
CHAPTER IV

Versatile Site-Selective Patch Patterning on Au Tetrahedra
with Polymer Patches

The work in this chapter is part of a collaboration with Qian Chen’s group at

the University of Illinois at Urbana-Champaign and Thi Vo at the Johns Hopkins

University. Our collaborators in the Chen group performed all the experimental work

alluded to in the text and Thi performed all the theory calculations.

4.1 Introduction

Tetrahedral shapes and motifs are commonly seen in atomic and molecular sys-

tems, from the single molecule of methane (CH4) to the corner-sharing tetrahedra in

magnetic pyrochlore lattices[98]. Tetrahedral particles as a class of unique shape

have been extensively studied in colloids and nanoscience for their packing and

assembly into quasicrystal[99, 43], 1D tetrahelix, 2D chiral lattices[100, 101], and

other complex structures. Among those assemblies, tetrahedra mostly align their

faces, sometimes with offsets, due to strong van der Waals or other interactions.

Even entropic forces favor slightly offset face-to-face alignment of tetrahedra at in-

termediate densities[102]. To unlock more binding modes from tetrahedral particles,

including the corner-sharing and edge-sharing modes naturally existing in atomic

systems, additional directional bonds are required from regioselective surface coding
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or patterning. Nanoparticles (NPs) decorated with controlled shape, size, and dis-

crete numbers of chemical or topological patches on their surface, known as patchy

NPs[103], are promising candidates in introducing directional and specific bond-

ing to the NP assembly systems. The dual structural and chemical heterogeneity

make patchy NPs intriguing for fundamental studies in colloids, fabrication of com-

plex and programmable nanostructures, and exploiting far-reaching applications in

sensing[104], catalysis[105], and biomedicine[106].

During the past decade, increasing efforts have been contributed to generating

polymeric patches on the surface of metallic NPs with controlled patch size, shape,

number, and positioning. Multiple strategies have been reported for site-selective

patch growth including polymer segregation in selective solvent[107], wetting-induced

phase separation of mixed ligands[108], and curvature-preferred ligand grafting[96].

These methods have shown success on isotropic NPs or simpler anisotropic shapes,

like rods and cubes, in generating one or two typical structures of patches on each

shape. To date, we have seen no methods applied to a complex shape like the

tetrahedron to generate various types of patches with high regioselectivity or precise

control over patch number, size, and shape.

Here we design a versatile model system of patchy tetrahedra composed of NP

cores of gold tetrahedra (94 nm) and polymeric patches of polystyrene-b-polyacrylic

acid (PS-b-PAA, 16k-b-3.7k) with controlled positions and patterns: vertex patched,

edge patched, clover-like, vertex and edge patched, and face patched tetrahedra.

By tailoring the adsorption of surface ligands on the Au tetrahedral cores and the

solvent quality for the PS-b-PAA chains, we can control the size, shape, number,

and positioning of the surface patches with high precision. Representative patchy

tetrahedron structures, as well as the patch size and shape, are demonstrated with
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agreement between experiment and molecular dynamics (MD) simulation. Patch

dimension and positioning on Au tetrahedra is prescribed by the stenciled pattern-

ing of two competing molecules: the masking molecule, iodine (I-), prohibits the

adsorption of polymer chains onto (111) facets, whereas the anchoring molecule, 2-

naphthalenethiol (2-NAT), facilitates the grafting of polymers to form patches on

the unmasked surface of Au tetrahedra.

We study patch pattern trends in a phase space of different iodine and 2-NAT

concentrations, mimicking the same trends with corresponding simulation variables

and demonstrate agreement between simulation and experiments. We further study

the effect of solvent quality and tetrahedra size (69nm) in simulation by comparison

of the corresponding patch diagrams.

4.2 Synthesis of Patchy Tetrahedra with Iodine Masking

The Au tetrahedra were first synthesized and purified by the Chen group using the

method reported in previous work[101]. Stock solutions of Au tetrahedra were pre-

pared in 20 mM CTAC and incubated with sodium iodide (NaI), as the iodine atoms

are known to preferably bind to the (111) facets of Au, at controlled concentrations.

Next, aqueous suspensions of iodine-masked tetrahedra at fixed concentration were

mixed with 2-naphthalenethiol (2-NAT) and PS-b-PAA in the mixture of dimethyl

formamide (DMF) and water in a one-pot procedure at 110℃ to induce polymer

patch formation. The PS blocks of the polymers can adsorb onto the 2-NAT covered

area via hydrophobic attractions and the PAA blocks develop a brush conformation

in the good solvent. The solvent mediates the chain-chain interactions and induce

the collapsing of the polymer brushes when the solvent quality decreases (by increas-

ing the water content). The representative structures produced through the Chen
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Figure 4.1: Synthesis and simulation of iodine-masked tetrahedra. Top: phase diagram across a
range of iodine circle radii d and number of grafted polymers N . We use simulation
parameters corresponding to the model system of 94nm tetrahedron with 20k chain and
temperature corresponding to lower experimental water content. Bottom: Comparison
of patch patternings between simulation and experiment for each phase observed.

group’s methods show great definition in the SEM images at the bottom of Fig. 4.1.

Correspondingly, we simulate the model system using the procedure described in
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Section 4.5. Briefly, we simulate a single tip-truncated tetrahedron with a surface

region covered by poison particles, modeling the iodine region of the core surface

centered on the large (111) faces and extending outward in a circle of radius d. We

place N polymer chains with 20 monomers to model the PS-b-PAA polymer. We

use d as a proxy for iodine concentration in simulation and N as a proxy for 2-NAT

concentration. We run simulations at many combinations of N and d and obtain the

patch diagram shown in Fig. 4.1. We find all patch patterns found in experiment,

with comparisons shown at the bottom of Fig. 4.1.

By inspection of the phase diagram, we see important trends in both the low N

and high N limits. At low N and small d, much of the surface is unmasked and

small patches choose to sit near the vertex of the tetrahedron due to the entropic

favorability provided[86]. If the conditions are just right, a patch will sit on each of

the 12 near-vertex regions forming the “clover” phase. As d increases at low N , the

iodine covers more and more of the (111) facets and forces the polymer chains to the

tip of the particle, forming the “vertex” phase.

At high N and small d, the polymers form larger patches that cover the entire

surface of the large faces to minimize potential energy. As we increase d at highN , the

iodine pushes the polymer chains off the faces of the tetrahedron, forcing them to the

edge and near-vertex regions, rather than the small truncated vertices, forming the

“edge-only” phase. We believe the patches avoid the small vertex truncated regions

whenever possible to minimize the chain stretching energy penalty associated with

patches spreading across multiple faces. In this system, the tip truncation is small,

so patches cannot fit entirely on the truncated tip facet. At high N and high d,

however, the polymers are once again pushed to the vertices and edges of the shape,

forming the “edges” phase.
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Figure 4.2: Effect of changing solvent quality. Decreasing the solvent quality increases patch clarity
(a). It shrinks the face patched region and increases the clover patched regions of the
phase diagram (c). It also introduces a metastable state replacing the edge region from
the higher temperature, which we label vertex-to-edge in the phase diagram (b, c).

4.3 The Effect of Solvent Quality

We now investigate the effect of changing the solvent quality on the phase di-

agram. Decreasing the solvent quality is achieved experimentally by adding more

water to the solvent, augmenting the hydrophobic attraction of the PS blocks on the

polymer chains and increasing the interaction strength. We model increases in in-

teraction strength in our simulations by lowering the simulation temperature. Qual-

itatively, lowering the solvent quality sharpens the patch definition (see Fig. 4.2a)
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and prioritizes monomer-monomer interactions rather than the entropic freedom of

the chains. This has three effects on the patch diagram in Fig. 4.1: reducing the size

of the “faces” region, increasing the size of the “clover” region, and introducing a

metastable phase in the region previously occupied by the “edge-only” phase.

The reduction in the size of the “faces” region occurs due to the reduction in patch

volume, needing more chains to occupy the entire (111) face of the shape. This trend

can be seen in Fig. 4.2c where the region of the phase diagram at lower N changes

from the “faces” phase to “disorganized”. The size of the “clover” region in the

phase diagram increases because monomer-monomer interactions are prioritized and

the energy cost of chain stretching over the facet boundary is increased, therefore

encouraging patches to remain separate. Additionally, the lower temperature (higher

interaction energy) appears to create a metastable phase, which we call “vertex-to-

edge”, in the phase diagram. The “vertex-to-edge” phase is shown in Fig. 4.2b and

is defined by a subset of the shape’s vertices and edges being covered in a way that

breaks the shape’s symmetry. We anticipate that thermal annealing performed in

this region of the patch diagram would remove this phase from the phase diagram.

4.4 The Effect of Particle Size

To model the effect of changing particle size, we run a set of simulations at a core

radius of R0 = 8.49 instead of the previous value of R0 = 11.57. Decreasing the core

size while keeping the chain length fixed has the equivalent effect of increasing the

polymer chain length, as polymer chain behavior is determined by the ratio of the

polymer radius of gyration to the size of the core Rg/R0.

As shown in Fig. 4.3, the primary effect of increasing chain length (decreasing core

size) is the disappearance of the “clover” phase. Rather than remain in separate small
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Figure 4.3: The effect of changing particle size. The biggest trend in making the particle size smaller
is the disappearance of the clover phase, due to the chains ability to stretch across the
facets that separate the patches in the clover phase. The appearance of the vertex-to-
edge phase is an artifact of our classification algorithm rather than a signficant trend
in patch patterning.

patches, longer chains in the “near-vertex” regions bridge together to minimize their

energy and form a ring around the tetrahedron vertex. We also note that in the phase

diagram of Fig. 4.3, the “vertex-to-edge” region appears in the phase diagram for

the smaller particle. We consider this to be an artifact of our classification criteria,

which we explain further in Section 4.5.2, rather than a significant behavioral trend.

4.5 Methods

4.5.1 Molecular Dynamics

We run molecular dynamics (MD) simulations of truncated tetrahedra grafted

with N polymer chains with two different insphere radii R0 = 8.49, 11.57. We stati-

cally place a dense region of poison particles centered at each large face defined by a

circle of radius d to restrict the surface area available to the polymer chains, similar to

Chapter III. To model our polymers, we use bead-spring chains with 20 monomers,

FENEWCA bonds, and the anisotropic Lennard-Jones potential[83] for nonbonded
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Figure 4.4: Method of classifying patch patterns. (Left) We partition the surface of the core into
4 regions, compute the monomer density in each region, and classify the pattern based
on which regions have high density. (Right) In some cases, this method fails when two
phases are the same up to a broken symmetry like the clover and near-vertex patterns.

interactions, similar to Chapter III. We do not explicitly model the non-poison par-

ticles covering the surface as was done in Chapter III because we determined that

they did not impact simulation results to any significant degree.

Our MD simulations were run in HOOMD-Blue[79] in the NVT ensemble with

kT = 1.0 and 1.1 for simulations modeling solvent with higher and lower water

concentration, respectively. We first run our simulations for 106 timesteps using dt =

10−4 with WCA polymer-polymer interactions to let the polymer explore the surface

of the core. After that, we set the polymer-polymer attractions to be attractive

Lennard-Jones and run the simulation for between 1× 107 and 2× 107 timesteps to

allow for proper equilibration depending on the number of grafted polymers N .

4.5.2 Classifying Patch Patterns

We classify patch patterns by computing the local monomer density in four rele-

vant regions of the core surface: face, vertex, edge, and near-vertex. We define each

region mathematically via a series of dot and cross product operations on the position

of each monomer, resulting in a partition shown visually on the left of Fig. 4.4. In

each simulation frame we compute the local density of the monomers in each region
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and average over the frames. Each simulation is then classified based on the shape

regions that are high density. For example, the “clover” pattern has high density in

the near-vertex region and nowhere else. The “edge-only” pattern has high density

in the edge and near-vertex regions and low density in the face and vertex regions.

This algorithm works well except in cases where two patterns are the same up to a

broken symmetry or where no region has significantly higher density than any other.

In such cases we have to use other classification methods, or our best judgement.

For example, the “clover” and “near-vertex” patterns have high density in the same

region (near-vertex ), but they are different because of a broken symmetry (Fig. 4.4,

right). In this case, we differentiate the two patterns by establishing a cutoff number

of patches on the core surface. To be considered the “clover” pattern, the particle

has to have 9 or more patches on the core surface. In cases where there is a similar

monomer density in each region, we have to decide between the“ disorganized” and

“vertex-to-edge” pattern. In this case we count the number of covered vertices and

edges. If the number of covered vertices is between 1-3 and the number of covered

edges is between 2-5, we consider it the “vertex-to-edge” pattern.

4.6 Conclusions

In this work, we modeled of a variety of experimental tactics for the synthesis

of patchy polymer-grafted nanoparticles for greater control over the resulting patch

patterns. We first explained our simulation model, including how we map simulation

variables to their experimental counterparts. We then demonstrated the effects of

changing both iodine and 2-NAT concentration, showcasing “faces”, “edge”, “edges-

only”, “near vertex”, “clover”, and “vertex” patterns in different regions of the phase

diagram. We then extended the range of experimental variables we modeled in
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simulation by generating similar patch diagrams to model changes in solvent quality

and particle size. Changing the solvent quality has the effect of changing the size

of the regions occupied by various patterns in the phase diagram, and changing the

particle size has the effect of removing the “clover” phase from the patches diagram.

This work provides a path forward for the synthesis of particles that can assemble into

crystal structures that may arise from corner and edge sharing tetrahedral motifs,

as well as the potential for chiral motifs arising from selective patch bonding of the

“clover” pattern.
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CHAPTER V

Computational Tools for Nanoparticle Self-Assembly

5.1 Introduction

Computational tools provide researchers with the ability to conduct science in time

scales which are orders of magnitude smaller than experiment. From modeling and

simulation of systems of interest, to visualizing large-scale data pipelines, to solving

and visualizing solutions to equations that cannot be solved analytically, computation

has enhanced our ability to conduct science at every stage of the research process.

In the world of NP self-assembly, simulation is critically important for understand-

ing how NP building blocks self-assemble into bulk crystal structures exhibiting long

range order. Much effort has been put into leveraging modern computing devices

like GPUs to simulate systems of up to millions of particles as fast as possible. A

typical experiment may take months to complete, but a simulation of the same sys-

tem may now take only a few hours with advanced computing hardware. To prevent

the research bottleneck from shifting to the analysis side of the workflow, tools that

analyze the simulation’s output data are also being designed to complete the needed

analyses on a similarly fast time scale. The rate at which research can be done in

soft matter depends on the quality of the computational tools developed to achieve

the research goals.
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One problem of particular interest in the world of soft matter self-assembly is the

ability to quickly and efficiently determine which NP building blocks yield desired

self-assembled crystal structures. There are essentially two solutions to the problem:

high-throughput screening and inverse design. High-throughput screening leverages

a fast calculation of the forward problem (what structure will my building blocks

assemble?) to find the desired crystal structure in the large phase space of possible

building block combinations. The inverse problem (what building blocks will give

me the structure I want?) is a much more direct route to getting the desired crystal

structure, however, it is much more complicated to solve due to the nature of the

optimization problem involved. Solving the inverse problem is considered a “holy

grail” in our field, essentially removing all doubt in choosing the needed building

blocks to creating novel materials. In the subsequent sections I will discuss my

software contributions that aid in solving the above problems in computational soft

matter.

5.2 Extended Digital Alchemy

5.2.1 Background

HOOMD-blue[109] is a particle simulation engine first developed in 2008, origi-

nally geared towards large-scale GPU MD simulations[110]. Since then, it has grown

into a toolkit for other simulation algorithms, most notably including HPMC[111].

To satisfy science’s ever-growing need for a wide variety of simulation methods and

protocols, we re-designed its interface during my Ph.D. years between 2019 and

2021, culminating in the version 3.0.0 release. The re-designed API introduced an

object-oriented, modular design with a wider variety of customization options in-

cluding most notably custom actions, forces, and log quantities. Custom actions and

forces are pure python classes written by users that plug into simulations similarly
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to HOOMD-blue’s native classes. Custom log quantities allow users to log any sim-

ulation quantity they can compute in python to their choice of logging backend like

GSD or HDF5. My contribution to the re-design included creating device objects,

porting many components from the md module, and creating an API for users to cre-

ate custom forces in python. The version 3 API also publicly incorporated recently

developed simulation methods like the Anisotropic Lennard-Jones potential[83] and

digital alchemy[112].

Digital alchemy is a computational method for inverse design by which we simulate

an extended thermodynamic ensemble including additional degrees of freedom, called

alchemical degrees of freedom, and their corresponding conjugate variables, called

alchemical potentials. By running simulations in the extended ensemble, the system

is allowed to find its free energy minimum, which should correspond to an optimized

configuration of the alchemical degrees of freedom. In the past, this method has been

applied to systems where either the particle shape[112] or patch interactions[113]

are individually optimized. However, to obtain the holy grail of inverse design, we

need a tool that can additionally optimize patch locations and/or optimize all three

variables (shape, interactions, locations) concurrently across any functional form of

patch interaction, strength, and range. To this end, I developed a set of custom

plugins to HOOMD-blue implementing a software framework to extend the range of

systems we can design with digital alchemy.

5.2.2 Patch Location Move Algorithm

One additional alchemical degree of freedom we need to simulate is the location of

patch interaction sites on the surface of a particle’s shape. We therefore must devise

a scheme for proposing Monte Carlo moves on the surface of shaped particles. We

propose the following algorithm for proposing trial moves, which we call the patch
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move algorithm and illustrate in Fig. 5.1a and Fig. 5.1b:

1. Compute the unit vector ni for each patch location pi on the particle surface.

2. Propose a uniform random move in orientation (θ, ϕ) space for each unit vector

ni, resulting in unit vector n′
i

3. Project n′
i onto the particle surface to get the trial move location p′i

This patch move algorithm has several desirable features. First, it both obeys

detailed balance and is ergodic for all convex shapes. This is because there is a 1-1

mapping between unit vectors and points on the particle surface for convex shapes.

A more generic move algorithm for concave shapes might require making moves

on the shape’s polyhedral net with periodic boundary conditions, but this is more

complex to implement. Second, the patch move algorithm can be computed quickly.

Making a random orientation move is algorithmically simple[114] and projecting the

unit vectors to the surface of the shape amounts simply to solving the ray-plane

intersection problem for each face of the shape. While the patch move algorithm

is ergodic, it does not sample each location on the surface of the shape with equal

probability. For example, elongated shapes will sample higher curvature regions of

the surface less frequently than lower curvature regions. For this reason, simulating

highly elongated shapes may require either longer simulations or a different patch

move algorithm.

5.2.3 Implementation

We implement patch location and patch interaction moves as custom updaters

in HOOMD-blue. In the interest of modularity, we propose particle shape, patch

interaction, and patch location moves separately so any subset can be used in a digital

alchemy simulation in any combination. Additionally, we provide custom python
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classes for logging patch locations and additional utilities for proper visualization

and analysis of systems with mobile patch locations.

Patch location moves are implemented using the standard Monte Carlo metropo-

lis criterion in a custom python updater, where a single proposed move changes the

location of all patches on the particle shape surface. We use a separate class cor-

responding to the HPMC integrator in HOOMD-blue to implement the patch move

algorithm described in the previous section.

Due to the wide variety of patch interaction potentials, optimization schemes,

and constraints on the patch interaction parameters, patch interaction moves are

implemented by allowing the user to define their own class and implement the

propose parameter moves method, which takes a set of random move sizes and

a dictionary of the current patch interaction parameters and returns a dictionary

of proposed new parameters. The custom user class is used by another custom ac-

tion, which calls the propose parameter moves method and then uses the standard

Metropolis criterion to accept or reject the proposed patch interaction move.

HOOMD-blue does not write patch position or diameter data to GSD files by

default, so we provide a utility function and a set of custom log quantities for easy

conversion and visualization of simulation data. Users are expected to log patch po-

sitions and diameters to GSD files using the plugin’s provided custom log quantities,

which they then give to a conversion function after the simulation finishes running.

The conversion function takes the logged patch locations and diameters and writes

a new GSD file with the logged data written as particle data.

5.2.4 Results

We test the patch move algorithm’s ability to find the free energy minimum of a

system of patches on hard particles by fixing truncated tetrahedra in the positions
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Figure 5.1: Patch location moves on convex polyehedra. The patch move algorithm (a,b) defines
a unit vector n̂ to each patch, makes a random move in orientation space resulting in
n̂′ and projects n̂′ to the surface. A single move is proposed for all patches at once.
We then study a system of truncated tetrahedra with four patches in cubic diamond
(c). The lowest energy configuration of the system is with corner patches, and the
orientational heatmap (d,e) demonstrates the system finds and stays at this lowest
energy configuration for much of the simulation.
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and orientations of a perfect cubic diamond lattice of 64 particles. As shown in

Fig. 5.1c, we initially place four patches in random locations on the particle surface

interacting via a square well potential with the interaction strength ϵ = 3.0 and

interaction width σ = 1.0 on each tetrahedron. We then run HPMC simulations

in HOOMD-blue with custom patch location updater implementing the patch move

algorithm for 107 MC sweeps to ensure plenty of statistics. We then compute the

orientational heatmap (Fig. 5.1d and Fig. 5.1e), demonstrating the patches spend

much of the simulation time in the lowest energy configuration while simultaneously

remaining ergodic.

5.2.5 Future Work

Continuing work will first need to focus on extending the particle shape move

algorithm already implemented in HOOMD-blue to shapes with patches on the sur-

face. Specifically, particle shape move must ensure patches remain on the shape

to prevent invalid system configurations intra-timestep. Additionally, the patch en-

ergy change induced by the particle shape move must be accounted for in the shape

move’s Metropolis criterion. We anticipate these details can be incorporated with

minor revisions to the current particle shape move algorithm in HOOMD-blue.

Most of the future effort will be focused on devising more intelligent trial move

algorithms that can help the system minimize its free energy more effectively. The al-

gorithms we have added thus far have been straightforward Monte Carlo importance

sampling, which likely won’t suffice as more alchemical degrees of freedom are utilized

in simulation because non-convex optimization over an increasingly large alchemical

parameter space makes finding a global minimum increasingly difficult. In the in-

terest of modularity, our algorithms treat proposed patch location, particle shape,

or patch interaction moves separately, while a more complex global optimization al-
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gorithm might propose them together to help better guide the extended ensemble

towards a free energy minimum.

5.3 Agrippa

5.3.1 Background

Polymers are an essential nanoscale building block for the design of NP crystal

structures due to their ability to influence NP bonding behavior. An understanding of

polymer behavior on the surface of shaped NPs is therefore essential for understand-

ing NP self-assembly. Previous work[86, 75, 115] has demonstrated the usefulness of

a scaling theory for prediction of polymer behavior on shaped NPs in the interme-

diate length regime. Combined with a lattice perturbation theory[116], the scaling

theory has been shown to be useful for end-to-end prediction of the lowest potential

energy of a set of candidate crystal structures knowing only the NP building blocks

which are used in experiment. The method has been used in isolated cases, yet it

is both useful for high-throughput screening and is generalizable to a wide variety

of NP systems, so it fits the criteria for the lazy refactoring approach to scientific

software[117]. We therefore present agrippa, a package for the prediction of polymer-

grafted NP effective shapes and the corresponding lattice energies of these effective

shapes arranged into periodic colloidal crystal structures.

5.3.2 Effective Shape Calculations

The first core feature of agrippa is the calculation of nanoparticle effective shapes

like those predicted and used in the previous chapters of this thesis. The most

fundamental object in agrippa is the Nanoparticle, which is decomposed further into

a Core and a Corona. Both the Core and the Corona have a set of points defining their

surface, however the Core also encapsulates the core shape and exposes the associated
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geometric properties. The points defining the graft sites on the core surface can be

selected via either a random algorithm in which graft sites are selected in a uniform

random distribution, or an ordered algorithm preserves consistent spacing between

graft sites.

Once a core shape and method of placing graft sites is selected, polymer chains

can be grafted to the core using the graft module. There are two graft algorithms:

the MC algorithm and the FloryMC algorithm. The MC algorithm selects a set of graft

sites on the core weighted by the free energy of a polymer attaching to that location

on the core surface. The free energy is given by [86]

(5.1) F (Ω) =
(Rchain − r0)

2

Nb2
+

νσr20N
2

(ΩRchain)3
,

where r0 is the core insphere radius, N is the degree of polymerization of the polymer

chain, b is the Kuhn segment length of the chain, ν is the monomer excluded volume,

σ is the grafting density, Ω is the core curvature parameter, and Rchain is defined by

[86]

(5.2) Rchain ∼ r0σ
1/5ν1/5b2/5

(
Nb

Ωr0

)3/5

.

The MC algorithm repeats this procedure many times to obtain a graft probability

pgraft, and then multiplies pgraft by Eq. 5.2, which defines the outer surface of the

effective shape. This MC algorithm is appropriate when polymer chains either have a

high grafting density, or interactions between polymer chains can be neglected. The

more complex case is handled by the FloryMC algorithm.

In the FloryMC algorithm, the probability that a polymer attaches to a given graft

site is modified by the presence of other polymers nearby. To accomplish this, all

grafting sites that are within Rg = Rchain − r0 of an attached chain are flagged so

that chains that attach there have their excluded volume modified by the Flory χ
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parameter such that ν = b3(1−2χ)[96]. The FloryMC algorithm should be used when

the polymer chains have significant attraction to each other relative to other energy

scales in the system. The FloryMC algorithm is the same as the MC algorithm in the

limiting case of χ = 0 (corresponding to infinite temperature), but the MC algorithm

is much faster, so we recommend using MC whenever possible.

The chosen graft algorithm will populate the points on the outer extent of the

nanoparticle corona defining the effective shape. Once the effective shape is defined,

agrippa can compute lattice free energies of formation of colloidal crystals comprised

of these shapes, and find the lowest energy among a set of target lattices.

5.3.3 Lattice Energy Calculations

The lattice energy calculations first require defining a set of potentials of mean

force (PMFs) describing the interactions between the neighboring NPs. These PMFs

must consider distance and relative orientation between neighbors. We do not a

priori know the relative orientation of the effective shapes corresponding to the

lowest lattice energy configuration. However, in most cases we can physically intuit

from symmetry a few relative orientations likely corresponding to minima in the free

energy landscape. To compute a PMF, we assume a relative orientation between

effective shapes and a potential energy of interaction between points on the effective

shape. We then compute the average energy between all pairs of points on the

two effective shapes at a set of distances between particles using classes in the pmf

module.

Once a PMF is defined at each relative orientation, the thermodynamic pertur-

bation theory from [116] can be solved using the lattice energy module for a variety

of target structures. To compute the relative free energy of formation dG for these

lattices, we solve the following set of equations for dG given a single PMF U(r) and
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the pair correlation function for the target crystal gcrys(r):

dG = −RT log(Keq),(5.3)

Keq =
1

ϕ(m,n)!

∫
f
ϕ(m,n)
M (r)gcrys(r)dr,(5.4)

fM(r) = e−βU(r) − 1,(5.5)

ϕ(m,n) = min(m,n).(5.6)

After solving for dG for many target crystal structures and relative effective shape

orientations (i.e. many PMFs), one can compare among many final lattice energies

and find the optimal candidate (i.e. the crystal structure with the lowest lattice

energy).

This completes the end-to-end workflow in which a preferred crystal structure

can be identified from a set of candidates knowing only the parameters of the input

nanoparticle core, ligand, and ligand interactions.

5.4 Shadow Projection Overlap of Obstacles for Neighbor Exclusion (SPOONE)

The work in this section was performed in collaboration with Dom Fijan, Char-

lotte Zhao, and Philipp Schönhöfer. All members provided intellectual contribu-

tions, helped implement the unweighted version of SPOONE, and analyzed SPOONE

neighbors for the systems studied. The SPOONE concept was created by Dom,

Philipp, and Charlotte. My contributions include designing the filter concept in

freud, implementing the weighted version of SPOONE, and the ray density analysis.

5.4.1 Background

The freud library is a high-performance, particle trajectory analysis toolkit[80] in-

tended to complement packages that implement molecular simulations. The freud li-

brary computes canonical simulation analyses such as RDFs and MSDs, order param-
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eters such as Steinhardt[97], cubatic[118], solid-liquid[119], and hexatic[40], and a few

more specialized analyses such as PMFTs[55, 120] and environment matching[121].

Many of the above analyses require defining particle neighborhoods as a precursor

to performing the analysis.

The freud library implements a wide range of neighbor finding algorithms such

as rmax, k-nearest, and Voronoi neighbors. Even with a physically relevant choice

of parameters, the rmax and k-nearest algorithms may unphysically define particle

neighborhoods such that neighbor particles may have other particles blocking them.

Other neighbor definitions such as Relative Angular Distance (RAD)[122] and Solid

Angle Nearest Neighbors (SANN)[123] were previously defined such that blocked

particles cannot be considered neighbors. The RAD and SANN methods achieved

their desired purpose for spherical particles, but they may provide non-intuitive

neighbor definitions in systems of non-spherical or elongated particles. We therefore

propose a new neighbor finding algorithm for shaped particles called the Shadow

Projection Overlap of Obstacles for Neighbor Exclusion (SPOONE) algorithm.

5.4.2 Neighbor Definition

The SPOONE method defines a particle k to be a neighbor of a particle i if the

shadow of particle i can be cast along the vector r⃗ik without the shadow overlapping

any other particles j before reaching particle k (Fig. 5.2a). Because SPOONE defines

its neighbors via the shadow cast from the surface of i towards k, the neighbor

definition is in general asymmetric. There are two modes of defining how the shadow

from i is cast towards k: parallel transport and screen. The first mode is called

parallel transport, in which the shadow is projected from the surface of particle i

only a distance equal to the neighbor distance rik before cutting off the shadow

projection. The second mode is called screen, in which the shadow is projected onto
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a screen centered at the origin of particle k, normal to the vector r⃗ik between the two

particles. Functionally, the difference between the two modes is how far the shadow

is projected along the neighbor vector r⃗ik before we no longer consider other particles

j to be blockers.

5.4.3 Implementation

SPOONE is implemented in freud using ray tracing algorithms from Intel’s embree[124]

library. To shoot rays from particle i to particle k, a set of points on the surface

of particle i, called the ray origins, must first be defined. The ray origins are com-

puted by shooting rays of a user-supplied density, called the ray density ρray, from

the screen on particle k back towards particle i. The location where this set of rays

intersect the surface of particle i are the ray origins. A second set of rays are then

shot from the ray origins towards particle k a distance defined by the mode (parallel

transport or screen, see previous section). If any ray shot from a ray origin hits

a particle other than k, particle k is considered blocked and is not a neighbor of

particle i.

In the interest of performance, we use a multithreaded model where each worker

thread finds the neighbors of a given particle i and thread-local neighbor lists are

merged at the end of the implementation. For large systems and/or high ray den-

sities, the performance of computing the SPOONE neighbor list may still be less

than desired even with a parallel threading approach. In such cases, we recommend

SPOONE be used as a method of removing blocked neighbors from a previously

computed neighbor definition found via more performant methods like rmax.
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5.4.4 Weighted Version

The SPOONE method has both weighted and unweighted versions. In the un-

weighted version, particle k is only a neighbor of particle i if there are no rays shot

from the surface of particle i that hit another particle j. In the weighted version,

any particle k for which a single ray shot from particle i makes contact is a neighbor

with weight equal to the fraction of rays shot from particle i that do not hit a block-

ing particle j. The weight associated with each neighbor in the weighted version is

therefore between 0 and 1.

The weighted definition of SPOONE results in a much larger set of neighbors than

the unweighted version, most of which have small weights. We therefore propose a

third way of defining neighbors with SPOONE, in which we compute the weighted

SPOONE neighbors and afterwards remove any neighbors with weight less than a

cutoff value wcut. This method may be useful by providing more neighbors than the

unweighted version, yet not include those neighbors that have very small shadow

overlaps.

5.4.5 Comparison with other Neighbor Finding Algorithms

We now compare the SPOONE neighbor definition to that of other common

neighbor-finding algorithms for a system of bipyramids with aspect ratio 3 exhibiting

nematic order at a volume fraction ϕ = 0.54 (Fig. 5.2b). In Fig. 5.2c, we show the

number of neighbors for SPOONE weighted, SPOONE unweighted, rmax, RADopen,

RADclosed, and SANN. The unweighted version of SPOONE has significantly fewer

neighbors than all other neighbor definitions, which is expected given the definition

only defines particles as neighbors if all rays shot from one particle hit another. The

weighted version of SPOONE, in which we define the number of neighbors as the
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Figure 5.2: The SPOONE neighbor finding algorithm. (a) A visual depiction of the algorithm,
in which two particles are only considered neighbors if the shadow projected along
the neighbor vector, r⃗ik doesn’t overlap with any other particles j. (b) Snapshot of
bipyramids in the nematic phase. (c) Comparison of neighbor counts of many different
neighbor finding algorithms on the shapshot from (b). (d) System of 3 square prisms
along a line at random orientations. (e) SPOONE weight between two outermost par-
ticles in snapshot (d) as a function of ray density. (f) Plot of the error in the weight
compared to the limiting value (ρray → ∞).
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sum of weights across all weighted neighbors, is generally consistent with other algo-

rithms. Further analysis of order parameters calculated with SPOONE unweighted,

SPOONE weighted, and SPOONE weighted with a cutoff is still needed to evaluate

the utility of the SPOONE algorithm.

5.4.6 Effects of Ray Density

The ray density parameter ρray defines the number of rays per unit area shot from

one particle to another to determine neighbors and neighbor weights. Choosing a ray

density too small may cause the neighbor definition to be inaccurate, whereas too

large a ray density may slow performance. We therefore use this section to discuss

the optimal value for ray density that provides sufficiently accurate results yet does

not slow performance more than necessary.

We begin by placing three square prisms along a line at random orientations

(Fig. 5.2d) and observe how the SPOONE weights change as we change both the

ray density and the insphere radius of the prisms Rin. We plot the neighbor weight

between the two outer particles as a function of the area of the prism’s incircle

times the ray density (Fig. 5.2e). This parameter, Nrays ∼ πR2
inρray, provides an

order of magnitude calculation for the number of rays shot between two neighbors

to determine their neighbor weight. As shown in Fig. 5.2f, the neighbor weight

differs from the limiting value (ρray = ∞) by a value that is bounded by 1/
√

Nrays,

consistent with the central limit theorem of statistics. We therefore recommend the

value of ray density be chosen consistent with the user’s tolerable error in weights

given the particle size and shape.
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5.5 Conclusions

In this chapter, we have demonstrated developments in software tools used for

the advancement of solutions to problems in the field of nanoparticle self-assembly.

We demonstrated a set of plugins for the HOOMD-blue simulation toolkit that with

a few minor tweaks, will enable alchemical simulations in larger extended ensem-

bles for the purpose of inverse design. We wrote a software package implementing

both scaling theory calculation of effective shapes and calculations of their lattice

energies. Used in succession, these calculations constitute an end-to-end prediction

workflow for high-throughput screening for materials design. Lastly, we implemented

the SPOONE neighbor-finding algorithm, which may give more intuitive results for

systems of shaped particles, although more investigation is needed to fully evaluate

its utility. All three of these tools help address significant problems in computational

nanoparticle self-assembly.
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CHAPTER VI

Conclusions and Outlook

In this dissertation I have presented work advancing our understanding of the

interaction between the nanoparticle design handles of particle shape and polymer

behavior. I have done so via computational modeling of various nanoparticle systems

and development of computational methods to aid in the design process.

6.1 Summary

In Chapter II, we showed good agreement between simulation and scaling the-

ory for non-attractive polymers grafted to anisotropic nanoparticles, demonstrating

the validity of theoretical assumptions about polymer chain length relative to core

size and the different chain scaling regimes within the NP polymer brush. We also

observed reasonably good agreement between the effective shapes in simulation and

scaling theory, only finding disagreement for elongated shapes and certain shapes

in the high grafting density regime. Qualitatively, the trends in classes of effective

shapes are consistent between theory and simulation throughout the phase space

studied. At a high level, the different effective shapes provide those who design

materials with a handle not only on the particle shape, but on the concavity of the

effective particle shape.

In Chapter III, we worked with the Chen group to better understand their “atomic
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stencil” method of controlling patch positions on shaped NPs. We provided them

with a conceptual understanding and a theoretical framework to aid in understanding

the physics underlying both the iodine and polymer patch behavior of their systems.

This work is particularly important because their method will open new avenues

for control of patch size and location on iodine coated nanoparticles. Once the

individual patchy particles were understood, we abstracted our simulation model

and demonstrated their assembly into open BCC and BCC-like structures, consistent

with experiment. The iodine’s preference for the NP (111) facets prevented patch

formation in those locations, allowing the van der Waals attraction between the the

gold cores to drive the system’s assembly behavior.

In Chapter IV, we extended the work of Chapter III by incorporating more ex-

perimental handles into our computational models. We chose to use the truncated

tetrahedron shape, which exhibits more complex faceting than many previous shapes,

and we found a wider variety of patch morphologies that could be tuned to a greater

degree via choice of a wider variety of experimental variables.

In Chapter V, we presented work on computational methods to solve problems

in the field of NP self-assembly. We enabled new methods for computation-driven

design via both high-throughput screening and inverse design with digital alchemy.

We started by expanding the design space available to treat problems with digital

alchemy by writing a set of plugins to the HOOMD-blue simulation toolkit. We

then refined the scaling theory used in previous projects and combined it with a lat-

tice perturbation theory to enable end-to-end prediction of the lowest energy crystal

structures among a set of candidates. Finally, we presented SPOONE: a neigh-

bor finding algorithm with the potential to define more physically intuitive particle

neighborhoods for systems of anisotropic particles.
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6.2 Outlook

Chapter II demonstrated that effective shapes are often concave and can be uti-

lized to synthesize new binary lock and key nanoparticle structures. However, the

assembly behavior of concave shapes has not been systematically studied like convex

shapes. A deeper understanding of concave shape assembly behavior is needed before

the effective shapes can be leveraged for designing new single component assemblies.

Chapters III and IV introduced an entirely new method for controlling the patch

location on anisotropic particles, proposed by our collaborators and investigated by

modeling and simulation. Future work will be dedicated to refining these methods

towards total control of core surface masking by the masking ion. To this end, there

are a few potential research questions that immediately come to mind:

1. Can a different polymer anchoring molecule be used to alter surface

masking behavior? In Chapter III, the DFT calculations show the facet

preference of the iodine may depend on the relative binding affinity of the iodine

and the 2-NAT anchoring the polymer chain. Utilizing a different polymer

anchor may change the preference for facet attachment, even whilst using the

same masking ion.

2. Can we use different experimental procedures to alter the surface

masking? The attachment of the iodine to the core surface is done before any

polymer chains are added to the solution. During this preliminary stage, there

may be some experimental handle (like temperature, etc.) that can alter the

iodine’s surface masking to the nanoparticle core.

Additionally, the driver of the assembly process in Chapter III is not the polymer

interaction, but rather the short-range van der Waals attractions between the iodine-
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poisoned pathces on the NP facets. This is not a novel assembly mechanism per se,

as van der Waals attractions can often be used to induce face-face bonding in NP

assemblies. What is novel, however, is the use of repulsive polymer interactions to

screen out van der Waals attractions, leaving only the iodine-poisoned areas of the

NP surface to interact with other NPs. As we work to gain more fine-grained control

over the iodine surface masking, it is worth thinking about which iodine patterns

might result in the desired crystal structures.

In Chapter V, we showed potential solutions to a few different computational

problems in our field. Future work on the problem of inverse design will be primarily

related to solving the complex optimization problem involved. Finding a free energy

minimum in extended ensembles is hard, and its particularly hard when we open

the extended ensemble to an increasing number of alchemical variables. This will

require new and more inventive approaches to optimization. Additionally, future

work will be needed to more thoroughly investigate the utility of the SPOONE

neighbor finding algorithm. Both weighted and unweighted versions of SPOONE,

along with order parameters computed with the SPOONE neighbor definitions will

need further investigation across a variety of systems and particle shapes to fully

evaluate SPOONE’s utility.
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