
Detection and Manipulation of Complex Electric and Magnetic Dipole
Textures in Three- and Two-dimensional Crystals

by

Xiangpeng Luo

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in the University of Michigan
2024

Doctoral Committee:

Associate Professor Liuyan Zhao, Chair
Professor Steven T. Cundiff
Associate Professor John T. Heron
Associate Professor Robert Hovden
Professor Kai Sun



Xiangpeng Luo

xpluo@umich.edu

ORCID iD: 0000-0002-5471-053X

© Xiangpeng Luo 2024



ACKNOWLEDGEMENTS

Throughout my PhD journey, no one has had a greater impact on me or provided more

support than my advisor, Liuyan Zhao. From the very first summer day I stepped into her

office in West Hall, I have from time to time felt that my academic accomplishments pale in

comparison to the invaluable guidance and help she has given me. This reflection I hold at

the current moment does not mean I feel any regret or disappointment about my past years,

but rather deepens my appreciation of Liuyan as an outstanding mentor, both academically

and personally. During my PhD course, her guidance was meticulous: from the details

of preparing scientific figures to patiently showing me how to align lasers (after I ruined

Wencan’s whole setup!). She consistently maintained weekly discussions with me, despite

her busy schedule filled with various meetings. I am deeply grateful for her unwavering

support and the precious time she has devoted to mentoring me.

Consciously or not, I often strive to emulate Liuyan and learn from her as an excellent

faculty member and scholar. In the Rackham annual PhD survey, I have always been partic-

ularly sensitive to the question: do you consider yourself more of a knowledge consumer or a

knowledge producer? In the early years of my PhD, I consistently felt like a passive student.

It was through numerous discussions with Liuyan and the various networking opportunities

she supported me with that I began to feel like I was leaning towards the knowledge producer

a bit in recent years. From her, I learned how to identify key features in messy data, how

to be decisive when faced with multiple degrees of freedom, and even how to manage time

to focus on the most critical tasks (something I am still learning for sure). It is commonly

believed, that one of the most important tasks of a PhD advisor is to transform students

into scholars. In this regard, Liuyan has been exceptional.

I am also extremely grateful to two other professors who have been crucial to my PhD

research. Prof. Rui He and her research group consistently undertook the laborious and

challenging low-temperature Raman measurements for us. Their diligence and dedication

often left me in awe and feeling humbled. Many of the beautiful data in my work are a

direct result of their contributions. Prof. Kai Sun has been involved in every aspect of my

research. His extensive knowledge of condensed matter physics and his expertise in modeling

with Mathematica have repeatedly impressed me. I vividly remember the discussions among

ii



Liuyan, Kai, and myself in various settings—different platforms, offices, and even cities.

As an experimental person myself, I feel each discussion with theorist Kai has been an

enlightening experience that broadens my knowledge.

I would also like to thank my colleagues in the Zhao lab, a diverse group of outstanding

researchers. Without their daily support and encouragement, my PhD experience would not

have been as enjoyable. I particularly want to acknowledge Dr. Wencan Jin, who, despite my

frequent interruptions (and sometimes disruptions), provided me with the most guidance in

developing my initial experimental skills. I must also thank Dr. Hongchao Xie. Without his

invaluable CrI3 samples, our two fruitful papers would not have been possible. Additionally,

I am grateful to Xiaoyu Guo and Dr. Zeliang Sun. During the post-pandemic period and as

friends gradually left, their companionship in both work and life has been a crucial source

of motivation for me. I’d also like to extend my special thanks to other members of the

group—Elizabeth Drueke, Rachel Owen, Siwen Li, Austin Kaczmarek, Youngjun Ahn, June

Ho Yeo, Weizhe Zhang, and Suhan Son. I feel so fortunate to be able to work with this

group of wonderful people.

This thesis is dedicated to all those who have supported me in every possible way, and to

my beloved parents Jiabin Luo and Hua Xie, to whom I owe everything.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Quantum materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Complex orders in quantum materials . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline of the thesis & publications . . . . . . . . . . . . . . . . . . . . . . . 6

2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Second-harmonic generation (SHG) . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 SHG as lowest-order nonlinear optics . . . . . . . . . . . . . . . . . 9
2.1.2 Applying symmetry on SHG susceptibility tensors . . . . . . . . . . 11
2.1.3 Multipolar radiation in SHG . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 SHG RA experimental geometry . . . . . . . . . . . . . . . . . . . . 13

2.2 Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Cross section of Raman Scattering . . . . . . . . . . . . . . . . . . 16
2.2.2 Raman tensors and Raman selection rules . . . . . . . . . . . . . . 18

2.3 Magnetic circular dichroism . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Ultrafast Modulation of the Ferro-Rotational CDW in 1T -TaS2 . . . . . . 22

3.1 Introduction to CDW in 1T -TaS2 . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 CDW phases in 1T -TaS2 . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Probing CDW in 1T -TaS2 . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Static RA-SHG measurements of the ferro-rotational (N)CCDW . . . . . . . 26
3.3 Time-resolved SHG measurements of the ferro-rotational CCDW . . . . . . 29

3.3.1 Time-resolved RA-SHG and spectroscopic analysis . . . . . . . . . . 30
3.3.2 Fluence dependence and a possible photo-induced transient CDW

state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Magnetic-Field-Induced Quantum Phase Transitions in Bulk CrI3 . . . . 36

iv



4.1 Bulk and few-layer CrI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Coexistence of AFM and FM magnons . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Spin wave calculations for sAFM and bFM . . . . . . . . . . . . . . 41
4.3 Magnetism-dependent phonon scattering . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Phonon selection rules . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Antisymmetric “phonon” modes . . . . . . . . . . . . . . . . . . . . 46

4.4 Structural phase transition due to magneto-elastic coupling . . . . . . . . . 48
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ABSTRACT

This dissertation presents the research of complex ordered states—textures of electronic

or magnetic dipoles—in crystalline solids, with a particular focus on the ferro-rotational

charge density wave (CDW) and the non-collinear magnetic structures arising from Moiré

engineering. Using a combination of advanced nonlinear, ultrafast optical spectroscopy and

inelastic light scattering, this research provides novel insights into the dynamic and tunable

properties of such orders in relevant quantum materials.

The first part of the dissertation investigates the ferro-rotational nature of the commen-

surate charge density wave (CCDW) in 1T -TaS2. We establish that a higher-order electric-

quadrupole (EQ) second-harmonic generation (SHG) presents and its rotation anisotropy

(RA) pattern senses the breaking of the mirror symmetry—a hallmark of the ferro-rotational

order—due to the formation of the CCDW. With optical pumping, our experiments further

reveal ultrafast modulations of this ferro-rotational CDW, characterized by the breathing

and rotation of the EQ RA-SHG patterns at specific frequencies. These findings demon-

strate the capability of nonlinear SHG coupling to the ferro-rotational CDW order as well

as the dynamic control of it, and highlight the potential for photo-induced transient CDW

phases, applicably expanding our understanding of multipolar orders in quantum materials.

In the following parts we present a multivarious optical study of the magnetic material

CrI3. We start by examining the magnetism in bulk CrI3 using circularly polarized Raman

Scattering. By revealing diverging antiferromagnetic (AFM) magnon branches in the known

bulk ferromagnetism (FM), we propose a novel mixed state of layered AFM and bulk FM in

this material. When polarizing the surface AFM into FM at a critical magnetic field, we also

discover a first-order, rhombohedral-to-monoclinic structural phase transition by detecting

xii



the symmetry change of exemplary phonons. Our results demonstrate the intricate interplay

between magnetism and the crystalline structures in this material.

We then present the exploration of the complex magnetic orders in twisted double-bilayer

CrI3. The tunability of the layered-magnetism-assisted magneto-Raman phonons is first

studied. We confirm the successful Moiré engineering in this system by showing a compre-

hensive twist angle dependence of such modes. By examining the magnetic field dependence,

we also identify a novel magnetic ground state at an intermediate twist angle of 1.1◦, which

is distinct from natural untwisted four-layer or bilayer systems. Further with the help of the

theoretical simulation, we propose the formation of non-collinear spin texture upon twisting

as well as its twist angle dependence. By conducting the magnetic circular dichroism mea-

surements and attributing the signal to collinear spin and non-collinear spin contributions,

we experimentally demonstrate the maximum of both the non-collinearity and an emergent

net magnetization at the intermediate twist angle. Such studies manifest the vast oppor-

tunities for exploring complex magnetic orders with Moiré engineering in two-dimensional

magnets.

In conclusion, this dissertation advances the optical study of specific complex electronic

and magnetic orders in 1T -TaS2 and CrI3, respectively. The findings have implications

for both the future development, utilization of advanced optical probes, and the deeper

understanding of complex orders together with the control or application of them.
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CHAPTER 1

Introduction

In this chapter we briefly introduce “quantum materials” in the sense of contemporary

condensed matter physics, with special focuses on the complex orders and properties of

different materials studied in this thesis. Following the introduction, we will describe the

overall organization of the thesis. The publications of the research conducted for this thesis

are also listed at the end of this chapter.

1.1 Quantum materials

The field of “quantum materials” originated from condensed matter physics (formerly

known as solid state physics) and has evolved into a multidisciplinary frontier [1]. This field

has primarily been focusing on a broad class of materials and physics systems where electron

correlation interactions are significant, or where certain form of electronic order (such as

charge ordering or magnetic ordering) exists. It also includes systems exhibiting peculiar

electronic properties due to the geometric phase of their wavefunctions (such as topological

insulators and graphene-like Dirac electron systems), and other systems where macroscopic

collective properties are governed by quantum behavior (such as ultracold atoms, supercon-

ductivity). A common characteristic of quantum materials is the phenomenon of “emer-

gence”, where the collective behavior of a many-body system composed of many individual

units cannot be simply extrapolated from the properties of single particles [2]. At each level

of complexity, new physical concepts, laws, and principles emerge, with the overall properties
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far exceeding the physics of individual units. The core of quantum materials research is to

study and utilize these cooperative phenomena that emerge in such many-body systems.

The concept of “quantum materials” is thus rapidly evolving in that sense. Its evolution

can be traced back to the series of revolutionary discoveries in correlated electron materials

that emerged in the 1980s, which set the direction for subsequent developments in the field

of quantum materials. In the 1960s and 1970s, the main themes in solid state physics were to

study different electronic ordered states within the framework of Landau-Fermi liquid theory

[3, 4] and symmetry-breaking theory [5], using order parameters and correlation functions

to describe various phases and their responses to external fields. This research paradigm

persisted until the 1980s when two critical advancements—high-temperature superconduc-

tivity [6] and the (fractional) quantum Hall effect [7, 8]—challenged this classical framework

and significantly stimulated interest in strongly correlated electron systems. Strong elec-

tron correlation refers to a significant scientific problem where the strong Coulomb repulsion

between electrons in a system cannot be effectively simplified [9]. This is a natural sci-

entific extension of the classical band theory and Landau-Fermi liquid theory frameworks.

This is also why the concept of “quantum materials” initially appeared as a synonym for

correlated electron systems. In recent years, with the findings of new emergent quantum phe-

nomena in topological materials [10], low-dimensional materials [11, 12], and the explosive

development in such fields, the scope of quantum materials has expanded from correlated

electron systems to a much broader range of material systems [13–18]. The rapid deepen-

ing of understanding in systems represented by two-dimensional twisted bilayer graphene

and three-dimensional topological insulators has made it increasingly clear that this broad

and wide-ranging paradigm of “quantum materials” continues to call for both new material

candidates and state-of-the-art experimental techniques.
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1.2 Complex orders in quantum materials

Many of the phenomena observed in quantum materials reflect some specific kind of or-

dering of the system. As the building blocks of a system—say electrons in a crystalline

solid—can have multiple degrees of freedom, there are several ways that a system can be

ordered. For atoms, the simplest order is positional order, such that in a lattice atoms

are not randomly positioned. If we associate the spin vectors with those spatially ordered

atoms or ions we also observe magnetic orders. With the efforts in searching for univer-

sality or the organizing principles in many-body physics, thanks to Lev Landau, most of

the so-called phases of matter can be mapped to corresponding orders, which are further

described by order parameters and their symmetry properties [5, 19, 20]. From one phase

to another, a spontaneous breaking of the continuous symmetry is necessarily accompanied

by a bosonic excitation [21, 22]. In the presence of degenerate symmetry broken phases,

gapped excitations such as defects or continuous textures can also appear as a consequence

of the non-trivial topology in the order parameter space [23, 24]. A great number of new

physical properties can be understood based on such considerations. Table 1.1 presents a

few examples of them.

Phenomena Broken symmetry Elementary excitation Topological defect

Crystallization Translation Phonon Dislocation

Liquid crystal Rotation Nematic state Disinclination

Superconductivity U(1) gauge invariance –1 Vortex

Charge crystallization Translation Amplitudon, phason Discommensuration

(Anti-)Ferromagnetism Time-reversal Magnon Domain wall

(Anti-)Ferroelectricity Space inversion Optical phonon Domain wall

Table 1.1: Symmetry breaking examples in condensed matter physics.

The manifestation of an order can be complicated. For example, Fig. 1.1 considers the

1The excitation is gapped due to the Anderson-Higgs mechanism
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transformation behavior of a vectorial order under space inversion (SI) or time reversal (TR)

and lists four possible scenarios. Electric polarization P and magnetization M are common

physical quantities studied in condensed matter physics. As a polar vector P is SI-odd and

TR-even, while M is axial and thus SI-even. With a magnetic origin M must be TR-odd.

Less common are those described in the second and four quadrants in Fig. 1.1. For a loop of

joined polar vectors, they behave as both SI- and TR-even, whose transformation property

is then the same as the cross product of two polar, TR-even vectors r × P. For a loop of

joined axial vectors however, it is both SI- and TR-odd, and transforms like r×M.

Figure 1.1: Categorizing vector order parameters with respect to time-reversal (TR) and
spatial-inversion (SI) symmetries. Figure adapted from [25].

When a moment mentioned above forms and align together in every cell of the crystal, a

ferroic order appears. Common examples are ferroelectricity with P as the order parameter,

and ferromagnetism with M as the order parameter. With the help of their conjugate

fields—electric field E for P and magnetic field B for M—one can couple to those orders

and explore their properties. But for the other two cases, where people define ferro-rotation

or ferro-axis with order parameter transforming like r × P, and ferro-toroid with order

parameter transforming like r×M, it becomes challenging to experimentally generate their
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conjugate fields. As a matter of fact, the direct observations of the ferro-toroidal [26, 27]

and ferro-rotational [25] orders in quantum materials did not occur until this century.

In [25], second-harmonic generation (SHG), a nonlinear process in which the frequency of

light incident on the sample is doubled through its second-order nonlinear interactions, has

been demonstrated to have the capability to couple to the ferro-rotational order. One notes

that the transformation properties of the vector r×P can be described by the antisymmet-

ric off-diagonal components of a second-rank, polar tensor, such as an electric quadrupole

(EQ) tensor. Through the development of high-sensitivity, rotational-anisotropy (RA) SHG

instrumentation, it becomes feasible to detect the SHG from higher-order multipolar (such

as the EQ) radiations, even in spatial-inversion symmetry preserved phases. The EQ RA-

SHG study on a ferro-rotational charge density wave (CDW) in 1T -TaS2 will be presented

in Chapter 3.

Complex orders can also reside in magnetic materials, through a dispersed alignment of

the magnetic moments in a possibly large magnetic unit cell. As shown in Fig. 1.2 there

could be various types of orderings of spins that come with very different magnetic prop-

erties [28]. Simply in a ferromagnet (FM) we can use an overall magnetization vector to

represent the ferromagnetic order. For an anti-ferromagnet (AFM) there are two spatially

separated lattices with opposite magnetizations, both of which are needed to describe the

order. Through the discovery the two-dimensional (2D) magnetic material [29] and the

emergence of twistronics [30], the field has seen interest in creating and studying novel mag-

netic orders by introducing twist into simple FM or AFM films. The term moiré magnetism

[18, 31] describes the versatile tuning of the magnetic exchange interaction leading to non-

trivial spin textures. A thorough study on this topic in multiple forms of the CrI3 system

will be covered in Chapter 4 and 5.

5



Figure 1.2: Schematics of ferromagnetic (a), antiferromagnetic (b), ferrimagnetic (c), canted
ferromagnetic (d), triangular (e), umbrella (f), sinusoidally modulated (g) and (h), helical
(i), conical (j), complex spiral (k), squared-up (l) and (m) orderings. Figure adapted from
[28].

1.3 Outline of the thesis & publications

The outline for this work is as follows. Following this Introduction, Chapter 2 discusses the

experimental optical techniques used for the research conducted for this thesis. Specifically,

I will describe the principles of three optical probes: SHG, Raman Scattering, and magnetic

circular dichroism (MCD), with an emphasis on the symmetry considerations in those optical

measurements.

Chapter 3 studies the ferro-rotational CDW order in 1T -TaS2. I will firstly review the
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CDW orders in 1T -TaS2 and explain the symmetry properties associated with the charge

order. Then I demonstrate through temperature dependent RA-SHG that this CDW break-

ing mirror symmetry manifests itself as a rotation of the RA-SHG patterns. I then present

the temporal dependence of full RA-SHG after optical pumping, realized in time-resolved

(tr-) RA-SHG measurements. The ultrafast modulation of the CDW order is revealed and

discussed.

Chapter 4 presents the magneto-Raman Scattering results of bulk CrI3 with temperature

and magnetic field dependence. I will show the magnon scattering data and through iden-

tifying three magnon branches, introduce our proposed coexistence of bulk FM and surface

AFM orders in 3D CrI3. I will also examine the magneto-phonon scattering, through which

a magnetic field induced structural phase transition is revealed. By comprehending those

phenomena from the strong magnetoelastic coupling in CrI3, this chapter paves the way for

realizing moiré engineering of the spin systems in twisted CrI3 samples.

Chapter 5 provides a detailed exploration and characterization of moiré magnetism

achieved in twisted double-bilayer (tDB) CrI3 systems. For the first half of this study, I

will begin by demonstrating the successfully moiré coupling in our tDB samples by TEM

imaging the moiré superlattice. I then establish that the core of moiré engineering in spin

systems is the stacking order dependent interlayer exchange interaction. With the help ab-

inito calculations, a continuous distribution of such interlayer exchange interaction for the

moiré interface is obtained. I then show our simulated, twist angle dependent magnetic

ground states under this moiré engineered exchange interaction.

The second half of Chapter 5 is about the optical characterization of the moiré engineered

magnetic states in tDB CrI3 systems. I will revisit the magnetism-coupled phonon modes

in Raman Scattering measurements and show how their intensity variation as well as the

selection rule change can be utilized to understand the new layered magnetic order in tDB

CrI3. I then resort to the magnetic field dependent MCD measurements and propose a

two-component fitting model to provide indicators for understanding the collinear and non-
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collinear spins co-existing in moiré magnetism. Special emphasis is being put on the maximal

prevalence of the non-collinear spin textures in tDB CrI3 with intermediate twist angles.

The research presented in this thesis was performed under the supervision of my adviser

Prof. Liuyan Zhao at the University of Michigan. This thesis reuses and reproduces content

from the following published research papers with permission

[32] S. Li*, Z. Ye*, X. Luo*, G. Ye, H. H. Kim, B. Yang, S. Tian, C. Li, H. Lei, Adam

W. Tsen, K. Sun, and L. Zhao. Magnetic-field-induced quantum phase transitions in a van

der Waals magnet. Physical Review X, 10(1):011075, 2020.

Copyright © 2020 American Physical Society

[33] X. Luo, D. Obeysekera, C. Won, S. H. Sung, N. Schnitzer, R. Hovden, S. -W. Cheong,

J. Yang, K. Sun and L. Zhao. Ultrafast modulations and detection of a ferro-rotational charge

density wave using time-resolved electric quadrupole second harmonic generation. Physical

Review Letters, 127(12):126401, 2021.

Copyright © 2021 American Physical Society

[34] H. Xie*, X. Luo*, G. Ye*, Z. Ye, H. Ge, S. H. Sung, E. Rennich, S. Yan, Y. Fu, S. Tian,

H. Lei, R. Hovden, K. Sun, R. He, and L. Zhao. Twist engineering of the two-dimensional

magnetism in double bilayer chromium triiodide homostructures. Nature Physics, 18(1):30–

36, 2022.

Copyright © 2022 Springer Nature

[35] H. Xie*, X. Luo*, Z. Ye*, Z. Sun*, G. Ye, S. H. Sung, H. Ge, S. Yan, Y. Fu, S. Tian,

H. Lei, K. Sun, R. Hovden, R. He, and L. Zhao. Evidence of non-collinear spin texture in

magnetic moiré superlattices. Nature Physics, 19(8):1150–1155, 2023.

Copyright © 2023 Springer Nature
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CHAPTER 2

Techniques

2.1 Second-harmonic generation (SHG)

2.1.1 SHG as lowest-order nonlinear optics

Optical response of a material can be most generally described by a response function, in

which the incident electric field E(t) generates a electric dipole (ED) P (t) through P (t) =

ε0χE(t). In this formalism, without further assumptions on the susceptibility χ, a time

harmonic incident wave of e−iωt with frequency ω will induce a polarization that is also

oscillating with frequency ω. Radiation theory states that this polarization will then create

reflected electromagnetic wave that is of the same frequency. Many optical phenomena

not involving the significant change of frequency can be understood with this framework,

including transmission, reflection, birefringence, and even quasi-elastic Rayleigh scattering.

In non-linear optics, the above relation is usually generalized by including a power series

expansion with respect to the incident field [36]

P (t) = ε0χ
(1)E(t) + ε0χ

(2)E2(t) + ε0χ
(3)E3(t) + · · · (2.1)

In the equation above, the terms on the right hand side will each have e−iωt, e−2iωt, e−3iωt,

. . . phase factors, which essentially represent dipoles that are oscillating with ω, 2ω, 3ω, . . .

frequencies. This indicates that they will radiate light at harmonic frequencies of the funda-
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mental light. For this reason, the process from the second term ε0χ
(2)E2(t) corresponding to

the creation of light with double fundamental frequency is called second-harmonic generation.

Similarly the term ε0χ
(3)E3(t) will give third-harmonic generation (THG).

The harmonic generation can be firstly understood from a classic perspective. Start with

an electron residing in a potential with ∼ ω0x
2 dependence, namely a harmonic potential

well. If we drive it with an electric field of ∼ Ee−iωt, this is essentially a Lorentz oscillator

model, or forced vibration [37]. Its steady state solution is no more than a harmonic vibration

with frequency ω, and no other frequencies are expected. Thus up to the dipole solution

P (t) ∝ x(t), harmonic potential does not allow the SHG or THG process. It is the inclusion

of a non-harmonic potential such as terms like ∼ x3 that will give higher-order frequency

components, as can be seen from the Fourier transform of the dynamic equation. This

is saying that the non-harmonic potential is the origin of the high-harmonic generations.

Specifically, potential correction terms like ∼ x3 is responsible for SHG, and terms like ∼ x4

for THG.

This classical understanding already implies a few important features for SHG/THG

processes. First, the correction for the potential becomes needed when the electron is pulled

far enough from its equilibrium position. For an estimation, this would occur when the

strength of the incident electric field is comparable to that of the atomic electric field [38]

Eatom =
e

4πε0a20
= 6× 1011V/m (2.2)

where a0 is the Bohr radius. This electric field corresponds to an intensity of 1
2
ε0cE

2
atom = 4×

1016 W/cm2, therefore very intense light is needed to observe the high-harmonic generation.

In this sense femto-second pulsed lasers serve as the best equipment for generating high-

harmonic radiation. Secondly, in a centrosymmetric environment the potential does not

allow odd terms like ∼ x3. This means ED SHG should not be present in centrosymmetric

materials. This is the most prominent feature of ED SHG. Meanwhile, it is known that
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the surface of a crystal will modify the potential landscape and introduce significant non-

harmonic corrections [39]. Therefore one would expect ED SHG from the surface of a sample.

This feature can also be understood in the sense that a surface always lacks centrosymmetry.

In light of such considerations, we can incorporate more detailed symmetry analysis in a SHG

measurement.

2.1.2 Applying symmetry on SHG susceptibility tensors

Noting the vector nature of electric polarization and the electric field, the appropriate

way to write down, for example the ED SHG process, must take the tensor notation into

account

Pi = χ
(2),ED
ijk EjEk (2.3)

where χ
(2),ED
ijk is a third-rank tensor, and the summation over repeating indices like j and k

in this equation is always understood within this section. With the help of those indices,

the tensor χ
(2),ED
ijk can inherit symmetry information. This will be briefly explained in the

following.

Firstly, one examines how the tensor transforms under a symmetry operation. This is

done by noting that, apart from the frequency-doubling dynamics behind Eq. (2.3), this

notation also explicitly defines the transformational property of the tensor χ
(2),ED
ijk through

its relation with P and E. Note P and the two copies of E all transform like a polar (namely

SI-odd) and TR-even vector: P ′
i = Rii′Pi′ and E ′

i = Rii′Ei′ . Their transformation behavior

is denoted as V using the Jahn symbol [40]. Then according to the definition of the tensor

χ
(2),ED
ijk in Eq. (2.3), it must transform as

χ′(2),ED
ijk = Rii′Rjj′Rkk′χ

(2),ED
i′j′k′ (2.4)

which is then called V3. Here matrix Rij denotes a general transformation matrix defined on

a V tensor (that is, a TR-even polar vector). Also in Eq. (2.3) the two electric fields represent
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the same incident field, therefore one would require indices j and k to be commutable. This

changes the Jahn symbol of χ
(2),ED
ijk to V[V2], where [·] means the indices inside are symmetric.

In condensed matter physics, we usually deal with point group symmetries. The cor-

responding symmetry operations only involve improper and proper rotations. Noting that

any improper rotations can always be treated as inversion times a proper rotation, we can

express any transformation matrix Rij in terms of a rotation matrix. For a general proper

rotation, about an axis given by a unit vector k with a rotation angle φ, the rotation matrix

is given by the Rodrigues’ formula [41]

R(k, φ) = I + sinφK + (1− cosφ)K2, where K =

 0 −kz ky
kz 0 −kx
−ky kx 0

 (2.5)

Suppose if the system to study has G point group symmetry. Then we could apply, for each

symmetry operation g ∈ G

χ′(2),ED
ijk = R(g)ii′R(g)jj′R(g)kk′χ

(2),ED
i′j′k′

= χ
(2),ED
ijk

(2.6)

By associating the equations for all i, j, k and g ∈ G, we can reach a succinct form of tensor

χ
(2),ED
ijk . In practice, the TENSOR application in Bilbao Crystallographic Server [40] provides

an convenient automated algorithm to obtain the final tensor form when feeding it with a

point group and the transformation property (in Jahn symbol).

2.1.3 Multipolar radiation in SHG

The light-matter interaction is not limited to inducing dipoles. When light travels in a

medium, it can create higher-order multipoles that radiate. The radiation of light can be

understood from the following general wave equation, obtained by eliminating B and H in
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Maxwell’s equations [42]

∇2E− µεS
∂2

∂t2
E−∇(∇ · E) = S (2.7)

where on the right hand side, the source term can be expressed up to the second-order

multipoles [43]

S = µ
d2P

dt2
+ µ∇× dM

dt
− µ∇d2Q̃

dt2
(2.8)

We note that the ED contribution ∝ P is typically λ/a times stronger than the following

magnetic dipolar (MD) contribution ∝ M and EQ contribution ∝ Q̃ terms [44], where λ

is the incident light wavelength and a is the multipole length scale. For studying crys-

tallined solids a is the lattice constant and with a visible light wavelength λ/a is roughly

103. Therefore when ED is allowed it usually dominates in the scattered light.

However, in a centrosymmetric material where an ED is forbidden by the presence of

inversion, EQ radiation becomes the leading order contribution (in the absence of magnetism)

to SHG, the process of which is given in analogy to Eq. (2.3) by

Si ∝ χ
(2),EQ
ijkl Ej∂kEl (2.9)

For symmetry considerations only, we have omitted the constant coefficients. Now we have

a fourth-rank SHG susceptibility tensor which transforms as V2[V2]. With monochromatic

plane incident wave we can further replace ∂ by the wavevector k. With those vectors being

specified and the symmetry-adapted susceptibility tensor form obtained, we can associate

the SHG models in Eqs. (2.3) or (2.9) with actual SHG RA measurements performed in the

following geometry.

2.1.4 SHG RA experimental geometry

Figure 2.1(a) illustrates the typical geometry for an oblique incident SHG RA measure-

ment. The term RA essentially describes an “angular” scan of the SHG intensity: recording
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the SHG intensity as a function of the azimuth angle ϕ of the scattering plane on the sample

surface. With respect to each instantaneous angular position of the reflection plane, parallel

(P) and perpendicular (S) polarizations are defined for both the incident fundamental and

the reflected SHG light. Then the SHG intensity in four different polarization channels—Sin-

Sout, Sin-Pout, Pin-Sout and Pin-Pout—are measured. At the end of a measurement four curves

of ISHG(ϕ) are obtained. In the special case of normal incidence shown in Fig. 2.1(b), Sin-Sout

versus Pin-Pout, and Sin-Pout versus Pin-Sout datasets would only differ by a rotation of 90◦.

In this sense only two polarization channels—parallel (∥) and crossed (⊥)—are needed to

access the full RA information.

Figure 2.1: Schematic of the geometry of SHG RA measurements with oblique (a) and
normal (b) incidence. Figure adapted from [45]

We establish the connection between this geometry and the models in Eqs. (2.3) or (2.9).

Firstly we build up the lab coordinate system x-y-z affixed to the sample with z-direction

being the surface normal. Then we specify the point group of the sample and obtain the

symmetry-adapted SHG susceptibility tensor form. This tensor is almost always defined in

its own lattice coordinate system a-b-c. In the case where the coordinate system a-b-c does

not align with x-y-z, we perform three Euler rotations to align them up [41]. The associated

rotation matrices for the Euler rotations must then be applied to the SHG susceptibility

tensor as described in Eq. (2.4) for ED SHG tensors or in a similar fashion for EQ tensors.
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This way we obtain a symmetry-adapted tensor form with local x-y-z coordinates. Then,

taking Sin-Pout as an example, one can write down the vectors ŝin and k̂in as functions of

ϕ in the x-y-z system, and replace the E and ∂ vectors in Eqs. (2.3) or (2.9) with them,

respectively. The S vector, essentially the electric field vector of the reflected SHG, is thus

obtained. We then dot product it with p̂out and take the modulus square, to get the final

ISHG
SP (ϕ) function, with symmetry information embedded. By fitting the experimental data

with this function, we can examine the proposed symmetry of the studied system. An

example of this simulation in presented in the study of 1T -TaS2 in Chapter 3.

2.2 Raman spectroscopy

Raman scattering is an inelastic process of light scattered by the excitations in a medium

[46]. Its inelastic essence can be readily understood by its quantum description. During a

Raman process, an incident photon excites the electron into a virtual intermediate state.

Instead of a real excited state which tends to fully absorb the light, the virtual state is

short-lived such that the excited electron quickly transits back to a low-energy state by the

emission of a new photon. This new state could be of higher energy than the original state,

for which the emitted photon must possess less energy than the incident one. This is called

a Stokes process. The opposite situation can also occur where the electron transits back

to an even lower energy state, emitting a photon with larger energy than the incident one.

This is called an anti-Stokes process. For a given excited state and the ground state, the

existence of those two processes indicates that a pair of peaks symmetric with respect to the

elastic reflection (referred to as the Rayleigh line) will appear in the Raman spectrum. They

correspond, however, to the very same energy of that excitation.

Apart from the energy information, Raman Scattering measurements are usually con-

ducted with controlled polarizations. Namely similar to SHG measurements explained in

the previous section, the Raman spectrum is obtained with given polarizations of the inci-
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dent and scattered light. In a similar fashion, this will give symmetry information of the

system studied. In this section we present deduction for the differential cross section of

Raman Scattering, with a special emphasis on the symmetry properties.

2.2.1 Cross section of Raman Scattering

Similar to the discussion in Section 2.1.1, a plain dispersion relation P = ε0χE does

not predict the change of frequency if the system’s response χ does not have a frequency

dependence. To create inelastic scattering, one assumes for an incident light E ∼ e−iωI t

D =
[
ε+ ε0α(ωI , ω)

]
E

= ε0E+ ε0χE︸ ︷︷ ︸
P

+ ε0α(ωI , ω)E︸ ︷︷ ︸
Psc

(2.10)

where ε0α(ωI , ω) represents a perturbative correction of the susceptibility of the medium

[46], in the presence of a spatially and temporally modulating mode with frequency ω.

The induced dipole Psc thus carries the additional frequency of ω and radiates. The wave

equation for this is essentially the same as Eq. (2.7)

∇2E− µε
∂2

∂t2
E−∇(∇ · E) = µ

∂2

∂t2
Psc (2.11)

We would assume the scattered light is transverse and get rid of the third divergence term

on the left hand side of Eq. (2.11). What is left is essentially an inhomogeneous Helmholtz

equation, the solution of which is give by [47]

E(r, t) = − µ

4π

∫
d3r′

|r− r′|

[
∂2

∂t′2
Psc(r

′, t′)

]
ret

+ E0(r, t) (2.12)

where [·]ret denotes the retarded time and E0 is the general solution to the homogeneous

version of Eq. (2.11). The general solution describes merely the propagation of the unscat-

tered light and is not of our interest. To proceed we switch to the frequency domain by
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substituting

Psc(r
′, t′) = Psc(r

′, ωS)e
−iωSt

′
(2.13)

E(r, t) = E(r, ωS)e
−iωSt (2.14)

into Eq. (2.12) where the scattered light frequency ωS = ωI ± ω. After some calculation we

would arrive at the scattering amplitude

E(r, ωS) =
ω2
S

4πεc2
eikSr

r

∫
e−ikS ·r′Psc(r

′, ωS)d
3r′ (2.15)

With the scattering amplitude expression we can write down the energy flux after selecting

it with a polarizer at êS

IS =
1

2
ε
c

n

〈∣∣êS · E(r, ωS)
∣∣2〉

=
εcV

2nr2

(
ω2
S

4πεc2

)2 ∫
eikS ·(r1−r2)

〈[
êS ·P∗

sc(r1, ωS)
][
êS ·Psc(r2, ωS)

]〉
d3(r1 − r2)

(2.16)

where the angular brackets ⟨·⟩ represent an average over fluctuations. In obtaining the

second line above, the translational invariance of the system is assumed. Similarly we have

the incident energy flux

II =
1

2
εI

c

nI

|EI |2 (2.17)

Thus we obtain the differential cross section from

d2σ

dΩdωS

= r2
IS/ℏωS

II/ℏωI

=
ωIω

3
SnV

(4πεIc2)2nI |EI |2

∫
eikS ·(r1−r2)

〈[
êS ·P∗

sc(r1, ωS)
][
êS ·Psc(r2, ωS)

]〉
d3(r1 − r2)

(2.18)
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2.2.2 Raman tensors and Raman selection rules

We now correlate the additional electric susceptibility, or Raman polarizability, α in Eq.

(2.10) with the quasi-particles in the crystal. First we retrieve the two subscript indices for

αij (just like a susceptibility tensor) which have been omitted in the previous section for a

succinct look of the derivation. Then we represent an excitation that is responsible for αij

by a general dynamic variable X(r, t). We seek to expand the Raman polarizability in a

power series of the excitation

αij = αij

∣∣
0
+

dαij

dX

∣∣∣∣
0

X + · · · (2.19)

The first term on the right hand side above only gives a homogeneous correction to the

general susceptibility χ in Eq. (2.10) and does not incur inelastic scattering. Plugging

the second term and the relation between Psc and αij into the cross section in Eq. (2.18),

finishing the spatial Fourier transform we have

d2σ

dΩdωS

=
ε20ωIω

3
SnV

(4πεIc2)2nI

∣∣∣êS · dα̃
dX

· êI
∣∣∣∣2〈X(q, ω)X∗(q, ω)

〉
(2.20)

The equation above reveals important features for a Raman measurement. Firstly, it is

seen that the scattering intensity is proportional to the susceptibility derivative (dα̃/dX)2.

In this sense the Raman intensity proves a measure of how strongly the excitation modulates

the susceptibility. Secondly, from the perspective of symmetry, the product between êS, êI ,

and the derivative dα̃/dX which we shall call a Raman tensor gives a scaler, which must

be invariant under the symmetry operations of the system. With the language of group

theory, this scaler must transform as the trivial irreducible representation (irrep) Γ1. To

make this happen the Raman tensor must transform as an irrep Γ that is contained in the

decomposition of Γ∗
V⊗ΓV, where ΓV is the representation for a SI- and TR-even vector such

as êS,I .
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In light of the second observation, for a given point group symmetry where ΓV is known,

the allowed forms of the Raman tensor are limited. The complete collection of all the possible

Raman tensors for 32 point groups can be found in, for example, the Bilbao Crystallographic

Serve [48]. Generally, by varying the combination of êS,I one can implicitly access the form

of the Raman tensor for a given mode, and thus the possible point group symmetry of the

system. Or the other way around, with a known mode one specifically choose the polarization

channel to maximize the its Raman intensity for better observation. Both philosophies will

be used in the later Raman studies of the CrI3 systems in Chapter 4 and 5.

2.3 Magnetic circular dichroism

In this section I will briefly review light propagation in anisotropic materials [49, 50]. The

main goal in this section is to prove in the system like CrI3 with an out-of-plane magnetic

order, the circular dichroism signal is proportional to the Mz component.

We start with the wave equation with an anisotropic permittivity tensor εij. Note at

optical frequency the permeability µ can always be treated as isotropic or a pure number

[51]. For a monochromatic plane wave E, H ∼ ei(k·r−ωt), the two inhomogeneous Maxwell’s

equations can be written as

k× E = ωµH (2.21)

k×H = −ω[ϵ]E (2.22)

By eliminating H from the two equations we obtain

k× (k× E) + ω2µ[ε]E = k(k · E)− k2E+ ω2µ[ε]E = 0 (2.23)

Note different from the free space case we cannot assume k · E = 0. This is because in the

presence of a tensor form [ε], the Gauss’s law k ·D = k · [ε]E = 0 can no longer be further
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simplified. In fact, in an anisotropic medium the electric field E is generally not transverse

with respect to the wavevector k.

Upon the formation of an out-of-plane magnetization, the trigonal symmetry of CrI3

dictates that the permittivity tensor must take the following form [40]

[ε] =

 εxx εxy 0
−εxy εxx 0
0 0 εzz

 (2.24)

Due to the presence of magnetism all the elements in [ε] can be complex. Assuming normal

incident k =
ω

c
nẑ where the refraction index n for now is merely a number to be determined,

Eq. (2.23) becomes εxx − n2 εxy 0
−εxy εxx − n2 0
0 0 εzz

Ex

Ey

Ez

 = 0 (2.25)

These are the homogeneous linear equations for E. For non-trivial solutions to exist, the

determinant of the coefficient matrix must vanish. This gives both the “eigen” refraction

indices and the “eigen” polarization modes

n2
L = εxx + iεxy, EL =

[
1
i

]
n2
R = εxx − iεxy, ER =

[
1
−i

] (2.26)

where the z-component is ignored since the eigen polarizations only lie in the x-y plane1.

From Eqs. (2.26) one already sees the “eigen” modes being left- and right-circularly

polarized. To see the dichroism we set nL,R = ηL,R + iκL,R, therefore the eigen traveling

waves carry the factor e−κL,Rz which describes the absorption along z direction. We then

define the circular dichoism as the absorption coefficient difference and calculate based on

Eqs. (2.26)

CD = κL − κR =
ηε′xy + κε′′xy
η2 + κ2

(2.27)

1Note E being transverse with respect to k here is special, because for the [ε] in Eq. (2.24) the wavevector
k ∝ ẑ we chose is actually along the optical axis.
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where η = (ηL + ηR)/2 and κ = (κL + κR)/2. In the case of weak resonance [52] it satisfies

η ≫ κ, then the above equation becomes

CD = κL − κR =
ε′xy
η

(2.28)

To complete the final piece of the puzzle, one notes the Onsager’s relation [53] together

with Eq. (2.24) requires εxy(−M) = εyx(M) = −εxy(M). This implies εxy is an odd function

of the magnetizationM. To the lowest order of linear dependence, we have demonstrated CD

∝ ε′xy ∝ M. From this section, we prove that in CrI3 the circular dichroism measurements

conducted in the presence of the magnetic order should directly sense the magnetization M.

The full utilization of this capability will be discussed later in Chapter 5.
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CHAPTER 3

Ultrafast Modulation of the Ferro-Rotational

CDW in 1T -TaS2

3.1 Introduction to CDW in 1T -TaS2

1T -TaS2 is an excellent prototypical material exhibiting complex CDW behavior from

symmetry perspective, characterized by a rich phase diagram dependent on temperature

[54–58] and other external parameters [59–62]. Despite extensive research on this system

for many years, 1T -TaS2 has recently continued to gain significant interest and attention.

Traditionally, its ground state being a Mott insulator together with the CDW order [56,

63, 64], emergent superconductivity upon doping [65–67] or pressure [60, 68], make it a

great platform for studying strong correlation physics [56, 69, 70]. Theory and experimental

works also hint its quantum spin liquid candidacy [71–75]. Besides such classic questions

in condensed matter physics, recent explorations have also been focusing on the ultrafast

optical engineering of the lattice or electronic properties of 1T -TaS2 [76–84], thanks to its

various CDW orders and the strong electron-lattice coupling.

This rest of this section provides a brief overview of the CDW orders in 1T -TaS2, and

the experimental techniques used to detect these CDW phases.
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3.1.1 CDW phases in 1T -TaS2

The pristine 1T -TaS2 at high temperature has P 3̄m1 symmetry with a = b = 3.38 Å,

c = 6.95 Å. Its structure can be described from a layered perspective where each layer consists

of Ta atoms sandwiched between two adjacent layers of S atoms, forming an octahedral

coordination as shown in Fig. 3.1(a). The Ta atoms in the a-b plane form a triangular

lattice as shown in Fig. 3.1(b). The prefix T denotes the trigonal symmetry and the number

1 indicates a single layer in the unit cell. This reflects that the layers stack along the c-axis

without a lateral slide. The structure hence has a centrosymmetric point group D3d which

consists of one threefold rotational axis along c-axis, and three vertical mirrors at every 120◦

marked by the orange dashed lines in Fig. 3.1(b).

Figure 3.1: Crystal structure of 1T -TaS2. (a) Schematic of the 1T polytype of two Ta-S
octahedra. (b) Top view of 1T -TaS2 lattice in the a-b plane. The crystal axes a and b are
marked with black arrows.

1T -TaS2 undergoes several phase transitions as the temperature is lowered, leading to

different CDW states. At high temperatures, 1T -TaS2 is metallic and exhibits an incom-

23



mensurate CDW (ICCDW) phase [54, 85]. In this phase, the Fermi surface is only partially

gapped and the CDW modulation wave vector does not match the periodicity of the under-

lying lattice. Without a locking between the charge order and the lattice, this phase retains

the high symmetry of the pristine lattice.

Figure 3.2: Sketch of the ordering of star-of-David clusters in the (N)CCDW phase. The√
13 ×

√
13 superlattice axes a′ and b′ (thick arrows) rotate away from the pristine crystal

axes a and b (thin arrows). Only Ta atoms are plotted in the figure.

As the temperature decreases to around TNCCDW = 355 K, the material transitions into

the nearly-commensurate CDW (NCCDW) phase. This phase is characterized by commen-

surate CDW (CCDW) domains separated by ICCDW domain walls [86, 87]. With further

cooling down to approximately TCCDW = 183 K, the commensurate domains expand and

become coherent, essentially eliminating the separating incommensurate domain walls. This

marks that the system enters the CCDW phase. Similar to many systems with concomitant
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lattice instability, the CCDW in 1T -TaS2 also features its own lattice reconstruction, which

manifests itself as the formation of the stars-of-David through each 13 Ta atoms aggregating

towards the center [88]. This way, the CDW wavevector or the lattice vector rotates ∼ 13.9◦

away from the original undistorted direction and achieves a new
√
13 ×

√
13 unit cell [55],

as shown in Fig. 3.2.

Note that the formation of the periodic stars-of-David is fully commensurate with the

pristine lattice. The new periodicity of those stars-of-David in the NCCDW and CCDW

phases reduces the point group from D3d to S6, remarkably by losing the three vertical

mirrors. As a result, polar electric dipoles become allowed for each broken mirror. With

the existence of the threefold axis, such dipoles shall from a head-to-tail loop arrangement

which, as introduced in Fig. 1.1 in Chapter 1, is of ferro-rotational nature in symmetry.

3.1.2 Probing CDW in 1T -TaS2

Detecting the CDW in 1T -TaS2 can usually be achieved by static experimental probes.

This includes using X-ray or electron diffraction [54, 55] to construct the new reciprocal lat-

tice, or Scanning Tunneling Microscopy [58, 86, 89] to render real-space topographic images

for direct visualization of the atomic distribution in the CDW state. Electronically, Angle-

Resolved Photoemission Spectroscopy [90, 91] can also be employed to probe the folded

bands and Fermi surface gapped out by the formation of CDW.

In addition to the techniques above, the collective excitations of a CDW provide new

opportunities for characterizing the order. As sketched in Fig. 3.3, a typical one-dimensional

CDW can give rise to two types of collective excitations: the amplitude mode (Amplitudon)

which is the coherent oscillation of the charge density magnitude similar to a breathing

motion, and the phase mode (phason) which corresponds to the coherent shift of the charge

density distribution. With a parallel analogy to the collective excitations of a lattice, namely

phonons, one could postulate that the amplitude mode is massy and has an energy gap at

k = 0 just like an optical phonon, while the phase mode is gapless and disperses like an
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acoustic phonon [92–94]. The former observation enables the optical detection of the CDW

amplitude mode through dynamic probes, such as Raman Scattering [95], ultrafast optical

pump-probe [96, 97] and time-resolved diffraction [98, 99] measurements.

Figure 3.3: Schematics of the amplitude (upper left) and phase (bottom left) modes in an
one-dimensional CDW. The amplitude mode represents the overall oscillation of the charge
density magnitude and the phase mode corresponds to the sliding motion of the charge
density. The amplitude mode exhibits an optical phonon-like dispersion while the phase
mode dispersion is acoustic phonon-like and gapless. Figure adapted from [94].

In the following sections I present our nonlinear EQ RA-SHG detection of the CCDW

order by sensing the breaking of the mirror symmetries. Then adopting a pump-probe

scheme, I will show the successful ultrafast modulation of the CDW through optical pumping

in time-resolved (tr-) RA-SHG measurements. Careful spectroscopic analysis and pump

fluence dependent results further hint that time-resolved nonlinear optics helps reveal a

hidden triplet mode and a possible transient CDW phase at high pump fluence.

3.2 Static RA-SHG measurements of the ferro-

rotational (N)CCDW

We experimentally confirm the ferro-rotational nature of the (N)CCDW in 1T -TaS2 by

performing temperature dependent static RA-SHG measurements. With normal incidence,
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the experiments are conducted with the geometry as shown in Fig. 2.1(b). While rotating

the polarization of the incident fundamental light at 800 nm, namely ϕ as the angle between

the incident polarization and the crystal axis a, the reflected SHG intensity is recorded with

an analyzer always perpendicular to the incident polarization. We denote the signal in this

crossed polarization channel as I2ω⊥ (ϕ). The main panel of Fig. 3.4(a) displays the polar plots

of RA-SHG data taken at 280 and 120 K, above and below TCCDW, respectively. Compared

with the crystal axes a and b determined by electron diffraction [100, 101], it is appar-

ent that the RA patterns at both temperatures rotate away, evidencing mirror symmetry

breaking that are prescribed by the ferro-rotational point group S6 [102]. On a side note,

a similar measurement on a heat-treated sample with equal fraction of clockwise-rotation

and counterclockwise-rotation domains shows the RA pattern symmetric with respect to the

crystal axes [101], indicating that the original of RA-SHG pattern rotation is due to the

formation of ferro-rotational CDW.

Figure 3.4: (a) Polar plots of RA-SHG data taken at 120 K in the CCDW phase (blue) and
at 280 K in the NCCDW phase (orange). Solid lines are fits to the calculated EQ RA-SHG
functional form I2ω⊥ (ϕ) = A cos2 3(ϕ− ϕ0). Inset shows the 120 and 280 K fits normalized to
their own maxima to illustrate the increased rotation ϕ0 at the lower temperature. (b)–(c)
Temperature dependence of RA-SHG pattern amplitude A (b) and angle of rotation from a
axis ϕ0 (c) in a cooling cycle. The transition from the NCCDW to CCDW phase is captured
at around 185 K (marked as orange vertical strips). Error bars stand for 1 standard error of
the fits to extract A and ϕ0.
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Performing the simulation outlined in Section 2.1.4, the S6 point group symmetry

dictates that the RA-SHG signal is from EQ radiation and takes the functional form

I2ω⊥ (ϕ) = A cos2 3(ϕ− ϕ0), where A and ϕ0 correspond to the amplitude and angular orien-

tation of the RA-SHG pattern, respectively, and relate to the bulk EQ susceptibility tensor

χEQ
ijkl via

A =
√

χ2
xxzx + χ2

yyzy, ϕ0 =
1

3
arctan

χxxzx

χyyzy

(3.1)

The surface ED contribution can be convincingly ruled out by thickness dependent RA-SHG

measurements [103].

The RA-SHG data at both temperatures fit well to this simulated function [solid lines

in Fig. 3.4(a) main panel]. The fits show a clear enhancement in the amplitude A, and

a resolvable increase in the orientation ϕ0 at the lower temperature. The two features are

visible in the main panel and inset of Fig. 3.4(a), respectively. Furthermore, the thorough

temperature dependence of EQ RA-SHG retains the threefold rotational symmetry between

280 and 120 K. Across the phase transition at TCCDW, A shows a kink of changing slopes and

ϕ0 exhibits a sudden increase, as shown in Fig. 3.4(b) and (c). Both behaviors are consistent

with the enhancement of the ferro-rotational order parameter across the transition, from

NCCDW with short-range ordered star-of-David patches, to CCDW with long-range ordered

uniform domains [86], where a rotation of superlattice wavevectors by ∼ 2◦ is also observed

by diffraction techniques [55]. We also comment that our experiments are conducted in

cooling cycles such that no signature of the triclinic CDW phase is observed. This phase is

reported to exist between 220 and 280 K only in heating cycles [58].
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3.3 Time-resolved SHG measurements of the ferro-

rotational CCDW

We present the dynamics of the ferro-rotational order by firstly pumping the NCCDW and

CCDW phases with femto-second optical pulses at 720 nm that create a transient imbalance

of photo-induced electrons and holes [77, 104] and then probing the temporal evolution of

both phases by the SHG intensity, measured with 800 nm fundamental normal incident light

pulses in the crossed channel at an azimuth angle ϕ = 69.3◦. The pump and fundamental

probe beams are both at 200 kHz repetition rate and incident collinearly onto the sample.

Figure 3.5: (a) Normalized tr-SHG intensity (orange) at ϕ = 69.3◦ taken at 290 K in
the NCCDW phase. The cross-correlation function (gray) between pump and probe pulses
is shown to mark time zero and time resolution. (b) Normalized tr-SHG trace (blue) at
ϕ = 69.3◦ taken at 90 K in the CCDW phase, showing both the slow recovery process after
the sudden suppression at time zero, and the fast coherent oscillations with a beating profile.
(c-d) Comparisons between transient RA-SHG patterns at two pairs of delay time marked by
black arrows in (b). The dashed blue radial line represents the polarization angle ϕ = 69.3◦

at which the tr-SHG trace in (b) was measured. The dashed black arc at 0.49 represents the
pre-time-zero SHG intensity level in (b). The comparisons in (c) and (d) demonstrate the
change in SHG are manifested in both the RA-SHG amplitude and orientation.
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Figures 3.5(a) and (b) plot the relative change in the SHG intensity after pumping,

∆I2ω⊥ (t)

I2ω⊥ (t < 0)
, taken at 290 K for the NCCDW and 90 K for the CCDW. The time zero t = 0

ps and the temporal resolution tres = 0.09 ps are determined by the peak and the full width

at half maximum of the cross-correlation function between the pump and probe pulses [gray

solid line in Fig. 3.5(a)]. The SHG intensity for the NCCDW does not show any time-

dependent change as in Fig. 3.5(a), which is expected due to the strong suppression and

damping of the excitations in short-range orders [86, 105]. In contrast, the tr-SHG trace for

the CCDW shows two prominent features: the slow recovery after the sudden suppression at

time zero and the fast coherent oscillations with a beating profile [Fig. 3.5(b)]. To identify the

sources of both time-dependent features, two pairs of RA-SHG patterns at different delays

[marked by black arrows in Fig. 3.5(b)] are measured and compared. The two RA-SHG

patterns at t = 1.40 and 2.07 ps show a clear change in the amplitude [∆A as marked in Fig.

3.5(c)], whereas those at t = 3.47 and 3.67 ps display a notable change in the orientation

[∆ϕ0 as marked in Fig. 3.5(d)]. It is noted that the ferro-rotational order parameter for

this CCDW is encoded through the SHG susceptibility tensor elements in Eq. (3.1), which

enter into both A and ϕ0 and thus the full RA-SHG pattern [Fig. 3.4(b) and (c)]. Such

observations suggest that we track the time dependence of both the RA-SHG amplitude

and orientation, A(t) and ϕ0(t), to get a comprehensive characterization of the dynamic

modulation of this ferro-rotational CCDW.

3.3.1 Time-resolved RA-SHG and spectroscopic analysis

To acquire A(t) and ϕ0(t), the full azimuth angle ϕ dependent RA-SHG measurements

are performed at every delay time t, which construct the map of tr-RA-SHG—the SHG

intensity I2ω⊥ as functions of t and ϕ—taken in the crossed polarization channel at 90 K

[Fig. 3.6(a)]. In this map, a horizontal slice is a tr-SHG trace akin to Fig. 3.5(b), and a

vertical cut is a transient RA-SHG pattern in analogy to Fig. 3.4(a). We fit the individual

RA-SHG pattern at every delay time t with I2ω⊥ (ϕ, t) = A(t) cos2 3(ϕ−ϕ0(t)) and obtain the
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time dependence of both the amplitude and orientation, A(t) and ϕ0(t). Their changes with

respect to the pre-time-zero (t < 0) values are plotted in Fig. 3.6(b) after a normalization

∆A(t)

A(t < 0)
, and in Fig. 3.6(c) in absolute size ∆ϕ0(t), respectively. Two differences are noted.

First, it is evidently present in the amplitude but absent in the orientation channel that a

sudden suppression happens right upon the pump excitation (i.e., t = 0) and recovers slowly

over a couple of pico-seconds. Second, the beating profiles of the fast coherent oscillations

show distinct phases and frequencies between the two traces, which corroborates with the

difference in their fast Fourier transformation (FFT) spectra shown in Fig. 3.6(d).

Figure 3.6: (a) Map of tr-RA-SHG intensity I2ω⊥ (ϕ, t) as a function of the polarization ϕ
and the delay time t taken at 90 K. (b-c) Time dependent changes of amplitude normalized
to the pre-time-zero value (b) and orientation in absolute size (c), after fitting RA-SHG at
individual delay time. Solid lines show the fits of both traces to a functional form consisting
of one exponential decayMBe

−t/τB and six under-damped oscillations
∑6

i=1Mie
−t/τi cos(ωit+

δi). (d-e) FFTs of the raw traces (d) and of their fits (e). Orange and blue represent the
amplitude and orientation channels, respectively. (f) Zoom-in plots of FFTs of the fitted
traces near the CCDW amplitude mode frequency in the amplitude (orange) and orientation
(blue) channels, detailing the triplet structure. The FFTs of tr-fundamental reflectivity
(∆R/R) (purple) is plotted as a comparison.

We fit the
∆A(t)

A(t < 0)
and ∆ϕ0(t) traces simultaneously with one exponential decay back-

ground MBe
−t/τB and six under-damped oscillations

∑6
i=1 Mie

−t/τi cos(ωit + δi). So far this

has been the minimum number of modes required to satisfactorily reproduce the spectro-
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scopic features in Fig. 3.6(a)–(d). Here, the decay time constants, τB and τi, and the

oscillation frequencies ωi are kept the same for both fits, whereas the magnitudes, MB and

Mi, and the oscillation phases δi are set free. The fits [solid lines in Fig. 3.6(b) and (c)]

well capture all key features of
∆A(t)

A(t < 0)
and ∆ϕ0(t) traces, and the FFTs of the fits in

Fig. 3.6(e) nicely reproduce those of the raw spectra in Fig. 3.6(d). For the slow incoherent

recovery process, indeed it only has a finite magnitude in the amplitude channel with a decay

constant of τB = 1.6ps but little magnitude in the orientation channel. For the fast coherent

oscillations, six distinguishable frequencies are identified in both channels, three of which at

1.89±0.02, 3.06±0.01 and 3.628±0.006 THz are phonon modes observed in Raman spectra

[106] and the other three at 2.201±0.004, 2.29±0.01, and 2.387±0.005 THz are around the

CCDW amplitude mode reported by Raman [106], time-resolved reflectivity [107, 108] and

ultrafast diffraction [98, 109] measurements.

Of particular interest is the triplet at around 2.4 THz, because of its higher spectral

weight than the rest and that only a single CCDW amplitude mode has been observed in

tr-fundamental reflectivity spectra [103, 107, 108]. The individual modes of this triplet in the

amplitude and the orientation channels are shown in Fig. 3.6(f). It is worth noting that our

tr-RA-SHG data reveals that the reported amplitude mode in fact contains a nontrivial triplet

structure with distinct weight distributions in the amplitude and orientation channels. The

CDW in 1T -TaS2 is reported to have triple-q nesting [110, 111] and thus the triplet structure

is likely to result from the multiple collective excitations of the ferro-rotational CCDW.

Future studies are needed to assign individual modes in the triplet to specific excitations.

3.3.2 Fluence dependence and a possible photo-induced transient

CDW state

We carry out the tr-RA-SHG measurements and perform the same analysis as in Fig.

3.6 at five different pump fluences, 0.36, 0.46, 0.58, 0.66 and 0.92 mJ/cm2. The extracted

32



∆A(t)

A(t < 0)
and ∆ϕ0(t) traces and their fits are shown in Fig. 3.7(a) and (b), respectively. As

the fast coherent oscillations dominate the slow incoherent recovery process in the amplitude

channel at high fluences [Fig. 3.7(a)], and that the incoherent recovery time constant shows

little fluence dependence, we focus our discussion on the coherent oscillations. We show

the fitted frequencies of the triplet near the CCDW amplitude mode in Fig. 3.7(c) and the

magnitude of the strongest in the triplet in the orientation channel in Fig. 3.7(d).

The fluence dependent study may have revealed a novel transient CDW state. First,

the frequencies of the triplet structure show a sudden shift at a critical fluence of FC ∼

0.5 mJ/cm2, which contributes to the evolution of the beating profile upon increasing the

pump fluence as shown in Fig. 3.7(a) and (b). In contrast, such a frequency shift is not

detectable in the tr-fundamental reflectivity [Fig. 3.7(c), purple diamonds]. Second, the

magnitude of the oscillations experiences a dramatic increase across FC that is also visible in

traces in Fig. 3.7(b). Both anomalous behaviors of the frequency shift and the magnitude en-

hancement across FC are indicative of a potential electromagnetic radiation-induced phase

transition. Considering the fact that there is no tr-SHG signal observed in the NCCDW

phase at T > TCCDW whereas clear dynamics in tr-SHG is present for all fluences inves-

tigated, we can confidently rule out the possibility of this observed photo-induced phase

transition resulting from a photo-heating-induced transition from the CCDW into the NC-

CDW state. In fact, the photo-heating effect from the pump in this study is minimal as there

is no pre-time-zero changes in tr-reflectivity and tr-RA-SHG, nor post-time-zero incoherent

exponential decay in ∆ϕ0(t) observed even at our highest fluence. We thus attribute FC as

the critical value where the pump-induced electron-hole imbalance is large enough to destroy

the star-of-David clusters and lead to a transient new CDW phase.

Finally, we would like to discuss the comparison between this photo-induced CDW phase

that is transient, short-lived and the previously reported optically manipulated CDWs in

1T -TaS2. First, a single femto-second light pulse with an incident fluence of ⩾ 5 mJ/cm2

at room temperature was reported to create or destroy metastable mirror-related domains
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Figure 3.7: (a-b) Fluence dependence of the time dependent amplitude (a) and orientation
(b) changes fitted from tr-RA-SHG maps taken at pump fluences of 0.36, 0.46, 0.58, 0.66
and 0.92 mJ/cm2. Solid lines are fits to the same functional form as in Fig. 3.6. (c) The
fluence dependence of the fitted frequencies for the triplet structure (black and gray circles)
around the CCDW amplitude mode in tr-RA-SHG and that of the CCDW amplitude mode
(purple diamonds) in tr-fundamental reflectivity. (d) The fluence dependence of the strongest
magnitude in the triplet in the orientation channel. The gradient background marks the
frequency shift in (c) and the magnitude enhancement in (d) across a critical pump fluence
of 0.5 mJ/cm2.

in the NCCDW state [109]. In addition to our much lower critical fluence of 0.5 mJ/cm2

and much shorter lifetime of a few pico-seconds, the observed collective mode frequency

shift above FC is not compatible with creation or annihilation of energetically degenerated,

mirror-symmetry-related CCDW domains because they should host the very same collective

excitations as the CCDW phase below FC . Second, a single 35 fs, ⩾ 1 mJ/cm2 light pulse

below 70 K was shown to induce a hidden metastable, metallic CDW phase whose amplitude

mode [77] and wavevector [104] are slightly shifted from those of CCDW. Further studies

on this photo-induced hidden metastable CDW phase revealed that its lifetime significantly

decreases at higher temperatures [78, 82]. Considering the similar frequency shift but higher

temperature and lower critical fluence in our study compared to those in literature, it is

likely that our photo-induced transient CDW here is a short-lived version of the hidden
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metastable CDW phase, which is observable at the ultrafast timescale thanks to the direct

coupling between tr-EQ-RA-SHG and the ferro-rotational nature of this CDW.
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CHAPTER 4

Magnetic-Field-Induced Quantum Phase

Transitions in Bulk CrI3

4.1 Bulk and few-layer CrI3

During the surge of interest in the development of two-dimensional magnetic materials,

the transition metal trichalcogenide CrI3 has seen a great success. The isolation of few-

layer CrI3 has opened new avenues in the study of low-dimensional systems, revealing novel

phenomena such as layered AFM [29] and gate-tunable magnetic phases [112–115] in the

earliest studies. Further exploration about the moire engineering of 2D magnetism based on

thin-layer CrI3 will be discussed in later Chapter 5.

In addition to the vast potential based on the AFM order in few-layer CrI3, the study of

bulk CrI3 remains crucial from several perspectives. First and fundamentally, while few-layer

CrI3 has the layered AFM order that develops under TN = 45 K [29], bulk CrI3 is shown

to be a FM with Curie temperature TC = 61 K [116]. This direct discrepancy indicates

the very intriguing underlying magnetic interactions in this material. Secondly, while bulk

CrI3 can also be treated as stacked layers, in the bulk form the layers stack rhombohedrally

at low temperature but monoclinically above Ts = 220 K [116], as shown in Fig. 4.1. A

further experimental observation of the enhanced reduction of interlayer spacing below TC in

bulk CrI3 [116] suggests a strong magneto-elastic coupling. Such flexibility of the lattice, or

more specifically the stacking orders, provides great potential towards the tunability of the
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spin system that can be exploited to achieve interesting engineering possibilities specifically

in the 2D form, as will be presented in Chapter 5. Furthermore, gapped magnon modes

have been observed in both bulk [117, 118] and thin-layer CrI3 [119], indicating the Ising-

type exchange anisotropy. Such anisotropy not only is critical for the magnetic stability of

monolayer CrI3, but also can host other interesting magnetic properties such as the Kitaev

interaction [120–122] and topological spin excitations [123, 124].

Figure 4.1: Comparison of the stacking orders of CrI3 layers. (a)(c) Rhombohedral stacking.
(b)(d) Monoclinic stacking. Figure adapted from [116].

A magnetic field- and temperature-dependent polarized Raman study is presented in the

rest of this chapter. By careful selection rule analysis, a novel mixed state of surface AFM

and bulk FM is proposed, and a further magnetic field-induced structural phase transition

is revealed. Through studying bulk CrI3, such intricate interplay between magnetism and

crystalline structures provides the baseline for the future engineering of 2D magnetism.
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4.2 Coexistence of AFM and FM magnons

The low-lying spin system excitation, namely, magnons provide us with information about

the magnetic structure in bulk CrI3. Figure 4.2(a)–(c) show the external magnetic field

dependent Raman spectra at lower wavenumbers measured at low temperature T = 10

K and with circular polarizations, where LL denotes the incident light and scattered light

are selected to be co-circularly polarized and LR denotes opposite senses of rotation. This

way, we eliminate the Faraday rotation caused by the optical components under external

magnetic field that could have violated the linear polarization used in a traditional Raman

experiment. From Fig. 4.2(a)–(c), we observe several ultra-low frequency modes, referred

to as M0 hereafter, that had not been detected in Raman measurements before this study

[125–127], and identify them as magnons for the following three reasons.

First, a clear linear dependence of energy on magnetic field Bz is seen in Fig. 4.2(b).

This Zeeman energy shift ∝ Bz is a direct result of magnons emergent from collinear spins.

Energy-wise, their frequencies of approximately 4 cm−1 (0.5 meV) are close to the reported

spin wave gap which is on the order of 1 meV [117]. This small spin wave energy is also

consistent with the consideration that Cr being a 3d metal element should not bring a large

spin-orbit coupling that is responsible for the Ising-type anisotropy. Thirdly, thoseM0 modes

soften towards zero energy upon heating, as shown in Fig. 4.2(d). The comparison to the

temperature dependence
√
Tc − T of an order parameter based on mean-field theory [128]

further indicates that such modes are of magnetic origin [Fig. 4.2(e)].

After designating the magnon identity of the M0 modes, we also note that multiple

branches are present in Fig. 4.2(b). With the fact that Stokes side and anti-Stokes side

in Raman Scattering generally probe the same excitation but only differ in intensity under-

stood, we shall focus on the anti-Stokes (negative Raman shift) spectrum. We observe that

three spin wave branches at magnetic fields lower than 2 T collapse into one branch across

Bc = 2 T. For further quantification, all the M0 modes are fitted with a Lorentzian function

and their frequencies are summarized in the left panel of Fig. 4.3(a). We note in particular,
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Figure 4.2: Magnon modes in bulk CrI3 revealed in Raman Scattering. (a) Raman spectra
taken at 10 K and 0 T in the LL and LR channels. LL(R) stands for the polarization
channel in which the incident and scattered light is left and left (right) circularly polarized,
respectively. Solid dots are raw data points and solid lines are Lorentzian fits. (b) A color
map of magnetic field-dependent Raman spectra taken over a magnetic field range of 0-7 T at
10 K in the LL channel. The shaded area is to block a noise line. (c) Raman spectra taken at
10 K and 7 T in the LL and LR channels. (d) Temperature dependent Raman spectra taken
at 0 T in LL channel. (e) Temperature dependence of the fitted M0 frequencies measured at

0 T. The solid grey line shows a
√
Tc − T trend with onsite Tc = 45 K.

below 2 T, a pair of the three starts with close frequencies of approximately 3.4 and 3.9

cm−1 at 0 T and diverges with increasing magnetic field (M0a and M0b), while the third one

increases linearly since its appearance at approximately 1 T and continues after Bc of 2 T

with a slight discontinuity of frequency redshift (M0c). The field dependence of M0a and M0b

is the typical behavior of AFM spin waves in which the angular momenta of two degenerate

spin waves are antiparallel to the external magnetic field. The fact that M0c continues after

Bc is otherwise indicative that it corresponds to the overall FM as that is the state at high
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magnetic field.

Figure 4.3: Establishing the mixed sAFM and bFM phase in bulk CrI3. (a) Magnon fre-
quencies from fitting experimental data (left) and spin wave calculations (right). M0a, M0b

and M0c label the three spin wave branches below the critical magnetic field Bc = 2 T. (b)
Schematics of the mixed state of the surface layered AFM (sAFM for the state with alter-
nating spin moments in the adjacent layers at the sample surface) and the deep bulk FM
(bFM for the state with all the spin moments along one direction) below Bc and the pure
FM state above Bc.

Our experimental observations above suggest a mixed state of layered AFM and FM for a

CrI3 bulk, in contrast to the literature assignment of a pure FM phase [116]. This suggestion

is consistent with the absence of M0c below Bc in CrI3 flakes [129]. As sketched in the left

of Fig. 4.3(b), below Bc, top layers of bulk CrI3 host layered AFM (denoted as sAFM)

that is similar to what has been reported in 2D CrI3 thin films [112–115], and the deeper

bulk exhibits a FM order (denoted as bFM) that is consistent with bulk magnetization

measurements [130]. Meanwhile, the small energy scale of about 1 µeV [131] of the long-

range magnetic dipole-dipole interactions favoring the interlayer FM is much weaker than the

interlayer AFM exchange coupling of 150 µeV. Therefore, we rule out the possibility of pure
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magnetic energetic reasons and require surface reconstructions to establish the interlayer

AFM coupling at the surface while having FM coupling in the bulk. Hence, the sAFM

provides the pair of spin waves with Zeeman splitting (M0a and M0b) while the bFM leads to

the third branch with a linearly increasing frequency with increasing magnetic field (M0c).

Also note that the bFM provides an effective magnetic field of around 0.27 T to lift the

degeneracy of the two sAFM spin waves at 0 T. Above Bc, sAFM transits into FM in the

same manner as layered AFM does in CrI3 thin flakes [112–115], making the entire CrI3

crystal in an overall FM state as shown in the right of Fig. 4.3(b). This results in a sole

spin wave branch above Bc.

4.2.1 Spin wave calculations for sAFM and bFM

We further carry out spin wave calculations for the proposed states. We consider an

anisotropic Heisenberg XXZ Hamiltonian for the intralayer spin-spin interaction, together

with isotropic interlayer contributions and Zeeman energy. The total Hamiltonian can be

separated into

H = Hintra +Hinter +HZeeman (4.1)

to which the contributions are

Hintra = −J1
∑
l,⟨i,j⟩

(
S

(l)
i,∥ · S

(l)
j,∥ + γS

(l)
i,zS

(l)
j,z

)
(4.2)

Hinter = −J2
∑
i

S
(1)
i · S(2)

i (4.3)

HZeeman = −gSµBB
∑
l,i

S
(l)
i,z (4.4)

where S
(l)
i denotes the i-th vector spin in the l-th layer, J1 (J2) denote the intra- (inter-)

layer exchange interactions, γ represents the anisotropy, gS is the Landé g factor for pure

spin, µB is the Bohr magneton. The summation in Eq. (4.2) is for nearest neighbors ⟨i, j⟩
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in the same layer only.

We model the sAFM order in a bilayer lattice, where each unit cell contains 4 spins and

J2 is negative for an AFM coupling. we first apply the Holstein-Primakoff transformation

[132] to map the spin operators into magnon operators

• spin-up sublattice A and B

SA
i,z = S − a†iai

SA
i,+ =

√
2S

√
1− a†iai

2S
ai

SA
i,− =

√
2Sa†i

√
1− a†iai

2S

• spin-down sublattice C and D

SC
i,z = −S + c†ici

SC
i,+ =

√
2Sc†i

√
1− c†ici

2S

SC
i,− =

√
2S

√
1− c†ici

2S
ci

where A and B denote the two up-spins in layer one, C and D denote the two down-spins in

layer two. Keep the lowest order in magnon operators and sorting our the total Hamiltonian

we have for intralayer couplings

Htop
intra,2 = −3J1S

∑
k

(ska
†
kbk + s−kakb

†
k − γa†kak − γb†kbk) (4.5)

where the in-plane structure factor sk is given by

sk =
1

3

∑
δ

eik·δ =
1

3
(eikyd + 2 cos

√
3

2
kxd e−i

kyd

2 ) (4.6)
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Similar term can be obtained for the bottom layer. Then for the interlayer couplings, there

are four nearest neighbor couplings of the form

HAC
inter,2 = −J2S

∑
k

(eik·ρ1a†kc
†
−k + e−ik·ρ1akc−k + γa†kak + γc†kck) (4.7)

where ρ1 =
√
3/3x̂ is the displacement from site A to site C. Similar Hamiltonians can be

obtained for couplings between A and D, B and D, B and C. Performing a special diagonal-

ization procedure explained in [132], we find the eigen energies for the Γ point magnons

Ea = S
√

3(γ − 1)J1
[
3(γ − 1)J1 − 4J2

]
± gSµBB (4.8)

Eo = S
√

3(γ + 1)J1
[
3(γ + 1)J1 − 4J2

]
± gSµBB (4.9)

where S = 3
2
and gS = 1

2
for Cr3+. The second solution above gives much higher energy

and corresponds to the optical magnons. The first solution is the acoustic magnons that are

doubly-degenerate at zero magnetic field but split linearly with non-zero fields. To explain

the slight non-degeneracy at zero field [Fig. 4.3(a)], we postulate that the bFM should

provide an effective field B0 to the surface layers even without applying external fields. This

field is estimated from the energy difference to be around 0.27 T.

Similar calculation is done for the bFM or overall FM cases below or after Bc = 2 T,

where a single FM layer is considered. This yields the energy of the acoustic magnon

Ea = 3S(γ − 1)J1 + gSµBB (4.10)

This mode only shows an energy redshift with respect to the external magnetic field, which

means the field tends to align the spins and disfavors spin excitation. This also agrees with

our observation.

By comparing our calculated and fitted magnon energies in Fig. 4.3(a), we extract the

energy parameters for the system and summarize them in Tab. 4.1. Since we only detect
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the acoustic magnons where the excited spins in the same layer tilt in the same direction,

only the intralayer exchange anisotropy (γ − 1)J1 can be extracted. It is desired to measure

the optical magnon frequency in a future work such that the individual values of J1 and γJ1

can be obtained.

Below 2 T Above 2 T

Intralayer exchange anisotropy (γ − 1)J1 0.065 meV 0.056 meV

Interlayer exchange coupling J2 −0.074 meV

Effective field from bFM B0 0.27 T

Table 4.1: Energy parameters for sAFM and bFM states from fitting spin waves measured
in bulk CrI3.

4.3 Magnetism-dependent phonon scattering

4.3.1 Phonon selection rules

Noting the reported structural phase transition from monoclinic C2h to rhombohedral S6,

as well as a clear structural response to the formation of the FM order [116], we expect to see

certain forms of coupling between the magnetic order and the crystal structure in bulk CrI3.

A detailed symmetry analysis based on the structure change helps resolve the outstanding

question why and how the FM in bulk CrI3 crosses over to the layered AFM in thin films, as

introduced in Section 4.1. In this regard and through polarized Raman measurements with

magnetic field dependence, we conduct selection rule analysis on the other Raman modes

accessed in our experiments to gather structure information.

In Tab. 4.2 we summarize the Raman tensors for both monoclinic C2h and rhombohedral

S6 structures as well as their Raman selection rules according to Eq. (2.20). Specifically we

have included an anti-symmetric (AS) mode as well as its selection rule in the table. This is

deduced from two special modes that will be discussed soon in this section.

We compare the selection rules with phonon Raman scattering data in Fig. 4.4(a)–(c),
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LL LR

S6 Ag =

(
a 0
0 a

)
, AS =

(
0 b
−b 0

)
Eg =

(
c d
d −c

)

C2h Ag =

(
a 0
0 b

)
Ag =

(
a 0
0 b

)
, Bg =

(
0 c
c 0

)
Table 4.2: Raman tensors and corresponding selections rules for rhombohedral S6 and mon-
oclinic C2h point groups.

which show external magnetic field dependent Raman spectra of phonons measured at low

temperature T = 10 K and with circular polarizations. At zero magnetic field with the

rhombohedral S6 symmetry [Fig. 4.4(a)], according to Tab. 4.2, LL and LR channels should

probe exclusively Ag + AS and Eg modes, respectively. Thus the modes appearing only in

LR channels [129] around 109 cm−1 and 239 cm−1 are attributed to the Eg irrep, though

the latter has slight leakage into LL. From an earlier study [125] it is shown that the two

modes M1 at around 77.3 cm−1 and M2 at around 125.8 cm−1 must be associated with an

anti-symmetric Raman tensor since they do not appear in the parallel linear polarization

channel [see later in Section 5.4 and Eq. (5.16)]. Lastly the two modes at around 79 cm−1

and 129 cm−1 in the LL channel are left to belong to the Ag irrep.

It is not expected for a phonon mode to possess anti-symmetry in the Raman process

[46]. Early studies in magnetic semiconducting chalcogenide materials EuX (X = S, Se, Te)

[133–135] have revealed similar magnetic order dependent activation of Raman modes or

scattering intensity increase, which is then attributed to the one phonon-one spin scattering

[136–138]. In our case, note that bothM1 andM2 disappear after pulling the whole system to

an overall FM state after Bc = 2 T as shown in Fig. 4.4(b) and (c), and that the temperature

dependence of their intensities reveal their onsite at the magnetism ordering temperature

Tc = 45 K. Such observations signal the magnetic origin of these two modes.
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Figure 4.4: Phonon modes in bulk CrI3 measured by Raman Scattering. (a) Raman spectra
taken at 10 K and 0 T in the LL and LR channels. (b) A color map of magnetic field-
dependent Raman spectra taken over a magnetic field range of 0-7 T at 10 K in the LL
channel. (c) Raman spectra taken at 10 K and 7 T in the LL and LR channels. (d)–(e)
Temperature dependence of the fitted M1 and M2 intensities measured at 0 T. The solid
grey lines represent an onsite behavior with Tc = 45 K.

4.3.2 Antisymmetric “phonon” modes

We propose that M1 or M2 is the composite excitation of the c∗ direction zone-boundary

phonon Xq at q = (0, 0, kc) together with the AFM order M−q with wavevector −q. This

composition preserves the total momentum of zero so that it is detectable by optical Raman

scattering. To obtain the selection rule of this excitation XqM−q, we perform an expansion

of the Raman polarizability αij with respect to both the phonon mode and the AFM order.

This yields the magnetic dependent contribution

∆αij =
∂2αij

∂Xq
k ∂M

−q
l

∣∣∣∣∣
Xq

k=0,M−q
l =0

Xq
kM

−q
l ≡ KijklX

q
kM

−q
l (4.11)
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where Kijkl defined above must be invariant under the symmetry operations of the lattice

point group S6. There are in total 27 independent elements for this tensor [40]

Kzzzz, Kxxxx = Kyyyy = Kxxyy +Kxyyx +Kxyxy,

Kxxyy = Kyyxx, Kxyyx = Kyxxy, Kxyxy = Kyxyx,

Kyyzz = Kxxzz, Kxyzz = −Kyxzz, Kzzyy = Kzzxx, Kzzxy = −Kzzyx,

Kzyyz = Kzxxz, Kzxyz = −Kzyxz, Kyzzy = Kxzzx, Kxzzy = −Kyzzx,

Kyzyz = Kxzxz, Kxzyz = −Kyzxz, Kzyzy = Kzxzx, Kzxzy = −Kzyzx,

Kxxxy = −Kyyyx = Kyyxy +Kyxyy +Kxyyy,

Kyyxy = −Kxxyx, Kyxyy = −Kxyxx, Kxyyy = −Kyxxx,

Kyyyz = −Kyxxz = −Kxyxz = −Kxxyz, Kyyzy = −Kyxzx = −Kxyzx = −Kxxzy

Kyzyy = −Kyzxx = −Kxzyx = −Kxzxy, Kzyyy = −Kzyxx = −Kzxyx = −Kzxxy

Kxxxz = −Kxyyz = −Kyxyz = −Kyyxz, Kxxzx = −Kxyzy = −Kyxzy = −Kyyzx

Kxzxx = −Kyzxy = −Kyzyx = −Kxzyy, Kzxxx = −Kzxyy = −Kzyxy = −Kzyyx

The Onsager relation [53] ∆αij(X,M ) = ∆αji(X,−M ) must hold for the magneto-Raman

process. Considering this further constraint, we find the following expressions for the Raman
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polarizability

∆αxx = ∆αyy = ∆αzz = 0

∆αyx = −∆αxy = −XzMzKxyzz

+
1

2

[
(XyMx −XxMy)(Kxyxy −Kxyyx) + (XxMx −XyMy)(Kyxyy −Kxyyy)

]
∆αzx = −∆αxz =

1

2

[
(XxMx −XyMy)(Kzxxx −Kxzxx)

+(XyMx +XxMy)(Kyzyy −Kzyyy) +XxMz(Kzyyz −Kxzxz)

+XyMz(Kzxyz −Kxzyz) +XzMx(Kzyzy −Kyzzy) +XzMy(Kzxzy −Kxzzy)
]

∆αzy = −∆αyz =
1

2

[
(XxMx −XyMy)(Kyzyy −Kzyyy)

+(XyMx +XxMy)(Kxzxx −Kzxxx) +XxMz(Kxzyz −Kzxyz)

+XyMz(Kzyyz −Kyzyz) +XzMx(Kxzzy −Kzxzy) +XzMy(Kzyzy −Kyzzy)
]

(4.12)

It is apparent from the above equations that the tensor ∆αij in this expansion is anti-

symmetric of the form expressed in Tab. 4.2, thus explains the selection rule for modes M1

and M2. This finding also gives the second piece of evidence for the existence of an AFM

order in the bulk CrI3 system.

4.4 Structural phase transition due to magneto-elastic

coupling

We now pay attention to the apparent change of selection rules of those phonon modes

across Bc = 2 T, as shown in Fig. 4.4(a)–(c) and in [129]. Combining the LL and LR spectra,

we note three prominent features. Firstly, the anti-symmetric modes M1 and M2 disappear

completely, indicating the loss of the AFM order. Second, the previously LL-exclusive Ag

modes at 79 cm−1 and 130 cm−1 become active in the LR channel. Third, the previously

LR-exclusive Eg modes, while maintaining part of their intensities in the LR channel, show
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noticeable presence in the LL channel. This is a strong indication of the Eg modes splitting

due to lowering of symmetry. Indeed, comparing with Tab. 4.2 one find good agreement with

the selection rules of point group C2h for the state above Bc = 2 T. The intensity change of

several typical modes are plotted in Fig. 4.5(a).

We propose the shearing of the van der Waals layers as the origin of the S6 to C2h struc-

tural phase transition, which is realized by the interlayer shift vector deviating from that

of an A-B-C stacking order [Fig. 4.1(c) and 4.5(e)]. This type of interlayer shift has been

experimentally reported elsewhere as a structural instability for bulk CrI3 [116, 139]. Inter-

estingly, this magnetic-field-induced monoclinic phase mimics a 3D long-range nematic order

with a director as its order parameter which breaks the rotational symmetry but preserves

the lattice translational symmetry, indicated by the elongated ellipses in Fig. 4.5(e)]. It is

known that such a 3D quantum nematic order must emerge through the first-order phase

transition [140], compatible with our proposed structural phase transition. In contrast to

conventional structural transitions, the emergence of this 3D quantum nematic order is driven

by an external magnetic field that has a much stronger coupling to electrons than to ions,

supporting an electronic origin for this structural transition. One natural mechanism for it

could be that this interlayer shear deformation increases the distance between the nearest

interlayer spins and thereby reduces the exchange energy penalty for the field-induced lay-

ered AFM to FM transition. The revealing of this phase transition further demonstrates the

rich phase diagram for this material and provides solid evidence of a strong coupling between

the structure (stacking orders) and the magnetic interactions. This not only explains the

puzzling evolution from the FM in bulk to the layered AFM in 2D CrI3, but proves CrI3 as

an ideal platform to explore a variety of external controls such as electric field, strain, and

charge-carrier doping, on the magnetism and its interplay with other degrees of freedoms.
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Figure 4.5: Revealing the rhombohedral-to-monoclinic structural phase transition at Bc in
bulk CrI3. Magnetic field dependence of (a) a representative Ag phonon (at 129 cm−1)
intensity leakage into the LR channel, (b) an example of an Eg phonon (at 109 cm−1)
intensity showing up in the LL channel, which corresponds to the Eg phonon of the S6

structure becoming the Ag phonon of the C2h structure, (c) an example of the Eg phonon
(at 240 cm−1) intensity experiencing a clear discontinuity in the LR channel but remaining
absent in the LL channel corresponding to the Eg phonon becoming a Bg phonon, and (d)
M2 mode intensity. Inset shows an enlargement between 1.5 and 2.5 T with both increasing
(+B) and decreasing (−B) magnetic fields. (e) Schematic illustration of the shearing of
CrI3 layers across the magnetic phase transition at Bc. The light blue ellipses represent the
directors between layers formed as a result of this lattice deformation.
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CHAPTER 5

Moiré Engineering in tDB CrI3

5.1 Moiré engineering in the spin degree of freedom

Moiré engineering has revolutionized the field of condensed matter physics by enabling the

precise and flexible control [17] of electronic properties through the deliberate stacking of 2D

atomic layers at specific angles. This technique has led to the discovery of numerous exotic

electronic states, such as flat bands induced strong correlation physics [11, 12, 141–147],

nontrivial topological phases [148–153], and exotic exciton properties [154–158]. By creating

a moiré superlattice, the periodic potential landscape is modified, resulting in new emergent

phenomena that are not present in the parent layers. This concept of moiré engineering,

initially explored in the electronic degree of freedom, has now extended its reach to the spin

degree of freedom [16, 159–163], offering exciting possibilities in the realm of magnetism.

Moiré engineering provides a powerful platform to manipulate magnetic properties at the

nanoscale. By twisting magnetic layers relative to each other, one can introduce frustration

and complex magnetic interactions within the moiré supercell, leading to novel magnetic

textures and phases formed in beyond atom-to-atom length scales. This approach allows

researchers to explore the interplay between moiré patterns and spin arrangements, poten-

tially unveiling new magnetic phenomena such as non-collinear spin textures [159, 161] and

topological magnetic states [163]. In addition to the fundamental interests, the ability to

engineer and control these magnetic properties opens up new avenues for the development
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of advanced spintronic or magnonic applications [164–169].

As partly demonstrated in Chapter 4, the van der Waals magnetic material CrI3 is par-

ticularly well-suited for exploring moiré engineering in the spin degree of freedom. We have

shown the strong magneto-elastic coupling in this material as well as specifically its capabil-

ity of FM to AFM crossover through the change of lateral interlayer shift. Such properties

exactly align with what moiré engineering of magnetism is calling for—the modulation of

magnetic interactions as a function of local atomic structures.

In summary, the exploration of moiré engineering in the spin degree of freedom using CrI3

offers a promising pathway to discover and manipulate novel magnetic states. This chapter

will delve into the optical characterization of moiré-engineered magnetism in twisted double-

bilayer (tDB) CrI3. By understanding the intricate relationship between various stacking

orders and the corresponding magnetic interactions unlocked through twisting, we highlight

an experimentally found unexpected FM order rising from parent antiferromagnets together

with the formation of noncollinear spin textures.

5.2 tDB CrI3 and the moiré superlattice

We fabricate tDB CrI3 homostructures with two individual bilayer CrI3. The structure

of the system is shown in Fig. 5.1(a). Within each parent bilayer, the stacking order is

monoclinic. The twist is introduced at the middle interface between the two bilayers and

that is the playground where moiré engineering is supposed to happen. In Fig. 5.1(b) top,

we show a false-color optical image of a typical tDB CrI3 sample that was made by tearing a

large piece of 2L CrI3 [Fig. 5.1(b), bottom] into two and then stacking the pieces vertically at

a controlled twist angle of α. Before being brought for other characterizations, the sample is

further protectively sandwiched between two few-layer hexagonal boron nitride (hBN) flakes

to avoid surface reactions with oxygen and moisture in the ambient environment.
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Figure 5.1: tDB CrI3. (a) Sketch of a tDB CrI3 sample made of two bilayer CrI3 with a
twist angle α between them. A moiré superlattice forms at the interface between the two
bilayers, whereas individual bilayer CrI3 has its own monoclinic stacking. (b) False-colored
optical images of a tDB CrI3 homostructure (top) with two bilayer CrI3 constituents outlined
with red lines and the original large-size 2L CrI3 flake (bottom) with the tearing boundary
marked with a white dashed line.

5.2.1 High quality moiré superlattice imaged by TEM

We verify that our tDB CrI3 sample hosts a high-quality moiré superlattice, using selected

area electronic diffraction (SAED) and dark-field transmission electron microscopy (DF-

TEM). Figure 5.2(a) shows the zoom-in SAED pattern of tDB CrI3 with a twist angle of

α = 1.4±0.1◦, where the uncertainty comes from the fitted Bragg peak width. In addition to

the three pairs of Bragg peaks [black circles in Fig. 5.2(a)] from the two constituting bilayer

CrI3 lattices, we also observe two additional diffraction peaks [blue circles in Fig. 5.2(a)]

located beside the Bragg ones, which correspond to the second-order moiré superlattice

diffraction. This clear observation of superlattice peaks in the diffraction pattern is a direct

and solid evidence of the formation of moiré superlattices [101].

Figure 5.2(b) further shows three real-space DF-TEM images taken from within the SAED

region, acquired by selecting the (03̄30), (3̄300) and (303̄0) Bragg and moiré superlattice

reflections, respectively. Consistent with the presence of superlattice diffraction peaks, the

DF-TEM image for every channel clearly shows the parallelogram feature. We comment

that without the two superlattice diffraction peaks one would only observe parallel lines in

the same DF-TEM measurements. In that situation the periodicity of the moiré superlattice

were absent, and that would indicate a minimal coupling between the two flakes. Figure
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Figure 5.2: SAED and DF-TEM of high-quality moiré superlattice in tDB CrI3. (a) Zoom-in
SAED pattern showing the Bragg peaks for the two CrI3 honeycomb lattices (black circles)
and the second-order moiré superlattice diffraction peaks (blue circles). The measured twist
angle for this sample is α = 1.4 ± 0.1◦. (b) DF-TEM images of the same local region on
the sample. Each image is acquired by selecting a pair of Bragg and superlattice diffraction
peaks, labelled by the corresponding Bragg peak indices. (c) A composite image formed by
summing up the three DF-TEM images in (b), showing a uniform, high-quality superlattice.
The red parallelogram indicates the moiré supercell whose area is three times that of the
original unit cell.

5.2(c) is a composite image made by summing up the three DF-TEM images in Fig. 5.2(b).

It shows the superlattice structure marked by the red parallelogram uniformly extending

over an area of approximately 250× 125 nm2.

5.2.2 The choice of twisted double-bilayer over twisted bilayer

We briefly comment on our choice of 2L CrI3 as the building blocks to form a twisted

double-bilayer, instead of using 1L CrI3 for a twisted bilayer. It has been found in practice,

that the phonon mode mostly involving the c-direction vibration of the I ions [170] shows

a much narrower linewidth in bilayer CrI3 as opposed to that in a monolayer, as displayed

in Fig. 5.3. The satellite peak in the 2L case represents the magnetism-coupled mode

whose origin is similar to what is explained in Section 4.3. This side peak is also of narrow

linewidth. Similar findings have been reported in other independent studies as well [171, 172].

Such narrow linewidths suggest a much better crystalline and magnetic integrity in 2L CrI3
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than in 1L. This helps ensure the high quality moiré superlattice formed by two bilayers

as demonstrated in the previous section. We also note few TEM studies have shown moiré

superlattices as good as in our tDB sample.

Figure 5.3: Raman spectra of a phonon mode in 1L and 2L CrI3 acquired in linear parallel
(red) and crossed (blue) polarization channels at 10 K. The solid curves are fits to the raw
data (dots). Figure adapted from [170].

Accompanying the mediocre quality of the Raman fingerprint of 1L CrI3, it is actually

challenging to obtain good 1L CrI3 samples at the first place. The practical difficulties include

an extremely low yield of 1L CrI3 after exfoliation, small size (∼ a few µm) flakes not suitable

for the “tear-and-stack” technique, and the faster degrade whose timescale is usually shorter

than the common sample loading and cooling time required for optical characterization.

5.3 Simulated magnetic ground states in tDB CrI3

The magnetic ground state in semiconducting CrI3 (gap size ∼ 1.1 eV without too much

variation from bulk to thin-film systems [173, 174])—schematically characterized by the

periodically ordered arrangement of the spin vectors—is governed by the exchange interaction

between the Cr3+ spins, mathematically with terms like −JSi · Sj. This model provides

a framework for understanding how neighboring spins interact, and thus determining the
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ground state configuration.

5.3.1 Stacking-dependent interlayer exchange interaction

In CrI3, with a layered perspective, the intralayer exchange interaction is ascribed to a

Cr-I-Cr super-exchange with a somewhat close to 90◦ bond angle [175], which greatly favors

a FM coupling according to the Goodenough-Kanamori rules [176–179]. The interlayer

exchange interaction, however, originates from the super-super-exchange through the two I

ions across the van der Waals gap. This interlayer orbital pathway is extremely sensitive to

the relative displacement between the two layers and thus responsible for a stacking order

dependent interlayer exchange interaction [139, 179–182]. As an example, in natural bilayer

CrI3 as shown in Fig. 5.4, the intralayer exchange interaction Jintra = 2.2 meV/µ2
B is strongly

FM, whereas the interlayer exchange at this monoclinic stacking Jinter = −0.04 meV/µ2
B is

a much weaker AFM interaction [139]. This combination will prefer a layered AFM as the

magnetic ground state [113, 183]. On the other hand, in a bulk CrI3 system where the layers

are rhombohedrally stacked, the interlayer exchange is calculated to be 0.6 meV/µ2
B [139],

which together with the positive Jintra will favor an overall FM ground state. This discussion

explains the crossover from the bulk FM order to the layered AFM order in 2D CrI3.

Figure 5.4: Schematic for the intralayer and interlayer exchange couplings in two adjacent
layers of Cr3+ spins. Figure adapted from [139].

Moiré engineering provides the playground where a continuous distribution of stacking
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orders can be introduced at the twist interface, and thus creating a distribution of the

interlayer exchange interaction Jmoiré(r), where r runs over the moiré supercell. Looking

at two honeycomb lattices with a small angular mismatch illustrated in Fig. 5.5(a), within

a moiré supercell indicated by the black parallelogram, one can identify three—overlying

(AA), rhombohedral (R) and monoclinic (M)—typical types of stacking orders. In between

those specific positions the local atomic registry evolves continuously. We take the following

interpolation method to obtain the function Jmoiré(r) for next-step simulations. First, from

reported ab-initio calculations [139], we get the following four interaction values

Stacking order r Jmoiré (meV/µ2
B)

AA (0, 0) 0.11

R (0,

√
3

3
) 0.6

M (
1

3
, 0) -0.04

M (
2

3
, 0) -0.05

Table 5.1: Calculated typical interlayer exchange interaction values in a moiré supercell.
Data points taken from [139].

Noting the moiré system still possesses the threefold rotational symmetry and the function

Jmoié(r) is even with respect to inversion, we use cosine functions up to the second-harmonic

as the basis functions for interpolation

J(r) = J0 + J1

3∑
i=1

cos(k
(1)
i · r) + J2

3∑
i=1

cos(k
(2)
i · r+ ϕ) (5.1)

where J0, J1, J2 and ϕ are parameters to be determined through interpolation. The two sets
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of wavevectors are given by

k
(1)
1 = b2, k

(1)
2 = −b1, k

(1)
3 = b1 − b2

k
(2)
1 = 2b2 − b1, k

(2)
2 = −b1 − b2, k

(2)
3 = 2b1 − b2

(5.2)

where b1 = 2π(1,
√
3
3
) and b2 = 2π(0, 2

√
3

3
) are the two in-plane reciprocal primitive vectors.

Within each harmonics, the three wavevectors k
(i)
1,2,3 are mutually 120◦ to each other and

thus preserve the threefold rotational symmetry. Interpolating with the target function in

Eq. (5.1) and the values in Tab. 5.1 we obtain the distribution function that is plotted in

Fig. 5.5(b).

Figure 5.5: (a) The moiré superlattice formed at the interface between two 2L CrI3. Regions
of AA- (green), R- (blue) and M-type (red) stacking geometries are marked in one moiré
supercell (black parallelogram), and highlighted on the right column. (b) The periodically
modulating interlayer exchange interaction Jmoiré(r) at the interface between two 2L CrI3,
obtained through interpolation.

This moiré interlayer exchange coupling Jmoiré(r) periodically varies from AFM type [blue

in Fig. 5.5(b)] to FM type [purple in Fig. 5.5(b)]. This means the spins at moiré interface

experience spatially modulated Jinter “vertically”. At the same time, the strong intralayer

FM type (2.2 meV/µ2
B, much stronger than max |Jmoiré|) exchange interaction highly favors

the configuration of uniform out-of-plane spins within one Cr3+ layer. It is the competition

between these two exchange couplings that determines the magnetic ground state in tDB
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CrI3. Ultimately, this is what moiré engineering in spin systems does—changing the way

these layers stack on top of each other and then leading to different magnetic configurations

through modulating the interlayer exchange interactions.

5.3.2 Twist angle dependent magnetic ground states

We construct the total magnetic Hamiltonian of a tDB system by including the intralayer

exchange coupling, the easy-axis anisotropy, the interlayer AFM exchange coupling within

each bilayer, and the modulated interlayer exchange coupling between the two bilayers

H =
4∑

l=1

H
(l)
intra +H

(1,2)
M +H

(2,3)
moiré +H

(3,4)
M (5.3)

where H
(l)
intra denotes the intralayer couplings in the l-th layer, and the following three terms

represent the interlayer couplings for all three interfaces. For the coupling between layer 1

and 2, and between layer 3 and 4, the exchange interaction takes the monoclinic value JM;

for the coupling between layer 2 and 3, the function Jmoiré(r) is used.

We seek to minimize the total energy in Eq. (5.3) in the parameter space of all possible

spin orientations. First consider the following intralayer coupling Hamiltonian

H
(l)
intra = −Jintra

∑
⟨i,j⟩

(
S
(l)
i,xS

(l)
j,x + S

(l)
i,yS

(l)
j,y + γS

(l)
i,zS

(l)
j,z

)
(5.4)

where ⟨i, j⟩ denotes a pair of nearest-neighbor Cr3+ spins. If we ignore the quantum fluctua-

tions, each spin vector on site i can be represented as S
(l)
i = Sn

(l)
i where n

(l)
i = (n

(l)
i,x, n

(l)
i,y, n

(l)
i,z)

is a 3D unit vector and S = 3
2
µB for Cr3+ ions. For the twist angles that we consider (for

example, intermediate twist angles such as ∼ 1◦), the moiré wavelength is about ∼ 40 nm,

and the magnetization in each layer varies slowly in real space. Therefore we can take the

continuum limit, replacing n
(l)
i with a smooth 3D function n(l)(r). Then the Hamiltonian in
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Eq. (5.4) becomes

H
(l)
intra = −JintraS

2
∑
⟨i,j⟩

[
n(l)
x (ri)n

(l)
x (rj) + n(l)

y (ri)n
(l)
y (rj) + γn(l)

z (ri)n
(l)
z (rj)

]
(5.5)

In this continuum limit, we can perform a Taylor expansion, taking δr = ri−rj as a small

parameter

n(l)
m (ri)n

(l)
m (rj) = n(l)

m (ri)
2
+ n(l)

m (ri)δr ·∇n(l)
m (ri) +

1

2
n(l)
m (ri)(δr ·∇)2n(l)

m (ri) +O(δr3) (5.6)

where m = x, y, z. Because the anisotropy factor γ = 1.0445 in CrI3 is close to 1 [184],

we take the approximation that, for the leading order term n
(l)
m (ri)

2
we keep γ = 1.0445,

while for higher order terms, we set γ = 1. This approximation simplifies the Hamiltonian

without changing any qualitative features (that is, we use n2 terms to describe the easy-axis

spin anisotropy of CrI3, while the derivatives of n(r) still preserve the SU(2) spin rotational

symmetry). With this approximation, the Hamiltonian in Eq. (5.5) becomes

H
(l)
intra = −JintraS

2
∑

unit cell

[
3
(
n(l)
x

2
+ n(l)

y

2
+ γn(l)

z

2
)
− 3

4
δr2

∣∣∇n(l)
∣∣2] (5.7)

Here, first order derivative terms cancel out, while the second order derivative terms can

be written as ∝ |∇n|2 =
∑

l=x,y

∑
m=x,y,z(∂lnm)

2. Higher order terms beyond O(δr2) are

ignored. For the honeycomb lattice of Cr3+ ions, δr = a/
√
3 where a is the lattice con-

stant. The sum in Eq. (5.7) over all unit cells can further be replaced by the real-space

integral
∑

unit cell →
1
A

∫∫
dxdy where A =

√
3
2
a2 is the area of one unit cell. This way the

Hamiltonian in Eq. (5.7) becomes

H
(l)
intra = −JintraS

2

A

∫∫ [
− a2

4

∣∣∇n(l)
∣∣2 + 3

(
n(l)
x

2
+ n(l)

y

2
+ γn(l)

z

2
)]

dxdy (5.8)
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Similarly we can write down the interlayer exchange coupling Hamiltonians

H
(1,2)
M = −2JMS2

A

∫∫
n(1) · n(2)dxdy (5.9)

H
(3,4)
M = −2JMS2

A

∫∫
n(3) · n(4)dxdy (5.10)

H
(2,3)
moiré = −2S2

A

∫∫
Jmoirén

(2) · n(3)dxdy (5.11)

To obtain the spin configuration for the lowest energy in this continuous model, we dis-

cretize a moiré unit cell using a triangular grid of L×L×4, and define the following effective

Hamiltonian on this grid

H
(l)
intra = −JintraS

2

3

∑
⟨i,j⟩

n
(l)
i · n(l)

j − 3JintraS
2

(αL)2

∑
i

(
n
(l)
i,x

2
+ n

(l)
i,y

2
+ γn

(l)
i,z

2
)

(5.12)

H
(1,2)
M = −2JMS2

(αL)2

∑
i

n
(1)
i · n(2)

i (5.13)

H
(3,4)
M = −2JMS2

(αL)2

∑
i

n
(3)
i · n(4)

i (5.14)

H
(2,3)
moiré = − 2S2

(αL)2

∑
i

Jmoirén
(2)
i · n(3)

i (5.15)

where α is the twist angle and L = 60 is the grid size. The dimensionless quantity (αL)2 =

A
A0
, where A and A0 are the areas of a CrI3 unit cell and a unit cell of this triangular grid,

respectively.

We then minimize the total Hamiltonian via the quasi-Newton method in the L×L×4×3

parameter space. The magnetic ground states turn out to evolve as the twist angle α

increases. The results at three representative twist angles (α = 0.1◦, 1◦ and 10◦) are shown

in Fig. 5.6(a)–(c). At very small twist angles such as 0.1◦ [state I in Fig. 5.6(a)], out-of-plane

magnetization Mz is spatially modulated in both the first and second layers, while remaining

antiparallel between the two layers. In the third and fourth layers the Mz is homogeneous,

being downwards (↓, mz = −3µB) in layer 3 and upwards (↑, mz = 3µB) in layer 4. We
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Figure 5.6: (a)–(c), The calculated distributions of the out-of-plane magnetization Mz in a
moiré supercell for all four layers of a tDB CrI3 at three representative twist angles α = 0.1◦

(a), 1◦ (b), and 10◦ (c).

further correlate the “vertical”, layered spin configurations with the local stacking orders.

The islands centering at AA-stacked sites take the M1 = ↓↑↓↑ layered magnetic order, and

the large remaining area centering at R-stacked sites has the M2 = ↑↓↓↑ layered magnetism.

The boundaries between the two regions in the top bilayer exhibit the non-collinear spin

texture (� � in layer 1 and �� in layer 2). At intermediate twist angles such as 1◦, the

computed magnetic ground state [state II in Fig. 5.6(b)] shows modulated spins only in

the second layer which features islands with non-compensated magnetization (M3 = ↑↑↓↑)

centering at AA-stacked sites. The M2 = ↑↓↓↑ order persists for R-stacked sites. As a

result, non-collinear spins form up in layer 2 at the boundaries between the two regions,

which primarily consist of M-stacked sites. At large twist angles such as 10◦, the calculated

result shows homogeneous spins within all four layers [state III in Fig. 5.6(c)] and they take

the M2 = ↑↓↓↑ layered magnetic order all over the moiré supercell.

If excluding the domain wall regions where the non-collinear spins reside, we summarize,

in Tab. 5.2, the aforementioned layered magnetic orders appearing in the three states shown

in Fig. 5.5(a)–(c), where +1 (−1) denotes up- (down-) spins. We note that order M1

is essentially the layered AFM order reported in natural 4L CrI3 [113]; order M2 shows
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FM alignment between layer 2 and 3 due to the FM exchange interaction around the R-

stacked sites; order M3 is most special in the sense that it exhibits a non-compensated net

magnetization and only appears at intermediate twist angles.

state I M1 = (−1, 1,−1, 1) M2 = (1,−1,−1, 1)
state II M2 = (1,−1,−1, 1) M3 = (1, 1,−1, 1)
state III M2 = (1,−1,−1, 1)

Table 5.2: Appearance of different types of layered magnetic orders in the three simulated
magnetic ground states.

While the details of the spin configurations may vary depending on the microscopic param-

eters in the model, the emergence of non-compensated magnetization only at intermediate

twist angles and the formation of non-collinear spin textures for small to intermediate twist

angles are robust features in our simulated moiré magnetism in tDB CrI3. We shall then

turn to the experimental evidence for those moiré engineered novel magnetic states.

5.4 Magnetism-coupled phonons as characterization of

the magnetic ground states in tDB CrI3

This section presents the Raman characterization of the moiré engineered novel mag-

netism in twisted tDB CrI3. Recall the magnetism-dependent phonon scattering visited in

Section 4.3 in bulk CrI3, as well as similar Raman studies in 1L to 4L natural few-layer

CrI3 systems [170–172, 185], it has been established that the accompanying satellite anti-

symmetric Raman modes around the fully symmetric Ag phonon at around 129 cm−1 are

sensitive to the layered magnetic orders [170].

Indeed as shown in Fig. 5.7 for a tDB CrI3 sample with α = 1.1◦, Ut
2,3,4 peaks do not

show up in the parallel polarization channel even when changing the azimuth angle. This
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Figure 5.7: Raman spectra of the magnetism-coupled phonon modes taken on a 1.1◦ tDB
CrI3 sample as in both parallel (grey) and crossed (blue) channels at two azimuth angles
φ = 0◦ (filled circles and solid lines) and 45◦ (open circles and dashed lines) at 10 K. The
parallel channel spectra are scaled by a factor of 0.33.

requires that for a general Raman polarizability
(
a b
c d

)
and azimuth angle φ, the term

(
1 0

)( cosφ sinφ
− sinφ cosφ

)(
a b
c d

)(
cosφ − sinφ
sinφ cosφ

)(
1
0

)
=
a− d

2
cos 2φ+

c+ b

2
sin 2φ+

a+ d

2

(5.16)

must vanish for any φ. This implies a = d = 0 and b = −c. The Raman tensor is then

anti-symmetric
(

0 b
−b 0

)
. One can also verify that for anti-symmetric modes, the intensity

in the crossed polarization channel will stay the same no matter the azimuth angle, in

accordance with the observation in Fig. 5.7. As discussed in [170] and Section 4.3.2, the

anti-symmetric Raman mode breaks the time-reversal symmetry and corresponds to the

magnetism-coupled phonon scattering. This symmetry feature makes those modes the good

and sensitive indicator for the magnetic order in the tDB CrI3 system.

Having established the Raman signature for the magnetism of tDB CrI3, we proceed to

examine its twist angle dependence. Figure 5.8 shows the Raman spectra of those magnetism-

coupled phonon modes taken on tDB CrI3 for α = 0.5◦, 1.1◦, 2.0◦, 5.0◦, as well as 4L and 2L

CrI3 in both crossed and parallel polarization channels at 10 K. Here one may perceive 4L

as α = 0◦, and 2L as very large α due to that the inter-2L coupling strength in very large α

tDB is very weak such that the tDB would essentially behave like two decoupled bilayers.

We observe that, as the twist angle α increases, the mode Ut
3 in the crossed channel
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Figure 5.8: Twist angle dependence of the magneto-phonon Raman spectra of tDB CrI3. (a)
Raman spectra taken on 4L CrI3; tDB CrI3 with twist angles α = 0.5◦, 1.1◦, 2.0◦, 5.0◦; and
2L CrI3 in both crossed (blue) and parallel (grey) channels at 10 K. The colored Lorentzian
profiles highlight the U2,3,4 modes appearing in the crossed channel. (b) Intensity ratio
IUt

3
/(IUt

2
+ IUt

4
) as a function of the twist angle α. (c) Fitted frequencies of the modes shown

in (a) as a function of the twist angle α.

increases in intensity while the other two modes Ut
2,4 decrease, showing a continuous trend

that the magneto-Raman spectra of a tDB evolves from resembling natural 4L at lower α

to converging towards 2L at larger α. This intensity evolution is quantified in Fig. 5.8(b),

where the relative intensity ratio IUt
3
/(IUt

2
+ IUt

4
) is plotted against α. The line shows a

monotonous increase with larger α and thus confirms the modulating of the magnetic state

upon twist. Equally informative is the frequency shift of the Raman modes, as shown in Fig.

5.8(c). It is noted that at smaller α, the frequencies of modes Ut
2,3,4 start very close to their

counterparts U4L
2,3,4 in 4L. Then with increasing α the frequencies of Ut

2,4 gradually blue-shifts

towards those of U2L
1,2. Note in our indexing, mode U2L

2 is the counterpart of U
t/4L
3 . The twist

angle dependence of those modes also demonstrates we have successfully introduced moiré
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engineering to the magnetic system in tDB CrI3.

To relate our observation with the proposed moiré engineered states shown in Fig. 5.6, we

take a semi-quantitative model from [170] to characterize the intensity change of, for example,

Ut
3. Based on a linear-chain model for few-layer transition metal chalcogenides [186–189], the

Ut
3 mode is attributed to an magnetism-coupled eigen vibration which involves the vertical

movement of the I ions. The eigenvector of the vibration itself can be written down in terms

the relative amplitudes of the I ions in four layers u3 =
1
2
(1,−1,−1, 1)T .

The scattering amplitude of the anti-symmetric mode Ut
3 is then proportional to u3 ·M

[170] where M is the layered magnetic order. Recall we have three types of layered magnetic

orders M1,2,3 summarized in Tab. 5.2, and each order takes up a faction of area c
(I,II,III)
1,2,3 .

Here c
(i)
j denotes the area fraction of order Mj in state i, where i = I, II, III represents the

three states shown in Fig. 5.6. We also assume a negligible fraction of domain wall area so

that all fractions for a given state sum up to 1. Hence we calculate

u3 ·
3∑

j=1

c
(i)
j Mj =


2c

(I)
2 < 2, for state I

2c
(II)
2 + c

(II)
3 < 2, for state II

2c
(III)
2 = 2, for state III

(5.17)

The above result explains how the moiré engineered magnetic state can change the Ut
3

mode intensity. For example we note the M2 = (1,−1,−1, 1)T order gives the highest

contribution to the scattering amplitude but its area fraction is small in states I and II. In

states I, the M1 = (−1, 1,−1, 1)T order does not contribute any amplitude, while in state II

the M3 = (1, 1,−1, 1)T order does contribute something but the efficiency is lower than that

of M2. Overall, through this we see the twist angle dependence of those magnetism-coupled

phonon modes captures the exotic layered magnetic states created by moiré engineering.
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5.5 Magnetic field dependent studies of tDB CrI3

In this section we provide magnetic field dependent optical studies of the novel magnetic

orders in tDB CrI3. The basis for this discussion lies on the experimental fact that for natural

few-layer CrI3 with layered antiferromagnetic order, there exist two spin-flip transitions at

Bc1 ≈ ±0.7 T and Bc2 ≈ ±1.6 T, as shown in the field dependent MCD measurements in Fig.

5.9. According to the introduction in Section 2.3, one can perceive the normal incidence CD

signal at non-resonance as ∝ Mz. Therefore we would treat the MCD measurements in this

section as direct probe of the net out-of-plane magnetization. In this sense, we attribute the

sudden jumps shown in the MCD data in Fig. 5.9 to the abrupt change of Mz, or spin-flip

transition.

Figure 5.9: Magnetic field dependent MCD measurements on natural 1–4L CrI3 and illus-
tration for the corresponding layered magnetic orders. Figure adapted from [113, 190].

At Bc1, the spins in one of the two layers in 2L CrI3, and those in the outermost layer in 4L

CrI3 flip. This transition costs one unit of interlayer exchange interaction. At Bc2, the spins

in the middle layer in 3L CrI3, and those in the third layer in 4L CrI3 flip. This transition

costs two units of interlayer exchange interaction. Such energy cost estimation agrees with

the observation that Bc2 is roughly twice Bc1. Apart from the spin-flip transitions we also

note that for 1L and 3L CrI3 at around 0 T the systems show non-zero MCD signal together

with hysteresis. This is due to that for odd-layer CrI3 the system has one extra layer of

non-compensated moments which is responsible for the FM-like behavior.

The exploration of magnetic field dependence of tDB CrI3 benefits from those observations

in natural few-layer CrI3, in the sense that one would expect changes of the layered magnetic
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order at different fields. By comparing the field dependent behaviors in tDB with those basic

cases, we aim to extract features characteristic of the novel moiré magnetism.

5.5.1 Magnetic field dependence of the magnetism-coupled

phonon Raman Scattering

We further provide the magnetic field dependent Raman spectra of the magnetism-

coupled phonon modes discussed in Section 4.3 for bulk CrI3 and in Section 5.4 for tDB

CrI3. Figure 5.10(a)–(e) presents the false-color maps of raw phonon Raman spectra for

4L, α = 0.5◦, 1.1◦, 5◦ tDB and 2L CrI3, in the crossed channel at 10 K. Figure 5.10(f)–(j)

summarizes the corresponding B⊥ dependencies of the fitted intensities of the magnetism-

coupled phonons. We first briefly summarize the evolutions of U4L
1−4 and U2L

1−2 as the reference

for understanding those of tDB CrI3. For 4L CrI3, U
4L
1,3 emerge at Bc1 ≈ 0.7 T, and then

see sudden intensity increase and decrease, respectively, at Bc2 ≈ 1.6 T; U4L
2,4 experience two

consecutive steep intensity drops at Bc1 and Bc2. It is understood from Fig. 5.9 that Bc1 and

Bc2 correspond to two first-order spin-flip transitions for the layered magnetism transiting

from M1 = ↓↑↓↑ (layered AFM) first to M3 = ↑↑↓↑ and then to ↑↑↑↑ (fully polarized FM).

For 2L CrI3, U
2L
1 appears and U2L

2 disappears concurrently at Bc1, where Bc1 denotes the

spin-flip transition from ↓↑ to ↑↑. We comment that the magnetic field dependent behaviors

of these modes have been successfully explained in our earlier study in [170], the theory

framework of which has been briefly discussed in Section 5.4.

For Ut
1−4 modes in tDB CrI3 at very small (α = 0.5◦) angle, their behaviors under B⊥

can be well described by a simple weighted linear superposition of those of 4L and 2L CrI3.

Similar to the 4L case [Fig. 5.10(a) and (f)], 0.5◦ tDB CrI3 features two transitions at Bc1

and Bc2 where sudden intensity changes of the modes Ut
1−4 occur [Fig. 5.10(b) and (g)].

Different from the 4L case is that, Ut
3 of 0.5◦ tDB CrI3 is present even below Bc1, and the

transitions are slightly broadened. We recall as discussed in Section 5.4, mode Ut
3 displays

the highest Raman efficiency in 2L-like tDB CrI3 and specifically, in the presence of the
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Figure 5.10: Magnetic field dependence of the magnetism-coupled phonon Raman spectra
of tDB CrI3 at selected twist angles. (a)–(e) False-colored maps of the raw Raman spectra
taken on 4L CrI3 (a); tDB CrI3 homostructures with twist angles α = 0.5◦ (b), 1.1◦ (c), 5◦

(d); and 2L CrI3 (e) in the crossed polarization channel at 10 K. The blue arrows mark the
frequencies of U4L

1−4 and the red ones are those of U2L
1−2. (f)–(j) Plots of the mode intensities

as a function of B⊥ for the samples in (a)–(e), respectively. The thin black lines and solid
shaded areas denote the fits to the model of the magnetism-coupled phonon scattering for 4L
(f) and 2L (j) CrI3, and to the proposed weighted superpositions of 4L and 2L contributions
for tDB CrI3 with α = 0.5◦ (g) and α = 5◦ (i). The thick grey lines and striped areas for
1.1◦ tDB CrI3 in (h) are guides to the eye.

M2 = ↑↓↓↑ order. And this M2 order is exactly predicted in state I in our simulations in

Fig. 5.6(a) (see also Tab. 5.2) for small twist angles. Thus, the behaviors of Ut
1−4 in 0.5◦

tDB CrI3 can be well accounted for by the weighted addition of the field dependencies of

U4L
1−4 and U2L

1,2.

On the other hand, 5.0◦ tDB CrI3 in Fig. 5.10(d) and (i) nearly reproduces the 2L CrI3

69



results shown in Fig. 5.10(e) and (j), except for a minor remnant of Ut
3 above Bc1. This

observation confirms that 5.0◦ tDB CrI3 is primarily regarded as two decoupled 2L CrI3

without much complex spin textures, similar to our simulation in Fig. 5.6(c).

Interestingly, in stark contrast to 0.5◦ and 5.0◦ tDB CrI3, the magnetic field dependence of

those magnetism-coupled phonon modes in 1.1◦ tDB CrI3 can no longer be simply understood

by combining the behaviors of those modes in 4L/2L CrI3. Figure 5.10(c) and (h) show two

features for 1.1◦ tDB CrI3 that are completely absent in 4L and 2L CrI3. First, around

Bc1, the intensities of Ut
2,4 show a dramatic spike, Ut

3 exhibits a sharp dip. None shows

the monotonous steps observed in 4L/2L CrI3. Second, between Bc1 and Bc2, U
t
1 gradually

increases until saturation, whereas Ut
3,4 slowly decrease towards a finite intensity or zero.

Such behaviors are quite different from the otherwise plateaus observed in 4L/2L CrI3. It

is possible that for the intermediate twist angle like α = 1.1◦, the very existence of the

non-collinear spins have caused these exotic critical behaviors around Bc1.

5.5.2 A model for fitting MCD of tDB CrI3

Similar to Fig. 5.9, we show our MCD data in Fig. 5.11, as a function of the out-of-plane

magnetic field B⊥ swept from +2 T to −2 T and back to +2 T taken on 1.1◦ tDB CrI3

(top panel), as well as 2L (middle panel) and 4L (bottom panel) CrI3 for reference. Two

prominent features are observed from the comparison between the 1.1° tDB data and the

reference 2L/4L data, despite similar spin-flip transitions at BtDB
c1 = ±0.67 T, B2L

c1 = ±0.73

T, and B4L
c1 = ±0.82 T. First, in 1.1◦ tDB CrI3, the MCD signal at 0 T is non-zero, and

the magnetic field dependence shows a clear hysteresis loop between BtDB
c1 , in sharp contrast

to the almost zero MCD signal and absence of hysteresis in 2L/4L CrI3. Second, for 1.1◦

tDB CrI3, the MCD data show a gradual increase (positive slope) with increasing B⊥, which

is distinct from the plateau behavior of constant MCD values for 2L/4L CrI3 when not in

a spin-flip transition. We note that the non-zero MCD at 0 T and the hysteresis are the

defining evidence for the existence of net magnetization in 1.1◦ tDB CrI3. This is the result
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of the most prominent, moiré induced M3 order shown in Fig. 5.6(b). Meanwhile, we point

out that the gradual increase in MCD suggests the presence of a spin flop process and thus

non-collinear spins in 1.1◦ tDB CrI3, consistent with the in-plane spin moments residing at

the boundaries between the M3 islands and the M2 background in Fig. 5.6(b).

Figure 5.11: Magnetic field dependent MCD data and the fitting model. (a) MCD data and
fits normalized to the MCD value at 2 T taken at 10 K under an out-of-plane magnetic field
B⊥ sweeping from +2 T to −2 T and then back to +2 T for 1.1◦ tDB (top), 2L (middle) and
4L (bottom) CrI3. The spin flip transitions are marked by black arrows in all three panels.
(b)–(c) Contributions from collinear (b) and non-collinear (c) spins to the total MCD signal,
extracted from the fits for 1.1◦ tDB, 2L and 4L CrI3.

We fit the MCD data of 1.1◦ tDB CrI3 with the model consisting of two contributions: one

from the collinear spins that give rise to the steep spin-flip transitions at Bc, and the other

from the non-collinear spins accounting for the gradual spin flop process with increasing B⊥.

For the collinear spin contribution, the out-of-plane spins take two possible directions, up

and down, with magnetic moments µ = ±2 · 3
2
µB = ±3µB. Boltzmann statistics dictates
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that the mean magnetization under an external field B⊥ follows the tanh dependence of B⊥

⟨µ⟩ = 3µBe
3µBB⊥
kBT − 3µBe

−3µBB⊥
kBT

e
3µBB⊥
kBT + e

−3µBB⊥
kBT

∼ tanh
3µB

kBT
B⊥ (5.18)

For the non-collinear contribution, ideally slow-varying models such as Langevin or Brillouin

functions [191] describing high-spin paramagnetic behaviors could be used. Without loss of

basic information, we still take a tanh function, which is the essentially a special case of the

two, to model the slow-varying non-collinear contribution. If we set x as the external mag-

netic field and y+(−) as the MCD signal in an increasing-field (decreasing-field) measurement,

we use the following model for fitting the MCD curves


y+ = Aneg tanh

x+B

C
+ Apos tanh

x−B

C
+ a+ tanh

x− b+
c+

y− = Apos tanh
x+B

C
+ Aneg tanh

x−B

C
+ a− tanh

x− b−
c−

(5.19)

For each equation, the first two terms explain the spin-flip transitions of Ising collinear spins

and the third term represents the response of the non-collinear spins. Aneg(pos) describes the

magnitude of the spin-flip transition, B and C are the critical field Bc1 and transition width

∆Bc1, respectively. Those parameters are kept common in fitting y+ and y− datasets to

satisfy the time-reversal symmetry requirement, that is, the increasing-field curve y+(x) and

the decreasing-field curve y−(x) should map to each other when inverting about the origin at

x = 0 and y = 0. For the non-collinear contribution, a±, b± and c± describe the magnitude,

center and width of the slowly varying background in either an increasing (+) or decreasing

(−) measurement and are independent between the increasing and decreasing field traces.

The fits are shown in Fig. 5.10 for 1.1◦ tDB CrI3 (top panels), 2L and 4L CrI3 (middle

and bottom panels). The solid fit curves in Fig. 5.11(a) are separated into the collinear and

noncollinear components shown in Fig. 5.11(b) and (c), respectively. This fitting for 1.1◦ tDB

CrI3 is independent from but consistent with the simulated results in Fig. 5.6(b) in terms of
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the following two aspects. First, the net magnetization as well as the hysteresis is from the

collinear spin contribution [Fig. 5.11(b), top panel], consistent with magnetized islands with

collinear M3 = ↑↑↓↑ spin arrangements. Second, for the non-collinear spin contribution,

the two fitted MCD traces [Fig. 5.11(c), top panel] with decreasing and increasing B⊥

overlap with each other within our fit uncertainties, echoing the computed net zero out-

of-plane magnetization at the boundaries between the M3 = ↑↑↓↑ islands and the M2 =

↑↓↓↑ background [white regions in Fig. 5.6(b)]. As a comparison, the fits for 2L and 4L

CrI3 are seen to be dominated by the collinear spin contribution with well compensated

magnetizations below B
2L/4L
c1 [Fig. 5.11(b), middle and bottom panels]. They also show

negligible non-collinear spin contributions [Fig. 5.11(c), middle and bottom panels]. All the

consistency here demonstrates that we can take advantage of MCD and this two-component

fitting model to gain information about the complicated moiré magnetic states formed upon

twist.

5.5.3 Twist angle dependent MCD measurements

We explore the twist angle dependence of moiré magnetism through MCD measurements.

Figure 5.12 displays the raw normalized MCD data together with fits (top panel), and

contributions from collinear (middle panel) and non-collinear (bottom panel) spins, for 4L,

α = 0.5◦, 1.1◦, 2◦, 5◦, 10◦ tDB, and 2L CrI3. A general trend can be seen that, the MCD

data resemble those of 4L CrI3 at very small twist angles (for example, 0.5◦) in having two

spin-flip transitions, then distinguish from both 4L and 2L CrI3 at intermediate twist angles

(for example, 1.1◦, 2◦ and 5◦) by showing a prominent hysteresis loop as well as appreciable

non-collinear spin contribution, eventually converge to those of 2L CrI3 at large twist angles

(for example, 10◦). To better quantify this trend, we plot the twist angle dependence of

five important parameters extracted from the fits: the spin-flip transition field Bc1 that

corresponds to the interlayer coupling strength within each bilayer [Fig. 5.12(b)], the width

of the spin-flip transitions ∆Bc1 that describes the spatial inhomogeneity of moiré magnetism
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[Fig. 5.12(c)], the slope ∆MCD/∆B⊥ at 0 T that depicts the susceptibility of the non-

collinear spins [Fig. 5.12(d)], the ratio Wnon−collinear of the non-collinear spin contribution to

the total MCD which scales with the weight of the non-collinear spins [Fig. 5.12(e)], and

the magnitude of net magnetization at 0 T (remanence) M tDB
z . We describe the twist angle

dependent behaviors of those parameters below.

Figure 5.12: Twist angle dependence of MCD data of tDB CrI3. (a) Normalized MCD data
and fits (top panel) taken at 10 K under B⊥ sweeping from +2 T to −2 T and then back to +2
T, for 4L, α = 0.5◦, 1.1◦, 2◦, 5◦, 10◦ tDB, and 2L CrI3, showing hysteresis loops (pink shades)
and spin flip transitions (black arrows). Contributions from the collinear (middle panel) and
the non-collinear (bottom panel) spins are extracted from the model fitting. (b)–(f) Twist
angle dependence of the spin-flip transition field Bc1 (b), the spin-flip transition width ∆Bc1

(c), the slope ∆MCD/∆B⊥ at 0 T (d), the weight of the non-collinear spin contribution
Wnon−collinear (e), and the net magnetization M tDB

z (f), extracted from the fitting.

A minimum in Bc1 at 1.1◦ in Fig. 5.12(b) shows that the moiré interlayer coupling

introduced between layer 2 and 3 actually modifies the uniform interlayer coupling between

layer 1 and 2 or 3 and 4, considering this transition should only flip the outermost layer

spins. This impact maximizes at 1.1◦. A maximum of ∆Bc1, however, happens at 0.5◦ in

Fig. 5.12(c), most probably resulting from the extra 4L-like region—the M1 = ↑↓↑↓ order

shown in Fig. 5.6(a)— which is marked by the presence of Bc2 in 0.5◦ tDB CrI3. We note
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this magnetic order is shown absent in tDB CrI3 with higher twist angles. The slope of

tDB CrI3 is obviously larger than those of 2L and 4L CrI3 and peaks at 1.1◦ [Fig. 5.12(d)],

which evidences the softening of the moiré-induced non-collinear spins. The non-collinear

spin weight shown in Fig. 5.12(e) also maximizes at 1.1◦, further suggesting the prevalence

of those in-plane spins at this twist angle. Lastly, the remarkable net magnetization M tDB
z ,

a clear indicator of state II moiré magnetism shown in 5.6(b), peaks at 1.1◦ [Fig. 5.12(f)].

Such systematic non-monotonic twist angle dependence, consistent across almost all the

parameters, well demonstrates the key role of twist angle, or equivalently moiré wavelength,

in the emergent magnetic properties in tDB CrI3.

In summary, through magnetic field dependent optical study of tDB CrI3, we reveal

features in both MCD and magneto-Raman scattering for the moiré engineered novel mag-

netism. Specifically, we highlight the emergence of net FM, out of two antiferromagnet

parents, and non-collinear spin textures, out of a simple collinear structure, in tDB CrI3

with intermediate twist angles such as 1.1◦. The plethora of behaviors and properties for dif-

ferent twist angles and under different magnetic fields prove our successful moiré engineering

of the spin system in CrI3 and the versatility of moiré magnetism.
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CHAPTER 6

Closing Remarks

In summary, this thesis presents the utilization of three types of optical techniques:

second-harmonic generation, Raman Scattering and magnetic circular dichroism. Each em-

phasizes distinct forms of light-matter interaction, manifested by the modulations of the

permittivity tensor that links the controlled incident field polarization and the reflected

radiation fields. During the dissertation research, we have carefully chosen proper optical

probes to characterize the multivarious dipolar orders in either 1T -TaS2 or CrI3 systems.

SHG is highly suitable for detecting subtle or non-traditional symmetries due to the

distinguishing high-rank tensor forms for different point group symmetries. We selectively

study the familiar, yet symmetry-wise less considered ferro-rotational CDW order in 1T -

TaS2. It is noted that, by sending in essentially a tensor field EE for the SHG process

instead of a common electric field or polar vector E, the SI-even, rotational vector that

transforms as r×P can be probed. This differs from the traditional philosophy for detecting

a ferroic order where a conjugate field is applied. There is currently no well-defined conjugate

field for the ferro-rotational or ferro-toroidal orders [192]. The way the ferro-rotational order

manifests itself in RA SHG—rotation away from the pristine crystal axes as in Fig. 3.4—is

rather straightforward and distinct.

SHG process is of electronic origin. A quantum interpretation of the ED SHG suscepti-
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bility tensor reads [193]

χ
(2),ED
ijk ∝

∑
m,f

⟨g|ri|f⟩⟨f |rj|m⟩⟨m|rk|g⟩
(Ef − Eg − 2ℏω)(Em − Eg − ℏω)

+ · · · (6.1)

where the summation runs over excited intermediate state (m) and final state (f), and the

ellipsis could in principle contain other two-photon pathways where the system does not

start from the ground state (g). Unlike diffraction methods directly sensing the charge

density distribution, the contributions to the SHG susceptibility tensor elements, which

then compose the apparent RA patterns, root in the electronic bands. The “system” we

discuss in terms of symmetry should actually refer to the electronic system. In this sense,

it is advisable or even beneficial to acquire a methodology where the band structure enters

the comprehension of SHG response. In light of early endeavor [194], such work has been

carried out specifically in topological systems [195, 196]. To apply the similar formalism in

the SHG measurements of the insulating CDW state could be of potential interests. It is

admittedly, a harder task to study the EQ process for this purpose, in a centrosymmetric

system such as 1T -TaS2. A feasible starting point could be, for example, to identity the irreps

of the participating SHG susceptibility tensor elements and relate them, through quadrupole

transition selection rules, to the calculated band structure. To connect the SHG response

to band structure will also help interpret the ultrafast behaviors such as the origin of the

triplet modes discussed in Section 3.3.1.

The ferro-rotational order hosts other possibilities. In a thorough group theory analysis

[102], 12 pure ferro-rotational species are identified with 8 of them being fully ferro-rotational

(namely, the rotational vector can serve as the sole order parameter). This classification

provides the map to search for ferro-rotational order candidates based on a pure symmetry

consideration. In fact, the reported SHG studies on ferro-rotational orders mostly base

on materials with D3d to S6 phase transition [25, 32, 197, 198], partially because normal

incidence SHG would vanish in the presence of an out-of-plane C2 axis. Therefore, oblique
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incident SHG experiments are required to examine other types of ferro-rotational phase

transitions.

The study of CrI3, or the moiré magnetism, is still blooming. To be able to engineer mag-

netic exchange interaction through a method as handy as twist is fortuitous. In CrI3 it truly

relies on the strong magneto-elastic coupling, which even makes it possible to realize not just

strength, but sign changes—variation from AFM to FM—of the exchange interaction. In

tDB CrI3 it is the emergence of FM interlayer interaction at the moiré interface that gives

rise to the energy competition/frustration, and essentially the exotic magnetic structure and

properties that are discussed in Chapter 5. Specifically, we predict and experimentally evi-

dence the existence of non-compensated FM domains and non-collinear spins residing in the

domain walls, through optical signatures. It has then been desired to visualize such domains

or domain walls via microscopy, which to some extent however, only sees macroscopic FM

domains and due to the current resolution limit is not capable to inspect “sub-moiré” fea-

tures [190, 199, 200]. The origin of the seemingly disordered large FM domains observed

in twisted bilayer CrI3 in scanning magnetometry experiments is still unclear, though the

manifestation of a clear twist angle dependence in our tDB CrI3 (Fig. 5.12) strongly hints

that our systems are very less likely subject to such “random” disorders. It is possible,

as briefly argued in Section 5.2.2, that the monolayer CrI3 tends to have worse crystalline

quality that essentially caused twist bilayer samples suffering from various types of strains

or defects. Having said so, to study the effects of defects or strains in CrI3 systems is of

fundamental interest and importance as well.

The non-collinear spins embrace more interesting physics. In a sense, the non-collinear

spin order comprises longer wavelength structure and includes a large number of spin degrees

of freedom. Novel collective spin excitations, such as the long-sought skyrmions or topological

magnons [162, 201–203] are predicted to exist in twisted 2D magnetic van der Waals systems.

Those excitations are emergent, and very different from spin-flips, which also indicates that

they are intrinsically hard to create from, for example a spin-flip process such as in neutron
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scattering. moiré engineering benefits from the fact that through a careful examination of

the stacking-dependent exchange interaction, the resulting non-collinear magnetic states are

very much expected or at least approachable before-hand via theory simulations [161, 163].

Our simulations elaborated on in Section 5.3 are qualitatively robust. The prediction

of the exact phase boundaries (namely critical twist angle) as well as the actual fraction of

both the FM patches and the non-collinear spins is yet greatly determined by the microscopic

parameters. A key consideration here is to solidify the distribution function of the interlayer

exchange interaction at the moiré surface. Magnetic moiré engineering is stacking engineering

in nature. Nevertheless, the quantification of the stacking orders at the moiré interface may

not be as plain as what is shown in Fig. 5.5(a). Atomic reconstruction is widely present in

incommensurately-stacked van der Waals materials and has been studied in twist graphene

or transition metal dichalcogenide semiconductors [204–208], and is even a signature of good

moiré coupling. In our tDB Cr3 samples this is so well manifested though the existence of

the moiré superlattice satellite peaks shown in Fig. 5.2(a). To accommodate this lattice

relaxation into the calculation of exchange interactions could be of high priority to advance

the study of moiré magnetism in twisted CrI3.

The study of quantum materials has never been accomplished by just a few experimental

probes, while optics does provide a more versatile and multifaceted solution, especially for the

current 2D community where the small scattering volume and sample size restrict the usage

of other powerful techniques such as neutron scattering or quantum oscillation. Microscopic

methods are quickly progressing, though the “sub-moiré” resolution is not yet fully achieved.

In this regard, to see through the moiré length scale out of a coarse, large laser beam and

the long wavelength of visible light is truly demanding. This mission is not limited to the

2D field but also faced by the study of, for example, altermagnetic materials [209]. But one

is never let down by the shining light. It has so many degrees of freedom: polarization,

in a sense spin angular momentum; wavelength; photon energy; orbital angular momentum

[210]; spatial mode; and even temporal profile in an ultrafast setting. An orchestration of the
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versatility of light still opens promising avenues for future research on all kinds of quantum

materials.
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superlattices. Nature, 579(7799):353–358, 2020.

[146] L. Balents, Cory R. Dean, Dmitri K. Efetov, and Andrea F. Young. Superconductivity
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erostructure superlattices. Nature, 567(7746):76–80, 2019.

[157] Y. Shimazaki, I. Schwartz, K. Watanabe, T. Taniguchi, M. Kroner, and A. Imamoğlu.
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