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5.7 Comparison of InteractionHotspots [196] and our approach. We find Interaction-
Hotspots typically makes a cloud like probability map on our data. Our model is
very confident about its prediction, while there can be multiple solutions. Predic-
tion and GT are zoomed manually for better visualization. Affordance colormap:
min max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Results on robotics data [6]. Without finetuning, our approach generalizes well
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5.9 Typical failure modes of our approach. Row 1: Our predicted rotation axis is
on the wrong side when the objects look symmetric. Row 2: Our predicted
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6.1 Illustration for the affordance grounding task. The input is a single image
and the corresponding action (e.g, “hold”). The output is a heatmap which high-
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knowledge from large-scale vision language models [163] beyond the supervision
from the training images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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ABSTRACT

Enabling machines to perceive, understand, and interact with the 3D world is a funda-

mental challenge in Computer Vision and Robotics, crucial for embodied agents operating

in real-world environments. This dissertation addresses this challenge by proposing novel

approaches to unify 3D reconstruction, affordance learning, and object manipulation. By

developing a system that can understand and interact with arbitrary objects in diverse

scenes, this research aims to enhance the ability of AI agents to navigate and operate in

both physical and digital worlds.

This dissertation is structured into three primary parts, each tackling a key challenge

in 3D perception and interaction. First, we introduce novel approaches for 3D scene un-

derstanding from visual observations, including Associative3D and ViewSeg, which enable

machines to perceive and understand the 3D world from limited input data.

Next, we develop methodologies for learning and grounding affordances in 3D scenes,

leveraging unstructured Internet videos and Vision Language Models to enhance the system’s

understanding of object interactions. We propose a novel approach for predicting 3D object

interactions from a single image and investigate the distillation of comprehensive world

knowledge from Vision Language Models.

Finally, we extend our approach to active object manipulation, employing the developed

system as a visual pretraining mechanism for robotics to improve the performance and

generalization of manipulation policies.

The key contributions of this dissertation lie in the development of techniques spanning

from passive 3D perception to active object manipulation. By leveraging the vast knowledge

from demonstration videos and Vision Language Models and applying the system to robotic

pretraining, this research takes significant steps towards endowing machines with the ability

to intelligently interact with the 3D world. The proposed methodologies collectively advance

the state-of-the-art in machine perception and interaction, paving the way for more capable

and adaptable AI agents.
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CHAPTER 1

Introduction

Enabling machines to perceive, understand and interact with the 3D world is a fundamen-

tal challenge in computer vision and robotics. The ability to reason about the 3D structure

of scenes and objects, infer their affordances, and plan interactions is crucial for embodied

agents operating in real-world environments. This capability would allow robots to assist

humans in everyday tasks, navigate autonomously, and manipulate objects to achieve goals.

However, developing such 3D perception and interaction abilities in machines remains an

open problem due to several key challenges.

First, recovering the 3D structure of scenes from 2D images or videos is an ill-posed

inverse problem. Multiple 3D interpretations can explain the same 2D projections, and in-

ferring depth requires resolving these ambiguities through priors or additional views. Tradi-

tional multi-view 3D reconstruction approaches like structure-from-motion make restrictive

assumptions about the scene (e.g. static, rigid) and require identifying correspondences

across views, which is difficult in low-texture regions [234, 1]. More recent learning-based

methods can relax these assumptions but need large datasets of ground-truth 3D annotations

which are costly to acquire [153, 274, 63].

Second, even with an accurate 3D reconstruction, understanding which parts of the

scene are relevant for a given interaction and how to manipulate objects to achieve an

objective is non-trivial. According to J.J. Gibson, affordances refer to the opportunities for

interaction provided by the environment to an agent, essentially defining the possible actions

that can be performed on an object or surface [76]. In other words, affordances describe the

functional and interactive properties of objects and scenes, such as the ability to grasp, push,

or manipulate them. While humans can quickly infer the affordances and functionality of

novel objects, this is challenging for machines since affordances depend on both the object’s

geometric structure as well as its intended use which can vary based on context [177].

Third, moving from affordance to manipulation policy is nontrivial. Learning a general

purpose manipulation policy through trial-and-error exploration in 3D environments is a

1



complex robot learning problem. Since interactions can have irreversible consequences (e.g.

breaking objects), naively exploring in the real world is expensive and dangerous. Simulators

and 3D virtual environments provide a safe avenue for training interaction policies [113, 306].

However, the learned policies may not generalize well to real-world scenarios due to the

domain gap between synthetic and real data.

In summary, enabling machines to intelligently interact with the 3D world requires ad-

dressing three key challenges: 1) reconstructing 3D scenes from visual observations, 2) un-

derstanding scene semantics and object affordances, and 3) learning manipulation policies

through autonomous exploration. While there has been significant progress on each of these

fronts individually, integrating them into a complete and scalable 3D perception and inter-

action framework remains an open problem. The goal of this dissertation is to take a step

towards addressing this challenge by proposing novel approaches that unify 3D reconstruc-

tion, affordance learning, and object manipulation.

The remainer of the dissertaion is organized as follows: We will first address the challenge

of reconstructing 3D scenes from visual observations in Chapters 2 and 3, where we propose

novel approaches for 3D scene understanding from visual observations. More specific,

Chapter 2 explores the challenge of perceiving the 3D world from two views with un-

known camera poses, which is a crucial first step for interacting with the environment. We

introduce Associative3D, a novel approach that jointly estimates volumetric reconstructions,

establishes inter-view object associations, and infers relative camera poses. Our method is

trained and evaluated on the synthetic SUNCG dataset [250], demonstrating strong perfor-

mance. We also validate its generalization capability on the real-world NYUv2 dataset [246].

However, the approach has limitations in generalizing to diverse real-world images beyond

NYUv2, primarily due to the constraints of the backbone architecture [138, 265]. Retrain-

ing the backbone requires watertight 3D meshes, which are often unavailable for real-world

datasets such as Matterport3D [26], ScanNet [42], and Habitat [216]. Addressing this lim-

itation and enabling robust 3D perception on real-world data is an important direction for

future research.

Chapter 3 addresses the limitation of data availability by leveraging implicit representa-

tions, specifically Neural Radiance Fields (NeRFs) [305, 188, 316]. We introduce ViewSeg, a

novel approach that predicts 3D semantics from any viewpoint in a scene, using only a few

input images. Our model is trained on multi-view 2D annotations from hundreds of scenes in

the Hypersim dataset [225], without requiring explicit 3D supervision beyond camera poses.

Notably, these annotations are easily obtainable – given a video of any scene, we can estimate

camera poses using structure-from-motion techniques like Colmap [234] and sample frames

for annotation. This setup is sufficient to train our model effectively. ViewSeg demonstrates
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strong performance on real-world data from the Replica dataset [253], showcasing its ability

to generalize to novel scenes and viewpoints. Our approach opens up new possibilities for

3D semantic understanding from limited input data, making it more practical for real-world

applications.

We then tackle the challenge of understanding scene semantics and object affordances

in Chapters 4, 5, and 6, where we propose novel approaches for learning and grounding

affordances in 3D scenes. Chapter 4 takes a step towards this goal by learning to understand

3D object articulation from Internet videos. In this chapter, we focus on articulated objects,

which has moving parts or joints that can change its shape or configuration (e.g. door,

drawer). We introduce a novel system that produces a 3D planar representation of the

observed articulation given an ordinary video. This problem is particularly challenging

because it requires dynamic 3D understanding, and most existing 3D datasets, such as

Matterport3D [26], ScanNet [42], and Gibson [285], only contain static scenes. To overcome

this challenge, we design a semi-automatic pipeline that extracts articulation clips and labels

from a large corpus of Internet videos, leveraging prior work on learning from videos [236, 72].

Our pipeline automatically discovers articulated objects, tracks their poses, and optimizes

for consistent 3D articulation models. We train our models on this newly collected dataset

and demonstrate strong generalization performance on the Charades dataset [243]. However,

since the model is trained on objects that are actively being articulated in the videos, it only

works on the articulation as it occurs, rather than predicting potential articulations from a

single image. In reality, a single image typically contains many objects that can be interacted

with and manipulated in various ways.

Chapter 5 presents a significant advancement in enabling machines to understand and

interact with the 3D world from a single image. We introduce a novel task of predicting 3D

object interactions given just an RGB image and a set of query points. Our transformer-

based approach, powered by the newly collected 3D Object Interaction (3DOI) dataset, can

predict crucial interaction-related properties for each queried object, including its movabil-

ity, rigidity, articulation type, affordance, and potential actions. Movability is classified into

fixtures, one-hand, and two-hand objects. The model also localizes the object in 3D by

predicting its segmentation mask and depth. For articulated objects, it estimates the articu-

lation type (rotation or translation) and the corresponding axis. Furthermore, it predicts the

most likely affordance region and potential actions to interact with the object. The 3DOI

dataset, comprising a diverse set of images from Internet videos [211], egocentric videos [46],

and 3D scene datasets [62], enables the model to learn rich priors on object interactions.

Our experiments demonstrate strong performance on 3DOI and impressive generalization to

real-world robotics data [6], highlighting the model’s potential to assist intelligent agents in
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understanding and manipulating objects in novel environments. This work takes a significant

step towards embodied visual reasoning and bridges the gap between passive perception and

active interaction in 3D scenes.

Chapter 6 further advances the goal of enabling machines to understand and interact with

the 3D world from a single image. We introduce AffordanceLLM, a novel approach that lever-

ages the rich world knowledge embedded in large-scale vision-language models (VLMs) to

ground affordances for in-the-wild objects unseen during training . In contrast, 3DOI relies

solely on its own dataset of 10,000 images with dense annotations for training and does not

utilize any pretrained VLMs. Furthermore, AffordanceLLM supports grounding affordances

for arbitrary actions beyond the ones seen during training, while 3DOI is limited to the

predefined set of actions in its dataset. Our method builds upon the LLaVA backbone and

introduces a mask decoder and special <mask token> to predict affordance maps. We also

incorporate pseudo-depth maps as additional 3D information to aid the affordance reasoning.

Through extensive experiments on the AGD20K benchmark , we demonstrate that Affor-

danceLLM significantly outperforms 3DOI and other state-of-the-art methods, especially in

terms of generalization to new object categories and novel actions. This work highlights the

importance of leveraging the knowledge in vision-language models and 3D geometric cues

for learning to perceive and interact with objects in the 3D world. It represents a major step

towards endowing machines with the capability to reason about object affordances in diverse

real-world settings, paving the way for more intelligent and interactive embodied agents.

After that, we address the challenge of learning manipulation policies in Chapter 7,

where we propose a novel approach for learning manipulation policies through 3D multi-

view pretraining. We propose 3D-MVP, a novel approach for 3D multi-view pretraining

using masked autoencoders to improve the performance and generalization of robotic manip-

ulation policies. 3D-MVP leverages the Robotic View Transformer (RVT) architecture [81],

which uses a multi-view transformer to understand the 3D scene and predict gripper pose

actions for manipulation. We pretrain the visual encoder of RVT on the large-scale Obja-

verse 3D object dataset using masked autoencoding [51, 92]. This pretraining allows the

model to learn rich 3D representations that capture the geometry and semantics of objects.

We evaluate the pretrained 3D-MVP model by finetuning it on downstream manipulation

tasks from the RLBench and COLOSSEUM benchmarks [113, 207]. The results demonstrate

that the learned 3D representations lead to improved performance and robustness compared

to training RVT from scratch or using 2D pretraining. 3D-MVP achieves state-of-the-art

performance on these benchmarks, suggesting that 3D-aware pretraining on diverse object

datasets is a promising approach for developing general-purpose robotic manipulation sys-

tems. By enabling active manipulation of objects in the 3D world, 3D-MVP represents a
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significant advance over the previous chapters’ focus on passive perception and understand-

ing. It showcases the potential of self-supervised 3D representation learning to bridge the

gap between visual understanding and physical interaction, paving the way for more capable

and adaptable robotic systems.

Finally, we propose a few future directions in Chapter 8, including multimodal LLM

agents and dynamic digital twins. For multimodal LLM agents, future works include building

digital agents and robotics foundation model. For dynamic digital twins, future works include

building dynamic digital twins from videos or generative models.
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CHAPTER 2

Volumetric Reconstruction from Sparse Views

In this chapter, we study the problem of 3D volumetric reconstruction from two views of a

scene with an unknown camera. While seemingly easy for humans, this problem poses many

challenges for computers since it requires simultaneously reconstructing objects in the two

views while also figuring out their relationship. We propose a new approach that estimates

reconstructions, distributions over the camera/object and camera/camera transformations,

as well as an inter-view object affinity matrix. This information is then jointly reasoned

over to produce the most likely explanation of the scene. We train and test our approach on

a dataset of indoor scenes, and rigorously evaluate the merits of our joint reasoning approach.

Our experiments show that it is able to recover reasonable scenes from sparse views, while

the problem is still challenging. The material in this chapter is derived from [210].

Input Output

Ground Truth

A

B

B

A

Figure 2.1: Given two views from unknown cameras, we aim to extract a coherent 3D space
in terms of a set of volumetric objects placed in the scene. We represent the scene with a
factored representation [265] that splits the scene into per-object voxel grids with a scale
and pose.

6



2.1 Introduction

How would you make sense of the scene in Fig. 2.1? After rapidly understanding the

individual pictures, one can fairly quickly attempt to match the objects in each: the TV on

the left in image A must go with the TV on the right in image B, and similarly with the

couch. Therefore, the two chairs, while similar, are not actually the same object. Having

pieced this together, we can then reason that the two images depict the same scene, but seen

with a 180◦ change of view and infer the 3D structure of the scene. Humans have an amazing

ability to reason about the 3D structure of scenes, even with as little as two sparse views

with an unknown relationship. We routinely use this ability to understand images taken

at an event, look for a new apartment on the Internet, or evaluate possible hotels (e.g., for

ECCV). The goal of this chapter is to give the same ability to computers.

Unfortunately, current techniques are not up to this challenge of volumetric reconstruc-

tion given two views from unknown cameras: this approach requires both reconstruction

and pose estimation. Classic methods based on correspondence [90, 41] require many more

views in practice and cannot make inferences about unseen parts of the scene (i.e., what the

chair looks like from behind) since this requires some form of learning. While there has been

success in learning-based techniques for this sort of object reconstructions [38, 77, 265, 138],

it is unknown how to reliably stitch together the set of reconstructions into a single coherent

story. Certainly there are systems that can identify pose with respect to a fixed scene [126]

or a pair of views [65]; these approaches, however cannot reconstruct.

This chapter presents a learning-based approach to this problem, whose results are shown

in Fig. 2.1. The system can take two views with unknown relationship, and produce a 3D

scene reconstruction for both images jointly. This 3D scene reconstruction comprises a set

of per-object reconstructions rigidly placed in the scene with a pose as in [265, 138, 149].

Since the 3D scene reconstruction is the union of the posed objects, getting the 3D scene

reconstruction correct requires getting both the 3D object reconstruction right as well as

correctly identifying 3D object pose. Our key insight is that jointly reasoning about objects

and poses improves the results. Our method, described in Section 2.3, predicts evidence

including: (a) voxel reconstructions for each object; (b) distributions over rigid body trans-

formations between cameras and objects; and (c) an inter-object affinity for stitching. Given

this evidence, our system can stitch them together to find the most likely reconstruction.

As we empirically demonstrate in Section 2.4, this joint reasoning is crucial – understanding

each image independently and then estimating a relative pose performs substantially worse

compared to our approach. These are conducted on a challenging and large dataset of indoor

scenes. We also show some common failure modes and demonstrate transfer to NYUv2 [245]
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dataset.

Our primary contributions are: (1) Introducing a novel problem – volumetric scene re-

construction from two unknown sparse views; (2) Learning an inter-view object affinity to

find correspondence between images; (3) Our joint system, including the stitching stage, is

better than adding individual components.

2.2 Related Work

The goal of this work is to take two views from cameras related by an unknown trans-

formation and produce a single volumetric understanding of the scene. This touches on a

number of important problems in computer vision ranging from the estimation of the pose of

objects and cameras, full shape of objects, and correspondence across views. Our approach

deliberately builds heavily on these works and, as we show empirically, our success depends

crucially on their fusion.

This problem poses severe challenges for classic correspondence-based approaches [90].

From a purely geometric perspective, we are totally out of luck: even if we can identify the

position of the camera via epipolar geometry and wide baseline stereo [206, 192], we have no

correspondence for most objects in Fig. 2.1 that would permit depth given known baseline,

let alone another view that would help lead to the understanding of the full shape of the

chair.

Recent work has tackled identifying this full volumetric reconstruction via learning.

Learning-based 3D has made significant progress recently, including 2.5D representations [63,

274, 33, 144], single object reconstruction [281, 312, 85, 224, 39], and scene understand-

ing [35, 104, 160, 159, 60]. Especially, researchers have developed increasingly detailed

volumetric reconstructions beginning with objects [38, 77, 79] and then moving to scenes

[265, 138, 149, 198] as a composition of object reconstructions that have a pose with respect

to the camera. Focusing on full volumetric reconstruction, our approach builds on this pro-

gression, and creates an understanding that is built upon jointly reasoning over parses of two

scenes, affinities, and relative poses; as we empirically show, this produces improvements in

results. Of these works, we are most inspired by Kulkarni et al. [138] in that it also reasons

over a series of relative poses; our work builds on top of this as a base inference unit and

handles multiple images. We note that while we build on a particular approach to scenes

[138] and objects [77], our approach is general.

While much of this reconstruction work is single-image, some is multiview, although

usually in the case of an isolated object [124, 38, 106] or with hundreds of views [103].

Our work aims at the particular task of as little as two views, and reasons over multiple
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Figure 2.2: Our approach. We pass the two RGB image inputs into two branches that
extract evidence, which is then fused together to stitch a final result. Our first network,
object branch, is a detection network following [138] that produces a set of objects in
terms of voxels and a transformation into the scene. We also predict an object embedding
which we can use to form an affinity matrix between objects across images. Our second
network, camera branch, is a siamese network that predicts a distribution over translations
and rotations between the cameras. Finally our stitching stage examines the evidence from
the networks and produces a final prediction.

objects. While traditional local features [173] are insufficient to support reasoning over

objects, semantic features are useful [61, 272, 12].

At the same time, there has been considerable progress in identifying the relative pose

from images [186, 126, 65, 8], RGB-D Scans [297, 298] or video sequences [321, 230, 255].

Of these, our work is most related to learning-based approaches to identifying relative pose

from RGB images, and semantic Structure-from-Motion [8] and SLAM [230], which make

use of semantic elements to improve the estimation of camera pose. We build upon this

work in our approach, especially work like RPNet [65] that directly predicts relative pose,

although we do so with a regression-by-classification formulation that provides uncertainty.

As we show empirically, propagating this uncertainty forward lets us reason about objects

and produce superior results to only focusing on pose.

2.3 Approach

The goal of the system is to map a pair of sparse views of a room to a full 3D reconstruc-

tion. As input, we assume a pair of images of a room. As output, we produce a set of objects

represented as voxels, which are rigidly transformed and anisotropically scaled into the scene

in a single coordinate frame. We achieve this with an approach, summarized in Fig. 2.2,
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that consists of three main parts: an object branch, a camera branch, and a stitching stage.

The output space is a factored representation of a 3D scene, similar to [265, 138, 149].

Specifically, in contrast to using a single voxel-grid or mesh, the scene is represented as a

set of per-object voxel-grids with a scale and pose that are placed in the scene. These can

be converted to a single 3D reconstruction by taking their union, and so improving the 3D

reconstruction can be done by either improving the per-object voxel grid or improving its

placement in the scene.

The first two parts of our approach are two neural networks. An object branch ex-

amines each image and detects and produces single-view 3D reconstructions for objects in

the camera’s coordinate frame, as well as a per-object embedding that helps find the object

in the other image. At the same time, an camera branch predicts relative pose between

images, represented as a distribution over a discrete set of rigid transformations between the

cameras. These networks are trained separately to minimize complexity.

The final step, a stitching stage, combines these together. The output of the two net-

works gives: a collection of objects per image in the image’s coordinate frame; a cross-image

affinity which predicts object correspondence in two views; and a set of likely transformations

from one camera to the other. The stitching stage aims to select a final set of predictions

minimizing an objective function that aims to ensure that similar objects are in the same

location, the camera pose is likely, etc. Unlike the first two stages, this is an optimization

rather than a feedforward network.

2.3.1 Object Branch

The goal of our object branch is to take an image and produce a set of reconstructed

objects in the camera’s coordinate frame as well as an embedding that lets us match across

views. We achieve this by extending 3D-RelNet [138] and adjust it as little as possible to

ensure fair comparisons. We refer the reader for a fuller explanation in [138, 265], but briefly,

these networks act akin to an object detector like Faster-RCNN [222] with additional outputs.

As input, 3D-RelNet takes as input an image and a set of 2D bounding box proposals, and

maps the image through convolutional layers to a feature map, from which it extracts per-

bounding box convolutional features. These features pass through fully connected layers

to predict: a detection score (to suppress bad proposals), voxels (to represent the object),

and a transformation to the world frame (represented by rotation, scale, and translation

and calculated via both per-object and pairwise poses). We extend this to also produce an

n-dimensional embedding e ∈ Rn on the unit sphere (i.e., ||e||22 = 1) that helps associate

objects across images.
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We use and train the embedding by creating a cross-image affinity matrix between objects.

Suppose the first and second images have N and M objects each with embeddings ei and e′j

respectively. We then define our affinity matrix A ∈ RN×M as

Ai,j = σ(keTi e
′
j) (2.1)

where σ is the sigmoid/logistic function and where k = 5 scales the output. Ideally, Ai,j

should indicate whether objects i and j are the same object seen from a different view, where

Ai,j is high if this is true and low otherwise.

We train this embedding network using ground-truth bounding box proposals so that we

can easily calculate a ground-truth affinity matrix Â. We then minimize Laff , a balanced

mean-square loss between A and Â: if all positive labels are (i, j) ∈ P , and all negative

labels are (i, j) ∈ N , then the loss is

Laff =
1

|P|
∑

(i,j)∈P

(Aij − Âij)
2 +

1

|N |
∑

(i,j)∈N

(Aij − Âij)
2. (2.2)

which balances positive and negative labels (since affinity is imbalanced).

2.3.2 Camera Branch

Our camera branch aims to identify or narrow down the possible relationship between the

two images. We approach this by building a siamese network [16] that predicts the relative

camera pose Tc between the two images. We use ResNet-50 [95] to extract features from two

input images. We concatenate the output features and then use two linear layers to predict

the translation and rotation.

We formulate prediction of rotation and translation as a classification problem to help

manage the uncertainty in the problem. We found that propagating uncertainty (via top

predictions) was helpful: a single feedforward network suggests likely rotations and a subse-

quent stage can make a more detailed assessment in light of the object branch’s predictions.

Additionally, even if we care about only one output, we found regression-by-classification

to be helpful since the output tended to have multiple modes (e.g., being fairly certain of

the rotation modulo 90◦ by recognizing that both images depict a cuboidal room). Regres-

sion tends to split the difference, producing predictions which satisfy neither mode, while

classification picks one, as observed in [265, 142].

We cluster the rotation and translation vectors into 30 and 60 bins respectively, and

predict two multinomial distributions over them. Then we minimize the cross entropy loss.
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At test time, we select the cartesian product of the top 3 most likely bins for rotation and

top 10 most likely bins for translation as the final prediction results. The results are treated

as proposals in the next section.

2.3.3 Stitching Object and Camera Branches

Once we have run the object and camera branches, our goal is to then produce a single

stitched result. As input to this step, our object branch gives: for view 1, with N objects,

the voxels V1, . . . , VN and transformations T1, . . . , TN ; and similarly, for M objects in view

2, the voxels V ′
1 , . . . , V

′
M and transformations T ′

1, . . . , T
′
M ; and a cross-view affinity matrix

A ∈ [0, 1]N×M . Additionally, we have a set of potential camera transformations P1, . . . , PF

between two views.

The goal of this section is to integrate this evidence to find a final cross-camera pose

P and correspondence C ∈ {0, 1}M×N from view 1 to view 2. This correspondence is one-

to-one and has the option to ignore an object (i.e., Ci,j = 1 if and only if i and j are in

correspondence and for all i,
∑

j Ci,j ≤ 1, and similarly for CT ).

We cast this as a minimization problem over P and C including terms in the objective

function that incorporate the above evidence. The cornerstone term is one that integrates all

the evidence to examine the quality of the stitch, akin to trying and seeing how well things

match up under a camera hypothesis. We implement this by computing the distance LD

between corresponding object voxels according to C, once the transformations are applied,

or:

LD =
1

|C|1

∑
(i,j) s.t. Ci,j=1

D(P (Ti(Vi)), T
′
j(V

′
j )). (2.3)

Here, D is the chamfer distance between points on the edges of each shape, as defined in

[205, 238], or for two point clouds X and Y :

D(X, Y ) =
1

|X|
∑
x∈X

min
y∈Y

||x− y||22 +
1

|Y |
∑
y∈Y

min
x∈X

||x− y||22. (2.4)

Additionally, we have terms that reward making C likely according to our object and im-

age networks, or: the sum of similarities between corresponding objects according to the

affinity matrix A, LS =
∑

(i,j),Ci,j=1(1− Ai,j); as well as the probability of the camera pose

transformation P from the image network LP = (1 − Pr(P )). Finally, to preclude trivial

solutions, we include a term rewarding minimizing the number of un-matched objects, or
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LU = min(M,N)− |C|1. In total, our objective function is the sum of these terms, or:

min
P,C

LD + λPLP + λSLS + λULU . (2.5)

The search space is intractably large, so we optimize the objective function by RANSAC-

like search over the top hypotheses for P and feasible object correspondences. For each top

hypothesis of P , we randomly sample K object correspondence proposals. Here we use

K = 128. It is generally sufficient since the correspondence between two objects is feasible

only if the similarity of them is higher than a threshold according to the affinity matrix. We

use random search over object correspondences because the search space increases factorially

between the number of objects in correspondence. Once complete, we average the translation

and scale, and randomly pick one rotation and shape from corresponding objects. Averaging

performs poorly for rotation since there are typically multiple rotation modes that cannot

be averaged: a symmetric table is correct at either 0◦ or 180◦ but not at 90◦. Averaging

voxel grids does not make sense since there are partially observable objects. We therefore

pick one mode at random for rotation and shape.

2.3.4 Implementation Details

Detection proposals. We use more advanced object proposals compared to prior works

[138, 265], which used edge boxes [324]. We found that edge boxes were often the limiting

factor. Instead, we train a class-agnostic Faster-RCNN [222] to generate proposals, treating

all objects as the foreground.

Object Branch. For each object, our object branch will predict a 300-dimensional vector,

which represents its 3D properties. Linear layers are used to predict its shape embedding,

translation, rotation, scale and object embedding. For the object embeddings, we use three

linear layers. The size of outputs is 256, 128, 64, respectively. These linear layers predict a

64-dimensional embedding finally.

We train the object branch in two stages. In the first stage, we follow the training of

3D-RelNet [138] with ground truth bounding boxes. The loss of affinity matrix is ignored

in this stage. In the second stage, we freeze all layers except the linear layers to predict

the object embeddings. We only apply the affinity loss in this stage. For all two stages,

we use Adam with learning rate ε = 10−4 to optimize the model, with momentum 0.9.

The batch size is 24. Although 3D-RelNet is finetuned on detection proposals, we only use

the intermediate model trained with ground truth bounding box because (1) 3D-RelNet is

finetuned on edgebox proposals and our Faster-RCNN proposals are good enough; (2) ground
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truth affinity is only available with ground truth bounding box.

Camera Branch. The object and camera branches are trained independently. The trans-

lation is represented as 3D vectors, and the rotation is represented as quaternions. We run

k-means clustering on the training set to produce 60 and 30 bins for translation and rotation.

For rotation, we use spherical k-means to ensure the centroids are unit vectors.

The input image pairs are resized to 224x224. They are passed through a siamese net-

work with ResNet-50 pre-trained on ImageNet [95] as the backbone. The outputs from each

instance of the siamese network are concatenated, and passed through a linear layer, pro-

ducing a 128-dimensional vector. The vector is then passed through a translation branch

and a rotation branch. Each branch is a linear layer which outputs 60 and 30 dimensional

vectors for translation and rotation bins.

Our loss function is the cross entropy loss. The loss for the translation prediction and the

rotation prediction are weighted equally. We use stochastic gradient descent with learning

rate ε = 10−3 and momentum 0.9. The batch size is 32. We also augment the data by

reversing the order of image pairs.

Tuning the stitching stage. The search space contains top-3 rotation, top-10 translation

and top-128 object correspondence hypotheses. The threshold of affinity is 0.5. λP , λS, and

λU are tuned as hyperparameters on the validation set to preclude the trivial solution. We

use λS = 5, λU = 1. For λP , we use 5 for rotation and 1 for translation.

2.4 Experiments

We now describe a set of experiments that aim to address the following questions: (1)

how well does the proposed method work and are there simpler approaches that would solve

the problem? and (2) how does the method solve the problem? We first address question (1)

by evaluating the proposed approach compared to alternate approaches both qualitatively

and by evaluating the full reconstruction quantitatively. We then address question (2) by

evaluating individual components of the system. We focus on what the affinity matrix

learns and whether the stitching stage can jointly improve object correspondence and relative

camera pose estimation. Throughout, we test our approach on the SUNCG dataset [250, 314],

following previous work [265, 138, 149, 297, 314]. To demonstrate transfer to other data, we

also show qualitative results on NYUv2 [245].
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Figure 2.3: Qualitative results on the SUNCG test set [250]. The final 3D predictions are
shown in three different camera poses (1) the same camera as image 1; (2) the same camera as
image 2; (3) a bird view to see all the objects in the whole scene. In the prediction, red/orange
objects are from the left image, blue objects are from the right image, green/yellow objects
are stitched.

2.4.1 Experimental Setup

Following common practice in this field [265, 138, 149, 297, 314], We train and do ex-

tensive evaluation on SUNCG [250] since it provides 3D scene ground truth including voxel

representation of objects. There are realistic datasets such as ScanNet [42] and Matter-

port3D [26], but they only provide non-watertight meshes. Producing filled object voxel

representation from non-watertight meshes remains an open problem. For example, Pix3D

[257] aligns IKEA furniture models with images, but not all objects are labeled. and there

are no multiple views Therefore, we decide to train and evaluate our approach on the SUNCG

dataset [250].

Datasets. We follow the 70%/10%/20% training, validation and test split of houses from

[138]. For each house, we randomly sample up to ten rooms; for each room, we randomly

sample one pair of views. Furthermore, we filter the validation and test set: we eliminate

pairs where there is no overlapping object between views, and pairs in which all of one

image’s objects are in the other view (i.e., one is a proper subset of the other). We do
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not filter the training set since learning relative pose requires a large and diverse training

set. Overall, we have 247532/1970/2964 image pairs for training, validation and testing,

respectively. Following [265], we use six object classes - bed, chair, desk, sofa, table and tv.

Full-Scene Evaluation: Our output is a full-scene reconstruction, represented as a set of

per-object voxel grids that are posed and scaled in the scene. A scene prediction can be

totally wrong if one of the objects has correct shape while its translation is off by 2 meters.

Therefore, we quantify performance by treating the problem as a 3D detection problem in

which we predict a series of 3D boxes and voxel grids. This lets us evaluate which aspect of

the problem currently hold methods back. Similar to [138], for each object, we define error

metrics as follows:

• Translation (t): Euclidean distance, or δt = ||t− t̂||2, thresholded at δt = 1m.

• Scale (s): Average log difference in scaling factors, or δs = 1
3

∑3
i=1 | log2(si1) − log2(s

i
2)|,

thresholded at δs = 0.2.

• Rotation (R): Geodesic rotation distance, or δq = (2)−1/2|| log(RT R̂)||F , thresholded at

δq = 30◦.

• Shape (V): Following [260], we use F-score@0.05 to measure the difference between pre-

diction and ground truth, thresholded at δV = 0.25.

A prediction is a true positive only if all errors are lower than our thresholds. We calculate

the precision-recall curve based on that and report average precision (AP). We also report

AP for each single error metric.

Baselines. Since there is no prior work on this task, our experiments compare to ablations

and alternate forms of our method. We use the following baseline methods, each of which

tests a concrete hypothesis.

(Feedforward): This method uses the object branch to recover single-view 3D scenes,

and our camera branch to estimate the relative pose between different views. We ignore the

affinity matrix and pick the top-1 relative pose predicted by the camera branch. There can

be many duplicate objects in the output of this approach. This tests if a simple feedforward

method is sufficient.

(NMS): In addition to the feedforward approach, we perform non-maximum suppression

on the final predictions. If two objects are close to each other, we merge them. This tests if

a simple policy to merge objects would work.

(Raw Affinity): Here, we use the predicted affinity matrix to merge objects based on

top-1 similarity from the affinity matrix. This tests whether our stitching stage is necessary.

(Associative3D): This is our complete method. We optimize the objective function by

searching possible rotations, translations and object correspondence.
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Image 1 Image 2 Feedforward NMS Raw Affinity Ours GT

Figure 2.4: Comparison between Associative3D and alternative approaches. Row 1: Asso-
ciative3D fixes the incorrect top-1 relative camera pose in light of a single bed in the room.
Row 2: NMS works when the relative camera pose is accurate. Row 3: Associative3D
outperforms all alternative approaches in finding correspondence in object clutter.

2.4.2 Full Scene Evaluation

We begin by evaluating our full scene reconstruction. Our output is a set of per-object

voxels that are posed and scaled in the scene. The quality of reconstruction of a single object

is decided by both the voxel grids and the object pose.

First, we show qualitative examples from the proposed method in Fig. 2.3 as well as a

comparison with alternate approaches in Fig. A.4 on the SUNCG test set. The Feedforward

approach tends to have duplicate objects since it does not know object correspondence.

However, figuring out the camera pose and common objects is a non-trivial task. Raw Affinity

does not work since it may merge objects based on their similarity, regardless of possible

global conflicts. NMS works when the relative camera pose is accurate but cannot work

when many objects are close to each other. Instead, Associative3D demonstrates the ability

to jointly reason over reconstructions, object pose and camera pose to produce a reasonable

explanation of the scene. More qualitative examples are available in the supplementary

material.

We then evaluate our proposed approach quantitatively. In a factored representation [265],

both object poses and shapes are equally important to the full scene reconstruction. For in-

stance, the voxel reconstruction of a scene may have no overlap if all the shapes are right,

but they are in the wrong place. Therefore, we formulate it as a 3D detection problem, as a

prediction is a true positive only if all of translation, scale, rotation and shape are correct.

However, 3D detection is a very strict metric. If the whole scene is slightly off in one aspect,

we may have a very low AP. But the predicted scene may still be reasonable. We mainly use
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Table 2.1: We report the average precision (AP) in evaluation of the 3D detection setting.
All means a prediction is a true positive only if all of translation, scale, rotation and shape
are correct. Shape, Translation, Rotation, and Scale mean a prediction is a true positive
when a single error is lower than thresholds. We include results on the whole test set, and
top 25%, 50% and 75% examples ranked by single-view predictions.

All Examples Top 25% Top 50% Top 75%
Methods All Shape Trans Rot Scale All All All

Feedforward 21.2 22.5 31.7 28.5 26.9 41.6 34.6 28.6
NMS 21.1 23.5 31.9 29.0 27.2 42.0 34.7 28.7

Raw Affinity 15.0 24.4 26.3 28.2 25.9 28.6 23.5 18.9
Associative3D 23.3 24.5 38.4 29.5 27.3 48.3 38.8 31.4

it quantify our performance.

Table 2.1 shows our performance compared with all three baseline methods. Our ap-

proach outperforms all of them, which verifies what we see in the qualitative examples.

Moreover, the improvement mainly comes from that on translation. The translation-only

AP is around 7 points better than Feedforward. Meanwhile, the improvement of NMS over

Feedforward is limited. As we see in qualitative examples, it cannot work when many ob-

jects are close to each other. Finally, raw affinity is even worse than Feedforward, since raw

affinity may merge objects incorrectly. We will discuss why the affinity is informative, but

top-1 similarity is not a good choice in Sec. 2.4.3.

We notice our performance gain over Feedforward and NMS is especially large when

single-view predictions are reasonable. On top 25% examples which single-view prediction

does a good job, Associative3D outperforms Feedforward and NMS by over 6 points. On top

50% examples, the improvement is around 4 points. It is still significant but slightly lower

than that of top 25% examples. When single-view prediction is bad, our performance gain

is limited since Associative3D is built upon it. We will discuss this in Sec. 2.4.5 as failure

cases.

We also compare with single-view baselines to show whether multi-view helps. We take

a prediction from 3D-RelNet [138] on one view of the pair, selected randomly. On the

whole test set, the AP is 13.7, which significantly underperforms all approaches. It shows

our proposed approach has significant improvement built upon single-view baselines, and

multi-view helps reconstruct the scene.
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Table 2.2: AUROC and rank correlation between the affinity matrix and category, model,
shape, and instance, respectively. Model | Category means the ability of the affinity matrix
to distinguish different models given the same category / semantic label.

Category Model | Category Shape | Category Instance | Model

AUROC 0.92 0.73 - 0.59
Correlation 0.72 0.33 0.34 0.14

2.4.3 Inter-view Object Affinity Matrix

We then turn to evaluating how the method works by analyzing individual components.

We start with the affinity matrix and study what it learns.

We have three non-mutually exclusive hypotheses: (1) Semantic labels. The affinity

is essentially doing object recognition. After detecting the category of the object, it simply

matches objects with the same category. (2) Object shapes. The affinity matches objects

with similar shapes since it is constructed from the embedding vectors which are also used to

generate shape voxels and the object pose. (3)Correspondence. Ideally, the affinity matrix

should give us ground truth correspondence. It is challenging given duplicate objects in the

scene. For example, people can have three identical chairs in their office. These hypotheses

are three different levels the affinity matrix may learn, but they are not in conflict. Learning

semantic labels do not mean the affinity does not learn anything about shapes.

We study this by examining a large number of pairs of objects and testing the relationship

between affinity and known relationships (e.g., categories, model ids) using ground truth

bounding boxes. We specifically construct three binary labels (same category, same model,

same instance) and a continuous label shape similarity (namely F-score@ 0.05 [260]). When

we evaluate shape similarity, we condition on the category to test if affinity distinguishes

between different models of the same category, (e.g. chair). Similarly, we condition on the

model when we evaluate instance similarity.

We compute two metrics: a binary classification metric that treats the affinity as a

predictor of the label as well as a correlation that tests if a monotonic relationship exists

between the affinity and the label. For binary classification, we use AUROC to evaluate the

performance since it is invariant to class imbalance and has a natural interpretation. For

correlation, we compute Spearman’s rank correlation coefficient [325] between the affinity

predictors and labels. This tests how well the relationship between affinity and each label

(e.g., shape overlap) fits a monotonic function (1 is perfect agreement, 0 no agreement).

The results are shown in Table 2.2. Both the binary classification and the rank correlation

show that the affinity matrix is able to distinguish different categories and objects of different
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Before After Before After Before After

Figure 2.5: Visualization of the stitching stage. The affinity matrix generates proposals of
corresponding objects, and then the stitching stage removes outliers by inferring the most
likely explanation of the scene.

shapes, but is sub-optimal in distinguishing the same instance. These results justify our

stitching stage, which addresses the problem based on joint reasoning. It also explains why

Raw Affinity underperforms all other baselines by a large margin in the full-scene evaluation.

Additionally, the ability to distinguish categories and shapes provides important guidance

to the stitching stage. For example, a sofa and bed are similar in 3D shapes. It is infeasible

to distinguish them by simply looking at the chamfer distance, which can be distinguished

by the affinity matrix.

2.4.4 Stitching Stage

We evaluate the stitching stage by studying two questions: (1) How well can it predict

object correspondence? (2) Can it improve relative camera pose estimation? For example,

if the top-1 relative pose is incorrect, could the stitching stage fix it by considering common

objects in two views?

Object Correspondence. To answer the first question, we begin with qualitative examples

in Fig. A.5, which illustrate object correspondence before and after the stitching stage. Be-

fore our stitching stage, our affinity matrix has generated correspondence proposals based on

their similarity. However, there are outliers since the affinity is sub-optimal in distinguishing

the same instance. The stitching stage removes these outliers.

We evaluate object correspondence in the same setting as Sec 2.4.3. Suppose the first

and second images have N and M objects respectively. We then have N × M pairs. The

pair is a positive example if and only if they are corresponding. We use average precision

(AP) to measure the performance since AP pays more attention to the low recall [49, 66].

For ith object in view 1 and jth object in view 2, we produce a confidence score by γAij
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Table 2.3: Evaluation of object correspondence with and without the stitching stage.

All Negative Affinity Affinity Top1 Associative3D

AP 10.1 38.8 49.4 60.0

Table 2.4: Evaluation of relative camera pose from the camera branch and picked by the
stitching.

Translation (meters) Rotation (degrees)
Method Median Mean (Err ≤ 1m)% Median Mean (Err ≤ 30◦)%

Top-1 1.24 1.80 41.26 6.96 29.90 77.56
Associative3D 0.88 1.44 54.89 6.97 29.02 78.31

where γ = 1 if the pair is predicted to be corresponding and γ = 0.5 otherwise. This γ term

updates the confidence based on stitching stage to penalize pairs which have a high affinity

score but are not corresponding.

We compare Associative3D with 3 baselines. (All Negative): The prediction is always

negative (the most frequent label). This serves as a lower bound. (Affinity): This simply

uses the affinity matrix as the confidence. (Affinity Top1): Rather than using the raw

affinity matrix, it uses affinity top-1 similarity as the correspondence and the same strategy

to decide confidence as Associative3D. Table 2.3 shows that our stitching stage improves AP

by 10% compared to using the affinity matrix only as correspondence.

Relative Camera Pose Estimation. We next evaluate the performance of relative camera

pose (i.e., camera translation and rotation) estimation and see if the stitching stage improves

the relative camera pose jointly. We compare the camera pose picked by the stitching

stage and top-1 camera pose predicted by the camera branch. We follow the rotation and

translation metrics in our full-scene evaluation to measure the error of our predicted camera

poses. We summarize results in Table 2.4. There is a substantial improvement in translations,

with the percentage of camera poses within 1m of the ground truth being boosted from 41.3%

to 54.9%. The improvement in rotation is smaller and we believe this is because the network

already starts out working well and can exploit the fact that scenes tend to have three

orthogonal directions. In conclusion, the stitching stage can mainly improve the prediction

of camera translation.
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Input Images Camera 1 Camera 2 Birdview
Image 1 Image 2 Prediction GT Prediction GT Prediction GT

Figure 2.6: Representative failure cases on the SUNCG test set [250]. Row 1: The input
images are ambiguous. There can be two or three beds in the scene. Row 2: The single-view
backbone does not produce a reasonable prediction. Row 3: This is challenging because all
chairs are the same.

Image 1 Image 2 Sideview Birdview Image 1 Image 2 Sideview Birdview

Figure 2.7: Qualitative results on NYUv2 dataset [245]. Sideview corresponds to the camera
view slightly transformed from the image 2 camera position.

2.4.5 Failure Cases

To understand the problem of reconstruction from sparse views better, we identify some

representative failure cases and show them in Fig. 2.6. While our method is able to generate

reasonable results on SUNCG, it cannot solve some common failure cases: (1) The image

pair is ambiguous. (2) The single-view backbone does not produce reasonable predictions as

we discuss in Sec. 2.4.2. (3) There are too many similar objects in the scene. The affinity

matrix is then not able to distinguish them since it is sub-optimal in distinguishing the same

instance. Our stitching stage is also limited by the random search over object correspondence.

Due to factorial growth of search space, we cannot search all possible correspondences. The

balancing of our sub-losses can also be sensitive.
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2.4.6 Results on NYU Dataset

To test generalization, we also test our approach on images from NYUv2 [245]. Our only

change is using proposals from Faster-RCNN [222] trained on COCO [157], since Faster-

RCNN trained on SUNCG cannot generalize to NYUv2 well. We do not finetune any models

and show qualitative results in Fig. 2.7. Despite training on synthetic data, our model can

often obtain a reasonable interpretation.

2.5 Conclusion

We have presented Associative3D, which explores 3D volumetric reconstruction from

sparse views. While the output is reasonable, failure modes indicate the problem is challeng-

ing to current techniques. Directions for future work include joint learning of object affinity

and relative camera pose, and extending the approach to many views and more natural

datasets other than SUNCG.
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CHAPTER 3

3D Semantic Segmentation from Novel

Viewpoints

Humans can understand scenes in 3D from a few views. In AI, the ability to recognize

a scene from any viewpoint given only a few images would enable agents to interact with

the scene and drive exciting applications in AR and VR. In this work, we attempt to endow

machines with this ability. We propose a model which takes as input a few RGB images

of a new scene and produces the 3D semantic segmentation from novel viewpoints without

access to the RGB images from those views. We pair 2D scene recognition with an implicit

3D representation and learn from multi-view 2D annotations of hundreds of scenes without

3D supervision beyond camera poses. Our experiments on challenging datasets demonstrate

our model’s ability to jointly capture semantics and geometry of novel scenes with diverse

layouts, objects and shapes. The material in this chapter is derived from [212].

1

2

3

4

cam1

cam2

cam3

cam4

(b) Predicted 3D Semantics(a) Input Images 
of Novel Scene

SemanticsNovel View

(c) Novel View 
Prediction

Novel View 
Ground Truth

Figure 3.1: We propose ViewSeg which takes as input (a) a few images of a novel, previously
unobserved scene, and recognizes the scene from novel viewpoints. The novel viewpoint, in
the form of camera coordinates, queries (b) our predicted 3D representation to produce (c)
semantic segmentations from the view without access to the view’s RGB image. ViewSeg
trains on hundreds of scenes using multi-view 2D annotations and no 3D supervision.
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3.1 Introduction

Humans can build a rich understanding of scenes from a handful of images. Consider

the scene in Fig. 3.1. From only 4 views we can understand there is a table with chairs on

one side and a bike on the other, a kitchen counter is at one end and a window opposite to

it, etc. One outcome of our understanding is the ability to predict what objects we see and

where when we turn our head in any direction, even when our eyes are closed. This skill

allows us to navigate in the dark and is so intuitive that industries like hotels and real estate

depend on persuading users with just a few photos. For machines, it is still a challenge to

have this level of understanding from a few images of a novel scene.

In this work, we explore semantic 3D scene recognition and formally define the problem

of novel view semantic understanding (NVSU). In NVSU, the task is to predict the scene’s

semantic maps from target views different than the input. The input is one or few posed RGB

images of a previously unobserved scene and the output is pixel-level semantic segmentation

from a new and unseen target viewpoint. NVSU differs from the task of single-view semantic

segmentation as the target view’s RGB image is not provided; only the RGB images of the

input views are given. NVSU also differs from novel view synthesis (NVS) as it shifts

the focus from appearance to semantics. In essence, NVSU evaluates 3D understanding and

semantic recognition – a model needs to understand the scene and its objects from a different

viewpoint – without 3D semantic ground truth.

We propose to tackle NVSU by predicting a queriable 3D semantic representation of the

scene, inspired by NeRFs [188], from just a few posed RGB views. A novel view, in the form

of camera coordinates, queries the 3D representation to produce a semantic segmentation

of the scene from that view without access to the novel view’s RGB image. Our method,

called ViewSeg, is shown in Fig. 3.1. Unlike Semantic-NeRF [316] which interpolates between

dense views of the same scene, we do this from sparse input views of novel scenes. To achieve

this, we learn from hundreds of diverse scenes, using multi-view 2D annotations and no 3D

supervision other than camera poses.

Scientifically, NVSU connects three key areas of computer vision: semantic understanding

(i.e., naming objects), 3D understanding, and novel view synthesis (NVS). This puts the

problem out of reach of work in any one area. Advances in NVS [188, 280, 305] perform well

but focus only on appearance. Using appearance as a bottleneck representation can cause

issues for semantic recognition: one may be sure of the presence of a rug behind the sofa but

unsure of its color. As shown in Fig. 3.2, RGB synthesis is often blurry or collapses when

extrapolating from few views. Similarly, there have been advances in learning to infer 3D

scene properties from image cues [265, 198, 79], or with differentiable rendering [125, 166,
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RGB Ground Truth RGB Synthesis Semantic SynthesisInput Images

Figure 3.2: RGB is a poor bottleneck representation for semantic synthesis. While one may
be certain of the labels of the new view (e.g., walls, tables), synthesizing the particular wall
or table pixels from few views is challenging: outputs are often blurry (top) or collapse when
extrapolating (bottom).

33, 219, 20] and other ways to bypass the need for direct 3D supervision [140, 123, 137, 300].

However, these works mainly focus on a small number of objects and do not scale to complex

scenes. More importantly, we empirically show that merely using learned 3D to propagate

scene semantics to the new view is insufficient.

ViewSeg fuses advances from semantic segmentation, 3D understanding, and NVS with

task-specific modifications to solve NVSU. Our experiments validate ViewSeg’s contribu-

tions on two challenging datasets, Hypersim [225] and Replica [253], which contain complex

scenes with diverse layouts, object types, and shapes. We substantially outperform ap-

proaches to NVSU that build on the state-of-the-art: image-based NVS [305] followed by

semantic segmentation [30], which tests whether NVS is sufficient for the task; and lifting

semantic segmentations [30] to 3D and differentiably rendering which compares explicit 3D

learning with ViewSeg’s implicit representation. Our ablations reveal the impact of semantic

reconstruction on geometry, and show semantics lead to more accurate depth, which is pro-

duced by ViewSeg “for free”. Our results demonstrate ViewSeg’s ability to jointly capture

semantics and geometry when tested on novel diverse scenes and we hope that our analysis

will inspire more future work in this direction.
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3.2 Related Work

We draw from 2D recognition, novel view synthesis and 3D learning to recognize scenes

from novel viewpoints.

Semantic Segmentation. Segmenting objects and stuff (i.e. wall, floor, ceiling) from im-

ages is extensively researched. Initial efforts apply Bayesian classifiers on local features [134]

or perform grouping on low-level cues [240]. Others [24, 43] score bottom-up mask propos-

als [2, 25]. With the advent of deep learning, FCNs [170] perform per-pixel segmentation

by training a CNN to classify each pixel. DeepLab [29] use atrous convolutions and an

encoder-decoder architecture [30] to handle scale and resolution.

Regarding multi-view semantic segmentation, [141] improve the temporal consistency of

semantic segmentation in videos by linking frames with optical flow and learned feature

similarity. [185] maps semantic segmentations from RGBD inputs on 3D reconstructions

from SLAM. [96] fuse predictions from video frames using super-pixels and optical flow.

[174] learns scene dynamics to predict semantic segmentations of future frames given several

past frames.

Novel View Synthesis. Novel view synthesis is a popular topic in computer vision and

graphics. [70, 251, 252, 266, 291, 322] synthesize new views from two or more narrow

baseline images. Implicit voxel representations have been used to fit a scene from many

views [169, 241, 248]. NeRF [188] learn a continuous volumetric scene function which emits

density and radiance at spatial locations and show impressive results when fitted on a sin-

gle scene with hundreds of views. We extend NeRF to emit a distribution over semantic

categories at each 3D location. Semantic-NeRF [316] and NeSF [268] also predict semantic

classes but we differ in two critical ways: (a) at test time we generalize to novel, previously

unobserved scenes instead of in-place interpolation within a single scene, and (b) we require

sparse (up to 4) instead of hundreds of input views. NeRF extensions [97, 221], such as

PixelNeRF [305], generalize to novel scenes from few views and show results on single-object

benchmarks for RGB synthesis. We differ from [305] in two critical ways: (a) we tackle

semantic understanding instead of RGB synthesis and (b) we experiment on realistic multi-

object scenes instead of simplistic single-object benchmarks. We show that RGB synthesis

cannot address the task of semantic understanding. Real multi-object scenes make the task

harder, but they bring us closer to real-world applications.

3D Reconstruction from Images. Scene reconstruction from many views is traditionally

tackled with classical binocular stereo [90, 232] or with the help of shape priors [9, 11, 45, 107].

Modern techniques learn disparity from image pairs [127], estimate correspondences with con-

trastive learning [233], perform multi-view stereopsis via differentiable ray projection [124],
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Figure 3.3: Our model, ViewSeg, uses a few source RGB views (here 2) of a novel scene
and predicts the semantic segmentation of that scene from a novel target viewpoint. Our
approach embeds each source view into a latent semantic space with a 2D segmentation
module; this space is used to predict radiance, density and distribution over semantic classes
at each spatial 3D location via an MLP. The final semantic segmentation is created by
volumetric rendering from the target viewpoint. We generalize to unseen scenes by training
on hundreds of diverse scenes and thousands of source-target pairs, and no 3D semantic
supervision.

or learn to reconstruct scenes while optimizing for cameras [210, 120]. Differentiable ren-

dering lets gradients flow to 3D via 2D re-projections [171, 125, 166, 33, 150, 199, 219] and

reconstructs single objects [125, 166, 33, 219] or complex scenes [80] from one view via ren-

dering from more views during training. We use differentiable rendering to learn 3D via

re-projections in semantic space.

Depth Estimation from Images. Commonly, single-view depth is learned from videos [321,

180, 33] or 3D supervision [63, 32, 153, 303, 218]. We do not use depth supervision but predict

depth via training for semantic reconstruction.

3.3 Approach

We tackle novel view semantic understanding end-to-end with a new model, ViewSeg.

ViewSeg takes as input RGB images from N source views and segments objects and stuff from

a novel target viewpoint without access to the target image. We pair semantic segmentation

with an implicit 3D representation to learn semantics and geometry from hundreds of scenes
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and thousands of source-target pairs. An overview of our approach is shown in Fig. 3.3.

Our model consists of a 2D semantic segmentation module which embeds each source

view to a higher dimensional semantic space. An implicit 3D representation [188] samples

features from the output of the segmentation module and predicts radiance, density and

a distribution over semantic categories at each spatial 3D location with an MLP. The 3D

predictions are projected to the target view to produce the segmentation from that view via

volumetric rendering.

3.3.1 Semantic Segmentation Module

The role of the semantic segmentation module is to project each source RGB view to a

learnt feature space, which is subsequently used to make 3D semantic predictions. Our 2D

segmentation backbone takes as input an image I and outputs a spatial map M of the same

spatial resolution, bseg : IH×W×3 → MH×W×K , using a convolutional neural network (CNN).

Here, K is the dimension of the feature space (K = 256).

We build on the state-of-the-art for single-view semantic segmentation and follow the

encoder-decoder DeepLabv3+ [30, 29] architecture which processes an image by downsam-

pling and subsequently upsampling it to its original resolution with a sequence of convolu-

tions. We remove the final layer, which predicts class probabilities, and use the output from

the penultimate layer.

We initialize our segmentation module by pre-training on ADE20k [318], a dataset of

over 20k images with semantic annotations. We empirically show the impact of the network

architecture and pre-training in our experiments.

3.3.2 Semantic 3D Representation

To recognize a scene from novel viewpoints, we learn a 3D representation which predicts

the semantic class for each 3D location. To achieve this we learn a function f which maps

semantic features from our segmentation module to distributions over semantic categories

conditioned on the 3D coordinates of each spatial location.

Assume N source views {Ij}Nj=1 and corresponding cameras {πj}Nj=1. For each view we

extract the semantic maps {Mj}Nj=1 with our 2D segmentation module, or Mj = bseg(Ij). We

project every 3D point x to the j-th view with the corresponding camera transformation,

πj(x), and then sample the K-dimensional feature vector from Mj from the projected 2D

location. This yields a semantic feature from the j-th image denoted as ϕseg
j (x) = Mj(πj(x)).

Following NeRF [188] and PixelNeRF [305], f takes as input a positional embedding

of the 3D coordinates of x, γ(x), and the viewing direction d. We additionally feed the
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semantic embeddings {ϕseg
j }Nj=1. As output, f produces

(c, σ, s) = f
(
γ(x), d, ϕseg

0 (x), ..., ϕseg
N−1(x)

)
(3.1)

where c ∈ R3 is the RGB color, σ ∈ R is the occupancy, and s ∈ R|C| is the distribution over

semantic classes C.
We model f as a fully-connected ResNet [95], similar to PixelNeRF [305]. The positional

embedding of the 3D location and the direction are concatenated to each semantic embedding

ϕseg
j , and each is passed through 3 residual blocks with 512 hidden units. The outputs are

subsequently aggregated using average pooling and used to predict the final outputs of f

via two branches: one predicts the semantics s, the other the color c and density σ. Each

branch consists of two residual blocks, each with 512 hidden units. The detailed network

architecture is in the Supplementary.

Predicting Semantics. Rendering the semantic predictions, s, from a given viewpoint

gives the semantic segmentation of the scene from that view. Following NeRF [188], we

accumulate predictions on rays, r(t) = o + t · d, originating at the camera center o with

direction d,

Ŝ(r) =

∫ tf

tn

T (t)σ(t)s(t)dt (3.2)

where T (t) = exp(−
∫ t

tn
σ(s)ds) is the accumulated transmittance along the ray, and tn and

tf are near and far sampling bounds, which are hyperparameters.

The values of (tn, tf ) are crucial for good performance. In NeRF, they are manually set to

tightly bound the scene. PixelNeRF selects them manually for each object type, i.e. different

values for chair, car, etc. In Semantic-NeRF [316], the values are selected for the Replica

rooms, which vary little in size. In the datasets we experiment on (Sec. 3.4), scene scale

varies drastically from human living spaces with regular depth extents (e.g . living rooms)

to industrial facilities (e.g . warehouses), lofts or churches with large far fields. Aiming for

scene generalization, we set (tn, tf ) globally, regardless of the true near/far bounds of each

scene. This more realistic setting makes the problem harder: our model needs to predict the

right density values for a large range of depth fields, reasoning about occupancy within each

scene but also about the depth extent of the scene as a whole.

Replacing the semantic predictions s with the RGB predictions c in Eq. 3.2 produces the

RGB view Ĉ(r) from the target viewpoint, as in [188]. While photometric reconstruction is

not our goal, we use Ĉ during learning and show that it helps capture the scene’s geometry

more accurately.

Predicting Depth. In addition to the semantic segmentation Ŝ and the RGB reconstruc-
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tion Ĉ, we also predict the pixel-wise depth of the scene from a target viewpoint, as in [53]

D̂(r) =

∫ tf

tn

T (t)σ(t)tdt. (3.3)

We use the depth output D̂ only for evaluation. By comparing single-view depth (D̂) and

semantic segmentation (Ŝ) from many novel viewpoints, we measure our model’s ability to

capture geometry and semantics.

3.3.3 Learning Objective

Our primary objective is to segment the scene from the target view. We jointly train

the segmentation module bseg and implicit 3D function f to directly solve this task. We

also find that auxiliary photometric and source-view losses are crucial for performance. Our

objectives require RGB images and 2D semantics from various views in the scene as well as

poses to perform re-projection.

Since our goal is to predict a semantic segmentation in the target view, our primary

objective is a per-pixel cross-entropy loss between the true class labels S and predicted class

distribution Ŝ,

LS
target = −

∑
r∈R

|C|∑
j=1

Sj(r) log Ŝj(r) (3.4)

where C is the set of semantic classes and R is the set of rays in the target view. Here, Sj(r)

is the {0, 1} true label for the j-th class at the intersection of ray r and the image.

In addition to this, we minimize auxiliary losses that improve performance on our primary

task. The first is a photometric loss on RGB images, namely the squared L2 distance between

the prediction Ĉ and actual image C, or

LP
target =

∑
r∈R

∣∣∣∣∣∣Ĉ(r)− C(r)
∣∣∣∣∣∣2
2

(3.5)

where C(r) is the true RGB color at the intersection of ray r and the image.

Finally, in addition to standard losses on the target view [188, 305, 316], we find it is

important to apply losses on the source views. Specifically, we create LS
source and LP

source that

are the semantic and photometric losses, respectively, applied to rays from the source views.

These losses help enforce consistency with the input views.

Our final objective is given by

L = LS
target + LS

source + λ · (LP
target + LP

source) (3.6)
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where λ scales the semantic and photometric losses.

3.4 Experiments

We experiment on Hypersim [225] and Replica [253]. Both provide posed views of complex

scenes with over 30 object types and under varying conditions of occlusion and lighting. At

test time, we evaluate on novel scenes not seen during training. Due to its large size, we

treat Hypersim as our main dataset where we run an extensive quantitative analysis. We

then show generalization to the smaller Replica, which contains real-world indoor scenes.

Metrics. We report novel view metrics for semantics and geometry to evaluate our model’s

ability to capture both. For a novel view of a test scene, we project the semantic predictions

(Eq. 3.2) and depth (Eq. 3.3) and compare to the ground truth semantic and depth maps,

respectively. Ideally, we would also evaluate directly in 3D, which requires access to full

3D ground truth. However, 3D ground truth is not publicly available for Hypersim and is

generally hard to collect. Thus, we treat novel view metrics as proxy metrics for 3D semantic

segmentation and depth estimation.

For semantic comparisons, we report semantic segmentation metrics [19] implemented

in Detectron2 [284]: mIoU is the intersection-over-union (IoU) averaged across classes,

IoUT and IoUS report IoU by merging all things (object) and stuff classes (wall, floor,

ceiling), respetively. fwIoU is the per class IoU weighted by the pixel-level frequency of

each classs, pACC is the percentage of correctly labelled pixels and mACC is the pixel

accuracy averaged across classes. For all, performance is in % and higher is better.

For depth comparisons, we report depth metrics following [64]: L1 is the per-pixel average

L1 distance between ground truth and predicted depth, Rel is the L1 distance normalized by

the true depth value, RelT and RelS is the Rel metric for all things and stuff, respectively.

δ < τ is the percentage of pixels with predicted depth within [ 1
τ
, τ ]× the true depth. L1

is in meters and δ < τ is in %. For δ < τ metrics, higher is better. For all other, lower is

better (↓).

Model mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25 δ < 1.252

PixelNeRF+SS 1.6 14.9 47.9 17.9 35.9 3.6 2.80 0.746 0.856 0.653 0.300 0.531
PixelNeRF++ 4.4 28.8 43.2 25.7 37.6 7.5 2.80 0.746 0.856 0.653 0.300 0.531
CloudSeg 0.5 29.6 4.4 1.8 3.2 3.3 3.81 0.856 0.997 0.737 0.145 0.277
ViewSeg (ours) 17.1 33.2 58.9 44.8 62.2 23.9 2.29 0.646 0.721 0.584 0.409 0.656
Oracle 40.0 58.1 71.3 66.6 79.1 52.1 0.96 0.235 0.317 0.163 0.731 0.898

Table 3.1: Comparisons on Hypersim val. We report the performance for semantic segmen-
tation (blue) and depth estimation (green) for our method, ViewSeg, an oracle which applies
supervised single-image semantic segmantation and depth estimation models on the true
target RGB views, two NVS variants based on PixelNeRF [305] and an explicit 3D point
cloud model, CloudSeg, inspired by SynSin [280].
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Input Ground TruthViewSegSemantic NeRF PixelNeRF++ Input Ground TruthViewSegSemantic NeRF PixelNeRF++

Figure 3.4: Predictions on Hypersim. For each example, we show the 4 input RGB views of
a novel scene, the semantic and depth predictions from Semantic NeRF, PixelNeRF++ and
our ViewSeg. We also show the true RGB, semantic and depth map of the target view. Our
model does not have access to ground truth observations from the target view at test time.
Depth colormap (scaled per example): min max.

3.4.1 Experiments on Hypersim

Hypersim [225] is a dataset of 461 complex scenes. Camera trajectories across scenes

result in 77,400 images with camera poses, masks for 40 semantic classes [245], along with

true depth maps. Hypersim contains on average 50 objects per image, and is a challenging

dataset for object recognition despite it being synthetic. For reference, Mask R-CNN [94]

achieves 17% AP for 2D object detection.

Dataset. For each scene, we create source-target pairs from the available views. An image

is labelled as target and is paired with another image from a different viewpoint if: (1) the

view frustums intersect by no less than 10%; (2) the camera translation is greater than 0.5m;

and (3) the camera rotation is at least 30o. This ensures that source and target views are

from different camera viewpoints and broadly depict the same parts of the scene but without

large overlap. We follow the original Hypersim split, which splits train/val/test to 365/46/50

disjoint scenes, respectively. Overall, there are 120k/14k/14k pairs in train/val/test splits,

respectively.

Training details. We implement ViewSeg in PyTorch with Detectron2 [284] and Py-

Torch3D [219]. We train on the Hypersim training set for 13 epochs with a batch size of 32

across 32 Tesla V100 GPUs. The input and render resolution are set to 1024×768, main-

taining the size of the original dataset. We optimize with Adam [129] and a learning rate of

5e-4. We follow the PixelNeRF [305] strategy for ray sampling: We sample 64 points per ray
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in the coarse pass and 128 points per ray in the fine pass. In addition to the target view, we

randomly sample rays on each source view and additionally minimize the source view loss,

as we describe in Sec. 3.3.3. We set tn = 0.1m, tf = 20m in Eq. 3.2 and 3.3. More details

are in the Supplementary.

Baselines. In addition to extensive ablations that reveal which components of our method

are most important, we compare with competitive baselines and oracle methods. Our base-

lines test alternate strategies, including inferring the target view RGB image and then pre-

dicting per-pixel semantic classes as well as lifting a predicted semantic segmentation map

to 3D and re-projecting to the target view.

To provide context, we report a Target View Oracle that has access to the true target

view image. The target RGB image fundamentally resolves many ambiguities in 3D about

what is where, and is not available to our method. Instead, our method is tasked with pre-

dicting segmentations and depth from new viewpoints without the target RGB images. Our

oracle applies appropriate supervised models directly on the true target RGB. For semantic

segmentation, we use a model [30] that is identical to ours pre-trained on ADE20k [318] and

finetuned on all images of the Hypersim training set. For depth, we use the model from [303],

which predicts normalized depth. We obtain metric depth by aligning with the optimal shift

and scale following [218, 303].

We then compare to PixelNeRF [305] using a two-stage approach: it performs novel view

synthesis (NVS) to infer the target RGB and then applies image-based semantic segmen-

tation. This comparison tests the importance of our method’s end-to-end nature. For a

fair result, PixelNeRF is trained on the Hypersim training set and we compare to two vari-

ants: PixelNeRF+SS uses the segmentation model of the oracle, and PixelNeRF++ trains

a segmentation model on PixelNeRF’s predicted RGB views on the training set. Depth is

produced by Eq. 3.3.

Our final baseline, named CloudSeg, tests the importance of an implicit representation

by comparing with an explicit 3D point cloud representation. Inspired by SynSin [280], we

train a semantic segmentation backbone similar to our ViewSeg, along with a depth model,

from [303], to lift each source view to a 3D point cloud with per point class probabilities.

A differentiable point cloud renderer [219] projects the point clouds from the source images

to the target view to produce a semantic and a depth map. CloudSeg is trained on the

Hypersim training set and uses the same 2D supervision as our ViewSeg.

Results. Table 3.1 compares ViewSeg, PixelNeRF variants and CloudSeg with 4 source

views and the oracle on Hypersim val. PixelNeRF++ performs slightly better than Pixel-

NeRF+SS, and both perform significantly worse than ViewSeg. This is due to the poor RGB

predictions (see Fig. 3.2 & Supplementary). Note that our method’s goal is not to predict
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ViewSeg loss mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25 δ < 1.252

w/o photometric loss 16.9 30.8 58.7 44.8 62.5 22.8 2.49 0.677 0.750 0.615 0.359 0.611
w/o semantic loss - - - - - - 2.58 0.787 0.919 0.678 0.345 0.587
w/o source view loss 14.3 28.2 57.9 28.2 61.1 19.3 2.37 0.683 0.764 0.615 0.397 0.649
w/o viewing dir 16.0 33.1 59.2 44.9 62.1 21.5 2.53 0.708 0.783 0.646 0.354 0.602
final 17.1 33.2 58.9 44.8 62.2 23.9 2.29 0.646 0.721 0.584 0.409 0.656

Table 3.2: Ablating loss components. We report semantic (blue) and depth (green) perfor-
mance on Hypersim val without the photometric, the semantic and the source view loss and
when excluding the viewing direction from the input. Our model is reported in the last row.

ViewSeg backbone mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25

DLv3+ [30] + ADE20k [318] 17.1 33.2 58.9 44.8 62.2 23.9 2.29 0.645 0.721 0.584 0.409
DLv3+ [30] + IN [52] 16.3 33.2 59.2 45.2 62.5 22.0 2.28 0.614 0.682 0.559 0.415
ResNet34 [95] + IN [52] 7.5 21.7 55.9 37.1 56.1 11.2 2.67 0.712 0.815 0.626 0.320

Table 3.3: Performance on Hypersim val with different semantic segmentation backbones.
We show the performance of ViewSeg with DeepLabv3+ (DLv3+) [30] pretrained on
ADE20k [318] and on ImageNet [52] and a ResNet34 [95] backbone pretrained on Ima-
geNet [52]. The latter is used in PixelNeRF [305]. DLv3+ improves performance signifi-
cantly, while ADE20k helps ever so slightly.

RGB; the opposite, we bypass it and go directly to semantics. Predicting high fidelity RGB

of novel complex scenes from just four wide baselines views is hard, and a testament to the

difficulty of NVS rather than the specifics of the models. This is also revealed in the original

PixelNeRF paper [305] where RGB synthesis significantly degrades when applied to more

complex scenes compared to single-object simplistic benchmarks, even for narrow baselines.

Hypersim scenes are far more complex and with wide baselines making it even harder to

predict accurate RGB. Our experiments support that a two-stage solution performs worse

than ViewSeg, showing the importance of learning semantics end-to-end and bypassing the

hard RGB synthesis step. ViewSeg also outperforms PixelNeRF for depth, suggesting that

learning for semantics has a positive impact on geometry as well. Finally, CloudSeg, inspired

by [280], has a hard time predicting semantics and geometry. We believe it is because Cloud-

Seg learns depth from scratch. Only few points are projected into the target view when the

baseline is wide and the depth is inaccurate. Therefore, the supervisory signal is limited.

Note that in [280], the views are narrow, compared with our large viewpoint change (shown

in Fig. 3.4). Our representation is continuous and allows us to extrapolate from the input

even in unseen areas of the scene.

Fig. 3.4 shows qualitative results on Hypersim val for diverse scenes (restaurant, bedroom,

kitchen, living room, loft) with many objects (chair, table, counter, cabinet, window, blinds,

lamp, picture, floor mat, etc.). We show the 4 input views and the semantic and depth

predictions by Semantic-NeRF [316], PixelNeRF++ and our ViewSeg; we also show the

ground truth target RGB, semantic and depth maps for reference. Semantic-NeRF optimizes

a model for each example from the corresponding 4 input semantic maps. Semantic-NeRF

struggles to reconstruct the scene from only 4 views. Like NeRF, more (≥ 100) input views
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ViewSeg mIoU pACC L1 (↓) Rel (↓)
w/ 4 views 17.1 62.2 2.29 0.584
w/ 3 views 15.5 61.5 2.39 0.652
w/ 2 views 13.6 60.2 2.57 0.765
w/ 1 view 11.6 57.9 2.62 0.734

Table 3.4: Input study on Hypersim val for varying number of source views. More views
improve semantic and depth performance.

might be necessary to get good results. On the other hand, ViewSeg detects stuff (floor,

wall, ceiling) well, predicts object segments for the right object types more effectively than

PixelNeRF++ and produces more accurate depth maps. Fig. 3.4 also reveals ViewSeg’s

limitations. Small objects and precise boundary segmentations are hard to estimate well. In

addition, object segments are sometimes shifted due to the model’s inability to predict their

accurate location in 3D. These limitations leave lots of potential for future work.

Ablations and Input Study. Table 3.2 ablates various terms in our objective. For refer-

ence, the performance of our ViewSeg trained with 4 source views and with the final objective

(Eq. 6.4) is shown in the last row. When we remove the photometric loss, LP, semantic per-

formance remains roughly the same but depth performance drops (−20cm in L1), which

proves that appearance helps capture scene geometry. When we remove the semantic loss,

LS, and train solely with a photometric loss, we observe a drop in depth (−29cm in L1). This

suggests that semantics helps geometry; we made a similar observation when comparing to

PixelNeRF in Table 3.1. When training without source view losses both semantic and depth

performance drop, with semantic performance deteriorating the most (−2.8% in mIoU). This

confirms our insight that enforcing consistency with the source views improves learning. Fi-

nally, when we remove the viewing direction from the model’s input, depth performance

suffers the most (−24cm in L1).

Table 3.3 compares different backbones for the 2D segmentation module. We compare

DeepLabv3+ (DLv3+) [30] pre-trained on ImageNet [52] and ADE20k [318] and ResNet34 [95]

pre-trained on ImageNet [52]. The latter is used in PixelNeRF [305]. DLv3+ significantly

boosts performance for both semantics and depth while pre-training on ADE20k slightly

adds to the final performance.

Table 3.4 compares ViewSeg with varying number of source views on Hypersim val.

More views improve both semantic segmentation and depth. More than 4 views could lead

to further improvements but substantially increase memory and time requirements during

training. Fig. 3.7 shows 3D semantic reconstructions from 4 scene views.
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Input Images Novel View RGB
(Semantics not available)

ViewSeg
Prediction

Figure 3.5: We test on real images taken with an iPhone 12. Despite noisy camera poses
estimated by COLMAP [234] following [189], ViewSeg obtains reasonable segmentation re-
sults.

Figure 3.6: Predictions on Replica. For each example, we show the 4 input views (left),
ground truth RGB, semantic and depth from the novel view (middle) and ViewSeg’s semantic
and depth predictions (right). Depth colormap (scaled per example): min max.

3.4.2 Generalization to Replica and iPhone Examples

We experiment on the Replica dataset [253] which contains real-world scenes such as

living rooms and offices. Scenes are complex with many objects in various layouts. We show

generalization by applying ViewSeg pre-trained on Hypersim and then further fine-tune it on

Replica to better fit to Replica’s statistics. We further demonstrate ViewSeg’s generalization

by showing predictions on novel scenes from images captured with an iPhone in Fig. 3.5.

Replica. We use AI-Habitat [231] to extract multiple views per scene. For each view we

collect the RGB image, semantic labels and depth. For each Replica scene, we simulate an

agent circling around the center of the 3D scene and render the observations. Note that this

is unlike Hypersim [225], where camera trajectories are extracted by the authors a-priori.

We use the same camera intrinsics and resolution as Hypersim: the horizontal field of view

is 60◦ and the image resolution is 1024×768. Finally, we map the 88 semantic classes from
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Model mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25 δ < 1.252

PixelNeRF++ 25.5 38.4 53.9 48.1 64.8 37.2 0.680 0.160 0.161 0.158 0.734 0.968
ViewSeg noft 13.2 44.8 56.0 51.4 66.8 27.1 0.982 0.222 0.194 0.254 0.623 0.880
ViewSeg 30.2 56.2 62.8 62.3 75.6 48.4 0.550 0.130 0.130 0.130 0.851 0.961
Oracle 56.2 76.8 78.0 90.1 93.8 79.4 0.226 0.058 0.065 0.050 0.976 0.998

Table 3.5: Performance for semantic segmentation (blue) and depth (green) on the
Replica [253] test set before finetuning (noft) and after finetuning ViewSeg on Replica’s
training set. We additionally report the target view oracle.

Replica to NYUv3-13, following [316, 42]. Our dataset consists of 12/3 scenes for train/test,

respectively, resulting in 360/90 source-target pairs. Note that this is 330× smaller than

Hypersim. Despite the small dataset size, we show compelling results on Replica via pre-

training.

Figure 3.7: 3D semantic reconstructions of novel scenes.

Results. Table 3.5 reports the performance of our ViewSeg, trained on Hypersim, after

and before fine-tuning (denoted as noft). PixelNeRF++ finetunes two models: one that

perform NVS and followed by semantic segmentation on predicted RGB views. The oracle

fine-tunes the supervised semantic segmentation model on images from the Replica dataset

and finds the optimal depth scale and shift for the test set. We observe that ViewSeg’s per-

formance improves after fine-tuning on Replica compared to no-finetuning for both semantic

segmentation and depth across all metrics; this is not surprising as the scenes across the two

datasets vary in both object appearance and geometry. We also observe that performance

is much higher than Hypersim (Table 3.1), which is expected as Hypersim is more diverse

and challenging. ViewSeg outperforms PixelNeRF++.

Fig. 3.6 shows ViewSeg predictions on Replica. We show the input images, ViewSeg’s

predictions and the ground truth RGB, semantic and depth map for the target view.
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3.5 Conclusion

Figure 3.8: “Place-in-scene” AR demo with ViewSeg.

Inspired by the ability of humans to recognize 3D scenes from few input views, we in-

troduce the task of novel view semantic understanding (NVSU). We argue that the task of

recognizing scenes from novel views in semantic space is conceptually related to novel view

synthesis in RGB space, but need not and should not rely on it. ViewSeg bypasses RGB

synthesis and predicts in semantic space, directly attacking the recognition problem.

NVSU enables exciting AI applications in AR. For instance, you might want to see how

an object looks in your living space in Fig. 3.1 by “placing the object on the table facing

the window”. AR needs to localize the table, the window with regards to the table and

subsequently place the object in 3D, all from few RGB images. Our model attempts to

address these non-trivial 3D semantic understanding tasks. Fig. 3.8 shows a demo which

augments the scene of Fig. 3.1 using ViewSeg’s 3D semantic prediction and without any

further training or manual intervention to the scene.

We do not foresee immediate ethical risks from our work. Our datasets do not contain

humans or any other sensitive information.
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CHAPTER 4

Understanding 3D Object Articulation in

Internet Videos

In this chapter, we propose to investigate detecting and characterizing the 3D planar

articulation of objects from ordinary videos. While seemingly easy for humans, this problem

poses many challenges for computers. We propose to approach this problem by combining a

top-down detection system that finds planes that can be articulated along with an optimization

approach that solves for a 3D plane that can explain a sequence of observed articulations. We

show that this system can be trained on a combination of videos and 3D scan datasets. When

tested on a dataset of challenging Internet videos and the Charades dataset, our approach

obtains strong performance. The material in this chapter is derived from [211].

Figure 4.1: Given an ordinary video, our system produces a 3D planar representation of the
observed articulation. The 3D renderings illustrate how the microwave (in Pink) can be
articulated in 3D space. We also show the predicted rotation axis using a Blue arrow.
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4.1 Introduction

How would you make sense of Figure 4.1? Behind the set of RGB pixels that make

up the video is a real 3D transformation consisting of a 3D planar door rotating about an

axis. The goal of this chapter is to give the same ability to computers. We focus on planar

articulation taking the form of a rotation or translation along an axis. This special case of

articulation is ubiquitous in human scenes and understanding it lets a system understand

objects ranging from refrigerators and drawers to closets and cabinets. While we often learn

about these shapes and articulations with physical embodiment [249], we have no difficulty

understanding them from video cues alone, for instance while watching a movie or seeing

another person perform an action. We formalize this ability for computers as recognizing

and characterizing a class-agnostic planar articulation via a 3D planar segment, articulation

type (rotation or translation), 3D articulation axis, and articulation angle.

This problem is beyond the current state of the art in scene understanding since it

requires reconciling single image 3D understanding with dynamic 3D understanding. While

there has been substantial work on 3D reconstruction from a single image [63, 274, 39,

77], including work dedicated to planes [159], these works focus on reconstructing static

scenes. On the other hand, while there has been work understanding articulation, these

works often require the placement of tags for tracking [203, 168], a complete 3D model

or depth sensor [151, 194, 112], or successful 3D human reconstruction [289]. Moreover,

making progress is challenging because of data. Unsupervised approaches based on motion

analysis [254, 204] require something to track, which breaks in realistic data since many

human-made articulated objects are untextured (e.g., refrigerators) or transparent (e.g.,

ovens). While supervised approaches [194, 193, 151] can perhaps bypass tracking features,

they seemingly require access to large amounts of RGBD data of interactions. For now, this

data does not exist, and training on synthetic data can fall short when tested on real data

(as our experiments empirically demonstrate).

We overcome these challenges with a learning-based approach that combines both detec-

tion and 3D optimization and is trained with supervision from multiple sources (Section 4.4).

The foundation of our approach is a top-down detection approach that recognizes articulation

axes and types and 3D planes; this approach’s outputs are processed with an optimization

method that seeks to explain the per-frame results in terms of a single coherent 3D articu-

lation.

Via this model, we show that one can build an understanding of 3D object dynamics

via a mix of 2D supervision on Internet videos of objects undergoing articulation as well

as 3D supervision on existing 3D datasets that do not depict articulations. To provide 2D
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supervision, we introduce (Section 4.3) a new set of 9447 Creative Commons Internet videos.

These videos depict articulation with a variety of objects as well as negative samples and

come with sparse frame annotations of articulation boxes, axes, and surface normals that

can be used for training and evaluating planar articulation models.

Our experiments (Section 4.5) evaluate how well our approach can recognize and charac-

terize articulation. We evaluate on our new dataset of videos as well as the Charades [244]

dataset. We compare with a variety of alternate approaches, including bottom-up signals

like optical flow [261] and changes in surface normals [34], training on synthetic data [287],

as well as systems that analyze human-object interaction [289]. Our approach outperforms

these approaches on our data, often even when the baselines are given access to ground-truth

location of articulation.

Our primary contributions include: (1) The new task of detecting 3D object articulation

on unconstrained ordinary RGB videos without requiring RGBD video at training time; (2)

A dataset of Internet videos, with sparse frame annotations of articulation boxes, axes, and

surface normals that can be used for training and evaluating planar articulation models; (3)

A top-down detection network and optimization to tackle this problem, which has strong

performance on the Internet video dataset and Charades.

4.2 Related Work

This chapter proposes to extract 3D models of articulation from ordinary RGB videos.

This problem lies at the intersection of 3D vision, learning from videos, and touches on

robotics applications. We note that there are specialized approaches for understanding gen-

eral articulation (e.g., non-rigid structure from motion [263]) as well as for understanding

specialized motion models (e.g., for a full human 3D mesh models [311] or quadrupeds [137])

or for understanding more general transformations [110, 273]. Our work focuses on under-

standing the articulation of general objects whose articulated pieces can be represented by

a 3D plane rotating or translating.

Due to the ubiquitous nature of articulated objects, the task of understanding them

has long been an interest across all of artificial intelligence. In vision, the understanding

of the motion of rigid objects undergoing transformations was one of the early successes of

computer vision [262, 122, 270]. Unfortunately, these early works rely on reliable motion

tracks, which is made difficult by the textureless or reflective nature of many indoor planes

(e.g., refrigerator doors). Our top-down detector gives 3D planes that can help provide

correspondence between frames where correspondence is challenging.

More recent work in robotics has used the value of 3D and integrated it into their modeling
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approaches [254, 204, 40, 55, 187]; however their approaches often use an RGBD sensor, unlike

our use of ordinary RGB sensors. This dependence on RGBD has been carried forward to

the most recent work that uses deep learning frameworks [287, 10, 151, 164, 112, 275].

In fact, some methods require full 3D models [194], which is typically unavailable in real

world 3D scans. [193] by Mo et al. can be run on 2D images as long as the point cloud

encoder is replaced with a RGB encoder, but its 2D images contain a single object without

any background, instead of challenging Internet videos. While there has been increasing

amounts of work aimed at virtual articulated objects [258, 287], simultaneously achieving

scale and quality is challenging. For instance ReplicaCAD [258] has only 92 objects. In

contrast, our approach works at test time on standard RGB videos by bringing its own 3D

via a learned detector [159] trained on RGBD data [42].

While our outputs are 3D planar regions, our approach is deeply connected to the task of

understanding human-object interactions. In these works [27, 78, 236], the goal is to recognize

the relationship between humans and the objects they interact with. The interactions that we

study are caused by these humans, and so we use an approach that can predict human-object

interactions [236] to help identify the data we train our systems on. The most related work

in this area is [289], which aims to jointly understand dynamic 3D human-object interactions

in 3D. This work, however assumes that the object CAD model is known once the articulated

object is detected, which we do not need. Our method also works with articulation videos

that are more varied in viewpoint and perspective. A more thorough understanding of the

joint relationship between articulated objects and human-object interaction, akin to early

work [135, 71], is beyond the scope of this work, but of future value.

We solve the problem of describing 3D articulation by producing 3D planar models. This

uses advances in 3D from a single image. In particular, we build on PlaneRCNN [159], which

is part of a growing body of works aimed at extracting planes from single images [294, 307,

161]. These planes have advantages for the articulation reasoning since they offer a compact

representation to track and describe. While we use plane recognition, the plane is just one

component of our output (along with rotation axes) and we analyze our output in a video

with temporal optimization.

4.3 Data Collection

One critical component of our approach is accurate 2D annotations of articulation oc-

curring in RGB data. We show that these 2D annotations can be combined with existing

RGBD data and the right method to build systems that understand 3D articulation on

video data. We next describe how we collect a dataset of articulations. Our goals are to
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have a large collection of annotations of object box, articulation type, and axis. Rather than

directly look for examples of people articulating objects, we follow the data-first approach

of [72, 310, 236, 46], namely to gather data containing many related activities and then

analyze and annotate it.

Data Collection. Our pipeline generates a set of candidate clips to be annotated from

a collection of candidate videos via an automatic pipeline that aims to eliminate frames

that are easy to see as not depicting articulation. We begin with candidate videos that are

found by variants of searches for a set of 10 objects among Creative Commons videos on

YouTube. Within these videos, we find stationary continuous shots in these videos with

homographies [90] fit on ORB [229] features. Many of these clips cannot depict interaction

since they do not contain any people or do not contain the objects of interest. We filter

by responses by a hand detector [236] trained on 100K+ frames of Internet data, as well

as object detectors trained on COCO [158] and LVIS [87]. These filtering steps maximize

the use of annotator time by eliminating clear negatives, and generate a large number of

candidate clips.

With a collection of candidate clips of interest, we then turn to manual annotation. For

a given clip, we hire an annotation company to annotate frames sparsely (every 10 frames)

within the clip. They annotate: (box) a box around the articulated plane and its type, if

it exists; and (axis) the projection of the articulation axis, framed as a line segmentation

annotation problem. This results in a set of 19411 frames, containing 19411 boxes around

articulating planes with 13508 rotation axes and 2755 translation axes, as well as 39411

negative frames. The number of articulation axes is not equal to the number of boxes, since

some articulation axes are outside the image. We provide training, validation, and test splits

based on uploader, leading to 7845/601/1001 videos in the train/val/test split. A more

complete description of our annotation pipeline appears in the supplement.

We collect two additional annotations. For the test set, we also annotate the surface

normal of the plane following [34], so we can evaluate how well our model can learn 3D

properties. To show generalization, we also collect the same annotations except surface

normals on the Charades [244] dataset.

Data Availability and Ethics. Our data consists of videos that users uploaded publicly

and chose to share as Creative Commons data. These do not involve interaction with hu-

mans or private data. We filtered obviously offensive content, videos depicting children, and

cartoons. Examples appear throughout the chapter; screenshots of annotation instructions

and details appear in the supplement.
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Figure 4.2: Overview of our approach. (a) Given an ordinary video clip, we first apply our
3D Articulation Detection Network (3DADN) to detect 3D planes can be articulated for
each frame. (b) We then apply temporal optimization to fit the articulation model. Final
results are demonstrated in both 2D image and 3D rendering.

4.4 Approach

The goal of our approach is to detect and characterize planar articulation in an unseen

RGB video clip. These articulations are an important special case that are ubiquitous in

human scenes. As shown in Figure 7.1, we propose a 3D Articulation Detection Network

(3DADN) to solve the task. As output, the 3DADN produces the type of motion (rotation

or translation), a bounding box around where the motion is located, the 2D location of the

rotation or translation axis, and the 3D location of the articulated plane. The 3DADN’s

output is followed by post-processing to find a consistent explanation over the whole video.

4.4.1 3D Articulation Detection Network

The 3DADN processes each frame independently. Its output consists of: a segment mask

Mi; plane parameters πi = [ni, oi] giving the plane equation πT
i [x, y, z,−1] = 0 (where ni

is the the plane normal with ||ni||2 = 1 and oi is the plane offset); a projected rotation or

translation axis ai = [θ, p] which is the projection of the 3D articulation axis; and articulation

type.

We use a top-down approach to detect this representation, which we train on RGB videos

that depict articulation without 3D information as well as RGBD images with 3D information

that do not depict articulation. Our backbone is a Faster R-CNN [222] style network that

first detects bounding boxes for the articulating objects and classifies them into two classes

(rotation and translation). These boxes provide ROI-pooled features that are passed into

detection heads that predict our outputs (Mi,πi, ai). Our heads and losses for Mi follow

the common practice of Mask R-CNN [94]. We describe ai and πi below.
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Parameterizing Rotation and Translation Axis. We model the projected articulation

axis as a 2D line in the image. This projected axis is the projection of the 3D articulation

axis (e.g., the hinge of a door). We describe the projected axis with the normal form of the

line, x cos(θ) + y sin(θ) = p where p ≥ 0 is the distance from the box to the center and θ is

the inclination of the normal of the axis in pixel coordinates. Since a translation corresponds

to a direction/family of lines as opposed to a line, we define p = 0 for translation arbitrarily.

The articulation head contains two independent branches for predicting the rotation and

translation axes. We handle the circularity of the prediction of θ by lifting predictions and

ground-truth for the angle to the 2D unit circle; since the line is 180-degree-ambiguous (i.e.,

θ+π is the same as θ), we predict a 2D vector [sin(2θ), cos(2θ)]. The resulting network thus

predicts a 3D vector containing θ and p, which we supervise with a L1 loss.

Parameterizing Plane Parameters. Following a line of work on predicting planes in

images, we use a 3D plane [161] to represent the 3D locations of the articulated objects,

since many common articulated objects like doors, refrigerators, and microwaves can be

modeled as planes and because past literature [159, 119, 120] suggests that R-CNN-style

networks are adept at predicting plane representations.

A 3D plane is represented by plane parameters πi = [ni, oi] giving the plane equation

πT
i [x, y, z,−1] = 0 With camera intrinsics, planes can be recovered in 3D and with a mask,

this plane can be converted to a plane segment. Following [159, 120], we extend R-CNN by

adding a plane head which directly regresses the normal of the plane. A depth head is used

to predict depth of the image. The depth is only used to calculate the offset value of the

plane. We supervise with L2 loss for the plane normal regression and L1 loss for the depth

regression.

Training. There is no dataset that is non-synthetic and large enough to train a 3DADN

directly: the 3DADN needs both realistic interactions and 3D information. However, we

can train the 3DADN in parts. In the first stage, we train the backbone, RPN, and axis

heads directly on our Internet video training set, which has boxes and axes. We then freeze

the backbone, RPN, and axis heads and fine-tune the mask and plane head on a modified

version of ScanNet [42].

In particular, we found that humans often occlude the objects they articulate and models

that had not seen humans in training produced worse qualitative results. We therefore

composited humans from SURREAL [267] into the scenes. We randomly sample 98,235

ScanNet images, select a synthetic human and render it on ScanNet backgrounds. In training,

we do not change the ground truth, pretending the ground truth plane is partially occluded

by humans and training our model to identify them.

Meanwhile, we found that the order of training the heads was crucial. Planes in Scan-
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Figure 4.3: Predictions on Internet videos. For each example, we show the input (left),
detected 2D planes and how they will be articulated using the predicted articulation axes
and surface normals (middle). We also show 3D renderings to illustrate how these common
objects are articulated in the 3D space (right). The predicted rotation axis is shown as the
Blue arrow, and translation axis is the Pink arrow.

Net [42] are defined geometrically, and so unopened doors often merge with walls; similarly,

ScanNet [42] does not contain transitional moments during which planes are articulating.

Thus, RPNs trained on ScanNet [42] perform poorly on articulation videos. Instead, it

is important to train the RPN on our Internet videos, freeze the backbone, and only rely

on ScanNet to train plane parameters and masks, which are unavailable in Internet videos.

During inference we keep the ScanNet camera since our data does not have camera intrinsics.

Implementation Details. Full architectural details of our approach are in the supple-

mental. Our model is implemented using Detectron2 [284]. The backbone uses ResNet50-

FPN [155] pretrained on COCO [158].
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4.4.2 Temporal Optimization

After the 3DADN provides per-frame estimates of articulations, we perform temporal

optimization to find a single explanation for the detections across frames. We are given a

sequence of detections indexed by a time of the form [M(t)
i ,π

(t)
i , a

(t)
i ]. We aim to find a single

consistent explanation for these detections.

Tracking. Optimizing requires a sequence of planes to optimize over. We match box i with

the box in the next frame according to pairwise intersection over union (IoU). Box i at t

matches box j = argmaxj′ IoU(M
(t)
i ,M(t+1)

j′ ) at time t + 1; we then track greedily to get a

sequence. We subsequently drop the subscripts for clarity.

Articulation Model Fitting. Given a sequence of detections, we find a consistent expla-

nation via a RANSAC-like approach. We begin with a hypothesis of a plane segment π and

articulation axis a, which we obtain by selecting output on a reference frame. Along with

an assumed camera intrinsics K, the plane parameters let us lift the plane segment and axis

to 3D, producing 3D plane segment Π and 3D axis A. Then, for each frame t, we solve for

an articulation degree α(t) maximizing the reprojection agreement with the predicted mask

at time t. Let us define the reprojection score as

r(α, t) = IoU
(
M(t),K [Rα, tα]Π

)
, (4.1)

where RA,α and tA,α are α steps over the rotation and translation for axis A. We then

solve for α(t) by solving argmaxα r(α), which gives a per-frame angle using grid search.

We detect articulation by calculating how well the rotation degree α(t) can be explained

as a linear function of t (i.e., that there is constant motion). Since many scenes are not

constant motion, we have loose thresholds: we consider R2 ≥ 0.4 and slope k > 0.1 to be an

articulation. We exclude hypotheses where all r(α(t), t) < 0.5.

4.5 Experiments

We have introduced a method that can infer 3D articulation in Section 4.4. In the experi-

ments, we aim to answer the following questions: (1) how well can one detect 3D articulating

objects from ordinary videos; (2) how well do alternate approaches to the problem do?

4.5.1 Experimental Setup

We first describe the setup of our experiments. Our method aims to look at an ordinary

RGB video and infer information about an articulated plane on a object in 3D, including:
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Flow+Normal SAPIEN SAPIEN w/ gtbox D3D-HOI Ours GT

Figure 4.4: We compare our approach with four baselines. See detailed discussions in the
text. We show translation in Pink and rotation in Blue, except D3D-HOI which uses a
different detector.

whether the object is articulating, its extent, and the projection of its rotation or translation

axis. We therefore evaluate our approach on two challenging datasets, using metrics that

capture various aspects of a 3D plane articulating in 3D.

Datasets: We validate our approach on both Internet videos (described in Section 4.3) and

the Charades dataset [243]. We use Charades for cross-dataset evaluations. We focus on Cha-

rades videos that are opening objects (doors, refrigerators, etc.), and annotate 2491 frames

across 479 videos; we also randomly sample 479 negative videos containing 4401 negative

frames. Our Charades annotation process is similar to Internet videos, with the exceptions

that: we annotate only rotations as Charades contains few translation articulations; and we

do not annotate surface normals.

Evaluation Criteria: Evaluation of our approach is non-trivial, since our assumed input

(RGB videos) precludes measuring outputs quantitatively in 3D. We therefore evaluate our

approach on a series of subsets of the problem. We stress from the start though that these

metrics are what can be measured (due to the use of RGB inputs), as opposed to the full

rich output.

Articulation Recognition: We first independently evaluate the ability to detect whether some-

one is articulating this object at a point in time. We frame this as a binary prediction
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Table 4.1: We report AUROC for Articulation Recognition, as well as AP for Articulation
Description. To separate out difficulties in detecting articulation and characterizing its
parameters, we assist Flow+Normal and 3DADN+SAPIEN with ground truth bounding
box and denote it as gtbox. 3DADN+SAPIEN cannot detect most objects without the help
of gtbox.

Recog. Rotation Translation
Methods gtbox AUROC bbox bbox+axis bbox+axis+normal bbox bbox+axis bbox+axis+normal

Flow [261] + Normal [34] ✗ 68.5 7.7 0.3 0.0 0.3 0.0 0.0
Flow [261] + Normal [34] ✔ - - 3.0 0.3 - 1.4 0.7
D3D-HOI [289] Upper Bound ✗ 62.7 28.8 19.7 n/a 4.70 4.7 n/a
3DADN + SAPIEN [287] ✔ - - 16.8 1.40 - 15.1 0.40
Ours ✗ 76.6 61.3 30.4 17.2 34.0 27.1 17.9

problem. This is surprisingly difficult in real scenes because objects are typically partially

occluded by humans when humans articulate them, and because humans often touch a ar-

ticulated objects (e.g., cleaning the surface) without opening it. We use AUROC to measure

the performance.

Articulation Description: We next evaluate the ability of a system to detect the articulated

object, corresponding articulation type (rotation/translation), axes, and surface normals.

We follow other approaches [210, 265, 138, 198, 120] that reconstruct the scene factored

into components and treat it as a 3D detection problem, evaluated using average precision

(AP). We define error metrics as follows: (Bounding box) IoU, thresholded as 0.5. We find

the normal COCO AP, which measures IoU up to 0.95, to be too strict because the precise

boundaries of articulating parts are often occluded by people and hard to annotate. (Axes)

EA-score from the semantic line detection literature [315]. This metric handles a number of

edge cases; we use 0.5 as the threshold as recommended by [315]. (Surface normal) mean

angle error, thresholded at 30◦, following [274, 63]. A prediction is a true positive only if all

errors are lower than our thresholds. We calculate the precision-recall curve based on that

and report AP for varying combinations of metrics.

Baselines: Prior approaches for articulation detection have focused on robots, synthetic

datasets, and real-world RGBD scans. These are different from our setting for two reasons.

First, videos of people articulating objects show a noisy background with a person interacting

with and occluding the object, as opposed to an isolated articulated object in a simulator.

Second, RGB videos do not have depth, which is often a requirement of existing articulation

models. For example [151] requires depth, and while they show results on real-world depth

scans, their RGBD scans only contain a static object without humans. We propose to

compare with the following methods.

3DADN + SAPIEN [287] Data: To test whether we can solve the problem just by training on

synthetic data, we create a synthetic data-based method where we train our 3DADN system
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on synthetic data. We render a synthetic dataset using SAPIEN [287] by randomly sampling

and driving 3D objects. We filtered 1053 objects of 18 categories with movable planes from

PartNet-Mobility Dataset [287], such as doors and laptops. We render frames with the

objects articulated, with location parameters picked to give plausible scenes, and extract the

information needed to train 3DADN. Without a background, the detection problem becomes

trivial, so to mimic real 3D scenes, we blend the renderings with random ScanNet [42] images

as the background and render synthetic humans from SURREAL [267]. For fair comparison,

we use the same ScanNet+SURREAL images used to train our system’s plane parameter

head. When evaluated on SAPIEN data, this approach performs well and obtains an AP of

(bbox) 60.3, (bbox+rot) 64.1, (bbox+rot+normal) 41.0.

Bottom-up Optical Flow [261] and Surface Normal Change [34] (Flow+Normal): To test

whether the data can be solved by the use of fairly simple cues, we construct a baseline that

uses Optical Flow [261] (since articulating objects tend to cause movement) and Surface

Normals [34] (since rotating planes change their orientation). Both flow and normals provide

a H × W map that can be analyzed. We also use the output of a human segmentation

system [109] that was trained on multiple datasets and mask normal and flow magnitude

maps wherever it improves performance. Given these maps, we recognize the presence of

articulation via logistic regression on a feature vector consisting of the fraction of pixels

above multiple thresholds; we recognize bounding boxes via thresholding and finding the

tightest enclosing box; we estimate rotation axis as perpendicular to the mean flow change

in the bounding box (flow tends to increase away from hinges); we find translation axis using

mean flow direction in the box; we find articulation normal using mean predicted normals

in the box. Throughout, we use the optimal option of surface normals and flow; this hybrid

system performs substantially better than either flow or normals alone.

Baselines with + GT Box: To separate out difficulties in detecting articulation and char-

acterizing its parameters, we also experiment with giving baselines ground-truth bounding

box information about the articulating object. This gives an upper-bound on performance.

D3D-HOI [289] Upper Bound: We compare with D3D-HOI since it accepts RGB video as

input and detects how humans articulate objects. A direct comparison with D3D-HOI is

challenging since it only works when EFT [121] reconstructs 3D human poses and Pointrend

[132] detects the objects that are assumed to articulate and correct CAD models are chosen

for the object. However, EFT does not work well on the dataset due to truncated or multiple

humans on Internet videos [226, 133]. We therefore report upper-bounds on the performance.

We assume it predicts the ground truth bounding box, when EFT mask and pseudo ground

truth 2D human segmentation mask [108] has IoU > 0.5 and PointRend [132] produces a

mask on articulated objects with confidence > 0.7.
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Ours: This is our proposed method. It includes both the per-frame approach described in

Section 4.4.1 and the optimization approach of Section 4.4.2. We note that this approach also

produces outputs that are not being quantitatively measured, such as a 3D plane articulating

in 3D. These are qualitatively shown in Figures 4.1 and 4.3.

4.5.2 Results

We first show qualitative results in Figure 4.3. On challenging Internet videos, our

approach usually detects and recovers the 3D articulated plane regardless of categories.

In Figure 4.4, we compare our approach with four baselines visually. Flow can occasion-

ally locate articulation (third row), but in most cases, flow is not localized to only the object

articulating (e.g. camera movement, top row). Training purely on SAPIEN [287] data has

difficulty detecting articulated objects in Internet videos, even if we show all detected objects

with confidence score > 0.1. It learns some information of articulation axes when we assist

it with ground truth bounding boxes. D3D-HOI [289] relies on both EFT [121] to detect

humans and PointRend [132] to detect objects. However, EFT has diffculty predicting 3D

humans on Internet videos.

Quantitative Results. We evaluate the approach quantitatively on the three tasks in Ta-

ble 4.1. Our approach substantially outperforms the alternate methods. While statistically-

combined bottom-up cues [261, 34] do better than chance at predicting the presence of an

articulation, they are substantially worse than the proposed approach and fail to obtain

sensible bounding boxes. Even when given the ground-truth box, this method fails to obtain

good axes. Due to the frequency of truncated humans in Internet videos [226, 133], D3D-

HOI [289]’s performance upper-bound is substantially lower than our method’s performance.

The detection system when trained on synthetic data from [287] fails on our system; when

given a good bounding box, synthetic training data obtains reasonable, but inferior numbers

and poor accuracy in predicting normals.

Ablations – Optimization. Our optimization produces modest gains in recognition accu-

racy and axis localization in 2D: It improves recognition AUROC from 74.0 to 76.6, rotation

AP from 16.6 to 17.2 and translation AP from 14.3 to 17.9. This small gain is understand-

able because the evaluation is per-frame and the optimization mainly seeks to make the

predictions more consistent. If we quantify the consistency in the results before and after

optimization, we find that the EAScore [315] between tracked predicted frames increases

from 0.69 (before optimization) to 0.96 (after optimization).
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Figure 4.5: Qualitative results on Charades dataset. Without finetuning on Charades data,
our model obtains strong performance on detecting and characterizing 3D articulation.

Table 4.2: Evaluation on Charades dataset [243]. We only report rotation AP since Charades
does not have sufficient translation motion.

Recog. Rotation
Methods gtbox AUROC bbox bbox+axis

Flow [261] + Normal [34] ✗ 53.7 3.1 0.2
Flow [261] + Normal [34] ✔ - - 4.2
D3D-HOI Upper Bound ✗ 55.9 14.9 13.7
3DADN + SAPIEN [287] ✔ - - 1.54
Ours ✗ 58.4 12.0 12.8

4.5.3 Generalization Results

We next test our trained models without fine-tuning on Charades [244]. We show results

in Figure 4.5. Our approach typically generates reasonable estimations. We find that the

video quality and resolution of Charades is lower relative to our videos, with many dark or

blurry videos.

We also show quantitative evaluations in Table 4.2. Here, our performance is slightly

diminished. However, we substantially outperform the baselines. We are only marginally

outperformed by D3D-HOI upper bound, which assumes perfect performance so long as the

data can be obtained.

4.5.4 Limitations and Failure Modes

We finally discuss our limitations and typical failure modes in Figure 4.6. We find

some examples are particularly challenging: (1) Column 1: some images may contain hard

examples where the axis types are hard to figure out. (2) Column 2: the axis is outside of

the image frame or its location is ambiguous due to symmetry or occlusion. (3) Column 3:
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Figure 4.6: Typical failure modes. (1) Ambiguity of articulation type; (2) Axis outside of the
frame or ambiguity of articulation axis location due to symmetry; (3) Object has complex
motions (a person moving an object while articulating it; the rotation axis is outside of the
articulating surface).

the object has complex dynamics or dual axes; for example, a person moving a laptop while

opening it or the cabinet has multiple joints.

4.6 Conclusion

We have demonstrated our approach’s ability to detect and characterize 3D planar ar-

ticulation of objects from ordinary videos. Future work includes combining 3D shape recon-

struction with the articulation detection pipeline.

Our approach can have positive impacts by helping build smart robots that are able to

understand and manipulate articulated objects. On the other hand, our approach may be

useful for surveillance activities.
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CHAPTER 5

Understanding 3D Object Interaction from a

Single Image

Humans can easily understand a single image as depicting multiple potential objects

permitting interaction. We use this skill to plan our interactions with the world and accelerate

understanding new objects without engaging in interaction. In this chapter, we would like to

endow machines with the similar ability, so that intelligent agents can better explore the 3D

scene or manipulate objects. Our approach is a transformer-based model that predicts the

3D location, physical properties and affordance of objects. To power this model, we collect a

dataset with Internet videos, egocentric videos and indoor images to train and validate our

approach. Our model yields strong performance on our data, and generalizes well to robotics

data. The material in this chapter is derived from [209].

Image with query points (a) Localization and properties (b) Affordance and action (c) Potential interaction

Movable: 1 hand
Rigid: Yes

Movable: 2 hands
Rigid: No

Action: PullMovable: No

Figure 5.1: Given a single image and a set of query points , our approach predicts: (a)
whether the object at the location can be moved ~, its rigidity �and articulation class
�, and location �; (b) an affordance and action §; and (c) potential 3D interaction for
articulated objects. This ability can assist intelligent agents to better manipulate objects or
explore the 3D scene.
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5.1 Introduction

What can you do in Figure 5.1? This single RGB image conveys a rich, interactive 3D

world where you can interact with many objects. For instance, if you grab the chair with two

hands, you can move it as a rigid object; the pillow can be picked up freely and squished;

and door can be moved, but only rotated. This ability to recognize and interpret potential

affordances in scenes helps humans plan our interactions and more quickly learn to interact

with objects. The goal of this work is to give the same ability to computers.

Obtaining such an understanding of potential interactions from a single 3D image is

beyond the current state of the art in scene understanding because it spans multiple dis-

parate subfields of computer vision. For instance, single image 3D has made substantial

progress [217, 198, 303, 79], but primarily focuses on the scene as it exists, as opposed to as it

could be. There has been an increasing interest in understanding articulation [151, 287, 211],

but these works primarily focus on articulation as it occurs in a 3D model or carefully

collected demonstrations, instead of as it could occur. Finally, while there is long-standing

work on enabling robots to learn interaction and potential interaction points [204, 254], these

works focus primarily on evaluation in primarily the same environment (e.g . the lab) and do

not focus on applying the understanding in entirely new environments.

We propose to bootstrap this interactive understanding by developing (1) a problem

formulation, (2) a rich dataset of annotations on challenging images, and (3) a transformer-

based approach. We frame the problem of recognizing the articulation as a prediction-at-a-

query-location problem: given an image and 2D location, our method aims to answer “what

can I do here?” in the style of classic point-and-click games like Myst. We frame “what can

I do here” via a set of common questions: whether the object can be moved, its extent when

moved and location in 3D, rigidity, whether there are constrains on its motion, as well as

estimates of how one would interact the object. To maximize the potential for downstream

transfer, our questions are chosen to be generic rather than specific to particular hands or

end-effectors: knowing where to act or the degrees of freedom of an object may accelerate

reinforcement learning even if one must still learn end-effector-specific skills.

In order to tackle the task, we introduce a transformer-based model. Our approach,

described in Section 5.5 builds on a detection backbone such as Segment-Anything [131] in

order to build on the advances and expertise of object detection. We extend the backbone

with additional heads that predict each of our “what I can I do here” tasks, and which can be

trained end-to-end. As an advantage of our formulation, we can train the system on sparse

annotations; we believe this will be helpful for eventually converting our direct supervision

to supervision via video.
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Powering our approach is a new dataset, described in Section 5.4, which we name the

3D Object Interaction dataset (3DOI). In order to maximize the likelihood of generalizing

to new environments, the underlying data comes from diverse sources, namely Internet and

egocentric videos as well as 3D renderings of scene layouts. We provide annotations of our

tasks on this data and, due to the source of the data, we also naturally obtain 3D supervision

in the form of depth and normals. In total, the dataset has over 50K objects across 10K

images, as well as over 31K annotations of non-interactable objects (e.g., floor, wall).

Our experiments in Section 5.6 test how well our approach recognizes potential interac-

tion, testing on both unseen data in 3DOI as well as robotics data. We compare with a

number of alternatives, including generalizing from data of demonstrations [211, 196] and

synthetic data [287], as well alternate network designs. Our approach outperforms these

models and shows strong generalization to the robotics dataset WHIRL [6].

To summarize, we see our primary contributions as: (1) the novel task of detecting 3D

object interactions from a single RGB image; (2) 3D Object Interaction dataset, which is the

first large-scale dataset containing objects that can be interacted and their corresponding

locations, affordance and physical properties; (3) A transformer-based model to tackle this

problem, which has strong performance on the 3DOI dataset and robotics data.

5.2 Related Works

This chapter proposes to extract 3D object interaction from a single image. This problem

lies at the intersection of 3D vision, object detection, human-object interaction and scene

understanding. It is also closely related to downstream robotics applications.

Interactive scene understanding. Recently, the computer vision community is increas-

ingly interested in understanding 3D dynamics of objects. It is motivated by human-object

interaction [27, 78, 236], although humans do not need to be present in our setting. Re-

searchers try to understand the 3D shapes, axes, movable parts and affordance on synthetic

data [193, 287, 194, 117, 279, 151, 277, 279], videos [211, 89, 82, 196, 177, 147] or point

clouds [118, 100]. Our work is mainly related to [211, 89, 82] since they work on real images,

but is different from them on two aspectives: (1) they need video or multi-view inputs, but

our input is only a single image; (2) their approaches recover objects which are being inter-

acted, while our approach understands potential interactions before any interactions happen.

Finally, OPD [117, 256] tackles a similar problem for articulated objects, but ours also work

for non-articulated objects.

Object detection. The training anchor-based object detection pipeline basically follows

the pipeline of Mask R-CNN [94, 132, 222, 130]. As the development of transformer-based
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models goes, DETR [21], AnchorDETR [278] and MaskFormer [36] approach object detection

as a direct set prediction problem. Recently, Kirillov et al . proposes Segment Anything

Model [131], which predicts object masks from input prompts such as points or boxes. Our

network needs to be built on decoder-based backbones [21, 36, 131], and we choose SAM [131]

due to its state-of-the-art performance.

Single image 3D. Since our problem requires us recover 3D object interaction instead

of 2D from a single image, it is also related to single image 3D. In the recent few years,

researchers have developed many different approaches to recover 3D from a single image,

including depth [303, 217, 153, 33, 63], surface normals [274, 67], 3D planes [161, 159, 120]

and shapes [39, 179, 79, 198]. Our work is built upon their works. Especially, our architecture

is motivated by DPT [217] which trains ViT for both segmentation and depth estimation.

Robotics manipulation. Manipulation of objects is a long-term goal of robotics. Re-

searchers have developed various solutions for different kinds of objects in different scenes,

ranging from articulated objects [254, 204, 40, 55, 283] to deformable objects [292, 293, 276,

37]. While manipulation is not the goal of this chapter, understanding objects and the envi-

ronment in 3D is typically an important part of a manipulation pipeline. The chapter mainly

improves the perception part, which can potentially improve manipulation. Therefore, we

also test our approach on robotics data [6], to show it can generalize.

5.3 Overview

Given a single image, our goal is to be able to answer “What could I do here?” with the

object at a query point. We introduce annotations in Section 5.4 as well as a method for the

task in Section 5.5. Before we do so, we present a unified explanation for the questions we

answer as well as the rationale for choosing these questions. We group our questions into six

property types, some of which are further subdivided. Not all objects support all questions:

objects that cannot be moved, for instance, do not have other properties and objects that

can be freely moved do not have rotation axes. We further note that some objects defy these

properties – ball joints, for example, permit a 2D subspace of motion – our goal is to identify

a large subspace of potential interactions.

Movable ~ The most important subdivision is whether the object at the query point

can be moved. This follows work in both 3D scene understanding [246] and human-object

interaction [236] that subdivide objects into how movable they are. We group objects into

three categories based on how easily the object can be moved: (1) fixtures which effectively

cannot be moved, such as walls and floor; (2) one hand objects that can be moved with a
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Figure 5.2: Example annotations of our 3DOI dataset. Our images come from Internet
videos [211], egocentric videos [47] and renderings of 3D dataset [62]. is the query point,
and ▼ is the affordance.

single hand, such as a water bottle or cabinet door; (3) two hand objects that require two

hands to move, such as a large TV. We frame the task as three-way classification.

Localization � Understanding the extent of an object is important, and so we localize

the object in the world. Since our objects consist of a wide variety of categories, we frame

localization as 2D instance segmentation as in [94, 21], as well as a depthmap to localize the

object in 3D [217, 303]. These properties can be estimated for most objects.

Rigidity � To understand action, one primary distinction is rigid-vs-non-rigid since rigid

objects are subject to substantially simpler rules of motion [152]. We therefore classify

whether the object is rigid or not.

Articulation � Most rigid objects can further decomposed as permitting freeform, rota-

tional / revolute, or translation / prismatic motion [254]. Each of these requires different

end-effector interactions to effectively interact with. We frame the articulation category as

a three-way classification problem, and recognizing the rotation axis as a line prediction

problem following [211].

Action § We also want to understand what the potential action could be to interact with

the object. Here we focus on three types of actions: pull, push or other.

Affordance Finally, we want to know where we should interact with the object. For

example, we need to manipulate the handle if we want to open a door. We predict a

probability map which is over the location of the affordance.

5.4 3D Object Interaction Dataset

One critical component of our contribution is accurate annotations of object interactions,

as there is no publicly available data. In this chapter, we introduces 3D Object Interaction

dataset (3DOI), which is the first dataset. We picked data that can can be easily integrated
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Figure 5.3: Overview of our approach. The inputs of our network is a single image and a
set of query points. For each query point, it predicts the potential 3D interaction, in terms
of movable, location, rigidity, articulation, action and affordance.

with 3D, including a 3D dataset, so that we have accurate 3D ground truth to train our

approach. Examples of our data are shown in Figure 5.2.

Images. Our goal is to pick up diverse images representing real-world scenarios. In partic-

ular, we want our images contain a lot of everyday objects we can interact with. Therefore,

we sample 10K images from a collection of publicly available datasets: (1) Articulation [211]

comes from third-person Creative Commons Internet videos. Typically, a video clip contains

humans manipulating an articulated objects in households. We randomly sample 3K images

from the articulation dataset; (2) EpicKitchen [47] contains egocentric videos making foods

in kitchen environments. We sample 2K images from EpicKitchen; (3) Taskonomy [308] is

an indoor 3D dataset with real 2D image and corresponding 3D ground truth. We use the

renderings by Omnidata [62]. We sample 5k images from the taskonomy split of Omnidata

starter dataset. Overall, there are 10K images.

Annotation. With a collection of images with potential objects we can interact, we then

turn to manual annotation. For a single image, we select around 5 interactable query points,

including both large and small objects. For each query point, we annotate: (Movable ~)

one hand, two hand, or fixture. (Localization �) The bounding box and mask of the part

this point belonging to. (Rigidity �) Rigid, or nonrigid. (Articulation �) Rotation, trans-

lation or freeform. We also annotate their rotation axes. (Action §) Pull, push or others.

(Affordance ) A keypoint which indicates where we should interact with the object. At

the same time, our taskonomy [308] images come with 3D ground truth, including depth

and surface normals. We also annotate 31K query points of fixtures. Finally, we split 10K

images into a train/val/test set of 8k/1k/1k split, respectively.

Availability and Ethics. Our images come from three publicly available datasets. Taskon-

omy does not contain any humans. The video articulation dataset comes from Creative

Commons Internet videos. We do not foresee any ethical issues in our dataset.
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5.5 Approach

We now introduce a model which can take an image and a set of query point and answer

all of questions we asked in Section 5.3, including movable, localization, rigidity, articulation,

action and affordance. A brief overview of our approach is shown in Figure 5.3.

Since our inputs include a set of query points and our outputs include both bounding

boxes and segmentation masks, we mainly extend SAM [131] to build our model. Compared

with traditional detection pipeline such as Mask R-CNN [94], we can use a query point to

naturally guide SAM to detect the corresponding object. Mask R-CNN generates thousands

of anchors for each image, which is challenging to find the correct matching. However, we

also compare with alternative network architectures in our experiments for completeness.

We find they can also work despite being worse than SAM. For simplicity, we assume there

is only a single query point. But our model can accept hundreds of query points at a time.

5.5.1 Backbone

The goal of our backbone is to map an image I and a query point [x, y] to a pooled

feature h = f(I; [x, y]). Full details are in the supplemental.

Image Encoder. Our image encoder is a MAE [92] pretrained Vision Transformer (ViT) [57],

following SAM [131]. They map a single image I to the memory of the transformer decoder.

Query Point Encoder. We transfer the query point [x, y] to positional encodings [259],

which is then feed into the transformer decoder. We use the embedding k to guide the

transformer to produce the feature h for different query points.

Transformer Decoder. The decoder accepts inputs of the memory from the encoder, and

an embedding k of the query point. It produces a embedding h for each query point, and

we use it to predict all the properties, like a ROI feature.

5.5.2 Prediction Heads

We now describe how to map from the pooled feature h to the features. Each prediction

is done by a separate head that handles each output type.

Movable ~ We add a linear layer and map the hidden embedding h to the prediction of

movable. We use the standard cross entropy loss to train it.

Localization � We follow DETR standard practice to predict bounding boxes and segmen-

tation masks. For the bounding box, we represent it use a 4d vector and use a 3-layer MLP

to regress it. We train boxes using L1 loss and generalized IoU [223] as the loss function.
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For segmentation masks, we adapt the panoptic segmentation module (similar to a decoder)

to produce a single object mask, and use focal loss [156] and DICE [190] as loss functions.

For depth, we add an additional query to the transformer decoder, and produce a dense

depth map using the segmentation module as a decoder. We train depth using scale- and

shift-invariant L1 loss and gradient-matching loss following [303, 217, 153]. The shift and

scale are normalized per image.

Rigidity � Similar to movable, we add a linear layer to predict whether the object is rigid

or not. We train the linear layer using a standard binary cross entropy loss.

Articulation � We first add a linear layer to predict whether the interactive object is

rotation, translation or freeform, and we use the standard cross entropy loss to train it. For

the rotation axis, we follow [211, 315] to represent an axis as a 2D line (θ, r). Any points

on this line satisfy x cos(θ) + y sin(θ) = r where θ represents the angle and r represents

the diatance from the object center to the line. In training, we represent the 2D line as

(sin 2θ, cos 2θ, r), so that the axis angle is in a continuous space [323]. We use a 3-layer MLP

to predict the axis, similar to bounding boxes as both tasks require localization. We use L1

loss to train it.

Action § Similar to movable, we add a linear layer to predict what the potential action is

to interact with the object. We train the linear layer using a standard binary cross entropy

loss.

Affordance Our prediction of affordance is a probability map, while our annotation is a

single keypoint. However, affordance can have multiple solutions. Therefore, we transform

the annotation of affordance to a 2D gaussian bump [145] and train the network using

a binary focal loss [156]. We set the weight of positive examples to be 0.95 and that of

negative ones to be 0.05 to balance positives and negatives, as there are more negatives than

positives.

Our total loss is a weighted linear combination of all losses mentioned above. Details are

in supplemental.

5.5.3 Implementation Details

Full architectural details of our approach are in the supplemental. In practice, we use

three different transformer decoders for mask, depth and affordance. The image encoder,

query point encoder and mask decoder are pretrained on SAM [131]. Other parts, including

affordance head and depth head, are trained from scratch. We use an AdamW optimizer of

the learning rate 10−4, and train our model for 200 epochs.

62



Image + Query 
Properties

Prediction GT
AffordanceLocalization

Prediction GT Prediction GT

Rigid: Yes
Mov: 1 hand

Arti: Rot
Action: Pull

Rigid: Yes
Mov: 1 hand

Arti: Rot
Action: Pull

Rigid: Yes
Mov: 1 hand
Arti: Trans
Action: Pull

Rigid: Yes
Mov: 1 hand
Arti: Trans
Action: Pull

Rigid: Yes
Mov: 1 hand

Arti: Free
Action: Free

Rigid: Yes
Mov: 1 hand

Arti: Free
Action: Free

Rigid: No
Mov: 1 hand

Arti: Free
Action: Free

Rigid: No
Mov: 1 hand

Arti: Free
Action: Free

Rigid: Yes
Mov: 2 hands

Arti: Free
Action: Free

Rigid: Yes
Mov: 2 hands

Arti: Free
Action: Free

Figure 5.4: Results on our 3DOI dataset. indicates the query point. (Row 1, 2) Our
approach can correctly recognize articulated objects, as well as its type (rotation or trans-
lation), axes, and affordance. (Row 3, 4) Our approach can recognize rigid and nonrigid
objects in egocentric video. (Row 5) Our approach can recognize objects need to be moved
by two hands, such as a TV. We note that the affordance of these objects have multiple
solutions. Affordance is zoomed manually for better visualization. Affordance colormap:
min max.

5.6 Experiments

We have introduced an approach that can localize and predict the properties of the

moving part from an image. In the experiments, we aim to answer the following questions:

(1) how well can one localize and predict the properties of the moving part from an image;

(2) how well do alternative approaches to the problem do? We evaluate our approach on our

3DOI dataset and test the generalization to robotics data WHIRL [6].

5.6.1 Experimental Setup

We first describe the setup of our experiments. Our method aims to look at a single RGB

image and infer information about the moving part given a keypoint. We therefore evaluate

our approach on two challenging datasets, using metrics that capture various aspects.

Datasets. We train and validate our approach on two datasets: 3DOI dataset (described in
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Section 5.4), and the WHIRL dataset [6]. WHIRL [6] is a robotics dataset including every-

day objects and settings, for example drawers, dishwashers, fridges in different kitchens,

doors to various cabinets. We use WHIRL to validate the generalization of our approach

and downstream applications in the robotics settings. We split the first frame of all WHIRL

videos and annotate them using the same pipeline as our datasets. Typically, humans are

not present in the first frame and it’s before any manipulation.

Metrics. We report standard practices of evaluation for all of our predictions. For all

metrics, the higher the better. These metrics are detailed as follows:

• Movable ~, Rigidity �, and Action §: We report accuracy as these are multiple choice

questions.

• Localization �: We report Intersection-over-Union (IoU) for our predictions of bounding

boxes and masks [157]. We report threshold accuracy for depth [63].

• Articulation �: We report accuracy for articulation type. The rotation axis is a 2D

line. Therefore, we report EA-Score between the prediction and the ground truth, following

[211, 315]. EA-Score [315] is a score in [0, 1] to measure the angle and euclidean distance

between two lines.

• Affordance : It’s a probablity map and we report the histogram intersection (or SIM)

following [196, 18].

Baselines. We compare our approach with a series of baselines, to evaluate how well alter-

native approaches work on our problem. We first evaluate 3DADN [211], SAPIEN [287], and

InteractionHotspots [196] using their pretrained checkpoints, to test how well learning from

videos or synthetic data works on our problem. We then train two query-point-based model,

ResNet MLP [95] and COHESIV [237], to test how well alternative network architectures

work on our problem. The details are introduced as follows.

• (3DADN [211]): 3DADN detects articulated objects which humans are interacting with,

extending Mask R-CNN [94]. It is trained on Internet videos. We drop the temporal op-

timization part since we work on a single image. For each image, it can detect articulated

objects, as well as the type (translation or rotation), bounding boxes, masks and axes. Since

the inputs of 3DADN do not include a query point, we compare the predicted bounding

boxes and the ground truth to find the matching detection, and evaluate other metrics. We

lower the detection threshold to 0.05 to ensure we have enough detections to match our

ground truth.

• (SAPIEN [287]): The training frames of 3DADN [211] typically have human activities.

However, our dataset does not require humans to be present, which may lead to generalization

issues. Alternatively, we are interested in whether we can just learn the skill from synthetic

data. We train 3DADN [211] on renderings of synthetic objects generated by SAPIEN.
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Table 5.1: Quantitative results on our 3DOI dataset. Cat. means category. We report
accuracy for all category classification, including movable, rigid, articulation and action. We
report mean IoU for box and mask, EA-Score for articulation axis, and SIM for affordance.
For all metrics, the higher the better.

Movable ~ Localization � Rigidity � Articulation � Action § Affordance
Methods Cat. Box Mask Cat. Cat. Axis Cat. Probability

3DADN [211] - 8.53 6.45 - 44.3 5.63 - -
SAPIEN [287] - 5.94 4.57 - 41.6 1.79 - -
InteractionHotspots [196] - - - - - - - 0.047
ResNet MLP [95] 72.5 21.4 - 81.9 51.9 68.3 58.8 -
COHESIV [237] 71.5 28.3 35.2 81.2 68.0 67.2 71.5 0.013
Ours 85.3 69.9 77.1 90.1 89.4 80.3 89.7 0.167

SAPIEN is a simulator which contains a large scale set of articulated objects. We use the

renderings provided by 3DADN and the same evaluation strategies.

• (InteractionHotspots [196]): While 3DADN and SAPIEN can detect articulated objects

as well as their axes, they cannot tell the affordance. InteractionHotspots learns affordance

from watching OPRA [68] or Epic-Kitchen [47] videos. Since InteractionHotspots cannot

detect objects, we apply a center crop of the input image based on the query point, and

resize it to the standard input shape (224, 224). We use the model trained on Epic-Kitchen

as it transfers better than OPRA.

Additionally, we want to test alternative network architectures trained on our 3DOI

dataset. We use the same loss as ours to train it on 3DOI, to ensure fair comparison.

• (ResNet MLP [95]): ResNet MLP uses a ResNet-50 encoder to extract features from input

images. We then sample the corresponding spatial features from the feature map using the

2D corrdinates of keypoints. We train ResNet MLP on all tasks except mask, affordance and

depth, as these tasks requires dense predictions for each pixel. Adding a separate decoder

to ResNet makes it a UNet-like architecture [228], which is beyond the scope of ResNet.

• (COHESIV [237]): We also pick another model COHESIV, which designed for the prediction-

at-a-query-location problem. Given an input image and corresponding hand location as a

query, COHESIV predicts the segmentation of hands and hand-held objects. We adopt the

network, as it produces a feature map of queries. we sample an embedding from the feature

map according to the query point, concatenate it with image features, and produce multiple

outputs.

5.6.2 Results

First, we show qualitative results in Figure 5.4. For articulated objects (drawers, cabinets,

etc.), our approach can recognize its location, kinematic model (rotation or translation), axes
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Image + Query Prediction 3Prediction 1 Prediction 2

Figure 5.5: Prediction of 3D potential interaction of articulated objects. In prediction 1, 2,
and 3, we rotate the object along its rotation axis, or translate the object along its normal
direction.

and handle. It can also recognize rigid or nonrigid objects, as well as light or heavy ones. It

works on both third-person images or egocentric videos. And all of these are achieved in a

single model. For articulated objects, we utilize the outputs and further show their potential

3D interaction in Figure 5.5. Full details in supplemental.

We then compare our approach with a set of baselines. The quantitative results are re-

ported in Table 5.1. 3DADN [211] is much worse than our approach, since it can only detect

objects which are being articulated. It fails to detect objects humans are not interacting.

Instead, our approach can detect any objects can be interacted, regardless of human activ-

ities. SAPIEN is worse than 3DADN, which suggests learning from synthetic objects has a

huge domain gap. This is consistent with the observation of 3DADN. Visual comparisons

are shown in Figure 5.6.

We compare our prediction of the affordance map with InteractionHotspots [196]. Our

approach outperforms InteractionHotspots significantly, with a 75% improvement. A visual

comparison is shown in Figure 5.7. While InteractionHotspots predicts a cloud-like probabil-

ity map, our approach is typically very confident about its prediction. However, the overall

performance is relatively low, mainly due to ambiguity of affordance on deformable objects.
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Figure 5.6: Comparison of 3DADN [211], SAPIEN [287] and our approach. 3DADN has a
strong performance when humans are present. However, it has difficulty detecting objects
without human activities. SAPIEN does not generalize well to real images. However, it is
sometimes better than 3DADN when humans are not present.

To explore alternative network architectures, we compare our approach with ResNet

MLP [95] and COHESIV [237], which are trained on our data with the same loss func-

tions. ResNet MLP is reasonable on movable, rigidity, and action. It is especially bad on

bounding box localization, which is why we typically rely on a detection pipeline such as

Mask R-CNN [94]. COHESIV learns reasonable bounding boxes and masks, which is a huge

improvement over ResNet MLP. The performance of movable drops compared with ResNet

MLP, while that of kinematic and action improves. Overall, our approach outperforms both

ResNet MLP and COHESIV, mainly due to the introduction of transformers.

Finally, we evaluate depth on our data and EDINA [56]. Having state-of-the-art depth

estimation is orthogonal to our goal, since we only need reasonable depth to localize objects

in 3D and render potential 3D interactions. In fact, state-of-the-art depth estimation models

are trained on over ten datasets and one million images [217, 303, 62], while our dataset only

has 5K images with depth ground truth. We just report the evaluation of depth estimation,

in order to show our model has learned reasonable depth. On our data, 84.2% pixels are

within the 1.25 threshold, 98.5% pixels are within the 1.252 threshold. On EDINA, 65.4%

pixels are within the 1.25 threshold, 95.9% pixels are within the 1.252 threshold.

5.6.3 Generalization Results

To test whether our approach and models trained on our 3DOI dataset can generalize,

we further evaluate our approach on WHIRL [6], a robotics dataset manipulating every-

day objects. Since WHIRL is a small-scale dataset, we test our model on WHIRL without

finetuning. Our results are shown in Figure 5.8. For both articulated objects and deformable
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Image + Query Ground TruthInteractionHotspots Ours

Figure 5.7: Comparison of InteractionHotspots [196] and our approach. We find Interac-
tionHotspots typically makes a cloud like probability map on our data. Our model is very
confident about its prediction, while there can be multiple solutions. Prediction and GT are
zoomed manually for better visualization. Affordance colormap: min max.

objects, our approach can successfully recover its kinematic model, location and affordance.

We also quantitatively evaluate our approach on WHIRL. We report our results in Ta-

ble 5.2. Similar to our 3DOI dataset, our approach outperforms 3DADN [211], SAPIEN [287]

and InteractionHotspots [196] significantly. The performance gap is even larger. We believe

it is because humans are not present in most images of the dataset.

We compare our approach with ResNet MLP [95] and COHESIV [236], which are also

trained on our 3DOI dataset. Compared with ResNet MLP, our approach is slightly worse on

Movable and Axis, while much better on Rigid, Kinematic Action, and Box. This is probably

due to the noise of a small-scale dataset. Compared with COHESIV, our model outperforms

it consistently, although the improvement on box is small. It illustrates models trained on

our 3DOI dataset generalize well to robotics data, regardless of network architectures.

5.6.4 Limitations and Failure Modes

We finally discuss our limitations and failure modes. In Figure 5.9, we show some pre-

dictions are hard to make from visual cues: Some articulated objects are symmetric and
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Table 5.2: Quantitative results on robotics data [6]. Cat. means category. We report
accuracy for all category classification, including movable, rigid, articulation and action.
We report mean IoU for the boxes and masks, EA-Score for articulation axis, and SIM for
affordance probablity map. For all metrics, the higher the better.

Movable ~ Localization � Rigidity � Articulation � Action § Affordance
Methods Cat. Box Mask Cat. Cat. Axis Cat. Probability

3DADN [211] - 13.8 10.1 - 53.3 4.03 - -
SAPIEN [287] - 9.14 6.15 - 51.1 0.0 - -
InteractionHotspots [196] - - - - - - - 0.045
ResNet MLP [95] 88.8 14.1 - 80.0 51.1 57.1 51.1 -
COHESIV [237] 86.7 37.1 38.7 82.2 73.3 66.1 73.3 0.015
Ours 91.1 68.7 70.2 95.6 80.0 68.5 84.4 0.148

humans rely on common sense to guess its rotation axis. There are also hard examples when

predicting the rigidity and movable. Finally, we only annotate a single keypoint for each

object instance as affordance. But some objects may have multiple keypoints as affordance.

5.7 Conclusion

We have presented a novel task of predicting 3D object interactions from a single RGB

image. To solve the task, we collected the 3D Object Interaction dataset, and proposed a

transformer-based model which predicts the potential interactions of any objects according

to query points. Our experiments show that our approach outperforms existing approaches

on our data and generalizes well to robotics data.

Our approach can have positive impacts by helping build smart robots that are able to

understand the 3D scene and manipulate everyday objects. On the other hand, our approach

may be useful for surveillance activities.
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Figure 5.8: Results on robotics data [6]. Without finetuning, our approach generalizes well
to robotics data, which indicates its potential to help intelligent agents to better manip-
ulate objects. Row 1 and 2 are articulated objects. Row 3 and Row 4 are deformable
objects. Affordance is zoomed manually for better visualization. Affordance colormap: min

max.
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Figure 5.9: Typical failure modes of our approach. Row 1: Our predicted rotation axis is
on the wrong side when the objects look symmetric. Row 2: Our predicted mask is partial
when the scissors are occluded. Row 3: Our model thinks the trash bin can be picked up
by 1 hand, potentially since its material looks plastic.
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CHAPTER 6

Grounding Affordance from Vision Language

Models

Affordance grounding refers to the task of finding the area of an object with which one

can interact. It is a fundamental but challenging task, as a successful solution requires the

comprehensive understanding of a scene in multiple aspects including detection, localization,

and recognition of objects with their parts, of geo-spatial configuration/layout of the scene,

of 3D shapes and physics, as well as of the functionality and potential interaction of the

objects and humans. Much of the knowledge is hidden and beyond the image content with the

supervised labels from a limited training set. In this chapter, we make an attempt to improve

the generalization capability of the current affordance grounding by taking the advantage

of the rich world, abstract, and human-object-interaction knowledge from pretrained large-

scale vision language models [163]. Under the AGD20K benchmark, our proposed model

demonstrates a significant performance gain over the competing methods for in-the-wild object

affordance grounding. We further demonstrate it can ground affordance for objects from

random Internet images, even if both objects and actions are unseen during training. The

material in this chapter is derived from [208].

6.1 Introduction

Grounding affordance from a single image is a fundamental problem in computer vi-

sion. It forms the stepping stone to downstream tasks such as understanding human-object

interaction [27, 78, 236], visual navigation [139], and object manipulation [6, 100]. Past

approaches generally use human demonstrations as supervision to advance this field with

tremendous success [196, 177, 176, 147]. While such approaches perform well on objects

and actions seen during training, they struggle when generalizing in the wild, i.e. on novel

objects unseen during training (Fig. 6.1).
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Figure 6.1: Illustration for the affordance grounding task. The input is a single image
and the corresponding action (e.g, “hold”). The output is a heatmap which highlights regions
one can interact. We aim to enhance the generalization capability of affordance grounding
to in-the-wild objects that are unseen during training, by developing a new approach, Affor-
danceLLM, that takes the advantage of the rich knowledge from large-scale vision language
models [163] beyond the supervision from the training images.

The difficulties in generalization arise from the fact that affordance grounding is a chal-

lenging task that requires comprehensive understanding of an image from multiple aspects.

A successful solution requires an understanding of the 3D geometry and functionality of

objects and parts, of the actions and intentions of the executing agent, of the potential inter-

action between object and human, as well as of the spatial configuration of the environment.

Much of these knowledge lies beyond the ground-truth localization/recognition of objects

and parts provided as heatmaps in a limited training set.

In this chapter we make attempts to improve affordance grounding in the wild by lever-

aging the rich world, abstract, and human-object-interaction knowledge embedded in large-

scale Vision Language Models (VLMs). With large-scale text pretraining, modern VLMs

such as GPT-4 [201], LLaVA [163] and Blip-2 [148] have a rich reservoir of world knowl-

edge, as demonstrated by their extraordinary capabilities in answering visually grounded

common sense questions [17]. World knowledge is instrumental to affordance reasoning —

when presented with an image of a motorcycle and questioned about “How do I ride with

this motorcycle?”, LLaVA answers “To ride the motorcycle, you should interact with the

handlebars...” (Fig. 6.2), which exhibits commonsensical understanding of affordance. Af-

fordance models equipped with similar world knowledge have a better chance generalizing

to the wild than a model that purely learns from limited affordance demonstration data.

Beside world knowledge, another novel factor we introduce to improve affordance reason-

ing is 3D geometry, as it holds rich information of object functionality. A cylindrical area, for

example a handle or a stick, is closely related to the action of grabbing or holding, regardless
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To ride the motorcycle, you should interact with the 

handlebars, which are located at the front of the 

motorcycle. The handlebars are used to steer

the motorcycle and control its direction and speed. 

Additionally, you should also ensure that the motorcycle 

is parked in a safe and legal location, and that you have 

the necessary safety gear, such as a helmet and 

protective clothing, before attempting to ride it.

How do I ride with this 

motorcycle?

LLaVA

Figure 6.2: State-of-the-art vision language models, such as LLaVA [163], has rich human-
object-interaction knowledge, thanks to the large-scale text pretraining. Given a question
about how to interact with an object, it typically gives a reasonable solution.

of its color or texture. Similarly, a flat part, for example the surface of a chair or a bench,

might indicate areas suitable for sitting or lying. Relating 3D geometries to actions allows

us to bypass the difficulties in handling variations in visual appearances, and thus facilitates

generalization.

We propose a novel approach, AffordanceLLM, that reflects the above intuitions. Our ap-

proach builds upon a VLM backbone (LLaVA [163]) to tap into the its world knowledge. We

achieve it by extending the backbone with a mask decoder and a special token <mask token>,

which are used to predict an affordance map. The whole model can be trained end-to-end.

Additionally, we introduce depth maps as 3D information in parallel to RGB images as input

to our network, with the goal of eliciting geometric reasoning capability from the network.

We found both designs significantly improve performance.

We evaluate our method on the AGD20K [177] benchmark, as this is the only large-

scale affordance grounding dataset with accurate action and object labels. We re-split the

benchmark to test capability of models to generalize to object categories unseen during

training. We show that our approach outperforms all state-of-the-art baselines by a large

margin. We take a further step to validate the generalization ability by testing our approach

on random Internet images. It produces reasonable affordance maps on object categories

very different from the ones in training set. Moreover, it even possesses some capability of

generalizing to completely novel actions.

In summary, our contributions are as follows:
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1. We introduce the first-ever affordance grounding approach that leverages the rich world

knowledge embedded in pretrained VLMs, enabling the model to generalize beyond

training data;

2. We demonstrate the importance of 3D information in affordance grounding;

3. Our proposed approach generalizes to novel objects and outperforms all state-of-the-

art approaches on AGD20K. It even shows evidence that it could generalize to novel

actions.

6.2 Related Work

Eliciting World Knowledge from Vision Language Models. Foundational Vision

Language Models that bridge images and language have a rich reservoir of world knowledge,

and recent researches have been tapping into it to make advancement in vision tasks. The

joint visual-language embedding space learnt from simple image-text pair [214, 54] has made

it possible to improve open-world detection [191, 167, 181, 239], and segmentation [271, 175,

146, 290]. The world knowledge here is the correspondence between visual and language

concepts.

Large language models (LLMs) trained on trillions of tokens contain even richer world

knowledge and are capable of answering common-sense questions. Coupled with vision in-

puts, the resulting multi-modal LLMs are brought in to solve complex vision problems. For

example, Kosmos-2 and Groundhog incorporate the reasoning skill of LLMs to generate

bounding boxes and segmentation masks [202, 313, 143]. 3D LLM further extend LLMs to

reason about 3D scenes, including visual grounding and navigation [295, 319, 44, 99, 102,

154, 101]. For robotics, PaLM-E and RT2 transfer the knowledge from visual-language do-

mains into motion planing and manipulation [59, 14]. Our approach embodies the same idea

to transfer the world knowledge from VLMs, but applies it on a novel setting – solving visual

affordance grounding.

Affordance Grounding. Understanding object affordance from a single image is an im-

portant step towards embodied visual intelligence, and researchers have built many different

approaches to endow machines to have this ability. Nagarajan et al . first proposes to ground

object affordance from Internet videos [196]. Fang et al . constructs an object affordance

dataset based on product review videos [68]. Luo et al . annotates the first large-scale affor-

dance dataset and call it AGD20K [177]. LOCATE [147] is the state-of-the-art approach on

AGD20K. More recently, researchers further extends the scope of the affordance grounding

75



problem, including extending it to scene understanding [209, 136, 28], 3D models [296], ego-

centric videos [195], hand pose generation [116, 299], or associating it with human parts [178].

We use AGD20K as our primary benchmark, and compare our approach with state-of-the-art

methods [209, 196, 176, 88, 147].

Incorporating 3D Information for Vision Tasks. 3D information has been shown to be

critical in certain vision and robotics tasks. For example, Zhou et al . [317] found that visual

navigation in mobile sensorimotor systems can benefit from 3D input. Kerr et al . [128] found

the NeRF-rendered depth map can help grasping in robotics. Similarly, grounding affordance

could benefit from 3D information as well, as 3D shapes of objects and their parts hold a lot of

hints on their utility and the proper ways to interact with them. While 3D information is not

usually available for an arbitrary image, fortunately, researchers have built a series of robust

approaches to estimate the 3D of an image, ranging from surface normal estimation [274, 63],

depth estimation [33, 152, 217, 303, 302], to 3D reconstruction [79, 159, 198] and few-image

NeRF [165, 212, 20, 305]. In our chapter, we mainly use DPT [217] to generate pseudo depth

maps to help VLMs to build 3D understanding.

Robotics Manipulation. Manipulation of in-the-wild objects is an importatnt but chal-

lenging task in robotics due to the difficulty of data collection. Researchers have developed

many methods for different objects in different scenes, such as tabletop objects [113, 81, 242]

and mobile manipulation [301]. While manipulation is not our goal, learning affordance can

be a solution for manipulation [7, 100, 282].

6.3 Approach

We now introduce our approach, AffordanceLLM, which takes a single image I and an

affordance text query T , and generates an affordance map M . We use a template of “What

part of the <object name> should we interact with in order to <action name> it?” as the

text query T . We then train LLM to generate a special token <mask token> and use its

hidden state to decode a dense affordance map M . A brief overview is shown in Fig 6.3.

6.3.1 Overview

Large language model. We choose LLaVA-7B as our backbone multimodal large language

model. We refer the reader for a fuller explanation in [163], but briefly, LLaVA contains an

image encoder, a text tokenizer, and a large language model LLM. The image encoder is

typically a CLIP pretrained ViT, with a linear layer to project the hidden dimension. It

encodes the image I into image features FI . At the same time, the tokenizer encodes the
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What part of the motorcycle should 

we interact with in order to ride it?

Image Encoder

Input Image with pseudo depth

Large Language 

Model

You can ride the area <mask_token>.

Affordance 

Decoder

Text tokens

Image and 

depth tokens

Figure 6.3: Overview of AffordanceLLM. The inputs of our model includes a single image
and a text prompt related to interaction. We use OWL-ViT [191] as the image encoder to
generate image features and project it into the same hidden dimension as the large language
model. As well, we use a tokenizer to encode the text prompt. The text features and image
features are concatenated together and feed into the LLM. The LLM is fine-tuned to predict
a special token, which is used as a query to the mask decoder to generate the final affordance
map.

text T into text features FT . They are concatnated and feed into the language model. The

LLM produces text output A as:

A = LLM(FI , FT ). (6.1)

Predicting affordance. How do we perform affordance reasoning while leveraging the

world knowledge embedded in LLM? We propose to treat affordance as an implicit text token

predicted from the LLM, which could be further decoded into a 2D map. Specifically, we train

the LLM to predict a special token <mask token>, the hidden state of which is first projected

into a query embedding q and then fed into a Decoder to generate a dense affordance map.

Decoder shares a similar architecture as the ones in SAM [131] and 3DOI [209]. It takes in

q and image features FI to produce an affordance map M , i.e.,

M = Decoder(FI , q). (6.2)

Pseudodepth as additional inputs. Besides images, the affordance reasoning task could

benefit from 3D information (we will validate the benefits in Sec 6.4). However, modern

VLMs are typically only trained with text and 2D images [163, 148]. Therefore, we also

include a pseudo depth map as additional inputs to the large language model. For each

image, we use the state-of-the-art depth estimation model DPT [217] to generate a pseudo

depth map D. We use the same image encoder to encode the depth map D to produce depth
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features FD, and concatenate it with image features. Our final model is thus

A,M = AffordanceLLM(FI , FD, FT ). (6.3)

Training objectives. Following the same practice as [209], we train the affordance map

using a binary focal loss [156], and call it affordance loss Laff . We set the weight of positive

examples to be 0.95 and that of negative ones to be 0.05 to balance positives and negatives,

as there are more negatives than positives in ground truth affordance map. We follow the

standard cross entropy loss for the text output of language models. Our final loss function

is a linear combination of affordance loss and text loss, given by

L = Laff + λ · Ltext. (6.4)

In practice, we set λ = 0.01 to balance two losses, as the affordance loss can be quite

small due to the imbalance of positive and negative values.

6.3.2 Network Architecture

Next, we discuss the network architecture, and the training details of our model.

Image encoder. The standard LLaVA uses CLIP image encoder and a linear projec-

tion layer [290, 163]. In practice, we find that the CLIP image encoder has low resolution

(224x224) and does not capture sufficient information about grounding. Therefore, we use

OWL-ViT [191] to replace the standard CLIP-ViT [214]. OWL-ViT has an input resolution

of 768x768, which is significantly higher than CLIP. At the same time, OWL-ViT is pre-

trained to extract features that include precise location information of objects. As we will

empirically show in experiments, using OWL-ViT is significantly better than CLIP. How-

ever, we note that our approach is general, and will benefit from any future improvements

in pretrained VLM backbones.

Projection. Another problem of using OWL-ViT is about its embedding space. With a

much higher input resolution, OWL-ViT produces 576 tokens with a hidden dimension of 768

for each image. In comparison, CLIP only produces 256 tokens for each image. Projecting

each individual token into the hidden dimension of LLM (4096) consumes a lot of GPU

memory. In practice, we project each token of OWL-ViT to 1024, and concatenating four

neighboring tokens into a single token.

Language model. We follow LLaVA [163] and LLama [264] to use the standard text

tokenizer to encode our text query. We use LLama-7B [264] as the large language model.
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Affordance decoder. We aim to keep a lightweight decoder, as it has been proved to

produce good segmentation masks and affordance maps [131, 209, 21, 36]. However, we find

the vanilla mask decoder is too lightweight in our case and does not produce high-resolution

affordance map. Therefore, we add an additional transposed convoluation layer to increase

its output resolution.

Implementation. We implement our model using PyTorch and HuggingFace. We initialize

our model with LLama-7B pretrained weights. Following LLaVA [163], we freeze the image

encoder, pretrain the image projection layer to align OWL-ViT and LLama features, and then

use GPT instructions to tune the language model. Finally, we add the mask encoder [131,

209] and tune the whole model on AGD20K [177], which has annotations of object affordance.

We use eight NVIDIA A100 (40GB) to train our model, with Fully Sharded Data Parallel.

We use a batch size of 4 and set the learning rate as 2e-5.

6.4 Experiments

In experiments, we aim to systematically evaluate the performance of our approach. In

particular, we are interested in answering these questions: (1) How well does it generalize,

compared with state-of-the-art methods? (2) How does each design choice contribute to the

final performance, including prompts, visual encoders, and depth?

6.4.1 Experimental Setup

Metrics. We evaluate primarily on AGD20K [177] and follow its metrics to evaluate our

model, which is KLD, SIM and NSS [196, 177, 209, 147]. For KLD, the lower the better. And

for SIM and NSS, the higher, the better. A full explanation is avilable in the supplemental.

Baselines. We compare our approach against state-of-the-art baselines. In general, affor-

dance grounding methods belong to two categories: weakly supervised and fully supervised

methods. We report performance of both categories.

(Weakly supervised methods): They do not train on explicit labels of the affordance map.

Instead, they are trained on a human demonstration of the same object. These approaches in-

clude InteractionHotspots [196], Cross-View-AG [177], Cross-View-AG+ [176], AffCorrs [88],

and LOCATE [147]. Among them, LOCATE is the most recent model and has the best re-

sults on AGD20K. We use the reported number in LOCATE for the easy split and retrain

them for the hard split. Among them, we cannot run AffCorrs, as it focuses on one-shot af-

fordance learning. The reported model on the easy split is adapted by [147] and not publicly

available. We also do not run InteractionHotspots because the pretrained model only sup-
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brush
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Figure 6.4: Qualitative results on the test set of the hard split. LOCATE-Sup fails to learn
a reasonable affordance map due to limited training data. LOCATE [147] typically predicts
an affordance map which covers the whole object. 3DOI [209] focuses on a small area of the
object. Overall, our approach produces the best-quality affordance predictions.

ports 7 actions. The reported model is retrained by [177] but lacks sufficient implementation

details to be reproduced. Therefore, we retrain Cross-View-AG [177], Cross-View-AG+ [176],

and LOCATE [147] on the hard split. We maintain the object/action split, but allow them

to use more images for weak supervision. Therefore, they has 11,889 images for training.

(Fully supervised methods): Affordance map can also be learned from explicit labels, and we

call it supervised methods. This includes 3DOI [209] and ours. We also adapt LOCATE to

a fully supervised version for fair comparison.

• 3DOI [209]: 3DOI is a SAM-based model [131], which takes a single image and a query

point and predicts the segmentation mask and affordance map. Therefore, We randomly

sample a pixel with score > 0.9 as the query point from the affordance map. We use the

3DOI pretrained model, which has never seen any images in AGD20K, including the training

set.

80



Table 6.1: Difficulty score of different splits. The lower the score, the more similar are the
object categories in the train and test set.

Splits Same Easy Hard Random

Difficulty Score ↑ 0.000 0.356 0.412 0.491

Table 6.2: Quantitative results on the Easy split of AGD20K [177]. Interaction-
Hotspots, Cross-View-AG(+), AffCorrs and LOCATE are trained on AGD20K images with
weak supervision (13,323 images). LOCATE-Sup and LOCATE-Sup-OWL, and Affordan-
ceLLM are trained on AGD20K images with dense annotation (1,135 images). 3DOI is
trained on their own dataset with dense annotation (10,000 images) [209]. AffordanceLLM
is comparable to LOCATE [147] on the easy split, where test objects have similar coun-
terparts in the training set. The best and second-best results are highlighted in bold and
underlined, respectively.

Methods KLD ↓ SIM ↑ NSS ↑

InteractionHotspots [196] 1.994 0.237 0.577
Cross-View-AG [177] 1.787 0.285 0.829
Cross-View-AG+ [176] 1.765 0.279 0.882
AffCorrs [88] 1.618 0.348 1.021
LOCATE [147] 1.405 0.372 1.157
LOCATE-Sup [147] 1.907 0.236 0.641
LOCATE-Sup-OWL [147, 191] 1.927 0.234 0.624
3DOI [209] 3.565 0.227 0.657
AffordanceLLM (Ours) 1.463 0.377 1.070

• LOCATE-Sup [147]: To ensure fair comparison, we also adopt LOCATE and train it using

the same binary focal loss as our model. We call it LOCATE-Sup. LOCATE uses a Dino-ViT

as its visual encoder [23]. To eliminate the effect of different pretrained visual encoders, we

also report the performance of LOCATE-Sup-OWL, which uses the exact same pretrained

visual encoder as ours.

6.4.2 Dataset

We follow LOCATE [147] to evaluate primarily on AGD20K [177], as it is the only

large-scale dataset for affordance with action and object labels. Since our approach is not

weakly supervised and requires dense annotations, we only use AGD20K images with dense

annotations.

In this chapter, we primarily evaluate the ability of an affordance model to generalize to

unseen object categories, and thus evaluate on the Unseen split of the AGD20K benchmark.

This split ensures that there is no overlap between the object categories in the train and test
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Input Hi Action Action+Object Ours w/o dep. Ours Ground Truth

drink

hold

hold

Figure 6.5: Ablation of different text prompts and depth. Ours w/o depth is our approach
without pseudodepth as additional inputs. Ours is our full approach. We find constructing
the correct text prompt typically helps our model to focus on the correct area. We believe it
is because the correct text prompt would activate the world knowledge related to affordance
embedded in the VLM.

set.

However, the Unseen split has one major issue: there are still a lot of similarities between

the objects in the train and test set. Objects in the test set typically have similar counterparts

in the training set, leaving models room for memorizing. For example, “skis” in the test set

maps to “snowboards” and “skateboards” in training set, “basketball” maps to “baseball”,

“knife” maps to “fork”, etc. To make the benchmark more reflective of the generalization

ability of a model, we provide a more challenging split. We thus have the following two

splits.

Easy split. This is the original Unseen split of AGD20K. We have 1135/540 images for

train and test with dense annotations for the fully supervised setting, or 13,323/540 images

for the weakly supervised setting. The test set remains the same for both settings.

Hard split. We randomly put 50% AGD20K object classes into the training set and the

remaining classes into the test set to simulate in-the-wild generalization (details in the sup-

plemental). The training and test object are not overlapping, and most objects in the test

set do not have a similar counterpart in the training set, and is thus harder to generalize

than the Easy split. We have 868/807 images for train and test with dense annotations for

the fully supervised setting, and 11,889/807 images for weakly supervised setting. The test

set is the same for both settings.
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Table 6.3: Quantitative results on the Hard split of AGD20K [177]. Cross-View-
AG(+) and LOCATE are trained on AGD20K images with weak supervision (11,889 images).
LOCATE-Sup and LOCATE-Sup-OWL, and AffordanceLLM are trained on AGD20K im-
ages with dense annotation (868 images). 3DOI is trained on their own dataset with dense
annotation (10,000 images) [209]. On the hard split, AffordanceLLM outperforms all base-
lines by a large margin, which demonstrates the superior generalization ability of our model.
We do not run InteractionHotspots [196] and AffCorrs [88], as the reported model has am-
biguous implementation details, or is not publicly available. The best and second-best
results are highlighted in bold and underlined, respectively.

Methods KLD ↓ SIM ↑ NSS ↑

Cross-View-AG [177] 2.092 0.209 0.138
Cross-View-AG+ [176] 2.034 0.218 0.342
LOCATE [147] 1.829 0.282 0.276
LOCATE-Sup [147] 2.003 0.224 0.435
LOCATE-Sup-OWL [147, 191] 2.127 0.206 0.314
3DOI [209] 4.017 0.200 0.549
AffordanceLLM (Ours) 1.661 0.361 0.947

Measuring split difficulty. We propose a metric to quantify the generalization difficulty

of a split. Intuitively, the difficulty to generalize to an object class in the test set is defined

by how different it is from the classes in the training set, which could be measured by its

semantic distance to the most similar class in the training set [210]. The greater the distance,

the harder it is to generalize to this test class. Therefore, for each semantic class c in the

test set, we compute its distance d to the most similar class in the training set. We use the

CLIP [214] text encoder to obtain an embedding to represent each object class. Assume

train classes are Ctrain and test classes are Ctest, the difficulty of this split is

D(Ctrain, Ctest) = 1− 1

|Ctest|
∑

c∈Ctest

max
c′∈Ctrain

d(c, c′). (6.5)

We compare the difficulty metric among four settings: (1) Same: train and test share

the same classes; (2) Easy split; (3) Hard split; (4) Random: constructed by randomly

even-splitting 50 object classes from LVIS [87], which serves as a lower bound.

We show the difficulty metrics in Tab 6.1. The Same split has a similarity metric of 0.0,

as all object classes in the test are present during training. The Easy split has a similarity

metric of 0.356. The Random split has a score of 0.491. The Hard split has a higher score

than Easy, meaning that the difference between test and train is more significance in Hard

than in Easy, and is thus harder to generalize.
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Table 6.4: Ablation on the hard split. We validate the importance of text prompts, image
encoders and pseudo depth to performance.

Depth Text Prompt Img Encoder KLD ↓ SIM ↑ NSS ↑

Yes Full OWL-ViT 1.661 0.361 0.947
- Full OWL-ViT 1.713 0.352 0.881
- Full CLIP-ViT 1.759 0.286 0.776
- Object, Action OWL-ViT 1.769 0.329 0.827
- Action OWL-ViT 1.843 0.336 0.815
- Hi OWL-ViT 1.836 0.325 0.793

6.4.3 Results

Figure 6.4 shows qualitative results on the test set of the hard split. In this split, the

objects in the test set bear little to none resemblance to the ones in the training set. We com-

pare our approach, AffordanceLLM, with a set of state-of-the-art baselines. LOCATE [147]

tends to predicts an affordance map that covers the entire object, indicating poor generaliza-

tion performance. 3DOI [209] typically focuses on a small area of the object, and sometimes

fails to ground the correct region. LOCATE-Sup fails to predict reasonable affordance map,

probably due to the small amount of training data. Despite being trained on the same train-

ing set as LOCATE-Sup, our approach is able to produce the best affordance map among

all methods, showcasing superior generalization capability.

We further compare our model with baselines quantitatively and the results are sum-

marized in Tab. 6.2, 6.3. On the Hard split, where the test set objects differ semantically

from the training set, our method outperforms all baselines significantly. This improvement

can be attributed to the extensive world knowledge and understanding embedded within the

large language model. On the Easy split, our model is comparable to LOCATE [147] and

outperform all other baselines. We hypothesize that the advantage of our approach is less

pronounced when the test and train objects exhibit similarity, as the generalization capability

becomes less critical. It is also worth noting that unlike LOCATE which is weakly supervised

on 10k+ images, our model was fully supervised on some 1k images with dense annotations,

which renders a more meaningful comparison with LOCATE-Sup that is trained on the

same data. Our method significantly outperforms LOCATE-Sup on both splits, indicating

the effectiveness of our approach.
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6.4.4 Ablation

We conduct a few ablation studies to understand how different components of the model

contribute to the final performance. We test different text prompts, different image encoders,

and the effect of pseudo depth as inputs. The results are summarized in Tab 7.2 and Fig 6.5.

Text prompts. Prompt tuning is known to have major effects on large VLMs. We test

four different text prompts to understand the effect of text content on model performance:

• Hi: We use “Hi” as our text prompt.

• Action: We use the action (e.g. “hold”) as the prompt.

• Object + Action: We use the object name and action label as our text prompt, for example

“hold, knife”.

• Full: We use a complete question as the text prompt — “What part of the motorcycle

should we interact with in order to push it?”.

We notice that the Full prompt yields a higher performance compared with other simple

text prompts. It demonstrates that specific question prompt is helpful for extracting the

knowledge from pretrained large language models.

Vision encoders. Although LLaVA [163] uses CLIP-ViT, it may not be the optimal vision

encoder for our affordance grounding task — CLIP-ViT is trained with an objective to

align text-image pairs and is not explicitly optimized to perform localization, and therefore

has limited visual grounding capability. We therefore switch to OWL-ViT [191], which is

trained on detection datasets with 2M images, and achieves state-of-the-art open vocabulary

detection performance. As shown in Tab 6.4, using OWL-ViT as vision backbone far excels

using CLIP-ViT. It indicates the importance of grounding capability of visual backbone.

6.4.5 Pseudodepth as Inputs

Our model is trained with pseudo depth map produced by DPT [217]. To verify whether

the additional depth inputs are effective, we compare the model trained with and without

estimated depth (Tab 6.4 and Fig 6.5). With depth, our model can predict better affordance

map, demonstrating the importance of 3D information in affordance reasoning.

6.4.6 Generalization to Internet Images

We further test the generalization of our model on random Internet images in Fig. 6.6.

All test objects are novel. To showcase how different these objects are from the ones in

train set, for each test object, we retrieve the most similar object in the train set using the

metric defined in Eq 6.5. As we can see, these objects are not similar to any objects in the
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Figure 6.6: Generalization results on random Internet images. We show the most similar
objects in the training set to demonstrate how different the objects are from the ones in
the training set. (Row 1, 2): AffordanceLLM generalizes to novel objects from random
Internet images, while LOCATE [147] fails. (Row 3, 4): AffordanceLLM generalizes to
novel actions plus novel objects. LOCATE cannot infer novel actions thus we left it blank.

train set. We go even further to test if our approach is able to generalize to novel actions

in addition to novel objects, such as “blow” and “play”. Generalization to novel actions is

even more challenging, requiring open vocabulary understanding of actions, which is beyond

the capability of LOCATE [147]. Despite these challenges, our approach not only produces

very reasonable affordance maps for novel objects, but is also able to handle novel actions

plus novel objects, once again demonstrating the extraordinary capability to generalize.

6.4.7 Failure Examples

Finally, we show our failure examples in Fig 6.7. First, we find AffordanceLLM fails on

some ambiguous questions. For example, in AGD20K, “cut with” refers to the blade of a

knife. However, AffordanceLLM thinks humans should hold the handle of the knife to cut
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Figure 6.7: Failure examples. (Row 1:) AffordanceLLM sometimes fails due to multiple
objects present in the scene and it fails to refer to the correct object. (Row 2:) Affor-
danceLLM thinks humans should hold the handle to cut something using the knife, while
AGD20K annotators think “cut with” should refer to the blade.

anything. Second, when there are multiple objects in the image, it sometimes cannot refer

to the correct object.

6.5 Conclusion

We have presented AffordanceLLM, a novel approach which can ground affordance for

in-the-wild objects unseen during training. By tapping into the world knowledge embedded

in a Vision Language Model, our proposed approach generalizes much better to in-the-wild

objects, compared with state-of-the-art affordance grounding models.

Our approach can have positive impacts by helping build intelligence robots which can

manipulate in-the-wild objects. On the other hand, it can be misused to cause physical

damage or harm if applied in an adversarial manner.
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CHAPTER 7

3D Multiview Pretraining for Robotic

Manipulation

Recent works have shown that visual pretraining on egocentric datasets using masked

autoencoders (MAE) can improve generalization for downstream robotics tasks [288, 197].

However, these approaches pretrain only on 2D images, while many robotics applications

require 3D scene understanding. In this work, we propose 3D-MVP, a novel approach for 3D

multi-view pretraining using masked autoencoders. We leverage Robotic View Transformer

(RVT), which uses a multi-view transformer to understand the 3D scene and predict gripper

pose actions. We split RVT’s multi-view transformer into visual encoder and action decoder,

and pretrain its visual encoder using masked autoencoding on large-scale 3D datasets such

as Objaverse. We evaluate 3D-MVP on a suite of virtual robot manipulation tasks and

demonstrate improved performance over baselines. We also show promising results on a real

robot platform with minimal finetuning. Our results suggest that 3D-aware pretraining is a

promising approach to improve sample efficiency and generalization of vision-based robotic

manipulation policies. The material in this chapter is derived from [213].

7.1 Introduction

Building learning-based manipulation systems is challenging due to the unavailability of

diverse large-scale robotics data. To address this, there has been significant interest in using

computer vision techniques to learn generalizable visual representations without robotics

focused data, for example by self-supervised pre-training on image datasets. In particular,

inspired by the success of masked language modeling in NLP, several recent works have

explored masked autoencoding (MAE) for visual representation learning [92]. MAE learns

to reconstruct randomly masked patches in an input image, encouraging the model to learn

high-level semantic features. When applied to egocentric videos from human demonstrations,
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MAE has been shown to learn representations that generalize well to downstream robotics

tasks such as object manipulation [288, 215, 48].

However, current MAE approaches for robotics pretrain only on 2D images, ignoring the

3D structure of the scene. Prior works in robotics have shown that methods that build an

explicit 3D visual representation of the environment are more sample efficient and generalize

better than those with only 2D visual representations [81, 242, 207]. Hence, in this work, we

explore how we could bring the benefits of visual pretraining to robot manipulation methods

that reason with explicit 3D representations.

We propose 3D-MVP, a method for 3D Multi-View Pretraining for robot manipulation.

Our approach builds upon recent advances in robot manipulation. Specifically, we use the

Robotic View Transformer (RVT) [81], a state-of-the-art 3D manipulation method [81]. RVT

takes as input a point cloud of the scene and builds a 3D representation of the scene, using

a set of fixed orthogonal “virtual” RGBD images. These RGBD images are fed through a

transformer model that fuses information across views and predicts robot actions in the form

of future gripper poses.

We choose RVT over other methods for manipulation that build a 3D representation of

the scene (e.g. PerAct [242] and Act3D [75]), because other methods use either voxels or

point clouds as input a transformer model, while RVT uses orthogonal RGBD images. The

view-based representation makes RVT a suitable candidate for MAE pretraining.

We pretrain the multi-view representation in RVT by attaching it to a lightweight MAE

decoder. We then randomly mask out a subset of the visual tokens for each view and train

the model to reconstruct the multiview RGB-D images. After the pre-training, we discard

the decoder. We then fine-tune the visual encoder along with RVT’s action decoder on

various manipulation tasks.

In order to learn generalizable and robust visual features, we use the recent works that

have led to the creation of large-scale datasets of 3D scenes, such as Objaverse and 3D-

FRONT [51, 74, 50, 216]. These datasets contain high-quality 3D scans of indoor envi-

ronments along with realistic textures and materials. We use these datasets to create sets

of orthogonal views that are similar to the 3D representation used in RVT. These sets of

orthogonal views are then used for pretraining the visual encoder in RVT. We conduct ex-

periments to ablate various different choices available for pre-training. Specifically, we study

how masking strategies, dataset choice and dataset sizes affect the downstream manipulation

performance.

Finally, we evaluate 3D-MVP on the RLBench benchmark [113], a suite of manipulation

tasks in a simulated environment. We find that pretraining the RVT encoder with 3D-MVP

leads to significant improvements over training from scratch or pretraining with 2D MAE.
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These results inform how we can advance the state-of-the-art in robotic manipulation with

the help of pretraining. We further evaluate 3D-MVP on the Colosseum benchmark [207],

which tests a system’s generalization across various unseen variations of manipulation tasks

like object size change, color change, and lighting changes. We find that the proposed 3D-

MVP method is more robust across various variations than RVT trained from scratch.

In summary, our contributions are three-fold.

• We propose 3D-MVP, a novel approach for 3D multi-view pretraining using masked au-

toencoding on large-scale 3D datasets.

• We study how various design choices in pretraining, like masking strategy, dataset combi-

nation and sizes, affect downstream object manipulation performance.

•We demonstrate that pretraining with 3D-MVP leads to significant improvements on object

manipulation tasks. We also show that 3D-MVP enables training policies that are more

robust to variations such as size, texture, and lightning, on the COLOSSEUM benchmark.

We hope our work can inform future studies about pretraining for robotic applications.

7.2 Related Work

Our work builds upon several active areas of research, including self-supervised learning,

visual pretraining for robotics, and learning robotic manipulation from demonstrations.

Self-supervised learning. Self-supervised learning aims to learn useful representations

from unlabeled data by solving pretext tasks that do not require manual annotation. Early

work in this area focused on designing pretext tasks for 2D images, such as solving jagsaw

puzzles [200], constrastive learning [31, 93] or joint embedding approaches [3, 4, 22, 23, 84,

320]. Most related to our work is the masked autoencoder (MAE) approach proposed by

He et al. [92], which learns to reconstruct randomly masked patches in an image. MAE has

been shown to learn transferable representations for object detection and segmentation tasks.

Furthermore, Bachmann et al demonstrates MAE pretraining can be extended to different

modalities such as semantics and depth [5]. In this work, we extend the MAE approach

to multi-view 3D scenes, enabling us to learn 3D-aware representations that are useful for

robotic manipulation tasks.

Visual pretraining for Robotics. Visual pretraining has demonstrated impressive gen-

eralization ability on computer vision tasks. Therefore, prior works have explored whether

it works for robotics tasks as well. Specifically, the robotics community has trended towards

learning representations using state-of-the-art self-supervised vision algorithms on diverse

interaction datasets [83, 236, 46], and finetune the network on robotics tasks [182, 197, 288,

215, 184, 48]. 3D-MVP follows the same procedure. However, existing robotics pretrain-
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ing approaches typically learn a 2D visual encoder (e.g. ResNet [95] or ViT [58]), we find

they are inferior than manipulation policies which do explicit 3D modeling (e.g. RVT [81],

Act3D [75]). Migrating a pretrained ViT to 3D manipulation policies is nontrivial since they

do not have a 2D visual encoder. In this chapter, we propose 3D-MVP, which does 3D-aware

pretraining on 3D manipulation policies, to fill the gap.

Learning manipulation from demonstrations. Recent work has explored using trans-

formers for multi-task manipulation policies that predict robot actions from visual and lan-

guage inputs [242, 86, 162, 235, 247]. End-to-end models like RT-1 [15], GATO [220], and

InstructRL [162] directly predict 6-DoF end-effector poses but require many demonstrations

to learn spatial reasoning and generalize to new scenes. To better handle 3D scenes, Per-

Act [242] and C2F-ARM [114] voxelize the workspace and detect the 3D voxel containing

the next end-effector pose. However, precise pose prediction requires high-resolution voxels

which are computationally expensive. Recently, RVT [81] proposes a multi-view transformer

that attends over point cloud features from multiple camera views to predict actions. This

avoids explicit voxelization and enables faster training and inference than PerAct. Act3D [75]

represents the scene as a continuous 3D feature field and samples points to featurize with

attention, allowing adaptive resolution. GNFactor [309] jointly optimizes a generalizable

neural field for reconstruction and a Perceiver for decision-making, using a shared 3D voxel

representation enriched with semantics from a vision-language model. In contrast, our pro-

posed 3D-MVP learns 3D scene representations through masked autoencoding pretraining

on a large dataset of 3D object models. This pretraining enables 3D-MVP to build a rich un-

derstanding of 3D geometry and semantics prior to finetuning on downstream manipulation

tasks. Compared to RVT and Act3D which train from scratch on target tasks, 3D-MVP’s

pretraining leads to improved performance, sample efficiency and generalization. Unlike

GNFactor which relies on a pretrained vision-language model to inject semantics, 3D-MVP

directly learns 3D semantic features from object models.

7.3 Approach

In this section we first provide essential background on RVT, then define our method

3D-MVP that learns 3D-aware representations for robotic manipulation using masked au-

toencoding on multi-view 3D scenes, and finally describe how we finetune the method on

downstream manipulation tasks. Figure 7.1 gives an overview of our approach.
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Figure 7.1: Overview of 3D-MVP. (a) We first pretrain a Multiview 3D Transformer using
masked autoencoder on multiview RGB-D images. (b) We then finetune the pretrained
Multiview 3D Transformer on manipulation tasks. Since the MVT is pretrained, the learned
manipulation policy generalizes better. For example, it is more robust to changes of texture,
size and lighting.

7.3.1 Background on Robotic View Transformer (RVT).

It is a state-of-the-art object manipulation method [81]. It creates an explicit 3D repre-

sentation of the scene by using orthogonal virtual views of a scene. Please refer to Goyal et

al. [81] for a full explanation. Here, we provide a brief overview and define the notation.

RVT takes a point cloud of the robot workspace as input (Fig. 7.1). RVT is agnostic to

the poses of the RGBD cameras used to construct the input point cloud. For example, it

can be obtained from a combination of third-person cameras around the workspace, head

cameras, or wrist cameras. RVT then renders this point cloud using a set of five “virtual”

cameras placed at orthogonal locations around the robot. The virtual cameras are placed at

the top, left, right, front, and back of the robot workspace with respect to the robot. Each

virtual image has 10 channels: RGB (3 channels), Depth (1 channel), 3D point coordinate

in world frame (3 channels), and 3D point coordinate in camera sensor frame (3 channels).

We denote the virtual images captured from different virtual camera poses {p1, . . . , p5} as

{I1, . . . , I5}.
These virtual images are then tokenized into N patch embeddings [58], flattened into a

sequence of 5N tokens spanning all images, and fed to a multi-view transformer. The goal

of RVT’s multi-view transformer is to learn a function fθ that maps the virtual images as

well as language instructions L to the 6-DoF end-effector pose and the gripper’s binary open
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or close state:

apos, arot, aopen = fθ(L, I1, p1, . . . , I5, p5) (7.1)

RVT is trained end-to-end from scratch on sampled trajectories from simulator or real

robots. While RVT has shown state-of-the-art results on 3D manipulation, it does not

generalize to novel objects and scenes. In the next section, we describe our novel approach

3D-MVP, and how we modify and pretrain the RVT encoder using 3D-MVP.

7.3.2 3D Multi-View Pretraining (3D-MVP)

Architecture change to RVT. The key idea is to pretrain the RVT visual encoder fθ

using masked autoencoding on large-scale 3D scene datasets. However, RVT’s multiview

transformer fθ is an end-to-end model that takes language instructions as input, and pro-

duces robot actions. Existing robotics data with language and actions is limited in terms of

diversity of 3D scenes, and 3D scene datasets do not typically contain robotics annotations.

To enable pre-training on 3D scene datasets, we first split the multiview transformer

fθ into an input renderer R, an encoder network E and an action decoder network D. The

renderer R maps the posed input images into the five virtual images, by constructing a point

cloud and rendering it from the five views:

{I1, . . . , I5} = R(I1, p1, . . . , I5, p5) (7.2)

The encoder E maps the virtual images into a latent embedding z ∈ R5N×H (where H is the

hidden size) and the action decoder D maps z to the robotic action space, i.e.,

apos, arot, aopen = D(L, z), z = E(I1, . . . , I5) , (7.3)

where tokenization of the virtual images into 5N patch embeddings is subsumed into E .
Both encoder E and decoder D are multiview transformers. We keep the decoder lightweight

to focus on pretraining of the encoder.

Pretraining encoder E. Our visual pretraining focuses on learning a generalizable repre-

sentation for the encoder E . We extract point clouds from Objaverse and render the point

cloud using the same five “virtual” cameras. Given 5 virtual images {I1, . . . , I5}, we ran-

domly mask out a subset of the visual tokens for each view, and denote the masked inputs

as {I ′1, . . . , I ′5}. We use the encoder to extract the embedding z from the masked inputs,

z = E({I ′1, . . . , I ′5}) (7.4)
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We use a separate, lightweight MAE decoder DMAE to reconstruct the original image

{I1, . . . , I5} from the embedding z.

{Ĩ1, . . . , Ĩ5} = DMAE(z) (7.5)

The encoder E and decoder DMAE are trained end-to-end using a pixel-wise reconstruction

loss:

Lrecon =
1

5WH

5∑
i=1

W ·H∑
p=1

∥[Ii](p) − [Ĩi](p)∥22 , (7.6)

where [I](p) indexes the image I ∈ RW×H×C at pixel p. By jointly learning to reconstruct

all five images and varying the masking patterns during training, we hypothesize that the

encoder will learn to reason across the multiple views and extract 3D-aware features that are

robust to occlusions and viewpoint changes. In order to inform future works, we study how

various masking strategies and dataset combinations affect the final downstream performance

(See Tab. 7.2).

Implementation details. We implement the pretraining using the PyTorch library and

train it on eight NVIDIA V100 GPUs. We use the Objaverse dataset for pretraining [51],

which contain a total of 800K+ 3D objects with realistic textures and materials. We sample

200K high-quality 3D models as the training set, and 1000 for validation purpose. We do

not construct a large-scale validation set, since the validation is qualitative.

We use a patch size of 10x10 to tokenize images. For the encoder E , we use a multiview

transformer with 8 layers, 8 attention heads and a hidden dimension of 1024. For the decoder,

we use a multiview transformer with 2 layers, with the same number of attention heads and

hidden dimension. We train the model for 15 epochs using the AdamW optimizer with a

learning rate of 0.0001 and a weight decay of 0.01. We use a batch size of 3 and a masking

probability of 0.75.

7.3.3 Finetuning on Downstream Manipulation Tasks

To adapt the pretrained encoder E for a specific manipulation task, we finetune it along

with the action decoder D on a dataset of manipulation demonstrations. Assume a demon-

stration consists of tuples of virtual images, language goals and actions. During training, we

randomly sample a tuple and supervise the network to predict the action given the virtual

images and the language goal.

Implementation details. For finetuning on manipulation demonstrations, we follow the

standard practice [81, 207]. We use 8 NVIDIA V100 (32GB) for finetuning and a single V100
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Masked Input Ground TruthPrediction

Figure 7.2: MAE Reconstruction results on Objaverse. We find the our pretrained multi-view
transformer could generalize to unseen object instances and reconstruct multi-view images
from their masked versions.

for evaluation. The learning rate is 1e-4 with warmup. We use Lamb [304] as the optimizer

and the batch size is 3.

7.4 Experiments

In this section, we evaluate the effectiveness of 3D-MVP for robotic manipulation tasks,

and aim to answer the following questions: (1) Can masked autoencoding effectively learn

useful representations from multi-view 3D data? (2) Does 3D-aware pretraining improve

manipulation performance compared to training from scratch or 2D pretraining? (3) Does

3D-aware pretraining improve robustness to environmental variations encountered in manip-

ulation tasks? (4) How do various design choices while pretraining affect the downstream

manipulation performance?

To answer these questions, we evaluate 3D-MVP on two benchmarks: RLBench [113]

for general manipulation performance and COLOSSEUM [207] for systematic evaluation of

robustness to environmental perturbations.

7.4.1 Validating 3D Masked Autoencoding

We validate whether masked autoencoder works in our setup with multi-view images from

3D assets. Specifically, we check whether the pretrained multi-view transformer generalizes to

unseen 3D assets from Objaverse [51]. We validate it qualitatively in Figure 7.2. We find that

the pretrained 3D-MVP network achieves high-fidelity reconstructions despite 75% of the

input points being masked, suggesting that 3D-MVP learns meaningful 3D representations

through this pretext task.
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7.4.2 Results on RLBench

We then evaluate whether our proposed pretraining improves manipulation performance.

The experiments are conducted on a simulated platform called RLBench [113]. Setup.

RLBench [113] is a popular simulation benchmark for learning manipulation policies. Each

task requires the robot to perform a specific action, such as picking up an object, opening

a drawer, or stacking blocks. We follow the simulation setup of PerAct [242] and RVT [81]

and use CopppelaSim [227] to simulate 18 RLBench tasks. A Franka Panda robot with a

parallel gripper is controlled to complete the tasks. The 18 RLBench tasks are the same as

PerAct and RVT. The visual observations are captured from four noiseless RGB-D cameras

positioned at the front, left shoulder, right shoulder, and wrist with a resolution of 128×128.

Baselines. We compare 3D-MVP with the following baselines on RLBench: (1) Image-

BC [115] is an image-to-action behavior cloning approach which takes the visual observa-

tion and predict the corresponding action. We compare with two variants which use CNN

and ViT as the visual encoders, and call them Image-BC (CNN) and Image-BC (ViT), re-

spectively; (2) C2F-ARM-BC [114] is another behavior cloning approach which converts

RGB-D obversations to multi-resolution voxels and predicts the next key-frame action. (3)

PerAct [242]: a multi-task a Perceiver transformer for robotic manipulation. The inputs are

point clouds with color features and PerAct uses a Perceiver IO network to compress them

to a fixed dimension [111]. (4) RVT [81]: The same Robotic View Transformer architecture

as 3D-MVP but trained from scratch on the downstream tasks. We do not compare with

2D pretraining methods since they do not work well on RLBench [207].

Metrics. We report the task success rate for each individual tasks, and the average success

rate.

Results. We show quantitative results on Table 7.1. For the average success rate, 3D-MVP

outperforms existing state-of-the-art methods, PerAct [242] and RVT [81], by a large margin.

It demonstrates the effectiveness of bringing visual pretraining for manipulation policy which

has explicit 3D modeling. We find the improvement of 3D-MVP mainly comes from tasks

which has medium difficulty, such as “insert peg”, “put in cupboard”, and “stack blocks”. If

the task is too hard and PerAct/RVT is not able to solve any of them, the pretraining does

not help. If the task is too easy and PerAct/RVT has already reached >90 success rate, the

pretraining has limited space of improvement.
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Average Close Drag Insert Meat off Open Place Place Push
Models Success Jar Stick Peg Grill Drawer Cups Wine Buttons

Image-BC (CNN) [115, 242] 1.3 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0
Image-BC (ViT) [115, 242] 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C2F-ARM-BC [114, 242] 20.1 24.0 24.0 4.0 20.0 20.0 0.0 8.0 72.0
PerAct [242] 49.4 55.2 89.6 5.6 70.4 88.0 2.4 44.8 92.8
RVT [81] 62.9 52.0 99.2 11.2 88.0 71.2 4.0 91.0 100
3D-MVP (Ours) 67.5 76.0 100 20.0 96.0 84 4.0 100 96.0

Put in Put in Put in Screw Slide Sort Stack Stack Sweep to Turn
Models Cupboard Drawer Safe Bulb Block Shape Blocks Cups Dustpan Tap

Image-BC (CNN) [115, 242] 0.0 8.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Image-BC (ViT) [115, 242] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0
C2F-ARM-BC [114, 242] 0.0 4.0 12.0 8.0 16.0 8.0 0.0 0.0 0.0 68.0
PerAct [242] 28.0 51.2 84.0 17.6 74.0 16.8 26.4 2.4 52.0 88.0
RVT [81] 49.6 88.0 91.2 48.0 81.6 36.0 28.8 26.4 72.0 93.6
3D-MVP (Ours) 60.0 100.0 92.0 60 48 28 40 36 80 96

Table 7.1: Results on RLBench [113]. We report the task completion success rate for 18
RLBench tasks, as well as the average success rate. 3D-MVP reaches the state-of-the-art
performance on the benchmark. The pretraining is mainly helpful for tasks with medium
difficulty.

7.4.3 Results on COLOSSEUM

After validating our proposed pretraining is helpful for robotic manipulation, we further

evaluate its generalization ability and robustness to environmental variations. Therefore, we

evaluate 3D-MVP and the baselines on the COLOSSEUM axes of variation.

Benchmark. COLOSSEUM [207] is a benchmark for evaluating generalization for robotic

manipulation. It contains 20 different tasks such as hockey, empty dishwasher. For each task,

it generates 12 environmental perturbations, including changes in color, texture, size of ob-

jects and backgrounds, and lightnings, distractors and camera poses. The objects which can

be changed include Manipulation object (MO), Receiver Object (RO) and the table. There-

fore, it is well-suited for evaluating the generalization ability of manipulation approaches

with pretraining.

Simulation setup. For simulation, we follow the original COLOSSEUM setup. We use

CopppelaSim [227] to simulate all tasks. In training, we do not add any environmental

perturbations and generate 100 demonstrations for each task. During test time, we generate

12 environmental perturbations for each task. For each environmental perturbation, we

generate 25 demonstrations. For each demonstration, we repeat the generation 20 times if

it fails. However, we still experienced a few rendering errors. For example, we find it’s hard

to find the right perturbation parameters for the task of “empty dishwasher”. Therefore,

we only report results on settings we are able to render. We report baselines on exactly the
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Figure 7.3: Results on COLOSSEUM [207]. We report the average task completion success
rate for 12 environmental perturbations and no perturbation. Manipulation policies which
do explicit 3D reasoning (RVT [81] works significantly better and 2D pretraining approaches
(MVP [288] and R3M [197]). 3D-MVP is more robust than RVT on most perturbations. MO
= manipulation object. RO = receiver object.

same setting, to make sure the comparison is fair.

Metrics. We also report the task completion success rate on COLOSSEUM. Instead of

reporting the average success rate for each individual tasks, we report the average success

rate for each pertubation of the environment, as it will highlight how each method is robust

to different pertubations.

Baselines. We compare 3D-MVP with state-of-the-art baselines reported on COLOSSEUM,

which includes RVT and two 2D pretraining approaches.

• MVP [288, 215]: A 2D pretraining approach using MAE reconstruction losses. It is

pretrained on a collection of interaction datasets, such as Ego4D [83], EpicKitchen [46], and

100DOH [236]. The pretrained encoder is then finetuned and evaluated on COLOSSEUM.

• R3M [197] A 2D pretraining approach using a combination of reconstruction and contrastive

losses. It is pretrained on Ego4D videos and languages [83]. The pretrained encoder is then

finetuned and evaluated on COLOSSEUM.

• RVT [81]: Trained on COLOSSEUM tasks from scratch.

Results. We show results in Figure 7.3. First, our method outperforms existing 2D pre-

training (MVP [288], and R3M) significantly. It indicates existing 2D pretrainig methods

are not ready for complicated robotic manipulation. Compared with RVT which is trained

from scratch, our method is more robust to most perturbations. It is especially robust to the
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Network Architecture Pretraining Datasets Masking Strategy Success Rate

3D-MVP Objaverse (full) [51] RGB 67.6
3D-MVP Objaverse (small) [51] RGB 65.3
3D-MVP Objaverse (full) [51] All 64.4
3D-MVP 3D-FRONT [74] RGB 63.6
3D-MVP RLBench [113] RGB 67.5
3D-MVP RLBench [113] All 64.7
3D-MVP None None 62.9
RVT [81] None None 62.9

Table 7.2: Ablation studies on the RLBench benchmark. We analyze the contribution of our
network architecture, pretraining datasets, and the masking stretegy. For each variant, we
report the average task completion success rate on RLBench [113].

change of texture and size of Receiver Object (RO), size of the manipulation object (MO), Light

color and Table color. We believe it is because the pretraining stage enables our approach

to see diverse 3D objects.

7.4.4 Ablation Studies

To analyze the impact of different design choices in 3D-MVP, we conduct ablation studies

on the RLBench benchmark. Table 7.2 shows the average success rates of 3D-MVP with

different network architecture, masking strategies and pretraining datasets. And we discuss

results as follows.

Does the improvement come from the change of network architecture? In order

to do the pretraining on RVT, we made some architecture changes as described in Sec. 7.3.2.

To validate that the performance boost comes from the pretraining instead of the network

architecture, we finetune our approach without pretraining and find the performance is 62.9,

similar to the original RVT [81].

Should we pretrain on object or room-level data? The choice of pretraining datasets

are typically critical for self-supervised learning. In our experiments, we mainly use Obja-

verse [51], which is a object-centric 3D datasets. Since we are mainly evaluated on tabletop

manipulation, we also try room-level 3D datasets such as 3D-FRONT [74]. We conduct

the experiments on RLBench, and observe pretraining on 3D-FRONT only boosts the per-

formance mildly from 62.9 to 63.6. In comparison, pretraining on Objaverse boosts the

performance to 67.6. This suggests that the diversity and scale of the pretraining data are

important for learning generalizable representations.

Does more pretraining data help? We sampled a subset of Objaverse with 18K objects
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Figure 7.4: Pretraining MAE on only RLBench scenes leads poor generalization perfor-
mance. (Left): MAE reconstruction results on unseen RLBench renderings. (Right):
MAE reconstruction results on Objaverse renderings. While the reconstruction is reasonable
on RLBench unseen renderings, it overfits to RLBench and does not learn a general repre-
sentation.

and called it Objaverse (small). The full Objaverse dataset we pretrain on has 200K objects.

When we pretrain the encoder with Objaverse (small), we get a 65.3 mean success rate,

which is worse than using Objaverse (full). This suggests that a larger dataset of pretraining

helps performance in the downstream task.

Can we pretrain on RLBench? The proposed 3D pretraining is self-supervised and only

requires the 3D point cloud. Therefore, an interesting question is: can we just pretrain on

the manipulation dataset (e.g. RLBench)? We extract the RLBench point cloud and build a

pretraining dataset. After the pretraining, we finetune the model on training demonstrations

as usual. We find it can achieve an average success rate of 67.5 on RLBench test set,

which is comparable to Objaverse pretraining. However, the pretrained model suffers from

generalization issues. As is shown in Figure 7.4, the encoder has overfitted to RLBench, and

does not work on other environments such as COLOSSEUM.

Masking strategy. For the masking strategy, we observe that masking RGB channels

performs better than masking all channels. We hypothesize that the network finds it very

challenging to reconstruct all the channels and is unable to learn better visual representations.

We view our findings as similar to He et al. [92], who find that the benefits of pretraining

diminish if the pretraining task becomes too difficult, like when the masking ratio becomes

very high (¿ 80%).
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7.5 Conclusion

In this work, we introduced 3D-MVP, a novel approach for 3D multi-view pretraining

using masked autoencoders to improve the performance and generalization of robotic ma-

nipulation policies. By pretraining the encoder of Robotic View Transformer (RVT) on the

large-scale Objaverse 3D object dataset using masked autoencoding, we demonstrate that the

learned 3D representations lead to improved sample efficiency and robustness when finetuned

on downstream manipulation tasks. We evaluated our approach on two benchmarks: RL-

Bench, for general manipulation performance and COLOSSEUM, for systematic evaluation

of robustness to environmental perturbations. On RLBench, 3D-MVP outperforms state-

of-the-art manipulation baselines, achieving higher success rates. On COLOSSEUM, which

tests 12 axes of variations such as object color, size, texture, lighting and more, 3D-MVP

maintains higher success rates compared to baselines as the magnitude of perturbations in-

creases. These results suggest that scalable 3D-aware pretraining on diverse object datasets

is a promising approach to developing general-purpose robotic manipulation systems.

Limitations and future work. While 3D-MVP achieves promising results on the RLBench

and COLOSSEUM benchmarks, there are several limitations that we plan to address in

future work. First, the current version of 3D-MVP uses a fixed set of camera viewpoints

and does not explicitly reason about occlusions and spatial relationships between objects. In

future work, we plan to explore more advanced 3D representations, such as neural radiance

fields, that can handle arbitrary camera viewpoints and model the 3D structure of the scene

more explicitly. Second, the current version of 3D-MVP assumes that the scene, robot, and

objects follow quasi-static dynamics, and does not handle dynamic interactions between the

robot and the environment. In future, we plan to explore techniques for learning action-

conditional representations that can predict the effect of the robot’s actions on the 3D scene.

Third, the current version of 3D-MVP requires a small amount of labeled data for each

downstream task. In future, we plan to explore how to enable 3D-MVP to generate to novel

manipulation tasks which have not been finetuned on.

Social impacts. The development of more generalized and robust robotic manipulation

systems enabled by 3D-aware pretraining as proposed in our work has the potential for sig-

nificant societal impact. On the positive side, such systems could automate many repetitive

or dangerous manual labor tasks, improving worker safety and productivity. Assisting robots

that can reliably manipulate objects in unstructured environments could also improve quality

of life for the elderly and people with disabilities. However, the increased automation from

these systems may also displace some jobs, disproportionately impacting workers with lower

levels of education and technical skills. It will be important to enact policies to help retrain
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and transition affected workers to new roles. Additionally, the datasets used for pretraining

these models, like Objaverse, may encode biases that could be reflected in the downstream

robotic system’s behavior. Care must be taken to audit the data and model behavior to

mitigate potential discriminatory impacts.
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CHAPTER 8

Future Directions

While significant progress has been made in the field of embodied AI and its interaction

with the 3D world, there remain grand challenges and opportunities for future research. This

section outlines promising directions in the areas of multimodal LLM agents and dynamic

digital twins.

8.1 Multimodal LLM Agent

Multimodal Large Language Models (LLMs) have demonstrated a deep understanding

of interactions and show great potential for controlling embodied agents and robots. Two

promising research directions in this area are:

Digital agent. By leveraging the ability of multimodal LLMs to understand interactions, we

can build powerful embodied AI agents. A prime example is Voyager, the first LLM-powered

embodied lifelong learning agent in Minecraft that continuously explores the world, acquires

diverse skills, and makes novel discoveries without human intervention [269]. Besides digital

agents in Minecraft, we can also build web agents. For example, Webvoyager can complete

user instructions end-to-end by interacting with real-world websites [91]. Building upon their

success, future research could explore the development of LLM-powered embodied agents

in more complex and realistic environments. It potentially leads to AI systems that can

intelligently assist humans in various domains, such as scheduling meetings, taking phone

calls, and scheduling travel plans.

Robotics foundation model. The world knowledge embedded in multimodal LLMs has

shown the potential to build robotics foundation models. Traditionally, each robot requires a

separate model for each task, such as a manipulation policy to perform actions like opening a

drawer. Despite progress in multitask manipulation policies [81, 242, 75], they are still limited

to a single robot setup, like the Franka Panda. However, with multimodal LLMs, it may

be possible to learn generalizable robotics skills that can be transferred to individual robot
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setups. One potential solution is ask the multimodal LLM to predict the visual observation

of each key step, and use a low-level exexcution policy to reach the key step. For example,

VoxPoser extracts affordances and constraints from LLMs to compose 3D value maps, which

are used by motion planners to zero-shot synthesize trajectories for everyday manipulation

tasks [105]. These advancements in robotics foundation models can potentially bring a

“ChatGPT moment” to robotics in the future, revolutionizing how we interact with and

utilize robots in various domains.

8.2 Dynamic Digital Twins

Constructing dynamic digital twins remains open challenges with significant potential for

future research. Two promising directions in this area are:

Dynamic digital twin from videos. Developing systems that can construct interactive

digital replicas of real-world environments in real-time from video input is an exciting frontier.

Early attempts, such as consistent video depth estimation [180], have shown the potential

for rendering consistent 3D scenes from videos. More recently, Video2Game by Xia et al.

demonstrates a novel approach to automatically convert real-world scene videos into realistic,

interactive game environments [286]. Their system combines neural radiance fields (NeRF)

for capturing scene geometry and appearance, mesh distillation for efficient rendering, and

physics modeling for object interactions. Further research in this direction could enable a

wide range of applications, from gaming and simulation to robot interaction in dynamic

environments.

Dynamic digital twin generation. Significant progress has been made in 3D genera-

tive AI in recent years. For instance, Text2Room generates textured 3D meshes from text

prompts using 2D text-to-image models [98]. SceneScape generates a long-term video depict-

ing a walkthrough of the scene, according a given camera trajectory and text prompt [73].

However, the generated scenes remain static. Combining interactive 3D scene understanding

with 3D generative AI could enable the creation of interactive, AI-generated 3D environ-

ments. This has potential applications in automatically generating interactive game worlds

or constructing large-scale datasets for AI training. Challenges include ensuring consistency

and coherence of the generated scenes under user interaction, and efficiently updating the

3D representations in real-time.
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CHAPTER 9

Conclusion

In this dissertation, we have explored various approaches to enable machines to perceive,

understand, and interact with the 3D world. Our research has spanned from passive 3D

perception to active object manipulation, and we have developed techniques that advance

the state-of-the-art in machine perception and interaction.

• Associative3D introduced a novel approach for jointly estimating 3D reconstructions,

object associations and camera poses from two views, demonstrating strong perfor-

mance on synthetic data and generalization to real indoor scenes.

• ViewSeg enabled 3D semantic segmentation from arbitrary viewpoints using only a few

annotated images per scene, without requiring explicit 3D supervision. This makes 3D

semantic understanding more practical for real-world applications.

• A novel system was developed to produce 3D planar representations of object articu-

lation from ordinary videos. This enables dynamic 3D understanding of how objects

move and function.

• A transformer model was introduced to predict crucial interaction-related properties

for objects in an image, including movability, rigidity, articulation, affordances and

potential actions. This allows an agent to reason about how to manipulate novel

objects.

• AffordanceLLM leveraged the knowledge in large vision-language models to ground

affordances for arbitrary objects and actions, significantly outperforming prior methods

in generalizing to new object categories and novel interactions.

• 3D-MVP utilized multi-view masked autoencoding to learn rich 3D representations

that improve the performance and robustness of robotic manipulation policies. This

enables active manipulation of objects guided by visual understanding.
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One of the key lessons we have learned throughout our research is the importance of

leveraging large-scale datasets and pretraining mechanisms to improve performance and gen-

eralization. By using diverse video data and vision-language models, we have been able to

train models that can predict 3D object interactions and affordances from a single image,

and even manipulate objects in the 3D world.

Another important lesson is the need for multimodal learning and dynamic digital twins.

As we move towards more capable and adaptable AI agents, it is crucial to develop systems

that can learn from multiple modalities and adapt to changing environments. This requires

building digital agents and robotics foundation models that can learn from diverse data

sources and generalize to new situations.

Finally, our research has highlighted the potential of self-supervised 3D representation

learning to bridge the gap between visual understanding and physical interaction. By learn-

ing rich 3D representations from diverse object datasets, we have been able to improve the

performance and robustness of robotic manipulation policies.

Overall, my PhD research has taught us the value of exploring novel approaches to

machine perception and interaction, and the importance of leveraging large-scale datasets

and pretraining mechanisms to improve performance and generalization. I hope that our

work will contribute to the development of more capable and adaptable AI agents that can

navigate and operate in both the physical world and its digital twin.
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APPENDIX A

Supplementary: Volumetric Reconstruction

from Sparse Views

A.1 Implementation

Detection proposals. We use more advanced object proposals compared to prior works

[138, 265], which used edge boxes [324]. We found that edge boxes were often the limiting

factor. Instead, we train a class-agnostic Faster-RCNN [222] to generate proposals, treating

all objects as the foreground.

Object Branch. For each object, our object branch will predict a 300-dimensional vector,

which represents its 3D properties. Linear layers are used to predict its shape embedding,

translation, rotation, scale and object embedding. For the object embeddings, we use three

linear layers. The size of outputs is 256, 128, 64, respectively. These linear layers predict a

64-dimensional embedding finally.

We train the object branch in two stages. In the first stage, we follow the training of

3D-RelNet [138] with ground truth bounding boxes. The loss of affinity matrix is ignored

in this stage. In the second stage, we freeze all layers except the linear layers to predict

the object embeddings. We only apply the affinity loss in this stage. For all two stages,

we use Adam with learning rate ε = 10−4 to optimize the model, with momentum 0.9.

The batch size is 24. Although 3D-RelNet is finetuned on detection proposals, we only use

the intermediate model trained with ground truth bounding box because (1) 3D-RelNet is

finetuned on edgebox proposals and our Faster-RCNN proposals are good enough; (2) ground

truth affinity is only available with ground truth bounding box.

Camera Branch. The object and camera branches are trained independently. The trans-

lation is represented as 3D vectors, and the rotation is represented as quaternions. We run

k-means clustering on the training set to produce 60 and 30 bins for translation and rotation.

For rotation, we use spherical k-means to ensure the centroids are unit vectors.
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The input image pairs are resized to 224x224. They are passed through a siamese net-

work with ResNet-50 pre-trained on ImageNet [95] as the backbone. The outputs from each

instance of the siamese network are concatenated, and passed through a linear layer, pro-

ducing a 128-dimensional vector. The vector is then passed through a translation branch

and a rotation branch. Each branch is a linear layer which outputs 60 and 30 dimensional

vectors for translation and rotation bins.

Our loss function is the cross entropy loss. The loss for the translation prediction and the

rotation prediction are weighted equally. We use stochastic gradient descent with learning

rate ε = 10−3 and momentum 0.9. The batch size is 32. We also augment the data by

reversing the order of image pairs.

Tuning the stitching stage. The search space contains top-3 rotation, top-10 translation

and top-128 object correspondence hypotheses. The threshold of affinity is 0.5. λP , λS, and

λU are tuned as hyperparameters on the validation set to preclude the trivial solution. We

use λS = 5, λU = 1. For λP , we use 5 for rotation and 1 for translation.

A.2 Visualization of the Object Embedding Space

We use t-SNE [183] to visualize the object embedding space to check what the affinity

matrix learns visually. We show our results in Fig. A.1.

Without using semantic labels as supervision, objects in the same category are closer

to each other. We also notice that table and desk have similar embeddings. The object

embeddings can distinguish 3D models partially, but not as well as semantic labels.

Figure A.1: t-SNE visualization of the object embedding space. Left: We assign the same
color to embeddings with the same semantic labels. Right: We assign the same color to
embeddings with the same 3D models.
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Figure A.2: Top-K accuracy of the camera branch on the validation set. The orange line
shows the Top-K accuracy of K we choose for the stitching stage.

A.3 Proposals of Camera Pose Transformation

In the stitching stage, we select the top 3 most likely bins for rotation and top 10 most

likely bins for translation. We demonstrate our motivation for choosing the number. On the

validation set, we evaluate the top-K classification accuracy. We show the top-K accuracy

for translation and rotation in Fig. A.2. We notice that the top-1 accuracy is not high.

However, the top 3 most likely bins for rotation and top 10 most likely bins for translation

can ensure a high accuracy in a relatively small searching space. Therefore, we select these

bins in the stitching stage. During test time, the top-3 rotation accuracy is 88.7% and top-10

translation accuracy is 83.6%.

A.4 Comparion with Single-view Baselines

In full scene evaluation, we are also interested in whether the multi-view setting helps,

since we only add another sparse view. We address the question by comparing with single-

view baselines. We take a prediction from 3D-RelNet [138] on one view of the pair, selected

randomly. On the whole test set, the AP is 13.7, which significantly underperforms all

baselines. It shows our proposed approach has significant improvement built upon single-

view baselines, and multi-view helps reconstruct the scene.
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A.5 Merging Corresponding Objects

When our approach finds corresponding objects in two views, we average the translation

and scale, but pick up the shape and rotation at random. Here we study alternative options.

We use top 50% examples in the test set ranked by the performance of single-view predictions,

so that the difference is more obvious.

First, we empirically show the rotation cannot be averaged, since there are typically

multiple rotation modes. In Table A.1, we compare the peformance between averaging

rotation and pick up one at random. Averaging rotation dramatically hurts the performance.

Table A.1: Comparison between averaging the rotation and picking up one at random.

All Shape Trans Rot Scale

random rot 38.8 27.3 39.6 33.2 35.1
average rot 31.4 27.3 40.2 29.2 35.1

improvement -7.4 +0.0 +0.6 -4.0 +0.0

Moreover, a reasonable way to average the shape is to average the vector representation

of the object [77]. In Table A.2, we compare their performance and they are almost the

same. Therefore, we choose the simplest approach, picking up one shape at random.

Table A.2: Comparison between averaging the shape and picking up one at random.

All Shape Trans Rot Scale

average shape 38.8 27.3 39.6 33.2 35.1
random shape 38.8 27.2 39.6 33.2 35.1

improvement +0.0 -0.1 +0.0 +0.0 +0.0

A.6 Additional Qualitative Results

We show additional qualitative examples in Fig. A.3, A.4, and A.5 which follows the

same format as Fig. 3, 4 and 5 of the main paper.
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Input Images Camera 1 Camera 2 Birdview
Image 1 Image 2 Prediction GT Prediction GT Prediction GT

Figure A.3: Additional Qualitative results on the SUNCG test set. The final 3D predictions
are shown in three different camera poses (1) the same camera as image 1; (2) the same
camera as image 2; (3) a bird view to see all the objects in the whole scene. In the pre-
diction, red/orange objects are from the left image, blue objects are from the right image,
green/yellow objects are stitched from both the images.
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Image 1 Image 2 Feedforward NMS Raw Affinity Associative3D GT

Figure A.4: Comparison between Associative3D and alternative approaches. All outputs are
shown from bird’s eye view.
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Before After Before After Before After

Figure A.5: Visualization of the stitching stage. The affinity matrix generates proposals of
corresponding objects, and then the stitching stage removes outliers by inferring the most
likely explanation of the scene. Before stitching, the thickness and darkness of the line
represent the value of affinity score. The thicker / darker, the higher the value in the affinity
matrix.
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APPENDIX B

Supplementary: 3D Semantic Segmentation

from Novel Viewpoints

B.1 Network Architecture
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Figure B.1: Detailed architecture of our semantic 3D representation f . Each cuboid is
a linear layer where the number around it represents the input dimension. The output
dimension is always 128 except the last layer of RGB and semantic prediction. Before the
mean aggregation, the network takes inputs from each source view but weights are shared.

The detailed architecture of f is illustrated in Fig. B.1. It takes as input a positional

embedding of the 3D coordinates of x, γ(x), the viewing direction d and the semantic

embeddings {ϕseg
j }Nj=1. As output, f produces

(c, σ, s) = f
(
γ(x), d, ϕseg

0 (x), ..., ϕseg
N−1(x)

)
(B.1)

where c ∈ R3 is the RGB color, σ ∈ R is the occupancy, and s ∈ R|C| is the distribution over

semantic classes C. Hypersim [225] provides annotations for 40 semantic classes. We discard
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Figure B.2: Predictions on Replica with noisy cameras. For each example, we show the 4
input RGB views (left), the ground truth RGB, semantic and depth maps for the novel target
view (middle) and ViewSeg’s predictions (right). Our model does not have access to the true
observations from the target view at test time. Depth colormap (scaled per example): min

max.

Model mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25 δ < 1.252

ViewSeg noft 8.57 35.2 61.3 40.3 57.9 18.3 1.10 0.253 0.240 0.268 0.579 0.840
ViewSeg 14.1 40.1 62.8 42.8 60.6 24.6 0.887 0.208 0.232 0.180 0.631 0.888

Table B.1: Performance for semantic segmentation (blue) and depth (green) on the
Replica [253] test set with noisy cameras.

{otherstructure, otherfurniture, otherprop} and thus |C| = 37 for both Hypersim [225] and

Replica [253].

We largely follow PixelNeRF [305] for the design of our network. We deviate from

PixelNeRF and use 128 instead of 512 for the dimension of hidden layers (as in NeRF [188])

for a more compact network. The dimension of the linear layer which inputs ϕseg
j (x) is set

to 256 to match the dimension of semantic features from DeepLabv3+ [30].

B.2 Training Details

Pretraining the Semantic Segmentation Module. We first pretrain our semantic seg-

mentation backbone network DeepLabv3+ [30] on ADE20k [318], which has 20,210 images

for training and 2,000 images for validation. We implement DeepLabv3+ in PyTorch with

Detectron2 [284]. We train on the ADE20k training set for 160k iterations with a batch

size of 16 across 8 Tesla V100 GPUs. The model is initialized using ImageNet weights [52].

We optimize with SGD and a learning rate of 1e-2. During training, we crop each input

image to 512x512. We remove the final layer, which predicts class probabilities, and use the

output from the penultimate layer as our semantic encoder. We do not freeze the model

when training ViewSeg, allowing finetuning on Hypersim semantic categories.
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Training Details on Hypersim. We implement ViewSeg in PyTorch3D [219] and De-

tectron2 [284]. We initialize the semantic segmentation module with ADE20k pretrained

weights. We train on the training set for 13 epochs with a batch size of 32 across 32 Tesla

V100 GPUs. The input and render resolution are set to 1024x768. In practice, we find the

semantic encoder needs relatively high resolution to segment small objects. We optimize

with Adam and a learning rate of 5e-4. We follow the PixelNeRF [305] strategy for ray

sampling: We sample 64 points per ray in the coarse pass and 128 points per ray in the fine

pass; we sample 1024 rays per image. We set λ = 25 in Eq. 6 of the main paper to balance

the semantic and photometric loss, which is consistent with Semantic-NeRF [316].

Training Details on Replica. We finetune our model on the Replica training set [253].

Replica has 18 scenes. In practice, we find Replica does not have room-level annotations and

our sampled source and target views can be at different rooms within the Replica apartments.

Hence, we exclude them from our data. We split the rest 15 scenes into a train/val split

of 12/3 scenes. We use the same hyperparameters as Hypersim to finetune our model on

Replica.

B.3 Noisy Camera Experiment

In our experiments, we assume camera poses both during training and evaluation. We

perform an additional ablation assuming noisy cameras for both during training and testing.

During evaluation, source view cameras are noisy but not the target camera, as we wish to

compare to the target view ground truth. We insert noise to the cameras by perturbing

the rotation matrix with random angles sampled from [−10◦, 10◦] in all three axis (X, Y

& Z) . This results in a significant camera noise and stretch tests our method under such

conditions.

Table B.1 shows results on the noisy Replica test set. The 1st row shows the performance

of our ViewSeg pre-trained on Hypersim and without any finetuning. The 2nd row shows

the performance of our model finetuned on the noisy Replica training set. We observe

that performance for both model variants is worse compared to having perfect cameras, as

is expected. Performance improves after training with camera noise, suggesting that our

ViewSeg is able to generalize better when trained with noise in cameras. Fig. B.2 shows

qualitative results on the noisy Replica test set. The predicted RGB targets are significantly

worse compared to the perfect camera scenario, which suggests that RGB prediction with

imperfect cameras is very challenging. However, the semantic predictions are much better

computer to their RGB counterparts. This shows that our approach is able to capture scene
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Input Images 
of Novel Scene

Semantic NeRF Ground TruthViewSegPixelNeRF++

Figure B.3: More predictions on Hypersim. Depth colormap (scaled per example): min
max.

priors and generalize to new scenes even under imperfect conditions.

B.4 Additional Results

Fig. B.3 shows more qualitative results on Hypersim. Fig. B.4 shows more qualitative

results on Replica. We also provide video animations of our predictions in the supplementary

folder.

B.5 Evaluation

We report the complete set of depth metrics for all the tables in the main submission.

The comparison with PixelNeRF and CloudSeg is in Table B.2. The ablation of different

loss terms is in Table B.3. The comparison of different backbones is in Table B.4. The input

study is in Table B.5. Our experiments on the Replica dataset are in Table B.6.
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Figure B.4: More predictions on Replica. Depth colormap (scaled per example): min
max.
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Model mIoU IoUT IoUS fwIoU pACC mACC L1(↓) LT
1 (↓) LS

1(↓) Rel(↓) RelT(↓) RelS(↓) δ <1.25 δT <1.25 δS <1.25 δ <1.252 δT <1.252 δS <1.252 δ < 1.253 δT <1.253 δS <1.253

PixelNeRF+SS 1.58 14.9 47.9 17.9 35.9 3.63 2.80 2.69 2.90 0.746 0.856 0.653 0.300 0.276 0.319 0.531 0.500 0.557 0.689 0.663 0.712
CloudSeg 0.46 29.6 4.42 1.80 3.31 3.25 3.81 3.83 3.77 0.856 0.997 0.737 0.145 0.105 0.178 0.277 0.211 0.332 0.389 0.314 0.451
ViewSeg 17.1 33.2 58.9 44.8 62.2 23.9 2.29 2.18 2.38 0.646 0.721 0.584 0.409 0.393 0.421 0.656 0.633 0.676 0.794 0.772 0.812
Oracle 40.0 58.1 71.3 66.6 79.1 52.1 0.96 1.10 0.83 0.235 0.317 0.163 0.731 0.651 0.800 0.898 0.848 0.942 0.954 0.925 0.978

Table B.2: Extended version of Table 1 in the main paper.

ViewSeg loss mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) LT
1 (↓) LS

1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25 δT < 1.25 δS < 1.25 δ < 1.252 δT < 1.252 δS < 1.252 δ < 1.253 δT < 1.253 δS < 1.253

w/o photometric loss 16.9 30.8 58.7 44.8 62.5 22.7 2.49 2.35 2.61 0.677 0.750 0.615 0.359 0.347 0.363 0.611 0.594 0.625 0.764 0.744 0.780
w/o semantic loss - - - - - - 2.58 2.52 2.63 0.787 0.919 0.678 0.345 0.317 0.369 0.587 0.548 0.621 0.740 0.704 0.770
w/o source view loss 14.3 28.2 57.9 28.2 61.1 19.3 2.37 2.27 2.45 0.683 0.764 0.615 0.397 0.378 0.413 0.649 0.623 0.670 0.785 0.761 0.806
w/o viewing dir 16.0 33.1 59.2 44.9 62.1 21.5 2.53 2.38 2.65 0.708 0.783 0.646 0.354 0.351 0.356 0.602 0.593 0.610 0.759 0.744 0.772
final 17.1 33.2 58.9 44.8 62.2 23.9 2.29 2.18 2.38 0.646 0.721 0.584 0.409 0.393 0.421 0.656 0.633 0.676 0.794 0.772 0.812

Table B.3: Extended version of Table 2 in the main paper.

ViewSeg backbone mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) LT
1 (↓) LS

1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25 δT < 1.25 δS < 1.25 δ < 1.252 δT < 1.252 δS < 1.252 δ < 1.253 δT < 1.253 δS < 1.253

DLv3+ [30] + ADE20k [318] 17.1 33.2 58.9 44.8 62.2 23.9 2.29 2.18 2.38 0.645 0.721 0.584 0.409 0.393 0.421 0.656 0.633 0.676 0.794 0.772 0.812
DLv3+ [30] + IN [52] 16.3 33.2 59.2 45.2 62.5 22.0 2.28 2.17 2.36 0.614 0.682 0.559 0.415 0.400 0.427 0.663 0.640 0.682 0.799 0.776 0.818
ResNet34 [95] + IN [52] 7.45 21.7 55.9 37.1 56.1 11.2 2.67 2.51 2.81 0.712 0.815 0.626 0.320 0.304 0.333 0.562 0.541 0.580 0.720 0.702 0.736

Table B.4: Extended version of Table 3 in the main paper.
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ViewSeg mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) LT
1 (↓) LS

1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25 δT < 1.25 δS < 1.25 δ < 1.252 δT < 1.252 δS < 1.252 δ < 1.253 δT < 1.253 δS < 1.253

w/ 4 views 17.1 33.2 58.9 44.8 62.2 23.9 2.29 2.18 2.38 0.646 0.721 0.584 0.408 0.393 0.421 0.656 0.633 0.676 0.794 0.772 0.812
w/ 3 views 15.5 31.3 58.7 43.9 61.5 20.8 2.39 2.25 2.49 0.652 0.730 0.587 0.387 0.376 0.395 0.634 0.617 0.648 0.777 0.759 0.793
w/ 2 views 13.6 27.4 57.7 41.9 60.2 18.2 2.57 2.49 2.64 0.765 0.878 0.672 0.363 0.339 0.383 0.605 0.574 0.633 0.751 0.721 0.776
w/ 1 view 11.6 24.9 56.5 39.7 57.9 15.8 2.62 2.52 2.70 0.734 0.828 0.657 0.332 0.322 0.339 0.562 0.541 0.580 0.710 0.686 0.730

Table B.5: Extended version of Table 4 in the main paper.

ViewSeg mIoU IoUT IoUS fwIoU pACC mACC L1 (↓) LT
1 (↓) LS

1 (↓) Rel (↓) RelT (↓) RelS (↓) δ < 1.25 δT < 1.25 δS < 1.25 δ < 1.252 δT < 1.252 δS < 1.252 δ < 1.253 δT < 1.253 δS < 1.253

ViewSeg noft 13.2 44.8 56.0 51.4 66.8 27.1 0.982 0.851 1.138 0.222 0.194 0.254 0.623 0.687 0.546 0.880 0.905 0.850 0.968 0.974 0.961
ViewSeg 30.2 56.2 62.8 62.3 75.6 48.4 0.550 0.510 0.597 0.130 0.130 0.130 0.851 0.857 0.844 0.961 0.953 0.972 0.986 0.980 0.992
Oracle 56.2 76.8 78.0 90.1 93.8 79.4 0.226 0.230 0.220 0.058 0.065 0.050 0.976 0.965 0.991 0.998 0.996 0.999 1.000 1.000 1.000

Table B.6: Extended version of Table 5 in the main paper.
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APPENDIX C

Supplementary: Understanding 3D

Articulation in Internet videos

C.1 Implementation Details

Table C.1: Overall architecture for our proposed network. The backbone, RPN and plane
branches are identical to [120]. The RPN predicts a bounding box for each of A anchors in
the input feature map. C is the number of categories (here = 2 for rotation and translation).
We use class agnostic mask because the mask head is trained on ScanNet. TConv is a
transpose convolution with stride 2. ReLU is used between all Linear, Conv and TConv
operations. Depth branch uses Conv and Deconv layers to generate a depthmap with the
same resolution as the input image.

Index Inputs Operation Output shape

(1) Inputs Input Image H ×W × 3
(2) (1) Backbone: ResNet50-FPN h× w × 256
(3) (2) RPN h× w × A× 4
(4) (2),(3) RoIAlign 14× 14× 256
(5) (4) Box: 2×downsample, Flatten, Linear(7× 7× 256 → 1024), Linear(1024 → 5C) C × 5
(6) (4) Mask: 4× Conv(256 → 256, 3× 3), TConv(256 → 256, 2× 2, 2), Conv(256 → 1× 1) 1× 28× 28
(7) (4) Normal: 4× Conv(256 → 256, 3× 3), Linear(14× 14× 256 → 1024), Linear(1024 → 3) 1× 3
(8) (4) Rotation Axis: 4× Conv(256 → 256, 3× 3), Linear(14× 14× 256 → 1024), Linear(1024 → 3) C × 3
(9) (4) Translation Axis: 4× Conv(256 → 256, 3× 3), Linear(14× 14× 256 → 1024), Linear(1024 → 2) C × 2
(10) (2) Depth H ×W × 1

Detector. Our network architecture is shown in Table C.1. We use Detectron2 [284] to

implement our articulation detection and take the codebase from SparsePlanes [120]. Our

articulation head predicts rotation and translation axis separately. Each of the branch takes

the RoI feature from the backbone and uses four convolutional layers with 256 channels and

two linear layers to regress the axes. The rotation branch predicts a three dimensional vector

and the translation branch predicts a two dimensional vector. While they train the model

on Matterport3D [26], we start from COCO pretraining and train the model on our Internet

videos. The training is run on a single RTX 2080Ti.
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Temporal Optimization. For tracking, we use 0.5 as our IoU threshold. For articulation

model fitting, we use the ScanNet camera intrinsics as our assumed camera intrisics, since

the plane and depth heads of the model is trained on ScanNet [42]. We use PyTorch to

implement the temporal optimization. For 3D transformations we use PyTorch3D [219] so

that it is compatible. The optimization is parallel and runs on 8 GTX 1080Ti gpus of an

internal cluster to save inference time and it can be run on a single gpu.

C.2 Data Collection Pipeline

Our semi-automatic data collection consists of an automatic pipeline to download and

filter Internet videos to remove clear negatives, and a manual annotation to label articulated

objects. We also discuss how we filter Charades dataset [243] since it involves slightly different

steps.

C.2.1 Filtering Internet videos

Youtube queries. We start with 10 initial common articulated objects in our daily life:

door, laptop, oven, refrigerator, washing machine, dishwasher, microwave oven, drawer, cab-

inet and box. Using the combination of words, we make a list of queries for each initial

category, e.g. “best laundry tips”, following 100DOH [236]. To improve the number of

videos we can find on the Internet and the diversity of the dataset, we also translate the

queries into Chinese, Japanese, Hindi and Spanish. We search these queries on Youtube and

download related Creative Commons videos.

Converting videos to shots. Within these videos, we find stationary continuous shots by

fitting homographies [90] on ORB [229] features. In practice, we find ORB [229] are much

faster and slightly more robust than SIFT [173] features, so it saves a lot of computing time.

Filtering videos based on interaction. A lot of stationary shots does not contain any

people or objects of interest. We further filter out video shots based on a hand interaction

detector trained on 100K+ frames of Internet data [236]. In practice, we find it works well

and we believe it is because [236] is also trained on Internet data. For each video shot, we

run the hand interaction detector on frames evenly sampled every 1 second. We remove

video shots which do not have hand interactions at all.

Filtering categories of interests. We further filter object of interests by an object detector

trained on COCO [158] and LVIS [87]. We use the pretrained model of Faster R-CNN (X101-

FPN, 3x) from Detectron2 [284]. For categories that COCO does not have annotation (e.g.
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washing machines), we use LVIS since it has much more categories. Especially, LVIS does

not have annotations for doors, and we use doorknob instead.

C.2.2 Annotating Articulated Objects

Finally, we use annotate articulated objects using crowdsourcing. We split video shots

into 3s clips, where the fps is 30. Therefore, there are 90 frames per clip.

We use Hive 1 as our data annotation platform. We include the screenshot and estimated

hourly pay for each step, since these steps are separate from each other. The hourly pay is

a rough estimation since we only have limited worker statistics provided by Hive and we do

not manage it ourselves.

Recognizing articulated clips. The first step is to judge if the video clips have objects

which are being articulated. This is a binary classification question. We show 9 key frames of

the video shot (sample every 10 frames) and ask workers to classify. The screenshot is shown

in Figure C.1. We pay $0.015 for each clip, each clip is annotated by about 2 workers (which

is managed by Hive based on consensus and out of our control), and we estimate they can

annotate 8 clips per minute. Therefore, the estimated hourly pay is 0.015 · 8 · 60/2 = $3.6.

Figure C.1: The screenshot of recognize articulated clips.

Annotating bounding boxes of articulated objects. After labelling positive video clips,

we annotate bounding boxes of objects which are being articulated. We also ask workers

1https://thehive.ai/
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to specify the object is being rotated or translated. We only annotate on 9 key frames

of the video clip, since consecutive frames tend to be similar. The screenshot is shown in

Figure C.2. We pay $0.14 for each clip, each clip is annotated by about 2 workers, and we

estimate they can annotate 1.5 clips per minute. Therefore, the estimated hourly pay is

0.14 · 1.5 · 60/2 = $6.3.

Figure C.2: The screenshot of annotating bounding boxes.

Annotating rotation axis. For objects which are annotated to be rotated, we annotate

their rotation axes. We ask workers to draw a line to represent the 2D rotation axis. The

screenshot is shown in Figure C.3. We pay $0.04 for each clip, each clip is annotated by

about 2 workers, and we estimate they can annotate 4 axes per minute. Therefore, the

estimated hourly pay is 0.04 · 4 · 60/2 = $4.8.

Annotating translation axis. For objects which are annotated to be translated, we

annotate their translation direction. We also ask workers to draw a line to represent the 2D

rotation direction. However, since translation is only related to the angle of the line and

does not need the line offset, we draw a circle at the center of the bounding box and ask

workers to start there. The screenshot is shown in Figure C.4. The estimated hourly pay is

$4.8, which is the same as annotating rotation axis since it is defined as the same task “line

segment” on Hive.

Annotating surface normals. All bounding boxes and articulation axes are annotated

in 2D. However, in this chapter, we are interested in 3D object articulation. Thus, for the
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Figure C.3: The screenshot of annotating rotation axes.

test set, we also annotate the o annotate the surface normal of the plane following [34],

so we can evaluate how well our model can learn 3D properties. Since the annotation of

surface normals are not available on Hive and we only need surface normals on the test set

for evaluation purpose, we do all surface normals annotations ourselves. The screenshot is

show in Figure C.5.

Finally, we postprocess the dataset to make sure the dataset does not have offensive

content, cartoons, and any videos depicting children. Since the distribution is unbalanced

and negative examples are much more than positive ones, we only sample a negative clip

with hand interaction from the same video shot of positive clips.

C.2.3 Annotating Charades Dataset

We test generalization of our method on Charades without additional training. Data is

prepared and annotated using the following process on the original Charades test set.

The Charades test set contains 1863 videos of people acting out designated scripts. Videos

are typically short at around 30 seconds. The dataset contains script information and ad-

ditional annotation, which can be used to filter videos that are highly likely to contain

articulation. After initial filtering, we split filtered videos into clips of a pre-defined length.

These clips are then annotated as to whether they contain articulation, for articulation

bounding box location (if applicable), and articulation angle (if applicable). Annotation is

performed using a similar setup to YouTube via Hive. Because Charades is small, we use all
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Figure C.4: The screenshot of annotating translation axes.

clips which Hive workers have labeled as containing articulation.

Filtering criteria. Charades contains videos with acting information, which we use to

perform filtering. Each video has corresponding categorical actions that can be used to

find dense articulation instances. These categorical actions fall into 157 categories such as

”Holding some clothes” or ”Opening a bag”, and are annotated on a one-tenth of a second

basis. For example, one given video may have two corresponding actions ”Holding some

clothes” and ”Opening a bag”, which correspond to seconds 1.2 - 11.7 and 12.3 - 18.3, corre-

spondingly. We selecct video clips orresponding to eight categorical actions for our dataset:

”Opening a door”, ”Closing a door”, ”Opening a laptop”, ”Closing a laptop”, ”Opening a

closet/cabinet”, ”Closing a closet/cabinet”, ”Opening a refrigerator”, and ”Closing a refrig-

erator”.

Gathering filtered clips. To find corresponding video clips, we first calculate the middle of

each action – e.g. for the 1.2 - 11.7 interval this would be 6.45. Next, we select a 7.5 seconds

both greater than and less than the middle of the action. This is subject to beginning and

ending of video, and we remove overlapping clips. In our example, ”Holding some clothes”

has a middle of 6.45 seconds, so the clip would begin at 0 seconds and end at 13.95 seconds.

The second clip has a middle of 15.3, and cannot overlap with the first, so would start at

13.95 seconds and end at 22.8. This totals 649 filtered clips of <= 15 seconds.

Splitting video clips. Given a set of video clips which correspond to the selected categorical

actions, we next split clips into 3 second clips to be used for a standardized articulation

framework. Any clip less than 3 seconds is truncated. This results in 2232 3-second mini-
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Figure C.5: The screenshot of annotating surface normals.

clips.

C.3 Rendering Sapien data

In our experiments, we test whether the model trained on synthetic data transfer to

Internet videos using Sapien renderings [287]. Here we provide additional details about

rendering and example images. Examples of our renderings are shown in Figure C.6.

To generate these results, we first randomly sample 3D objects with articulation. We fil-

tered 1053 objects of 18 caterories with movable planes from PartNet-Mobility Dataset [287].

18 categories are: “Box”, “Dishwasher”, “Display”, “Door”, “FoldingChair”, “Laptop”, “Mi-

crowave”, “Oven”, “Phone”, “Refrigerator”, “Safe”, “StorageFurniture”, “Suitcase”, “Ta-

ble”, “Toilet”, “TrashCan”, “WashingMachine”, and “Window”. They have significant

overlapping with our queries to generate Internet videos, since these objects are common

objects which can be articulated. We control its rotation or translation and render ground

truth depth, surface normal, mask, motion type and 3D rotation axis. The outputs are

object articulation videos without backgrounds.

To mimic real 3D scenes, we blend random backgrounds. Otherwise the detection problem

becomes trivial. We use ScanNet [42] images with synthetic humans [267] used to train our

approach, to ensure the fair comparison.
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Figure C.6: Random examples from Sapien renderings.
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APPENDIX D

Supplementary: Understanding 3D Object

Interaction from a Single Image

D.1 Implementation

Transformer Decoder. The transformer decoder D takes the memory m from encoder

and a set of queries, including N point queries kp and one depth query kd. It predicts a set

of point pooled features h1, . . . , hN and depth pooled features hd, i.e.

h1, h2, . . . , hN , hd = D(m; k(1)
p , k(2)

p , . . . k(N)
p , kd) (D.1)

We set N = 15, as all images have lower than 15 query points. For images without 15 query

points, we pad the input to 15 and do not train on these padding examples. The depth

query kd is a learnable embedding, similar to object queries in DETR [21]. All queries are

feed into the decoder in parallel, as they are indepedent of each other.

Prediction heads. DETR [21] uses a linear layer to predict the object classes and a three-

layer MLP to regress the bounding boxes, based on h. Motivated by DETR, we use a linear

layer for the prediction of movable, rigidity, articulation class and action. We use a three-

layer MLP to predict the bounding boxes and rotation axes, as they require localization. We

add a gaussian bump [145] for affordance ground truth, where the radius is 5.

Balance of loss functions. Since we use multiple loss functions for each prediction and

each loss has a different range, they need to be balanced. We treat the weights of losses

as hyperparameters and tune them accordingly. The weights of movable, rigidity, articula-

tion class, and action losses are 0.5. The weights of mask losses (both focal loss [156] and

DICE [190]) are 2.0. The weights of box L1 loss is 5.0 and generalized IoU loss is 2.0. The

weights of axis angle loss is 1.0 and axis offset loss is 10.0. The weights of affordance loss is

100.0. The weights of depth losses are 1.0. For both focal losses of segmentation masks and
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affordance map, we use γ = 2. For the focal loss of segmentation mask, we use α = 0.25 to

balance positive and negative examples. In affordance we use the standard α = 0.95 since

there are much more negatives than positives.

Training details. The image encoder, prompt encoder and the mask decoder are pretrained

on Segment-Anything [131]. To save gpu memory, we use SAM-ViT-b as the image encoder,

which is the lightest pretrained model. The other heads (e.g. affordance) are trained from

scratch. We use an AdamW optimizer [172] of the learning rate 10−4 and train the model

for 200 epochs. The input and output resolution is 768×1024. The batch size is 2. We train

the model on four NVIDIA A40 gpu, with distributed data parallel.

Rendering 3D Interaction. Given all these predictions, we are able to predict the poten-

tial 3D object interaction of articulated objects from a single image. For articulated objects

with a rotation axis, we first backproject the predicted 2D axis to 3D, based on the predicted

depth [211]. We then rotate the object point cloud along the 3D axis and project it back

to 2D. We fit a homography between the rotated object points and the original one, using

RANSAC [69]. Finally, we warp the homography on the original object mask. There is a sim-

ilar procedure for articulated objects with a translation axis. Instead, we estimate an average

surface normal of the object, and use it as the direction of translation axis [161, 159, 211].

Moreover, the interaction of deformable objects is high dependent of its material, which is

difficult to predict from pure visual cues [293]. On the other hand, freeform objects can be

moved without any constraints. Therefore, in this chapter, we only render 3D interaction for

articulated objects. We use pytorch3D [219] and opencv to implement the projection and

homography fitting. Final results are shown in the animation video.

D.2 Data Collection

In this section, we introduce steps of the data annotation. We show the statistics of our

dataset in Figure D.1. We also show additional annotations in Figure D.2.

Selecting query points. We first ask workers to select approximately five query points for

each image. The query point should be on an interactive object. Some query point should

be on large objects, while others should be on small objects. We annotate more query points

of fixtures later, as fixtures do not need additional annotations.

Bounding boxes. According to the query point, we ask workers to draw a bounding box.

The bounding box should only cover the movable part of an object. For example, if the

query point is on the door of a refrigerator, the bounding box should only cover the door,

instead of the whole refrigerator. It is because we are asking “what can I do here”.

130



Figure D.1: Statistics of our 3DOI dataset. (Row 1) We show the distribution of query
points, box centers, and affordance in normalized image coordinates, similar to LVIS [87]
and Omni3D [13]. (Row 2) We show the distribution of object types, articulation types
and movable types.

Properties of the object. We then annotate properties of the object. It is a series of

multiple choice questions: (1) can the object be moved by one hand, or two hands? (2) is

the object rigid or not? (3) if it is rigid, is it articulated or freeform? (4) if it is articulated,

is the motion rotation or translation? (5) if we want to interact with the articulated object,

should I push or pull?

Rotation Axes. For objects which can be rotated, we ask workers to draw a 2D line to

represent the rotation axis.

Segmentation Masks. For all objects, we further ask workers to draw the segmentation

mask of the movable part.

Fixtures. Finally, we collect another 10K images and randomly sample 5 query points for

each image. We ask workers to annotate whether they are fixtures or not. We mix the

dataset with these annotations.
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Figure D.2: Example annotations of our 3DOI dataset. Row 1-2 come from Internet
videos [211]. Row 3-4 come from egocentric videos [47]. Row 5-6 come from renderings
of 3D dataset [62]. The dot is the query point, and ▼ is the affordance.
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APPENDIX E

Supplementary: Grounding Affordance from

Vision Language Models

E.1 Metrics

In the section, we explain the metrics (KLD, SIM, and NSS) to evaluate our model.

•Kullback-LeiblerDivergence (KLD) measures distribution difference between the predicted

affordance map (M) and the ground truth (M ′), which is

KLD
(
M,M ′) = ∑

i

M ′
i log

(
ϵ+

M ′
i

ϵ+Mi

)
, (E.1)

• Similiary (SIM) is also called histogram intersection, which measures the intersection

between the predicted affordance map (M) and the ground truth (M ′). The final range is

from 0 to 1. It is given by

SIM (M,M ′) =
∑
i

min (Mi,M
′
i) , (E.2)

where
∑

iMi =
∑

i M
′
i = 1.

•Normalized Scanpath Saliency (NSS) measures the correspondence between the prediction

map (M) and the ground truth (M ′). It is given by

NSS
(
M,M ′) = 1

N

∑
i

M̂ ×M ′
i , (E.3)

where N =
∑

iM
′
i , M̂ = M−µ(M)

σ(M)
. µ (M) and σ (M) are the mean and standard deviation,

respectively.
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E.2 Details of the Data Splits

In the easy split, we follow the object split of the orginal AGD20K Unseen setting [177].

The easy split has 33 object classes for training and 14 for testing. We have 1135/540 images

for train and test with dense annotations for the fully supervised setting, or 13,323/540

images for the weakly supervised setting.

• Train classes: scissors, badminton racket, surfboard, frisbee, hot dog, tennis racket,

hammer, microwave, oven, punching bag, carrot, snowboard, book, suitcase, skate-

board, wine glass, keyboard, javelin, motorcycle, discus, bench, toothbrush, bottle,

cell phone, chair, orange, rugby ball, couch, baseball, fork, bowl, apple, baseball bat.

• Test classes: camera, bed, bicycle, golf clubs, soccer ball, cup, laptop, banana, skis,

knife, axe, broccoli, basketball, refrigerator.

In the hard split, we randomly put around 50% AGD20K object classes into the training

set and the remaining classes into the test set to simulate in-the-wild generalization. The

hard split has 28 object classes for training and 22 for testing. We have 868/807 images for

train and test with dense annotations for the fully supervised setting, and 11,889/807 images

for the weakly supervised setting.

• Training objects include carrot, cup, bowl, discus, book, camera, golf clubs, bottle,

broccoli, binoculars, drum, baseball, apple, frisbee, cell phone, baseball bat, couch,

hammer, bicycle, bench, fork, badminton racket, banana, hot dog, axe, bed, chair,

basketball.

• Test objects include soccer ball, laptop, punching bag, oven, suitcase, javelin, wine

glass, motorcycle, scissors, snowboard, keyboard, rugby ball, orange, surfboard, knife,

skateboard, pen, microwave, skis, tennis racket, refrigerator, toothbrush.
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