for circumventing the coupling dependence, it has its own structural

limitations. Because it is insensitive to many quantum states, it can at best provide a lower

bound on the black hole entropy, and so any agreement is only genuinely successful if it is

understood why cancellations are subleading. The limitations of the index are especially

pertinent in our context, the constraint on charges that is satisfied by all supersymmetric

black holes in AdS spacetimes. That is because the index is independent of the relevant

physical variable, to the best of our understanding.

For the future, the vision ultimately is that all the various contributions to the partition

function, in gravity and in CFT, whether boundary conditions correspond to an index or

not, can be disentangled. Significant strides have been taken towards this goal in the most

favorable circumstances, such as asymptotically flat spacetimes with at least 1
8

of the super-

symmetries [105–109]. For asymptotically AdS spacetimes with maximal supersymmetry,

the setting we have studied, the current research frontier is at a lower level of understand-

ing, but recent years have witnessed much progress, using a variety of techniques [110–112].

The work presented in this chapter, including the challenges discussed in this section, is a

contribution to these developments.

74



Part II

Towards Quantum Black Hole

Microstates
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Chapter 5

The Black Hole Cohomology Problem

In the second part starting from this chapter, we work on constructing the explicit expres-

sions for supersymmetric black hole microstates in the language of the dual weakly coupled

superconformal field theory.

As mentioned in the Introduction, the AdS5 black holes introduced in section 2.2 are

solutions of the supergravity theory in 5 dimensions, and therefore the dual black hole

microstates live in the strongly coupled 4-dimensional CFT with a large gauge group SU(N)

with N →∞. However, since the black hole microstates are correctly counted by a coupling

independent quantity, namely the index, there should be as many analogous states in the

weakly coupled field theory. See [113] for the connection between states in the weakly

coupled and the strongly coupled theories. In a different point of view, one may argue that

microstates in the finite-N , weakly coupled regime of the field theory are dual to black hole

microstates in the full quantum gravity theory, rather than its supergravity approximation.

With these arguments in mind, we study the supersymmetric quantum states, or local BPS

operators, in the weakly coupled, finite-N field theory.

We focus on 1
16

-BPS states of the 4d N = 4 Yang-Mills theory with SU(N) gauge

group, dual to type IIB string theory in AdS5 × S5. The BPS states can be reformulated as

classical cohomologies with respect to a nilpotent supercharge Q. Our goal in this part is to

construct such cohomologies for finite values of N = 2, 3, 4 that are not of the graviton type,

and therefore potentially represent the black hole microstates.

This part is based on [71, 72] in collaboration with Jaehyeok Choi, Sunjin Choi, Seok

Kim, Eunwoo Lee, Jehyun Lee and Jaemo Park.
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5.1 Formulation of the Problem

In this section, we reformulate the problem of listing local BPS operators in the weakly

coupled 4d N = 4 Yang-Mills theory on R4 into that of finding classical cohomologies

with respect to a supercharge Q. We also review how to systematically construct such

cohomologies, using the BPS letters as building blocks, partly repeating 3.1.2.

TheN = 4 Yang-Mills theory with SU(N) gauge group carries a continuous real marginal

coupling constant gYM, and enjoysN = 4 superconformal symmetry PSU(2, 2|4) at any value

of gYM. The theta angle will not be relevant in our discussions.

The theory includes six real scalars, eight fermions and the gauge field, all in the SU(N)

adjoint representation. To repeat (3.11), we denote them as

vector : Aµ ∼ Aαβ̇ , (µ = 1, 2, 3, 4 , α = ± , β̇ = ±̇)

scalar : Φij(= −Φji) , Φ
ij ∼ 1

2
εijklΦkl , (i, j, k, l = 1, 2, 3, 4)

fermion : Ψiα , Ψ
i

α̇ . (5.1)

α, α̇ are the doublet indices of the Lorentz group SU(2)L × SU(2)R ∼ SO(4) which rotate

the S3, and µ is the vector index. Superscripts i, j are for the fundamental representation

of the SU(4) R-symmetry, while the subscripts are for the anti-fundamental representation.

For later convenience, we arrange these fields into N = 1 supermultiplets as follows, with

manifest covariance only for the SU(3) ⊂ SU(4) part of R-symmetry,

vector multiplet : Aαβ̇ , λα = Ψ4α , λ̄α̇ = Ψ
4

α̇ , (5.2)

3 chiral multiplets : φm = Φ4m , φ̄m = Φ
4m

, ψmα = −iΨmα , ψ̄
m
α̇ = iΨ

m

α̇ ,

where m = 1, 2, 3 is the index for the SU(3) subset of the R-symmetry and labels the chiral

multiplets.

We consider the Euclidean CFT on R4, related to the Lorentzian CFT on S3 × R by

radial quantization, which regards the radius of R4 as the exponential of the Euclidean time

τ and makes a Wick rotation τ = it. Here we note the operator-state map, in which the

local operators at the origin of R4 map to the states propagating in S3 × R. We will omit

the spacetime arguments of the local operators.

The CFT is invariant under 32 supersymmetries, represented by the 16 Poincaré su-

percharges Qi
α, Qiα̇ and the 16 conformal supercharges Siα, S

i

α̇. In the radially quantized

theory, S’s are Hermitian conjugates of Q’s: Sαi = (Qi
α)†, S

iα̇
= (Qiα̇)†. Together with other

symmetry generators, these supercharges form the PSU(2, 2|4) superconformal algebra. The
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most important part of the algebra for our discussion is [35]

{Qi
α, S

β
j } = 1

2
Eδijδ

β
α +Ri

jδ
β
α + Jα

βδij , (5.3)

where E is the dilatation operator (or the Hamiltonian on S3 × R multiplied by the radius

of S3), Ri
j is the SU(4) R-charges, and Jα

β is the left SU(2) ⊂ SO(4) angular momenta.

We choose two of the supercharges to be preserved: Q ≡ Q4
− and S = Q† ≡ S−4 . These two

supercharges satisfy Q2 = 0, (Q†)2 = 0, and from (5.3) one obtains

2{Q,Q†} = E − (Q1 +Q2 +Q3 + J1 + J2) . (5.4)

This is the identical choice of supercharges as in (3.3). On the right hand side, we expressed

2R4
4 = −Q1 −Q2 −Q3 and 2J−

− = −J1 − J2 in terms of the five charges which rotate the

mutually orthogonal 2-planes on R6 ⊃ S5 and R4 ⊃ S3, respectively, all normalized to have

±1
2

values for spinors.

The 1
16

-BPS states/operators of our interest preserve these 2 Hermitian supercharges.

Thus, we are interested in gauge-invariant local operators O that are annihilated by Q:

[Q,O} = 0 , [Q†, O} = 0 . (5.5)

It follows from (5.4) that the BPS operators of our interest can be arranged to be the

eigenstates of H, RI and Ji, with respective eigenvalues E, RI and Ji that satisfy

E = Q1 +Q2 +Q3 + J1 + J2 . (5.6)

The charges QI , Ji on the right hand side are part of the non-Abelian charges and cannot

depend on the coupling gYM. However, E is in general a function of gYM, so that a BPS

state may become anomalous as gYM changes.

Let us first consider local BPS operators of the free (gYM = 0) theory. In the free theory,

the operators satisfying the BPS relation (5.6) can be easily constructed using the BPS

elementary fields. The BPS elementary fields are the members of the free vector multiplet

B1B1[0; 0]
[0,1,0]
1 that satisfy the BPS relation (5.6), and they have been summarized in Table

3.1. We give the following names to the nine free fields and two derivatives:

φm , ψm , f , λα̇ , ∂α̇ . (5.7)

Note that these are a BPS subset of (5.1), but with bars and some indices that are common

to BPS fields stripped off because non-BPS fields will not appear any more. Also note that
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m = 1, 2, 3 and α = ±. With these, we construct independent ‘letters’ for the gauge invariant

operators. Basically, acting any numbers of two derivatives ∂α̇ on a BPS field forms a letter.

In the free theory, the derivatives ∂α̇ acting on the same field commute, so all SU(2)R indices

appearing in a letter should be symmetrized. However, the equation of motion operator is

null and should not be included. The only equation of motion constructed using (5.7) is

∂α̇λ
α̇ = 0 ⇔ ∂[α̇λβ̇] = 0 . (5.8)

The equation of motion can be imposed by requiring the SU(2)R indices carried by the

derivatives and the gaugino λα̇ to be symmetrized within a letter. So for example,

∂(α̇1 · · · ∂α̇n)φ
m , ∂(α̇1 · · · ∂α̇n)ψm , ∂(α̇1 · · · ∂α̇n)f ,

∂(α̇1 · · · ∂α̇n−1λα̇n) (5.9)

are the BPS letters. Multiplying these letters and contracting all SU(N) indices that are

omitted in (5.9), one can construct general gauge-invariant BPS operators in the free theory.

Moving away from the free theory, we want to study how many of these operators remain

BPS at the 1-loop level, i.e. at the order O(g2
YM). The dilatation operator H(gYM) can be

expanded in g2
YM, H(gYM) =

∑∞
L=0 g

2L
YMH(L). At least in perturbation theory, this operator

can be diagonalized within the subspace of free BPS operators.1 Within this subspace, H(0)

is equal to
∑

I RI +
∑

i Ji. We want to find the subset of free BPS operators that satisfy

(5.6) in the next order, so they must be annihilated by H(1). Within the free BPS sector,

one finds that

{Q(gYM), Q†(gYM)} = H(gYM)−
∑
I

RI −
∑
i

Ji =
∞∑
L=1

g2L
YMH(L) . (5.10)

Q and Q† also depend on gYM. Since the free BPS fields are annihilated by Q and Q† at

the leading O(g0
YM) order, their coupling expansions start from the O(g1

YM) ‘half-loop’ order.

Therefore, the leading 1-loop Hamiltonian H(1) in (5.10) is given by the anticommutator of

Q and Q† at the half-loop order. In particular, Q( 1
2

) at O(g1
YM) is precisely the supercharge

of the classical interacting field theory. So the 1-loop BPS operators should be annihilated

by both Q and Q† at the classical half-loop order.

The local BPS operators annihilated by Q and Q† are in 1-1 map with cohomology classes

of Q. The cohomology class is defined by the set of operators O built from the BPS letters

1More precisely, for the gauge invariance in the interacting theory, the subsector is defined at gYM 6= 0
by promoting the derivatives ∂α̇ appearing in the operators to the covariant derivatives Dα̇ ≡ ∂α̇− i[A+α̇, ].

79



(5.9) that are closed under the action of Q, i.e. [Q,O} = 0, with the equivalence relation

O ∼ O + [Q,Λ}, where Λ is also an operator constructed from the BPS letters (5.9). We

can call this a cohomology because of the nilpotency Q2 = 0. These cohomology classes are

in 1-to-1 map to the BPS operators OBPS that satisfy [Q,OBPS} = 0 and [Q†, OBPS} = 0,

because the latter can be understood as harmonic forms [39]. Therefore, we shall construct

and study the representatives of the cohomologies of the classical half-loop supercharge Q,

which map to the 1-loop BPS operators. The actions of classical (half-loop) Q on the free

BPS fields are given by

Qφm = 0 , Qλα̇ = 0 , Qψm = − i
2
εmnp[φ

n, φp] ,

Qf = −i[φm, ψm] , [Q,Dα̇] = −i[λα̇} , (5.11)

where we absorbed the gYM factors on the right hand sides into the normalization of fields.

It is well known that there are fewer BPS states at the 1-loop level than in the free

theory. It has been conjectured (for instance, explicitly in [114]) that the 1-loop BPS states

remain BPS at general non-zero coupling. Some perturbative evidence of this conjecture was

discussed in [115]. We will assume this conjecture.

Let us summarize this section. Equivalently to listing 1-loop BPS local operators of the

N = 4 SYM, we shall find classical cohomology classes with respect to the supercharge Q.

The cohomology classes are defined as gauge invariant operators constructed using the BPS

letters (5.9) by multiplying them and contracting the gauge indices, that are annihilated by

Q under the rule (5.11), up to identification of operators that differ by Q-exact operators.

5.2 The BMN Sector

Combinatorial possibilities of gauge invariant operators constructed using the BPS letters

(5.9) grow rapidly with the number of letters allowed and with the gauge rank N , and

the cohomology problem quickly becomes computationally complicated. In order to reach

meaningful results with limited computing power, we will restrict to a subset of the operators,

that we call the BMN sector. This restriction has been motivated by the observation that

the smallest black hole cohomology found for N = 2 can be expressed without any gauginos

and derivatives, as we shall show in section 7.2. In this section we introduce the BMN sector,

or truncation.

The radially quantized QFT lives on S3×R. The fields are expanded in spherical harmon-

ics of the Lorentz group SO(4). It was shown in [116] that the classical N = 4 Yang-Mills

theory has a consistent truncation which keeps finite degrees of freedom, described by the
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BMN matrix model [117]. The modes kept after the truncation are given by: (1) s-wave

modes φm(t), φm(t) of the scalars, (2) lowest spinor harmonics modes ψmα(t), λα(t) (the

spinor indices are defined using the labels of Killing spinor fields [116]), (3) vector potential

1-form restricted to A = A0(t)dt + Ai(t)σi where σi with i = 1, 2, 3 are the right-invariant

1-forms on S3 in our convention. This is a consistent truncation of the nonlinear equations

of motion, and not a quantum reduction in any sense. So the full quantum BMN theory is a

priori unrelated to the 4d Yang-Mills theory. However, since our 1-loop cohomology problem

uses classical supercharge Q only, it can be truncated to the BMN model. If the conjecture

of [114] is true, the whole BPS cohomology problem would have a quantum truncation to

this model.

In general, the BMN theory and the full Yang-Mills theory behave differently in many

ways. The difference starts from the number of ground states. The Yang-Mills theory

on S3 × R has a unique vacuum, while the BMN model has many ground states labeled

semiclassically by the discrete values of Ai. In the quantum BMN theory, viewed as an

M-theory in the plane wave background, these ground states describe various M2/M5-brane

configurations with zero lightcone energies [118]. In the Yang-Mills theory, however, there

are large gauge transformations on S3 which can gauge away these ground states to Ai = 0.

So if one wishes to study the Yang-Mills theory using this matrix model, it suffices to consider

the physics around Ai = 0.

Recall that our cohomology problem is completely classical, using the classical super-

charge Q at the half-loop order. Therefore, this problem should have a truncation to the

BMN matrix model. This turns out to be the cohomology problem defined using

φm , ψm , f , (5.12)

without using any gauginos λα̇ or derivatives Dα̇. These operators close under the action

of Q: [Q, φm] = 0, {Q,ψm} = −iεmnp[φm, φn], [Q, f ] = −i[ψm, φm]. So it is possible to

restrict the cohomology problem by using operators constructed only using the BMN letters

(5.12). Note that the truncation is also applied to the operator Λ when one identifies two

operators O1 and O2 related as O2 − O1 = [Q,Λ}. This is why the gauginos λα̇ cannot be

included in this truncation. Although it is Q-closed by itself, λα̇ can be obtained by acting

Q on the covariant derivative, [Q,Dα̇] = −i[λα̇, }. So if one had tried to include λα̇ into

the truncation and construct operators like O1, O2, Λ, one may incorrectly conclude that

certain O1 and O2 are different by not including derivatives in Λ. This truncation of the

cohomology problem was known in [115,119], although the relation to the BMN truncation
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was not explicitly addressed.2 Notice also that this truncation is not kinematic, i.e. cannot

be inferred without knowing the dynamical information of the classical theory.

The BMN truncation is the SU(2)R invariant truncation. In our cohomology problem,

this means that no ingredients include the α̇ indices for SU(2)R. This is why λα̇ and Dα̇

are excluded. Similarly, in the representation theory, only a small subset of PSU(1, 2|3)

generators can be used to generate a multiplet. Among the PSU(1, 2|3) generators Qm
+ ,

Qmα̇ and P+α̇, only the three supercharges Qm
+ which belong to SU(1|3) act within BMN co-

homologies. It serves as a great combinatorial advantage that the derivatives are disallowed,

because it only allows a finite number of BPS letters (5.9) to be used for construction of the

BPS operators.

5.3 The Index over Cohomologies

Now that we have defined cohomologies in the full and the BMN sector of the 4d N = 4

Yang-Mills theory, it is useful to introduce a tool to count them. As always, it is the index.

As we have argued in section 5.1, the cohomologies with respect to the supercharge Q

are in 1-1 map with the local BPS operators, or the 1
16

-BPS states in the 1-loop level of the

field theory. That being said, an index over the cohomologies is identical to that over the
1
16

-BPS states that have been defined in section 3.1.1. We repeat the definition (3.10) while

getting rid of tildes. Also, in this section we use the letter Z to indicate the index.

Z(∆I , ωi) = Tr
[
(−1)F e∆IQI+ωiJi

]
, where e

∆1+∆2+∆3−ω1−ω2
2 = 1 . (5.13)

Note from (5.13) and from discussions in section 3.1.1 that due to the relations between five

chemical potentials, the index is only able to distinguish cohomologies in 4 directions in the

5-dimensional charge space. Specifically, the index does not distinguish two cohomologies

whose charges QI differ by n
2

and Ji by −n
2
, where n is an integer.

It is often useful to unrefine the chemical potentials to make the index a function of only

one variable. We have done this unrefinement in section 3.2, see (3.31):

e∆1 = e∆2 = e∆3 = t2 , eω1 = eω2 = t3 ,

⇒ Z(t) = Tr
[
(−1)F t2(Q1+Q2+Q3)+3(J1+J2)

]
≡ Tr

[
(−1)FxJ

]
, (5.14)

2We thank Nakwoo Kim for first pointing this out to us.
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where we defined a combination of the charges

J ≡ 2Q1 + 2Q2 + 2Q3 + 3J1 + 3J2 . (5.15)

This J can be thought of as an ‘overall’ charge, and we shall expand in t, in powers of this

overall charge to truncate results throughout this part of the dissertation.

The index as defined (5.13) can be taken over all cohomologies, but it is possible at

will to take it only over cohomologies in the BMN sector. However, in the BMN sector

all cohomologies have J = J1 = J2, so it is allowed yet redundant to keep both chemical

potentials ω1,2. Therefore, we take ω = ω1 = ω2 for the BMN index. Then, we substitute

ω = ∆1+∆2+∆3

2
to satisfy the condition in (5.13). As a result, the BMN index is a function

of 3 chemical potentials:

ZBMN(∆I) = TrBMN

[
(−1)F e∆I(QI+J)

]
, (5.16)

that only distinguishes 3 combinations of 4 charges QI+J where I = 1, 2, 3. We often denote

these three charges as

qI ≡ QI + J . (5.17)

Similarly to the full index, we can unrefine the BMN index via e∆1 = e∆2 = e∆3 = t2,

resulting in the unrefined BMN index as a function of t only:

ZBMN(t) = TrBMN

[
(−1)F t2(Q1+Q2+Q3)+6J

]
. (5.18)

Since the BMN sector is a restriction of the BPS cohomologies, the entropy of BMN

cohomologies will be smaller than the entropy of all cohomologies. Despite, the large N

BMN entropy will still exhibit the black hole like growth. Taking j (schematically) to be

the charges, the black hole like entropy growth is

S(j,N) = N2f( j
N2 ) , (5.19)

where f(x) is a generic function that does not explicitly depend on N , N � 1, j � 1 and

the ratio ε ≡ j
N2 does not scale in N . Roughly, the scaled charge parameter ε measures the

size of the black hole in the AdS unit. In the rest of this section, we show that the BMN

entropy scales as (5.19) when ε is parametrically small (but not scaling in N), i.e. for small

black holes. We expect without a proof the same to be true at general ε, see [72] for some

comments on the BMN entropy of large black holes, and [120] for a more general recent work

on the BMN matrix model.
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Recall the matrix integral expression (3.24) for the index (5.13). From this the BMN

index can be obtained via truncation:

ZBMN(∆I) =
1

N !

∫ 2π

0

N∏
a=1

dαa
2π

∏
a6=b(1− eiαab)

∏N
a,b=1

∏
I<J(1− e∆I+∆Jeiαab)∏N

a,b=1

[
(1− e∆1+∆2+∆3eiαab)

∏3
I=1(1− e∆Ieiαab)

]
× (1− e∆1+∆2+∆3)

∏3
I=1(1− e∆I )∏

I<J(1− e∆I+∆J )
, (5.20)

where the second line (inverse of the U(1) index) is multiplied to make it an SU(N) index

rather than U(N). This integral can be computed either exactly using the residue sum or in

a series expansion in t defined by (e∆1 , e∆2 , e∆3) = t2(x, y−1, x−1y).

Using (5.20), let us compute the large N entropy in the small black hole regime: j � 1,

N � 1 and ε ≡ j
N2 fixed and much smaller than 1 (but not scaling in N).3 This regime is

reached by taking all ∆I ’s to be small. The approximate large N calculation of the entropy

can be done by following all the calculations in section 5.3 of [122] with minor changes in the

setup. In particular, the calculations from (5.88) to (5.91) there can be repeated by simply

replacing all 2 − (−eγ)n − (−eγ)−n by 1 (which are the denominators of the letter indices

in the two setups) and remembering that βI there are −∆I

2
here. The resulting eigenvalue

distribution is along the interval α ∈ (−π, π) on the real axis (the gap closes in the small

black hole limit), with the distribution function

ρ(α) =
3

4π3
(π2 − α2) . (5.21)

The free energy logZ of this saddle point is given by

logZ =
3N2

π2
∆1∆2∆3 . (5.22)

(For small black holes with negative susceptibility, the grand canonical index is not well de-

fined. Whenever we address logZ, a Laplace transformation to the micro-canonical ensemble

is assumed.) The entropy at given charges qI ≡ RI + J is given by extremizing

SBMN(qI ; ∆I) = logZ −
∑
I

qI∆I , (5.23)

3The term ‘small black hole’ has at least three different meanings in the literature. It sometimes denotes
string scale black holes, for which 2-derivative gravity description breaks down near the horizon. In our
example, since ε does not scale in N , the 2-derivative gravity is reliable everywhere. Also, small black holes
sometimes mean AdS black holes with negative specific heat or susceptibility. What we call ‘small black
holes’ belong to this class, but are more specific. Our notion is precisely the same as [121,122].
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in ∆I ’s, which is given by

SBMN(qI) = 2π

√
q1q2q3

3N2
. (5.24)

This expression is valid when qI = N2εI with εI � 1. The entropy ∼ N2√ε1ε2ε3 ∝ N2

exhibits a black hole like scaling (5.19). SBMN is smaller than the full entropy S(qI) =

2π
√

2q1q2q3
N2 in the small black hole regime [122] by a factor of 1√

6
. This is natural since

the BMN truncation loses cohomologies. However, the fact that SBMN(qI) scales like S(qI)

implies that the truncation provides a good simplified model for black holes, at least for the

small black holes εI � 1.

5.4 Graviton Cohomologies

There is a well known family of cohomology classes in N = 4 SYM, known as the multi-

graviton cohomologies. These graviton-type cohomologies are well-defined and completely

classified [35], but it was shown that there are not enough of them to account for the black

hole entropy. We want to exclude them in our discussions, and instead find cohomologies

that are not of the graviton type. We use the terms non-graviton cohomology and black hole

cohomology interchangably, simply because the non-graviton cohomologies at least include

the black hole cohomologies for sure (from counting) and we are not aware of any further

classification among the non-graviton cohomologies that is applicable. We also refer to

a recent work [123] in this direction. In this section, we review the notion of graviton

cohomologies, especially at finite N , and also explain how to list and count them.

We first distinguish the multi-graviton and single-graviton cohomologies. The multi-

graviton cohomologies are the same as non-graviton cohomologies and they include the single-

graviton cohomologies.

The multi-graviton cohomologies are defined to be the polynomials of single-graviton

cohomologies. (This definition naturally yields the familiar large N cohomologies for the

supergravitons.) Single-graviton cohomologies are completely understood [35, 38, 41], as we

shall review in a moment: they are nontrivial cohomologies at arbitrary N by definition,

in the sense that no trace relations exist between single-graviton operators. Polynomials of

these single-trace cohomologies define the multi-trace cohomologies. Some polynomials may

be trivial, i.e. Q-exact at finite N . However, they are Q-closed at arbitrary N without using

any trace relations. This will be in contrast to the black hole cohomologies, which should

become Q-closed only after applying trace relations at particular N .

When N is larger than the energy, the multi-graviton operators defined above are all

nontrivial cohomologies since no trace relations can be applied to make them Q-exact. So in
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this setup, the ‘graviton cohomologies’ defined abstractly in the previous paragraph actually

map to the familiar 1
16

-BPS graviton states in AdS5 × S5. Trace number of the operator is

regarded as the particle number.

At finite N , all the multi-trace operators mentioned in the previous paragraphs are still Q-

closed. However, some of their linear combinations may be zero orQ-exact only whenN takes

a particular value smaller than their energies, due to the trace relations. So the independent

graviton cohomologies reduce at finite N . Such reductions of states are a well known finite

N effect in the gravity dual. It is called the stringy exclusion principle [124], which happens

because gravitons polarize into D-brane giant gravitons [125–127]. The reduction/exclusion

mechanism is the same for any N in QFT, making it natural to call them ‘finite N gravitons’

at general finite N .

Now we concretely explain the list of the graviton cohomologies. One starts by list-

ing the single-trace graviton cohomologies. These are completely found and collected into

supermultiplets. The relevant algebra for these multiplets is the PSU(1, 2|3) subset of the

superconformal symmetry PSU(2, 2|4) that commutes with Q,Q†. The multiplets for single-

trace graviton cohomologies are called Sn with n = 2, 3, · · · [35]. Sn is obtained by acting the

Poincaré supercharges Qm
+ , Qmα̇ and the translations P+α̇ in PSU(1, 2|3) on the following

primary operators

ui1i2···in = tr(φ(i1φi2 · · ·φin)) . (5.25)

See [35] for more details. In the notation of [88], it is also a subrepresentation of the

short representation B1B̄1[0; 0][0,n,0]. At large N , multiplying the operators in Sn’s yields

independent multi-trace cohomologies. At finite N , trace relations reduce the independent

single-trace and multi-trace operators. Following [71], we first identify the dependent single-

trace operators as follows. Using the Cayley-Hamilton identity, one can show that all single-

trace operators in Sn≥N+1 can be expressed as polynomials of operators in Sn≤N [71]. So it

suffices to use only the operators in Sn≤N to generate graviton cohomologies. The remaining

single-trace generators in Sn≤N are not independent when we multiply them. In other words,

there are further trace relations for gravitons within Sn≤N . The last trace relations are not

systematically understood, to the best of our knowledge.

To simplify the discussions, let us temporarily consider the BMN sector. The subset of

PSU(2, 2|4) that acts within the BMN sector is SU(2|4). The subset SU(1|3) ⊂ SU(2|4)

commutes with Q,Q† and generates the supermultiplets of BMN cohomologies. In each Sn,
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there is a finite number of single-trace generators in the BMN sector. They are given by

(un)i1···in = tr(φ(i1 · · ·φin))

(vn)i1···in−1
j = tr(φ(i1 · · ·φin−1)ψj)− ‘trace’

(wn)i1···in−1 = tr(φ(i1···in−1)f + 1
2
εjk(ip

∑n−1
p=1φ

i1 · · ·φip−1ψjφ
ip+1 · · ·φin−1)ψk) . (5.26)

Here, ‘trace’ denotes the terms to be subtracted to ensure that the contractions of the

upper/lower SU(3) indices are zero. They are completely determined by this condition from

the first term, but the general expression is cumbersome to write. The BMN multi-graviton

cohomologies are polynomials of un, vn, wn. These polynomials are subject to trace relations.

These trace relations hold up to Q-exact terms.4 For instance, the lowest trace relations for

N = 2 are

Rij ≡ εikmεjln(u2)kl(u2)mn = Q
[
−iεa1a2(itr(ψj)φ

a1φa2)
]
. (5.27)

More concretely, some components of these relations are

tr(X2)tr(Y 2)− [tr(XY )]2 ∼ 0 , tr(XY )tr(XZ)− tr(X2)tr(Y Z) ∼ 0 , (5.28)

where ∼ hold up to Q-exact terms. Such Q-exact combinations are zeros in cohomology. Of

course multiplying gravitons to such relations yields further relations. Trace relations cannot

be seen if one does not know that the ‘meson’ or ‘glueball’ operators un, vn, wn are made of

‘gluons’ φ, ψ, f . To enumerate graviton cohomologies without overcounting, we first consider

the Fock space made by the operators {un, vn, wn} with n = 2, · · · , N and then take care of

the trace relations to eliminate the dependent states.

It is important to find all fundamental trace relations of the polynomials of un, vn, wn,

which cannot be decomposed into linear combinations of smaller relations. Let us denote by

Ra({un, vn, wn}) the fundamental trace relations, with a being the label. Non-fundamental

trace relations are obtained by linear combinations of Ra’s,∑
a

fa({un, vn, wn})Ra({un, vn, wn}) . (5.29)

In general, (5.29) is nonzero and Q-exact. However, for some choices of fa’s, the combination

(5.29) may be exactly zero. If (5.29) exactly vanishes, this yields a ‘relation of relations.’ In

terms of the mesonic variables un, vn, wn, they are trivial expressions, meaning that various

4In principle there might be relations which hold without any Q-exact terms. In practice, with extensive
studies of the SU(2) and SU(3) graviton operators in the BMN sector, all trace relations of this sort that
we found have nontrivial Q-exact terms.
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(−1)FE ′ J ′ R′1 R′2 construction
n 0 n 0 |n〉

−(n+ 1
2
) 1

2
n− 1 0 Qmα̇|n〉

n+ 1 0 n− 2 0 Qm+̇Qn−̇|n〉
−(n+ 1) 0 n− 1 1 Qm

+ |n〉
n+ 3

2
1
2

n− 2 1 Qm
+Qnα̇|n〉

−(n+ 2) 0 n− 3 1 Qm
+Qn+̇Qp−̇|n〉

n+ 2 0 n− 1 0 Qm
+Q

n
+|n〉

−(n+ 5
2
) 1

2
n− 2 0 Qm

+Q
n
+Qpα̇|n〉

n+ 3 0 n− 3 0 Qm
+Q

n
+Qp+̇Qq−̇|n〉

Table 5.1: The state contents of the PSU(1, 2|3) supergraviton multiplet Sn. For low n’s, the
rows with negative R′1 are absent. |n〉 schematically denotes the superconformal primaries.

terms just cancel to zero. They just represent the ways in which fundamental relations Ra

can be redundant at higher orders. For example, consider the relations Rij of (5.27) in the

SU(2) gauge theory. Some relations of these relations are given by

uikRjk(u2)− 1
3
δiju

klRkl(u2) = 0 , (5.30)

in the [1, 1] representation. For instance, one can immediately see for i = 1, j = 2 that

u1iR2i = u11[u23u13 − u12u33] + u12[u33u11 − (u13)2] + u13[u12u13 − u11u23] = 0 . (5.31)

This is a trivial identity if expanded in mesons. u11R21 and −u12R22−u13R23 represent same

constraint u11(u23u13 − u12u33) = Q[· · · ], implying that Rij’s are not independent.

The graviton cohomologies in the full theory, instead of restricting to the BMN sector,

can be understood similarly. In (5.26), we have listed the finite number of single-trace

generators, which are the BPS operators in the multiplet Sn, in the BMN sector. The full

list of the single-trace generators in the multiplet Sn is shown in Table 5.1. They consist

of the superconformal primary |n〉 = tr(φ(i1 · · ·φin)) in the first row, actions of supercharges

that commute with Q on the primary as displayed in the other rows, and any number of

derivatives ∂α̇ of them. Polynomials of these single-trace generators constitute the multi-

graviton cohomologies in the full SU(N) theory.

Interestingly, trace relations described so far will be used in section 7 to construct the

ansatz for the non-graviton cohomologies. In the meantime, we shall exploit a more practical

way of enumerating the graviton cohomologies, as we explain in section 6.
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5.5 Strategies for Finding Black Hole Cohomologies

At this point, the problem has been well-defined. Our goal is to list cohomologies with respect

to Q in the N = 4 SYM with gauge group SU(N) where N is finite, that do not belong to

the graviton-type cohomologies as defined in section 5.4. For computational advantage, we

will often restrict to the BMN sector of the cohomologies, as introduced in section 5.2. In

this last section of the chapter, let us outline our strategy for solving this problem.

We summarize our strategy for solving this problem as follows:

1. Compute the non-graviton index to locate non-graviton cohomologies.

2. List non-graviton Q-closed operators in the target charge sector.

3. Find a subset of operators found in step 1 which are not Q-exact.

First, we compute the index over the non-graviton cohomologies at finite N , with or

without restriction to the BMN sector. This is done by computing the index over the

graviton cohomologies, and subtracting from the index over all cohomologies. With chemical

potentials refining the charges, one can identify the charge sectors that contain non-graviton

states. Because of the property of the index that bosons and fermions are counted with

opposite signs, one could miss pairs of non-graviton cohomologies which cancel in the index.

Due to this limitation, we give up finding all cohomologies and search only for those captured

by the index.

Exactly computing the full index is relatively easy at not too large N , especially in the

BMN sector, using the matrix integral. More difficult is to count the finite N gravitons

to be subtracted, taking into account the trace relations between finite N matrices which

produce extremely nontrivial linear dependence between the multi-graviton operators. To

make the computation of the graviton index more feasible, we use the property of the graviton

cohomologies that they are faithfully counted by substituting each elementary field with

corresponding diagonal matrix, rather than a more general traceless matrix. Using this

property, we compute the graviton index in the BMN sector of SU(2) theory analytically by

hand, and that of the full SU(2) theory manually on a computer.

For the BMN sectors of SU(3) and SU(4) theories, we boost the computation of the

graviton index using Gröbner basis. As we will explain in section 6.4, counting finite N

gravitons reduces to counting certain class of polynomials, whose generators are subject

to certain relations. In principle, these relations can be systematically studied using the

Gröbner basis. However in practice, finding Gröbner basis can be computationally very

difficult. So we use a hybrid method of the Gröbner basis (in a subsector in which this basis
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can be found easily) and a more brutal counting of independent polynomials by computer,

order by order in the charges. The results for the non-graviton indices are presented in

chapter 6.

With charge sectors where non-graviton cohomologies exist are located using the index,

we would now like to construct the non-graviton cohomologies. For the SU(2) theory, it was

possible to find the expression for the smallest non-graviton cohomology [115, 119], and for

all non-graviton cohomologies within the BMN sector [71], by trials and errors and extensive

searches. This result will be presented in section 7.2.

For the SU(3) theory, even with restriction to the BMN sector, the naive approach

has proved to be infeasible due to combinatorial complexity. Therefore we take a more

streamlined approach of steps 2 and 3 described above.

We present a class of ansatz for the Q-closed operators. In order for the final cohomology

not to be of graviton type, Q acting on the operator should vanish by trace relations. We find

a method of constructing a class of operators which become Q-closed only after imposing

trace relations. Our ansatz uses the trace relations of the graviton cohomologies that we de-

tected while computing the index. Trace relations of gravitons mean that certain polynomials

of single-graviton cohomologies are Q-exact. These relations satisfy ‘relations of relations’,

i.e. certain linear combinations of trace relations (with the coefficients being graviton coho-

mologies) are identically zero. In other words, relations of relations are linear combinations

of Q-exact terms which vanish. So they provide operators which become Q-closed thanks to

the trace relations, which validate our ansatz for the non-graviton cohomologies.

Some Q-closed operators mentioned in the previous paragraph are not Q-exact, providing

new cohomologies, while others are Q-exact. Determining whether a Q-closed operator is

Q-exact or not is very hard. We developed a numerics-assisted approach to make this step

affordable on the computer, by ordering the Grassmann variables and then inserting many

random integers to the matrix elements. As a result, we construct the smallest non-graviton

cohomology in the BMN sector of the SU(3) theory in 7.3. Furthermore, by extending the

numerics-assisted approach, we prove that the smallest non-graviton cohomology that we

construct is the only one in its charge sector, denying the possibility that the index may

have missed a boson-fermion pair of non-graviton cohomologies in the charge sector.
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Chapter 6

The Non-Graviton Index

As the first step of solving the cohomology problem, we compute the index over graviton

cohomologies and subtract from the full index to obtain the index over non-graviton coho-

mologies. It identifies the charges of some of the non-graviton cohomologies.

6.1 Methods for the Graviton Index

Recall from section 5.4 that graviton cohomologies are polynomials of single-trace graviton

cohomologies, which are elements of supermultiplets Sn≤N . They are listed in Table 5.1, and

in particular those in the BMN sector are the mesons listed in (5.26). We wish to enumerate

linearly independent operators among these, i.e. we wish to mod out by linear relations

between them. There are two main strategies that we exploit to ease this computation: the

eigenvalue counting and the Gröbner basis. We only employ the first strategy for computa-

tions in SU(2), while for SU(3) and SU(4) we employ both strategies. In this section we

explain these two strategies.

Let us explain the first idea, the eigenvalue counting. We first review how the multi-

gravitons made only of the chiral primaries un of (5.25) are enumerated. Based on rather

physical arguments, [35] proposed to count them by taking all three scalars φm to be diagonal

matrices.1 With this restriction, the problem of enumerating independent gauge-invariant

operators, which are multi-trace operators of the matrices un, reduces to enumerating inde-

pendent Weyl-invariant polynomials of the eigenvalues.

Our interest is in counting the finite N graviton cohomologies involving all the descen-

dants in Sn, not only the chiral primaries un. The descendants are obtained from un by

1The argument is often dubbed ‘quantizing the moduli space’ of the QFT. For exact quantum states, it re-
lies on the protection of the moduli space against quantum corrections. At the level of classical cohomologies,
its proof should be elementary, although we do not pursue it here.
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acting the supercharges in PSU(1, 2|3). Since the single-graviton states belong to absolutely

protected multiplets Sn, and since their multiplications trivially remain in cohomology both

for free and 1-loop calculations, we can generate the descendants by acting the supercharges

of the strictly free theory [71]. The actions of free supercharges are linear so that diagonal

φm’s transform to diagonal ψm, f , and other descendants. The covariant derivatives on the

fields also reduce to ordinary derivatives since gYM = 0. Therefore, the descendant BPS

letters can be taken to be diagonal matrices as well, for the purpose of enumerating graviton

operators. This is an especially big advantage for the SU(2) theory, where each elementary

field is represented by only one eigenvalue.

So the counting of graviton operators is reduced to the counting of certain polynomials of

the eigenvalues. We have N−1 eigenvalues for each field φm, ψm, λα̇, f and their derivatives.

As we truncate by the overall order J of operators, only a finite number of derivatives are

allowed and thus the number of variables that are needed to describe graviton operators is

also finite. In the BMN sector where there are no gauginos nor derivatives, 7(N−1) variables

are needed to describe graviton operators. Let us denote these eigenvalues collectively as

λI , not to be confused with the gauginos. Let us also denote the single-trace graviton

operators collectively as gi’s. They are the members of Table 5.1 and their descendants with

n = 2, · · · , N for the full sector, and the ‘mesonic generators’ {un, vn, wn} (5.26) for the

BMN sector. These are now regarded as polynomials gi(λI) of the eigenvalues λI . Then, we

want to count the polynomials p(gi) of the mesons gi, which can be written as polynomials

p(gi(λI)) of eigenvalues λI .

These polynomials are not all independent because certain polynomials p(gi) of gi’s may

be zero when written as polynomials p(gi(λI)) of λI . Such polynomials can be thought of

as constraints on the space of polynomials. These are remnants of the trace relations of

the N × N matrices. Had we been keeping all the N × N matrix elements, trace relation

would have been zero up to a Q-exact term. Since the action of Q yields a commutator, the

Q-exact term vanishes when the fields are diagonal. So general trace relations up to Q-exact

terms reduce to exact polynomial constraints.

For the SU(2) theory, it was possible to count the number of linearly independent polyno-

mials given a set of polynomials p(gi(λI)) of λI . However, as the number of variables grows,

a more systematic treatment became inevitable. Therefore, we further develop the strategy

for enumerating independent graviton cohomologies in the BMN sectors of the SU(3) and

SU(4) theories, as we now explain.

Counting constrained polynomials is a classic mathematical problem, with known solu-

tion. This brings us to the second strategy that we exploit: the Gröbner basis. See e.g. [128].

Let us briefly explain a flavor of its properties and how it is used to solve the enumeration
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problem.

Recall that the multi-graviton operators are given by the set of all polynomials p(gi) of

gi’s. However, this set is overcomplete and therefore not suitable for the counting purpose,

because of the constraints. That is, some of the polynomials are zero and consequently some

of the polynomials are equivalent to each other.

We want to better understand the constraints, i.e. polynomials of gi that are zero. The

constraints appear because each meson gi is not an independent variable but instead made

of the gluons λI , i.e. gi = gi(λI) where the right hand side is a polynomial of λI that

corresponds to the meson gi. All constraints are derived from the fact that

Gi(gi, λI) ≡ gi − gi(λI) = 0 , (6.1)

for each meson labeled by i. Therefore, the set of all polynomials of the mesons gi and the

eigenvalues λI that are zero (also known as the ideal) is generated by (6.1), in the sense that

any element of this set can be written as∑
i

qi(gi, λI)Gi(gi, λI) , (6.2)

where qi(gi, λ) are polynomials of gi and λI . If we restrict to elements of this ‘set of zeroes’

that only involve gi but not λI , those will be precisely the constraints that mod out the set

of all polynomials p(gi).

Although (6.1) is the most intuitive basis that generates the set of zeroes like (6.2), it

is often not the most convenient basis. The same set of zeroes can be generated by many

different choices of the basis, possibly with different numbers of generators. Gröbner basis

is one of these choices with the following special property. Let {Ga(gi, λI)} be a basis of the

set of zero polynomials of (gi, λI). Then, for any polynomial p(gi, λI), suppose one tries to

‘divide’ this polynomial by the basis {Ga(gi, λI)}. This is a process of writing the polynomial

as

p(gi, λI) =
∑
a

qa(gi, λI)Ga(gi, λI) + r(gi, λI) , (6.3)

where r(gi, λI) can no longer be ‘divided by’ {Ga(gi, λI)}, which can be well-defined by

setting an ordering scheme between variables and their monomials. Naturally, r(gi, λI) can

be thought of as the remainder of the division. In general, there can be multiple ways —

with different qa and r — to write p(gi, λI) as (6.3). The special property of the Gröbner

basis is that if {Ga(gi, λI)} were the Gröbner basis of the set of zeroes, then the remainder

r(gi, λI) is unique for each given p(gi, λI). Note that since {Ga(gi, λI)} generates the set of

93



zeroes, (6.3) implies that the polynomial p(gi, λI) is equivalent to its remainder r(gi, λI). It

follows that the set of all polynomials p(gi, λI) is identical to the set of all possible remainders

r(gi, λI) under division by the Gröbner basis. However, unlike in the set of all polynomials

p(gi, λI), there are no polynomials in the set of all remainders that are equivalent due to the

constraints, because otherwise one of them should have been divided once more to yield the

other as the remainder. Therefore, the set of remainders can be used to count the number

of independent polynomials of (gi, λI) under constraints.

There is a canonical procedure to find the Gröbner basis of the set of zeroes given one

choice of basis (6.1), known as Buchberger’s algorithm. Many computer algebra softwares

implement this algorithm or its improved versions. The Gröbner basis depends wildly on

the ordering scheme between variables and monomials, so it is important to choose a nice

ordering scheme which eases the calculations. This ordering is difficult to know in advance,

so some amount of trials and errors is involved in finding the Gröbner basis.

By setting an appropriate ordering scheme, it is possible to consistently truncate the

Gröbner basis for zero polynomials of (gi, λI), into that for zero polynomials of gi only.

Then, the set of all possible remainders r(gi) under division by the truncated Gröbner basis

form a faithful — complete but not overcomplete — set of all independent polynomials of

gi, and therefore the set of all independent graviton operators. Moreover, one can easily

construct a monomial basis for this set of remainders, from which it is straightforward to

compute both the partition function and the index over graviton operators.

Although the graviton index for the BMN sector of the SU(2) theory can be computed

analytically by hand using the first strategy of eigenvalue counting, as we will show in section

6.2, we easily reproduce this result by employing both strategies — the eigenvalue counting

and the Gröbner basis — explained so far. This is done by finding a Gröbner basis of

relations between SU(2) BMN gravitons that consists of 66 generators (after truncation),

and counting the set of all possible remainders under division by those.

Unfortunately, the computation of the Gröbner basis quickly becomes very cumbersome

if the generators of the constraints {gi−gi(λI)} are numerous and complicated. For relations

between a subset of SU(3) BMN gravitons that do not involve f , i.e. un and vn in (5.26),

we found the Gröbner basis with 1170 generators (after truncation) after several hours of

computation on a computer. For the complete set of SU(3) BMN gravitons including wn, we

were unable to find the Gröbner basis due to lack of computing resources: it takes months

at least and it is tricky to parallelize. Therefore, we have devised a hybrid method to take

maximal advantage of the Gröbner basis obtained for the non-f subsector as we now describe.

We first list the complete and independent monomial basis of graviton operators, i.e. set

of monomials of the mesons gi, that consist of un, vn but not of wn (n = 2, 3), up to the
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charge order J = 54. This can be done for any order J because the Gröbner basis for

the non-f subsector has been obtained. Then, one can construct an overcomplete set of all

graviton operators by multiplying each basis from the previous step by arbitrary numbers

of w2 and w3, again up to J = 54. Note that w2 and w3 include 3 and 6 different species of

single-graviton operators, respectively, so the size of the overcomplete set grows quickly.

It is helpful to fragment the problem by classifying the operators according to their

charges. Namely, each charge sector is specified by 4 non-negative integers 2J and qI = QI+J

(where I = 1, 2, 3). The overall order J = 2(q1 + q2 + q3), defined in (5.15), is always

even in the BMN sector. This classification is useful because all single-graviton operators

un, vn, wn and therefore all multi-graviton operators have definite charges, and operators with

different sets of charges can never have a linear relation between them. Moreover, different

charge sectors with merely permuted charges (q1, q2, q3) should contain the same number of

independent graviton operators. Therefore, we separately consider the overcomplete basis of

gravitons in each charge sector with q1 ≤ q2 ≤ q3.

In order to count linearly independent operators among the overcomplete set in any

charge sector, we rewrite each operator as a polynomial of the eigenvalues. This is done

by substituting the mesons with corresponding eigenvalue polynomials un(λI), vn(λI) and

wn(λI), which are obtained by writing the gluons in terms of their eigenvalues. For the

eigenvalues of the SU(3) traceless elementary fields, we use the convention

f =

f1 0 0

0 f2 0

0 0 −f1 − f2

 , (6.4)

and likes.

The number of independent polynomials within each charge sector is determined as the

rank of their coefficient matrix. We have used the software Singular [129] for finding

the Gröbner basis, writing each operator as an eigenvalue polynomial, and extracting the

coefficient matrix within each charge sector, and numpy for computing the rank of the matrix.

The computation of indices for the SU(3) theory have been performed up to J = 54

on personal computers. For example, the computation for the charge sector (2J, q1, q2, q3) =

(7, 9, 9, 9), which turns out to be the largest, the coefficient matrix was 31026× 20940 with

rank 3242.

For the counting of SU(4) BMN gravitons, we take a similar hybrid approach. Separation

into charge sectors works identically to the SU(3) theory. However, computation of the

Gröbner basis is even more heavy, both time-wise and memory-wise, so we were only able to

obtain the Gröbner basis for a subsector of SU(4) BMN gravitons involving un (n = 2, 3, 4),
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i.e. the chiral primaries. We first list the complete and independent monomial basis of the

chiral primaries un using the Gröbner basis, up to the order J = 30. Then we construct

an overcomplete set of all multi-graviton operators within each charge sector by multiplying

each independent basis by appropriate numbers of v2, v3, v4, w2, w3 and w4, again up to

J = 30.

We write each operator in the overcomplete basis as a polynomial of the eigenvalues. For

the traceless elementary fields in the SU(4) theory, we used the following convention for the

diagonal entries:

f =


f1 0 0 0

0 f2 0 0

0 0 f3 − f1 0

0 0 0 −f2 − f3

 , (6.5)

which slightly simplifies the polynomials compared to the more canonical convention f =

diag(f1, f2, f3, − f1 − f2 − f3).

The computation of indices for the SU(4) theory have been performed up to J = 30

on personal computers. For example, the computation for the charge sector (2J, q1, q2, q3) =

(3, 5, 5, 5), which turns out to be the largest, the coefficient matrix was 12079× 116042 with

rank 3788.

6.2 SU(2), BMN Sector

In this section, we compute the graviton index, and thus the non-graviton index, for the BMN

sector of the SU(2) theory. This is done by employing the first of two strategies explained

above, namely the eigenvalue counting. We represent each of the seven elementary fields by

a single eigenvalue, so all graviton operators can be written as polynomials of 7 variables, 3

of which are Grassmannian.

In terms of eigenvalues, BPS graviton polynomials are arbitrary products of the following

single-gravitons:

6 : x2 , y2 , z2 , xy , yz , zx ,

8 : ψ1 · (y, z) , ψ2 · (z, x) , ψ3 · (x, y) , ψ1x− ψ2y , ψ2y − ψ3z ,

3 : xf − 1
2
ψ2ψ3 , yf − 1

2
ψ3ψ1 , zf − 1

2
ψ1ψ2 . (6.6)

and the goal of this section is to count independent polynomials among them. ψ1,2,3 are

Grassmann variables while x, y, z, f are bosonic.
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In the third line of (6.6), xf, yf, zf are accompanied by two-fermion terms, but for the

purpose of counting independent graviton polynomials, these terms can be omitted, as we

prove now.

Let V be the infinite set of all possible products of 6 + 8 = 14 polynomials in the first

two lines of (6.6). Define two series of vector spaces Vk and Ṽk as

Vk = span
{
v× (xf)a(yf)b(zf)c | v ∈ V , a+ b+ c ≤ k

}
, (6.7)

Ṽk = span
{
v× (xf − 1

2
ψ2ψ3)a(yf − 1

2
ψ3ψ1)b(zf − 1

2
ψ1ψ2)c | v ∈ V , a+ b+ c ≤ k

}
.

We want to show that rank of V∞ and rank of Ṽ∞ are equal. We do this by induction.

Clearly rank(V0) = rank(Ṽ0). Now, suppose that rank(Vk−1) = rank(Ṽk−1) and let us show

that rank(Vk) = rank(Ṽk). The equivalent statement is the following:

• Consider a pair of polynomials

v =
n∑
i=1

ri(xf)ai(yf)bi(zf)ci ,

ṽ =
n∑
i=1

ri(xf − 1
2
ψ2ψ3)ai(yf − 1

2
ψ3ψ1)bi(zf − 1

2
ψ1ψ2)ci ,

where ri ∈ V0 = Ṽ0 and ai + bi + ci = k for all i so that v ∈ Vk and ṽ ∈ Ṽk.

Then v ∈ Vk−1 if and only if ṽ ∈ Ṽk−1.

The ← part is easy. If ṽ ∈ Ṽk−1, then ṽ equals a linear combination of polynomials that

are at most of degree k − 1 in xf − 1
2
ψ2ψ3 and the likes. Collecting terms with degree k in

f , the equality becomes v = 0 ∈ Vk−1.

To show the → part, first note that v ∈ Vk−1 implies v = 0, since v is homogeneous in f

with degree k. Now,

ṽ = − 1

2

n∑
i

ri

[
aiψ2ψ3(xf − 1

2
ψ2ψ3)ai−1(yf − 1

2
ψ3ψ1)bi(zf − 1

2
ψ1ψ2)ci (6.8)

+biψ3ψ1(xf − 1
2
ψ2ψ3)ai(yf − 1

2
ψ3ψ1)bi−1(zf − 1

2
ψ1ψ2)ci

+ciψ1ψ2(xf − 1
2
ψ2ψ3)ai(yf − 1

2
ψ3ψ1)bi(zf − 1

2
ψ1ψ2)ci−1

]
.

If riψjψj+1 for all i and j = 1, 2, 3 all belong to V0 = Ṽ0, it will establish ṽ = Ṽk−1. Indeed,

if ri, which is a product of 14 polynomials in the first two lines of (6.6), contains any of the

6 in the first line, this factor can combine with two ψ’s and riψjψj+1 ∈ V0. For example,

y2ψ2ψ3 = (ψ2y − ψ3z)(ψ3y). On the other hand, if ri contains two or more factors of the 8
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in the second line, after multiplication by two ψ’s it will vanish due to Grassmannian nature

of ψ, so automatically riψjψj+1 = 0 ∈ V0.

Therefore the only possibility that remains in concern is when ri is precisely one of the 8.

This leaves only a finite number of exceptions that one can explicitly work out. That is, if

v = 0 with the eight ri (they cannot mix with other ri due to homogeneity) with appropriate

numerical coefficients αi:

r1 = α1ψ1y , r2 = α2ψ1z , · · · , r8 = α8(ψ2y − ψ3z) ,

it follows that ṽ = 0 as well. This completes the proof that rank(Vk) = rank(Ṽk) given

rank(Vk−1) = rank(Ṽk−1), and by induction the number of independent products of (6.6) is

not affected by the ψψ terms in the third line.

With this rule established, we now count the number of independent graviton polynomials

in the BMN sector. This task is greatly simplified by the fact that all 6 + 8 + 3 = 17 but

only two single-graviton generators are monomials, because linear independence between

monomials is rather transparent. Our strategy will be to order the counting problem carefully

so that we can work with the monomial basis as far as possible, and treat the contribution

from the two polynomial generators later.

Since there are 3 Grassmann variables, it is convenient to classify the graviton operators

into 23 = 8 sectors according to their Grassmannian contents.

0-fermion sector

We first focus on the 0-fermion sector: graviton operators that do not contain any ψ’s. It

is clear that such operators are created by multiplying bosonic single-gravitons on the first

and third lines of (6.6). Since all of them are monomials, we may simply write down a list of

distinct monomials that can be obtained by multiplying bosonic single-gravitons, then their

linear independence is guaranteed. The first six single-gravitons can be used to create any

monomial xaybzc, where a, b, c are non-negative integers and a+ b+ c is even. Including xf ,

yf , zf , an eligible monomial may contain any number of f as long as it is supported by

at least as many x, y, or z. Therefore, multi-gravitons in the 0-fermion sector are precisely

described as

G0 = {xaybzcfd | a, b, c, d ∈ Z≥0 , a+ b+ c ≥ d , a+ b+ c+ d = 0 (mod 2)} . (6.9)

Because we can attribute to each of x, y, z and f a unit of their own quantum numbers,
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the partition function for G0 can be simply defined by the sum over monomials,

Z0(x, y, z, f) =
∑
g∈G0

g . (6.10)

It can be computed as follows. If there were no restrictions to a, b, c, d except being non-

negative integers, the generating function would be 1
(1−x)(1−y)(1−z)(1−f)

. From this, we sub-

tract the sum of monomials for which d > a+ b+ c, which is

1

(1− xf)(1− yf)(1− zf)
· f

1− f
. (6.11)

Then we project to the even part under (x, y, z, f)→ (−x,−y,−z,−f), obtaining

Z0 =

[
1

(1− x)(1− y)(1− z)(1− f)
− 1

(1− xf)(1− yf)(1− zf)
· f

1− f

]
even

=

[
1− f(xy + yz + zx− xyz) + f 2xyz

(1− x)(1− y)(1− z)(1− xf)(1− yf)(1− zf)

]
even

=
1 + χ2 + f(χ3 − χ1χ2) + f 2(χ2

3 + χ1χ3)

(1− x2)(1− y2)(1− z2)(1− xf)(1− yf)(1− zf)
. (6.12)

Abbreviations for cyclic polynomials

χ1 = x+ y + z ,

χ2 = xy + yz + zx ,

χ3 = xyz , (6.13)

will be used from now on.

1-fermion sector

Now we list (independent) operators with one fermion, either ψ1, ψ2 or ψ3. These are

obtained by multiplying any operator in 0-fermion sector G0 by a generator on the second

line of (6.6). As mentioned earlier, the last two of these may create non-monomial operators,

so let us first proceed without them.

Operators with one ψ1 can only be obtained by multiplying operators in G0 by either

yψ1 or zψ1. As a result, the list of such operators is simply the following monomials:

{xaybzcfdψ1 | a, b, c, d ∈ Z≥0 , b+c ≥ 1 , a+b+c−1 ≥ d , a+b+c+d = 1 (mod 2)} . (6.14)

Operators containing one ψ2 or one ψ3 can be listed by cyclic permutations of letters.
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Next, we ask what new operators arise when multiplying an operator in the 0-fermion

sector G0 by xψ1−yψ2. If xψ1−yψ2 multiplies xaybzcfd ∈ G0 such that (i) c ≥ 1 or (ii) a ≥ 1

and b ≥ 1, both monomials xa+1ybzcfdψ1 and xayb+1zcfdψ2 that appear in the product are

already counted in (6.14) and corresponding ψ2 sector respectively. So no new independent

operators arise. Therefore, new operators that are obtained using xψ1 − yψ2 are classified

as follows:

1. (xa≥1y0z0fd) · (xψ1 − yψ2): In this case, the second monomial xay1z0fdψ2 is already

counted in ψ2 sector corresponding to (6.14), while the first monomial is not counted

in the ψ1 sector. Therefore, these can be regarded new monomials xa+1y0z0fdψ1 in ψ1

sector.

2. (x0yb≥1z0fd) · (xψ1 − yψ2): In this case, the first monomial x1ybz0fdψ1 is already

counted in ψ1 sector (6.14), while the second monomial is not counted in the ψ2 sector.

Therefore, these can be regarded new monomials x0yb+1z0fdψ2 in ψ2 sector.

3. (1) · (xψ1 − yψ2): In this case, both monomials xψ1 and yψ2 have not been counted

in respective sectors. Therefore, this cannot be regarded as a new monomial in one of

ψ1 or ψ2 sector. Instead, this should be understood as an exceptional non-monomial

operator.

Similar arguments can be made for multiplication by yψ2 − zψ3.

As a result, the list of monomials in ψ1 sector is now extended to

Gψ1 = {xaybzcfdψ1 | a, b, c, d ∈ Z≥0 , a+ b+ c− 1 ≥ d , a+ b+ c+ d = 1 (mod 2)}\{xψ1} .
(6.15)

List of monomials Gψ2 in ψ2 sector and Gψ3 in ψ3 sector are defined by cyclicity. In addition,

there are two exceptional operators xψ1 − yψ2 and yψ2 − zψ3 that are not monomials and

do not belong to any of Gψm . So the whole set G1 of 1-fermion BPS gravitons is given by

G1 = Gψ1 ∪Gψ2 ∪Gψ3 ∪ {xψ1 − yψ2 , yψ2 − zψ3} . (6.16)

Alternatively, one can take Gψ1 to not exclude xψ1, similarly Gψ2 and Gψ3 to not exclude

yψ2 and zψ3 respectively, but instead exclude just xψ1 + yψ2 + zψ3 at the end.

The existence of such non-monomial operators forbids us from attributing individual

quantum numbers to ψ’s. Instead, they carry a negative unit of respective scalar quantum

numbers, and a positive unit of overall ψ-number:

x→ [x] , y → [y] , z → [z] , f → [f ] , ψ1 →
[ψ]

[x]
, ψ2 →

[ψ]

[y]
, ψ3 →

[ψ]

[z]
. (6.17)
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The partition function of the 1-fermion sector is given by a function of x, y, z, f and ψ. The

partition function in ψ1 sector (and of the rest of the 1-fermion sector) can be computed

analogously to the 0-fermion sector. Starting from 1
(1−x)(1−y)(1−z)(1−f)

· ψ
x
, we implement the

restriction a + b + c − 1 ≥ d by subtracting its complement, extract the odd part under

(x, y, z, f)→ (−x,−y,−z,−f), and further subtract xψ1 → ψ.

Zψ1 =

[
1

(1− x)(1− y)(1− z)(1− f)
− 1

(1− xf)(1− yf)(1− zf)
· 1

1− f

]
odd

· ψ
x
− ψ

=

[
x+ y + z − (xy + yz + zx)(1 + f) + xyz(1 + f + f 2)

(1− x)(1− y)(1− z)(1− xf)(1− yf)(1− zf)

]
odd

· ψ
x
− ψ

=
χ1 + χ3 − f(χ2 + χ2

2 − χ1χ3 − χ2
3) + f 2χ3(1 + χ2)

(1− x2)(1− y2)(1− z2)(1− xf)(1− yf)(1− zf)
· ψ
x
− ψ . (6.18)

Note that Zψ2 and Zψ3 can be computed similarly. Further including xψ1− yψ2 , yψ2− zψ3,

one obtains the following partition function for G1:

Z1 =
χ1 + χ3 − f(χ2 + χ2

2 − χ1χ3 − χ2
3) + f 2χ3(1 + χ2)

(1− x2)(1− y2)(1− z2)(1− xf)(1− yf)(1− zf)
· χ2

χ3

· ψ − ψ . (6.19)

2-fermion sector

We consider operators that contain two of three ψ’s. These are obtained by multiplying a

generator on the second line of (6.6) to an operator in G1. Focusing on the ψ1ψ2 sector, we

first note there are three ways to obtain an operator in this sector.

1. Multiply either xψ2 or zψ2 to an operator in Gψ1 (6.15). Such a set of operators are

{xaybzcfdψ1ψ2 | a, b, c, d ∈ Z≥0 , a+ c ≥ 1 , a+ b+ c− 2 ≥ d ,

a+ b+ c+ d = 0 (mod 2)} \ {x2ψ1ψ2} .(6.20)

2. Multiply either yψ1 or zψ1 to an operator in Gψ2 , analogous to (6.15):

{xaybzcfdψ1ψ2 | a, b, c, d ∈ Z≥0 , b+ c ≥ 1 , a+ b+ c− 2 ≥ d ,

a+ b+ c+ d = 0 (mod 2)} \ {y2ψ1ψ2} .(6.21)

3. Multiply xψ2, zψ2, yψ1 or zψ1 to xψ1 − yψ2. These supplement x2ψ1ψ2 and y2ψ1ψ2

excluded in (6.20) and (6.21).
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Taking the union of the three sets above, we arrive at

Gψ1ψ2 = {xaybzcfdψ1ψ2 | a, b, c, d ∈ Z≥0 , a+b+c−2 ≥ d , a+b+c+d = 0 (mod 2)} , (6.22)

and similarly for ψ2ψ3 and ψ3ψ1 sectors.

Note that we have not explicitly considered multiplying, for example, xψ3 or yψ3 to

xψ1 − yψ2. Both monomials obtained this way are already included in Gψ3ψ1 and Gψ2ψ3 ,

so they do not add any new independent operators. Furthermore, there is a possibility of

multiplying xψ1−yψ2 or yψ2− zψ3 to the operators in the 1-fermion sector. These may give

rise to

(xψ1 − yψ2)(xψ1 − yψ2) ∼ xyψ1ψ2 ,

(yψ2 − zψ3)(yψ2 − zψ3) ∼ yzψ2ψ3 ,

(xψ1 − yψ2)(yψ2 − zψ3) ∼ xyψ1ψ2 + yzψ2ψ3 + zxψ3ψ1 , (6.23)

but again, all of the monomials are already counted in respective 2-fermion sectors. There-

fore, we conclude that the 2-fermion sectors can be written completely in monomial basis,

by (6.22) and its cyclic versions:

G2 = Gψ1ψ2 ∪Gψ2ψ3 ∪Gψ3ψ1 . (6.24)

The partition function of 2-fermion sector can be computed as before. The result is:

Zψ1ψ2 =
χ2

1 − χ2 − χ2
2 + 2χ1χ3 + χ2

3 + f(χ3 − χ1χ2) + f 2χ3(χ1 + χ3)

(1− x2)(1− y2)(1− z2)(1− xf)(1− yf)(1− zf)
· ψ

2

xy
, (6.25)

for the individual sector, and

Z2 = Zψ1ψ2 + Zψ2ψ3 + Zψ3ψ1

=
χ2

1 − χ2 − χ2
2 + 2χ1χ3 + χ2

3 + f(χ3 − χ1χ2) + f 2χ3(χ1 + χ3)

(1− x2)(1− y2)(1− z2)(1− xf)(1− yf)(1− zf)
· χ1

χ3

· ψ2 , (6.26)

for the entire 2-fermion sector.

3-fermion sector

We finally investigate the 3-fermion sector, i.e. operators that contain all ψ1, ψ2 and ψ3.

One way to obtain 3-fermion operators is to multiply xψ3 or yψ3 to the ψ1ψ2-sector (6.22).
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Set of such operators is

{xaybzcfdψ1ψ2ψ3 | a, b, c, d ∈ Z≥0 , a+ b ≥ 1 , a+ b+ c−3 ≥ d , a+ b+ c+d = 1 (mod 2)} .
(6.27)

By cyclicity, there are two more sets of 3-fermion operators that are obtained by x → y →
z → x from (6.27). Their union is,

Gψ1ψ2ψ3 = {xaybzcfdψ1ψ2ψ3 | a, b, c, d ∈ Z≥0 , a+ b+ c−3 ≥ d , a+ b+ c+d = 1 (mod 2)} .
(6.28)

One can easily check that multiplying non-monomial blocks xψ1 − yψ2 or yψ2 − zψ3 to

2-fermion sector does not produce any new operator.

Partition function of the 3-fermion sector (6.27) is

Z3 =


−1 + χ2

1 − 2χ2 − χ2
2 + 2χ1χ3 + χ2

3 + f(χ1 + χ3)
− f 2(χ2 + χ2

2 − χ1χ3 − χ2
3) + f 3χ3(1 + χ2)

(1− x2)(1− y2)(1− z2)(1− xf)(1− yf)(1− zf)
+ 1

 · ψ3

fχ3

. (6.29)

The index

The complete list of BPS multi-graviton operators in BMN sector of the SU(2) theory is

given by (6.9), (6.16), (6.24) and (6.28). Corresponding partition function is Z0+Z1+Z2+Z3,

each of which is presented in (6.12), (6.19), (6.26) and (6.29). Attributing minus sign to the

fermion number ψ in the partition function and further setting ψ, f → xyz will yield the

index, where (x, y, z) = (e∆1 , e∆2 , e∆3).

To facilitate comparison with the other parts of this paper, we compute the unrefined

index of the graviton partition function. This is obtained simply by substituting

x, y, z → t2 , f → t6 , ψ → −t6 . (6.30)

in to the partition function. The result is

Zgrav =

1 + 3t4 − 8t6 − 6t10 + 10t12 + 9t14 − 9t16 + 16t18

− 18t20 − 3t22 + t24 − 3t26 + 9t28 − 2t30 + 3t32 − 3t34

(1− t4)3(1− t8)3
. (6.31)

Meanwhile, the full index over all cohomologies in the BMN sector of the SU(2) theory

can be computed via residue sum of the matrix integral (5.20). We only present the unrefined
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(e∆1 = e∆2 = e∆3 ≡ t2) version, as our main focus will be on the non-graviton index.

Z =
[

1 + 3t2 + 12t4 + 20t6 + 42t8 + 48t10 + 75t12 + 66t14 + 81t16

+55t18 + 54t20 + 27t22 + 19t24 + 6t26 + 3t28
] (1− t2)3

(1− t12)(1− t8)3
. (6.32)

The difference Z −Zgrav will be the index that counts non-graviton operators. We find a

simple analytic formula for the difference:

Z − Zgrav =

[
− e4(∆1+∆2+∆3)

1− e2(∆1+∆2+∆3)

]
·

[
3∏
I=1

(1− e∆I )

]
·

[
3∏
I=1

1

1− e∆Ie∆1+∆2+∆3

]
. (6.33)

Its unrefined version (e∆1 = e∆2 = e∆3 ≡ t2) is also informative:

Z − Zgrav = − t24

1− t12
· (1− t2)3

(1− t8)3
. (6.34)

From this formula, one finds the first black hole cohomology at j = 24. This ‘threshold’

black hole cohomology was already identified in [115,119], as we shall review and rewrite in

a more compact form in the next chapter. It may look like there are many black hole states

beyond this threshold, but most of them are rather trivial. To make this point clear, we

would like to first interpret various factors of (6.33), which will be extensively justified later.

(6.33) is a multiplication of three factors. We interpret the first factor as the ‘core’ black

hole primary operators. Constructing this part of the cohomologies will be the goal of section

7.2. The second factor comes from the SU(1|3) descendants obtained from the first factor

by acting Qm
+ . The supercharge Qm

+ carries charges QI = δI,m− 1
2

and J = 1
2
, so is weighted

by e∆I . So the second factor comes from the Fock space obtained by acting three Qm
+ ’s.

Finally, the third factor comes from multiplying certain multi-gravitons to the core black

hole cohomologies. Among the 17 graviton states listed in (6.6), only 3 types on the third

line can contribute. The remaining 14 gravitons multiplying the core black hole operators

do not appear in the index. This aspect too will be discussed further in section 7.2.

6.3 SU(2)

For the SU(2) theory but without restriction to the BMN sector, it is not possible to compute

the non-graviton index analytically, partly because the graviton operators are polynomials of

an infinite number of variables. Note that derivatives of the eigenvalues should be considered

as different variables in the algebraic point of view. Therefore, truncation by the order of
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the operator is inevitable.

Counting the graviton cohomologies with a computer using the eigenvalue setup explained

in section 6.1 , we have obtained the graviton index Zgrav for the SU(2) theory until t40 order.

Substracting from the full index, the non-graviton index for the SU(2) theory is given by

Z − Zgrav =
[
−t24 − χ(1,3)t

32 − (χ(1,3̄) + χ(3,6))t
34 − χ(2,3)t

35 + (χ(3,1) + χ(3,8))t
36

−(χ(2,3̄) + χ(4,6))t
37 + χ(5,3)t

38 + (χ(2,1) + 2χ(4,1) + χ(4,8))t
39

−(2χ(1,6) + χ(3,3̄) + χ(5,3̄) + χ(5,6))t
40
]
χD +O(t41) . (6.35)

We have organized the result into SU(2)R × SU(3) ⊂ PSU(1, 2|3) characters. We have also

factored out by χD which is given by

χ(2J ′+1,R) ≡ χ
SU(2)R
J ′ (p)χ

SU(3)
R (x, y) , (6.36)

χD ≡
(1−t2z1)(1− t2

z2
)(1− t2z2

z1
)(1− tp

z1
)(1− t

pz1
)(1−tz2p)(1− tz2

p
)(1− tz1p

z2
)(1− tz1

z2p
)

(1− t3p)(1− t3

p
)

,

where t6 = e∆1+∆2+∆3 = eω1+ω2 , z1 = e
2∆1−∆2−∆3

3 , z−1
2 = e

−∆1+2∆2−∆3
3 , p = e

ω1−ω2
2 . This

is a factor for superconformal descendants. Since the non-gravitons should appear in rep-

resentations of PSU(1, 2|3), the subset of the N = 4 superconformal group PSU(2, 2|4)

that commutes with the supercharge Q, it is economical to write only the superconformal

primaries from which the descendants automatically follow. It is very likely that all non-

graviton operators belong to the A1L̄-type supermultiplets in the notation of [88], and χD is

the factor that yields the character of the supermultiplet when multiplied to the character of

the superconformal primary. So each term in the square bracket of (6.35) should represent

a PSU(1, 2|3) supermultiplet whose superconformal primary transforms under the denoted

representations under the bosonic subalgebra.

6.4 SU(3), BMN Sector

Following the computational procedures explained earlier in this chapter, including the eigen-

value counting and the Gröbner basis, we have computed the SU(3) graviton index Zgrav

until t54 order. We write the difference Z − Zgrav with the full index Z, which is the index

over non-graviton cohomologies or the ‘black hole’ cohomologies, in the form of

Z − Zgrav = Zcore(∆I) ·
3∏
I=1

1

1− e∆Ie∆1+∆2+∆3
·
∏
I<J

(1− e∆I+∆J ) . (6.37)
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j F0 F1 F2 F3 F4 Fexc B1 B2 B3 Bexc

24 [0, 0]
26
28
30 [0, 0] [3, 0]
32 [4, 0]
34 [5, 0] [3, 1]
36 [0, 0] [6, 0] [4, 1] [3, 0]
38 [7, 0] [1, 0] [5, 1]
40 [8, 0] [5, 0] [3, 1] [6, 1]
42 [0, 0] [9, 0] [6, 0] [4, 1] [7, 1] [1, 1]
44 [10, 0] [7, 0] [5, 1] [8, 1] [5, 1]
46 [11, 0] [8, 0] [6, 1] [2, 0] [9, 1] [6, 1] [5, 0]
48 [0, 0] [12, 0] [9, 0] [7, 1] [3, 0] [10, 1] [7, 1] [4, 1]
50 [13, 0] [10, 0] [7, 0] [8, 1] [11, 1] [8, 1] [4, 0]
52 [14,0] [11,0] [8,0] [9,1] [2,0] [12, 1] [9,1] [3,1]
54 [15,0] [12,0] [9,0] [10,1] [4,1] [13, 1] [10,1] [7,1]

Table 6.1: SU(3) Dynkin labels of fermionic/bosonic black hole cohomologies after factoring
out the descendants and the conjectured graviton hairs of w2, organized into towers by
empirical reasons.

The factors that dress the index over core non-graviton cohomologies will be explained

shortly. Zcore(∆I) ≡ f(t, x, y) with e∆1 = t2x, e∆2 = t2y−1, e∆3 = t2x−1y can be expanded

as

f(t, x, y) =
54∑
J=0

∑
Rj

(−1)F (RJ )χRJ (x, y)tJ +O(t56) , (6.38)

where RJ runs over the SU(3) irreducible representations which appear at tJ order (J is

even in the BMN sector), χRJ (x, y) is its character, and F (RJ ) is its fermion number. The

representations RJ appearing in the expansion of f , together with their bosonic/fermionic

natures, are shown in Table 6.1. We have classified the representations into several groups,

i.e. what we suspect to be the fermionic towers F0, ..., F4, the bosonic towers B1, ..., B3,

and the remainders Fexc, Bexc for which we do not see particular patterns (thus named

‘exceptional’). Entries that appear in cyan may be related to the towers F1 and B1 of core

primaries by dressing of w3 gravitons. We will comment on the dressings later. Entries in

gray are not observed in the non-graviton index, but we included them because if we assume

that they appear in boson/fermion pairs, then the tower structure is reinforced.

We comment on the factors which we have taken out in (6.37). The factor
∏

I<J(1 −
e∆1+∆2) accounts for SU(1|3) descendants. For each non-graviton cohomology in Rj that
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contributes to Zcore, the entire SU(1|3) multiplet obtained by acting the three fermionic

generators Qm
+ must also be non-graviton cohomologies. Every such multiplet is a long

multiplet of the SU(1|3), so the corresponding character is simply the contribution from the

primary times the factor
∏

I<J(1 − e∆1+∆2). This fact can be argued using the embedding

supergroup PSU(2, 2|4) of the 4d N = 4 theory. For any of the three generators Qm
+ to

annihilate the SU(1|3) primary, the primary of a bigger representation of PSU(2, 2|4) that

includes the SU(1|3) multiplet must be annihilated by Q4
+ and by the SU(4)R lowering

operator that is not part of the SU(3) ⊂ SU(4)R. The only PSU(2, 2|4) representations

that satisfy this property are B1B̄1[0; 0][0,n,0], namely the graviton operators, or the identity.

For details on the relevant representation theory, we refer to [88], particularly its section

2.2.4, or to appendix B of [71].

The second factor of (6.37) was taken out for an empirical reason, with an expectation

that they come from the graviton hairs of w2’s in (5.26). Namely, we conjecture that w2

gravitons multiplying the core black hole cohomologies represented by Zcore provide nontrivial

product cohomologies. Although we have little logical justification of the last claim (except

that similar hairs are allowed in the SU(2) theory), we think that the phenomenological

evidence of this claim is compelling since various simple patterns in Table 6.1 are clear only

after factoring it out.

We refer to section 3.1 of [72] for discussions on the tower structures. Various scenarios

and suggestions are presented there, as to how and which graviton cohomologies may multiply

to some of the black hole cohomologies displayed in Table 6.1 to yield other cohomologies

also displayed in Table 6.1. The discussion on partial no-hair behavior that will be explained

in section 7.2 extends with various complications to Table 6.1.

6.5 SU(4), BMN Sector

In the SU(4) case, using similar strategies as for the SU(3) case, we computed Zgrav until

j = 30 level. The index Z − Zgrav over non-graviton cohomologies is given by

Z − Zgrav =
[
−χ[2,0](x, y)t28 − χ[3,0](x, y)t30 +O(t32)

]
·
∏
I<J

(1− e∆I+∆J ) . (6.39)

The second factor generates the Fock space of each SU(1|3) multiplet, while the first factor

in the square parenthesis represents the primary non-gravitons. One finds that the BMN

index predicts an apparent threshold of non-graviton cohomologies at J = 2(Q1 +Q2 +Q3)+

6J = 28. Again, conservatively, this is an upper bound for the threshold for two different

reasons: first because the index may miss a pair of canceling threshold cohomologies at lower
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charges, and also because the true threshold might lie outside the BMN sector (carrying

nonzero SU(2)R spin J1 − J2). Anyway, the above apparent threshold is higher than the

SU(3) threshold. So it is natural to expect that it was an exception that the SU(2) and

SU(3) thresholds were the same: the (apparent) thresholds for J are 24, 24, 28, · · · for

N = 2, 3, 4 · · · . To obtain the threshold level in terms of energy E =
∑

I QI +
∑

i Ji, one

should construct the actual cohomologies which account for the t28 term. This will not be

done in this thesis.
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Chapter 7

Constructing the Cohomologies

The non-graviton indices computed in the previous chapter guide us to focus on certain

charge sectors to construct the simplest non-graviton cohomologies. For example, the indices

for BMN sectors of the SU(2) and SU(3) theories suggest that we attempt to construct a

fermionic black hole cohomology only using the BMN letters, that is a singlet under the SU(3)

subgroup of the R-symmetry group at the order J = 24, equivalently q1 = q2 = q3 = 4.

For the SU(2) theory, such a cohomology will indeed be the threshold black hole coho-

mology, i.e. one with the lowest order. It has been shown in [115] through an extensive

search in the space of all cohomologies that in the SU(2) theory, the fermionic singlet coho-

mology at J = 24 is the first and the only one until the order J = 25. For the SU(3) theory,

the extensive study of [115] has been performed only until J = 19, so the possibility that a

black hole cohomology exists between J = 20 and J = 24 but outside of the BMN sector, or

the possibility that a boson-fermion pair of black hole cohomologies exists between the same

order, are not ruled out. However, it is unlikely that the threshold cohomology for the SU(3)

theory appears at a lower order than for the SU(2) theory, so we are somewhat confident

that the J = 24 black hole cohomology that we shall present is indeed the threshold black

hole cohomology of the SU(3) theory.

7.1 SU(2), BMN Sector

The threshold black hole cohomology for the SU(2) theory was shown to exist at the order

J = 24 through an extensive search in the space of all cohomologies [115], and its explicit

form was written down shortly after in [119]. Meanwhile, our result on the BMN non-graviton
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index of the SU(2) theory, in particular the first factor of (6.33),

− t24

1− t12
= −t24 − t36 − t48 − t60 − · · · , (7.1)

suggests that there is one fermionic black hole cohomology at every 12 value of J starting

from the threshold at J = 24. In this section, we present the explicit form (7.35) of these

core black hole cohomologies. These, together with the factors in (6.33) who interpretation

was given below the equation, account for all black hole cohomologies detected by the index

in the BMN sector of the SU(2) theory.

The index, in particular the core factor (7.1), predicts unique fermionic cohomology at

each order J = 24 + 12n (n = 0, 1, 2, · · · ), all singlets of SU(3) ⊂ SU(4). For the SU(2)

gauge group, we use the 3-dimensional vector notation for the adjoint fields. In the remaining

part of this section, φm = (X, Y, Z), ψm ,f will denote 3 dimensional vectors, and inner/outer

products will replace the trace/commutators. The Q-transformations of these 3-vectors are

given by

Qφm = 0 , Qψm = 1
2
εmnpφ

n × φp , Qf = φm × ψm . (7.2)

O0 operator at t24

This operator has charges E = 19
2

, Q1 = Q2 = Q3 = 3
2
, J1 = J2 = 5

2
. A representative of this

cohomology [119] is given by

O′0 = (X · ψ1 − Y · ψ2)(X · ψ3)(ψ2 · ψ1 × ψ1) + (Y · ψ2 − Z · ψ3)(Y · ψ1)(ψ3 · ψ2 × ψ2)

+(Z · ψ3 −X · ψ1)(Z · ψ2)(ψ1 · ψ3 × ψ3) . (7.3)

Note that the second and third terms are obtained by making cyclic permutations of (X,ψ1),

(Y, ψ2), (Z, ψ3) on the first term. The cyclic permutations are part of the SU(3) symmetry,

thus symmetries of the cohomology problem, On the other hand, odd permutations accom-

panied by the sign flips of all ψm’s and φm’s are part of SU(4) × SU(2)L symmetry which

leave Q invariant, thus being symmetries of the cohomology problem. To construct a better

representative of this cohomology, consider the following operator obtained by permuting

(X,ψ1)↔ (Y, ψ2) and flipping signs of all φm, ψm on (7.3):

O′′0 = (X · ψ1 − Y · ψ2)(Y · ψ3)(ψ1 · ψ2 × ψ2) + (Y · ψ2 − Z · ψ3)(Z · ψ1)(ψ2 · ψ3 × ψ3)

+(Z · ψ3 −X · ψ1)(X · ψ2)(ψ3 · ψ1 × ψ1) . (7.4)
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One can show

O′0 −O′′0 = −2Q[(ψ1 · ψ2)(ψ2 · ψ3)(ψ3 · ψ1)] , (7.5)

O0 ≡ −5(O′0 +O′′0) = εp1p2p3vmp1
vn p2

(ψm · ψn × ψp3) ,

where

vmn ≡ (φm · ψn)− 1
3
δmn (φp · ψp) (7.6)

are graviton cohomologies in the S2 multiplet. O0 is manifestly an SU(3) singlet. Note that

the second term of v proportional to δmn drops out when v is inserted into (7.5), because of

the symmetry of ψm · ψn × ψp3 and the antisymmetry of εp1p2p3 . So we can write

O0 = εp1p2p3(φm · ψp1)(φn · ψp2)(ψm · ψn × ψp3) . (7.7)

To show that O0 is a black hole cohomology, one should check that it is Q-closed, not

Q-exact, and not of graviton type. The first and third are trivial. O0 is not graviton-like

because it consists of seven (odd) letters: since SU(2) gravitons are made of operators in S2,

they always have an even number of letters. To check Q-closedness, first note that Q acts

only on ψm · ψn × ψp3 because vmn are Q-closed. One finds

Q(ψm ·ψn×ψp) = 3
2
ε(m|qr(φ

q×φr) · (ψ|n×ψp)) = 3ε(m|qr(φ
q ·ψ|n)(φr ·ψp)) = 3ε(m|qrv

q
|nv

r
p) .

(7.8)

At the last step, the second term of φq · ψn = vq n + δqn(· · · ) etc. does not survive after

the index contractions. Inserting it to QO0 and replacing the product of two ε’s by three

δ’s, QO0 is given by various row/column contractions of four 3 × 3 traceless matrices vmn.

Possible terms are tr(v4) and tr(v2)tr(v2), but the fermionic nature of v and the cyclicity of

trace ensure that they are all zero. So QO0 is zero because there are no nonzero terms that

can contribute.

The non-Q-exactness was originally shown after a calculation using computer [115,119].

Here we provide an analytic argument. We assume Q-exactness, narrow down the possible

Q-exact terms and then show that no combination of them works. O0 is at the O(φ2ψ5)

order. If this is Q-exact, the schematic structure should be as follows:

φ2ψ5 = Qf [fφψ
4] +Q[ψ6] . (7.9)

Qf means the part of Q acting on f . Q may also act on ψ in this term to produce a term at

O(fφ3ψ3) order, and if O0 is completely Q-exact, Qψ(fφψ4) should cancel Qf [f
2φ2ψ2]. We

shall only consider the Q-exactness of O0 within the φ2ψ5 order and find a contradiction.
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The terms on the right hand side should respect all the SU(3)× SU(2) tensor structures of

the left hand side. There might be terms violating some of these structures separately on

the first and second terms, but they should cancel by themselves and we do not care about

this part. We consider the terms which respect them and the equation should hold within

this sector separately if (7.9) is generally true. (7.7) is given by multiplying the following

scalar and fermion factors,

φ
(m
(i φ

n)
j) : (6,5 + 1) ∈ SU(3)× SU(2) (7.10)

ψp1(i|ψp2|j)(ψm · ψn × ψp3) : (3,5 + 1)⊗ (10,1) ,

where i, j = 1, 2, 3 are SU(2) ∼ SO(3) indices. The operators on the right hand side of (7.9)

should respect these structures.

We shall first write down all possible terms on the right hand side satisfying several con-

sequences of (7.10) after contracting all the indices, obtaining only a small number of terms.

Some useful requirements are: (1) SU(3) singlet condition of O0, (2) exchange symmetry of

the two SU(3) indices carried by the scalars. We first consider the term Q[ψ6]. Q acting on

any ψ produces a term of the form φm×φn, violating the condition (2). So there are no terms

of the form Q[ψ6] that we can write down. Now we try to write down all the gauge-invariant

operators at fφψ4 order which can appear inside Qf in (7.9). Since it consists of six letters,

we take three pairwise inner products. (Contractions by two ε tensors can also be written

as three inner products.) The possible terms are

(f · φm)(ψ[n1 · ψn2])(ψ[p1 · ψp2]) , (φm · ψn1)(f · ψn2)(ψ[p1 · ψp2]) . (7.11)

Qf transformation of the first term violates the condition (2) since Q[f ·φm] = (φn×ψn)·φm =

(φm×φn) ·ψn. Now imposing the condition (1) on the second term, one should contract the

SU(3) indices to form singlets. One finds

(8⊕ 1)⊗ 3⊗ 3→ 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 8⊕ 8⊕ 1⊕ 1

so there are two possible singlets. They are

(φm · ψm)εnpq(f · ψn)(ψp · ψq) , (φm · ψn)(f · ψm)εnpq(ψp · ψq) . (7.12)

Acting Qf on them and separating the φ2 and ψ5 parts as we did in (7.10), we obtain a part

consistent with (7.10) and the rest. Focusing on the former part, they are given by φ
(m
(i φ

r)
j)
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times

ψ
(i
(m(ψr) × ψn)j)εnpq(ψp · ψq) , ψ(i

n (ψr × ψm)j)εnpq(ψp · ψq) (7.13)

respectively. If O0 is Q-exact, a suitable linear combination of these two terms should yield

O0. The agreement should happen for every coefficient of φ
(m
(i φ

r)
j) separately, demanding

εpqrψ(i
p ψ

j)
q (ψm ·ψn×ψr) = Aψ

(i
(m(ψn)×ψr)j)εpqr(ψp ·ψq)+Bψ(i

r (ψn×ψm)j)εpqr(ψp ·ψq) (7.14)

for suitable A,B. Inserting two different sets of m, r, i, j, we found that there are no solutions

for A and B. This proves that O0 is not Q-exact.

One can also easily show the non-Q-exactness by studying the SU(1|3) descendants

obtained by acting Qa
+Q

b
+. For instance, one obtains

Q2
+Q

1
+O
′
0 = (7.15)

−(Y · f + ψ3 · ψ1)2ψ3 · (ψ2 × ψ2)− (X · f + ψ2 · ψ3)(Z · f + ψ1 · ψ2)ψ1 · (ψ3 × ψ3)

−(X · f + ψ2 · ψ3)(X · ψ3)f · (ψ1 × ψ1) + 2(Y · ψ2 − Z · ψ3)(Y · f + ψ3 · ψ1)ψ3 · (ψ2 × f)

−2(Y · f + ψ3 · ψ1)(X · ψ3)ψ2 · (ψ1 × f)− (Z · ψ3 −X · ψ1)(Z · f + ψ1 · ψ2)f · (ψ3 × ψ3)

which contains uncanceled φ0ψ7 terms on the second line. Since acting Q always creates one

or more φ factors, these terms cannot be Q-exact. Since a descendant of O′0 is not Q-exact,

O0 cannot be Q-exact either, providing a simpler proof. Or alternatively, one can prove

non-Q-exactness by acting three Q+’s to O′0 and check that it contains nonzero term at fψ6

order,

Q1
+Q

2
+Q

3
+O
′
0 = Q1

+Q
2
+Q

3
+O
′′
0 = (7.16)

(X · f + ψ2 · ψ3)2f · (ψ1 × ψ1) + 2(X · f + ψ2 · ψ3)(Y · f + ψ3 · ψ1)f · (ψ1 × ψ2)

+(1, 2, 3→ 2, 3, 1) + (1, 2, 3→ 3, 1, 2) = GmGnf · (ψm × ψn)

where Gm ≡ φm · f + 1
2
εmnpψn · ψp. Proof of this sort will sometimes be useful later. For

instance, one can show that (Z · f + ψ1 · ψ2)O′0 is not Q-exact, since its descendant

Q2
+Q

1
+ [(Z · f + ψ1 · ψ2)O′0] = (Z · f + ψ1 · ψ2)Q2

+Q
1
+O
′
0 (7.17)

contains a term at φ0ψ9 order.

O1 operator at t36

Now we construct the cohomology which accounts for the −t36 term of (7.1). It should be

fermionic, has charge J = 2(Q1 + Q2 + Q3) + 6J = 36, and should be an SU(2)R × SU(3)
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singlet because we expect unique cohomology (unless there is a cancellation at this order

which obscures the true degeneracy). We call this operator O1. From the last condition, we

set three QI equal and two Ji equal. Still, we do not know the individual Q and J so we

should make a guess. Our first guess was to add extra ∆J = 2 to the charges Q = 3
2
, J = 5

2

of O0. We listed all operators in this sector and found the cohomology by computer. Then

we made several trials until we found the following SU(3)-invariant representative:

O1 = (f · f)εc1c2c3(φa · ψc1)(φb · ψc2)(ψa · ψb × ψc3) (7.18)

+εb1b2b3εc1c2c3(f · ψb1)(φa · ψc1)(ψb2 · ψc2)(ψa · ψb3 × ψc3)

− 1
72
εa1a2a3εb1b2b3εc1c2c3(ψa1 · ψb1 × ψc1)(ψa2 · ψb2 × ψc2)(ψa3 · ψb3 × ψc3) .

It is not graviton type since it is made of nine (odd) letters. One can also easily check that

it is not Q-exact. This is because the last term contains no scalars. Since Q transformations

(7.2) always yield scalars, the last term cannot be made Q-exact. So O1 is not Q-exact.

Now we discuss the Q-closedness. O1 takes the form of

O1 = (f · f)O0 + f · ξ + χ , (7.19)

where the SU(2) triplet ~ξ and the singlet χ are given by

~ξ = εb1b2b3εc1c2c3 ~ψb1(φa · ψc1)(ψb2 · ψc2)(ψa · ψb3 × ψc3)

χ = − 1
72
εa1a2a3εb1b2b3εc1c2c3(ψa1 · ψb1 × ψc1)(ψa2 · ψb2 × ψc2)(ψa3 · ψb3 × ψc3)

= −120ψ1
1ψ

2
1ψ

3
1ψ

1
2ψ

2
2ψ

3
2ψ

1
3ψ

2
3ψ

3
3 . (7.20)

Q-closedness is equivalent to the following equations:

2(~φm × ~ψm)O0 +Qψ
~ξ = 0 , ~φm · ( ~ψm × ~ξ) +Qψχ = 0 . (7.21)

Note that ~ξ is related to O0 by

~ξ = −1
2
εmnp ~ψmψn · ∂

∂φp
O0 . (7.22)

So the first equation can be written as the following equations of O0:

4(~φm × ~ψm)O0 (7.23)

=
[
(~φa × ~φb)ψa · ∂

∂φb
+ ~ψa(φ

a × φb) · ∂
∂φb
− ~ψa(ψb × φa) · ∂

∂ψb
+ ~ψb(ψa × φa) · ∂

∂ψb

]
O0 .
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This is a property ofO0. The second/third terms cancel due to
(
φb × ∂

∂φb
+ ψb × ∂

∂ψb

)
O0 = 0,

which holds because it is the SU(2) gauge transformation on a gauge invariant operator O0.

One can further simplify (7.23) using various properties of O0. Obvious ones are

φm · ∂
∂φm

O0 = nBO0 , ψm · ∂
∂ψm

O0 = nFO0 (nB, nF) = (2, 5)

~ε b
a

[
φa · ∂

∂φb
− ψb · ∂

∂ψa

]
O0 = 0 (~ε a

a = 0) . (7.24)

The first two equations count the numbers of bosonic/fermionic fields in O0. The last

equation is the SU(3) invariance of O0, which holds for any ε. Equivalently, one obtains[
φa · ∂

∂φb
− ψb · ∂

∂ψa

]
O0 = 1

3
(nB − nF)δabO0 . (7.25)

Finally, note that δij contracts the SU(2) gauge triplet indices only between boson-fermion

pairs in O0, while fermion indices are contracted only with εijk. This effectively promotes

SU(2) ∼ SO(3) to SL(3) within O0, where bosons/fermions transform in the fundamental

and anti-fundamental representations, respectively. This leads to the following property:[
φai · ∂

∂φaj
− ψja · ∂

∂ψia

]
O0 = 1

3
(nB − nF)δjiO0 . (7.26)

Using these properties, (7.23) can be written as

(~ψa × ~φb)(φa · ∂
∂φb

)O0 = (4− nF+2nB

3
)(~φm × ~ψm)O0 = (~φm × ~ψm)O0 . (7.27)

Both (7.27) and the second equation of (7.21) can be easily checked on a computer.

We have no extra analytic insights on why (7.27) this holds, except that using complicated

representation analysis of SU(2) × SU(3) should provide the analytic proof. (We tried

to simplify the equation for O0 as much as possible since they might provide insights on

the generalization to higher N ’s in the future.) On the other hand, one can easily prove the

second equation of (7.21). First note that ψm×ξ is an SU(2) vector involving 8 ψ’s. There are

nine independent operators involving eight ψ’s, depending on which of the 9 components is

lacking. So it is proportional to ∂
∂ψim

χ. Since it has to form a gauge-invariant by contracting

with two scalars φmi , φaj , one should be able to write δ
δψim

χ as an object with two SU(3)

antifundamental and two SU(2) triplet indices by multiplying invariant tensors. The only

possible term is εmanεijk
∂
∂ψkn

χ. One can compute the proportionality constant by computing

a term, e.g. at m = 1, a = 2, i = 1, j = 2, finding −1
2
. So one obtains

φm · (ψm × ξ) = −1
2
φmi φ

a
j εmanεijk

∂χ
∂ψkn

= −1
2
εman(φm × φa) · ∂χ

∂ψn
= −Qψχ , (7.28)
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proving the second equation of (7.21).

One may wonder if O1 is a descendant of O0, or a lower black hole operator times

graviton operators appearing in (6.33). Since O1 is at t36 order, the only possible way of

getting operators at this order from O0 is (Qm
+Q

n
+O0)(φp · f + 1

2
εpqrψq ·ψr). However, during

our numerical construction of the cohomologies at this order, we separately constructed the

last operator which is not cohomologous to O1. See also the end of this subsection for an

analytic proof (applicable to all On’s with n ≥ 1).

On operator at t24+12n (n ≥ 2)

We can use the structures of the operators O0 and O1 to analytically construct an infinite

tower of cohomologies On accounting for (7.1). Consider

On ≡ (f · f)nO0 + n(f · f)n−1f · ξ + 2n2+n
3

(f · f)n−1χ (7.29)

for n ≥ 2. At n = 1, this is just O1 that we discussed above. We will now show that these

are new black hole like cohomologies at t24+12n order. It is again easy to show that these are

not graviton type because they are made of odd letters. It is not Q-exact because the last

term does not contain scalars.

Now we derive the Q-closedness. Its Q-action is given by

QOn = (f · f)n−1
[
~f ·
(

2n(~φm × ~ψm)O0 + nQψ
~ξ
)

+ n(~φm × ~ψm) · ~ξ + 2n2+n
3

Qψχ
]

(7.30)

+2(n2 − n)(f · f)n−2 ~f · (~φm × ~ψm)(f · ξ) + 2n(n−1)(2n+1)
3

(f · f)n−2 ~f · (~φm × ~ψm)χ .

The first two terms on the first line cancel due to the first equation of (7.21). The last term

on the second line is zero because it includes 10 fermions. Inserting the second equation of

(7.21) to the last term on the first line, one obtains

QOn = 2(n2−n)
3

(f · f)n−2 [−(f · f)(φm × ψm) · ξ + 3(f × φm) · ψm(f · ξ)] . (7.31)

The second term contains 8 fermions, where the fermions carry ma indices for SU(3) and

three SU(2) triplet indices to be contracted with (f × φm)k, fi, φ
a
j . From the contraction

structures of ξ, one finds that b1, c1 are antisymmetric so the corresponding i, j indices should

be symmetric. The only possible 8-fermion terms satisfying these conditions are

εmanδij
∂

∂ψkn
χ , εmanδk(i

∂

∂ψ
j)
n

χ . (7.32)

Explicitly computing two components in the second term of (7.31), one finds that the linear

116



combination is

εman

[
δij

∂
∂ψkn
− δk(i

∂

∂ψ
j)
n

]
χ . (7.33)

Contracting this with fi, φ
a
j , (f × φm)k, one obtains

εman

[
(f · φa)(f × φm) · ∂

∂ψn
− 1

2
[(f × φm) · φa]f · ∂

∂ψn

]
χ (7.34)

= 1
2
εman

[
[f × (f × (φm × φa))] · ∂

∂ψn
− [(f × φm) · φa]f · ∂

∂ψn

]
χ

= −1
2
εman(f · f)(φm × φa) · ∂

∂ψn
χ = −(f · f)Qψχ = (f · f)(φm × ψm) · ξ .

So the second term of (7.31) cancels the first term, ensuring that On is Q-closed. So we have

shown that the operator

On = (f · f)nεc1c2c3(φa · ψc1)(φb · ψc2)(ψa · ψb × ψc3) (7.35)

+n(f · f)n−1εb1b2b3εc1c2c3(f · ψb1)(φa · ψc1)(ψb2 · ψc2)(ψa · ψb3 × ψc3)

−( n
72

+ n2−n
108

)(f · f)n−1εa1a2a3εb1b2b3εc1c2c3

·(ψa1 · ψb1 × ψc1)(ψa2 · ψb2 × ψc2)(ψa3 · ψb3 × ψc3)

at t24+12n order is a black hole cohomology.

One may wonder if these are primaries captured in the first factor of (6.33), or if they

are related to other On′ with n′ < n by acting some Qm
+ ’s and/or gravitons on the third

factor. One can show that the latter possibilities are all impossible. Suppose On is obtained

by acting acting p Q’s on On′ and multiplying q gravitons. Then p, q should satisfy

2p+ 8q = 12(n− n′) , p = 0, 1, 2, 3 , q ≥ 0 . (7.36)

Possible solutions are

(p, q, n− n′) = (2, 1, 1) , (0, 3, 2) , (2, 4, 3) , (0, 6, 4) , (2, 7, 5) , (0, 9, 6) , · · · . (7.37)

The cases with even n−n′ and p = 0 yield operators at t24+12n order obtained by multiplying

On′ and 3
2
(n−n′) graviton operators of the form φm · f + 1

2
εmnpψnψp. However, these cannot

be cohomologous to On because they do not have a term at O(f 2n−2φ0ψ9) order that On has,

which cannot be changed by adding Q-exact terms. Now we consider the cases with odd n−n′

and p = 2, q = 3
2
(n−n′)− 1

2
, and again consider whether the operator (Qa

+Q
b
+On′)(φ·f+ψ·ψ)q

has a term at f 2n−2φ0ψ9 order. Let us first study how the actions of Qa
+ and Qb

+ on On′ can

produce a term with no scalars. Qa
+ either act as φ → ψ or ψ → f , so there are following
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possibilities:

f 2n′φ2ψ5 → f 2n′ψ7 , f 2n′−1φψ7 → f 2n′ψ7 , f 2n′−2ψ9 → f 2n′ψ7 . (7.38)

In all three cases, we multiply gravitons of the form (φ · f + ψ · ψ)q and see whether there

can be a term at f 2n−2φ0ψ9 order. This is possible only if n = n′ + 1, p = 2, q = 1. That is,

the only possible relations between different On’s are

On
?∼ εabc(Q

a
+Q

b
+On−1)(φc · f + 1

2
εcdeψd · ψe) , (7.39)

where ∼ means up to a multiplicative factor and addition of Q-exact terms. We act three

Qa
+’s on (7.39) and show that this equation cannot hold. Acting Q1

+Q
2
+Q

3
+ on the right hand

side yields zero, so if this equation is true, Q1
+Q

2
+Q

3
+On should be Q-exact. However, this

cannot be the case since it contains a term at f 2n+1ψ6 order, which does not contain scalars

so cannot be Q-exact. More concretely, one starts from

On = (f · f)nO0 +
20n

3
(f · f)n−1

∑
cyclic

(f · ψ3)(ψ3 · ψ2)(X · ψ2)(ψ1 · ψ1 × ψ1)

−10

3
(
n

6
+
n2 − n

9
)(f · f)n−1(ψ1 · ψ1 × ψ1)(ψ2 · ψ2 × ψ2)(ψ3 · ψ3 × ψ3) (7.40)

where
∑

cyclic means summation over the cyclic permutations of (X,ψ1), (Y, ψ2), (Z, ψ3).

Acting Q1
+Q

2
+Q

3
+, one obtains the following terms without scalars,

Q+
1 Q

+
2 Q

+
3 O0 (7.41)

= −10(X · f + ψ2 · ψ3)2f · (ψ1 × ψ1)

−20(X · f + ψ2 · ψ3)(Y · f + ψ3 · ψ1)f · (ψ1 × ψ2) + cyclic,

→ −20(ψ2 · ψ3)2(f · ψ1 × ψ1) + cyclic ,

Q+
1 Q

+
2 Q

+
3 (f · ψ3)(ψ3 · ψ2)(X · ψ2)(ψ1 · ψ1 × ψ1) + cyclic

→ −3(f · f)(ψ2 · ψ3)2(f · ψ1 × ψ1) + 6(f · ψ2)(f · ψ3)(ψ2 · ψ3)(f · ψ1 × ψ1) + cyclic,

Q+
1 Q

+
2 Q

+
3 (ψ1 · ψ1 × ψ1)(ψ2 · ψ2 × ψ2)(ψ3 · ψ3 × ψ3)

= −27(f · ψ1 × ψ1)(f · ψ2 × ψ2)(f · ψ3 × ψ3)

= 18((f · f)(ψ2 · ψ3)2(f · ψ1 × ψ1))− 2(f · ψ2)(f · ψ3)(ψ2 · ψ3)(f · ψ1 × ψ1) + cyclic) .

These terms at f 2n+1φ0ψ6 order do not cancel, implying that Q1
+Q

2
+Q

3
+O0 cannot be Q-exact.

So at least among the possibilities visible in the index (6.33), we have checked that different

On’s are not related in trivial manners.
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Note also that the product of two On’s vanishes, OmOn = 0. This is because each

operator includes 5 or more ψ’s, so the product involves 10 or more ψ’s which vanishes by

Fermi statistics.

7.2 SU(2) and Partial No-Hair Behavior

The non-graviton index (6.35) for the full SU(2) theory shows that there are many more black

hole cohomologies outside of the BMN sector. We are interested in the BPS cohomologies

contained in the square bracket of (6.35), because we believe that the χD factor addresses

the PSU(1, 2|3) descendants of those in the square bracket which are not really new. In

this section, we shall see that many of the cohomologies in the square bracket are actually

the threshold cohomology at J = 24 multiplied by some graviton operators. Furthermore,

we show that multiplication by many other graviton operators lead to Q-exact operators

and therefore do not create a new cohomology. We refer to this phenomenon as the partial

no-hair behavior.

In principle, constructing all the cohomologies order by order as done in [115] will con-

firm that the χD factor indeed stands for the PSU(1, 2|3) descendants, but we shall not

comprehensively do this job in this thesis. Rather, we shall proceed by considering possible

superconformal representation structures of the 1
16

-BPS states compatible with this index,

finding many illuminating structures. As emphasized, we may miss some BPS states in case

their multiplets completely cancel in the index.

The index can be written as a sum over the short N = 4 representations. Equivalently,

it can be written as a sum over 1
16

-BPS multiplets of PSU(1, 2|3) ⊂ PSU(2, 2|4). The last

multiplets are embedded in the short representations of PSU(2, 2|4) in canonical manners:

see appendix B of [71]. Knowing this representation sum is equivalent to knowing the primary

contents. We will study this expansion order by order in t. As already mentioned in section

7.1, there are two classes of black hole cohomologies: those which can be written as products

of other black hole cohomologies and gravitons which we call ‘hairy’ and the rest which we

call ‘core.’

We start by studying the black hole cohomologies in the BMN sector that we identified

in section 7.1. Among these, two of them O0, O1 appear within the t40 order. We can show

that all On’s are core black hole primaries of the 1
16

-BPS multiplets. The coreness of On is

already shown in section 7.1, at least within the states visible in the index (6.33), since it

suffices to show this within the BMN sector. We only need to show that they are 1
16

-BPS

primaries in their full PSU(1, 2|3) representations. O0 is clearly a 1
16

-BPS primary since it

is the lowest black hole cohomology. Since j ≡ J1 + J2 = 5 is too large, O0 can only belong
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to the N = 4 multiplet A1L[4; 0]
[2,0,0]
9 . The primary O0 of the 1

16
-BPS multiplet is obtained

by acting Q′ ≡ Q4
+ on a primary of this N = 4 multiplet. The index over this multiplet is

χ24 ≡ −t24χD(t, x, y, p) , (7.42)

where χD is defined in (6.36). So the first term −t24 in the square bracket of (6.35) corre-

sponds to the contribution of this multiplet.

Next we consider other On’s. We can prove that they are also primaries by showing that

acting any of the nine Q’s in PSU(1, 2|3) yields nontrivial and independent cohomologies.

(This is because On does not contain derivatives and cannot be a conformal descendant.)

We have shown in section 7.1 that the action of any Qm
+ on On is nontrivial and independent

because acting all three of them yields a nontrivial cohomology. One can also show that

Qmα̇On are all nontrivial and independent. It suffices to show that the six Qmα̇’s acting on

Q1
+Q

2
+Q

3
+On are independent. This is easily shown by studying the terms obtained by acting

Qmα̇ on the O(f 2n+1φ0ψ6) order terms of Q1
+Q

2
+Q

3
+On in (7.41). In particular, one obtains

terms at f 2nφ0ψ6Dψ by acting Qmα̇ on f . These terms cannot be Q-exact since it involves

neither φm or λα̇. This proves that all 6 operators Qmα̇Q
1
+Q

2
+Q

3
+On are nontrivial. They are

also independent since their SU(2)R × SU(3) quantum numbers are different. This shows

that On≥1 are 1
16

-BPS primaries. On belongs to the N = 4 multiplet A1L[4 + 4n; 0]
[2,0,0]
9+4n ,

which contributes to to the index as −t24+12nχD(t, x, y, p).

Now with the nature of On understood, we come back to study the series (6.35) until t40

order, trying to better characterize other cohomologies order by order in t. Once the lowest

operator O0 is identified, all the states in its 1
16

-BPS multiplet are not really new operators.

So we subtract χ24 from Z − Zgrav and see what are left:

Z − Zgrav − χ24 =
[
−χ(1,3)t

32 − (χ(1,3̄) + χ(3,6))t
34 − χ(2,3)t

35 + (χ(3,1) + χ(3,8))t
36

−(χ(2,3̄) + χ(4,6))t
37 + χ(5,3)t

38 + (χ(2,1) + 2χ(4,1) + χ(4,8))t
39

−(2χ(1,6) + χ(3,3̄) + χ(5,3̄) + χ(5,6))t
40
]
χD +O(t41) . (7.43)

Somewhat surprisingly, after subtracting the multiplet of O0, one finds that the remaining

index starts from t32 order. Namely, in the range t25 ∼ t31, the index does not capture any

new black hole cohomologies except the trivial descendants of O0. At first sight this may look

like a boring result, but the triviality of the index in this range has a nontrivial implication.

Recall that cohomologies multiply to yield new cohomologies. This is because of the

Leibniz rule of the classical Q acting on product operators. So apparently, one can multiply

light graviton cohomologies to O0 or its descendants to obtain many new cohomologies in
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the range t25 ∼ t31. The possible product cohomologies of O0 and gravitons below t32 order

are

O0 · (φ(m · φn)) , O0 · (φm · λα̇) , O0 · (λ+̇ · λ−̇) ,

O0 · (φm · ψn − 1
3
δmn φ

p · ψp) , O0 · (λα̇ · ψm − 1
2
εmnpφ

n ·Dα̇φ
p) ,

O0 · ∂α̇(φ(m · φn)) . (7.44)

Other possible products below t32 involving the descendants of O0 are

QO0 × (φm · φn , φm · λα̇ , λ+̇ · λ−̇ , φm · ψn − 1
3
δmn φ

p · ψp) ,

(Q,QQ)O0 × (φm · φn , φm · λα̇) ,

(QQ,QQQ, ∂)O0 × (φm · φn) . (7.45)

The triviality of the index (7.43) in this range implies two possibilities for these product

cohomologies. The first possibility is that these product cohomologies are Q-exact, i.e.

absent in the BPS spectrum. Another possibility is that these product cohomologies are

nontrivial but there are cancellations in the index, either among themselves or with new

core black hole cohomologies.1 Among (7.44) and (7.45), we explicitly show that

O0 · (φm · φn) , O0 · (φm · λα̇) , O0 · (φm · ψn − 1
3
δmn φ

p · ψp) (7.46)

are all Q-exact.

Six operators O0(φ(m ·φn)) at t28 order are all Q-exact. An SU(3) covariant expression is

O0 · (φ(m · φn)) = − 1

14
Q[20εrs(m(φn) · ψp)(φp · ψr)(φq · ψq)(f · ψs)

−20εprs(φ(m · ψp)(φn) · ψr)(φq · ψq)(f · ψs)

+30εprs(φ(m · ψp)(φn) · ψr)(φq · ψs)(f · ψq)

−7εa1a2pεb1b2(m(φn) · ψp)(φq · ψq)(ψa1 · ψa2)(ψb1 · ψb2)

+18εa1a2pεb1b2(m(φn) · ψq)(φq · ψp)(ψa1 · ψa2)(ψb1 · ψb2)] .

(7.47)

Six operators O0 · (φm · λα̇) at t29 order are also all Q-exact. An SU(2)R × SU(3) covariant

1We have checked that cancellations cannot happen within the product cohomologies listed above. It
is logically possible (although a bit unnatural) that some new core black hole primaries appear in this
range, precisely canceling with some of the product operators above if they are not Q-exact. Although in
different contexts, certain black holes are known not to appear in the index. For instance, asymptotically
flat multi-center BPS black holes or BPS black rings are not captured by the index [130].
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expression is

O0 · (φm · λα̇) =
1

8
Q[40εmnp(f · ψq)(λα̇ · ψr)(φq · ψn)(φr · ψp)

−4εma1a2εnb1b2(λα̇ · ψn)(φp · ψp)(ψa1 · ψa2)(ψb1 · ψb2)

+6εma1a2εnb1b2(λα̇ · ψp)(φp · ψn)(ψa1 · ψa2)(ψb1 · ψb2)

+εna1a2εpb1b2(λα̇ · ψn)(φm · ψp)(ψa1 · ψa2)(ψb1 · ψb2)] .

(7.48)

Eight operators O0 ·
(
φm · ψn − 1

3
δmn φ

p · ψp
)

at t30 order are all Q-exact. An SU(3) covariant

expression is

O0 ·
(
φm · ψn − 1

3
δmn φ

p · ψp
)

(7.49)

=
1

4
Q
[
εnpqε

ra1a2εqb1b2εmc1c2(φp · ψr)(ψa1 · ψa2)(ψb1 · ψb2)(ψc1 · ψc2)
]
.

We did not manage to prove the Q-exactness of operators other than (7.46). Since these

operators do not appear at all in the index, all of them may be Q-exact until t31 order. More

robustly/modestly, we can say that our index exhibits a no-hair behavior for O0 until t31

order. It will be interesting to clarify this issue in the future.

The Q-exactness of these product operators implies that O0 abhors the dressings by

certain gravitons, reminiscent of the black hole no-hair theorem. Especially, (φm · φn) ∼
tr(φmφn) multiplied toO0 areQ-exact. This is interesting because these operators correspond

to bulk scalar fields which have been discussed in the context of hairy AdS5 black holes

[121, 131, 132]. More precisely, it is the ‘s-wave’ modes of these scalars that have been used

to construct hairy black holes, precisely dual to the conformal primary operator tr(φmφn).

Here, note that the BPS limits of the hairy black holes constructed this way all exhibit

substantial back reactions to the core black holes, at least near the horizon, no matter how

small the hair parameter is [131,132].

Now we consider the lowest term −χ(1,3)t
32 of (7.43). In fact, this term comes from the

following product of O0 and gravitons:

O0 · (φm · f + 1
2
εmnpψn · ψp) . (7.50)

It is easy to show that this is not Q-exact, e.g. by acting two Qm
+ as shown in (7.17).

These operators contain terms at f 0φ0ψ9 order, which cannot be Q-exact. So the operators

(7.50) themselves are not Q-exact either. Therefore, the no-hair interpretation that we made

so far holds only for certain low-lying gravitons, at best. Among the conformal primaries

of S2 (see Table 5.1), these three gravitons are the only ones which explicitly appear in
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the index when multiplied to O0. At this stage, it may seem that two more gravitons

f ·λα̇+ 2
3
ψm ·Dα̇φ

m− 1
3
φm ·Dα̇ψm at O(t9) might multiply O0 to show up at t33 order, but we

will see below that the index does not capture them. Therefore, out of the 32 particle species

of conformal primary particles in the S2 multiplet, 29 gravitons except φm · f + 1
2
εmnpψn ·ψp

do not appear in the index when they multiply O0. In the BMN sector, our studies in section

3.1 imply a similar theorem for all On, at least as seen by the index. Among the 17 particle

species of gravitons in the BMN sector, all 14 particles except φm · f + 1
2
εmnpψn · ψp do not

appear in the index when they multiply any On.

The 3 product coholomologies at t32 order violating the no-hair theorem should be the

primaries of PSU(1, 2|3). This is again contained in a short multiplet of A1L type, whose

contribution to the index is given by χ32 = t32χ(1,3)χD. We subtract this from Z−Zgrav−χ24,

and study the remaining cohomologies. We can then try to interpret the lowest order term of

the remainder and judge whether it comes from new core black hole primaries or products of

already known core primaries and gravitons. If one can clarify the nature of the cohomologies

at this lowest order, one can again subtract the characters of their supermultiplets and keep

exploring even higher orders. Since it becomes more and more difficult to judge the Q-

exactness of the possible product operators, we shall only make much simpler and structural

studies until the t40 order. Namely, we shall try to see if the surviving index can be explained

as the products of known gravitons and core primaries On, without the need of any new core

black hole primaries. Studies we made so far showed that this is possible until t32 order.

Namely, the index until this order is compatible with having no more new core primaries and

only three more product cohomologies (7.50). We shall show that the graviton spectrum is

such that new core black hole primaries should appear at t39 order at the latest. This not

only proves from the index the existence of new core black hole primaries, but will also show

scenarios of possible hairy black holes.

After eliminating the contribution of the multiplet χ32 to the index, the remaining index

vanishes at t33 order. In principle, there are two possible product operators at this order

that completely cancel each other in the index even if they are not Q-exact. They are

O0 · ∂α̇(λβ̇ · λ
β̇) , O0 ·

(
f · λα̇ + 2

3
ψm ·Dα̇φ

m − 1
3
φm ·Dα̇ψm

)
. (7.51)

So these product operators, even if they exist, do not appear in the index.

The lowest nonzero term of Z−Zgrav−χ24−χ32 is −(χ(1,3̄) +χ(3,6))t
34. The only possible

product operators at this order which may account for these two terms, unless they are
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Q-exact, are

O0 · ∂α̇
(
λα̇ · ψm − 1

2
εmnpφ

n ·Dα̇φ
p
)

, O0 · ∂α̇∂β̇(φm · φn) . (7.52)

If they are nontrivial, they are in the N = 4 representations A1L[6; 2]
[2,2,0]
13 and A1L[6; 0]

[3,0,1]
13 ,

respectively. Assuming that they are both non-Q-exact, the order t34 is accounted for by

these hairy black hole operators. Their multiplets will contribute −(χ(1,3̄) + χ(3,6))t
34χD to

the index, because both are of type A1L.

Subtracting them, now the leading term is −χ(2,3)t
35. The only possible product coho-

mologies which can account for this term are

O0 · ∂α̇(f · φm + 1
2
εmnpψn · ψp) , (7.53)

provided they are not Q-exact. In this case, its multiplet is again A1L type and contributes

−χ(2,3)t
35χD to the index.

Subtracting this, now the leading term is +(χ(3,1) +χ(3,8))t
36. Since there is one fermionic

black hole primary O1 that we now from section 7.1, we study whether the product coho-

mologies may account for +(1 + χ(3,1) + χ(3,8))t
36. The only possible set is

O0 · ∂α̇(f · λβ̇ + 2
3
ψm ·Dβ̇φ

m − 1
3
φm ·Dβ̇ψm) ,

O0 · ∂α̇∂β̇(φm · ψn − 1
3
δmn φ

p · ψp) . (7.54)

Provided they are not Q-exact, they are again the primaries of A1L type multiplets, so they

contribute to the index by (7.54) times χD.

Subtracting the contributions of these multiplets, the leading term is −(χ(2,3̄) +χ(4,6))t
37.

The only possible product cohomologies that can account for this term are

O0 · ∂α̇∂ β̇(λβ̇ · ψm − 1
2
εmnpφ

n ·Dβ̇φ
p) , O0 · ∂α̇∂β̇∂γ̇(φm · φn) . (7.55)

Further processing to subtract the contributions of their multiplets, again A1L type, the

lowest term is +χ(5,3)t
38. one possible set of product cohomologies which can account for

this is

O0 · ∂(α̇∂β̇∂γ̇(λδ̇) · φ
m) . (7.56)

Apart from these, the following two sets of product cohomologies

O0 · ∂α̇∂β̇∂
γ̇(λγ̇ · φm) , O0 · ∂α̇∂β̇(f · φm + 1

2
εmnpψn · ψp) (7.57)

124



exactly cancel in the index, so there are two possible ways in which product hairy cohomolo-

gies can account for this order. In either case, they are all in the A1L type multiplets, so

their contribution to the index is again just χ(5,3)t
38 · χD.

Subtracting the last multiplets, the lowest term is +(χ(2,1)+2χ(4,1)+χ(4,8))t
39. All possible

product cohomologies at this order are

(4,1)F : O0∂α̇∂β̇∂γ̇(λδ̇ · λ
δ̇) , (7.58)

(2,1)B : O0∂α̇∂
β̇(f · λβ̇ + 2

3
ψm ·Dβ̇φ

m − 1
3
φm ·Dβ̇ψm) ,

(4,1)B : O0∂(α̇∂β̇(f · λγ̇) + 2
3
ψm ·Dγ̇)φ

m − 1
3
φm ·Dγ̇)ψm) ,

(4,8)B : O0∂α̇∂β̇∂γ̇(φ
m · ψn − 1

3
δmn φ

p · ψp) .

We used the superscripts B/F to mark their bosonic/fermionic statistics, respectively. With

these candidates, we find that the closest one can get to the index at this order is the case

in which all three classes of bosonic operators are nontrivial while the fermionic operators

are Q-exact. In this case, their contribution at this order is maximal and becomes +(χ(2,1) +

χ(4,1) +χ(4,8))t
39. There is still one factor of χ(4,1) · t39 remaining to be addressed. Therefore,

there should be at least 4 core black hole primaries in the SU(2)R representation (4,1), to

account for the remaining +χ(4,1)t
39. Of course this is only the latest order in which new

core black hole primaries should appear, because it may as well appear at lower orders due

to some non-Q-exactness assumptions we made for product cohomologies being invalid.

So we have shown that, from the index data until t40 order, there should exist more

core primary operators other than On in the BMN sector. This conclusion is obtained by

supposing otherwise, and trying to explain the index as product cohomologies of On and

gravitons but finding a contradiction at t39. We should also emphasize that the structure

of the index admits natural explanations in terms of hairy product operators in a wide

range t33 ∼ t38. Note also that most of the gravitons appearing in this range are conformal

descendants in the S2 multiplet.

7.3 SU(3), BMN Sector

We turn to constructing the threshold black hole cohomology of the SU(3) theory. From the

index we computed in section 6.4, we know that it is a singlet under the SU(3) subgroup

of the R-symmetry group SU(4), has the order J = 24, and is fermionic. Whereas the

analogous threshold black hole cohomology presented in section 7.1 could be found by some

clever trials and errors in [119], such an approach is not viable for the SU(3) theory where

the elementary fields are represented by larger matrices. Therefore we take a more strategic
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approach, that we organize into four subsections to explain.

In subsection 7.3.1, we will introduce an ansatz for constructing Q-closed non-graviton

operators, that takes advantage of various trace relations that were obtained as byproducts

of the graviton index computation of section 6. Based on the ansatz, we will present in

subsection 7.3.2 many Q-closed non-graviton operators in the target charge sector, i.e. q1 =

q2 = q3 = 4 leading to J = 24. Among these, we comment that all but (7.66) are Q-exact.

Then in subsection 7.3.3, we explain the numerics-assisted method that we have used to

determine the Q-exactness of the Q-closed operators. Utilizing our check of Q-exactness, it

is possible to prove that (7.66) is in fact the only cohomology in the target sector, denying the

possibility that the index may have missed a boson-fermion pair of non-graviton cohomologies

in the target sector. This is explained in subsection 7.3.4

7.3.1 An Ansatz for Closed Non-Graviton Operators

The cohomologies we would like to construct should be, by definition, Q-closed and not Q-

exact. Unlike gravitons, the Q-closedness of the black hole cohomologies should be ensured

by the trace relations. (Otherwise, that is if it is a cohomology at given energy and at

arbitrary values of N , it is a graviton cohomology.) So it is important to know what kind

of nontrivial trace relations are available for N × N matrices when the number of fields is

larger than N .

It seems to be widely believed that all SU(N) trace relations are derived from the Cayley-

Hamilton identity. For instance, see [133] (p.7, below eqn.(19)) and [134]. But in practice it

is inefficient to search for the trace relations that we need just from this identity. Fortunately,

we already implicitly know many trace relations from the calculations reported in section

6. Namely, when enumerating finite N gravitons, we have counted multi-graviton operators

subject to various trace relations between the generators gi. So one can take advantage of

these trace relations to construct black hole cohomologies. This leads to our ‘ansatz’ for

black hole cohomologies, which we explain now.

We can motivate the ideas with a simple example in the SU(2) theory [71, 115, 119]. A

representative of the threshold non-graviton cohomology in SU(2) can be written using the

BMN mesons (5.26) by

O0 ≡ εabc(v2)ma(v2)nbtr(ψ(cψmψn)) (7.59)

where v2 is the graviton operator in the S2 multiplet. Let us see how this operator becomes

Q-closed. Acting Q on O0, Q acts only on tr(ψ(cψmψn)) since v2 is Q-closed. One obtains

Qtr(ψ(cψmψn)) ∝ εab(c(v2)am(v2)bn) ≡ R(v2)cmn (7.60)
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after using SU(2) trace relations. Plugging this into QO0, one obtains

QO0 ∝ εabc(v2)ma(v2)nbR(v2)cmn = 0 . (7.61)

At the last step, one can show that the quartic mesonic polynomial εabc(v2)ma(v2)nbR(v2)cmn

is identically zero [71]. From the viewpoint of section 6, (7.60) are graviton trace relations

and the last step of (7.61) is a relation of relations. So the operator O0 is shown to be

Q-closed by using the trace relations and a relation of relations of the finite N graviton

operators.

This idea can be extended to construct operators which become Q-closed only after using

trace relations. Namely, for each relation of relations such as (7.61), we can construct a Q-

closed operator such as (7.59). We still need to check that they are not Q-exact for them to

represent nontrivial Q-cohomologies, which we will do in section 7.3.3. Also, there are non-

graviton cohomologies which are not constructed in this way [71]. For these reasons, the Q-

closed operators constructed in this way are mere ansätze for the non-graviton cohomologies.

In appendix A, we have collected all SU(3) fundamental trace relations that involve un, vn

only, and manifestly wrote them in Q-exact forms. We have found trace relations involving

un, vn, wn until J = 20 order. We have also found all relations between the fundamental

graviton trace relations at J = 24 and some more at J = 30 orders in the SU(3) ⊂ SO(6)R

singlet sector, where the index predicts non-graviton cohomologies (see Table 6.1). In other

charge sectors, one can immediately write down Q-closed operators if one finds new relations

of the fundamental trace relations.

When we write a fundamental trace relation Ra in a Q-exact form as Ra ∼ Qra, there

is an ambiguity in ra by addition of arbitrary Q-closed operators. We partly fix it so that

ra vanishes when all the letters are restricted to diagonal matrices. Since the Q-closed

operators constructed from relations of relations are linear combinations of ra’s, they vanish

with diagonal letters. This makes it impossible for our ansatz to be gravitons. So our ansatz

is guaranteed to yield a non-graviton cohomology unless it is Q-exact.

7.3.2 Q-Closed Non-Graviton Operators

Based on the ansatz, we now list the non-graviton Q-closed operators at the threshold level

J = 24, which are singlets under the SU(3) ⊂ SU(4)R global symmetry, in the BMN sector

of the SU(3) gauge theory.

At J ≡ 2(Q1 + Q2 + Q3) + 6J = 24, operators are further distinguished by the overall

R-charge R ≡ Q1+Q2+Q3

3
. The BMN operators which are SU(3) ⊂ SU(4)R singlets satisfy

Q1 = Q2 = Q3 and J1 = J2. Then the possible charges of the operators are (R, J) = (n
2
, 8−n

2
)
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where n = 0, · · · , 8. In each charge sector, the number of letters is fixed to n+4. However, our

ansatz further restricts the charges since acting Q on our ansatz should become a polynomial

of u2,3, v2,3, w2,3. As a result, there exist in total 7 possible charge sectors within our ansatz:

(R, J) = (n
2
, 8−n

2
) where n = 1, · · · , 7.

When (R, J) = (1
2
, 7

2
) or (1, 3), there are no Q-closed operators within our ansatz using

the trace relations in the appendix. One can understand it heuristically as follows. At these

charges, R is so small that only a small number of scalars is admitted. As the graviton

generators contain at least one scalar field, only few types of graviton polynomials exist in

these sectors, which are not enough to host relations of relations. Therefore, these charge

sectors are incompatible with our ansatz. The other 5 charge sectors host Q-closed operators

in our ansatz, whose explicit forms will be presented below.

We now present the Q-closed non-graviton operators in each of the five charge sectors,

(R, J) = (n
2
, 8−n

2
) where n = 3, · · · , 7. For convenience, we rewrite here the definition of the

single-trace generators of the SU(3) BMN gravitons u2,3, v2,3, w2,3:

uij ≡ tr
(
φ(iφj)

)
, uijk ≡ tr

(
φ(iφjφk)

)
,

vij ≡ tr
(
φiψj

)
− 1

3
δijtr (φaψa) , vijk ≡ tr

(
φ(iφj)ψk

)
− 1

4
δiktr

(
φ(jφa)ψa

)
− 1

4
δjktr

(
φ(iφa)ψa

)
,

wi ≡ tr
(
fφi + 1

2
εia1a2ψa1ψa2

)
, wij ≡ tr

(
fφ(iφj) + εa1a2(iφj)ψa1ψa2

)
.

(7.62)

i) (R, J) = (3
2
, 5

2
). The operators in this sector are made of 7 letters. The possible numbers

(nφ, nψ, nf ) of scalars, fermions and f in each term are (nφ, nψ, nf ) = (4, 1, 2), (3, 3, 1) and

(2, 5, 0). We find one Q-closed operator in this sector from the trace relations and a relation

of relations in appendix A. This Q-closed operator is given by

O(2,1) ≡ 65uij(r
(2,1)
20 )ij − 39wij(r

(1,1)
14 )ij + 5wi(r

(1,1)
16 )i

+312vjki(r
(1,2)
16 )ijk + 26vj i(r

(1,2)
18 )ij + 6wi(r

(0,3)
16 )i . (7.63)

The superscripts denote (nf , nψ) of the terms with maximal nf in the operator. r
(nf ,nψ)
j ’s are

given in (A.6), (A.7) where R
(nf ,nψ−1)
j ≡ i Q r

(nf ,nψ)
j ’s are the fundamental trace relations.

The Q-closed operator (7.63) turns out to be Q-exact. In fact, (7.63) is even under the parity

transformation of [135]. It is already known that all such even operators in this charge sector

are Q-exact for all N ≥ 3 [113], which we confirm.
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ii) (R, J) = (2, 2). The operators in this sector are made of 8 letters. Allowed (nφ, nψ, nf )

are (6, 0, 2), (5, 2, 1), (4, 4, 0). We find 4 Q-closed operators in this sector given by

O
(1,2)
1 ≡− 3v(j

iw
k)(r

(0,1)
10 )ijk − 3u(ijwk)(r

(0,2)
12 )ijk + εa1a2iu

a1jwa2(r
(0,2)
12 )ij ,

O
(1,2)
2 ≡− 9ua(ivj)a(r

(1,1)
14 )ij + 10εa1a2(iu

a1kva2
j)(r

(1,1)
14 )ijk

+ 30v(j
iw

k)(r
(0,1)
10 )ijk + 60u(jkvl)i(r

(0,3)
14 )ijkl ,

O
(1,2)
3 ≡− 3ua(ivj)a(r

(1,1)
14 )ij + 6εa1a2(iu

a1kva2
j)(r

(1,1)
14 )ijk + 4uijk(r

(1,2)
18 )ijk + 14v(j

iw
k)(r

(0,1)
10 )ijk

− 6wij(r
(0,2)
14 )ij − 12εa1a2(ivja1v

k)
a2(r

(0,2)
12 )ijk − 4vjav

a
i(r

(0,2)
12 )ij ,

O
(1,2)
4 ≡− 3ua(ivj)a(r

(1,1)
14 )ij + 14εa1a2(iu

a1kva2
j)(r

(1,1)
14 )ijk + 8vjki(r

(1,1)
16 )ijk + 42v(j

iw
k)(r

(0,1)
10 )ijk

+ 12u(ijwk)(r
(0,2)
12 )ijk − 24wij(r

(0,2)
14 )ij − 36εa1a2(ivja1v

k)
a2(r

(0,2)
12 )ijk − 8vjki(r

(0,3)
16 )ijk .

(7.64)

All operators in (7.64) are Q-exact.

iii) (R, J) = (5
2
, 3

2
) The operators in this sector are made of 9 letters. Allowed (nφ, nψ, nf )

are (7, 1, 1), (6, 3, 0). We find 13 Q-closed operators in this sector given by

O
(1,1)
1 ≡ εa1a2iu

a1(jwk)a2(r
(0,1)
10 )ijk ,

O
(1,1)
2 ≡ εa1a2iu

a1jkwa2(r
(0,1)
10 )ijk ,

O
(1,1)
3 ≡ εa1a2iεb1b2ju

a1b1ua2b2k(r
(1,1)
14 )ijk + 5vaiv

jk
a(r

(0,1)
10 )ijk − 2v(j

av
k)a

i(r
(0,1)
10 )ijk ,

O
(0,3)
1 = −εia1a2

(
4ua1bvja2

b + 3uja1bva2
b

)
(r

(0,2)
12 )ij =

1

2
i Q((r

(0,2)
12 )ij(r

(0,2)
12 )ji ) ,

O
(0,3)
2 = −εa1a2(i

(
ua1(kvl)a2

j) + ukla1va2
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14 )i ,

O
(0,3)
5 ≡ 6vaiv
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(0,1)
10 )ijk + 6ua(ijvk)

a(r
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10 )ijk + 24ua(ijvk)

a(r
(0,2)
12 )ijk + 5u(jkvl)i(r

(0,2)
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(7.65)
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All except for O
(0,3)
6 in (7.65) are Q-exact. Therefore, a representative of the cohomology in

this sector can be written as

O ≡ −6O
(0,3)
6 (7.66)

= 288vjav
ka
iεc1c2(j tr

(
φc1φc2φiψk)

)
− 72vabv

bk
aεc1c2(k tr
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φc1φc2φdψd)

)
+36εa1a2iu
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j
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2 tr
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.

The scaling dimension of this cohomology O is E = 3R + 2J = 21
2

. Note that the represen-

tative found above does not contain the letter f .

iv) (R, J) = (3, 1). The operators in this sector are made of 10 letters. Allowed (nφ, nψ, nf )

are (9, 0, 1) and (8, 2, 0). We find 6 Q-closed operators in this sector given by

O
(0,2)
1 ≡ −εa1a2iu

a1bujkva2
b(r

(0,1)
10 )ijk + 2εa1a2iu

a1bua2(jvk)
b(r

(0,1)
10 )ijk ,

O
(0,2)
2 ≡ −6εa1a2iu

a1b(jvk)a2
b(r

(0,1)
10 )ijk − εa1a2(iu

a1(kvl)a2
j)(r

(0,1)
12 )ijkl ,

O
(0,2)
3 ≡ −εa1a2iu

a1bujkva2
b(r

(0,1)
10 )ijk − εa1a2(iu

a1klva2
j)(r

(0,1)
12 )ijkl ,

O
(0,2)
4 ≡ −εa1a2iu

a1bujkva2
b(r

(0,1)
10 )ijk + εa1a2(iεj)b1b2u

a1b1ua2b2ukl(r
(0,2)
12 )ijkl ,

O
(0,2)
5 ≡ −4εa1a2iu

a1bujkva2
b(r

(0,1)
10 )ijk − 24εa1a2iu

a1b(jvk)a2
b(r

(0,1)
10 )ijk

− εa1a2(iεj)b1b2u
a1b1ua2b2k(r

(0,2)
14 )ijk ,

O
(0,2)
6 ≡ −εa1a2iu

a1bujkva2
b(r

(0,1)
10 )ijk+12εa1a2iu

a1b(jvk)a2
b(r

(0,1)
10 )ijk+3εa1a2iu

a1(jukl)a2(r
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14 )ijkl .

(7.67)

All the operators in (7.67) are Q-exact.
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v) (R, J) = (7
2
, 1

2
). The operators in this sector are made of 11 letters. The only allowed

(nφ, nψ, nf ) is (9, 1, 0). We find 1 Q-closed operator in this sector given by

O(0,1) ≡ 36εa1a2a3εb1b2iu
a1b1ua2b2ua3jk(r

(0,1)
10 )ijk + 5εa1a2a3εb1b2b3u

a1b1ua2b2ua3b3r
(0,1)
12

−6εa1a2(iεj)b1b2u
a1b1ua2b2ukl(r

(0,1)
12 )ijkl . (7.68)

The operator (7.68) is Q-exact.

In summary, we have found 1 fermionic black hole cohomology using our ansatz, which

is a singlet under SU(3) ⊂ SU(4)R at order J = 24. It is represented by (7.66). Its charges

and scaling dimension are given by (R, J,E) =
(

5
2
, 3

2
, 21

2

)
.

7.3.3 Filtering Exact Operators

In this subsection, we sketch how to determine Q-exactness of various Q-closed operators

listed in the previous subsection.

To check whether a given operator is Q-exact or not, especially to check non-Q-exactness,

one has to rule out all possible ways of writing the operator as Q of ‘something’. That being

said, one needs to construct all possible operators that can participate in ‘something’ (the

meaning of which will be made clear shortly) and show that the target operator is linearly

independent of Q-actions of them. More specifically, we divide the check of Q-exactness into

4 steps, that we summarize as follows.

1. Construct all gauge-invariant operators whose Q-action may participate in reproducing

the target.

2. Count the number of linearly independent operators from step 1, and extract the

maximal subset of linearly independent operators. This is called the basis.

3. Act Q on the basis operators, then again count and extract the maximal subset of

linearly independent ones between them.

4. Check if the target is linearly independent of the result of step 3.

Now we explain what operators ‘may participate in reproducing the target’ in step 1.

This consists of two criteria: the charges and the parity under permutation.

First, the charges of the target operator constrain the charges, thus the letter contents

of the basis operators. Note that the action of Q increases QI=1,2,3 by 1
2

and decreases

J = J1 = J2 by 1
2
. Therefore, the basis operators must have the set of charges that differ by
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the corresponding amount from the target, otherwise their Q-actions are disjoint from the

target. Note that all of our targets are SU(3) singlets, so we always have R = Q1 = Q2 = Q3.

Second, all of our targets being singlets under the SU(3) subgroup of the SU(4) R-

symmetry group, imposes a stronger constraint than just restricting to the charge sectors

with Q1 = Q2 = Q3. Each basis operator must be invariant under cyclic permutation

φi → φi+1 and simultaneously ψi → ψi+1, where i = 1, 2, 3 mod 3. Moreover, if there are

even/odd number of φ’s and ψ’s combined, which carries one SU(3) index each, it requires

even/odd number of Levi-Civita symbols to write the operator covariantly while contracting

all indices. Therefore, we may restrict to i) operators with even number of φ’s and ψ’s

combined, that are even under all 3! permutations of SU(3) indices, and ii) operators with

odd number of φ’s and ψ’s combined, that are even under even (cyclic) permutations of

SU(3) indices and odd under odd (swap) permutations of SU(3) indices. Also note that this

permutation property commutes with the action of Q, so that Q of a non-trivial operator

satisfies this property if and only if the original operator does. This permutation property

is necessary but not sufficient for an operator to be an SU(3) singlet. However, we impose

this property on the basis instead of requiring SU(3) singlets, because the latter requires

many sums over dummy indices and thus the former is computationally more efficient. Our

conclusions on the singlet sector will be valid despite.

For example, suppose that the target operator is (7.66), which has charges (R, J) = (5
2
, 3

2
).

Operators whose Q-action may reproduce this target operator must then have (R, J) = (2, 2).

Possible choices of letter contents are (nφ, nψ, nf ) = (6, 0, 2), (5, 2, 1), or (4, 4, 0), and numbers

of φi minus numbers of ψi must be equal between i = 1, 2, 3. Further taking into account the

permutation property, the basis operators whose Q-action ‘may participate in reproducing

the target’ (7.66) can be classified into the following 7 subsectors. ((−1)ε in subsectors 5

and 6 indicates minus sign for odd permutations, because there are odd number of φ’s and

ψ’s in those subsectors.)

• Subsector 1: (φ1)4(ψ1)4+ (permutations)

• Subsector 2: (φ1)3(φ2)1(ψ1)3(ψ2)1+ (permutations)

• Subsector 3: (φ1)2(φ2)2(ψ1)2(ψ2)2+ (permutations)

• Subsector 4: (φ1)2(φ2)1(φ3)1(ψ1)2(ψ2)1(ψ3)1+ (permutations)

• Subsector 5: (φ1)3(φ2)1(φ3)1(ψ1)2f 1 + (−1)ε (permutations)

• Subsector 6: (φ1)2(φ2)2(φ3)1(ψ1)1(ψ2)1f 1 + (−1)ε (permutations)

• Subsector 7: (φ1)2(φ2)2(φ3)2f 2+ (permutations)
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Appropriate sums over permutations of single- and multi-trace operators in each of these

subsectors are the result of step 1, some of which we write down below to help visualize:

tr(φ1φ1ψ1φ
1ψ1ψ1φ

1ψ1) + tr(φ2φ2ψ2φ
2ψ2ψ2φ

2ψ2) + tr(φ3φ3ψ3φ
3ψ3ψ3φ

3ψ3) ,

tr(φ1φ1φ2ψ2)tr(ψ1ψ2)tr(φ2ψ1) + tr(φ2φ2φ3ψ3)tr(ψ2ψ3)tr(φ3ψ2)

+tr(φ3φ3φ1ψ1)tr(ψ3ψ1)tr(φ1ψ3) + tr(φ3φ3φ2ψ2)tr(ψ3ψ2)tr(φ2ψ3)

+tr(φ1φ1φ3ψ3)tr(ψ1ψ3)tr(φ3ψ1) + tr(φ2φ2φ1ψ1)tr(ψ2ψ1)tr(φ1ψ2) ,

tr(φ2φ2ψ1ψ2φ
3)tr(fφ1φ1) + tr(φ3φ3ψ2ψ3φ

1)tr(fφ2φ2)

+tr(φ1φ1ψ3ψ1φ
2)tr(fφ3φ3)− tr(φ3φ3ψ1ψ3φ

2)tr(fφ1φ1)

−tr(φ1φ1ψ2ψ1φ
3)tr(fφ2φ2)− tr(φ2φ2ψ3ψ2φ

1)tr(fφ3φ3) . (7.69)

Given the operators from step 1, the rest is relatively straightforward, at least concep-

tually. There are non-trivial trace relations between operators from step 1, so in step 2

we extract linearly independent basis operators. Then in step 3, we consider Q-actions of

the basis operators, and again count the number of linearly independent ones among them.

These should form a complete basis of all Q-exact operators in the target charge sector and

with the aforementioned permutation property. Therefore, the target operator is Q-exact if

and only if it is a linear combination of the Q-actions of the basis operators. More generally,

if there are multiple target operators, the number of cohomologies among them would be

equal to the number of linearly independent ones among the basis and all target operators,

minus the number of linearly independent ones among the basis only.

Each of step 2-4 involves counting and/or finding linearly independent operators among

a given set of gauge-invariant operators. Each operator is a sum over single- and multi-trace

operators written in terms of seven species of fields φm, ψm and f . To completely account

for trace relations between them, we first convert the operators written in terms of adjoint

fields into polynomials of their matrix elements, by substituting

f =

f1 f2 f3

f4 f5 f6

f7 f8 −f1 − f5

 , (7.70)

and likes for 6 other fields. In this way, every operator is now written as a polynomial of

8 × 7 = 56 variables, 24 of which are Grassmannian. So the problem boils down to finding

linear dependence between a set of polynomials. Although this is the same problem that was

encountered while computing the graviton index in section 3, the same method of extracting

the coefficient matrix is extremely unpractical here. It is because there are four times as
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many variables (recall that for counting gravitons, we substituted each field with a diagonal

matrix), and therefore exponentially larger number of monomials appear in polynomials. As

a result, the coefficient matrix will have a huge number of columns that is not viable for

computers.

For this reason, we have devised a numerics-assisted approach to find linear dependence

between the polynomials with large number of variables. The approach stems from the basic

fact that if some linear combination of certain polynomials vanishes, it must also be zero

if we attribute any specific number to each variable. So let us represent each polynomial

by an array of numbers, i.e. a row vector, by substituting each variable with a set of

randomly chosen integers. Then we examine the linear dependence between vectors, instead

of polynomials.

The substitution can be repeated for arbitrarily many sets of integers, so the row vector

can be made arbitrarily long. Obviously, the length of the row vectors, i.e. number of

columns, must be at least as many as there are independent polynomials. Otherwise, it will

be always possible to find a relation between the row vectors even if the polynomials they

represent are independent. On the other hand, the length of the row vectors need not be

much more than the number of independent polynomials, as we will explain shortly.

This makes it clear why this method is efficient. It naturally realizes the basic principle

that in order to distinguish n different entities, one needs at least n data for each entity,

whereas extracting the coefficient matrix for the polynomials with so many variables will

equivalently convert each polynomial into an unnecessarily long vector.

There are two issues with this approach that we need to address. The first is that 24

of 56 variables are Grassmannian, which cannot be properly substituted with c-numbers.

The second is that randomness is involved in this approach, and it may lead to errors albeit

unlikely.

The issue with Grassmann variables can be easily addressed by ordering them in a definite

manner within each monomial. That is, we fully expand each polynomial (which includes

eliminating squares of Grassmann variables), and let variables be multiplied only in a certain

order within each monomial. During this process the coefficients may flip signs, but the result

of this process is unique for each polynomial. Once we have done this, none of the Grassmann

properties will be used when finding linear relations between the polynomials, because each

monomial is now compared verbatim with monomials in other polynomials. Therefore, it is

now safe to substitute Grassmann variables with c-numbers. This principle was also implied

while extracting the coefficient matrix of graviton operators in section 3.

As for the randomness, first note that substituting (sufficiently many sets of) random

integers never miss the true dependence between polynomials. If there is a true linear
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dependence between polynomials, i.e. a linear combination that vanishes, the same linear

combination must be zero for whatever numbers are put in, so the row vectors corresponding

to the polynomials must be linearly dependent. Note that all polynomials have rational

coefficients and we put in random integers, so there is no issue with machine precision.

However, the converse is possible: this method may find false linear dependence between

polynomials. This is simply because a non-vanishing polynomial may evaluate to zero when

certain values are put into variables. That is, the randomly chosen values could miraculously

be the roots of the polynomial. This type of error can be made arbitrarily more unlikely by

increasing the number of columns, i.e. number of sets of random integers that are put in.

Let us roughly estimate the unlikelihood.

Suppose that the number of columns is m+n where m is the true number of independent

polynomials. For this method to find a false dependence, both of the followings must happen:

i) there exists a non-trivial linear combination of the polynomials that vanishes for the first

m sets of random integers, and ii) this polynomial further vanishes for the additional n sets

of random integers. The probability of i) is relatively difficult to estimate, since it involves

intricate tuning of m− 1 coefficients in a linear combination of the polynomials. Therefore

we only estimate the probability of ii) as follows. A typical basis polynomial such as Q-

action of those in (7.69) 2 evaluates to ∼ 1028 when a random integer between 1 and 1000

are substituted into each variable. (See Fig. 7.1. for an example.) This is a natural scale

considering that the typical polynomial is a sum over ∼ 106 monomials (with both signs) that

each consists of 9 letters, so for example 106× (102.5)9 ∼ 1028. This value is far smaller than

the number of all possible random choices — which is (103)56 if all 7 gluons, thus 7× (32−1)

variables, are involved — so each integer value within magnitude ∼ 1028 will be sufficiently

populated. Furthermore, since a typical polynomial consists of many∼ 106 monomials, we

assume that the evaluation of the polynomial is like a random walk with sufficient iterations,

and thus the factorization property of integers is blurred. For these reasons, let us assume

that the distribution of the evaluated values is continuous. Then, the probability that this

value falls within O(1) is estimated to be ∼ 10−28, even accounting for the shape of the

distribution. For ii), this must happen for n independent sets of random variables, so the

probability of ii) is estimated to be 10−28n. In step 3, n was taken to be 175, so the estimated

probability of ii) is 10−4900.

This method of detecting linear dependence was used between numerous sets of polynomi-

als while determining Q-exactness of various operators in different charge sectors. Numbers

that appeared in the previous paragraph slightly differ between occasions. Typical values

2These are used in step 3 and 4 of determining Q-exactness of Q-closed operators in the charge sector
(R, J) = (5

2 ,
3
2 ), of which one is the non-graviton cohomology (7.66)
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Figure 7.1: An example distribution of 1.5×106 evaluated values of Q-actions of basis poly-
nomials for (7.65). Width of each bin is 1027.

of the polynomials differ because they consist of different numbers of letters, and n is in-

evitably different because the number of columns are set before we know the number of true

independent polynomials. However, in any case, we use at least n ≥ 30 and the estimated

probability of ii) has order of magnitude of a few negative hundreds at the worst. Further-

more, when a Q-closed operator is determined to be Q-exact, we checked analytically the

relation between the target and basis polynomials to further eradicate the margin for error.

Employing the method explained so far, we have constructed the basis operators in each

and all charge sectors with Q1 = Q2 = Q3 at the order J = 24, with the aforementioned

permutation property. We have also evaluated the Q-actions of the bases, that should form

the basis of Q-exact operators. Then we have determined Q-exactness of all Q-closed non-

graviton operators obtained from our ansatz in the previous subsection. The result is that

all operators in section 7.3.2 except for the fermionic (7.66) are Q-exact.

7.3.4 Ansatz-Independent Studies

From the fact that we have constructed and counted all operators and their Q-actions in

the Q1 = Q2 = Q3 charge sectors at J = 24 order with the permutation property, we can

also prove the non-existence of any other SU(3) singlet non-graviton cohomology at J = 24

order. Recall that the result of step 2 in the previous subsection is a complete basis of all

operators, in a given charge sector (R, J) and with permutation property that is designed

to include all SU(3) singlets. There are further linear relations between Q-actions of these

basis operators, reducing the number of independent Q-exact operators at charge sector

(R + 1
2
, J − 1

2
) in step 3. The reduced operators correspond to the Q-closed operators at

charge sector (R, J):

(#closed)(R,J) = (#basis)(R,J) − (#exact)(R+ 1
2
,J− 1

2
) .
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R J #letters #basis #closed #exact #coh. #gravitons #BH coh.
0 4 4 1 0 0 0 0 0
1
2

7
2

5 9 1 1 0 0 0
1 3 6 91 8 8 0 0 0
3
2

5
2

7 511 85 83 2 2 0
2 2 8 1369 445 426 19 19 0
5
2

3
2

9 1898 953 924 29 28 1
3 1 10 1456 961 945 16 16 0
7
2

1
2

11 633 505 495 10 10 0
4 0 12 136 136 128 8 8 0

Table 7.1: For each charge sector R = Q1 = Q2 = Q3 and J at level J = 24, we present the
numbers of operators discussed in the text. The last column shows that (7.66) is the only
black hole cohomology in the target charge sector.

Then the number of Q-cohomologies is given by

(#coh.)(R,J) = (#closed)(R,J) − (#exact)(R,J) .

Meanwhile, we can also count the number of independent graviton cohomologies in these

charge sectors and with the same permutation property, like we counted the full set of

gravitons in subsection 3.1. The number of non-graviton cohomologies is given by

(#BH coh.)(R,J) = (#coh.)(R,J) − (#gravitons)(R,J) .

We present all the numbers mentioned in this paragraph in Table 7.1. We find only one

non-graviton cohomology in the (R, J) = (5
2
, 3

2
) sector, which is the fermionic cohomology

presented in (7.66). Since the operators with the permutation property in the Q1 = Q2 = Q3

charge sectors include all SU(3) singlets, we conclude that (7.66) is the only non-graviton

cohomology that is an SU(3) singlet at order J = 24.

The computation presented in this subsection, of constructing the basis operators and

counting independent ones between them and their Q-actions, is essentially the sort of com-

putation that was performed in [115], although we find our numerics-assisted approach to

be more efficient. Moreover, we have only performed this computation in the Q1 = Q2 = Q3

charge sectors at J = 24 order in the BMN sector, and further restricted to operators with

certain permutation property. This is because we focused on the SU(3) singlet sector at order

J = 24, where the non-graviton index indicated the existence of a non-graviton cohomology.
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Chapter 8

Conclusion

Throughout this dissertation, we have discussed various properties of the supersymmetric

states, or local BPS operators, of superconformal field theories dual to AdS black holes in

different dimensions including AdS3,4,5,7. In particular we focussed on the AdS3 black holes

and the dual (4, 4) SCFT2 with 1
4

of the supersymmetries, and on the AdS5 black holes and

the dual 4d N = 4 Super-Yang-Mills theory with 1
16

of the supersymmetries. The supersym-

metric states subject to our study have been enumerated using the index to account for the

Bekenstein-Hawking entropy of the dual black holes, which is a thermodynamic quantity,

in a statistical sense à la Boltzmann. This dissertation went beyond the enumeration to

study the macroscopic charges of the supersymmetric ensemble, and to identify the black

hole states.

In part I, we have done the followings.

• We argued that the AdS3 black holes may be unstable under decay into some particles.

• We demonstrated clearly in a simple example with the U(1) gauge group for the 4d

N = 4 Super-Yang-Mills theory, how complexification of chemical potentials may

overcome the boson/fermion cancellations in the index.

• We addressed that the derivation of the black hole entropy by treating the index as a

BPS limit of the partition function can be applied to AdS3 black holes under intricate

limiting procedures.

• We gave a heuristic derivation of the supersymmetric charge constraints on the AdS3,4,5,7

black holes as the relations between macroscopic charges of the supersymmetric en-

sembles of the free field theories.

In part II, we have done the followings. Recall that the black hole cohomologies i) are

related to the BPS states in the strongly coupled field theory, which are the dual black
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hole microstates, or ii) are dual states to the smallest, the most quantum black holes in the

quantum gravity theory.

• We wrote explicit expressions for possibly all black hole cohomologies in the BMN

sector of the 4d N = 4 Super-Yang-Mills theory with the gauge group SU(2).

• We showed that there must be another set of four black hole cohomologies in the SU(2)

theory at the charge J = 39.

• We observed the black hole partial no-hair behavior, that the black holes abhor dressing

by gravitons, especially by chiral primary black holes with little rotation.

• We constructed a fermionic singlet black hole cohomology in the SU(3) theory at

J = 24, which is likely the smallest one in the theory.

• We found that a fermionic triplet black hole cohomology in the SU(4) theory must

appear at J = 28.

Related either directly or indirectly to this dissertation, we suggest several future research

directions.

• Our heuristic derivation of the supersymmetric charge constraints on the AdS4,5,7 black

holes may be made more rigorous. We have already discussed several directions in

section 4.6. For examples, we expect that inclusion of the gauge degrees of freedom in

a principled manner may explain the scaling of the charges by appropriate powers of

N . Furthermore, it is possible that the O(1) numerical factors appear while connecting

the free field theory results to the strongly coupled theory.

• It was observed recently [136–139] that the index for the 1
16

-BPS states of the 4d N = 4

Yang-Mills theory admits the structure of an expansion of expansions. There has been

progress [140–146] in interpreting this expansion in terms of giant gravitons, or D3-

branes in string theory [125–127]. Given the coupling independence of the index, this

opens a new window to understand the structure of the black holes in the quantum

gravity theory, not limited to its supergravity approximation.

• To complete our argument on the instability of the AdS3 black hole, we may need

to address existence and abundance of particles with the assumed charges. Giant

gravitons in the AdS3 black hole background [147,148] can potentially play the role of

these particles. This is a work in progress with Finn Larsen.

139



• It is interesting to slightly lift the focus from strictly supersymmetric black holes. There

has been considerable progress [110–112] regarding the spectrum of nearly extremal and

nearly BPS black holes. These works are based on the effective theory of the near-

extremal black holes, a gravity theory in the near-horizon geometry AdS2 that is being

slightly broken by a dilaton [149–154]. This theory is approximated by the Jackiw-

Teitelboim (JT) gravity [155, 156] and its supersymmetric generalizations [157–159]

leading to the (super-)Schwarzian actions. The fact that the (super-)JT gravity is

solved at quantum level [160, 161] is leveraged into quantum corrections to the low

energy spectrum of the near-extremal and near-BPS black holes. See [162] for a review.

It will be valuable to work out the details of the effective theory, including scrutinizing

the validity of approximations used in the process and examining the higher order

effects, and sketching out the pattern of symmetry breaking. This is a work in progress

with Sangmin Choi and Finn Larsen.

• One may consider extending the results of Part II into gauge groups with higher ranks

and/or into higher levels of the charge, to detect and construct more examples of

black hole cohomologies. This is certainly a desired progress, but limitations on the

computing power strongly suggests that one take a completely different approach.

• Since the black hole cohomologies represent BPS states in the weakly coupled gauge

theory, it is important to make connections between operators in the weakly and

strongly coupled theories. It is one of the major goals of the field of integrability.

For an example, see [113] that followed our work.

We hope that through the enormous effort from generations of physicists that this dis-

sertation joins, black holes shed bright light to quantum gravity.
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Appendix A

Graviton Trace Relations

In this appendix that is related to section 7.3 of the main part, we first list the trace

relations between the graviton cohomologies in the BMN sector of the SU(3) theory. Then

we construct the relations of relations at J = 24 which are singlets under the SU(3) ⊂
SU(4)R global symmetry. These are the two sectors in which the index predicted fermionic

cohomologies in the SU(3) singlet. The results at J = 24 are used in section 7.3.2 to

construct the threshold cohomology.

The trace relations are the linear dependence between the multi-trace operators, up to Q-

exact operators, due to the finite size of the matrices. In this appendix, we shall only consider

the trace relations between gravitons. Let us first arrange the trace relations by their level

J and distinguish them into two types; fundamental ones and the others. The fundamental

trace relations at level J cannot be written as linear combinations of the trace relations

at lower levels J ′(< J ), multiplied by the gravitons at level J − J ′. All trace relations of

gravitons can be expressed as linear combinations of the fundamental trace relations with the

coefficients being graviton cohomologies. We explicitly constructed the fundamental trace

relations until certain levels, which will be presented below.

The single-trace generators of the SU(3) BMN gravitons are given by

uij ≡ tr
(
φ(iφj)

)
, uijk ≡ tr

(
φ(iφjφk)

)
,

vij ≡ tr
(
φiψj

)
− 1

3
δijtr (φaψa) , vijk ≡ tr

(
φ(iφj)ψk

)
− 1

4
δiktr

(
φ(jφa)ψa

)
− 1

4
δjktr

(
φ(iφa)ψa

)
,

wi ≡ tr
(
fφi + 1

2
εia1a2ψa1ψa2

)
, wij ≡ tr

(
fφ(iφj) + εa1a2(iφj)ψa1ψa2

)
,

(A.1)

where we suppressed the subscript of un, vn, wn since it can be easily read off from the number

of the indices. Note that the Q-actions on φ, ψ, f are given by

Qφm = 0 , Qψm = − i
2
εmnp[φ

n, φp] , Qf = −i[φm, ψm] . (A.2)
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We would like to find the fundamental trace relations of (A.1).

It is helpful to start from the Gröbner basis for the trace relations. The Gröbner basis

contains all fundamental trace relations. In general, the Gröbner basis also contains some

non-fundamental trace relations. We shall obtain the fundamental trace relations from the

Gröbner basis by induction.

At the lowest level of the trace relations, all of them are fundamental. Namely, every

generator of the Gröbner basis at such level are the fundamental relations. For the SU(3)

theory, the lowest level is J = 10. In order to organize them into covariant forms in the SU(3)

global symmetry, we use the following computational strategy (which also proves useful at

higher orders). We list the polynomials of (A.1) which have the same representations as

the lowest fundamental trace relations at J = 10. Among them, we should find particular

linear combinations which vanish when all off-diagonal elements of φm, ψm, f are turned off,

since the graviton trace relations vanish with diagonal fields. Once such combinations are

identified, keeping φ, ψ, f general in this combination will yield the Q-exact operators for the

lowest fundamental trace relations. This way, we can find the fundamental trace relations

at the lowest level.1

Now, suppose that we found all fundamental trace relations until the level J . We can

construct the fundamental trace relations at J + 2 as follows. We first construct all non-

fundamental trace relations at level J + 2 by multiplying suitable graviton cohomologies to

the fundamental ones below the level J . Not all of them are linearly independent so we

should extract a linearly independent set among them. This lets us to compute the SU(3)

character of the non-fundamental trace relations at level J + 2. Next, we consider a union

of the non-fundamental trace relations and the Gröbner bases at level J + 2. Note that the

Gröbner basis will contain all fundamental trace relations and some non-fundamental ones.

We extract a linearly independent set among such union, which contains all fundamental

and non-fundamental relations. We also compute the SU(3) character over them. Finally,

we subtract the former character from the latter, which yields the SU(3) character of the

fundamental trace relations at level J +2. Then we list the multi-trace operators using (A.1)

which can account for it as before. Among them, we find particular linear combinations

which vanish when all off-diagonal elements of φ, ψ, f are turned off, and which are linearly

independent from the non-fundamental trace relations we constructed above. The final

results are the fundamental trace relations at level J + 2. In this way, one can construct the

fundamental trace relations inductively.

1There can be linear combinations which vanish even when the off-diagonal elements are turned on. In
principle, they can also be the trace relations but most of them are just the identities that hold at arbitrary
N . In practice, we only find them as mesonic identities between (A.1) rather than the trace relations.
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In principle, one can obtain all fundamental trace relations of gravitons from the above

induction. For the SU(2) theory, it can be easily done. We found a 66-dimensional Gröbner

basis, and there exist 48 fundamental trace relations among them. However, for the SU(3)

theory, we could not do a similar calculation since the construction of the Gröbner basis is

time-consuming. We constructed it only in two subsectors: (1) all trace relations between

u2, u3, v2, v3, and (2) trace relations between u2, u3, v2, v3, w2, w3 until J ≤ 20. From the

subsector (1), which has 1170 generators, we obtained all fundamental trace relations between

u2, u3, v2, v3, i.e. the relations which do not involve f ’s. There are in total 287 relations whose

lowest level is J = 10 and the highest level is J = 30. On the other hand, from the subsector

(2), we could generate the fundamental trace relations involving f ’s until J ≤ 20. There are

in total 130 relations involving f ’s between 14 ≤ J ≤ 20. These are enough to construct

relations of relations at J = 24.

Before presenting their explicit forms, we first explain our notation. When we write down

certain operator in the irreducible representation R under SU(3) ⊂ SU(4)R as Oi1i2i3...
j1j2j3...

, the

actual form of such an operator should be understood as Oi1i2i3...
j1j2j3...

subtracted by its trace

part to make it traceless, like

[n, 0] : Oi1i2i3···in → Oi1i2i3···in , [0, n] : Oi1i2i3···in → Oi1i2i3···in ,

[1, 1] : Oi
j → Oi

j − 1
3
δijO

a
a ,

[2, 1] : Oij
k → Oij

k − 1
2
δ

(i
k O

j)a
a , [1, 2] : Oi

jk → Oi
jk − 1

2
δi(jO

a
k)a ,

[3, 1] : Oijk
l → Oijk

l − 3
5
δ

(i
l O

jk)a
a , [1, 3] : Oi

jkl → Oi
jkl − 3

5
δi(jO

a
kl)a ,

[2, 2] : Oij
kl → Oij

kl − 4
5
δ

(i
(kO

j)a
l)a + 1

10
δ

(i
(kδ

j)
l)O

a1a2
a1a2

,

(A.3)

and so on. Here, [·, ·] are the Dynkin labels for SU(3).

Below, we list the explicit forms of the fundamental trace relations according to their

level J and representation under SU(3) ⊂ SU(4)R as tJ [R′1, R
′
2]. The relations which do

not involve f ’s are given as follows:

t10[1, 2](u2u3) : (R
(0,0)
10 )ijk = εa1a2(jεk)b1b2u

a1b1uia2b2

t12[0, 0](u2u2u2) : R
(0,0)
12 = εa1a2a3εb1b2b3u

a1b1ua2b2ua3b3

t12[2, 2](u2u2u2, u3u3) : (R
(0,0)
12 )ijkl = εa1a2(kεl)b1b2

(
ua1b1ua2b2uij + 6ua1b1(iuj)a2b2

)
t12[0, 3](u2v3) : (R

(0,1)
12 )ijk = ε(i|a1a2ε|j|b1b2u

a1b1va2b2
|k)

t12[1, 1](u2v3, u3v2) : (R
(0,1)
12 )ij = εja1a2

(
4ua1bvia2

b + 3uia1bva2
b

)
t12[2, 2](u2v3, u3v2) : (R

(0,1)
12 )ijkl = εa1a2(k

(
ua1(ivj)a2

l) + uija1va2
l)

)
t14[1, 0](u2u2v2) : (R

(0,1)
14 )i = εa1a2a3u

ia1uba2va3
b

143



t14[0, 2](u2u2v2, u3v3) : (R
(0,1)
14 )ij = εa1a2(i|

(
εb1b2b3u

a1b1ua2b2vb3 |j) − 2ε|j)b1b2u
a1b1cva2b2

c

)
t14[2, 1](u2u2v2, u3v3) : (R

(0,1)
14 )ijk = εka1a2

(
3u(a1buij)va2

b + 4ua1bua2(ivj)b + 24ua1b(ivj)a2
b

)
t14[1, 3](u2u2v2, u3v3) : (R

(0,1)
14 )ijkl = ε(j|a1a2ε|k|b1b2

(
ua1b1ua2b2vi|l) + 6uia1b1va2b2

|l)
)

t14[3, 2](u2u2v2, u3v3) : (R
(0,1)
14 )ijklm = εa1a2(l

(
u(a1iujk)va2

m) + 6ua1(ijvk)a2
m)

)
t14[1, 3](v2v3) : (R

(0,2)
14 )ijkl = εa1a2(jv

a1
kv

ia2
l)

t16[0, 1](u2v2v2, v3v3) : (R
(0,2)
16 )i = εia1a2

(
12ubcva1

bv
a2
c + 13ua1bva2

cv
c
b + 12va1b

cv
a2c

b

)
t16[1, 2](u2v2v2, v3v3) : (R

(0,2)
16 )ijk = εa1a2(j

(
3uibva1

k)v
a2
b − 7uia1vbk)v

a2
b

+ 6ua1bvik)v
a2
b + 24va1b

k)v
ia2

b

)
t16[2, 3](u2v2v2, v3v3) : (R

(0,2)
16 )ijklm = εa1a2(k

(
ua1(ivj)lv

a2
m) + 3va1(i

lv
j)a2

m)

)
t18[0, 0](u3v2v2) : R

(0,2)
18 = εa1a2a3u

a1bcva2
bv
a3
c

t20[1, 0](v2v2v3) : (R
(0,3)
20 )i = 2vacv

b
av

ic
b − 3viav

c
bv
ab
c

t22[2, 0](u2v2v2v2) : (R
(0,3)
22 )ij = uijvabv

b
cv
c
a − 3ua(ivj)bv

b
cv
c
a + 3uabv(i

av
j)
cv
c
b

t24[0, 0](u2v2v2v3) : R
(0,3)
24 = εa1a2a3u

a1bva2
bv
a3c

dv
d
c

t26[1, 0](v2v2v2v3) : (R
(0,4)
26 )i = viav

a
bv
d
cv
bc
d

t30[0, 0](v2v2v2v2v2) : R
(0,5)
30 = vabv

b
cv
c
dv
d
ev
e
a

t30[3, 0](v2v2v2v2v2) : (R
(0,5)
30 )ijk = εa1a2(ivja1v

k)
a2v

b
cv
c
dv
d
b . (A.4)

Here, the superscripts of R denote (nf , nψ) of the terms with maximal nf in the trace

relations and the subscripts denote their J . Their SU(3) representations can be read off

from the number of upper and lower indices. The listed trace relations vanish up to Q-

exact operators whose explicit form will be discussed below. As explained before, this is the

exhaustive set of the fundamental trace relations of gravitons which do not involve f ’s. The

fundamental trace relations involving f ’s until J = 20 are given by

t14[0, 2](v2v3, u2w3) : (R
(1,0)
14 )ij = εa1a2(i

(
8va1b

j)v
a2
b + 5εj)b1b2u

a1b1wa2b2
)

t14[2, 1](v2v3, u2w3, u3w2) :

(R
(1,0)
14 )ijk = 2v(i

av
j)a

k − 5vakv
ij
a + 3εka1a2u

a1(iwj)a2 + 3εka1a2u
ija1wa2

t16[0, 1](v3v3, u2v2v2, u2u2w2) :

(R
(1,0)
16 )i = εia1a2

(
48va1b1

b2v
a2b2

b1 + 9ub1b2va1
b1v

a2
b2 − 13εb1b2b3u

a1b1ua2b2wb3
)

t16[1, 2](v3v3, u2v2v2, u3w3, u2u2w2) :

(R
(1,0)
16 )ijk = εa1a2(j|

(
24via1

bv
ba2
|k) + 2uia1va2

bv
b
|k)−6ua1bva2

bv
i
|k)

+6ε|k)b1b2u
ia1b1wa2b2 + ε|k)b1b2u

a1b1ua2b2wi
)
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t16[3, 1](v3v3, u2v2v2, u3w3, u2u2w2) :

(R
(1,0)
16 )ijkl = 24v(ij

av
k)a

l + 7u(ijvk)
av

a
l − 6ua(ivjav

k)
l

+ 18εla1a2u
a1(ijwk)a2 + 3εla1a2u

(ijuk)a1wa2

t16[1, 2](v2w3, v3w2) : (R
(1,1)
16 )ijk = εa1a2(j

(
va1

k)w
a2i + va1i

k)w
a2
)

t18[0, 0](v2v2v2, u2v2w2) : R
(1,1)
18 = va1

a2v
a2
a3v

a3
a1 − 3εa1a2a3u

a1bva2
bw

a3

t18[1, 1](v2v2v2, v3w3, u2v2w2) :

(R
(1,1)
18 )ij = 9via1v

a1
a2v

a2
j − 24εja1a2v

ia1
bw

ba2

− 13εja1a2u
ia1va2

bw
b − 16εja1a2u

ibva1
bw

a2 + 5εja1a2u
a1bvibw

a2

t18[0, 3](v2v2v2, v3w3, u2v2w2) :

(R
(1,1)
18 )ijk = εa1a2(i|

(
3va1

|j|v
a2
bv
b
|k)−3εb1b2|jv

a1b1
k)w

a2b2−εb1b2|jua1b1va2
k)w

b2
)

t18[2, 2](v2v2v2, v3w3, u2v2w2) :

(R
(1,1)
18 )klij = 2v(i

av
j)

(kv
a
l) − 6εa1a2(kv

a1(i
l)w

j)a2 − εa1a2(ku
ijva1

l)w
a2

t20[0, 2](v2v2w2, u2w2w2, w3w3) :

(R
(2,0)
20 )ij = 2εa1a2(i|v

a1
bv
b
|j)w

a2 − 3εa1a2a3v
a1
iv
a2
jw

a3

+ εia1a2εjb1b2u
a1b1wa2wb2 + 3εia1a2εjb1b2w

a1b1wa2b2 . (A.5)

The relations involving one f appear from J = 14 and those involving two f ’s appear from

J = 20. We do not find any relations involving three f ’s until J = 20.

As explained before, the trace relations (A.4), (A.5) vanish up toQ-exact operators, which

we now construct explicitly. In principle, one should first construct the complete basis of the

Q-exact operators, which have the same level J and SU(3) representation with the target

trace relation. (The Q-action does not change J and SU(3) representation.) However, in

practice, we can make some ansätze for the Q-exact form to reduce the dimension of Q-exact

basis. One of our working assumptions is that the maximal number of f ’s appearing before

the Q-action is the same as that of the trace relation. There is a priori no reason to assume

that but it turns out to be true for our examples. After imposing this assumption (and a

couple of extra practical assumptions), we find a particular linear combination of the Q-exact

operators in our basis for the target trace relation. In general, when we write RI ∼ QrI for a

trace relation RI , there exist ambiguities of rI since we can add arbitrary Q-closed operators

to rI . We partly fix them by requiring rI to vanish when φ, ψ, f are restricted to diagonal

matrices. We do not know whether such a requirement can be satisfied in general, but it

does work for our examples. The purpose of this requirement will be explained later. The

other ambiguities are fixed by hand to get compact expressions.

Below, we list the operators r
(nf ,nψ)
j related to the fundamental trace relations R

(nf ,nψ−1)
j
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by i Qr
(nf ,nψ)
j = R

(nf ,nψ−1)
j . We will not list all r

(nf ,nψ)
j ’s, but only those which are used in

section 7.3. For the relations without f ’s in (A.4), we obtain

(r
(0,1)
10 )ijk = −2 εa1a2(j tr

(
φa1φa2φiψk)

)
,

r
(0,1)
12 = εa1a2a3

[
6 tr (ψbφ

a1) tr
(
φbφa2φa3

)
− tr (ψbφ

a1φa2) tr
(
φbφa3

)]
− 3εa1a2a3

[
tr
(
ψbφ

bφa1φa2φa3
)

+ tr
(
ψbφ

a1φbφa2φa3
)

+ tr
(
ψbφ

a1φa2φbφa3
)

+ tr
(
ψbφ

a1φa2φa3φb
) ]

,

(r
(0,1)
12 )ijkl = −2εa1a2(k

[
tr
(
ψl)φ

(iφj)φa1φa2
)

+ 7 tr
(
ψl)φ

(i|φa1φ|j)φa2
)]

,

(r
(0,2)
12 )ijk =

1

2
εa1a2(i tr

(
φa1ψjφ

a2ψk)

)
,

(r
(0,2)
12 )ij = 6 tr

(
φ(iφa)ψ(aψj)

)
− 5 tr

(
φ[iψaφ

a]ψj
)
,

(r
(0,2)
12 )ijkl = tr

(
φ(iφj)ψ(kψl)

)
,

(r
(0,2)
14 )i = 3 tr

(
φiψa1φ

a1φa2ψa2

)
+ 2 tr

(
φiφa1

)
tr
(
φa2ψ(a1ψa2)

)
− 6 tr

(
φiψa1

)
tr
(
φ[a1φa2]ψa2

)
− tr

(
φiψa1ψa2

)
tr (φa1φa2) ,

(r
(0,2)
14 )ij =

5

9
εa1a2a3

[
2 tr

(
ψ(iψj)φ

a1φa2φa3
)

+ tr
(
ψ(iφ

a1ψj)φ
a2φa3

)]
+ εa1a2(i

[
tr
(
ψj)ψa3φ

a1φa2φa3
)

+ tr
(
ψj)ψa3φ

a1φa3φa2
)

+ tr
(
ψj)ψa3φ

a3φa1φa2
)]

+ εa1a2(i

[
tr
(
ψj)φ

a1ψa3φ
a2φa3

)
+ tr

(
ψj)φ

a1ψa3φ
a3φa2

)
+ tr

(
ψj)φ

a3ψa3φ
a1φa2

)]
+ εa1a2(i

[
tr
(
ψj)φ

a1φa2ψa3φ
a3
)

+ tr
(
ψj)φ

a1φa3ψa3φ
a2
)

+ tr
(
ψj)φ

a3φa1ψa3φ
a2
)]

+ εa1a2(i

[
tr
(
ψj)φ

a1φa2φa3ψa3

)
+ tr

(
ψj)φ

a1φa3φa2ψa3

)
+ tr

(
ψj)φ

a3φa1φa2ψa3

)]
− 1

3
εa1a2(i

[
5 tr

(
ψj)φ

a1φa2
)

tr (ψa3φ
a3) + 2 tr

(
ψj)φ

(a1φa3)
)

tr (ψa3φ
a2)

− 2 tr
(
ψj)φ

a2
)

tr
(
ψa3φ

(a1φa3)
) ]

,

(r
(0,2)
14 )ijk = 12 tr

(
φ(iφaφj)ψ(aψk)

)
+ 12 tr

(
φ(i|φaφ|j)ψ(aψk)

)
+ 54 tr

(
φ(iφjψ(aφ

a)ψk)

)
− 36 tr

(
φ(iφj)ψ(aφ

aψk)

)
,

(r
(0,2)
14 )ijkl = 2εa1a2(j

[
tr
(
φiφa1φa2ψkψl)

)
+ 3 tr

(
φiφa1ψkφ

a2ψl)
)
− 2 tr

(
φiψkφ

a1φa2ψl)
)]

,

(r
(0,3)
14 )ijkl = −1

2
tr
(
φiψ(jψkψl)

)
,

(r
(0,3)
16 )i =

39

4
tr
(
ψi{ψb1ψb2 , φb1φb2}

)
+ 2 tr

(
ψiψb1φ

b1ψb2φ
b2
)
− 61

4
tr
(
ψiψb1φ

b2ψb2φ
b1
)

+
97

4
tr
(
ψiφ

b1ψb1ψb2φ
b2
)
− 41

4
tr
(
ψiφ

b2ψb1ψb2φ
b1
)
− 5 tr

(
ψiψb1φ

b1φb2ψb2
)

− 25

2
tr
(
ψiψb1φ

b2φb1ψb2
)

+ 2 tr
(
ψiφ

b1ψb1φ
b2ψb2

)
− 61

4
tr
(
ψiφ

b2ψb1φ
b1ψb2

)
− 11

4
tr
(
φb1φb2

)
tr (ψiψb1ψb2)− 27

2
tr (ψb1ψb2) tr

(
ψiφ

b1φb2
)
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+
29

4
tr
(
φb2ψb2

)
tr
(
ψi[ψb1 , φ

b1 ]
)
,

(r
(0,3)
16 )ijk = 2 tr

(
ψ(jψk)ψbφ

bφi
)
− 4 tr

(
ψ(jψk)ψbφ

iφb
)
− tr

(
ψ(j|ψbψ|k){φb, φi}

)
− 4 tr

(
ψ(jψk)φ

(bψbφ
i)
)

+ 7 tr
(
ψ(j|{ψb, φb}ψ|k)φ

i
)
− 11 tr

(
ψ(j|{ψb, φi}ψ|k)φ

b
)

− 4 tr
(
ψ(jψk)φ

bφiψb
)

+ 2 tr
(
ψ(jψk)φ

iφbψb
)

+ 3 tr
(
ψ(j|ψb

)
tr
(
ψ|k)[φ

b, φi]
)

+ 6 tr
(
ψ(jφ

[b
)

tr
(
{ψk), ψb}φi]

)
. (A.6)

For the relations involving f ’s in (A.5), we find

(r
(1,1)
14 )ij =5εa1a2(i tr

(
fφa1ψj)φ

a2
)

+ tr
(
φa
{
ψa, ψ(iψj)

})
− 4 tr

(
φaψ(i|ψaψ|j)

)
,

(r
(1,1)
14 )ijk =3 tr

(
fφ(iφj)ψk

)
− 3 tr

(
fψkφ

(iφj)
)

+ εa1a2(i tr
(
φj)ψkψa1ψa2

)
− εa1a2(i tr

(
φj)ψa1ψa2ψk

)
,

(r
(1,1)
16 )i =13εa1a2a3 tr (fψi) tr (φa1φa2φa3) +

10

3
εa1a2a3 tr (fφa1) tr (ψiφ

a2φa3)

+
10

3
εa1a2a3 tr (fφa1φa2) tr (ψiφ

a3) + 46εia1a2 tr
(
fφb
)

tr (ψbφ
a1φa2)

− 7εia1a2 tr (fφa1) tr
(
ψbφ

a2φb
)
− 7εia1a2 tr

(
fφbφa1

)
tr (ψbφ

a2)

+ 6εia1a2 tr (fφa1φa2) tr
(
ψbφ

b
)
− 115

3
εa1a2a3 tr (fψiφ

a1φa2φa3)

− 95

3
εa1a2a3 tr (fφa1ψiφ

a2φa3) + 5εa1a2a3 tr (fφa1φa2ψiφ
a3)

+ 36εia1a2 tr
(
fψbφ

a1φa2φb
)
− 43εia1a2 tr

(
fψbφ

a1φbφa2
)

+ 39εia1a2 tr
(
fφa1ψbφ

a2φb
)
− 68εia1a2 tr

(
fφa1φa2ψbφ

b
)

+ 39εia1a2 tr
(
fφa1φbψbφ

a2
)

+ 13 tr
(
ψi{ψb1ψb2 , φb1φb2}

)
− 31 tr

(
ψi{ψb1ψb2 , φb2φb1}

)
+ 14 tr

(
ψiψb1φ

b1ψb2φ
b2
)

− 22 tr
(
ψiψb1φ

b2φb1ψb2
)

+ 14 tr
(
ψiφ

b1ψb1φ
b2ψb2

)
,

(r
(1,1)
16 )ijk =εa1a2(j

[
−4 tr

(
fφi
)

tr
(
ψk)φ

a1φa2
)
− tr

(
φiφa2

)
tr
(
f [ψk), φ

a1 ]
)]

+ εa1a2(j

[
3 tr

(
fφa1{ψk), φ

i}φa2
)

+ 5 tr
(
f{ψk), φ

a1φiφa2}
)

− 4 tr
(
fψk)φ

iφa1φa2
)
− 4 tr

(
fφa1φa2φiψk)

) ]
+ 2 tr

(
ψ(jψk)ψb[φ

b, φi]
)
− 3 tr

(
ψ(j|ψbψ|k){φb, φi}

)
+ 6 tr

(
ψ(j|{ψb, φb}ψ|k)φ

i
)

− 9 tr
(
ψ(j|{ψb, φi}ψ|k)φ

b
)
− 2 tr

(
ψ(jψk)

[
φb, φi

]
ψb
)

+ tr
(
ψ(j|ψb

)
tr
(
ψ|k)[φ

b, φi]
)

+ tr
(
ψ(j|φ

b
)

tr
(
{ψ|k), ψb}φi

)
,

(r
(1,2)
16 )ijk =− 1

2
tr
(
fφiψ(jψk)

)
− 1

2
tr
(
fψ(jφ

iψk)

)
− 1

2
tr
(
fψ(jψk)φ

i
)
− 1

4
εia1a2 tr

(
ψa1ψa2ψ(jψk)

)
,
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(r
(1,2)
18 )ij =− 4 tr

(
fφiφa

)
tr (ψjψa)− 5 tr

(
fφaφi

)
tr (ψjψa)−

53

2
tr
(
fφiψj

)
tr (φaψa)

+ 7 tr
(
fφiψa

)
tr (φaψj) +

15

2
tr (fφaψj) tr

(
φiψa

)
+ 12 tr (fφaψa) tr

(
φiψj

)
+ 2 tr

(
fψjφ

i
)

tr (φaψa)− 13 tr
(
fψaφ

i
)

tr (φaψj) + 4 tr (fψjφ
a) tr

(
φiψa

)
+ 6 tr (fψjψa) tr

(
φiφa

)
+

13

2
tr (fψaψj) tr

(
φiφa

)
− 4 tr

(
fφi
)

tr (φaψjψa)

+ 14 tr
(
fφi
)

tr (φaψaψj)− 8 tr (fφa) tr
(
φiψjψa

)
− 8 tr (fφa) tr

(
φiψaψj

)
− 4 tr (fψj) tr

(
ψaφ

iφa
)
− 9 tr (fψa) tr

(
ψjφ

iφa
)

+ 6 tr (fψa) tr
(
ψjφ

aφi
)

+ 3 tr
(
fφiφaψjψa

)
− 31

2
tr
(
fφiφaψaψj

)
+ 3 tr

(
fφaφiψjψa

)
+

5

2
tr
(
fφaφiψaψj

)
+ 12 tr

(
fφiψjφ

aψa
)
− 13

2
tr
(
fφiψaφ

aψj
)

− 6 tr
(
fφaψjφ

iψa
)
− 13

2
tr
(
fφaψaφ

iψj
)

+ 18 tr
(
fφiψjψaφ

a
)

− 12 tr
(
fψjφ

iφaψa
)

+
17

2
tr
(
fψaφ

iφaψj
)
− 43

2
tr
(
fψaφ

aφiψj
)

+
1

3
εa1a2a3 tr

(
φiψj

)
tr (ψa1ψa2ψa3)− 2εa1a2i tr

(
φbψa1

)
tr (ψbψjψa2)

− 10εa1a2a3 tr
(
φiψjψa1ψa2ψa3

)
+ 8εa1a2a3 tr

(
φiψa1ψjψa2ψa3

)
− 2εa1a2a3 tr

(
φiψa1ψa2ψjψa3

)
,

(r
(1,2)
18 )ijk =− εa1a2(i

[
tr (fφa1) tr

(
φa2ψjψk)

)
− 3

2
tr (fψj) tr

(
ψk)φ

a1φa2
)

+ 3 tr
(
fφa1ψjφ

a2ψk)

)
− 3 tr

(
fψjφ

a1ψk)φ
a2
) ]

− 1

2
tr (φaψa) tr

(
ψ(iψjψk)

)
+

3

2
tr
(
φaψ(i|

)
tr
(
ψaψ|jψk)

)
+

1

2
tr
(
φaψ(iψj|

)
tr
(
ψaψ|k)

)
+

3

2
tr
(
φaψ(i|ψaψ|jψk)

)
− 3

2
tr
(
φaψ(iψj|ψaψ|k)

)
,

(r
(2,1)
20 )ij =− εa1a2(i

[
tr (ff) tr

(
φa1φa2ψj)

)
+

1

2
tr
(
fψj)

)
tr (fφa1φa2)

+ 2 tr (fφa1) tr
(
f [φa2 , ψj)]

) ]
+ εa1a2(i

[
4 tr

(
ffφa1φa2ψj)

)
− tr

(
fφa1φa2fψj)

)]
+ 2 tr

(
fφaψ(i

)
tr
(
ψj)ψa

)
− 4 tr

(
fψ(iφ

a
)

tr
(
ψj)ψa

)
− 1

2
tr
(
fψ(i

) (
φaψj)ψa

)
− 5

2
tr
(
fψ(i|

) (
φaψaψ|j)

)
+ 2 tr (fψa)

(
φaψ(iψj)

)
− 4 tr

(
fψ(i|ψa

) (
φaψ|j)

)
+ 2 tr

(
fφaψ(i[ψj), ψa]

)
+ 4 tr

(
fφaψaψ(iψj)

)
+ 4 tr

(
fψ(iφ

aψj)ψa
)
− 3 tr

(
fψ(i|φ

aψaψ|j)
)

− 2 tr
(
fψaφ

aψ(iψj)
)
− tr

(
fψ(i|ψaφ

aψ|j)
)

+ 4 tr
(
fψaψ(iφ

aψj)
)
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+
2

5
εa1a2a3

[
2 tr (ψa1ψa2) tr

(
ψa3ψ(iψj)

)
− 3 tr

(
ψ(i|ψa1ψ|j)ψa2ψa3

)]
. (A.7)

Finally, we construct relations of these trace relations. Consider a linear combination of

the trace relations with coefficients being the graviton cohomologies. If it vanishes identi-

cally, we call it a relation of relations. While the trace relations are identities that can be

seen at the level of ‘gluons’ φ, ψ, f , the relations of relations are the identities of mesons

u2, u3, v2, v3, w2, w3. We do not need to know how u2, u3, v2, v3, w2, w3 are made of φ, ψ, f to

obtain the relations of relations. After constructing relations of relations, one can write them

as the Q-action on certain operators using (A.6), (A.7). They are the Q-closed operators

since their Q-actions vanish due to the relations of relations. This is the way we obtain the

Q-closed operators in section 7.3.2. They can be either Q-exact or not and there is no trivial

way to judge it easily. If they are not Q-exact, they are the non-graviton cohomologies since

they are made of the linear combinations of rI ’s, which vanish with diagonal φ, ψ, f . For the

check of the (non-)Q-exactness, refer to section 7.3.3.

Now we will construct relations of relations at the threshold level J = 24 which are

singlets under SU(3) ⊂ SU(4)R, from the trace relations (A.4), (A.5). There are 5 choices

of (R, J) in this sector in which relations of relations exist.

i) (R, J) = (2, 2). Let us first enumerate all SU(3) ⊂ SU(4)R singlets in this sector made

by the product of the trace relations in (A.4), (A.5) and the graviton cohomologies. There

are following 6 singlets:

s
(2,0)
1 = uij(R

(2,0)
20 )ij , s

(2,0)
2 = wij(R

(1,0)
14 )ij , s

(2,0)
3 = wi(R

(1,0)
16 )i ,

s
(1,2)
1 = vjki(R

(1,1)
16 )ijk , s

(1,2)
2 = vj i(R

(1,1)
18 )ij , s

(1,2)
3 = wi(R

(0,2)
16 )i .

(A.8)

The superscripts denote (nf , nψ) of the terms with maximal nf in the operator, as before.

There is one relation of these relations given by

i QO(2,1) ≡ 65s
(2,0)
1 − 39s

(2,0)
2 + 5s

(2,0)
3 − 312s

(1,2)
1 − 26s

(1,2)
2 + 6s

(1,2)
3 = 0 . (A.9)

This is the Q-action on the Q-closed operator (7.63).
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ii) (R, J) = (5
2
, 3

2
). There exist 12 SU(3) singlets in this sector given by

s
(1,1)
1 = ua(ivj)a(R

(1,0)
14 )ij , s

(1,1)
2 = εa1a2(iu

a1kva2
j)(R

(1,0)
14 )ijk , s

(1,1)
3 = vjki(R

(1,0)
16 )ijk ,

s
(1,1)
4 = uijk(R

(1,1)
18 )ijk , s

(1,1)
5 = v(j

iw
k)(R

(0,0)
10 )ijk , s

(1,1)
6 = u(ijwk)(R

(0,1)
12 )ijk ,

s
(1,1)
7 = εa1a2iu

a1jwa2(R
(0,1)
12 )ij , s

(1,1)
8 = wij(R

(0,1)
14 )ij ,

s
(0,3)
1 = εa1a2(ivja1v

k)
a2(R

(0,1)
12 )ijk , s

(0,3)
2 = vjav

a
i(R

(0,1)
12 )ij ,

s
(0,3)
3 = u(jkvk)

i(R
(0,2)
14 )ijkl , s

(0,3)
4 = vjki(R

(0,2)
16 )ijk .

(A.10)

There are 4 relations of these relations, given by

i QO
(1,2)
1 ≡ 3s

(1,1)
5 − 3s

(1,1)
6 + s

(1,1)
7 = 0 ,

i QO
(1,2)
2 ≡ 9s

(1,1)
1 − 10s

(1,1)
2 − 30s

(1,1)
5 − 60s

(0,3)
3 = 0 ,

i QO
(1,2)
3 ≡ 3s

(1,1)
1 − 6s

(1,1)
2 + 4s

(1,1)
4 − 14s

(1,1)
5 − 6s

(1,1)
8 − 12s

(0,3)
1 − 4s

(0,3)
2 = 0 ,

i QO
(1,2)
4 ≡ 3s

(1,1)
1 − 14s

(1,1)
2 − 8s

(1,1)
3 − 42s

(1,1)
5 + 12s

(1,1)
6 − 24s

(1,1)
8 − 36s

(0,3)
1 + 8s

(0,3)
4 = 0 .

(A.11)

They are the Q-actions on (7.64).

iii) (R, J) = (3, 1). There exist 16 SU(3) singlets in this sector given by

s
(1,0)
1 = εa1a2iεb1b2ju

a1b1ua2b2k(R
(1,0)
14 )ijk ,

s
(1,0)
2 = εa1a2iu

a1(jwk)a2(R
(0,0)
10 )ijk ,

s
(1,0)
3 = εa1a2iu

a1jkwa2(R
(0,0)
10 )ijk ,

s
(0,2)
1 = vaiv

jk
a(R

(0,0)
10 )ijk ,

s
(0,2)
2 = v(j

av
k)a

i(R
(0,0)
10 )ijk ,

s
(0,2)
3 = ua(ivjk)

a(R
(0,1)
12 )ijk ,

s
(0,2)
4 = ua(ijvk)

a(R
(0,1)
12 )ijk ,

s
(0,2)
5 = εa1a2iu

a1bva2j
b(R

(0,1)
12 )ij ,

s
(0,2)
6 = εa1a2iu

a1bjva2
b(R

(0,1)
12 )ij ,

s
(0,2)
7 = εa1a2(iu

a1(kvl)a2
j)(R

(0,1)
12 )ijkl ,

s
(0,2)
8 = εa1a2(iu

a1klva2
j)(R

(0,1)
12 )ijkl ,

s
(0,2)
9 = εa1a2iu

a1(jukl)a2(R
(0,2)
14 )ijkl ,

s
(0,2)
10 = εa1a2iu

a1bva2
b(R

(0,1)
14 )i ,

s
(0,2)
11 = ua(ivj)a(R

(0,1)
14 )ij ,

s
(0,2)
12 = εa1a2(iu

a1kva2
j)(R

(0,1)
14 )ijk ,
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s
(0,2)
13 = u(jkvl)i(R

(0,1)
14 )ijkl . (A.12)

There are 13 relations of these relations, given by

i QO
(1,1)
1 ≡ s

(1,0)
2 = 0 ,

i QO
(1,1)
2 ≡ s

(1,0)
3 = 0 ,

i QO
(1,1)
3 ≡ s

(1,0)
1 + 5s

(0,2)
1 − 2s

(0,2)
2 = 0 ,

i QO
(0,3)
1 ≡ 4s

(0,2)
5 + 3s

(0,2)
6 = (R

(0,1)
12 )ij(R

(0,1)
12 )ji = i Q

[
1

2
i Q((r

(0,2)
12 )ij(r

(0,2)
12 )ji )

]
= 0 ,

i QO
(0,3)
2 ≡ s

(0,2)
7 + s

(0,2)
8 = (R

(0,1)
12 )ijkl(R

(0,1)
12 )klij = i Q

[
1

2
i Q((r

(0,2)
12 )ijkl(r

(0,2)
12 )klij )

]
= 0 ,

i QO
(0,3)
3 ≡ s

(0,2)
3 = 0 ,

i QO
(0,3)
4 ≡ s

(0,2)
10 = 0 ,

i QO
(0,3)
5 ≡ 6s

(0,2)
1 − 6s

(0,2)
4 − s(0,2)

6 = 0 ,

i QO
(0,3)
6 ≡ 24s

(0,2)
2 − 6s

(0,2)
11 + s

(0,2)
12 = 0 ,

i QO
(0,3)
7 ≡ s

(0,2)
1 − 10s

(0,2)
2 − 6s

(0,2)
4 − 10s

(0,2)
8 = 0 ,

i QO
(0,3)
8 ≡ 5s

(0,2)
1 − 2s

(0,2)
2 − 9s

(0,2)
4 + 6s

(0,2)
9 = 0 ,

i QO
(0,3)
9 ≡ 6s

(0,2)
1 + 12s

(0,2)
2 − 18s

(0,2)
4 + s

(0,2)
12 = 0 ,

i QO
(0,3)
10 ≡ 38s

(0,2)
1 + 4s

(0,2)
2 − 24s

(0,2)
4 − 5s

(0,2)
13 = 0 . (A.13)

They are the Q-actions on (7.65). Here, O
(0,3)
1 and O

(0,3)
2 are explicitly shown to be Q-exact.

iv) (R, J) = (7
2
, 1

2
). There exist 8 SU(3) singlets in this sector given by

s
(0,1)
1 = εa1a2iu

a1bujkva2
b(R

(0,0)
10 )ijk , s

(0,1)
2 = εa1a2iu

a1bua2(jvk)
b(R

(0,0)
10 )ijk ,

s
(0,1)
3 = εa1a2iu

a1b(jvk)a2
b(R

(0,0)
10 )ijk , s

(0,1)
4 = εa1a2(iu

a1(kvl)a2
j)(R

(0,0)
12 )ijkl ,

s
(0,1)
5 = εa1a2(iu

a1klva2
j)(R

(0,0)
12 )ijkl , s

(0,1)
6 = εa1a2(iεj)b1b2u

a1b1ua2b2ukl(R
(0,1)
12 )ijkl ,

s
(0,1)
7 = εa1a2(iεj)b1b2u

a1b1ua2b2k(R
(0,1)
14 )ijk , s

(0,1)
8 = εa1a2iu

a1(jukl)a2(R
(0,1)
14 )ijkl .

(A.14)
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There are 6 relations of these relations, given by

i QO
(0,2)
1 ≡ s

(0,1)
1 − 2s

(0,1)
2 = 0 ,

i QO
(0,2)
2 ≡ 6s

(0,1)
3 + s

(0,1)
4 = 0 ,

i QO
(0,2)
3 ≡ s

(0,1)
1 + s

(0,1)
5 = 0 ,

i QO
(0,2)
4 ≡ s

(0,1)
1 + s

(0,1)
6 = 0 ,

i QO
(0,2)
5 ≡ 4s

(0,1)
1 + 24s

(0,1)
3 − s(0,1)

7 = 0 ,

i QO
(0,2)
6 ≡ s

(0,1)
1 − 12s

(0,1)
3 + 3s

(0,1)
8 = 0 .

(A.15)

They are the Q-actions on (7.67).

v) (R, J) = (4, 0) There exist 4 SU(3) singlets in this sector given by

s
(0,0)
1 = εa1a2a3εb1b2iu

a1b1ua2b2ua3jk(R
(0,0)
10 )ijk ,

s
(0,0)
2 = R

(0,0)
12 R

(0,0)
12 ,

s
(0,0)
3 = εa1a2(iεj)b1b2u

a1b1ua2b2ukl(R
(0,0)
12 )ijkl ,

s
(0,0)
4 = εa1a2(iεj)b1b2u

a1b1(kul)a2b2(R
(0,0)
12 )ijkl .

(A.16)

There is 1 relation of these relations, given by

i QO(0,1) ≡ 36s
(0,0)
1 + 5s

(0,0)
2 − 6s

(0,0)
3 = 0 . (A.17)

This is the Q-action on (7.68).
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