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Abstract 

Auxotrophic microbes are widespread in nature. These organisms lack one or more genes 

required to synthesize essential metabolites and thus require nutrient cross-feeding for their 

growth, termed syntrophy. Currently, few methods exist to identify and quantify these metabolite 

exchanges. This thesis addresses this knowledge gap by applying 13C metabolic flux analysis 

(13C MFA) to elucidate cross-feeding interactions in auxotrophic microbial co-cultures. 

To this end, two auxotrophic Escherichia coli single knockout strains, ∆ilvC and ∆icd, 

were selected as model strains. Both strains are deficient in synthesizing an essential amino acid. 

We first applied 13C MFA on single strains to understand how they restore their metabolism 

when supplemented with required metabolites. Our results demonstrate how auxotrophic strains 

rewire their metabolic flux to overcome auxotrophy and that the location of the knockout impacts 

how they adjust their metabolism. 

Next, we applied 13C MFA on a syntrophic co-culture, consisting of ∆ilvC and ∆icd, to 

elucidate the cross-feeding metabolites. Several metabolic network models were constructed and 

tested. We showed that by applying 13C MFA, we were capable of not only resolving individual 

intracellular fluxes with high precision but also identifying and quantifying the rates of 

exchanged metabolites. We discovered that in addition to amino acid exchange, metabolic 

pathway intermediates were also exchanged between the syntrophic partners. This unexpected 

exchange of intermediates demonstrates a more complicated exchange network than previously 

assumed. 
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Inspired by this finding, we further investigated how commonly pathway intermediates 

are exchanged. We selected 25 E. coli single-gene knockouts that are auxotrophic for five amino 

acids: arginine, histidine, isoleucine, proline, and tryptophan. In co-culture experiments pairing 

strains with the same amino acid auxotrophy, we observed growth in 23 out of 55 pairings, 

indicating the exchange of pathway intermediates. The results were further supported by 

culturing auxotrophic E. coli strains in media supplemented with metabolic pathway 

intermediates, which recovered cell growth as predicted. Taken together, these results 

demonstrate that the exchange of metabolic pathway intermediates is more common than has 

been assumed so far.  

In studies of microbial interaction, another important aspect is how the interactions 

impact and shape population composition. Fluorescent proteins are commonly employed to track 

their relative abundances. However, the overexpression of these heterologous proteins can 

potentially impose a metabolic burden on the host cell. To address this concern, we characterized 

the impact of fluorescent protein overexpression in E. coli. We selected five common fluorescent 

proteins—CFP (cyan fluorescent protein), Crimson, GFP (green fluorescent protein), Tomato, 

and YFP (yellow fluorescent protein)—and overexpressed them in wild-type E. coli. We 

measured cell growth, biomass composition and the metabolic state, comparing the fluorescent 

protein overexpression strains to wild-type. Overall, we conclude that overexpression of 

fluorescent proteins in E. coli has a negligible impact on cell physiology and metabolism. 

In conclusion, this thesis first demonstrates the application of 13C MFA to uncover the 

metabolic fluxes in auxotrophic strains when supplemented with required metabolites. 

Furthermore, we expanded the application of 13C MFA to a syntrophic co-culture to elucidate the 

cross-feeding metabolites between the auxotrophic strains. We discovered the exchanges of 
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metabolic pathway intermediates between auxotrophic strains. The impact of fluorescent protein 

overexpression on cells were investigated in this thesis as well. In the final chapter, we studied a 

fluorescent syntrophic co-culture and discussed some of the challenges in the field and potential 

future directions. 
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Chapter 1 Introduction 

1.1 Microbes in our life 

Microbes, or microorganisms, are tiny living cells of microscopic size that are too small 

to be seen with naked eyes. Microbes were first observed under a microscope and reported by 

Anton van Leeuwenhoek, who is also known as the father of microbiology (Leewenhoeck, 1676; 

Lane, 2015). To date, it is well established that microbes are ubiquitous on our planet and critical 

for the ecosystem, human health and even industrial manufacturing. In nature, microbes interact 

with their surroundings and thrive by collecting nutrients, generating energy and secreting waste. 

All of these processes are coupled with the elemental cycles in the environment including the 

carbon, nitrogen and phosphorus cycles, driving the biogeochemical cycles in the ecosystem 

(Burgin et al., 2011). Microbes, as the main drivers of the biotransformation of organic 

chemicals, affect the stability of the entire ecosystem (Fester et al., 2014). In the human body, 

trillions of microbes are present in different parts of the human body and serve a fundamental 

role in human metabolism and health (Kumar and Chordia, 2017). The diversity of microbes in 

the human body has been associated with a number of diseases including obesity, inflammatory 

bowel disease and even cancer (Huttenhower et al., 2012; Petersen and Round, 2014; Garrett, 

2015; Lloyd-Price, Abu-Ali and Huttenhower, 2016). Besides naturally existing microbial 

communities, synthetic microbial consortia have shown great potential for biosynthesis and 

biodegradation (Che and Men, 2019). For industrial production, recent advances in synthetic 

biology and metabolic engineering have allowed researchers to engineer microbes that can turn 

cheap feedstocks into fine chemicals (Jagmann and Philipp, 2014; Jullesson et al., 2015; Johns et 
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al., 2016). Microbes are also used in degrading toxic products such as wastewater treatment and 

degrading crude oil to prevent oil pollution (Tang et al., 2010; Rani et al., 2019). Taken together, 

microbes play crucial roles in our lives. So far, various studies have focused on different aspects 

of microbes ranging from their fundamental functions to how they can be applied to improve our 

lives. In my thesis, I specifically look into how microbes interact with each other and how we 

can develop better tools to understand their interactions. 

1.2 Syntrophic interaction 

Unlike the single strains we culture in the lab, most microbes in nature do not exist in 

isolation. The complex interactions between various species within microbial communities can 

have positive, negative or no impact on individual species (Faust and Raes, 2012). Mutualism, 

where both species benefit from the relationship, is commonly observed in nature. One type of 

mutualism, termed syntrophy, describes the dependency on metabolite cross-feeding between 

two species and has become a popular topic for studying microbial cooperation (Morris et al., 

2013; Kouzuma, Kato and Watanabe, 2015). The reliance on the cross-feeding of growth factors 

has been identified as one of the main reasons for microbial unculturability in vitro (Klitgord and 

Segrè, 2010; Vartoukian, Palmer and Wade, 2010; Pande and Kost, 2017). It has been estimated 

that less than 1% of them can be cultivated under standard methods in the lab (Amann, Ludwig 

and Schleifer, 1995; Hugenholtz, Goebel and Pace, 1998; Torsvik, Øvreås and Thingstad, 2002). 

Analysis of the sequenced genome in bacteria, archaea and eukarya suggests that most 

microorganisms in nature are auxotrophs, lacking key gene(s) to synthesize essential molecule(s) 

for their own survival (Mee and Wang, 2012; D’Souza et al., 2014; Mee et al., 2014). These 

auxotrophic strains rely on the cross-feeding of essential growth factors to thrive in nature, and 

therefore cannot grow in synthetic media in the lab (Morris et al., 2008; D’Onofrio et al., 2010)  
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Thus, the cross-feeding of metabolites between microbes is commonly found in microbial 

communities. The exchanged molecules include electron donors, sugar, organic acid, amino 

acids, vitamins and other co-factors (Jones, 1967; Rodionova et al., 2015; Zengler and Zaramela, 

2018; Fritts, McCully and McKinlay, 2021). The exchanges of metabolites are not only common 

but also serve a critical role for supporting growth and shaping microbial communities 

(Nemergut et al., 2013; Mee et al., 2014; Kouzuma, Kato and Watanabe, 2015). To date, studies 

focusing on syntrophic interaction often assume the exchanging metabolites based on the 

genomic information i.e., the gene knockout. For example, if a microbe is deficient in producing 

a certain essential amino acid, it is often assumed that the cross-feeding metabolite is that 

particular amino acid (Mee et al., 2014; Pande et al., 2014; Germerodt et al., 2016; Antoniewicz, 

2020). Identifying metabolites exchange, however, remains challenging due to the inherently 

dynamic nature and system complexity (Ponomarova and Patil, 2015). In my thesis, one of the 

main goals is to develop new approaches to elucidating the exchanged metabolites by applying 

13C metabolic flux analysis. 

1.3 Cell metabolism 

Before introducing 13C metabolic flux analysis, it is important to first understand the 

cellular metabolism. Metabolism is a series of interconnected chemical reactions within 

organisms. These chemical reactions can be categorized as catabolism and anabolism. 

Catabolism refers to the reactions that break down substrates to generate energy for cellular 

processes. Anabolism, on the other hand, uses energy to produce building blocks such as 

proteins, lipids and nucleic acids for cell proliferation (Mesquita and Rodrigues, 2018; Judge and 

Dodd, 2020). In my thesis, I mainly investigate central carbon metabolism of the cell. Central 

carbon metabolism consists of a complex series of enzymatic reactions that convert sugars into 
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energy and precursors that are used for cell growth and proliferation, as shown in Fig. 1.1 (Noor 

et al., 2010). In this section, I will introduce the major metabolic pathways of central carbon 

metabolism in bacteria, specifically Escherichia coli (E. coli), to build a basic understanding for 

my thesis. 
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Figure 1.1 Central carbon metabolism in Escherichia coli (E. coli). The main metabolic pathway in central 
carbon metabolic pathway: Embden-Meyerhof-Parnas pathway (EMP), the main glycolytic pathway in E. coli that 
convert glucose to pyruvate. Entner-Doudoroff pathway (ED), alternative pathway for glycolysis, which is generally 
inactive in E. coli during the growth on glucose. Pentose phosphate pathway (PPP), which include oxidated and non-
oxidated phases, is essential for the biosynthesis of nucleotide and several amino acids. Tricarboxylic cycle (TCA) 
not only produce reducing equivalent for energy generation, but also several precursors for amino acid biosynthesis. 
Anaplerosis is important for replenishing the intermediates that are removed for biosynthesis. The main anaplerotic 
reaction in E. coli growing on glucose is the conversion from phosphoenolpyruvate (PEP) to oxaloacetate (OAC), 
which is an important precursor for the biosynthesis of 6 amino acid. Glyoxylate is an alternative anaplerotic 
reaction that is critical for E. coli growing on acetate or fatty acid. 

1.3.1 Glycolysis 

Glycolysis is the pathway that converts glucose into pyruvate and has a net production of 

adenosine triphosphate (ATP) (Chaudhry and Varacallo, 2018). The most common type of 

glycolysis is the Embden-Meyerhof-Parnas pathway (EMP), which is named after the scientists 

in honor of their contribution to the discovery of this pathway (Akram, 2013). There are 10 steps 

in the EMP pathway that convert 1 glucose molecule into 2 pyruvates with a net production of 2 

ATP, as shown in Fig. 1.1. An alternative glycolytic route, the Entner-Doudoroff (ED) pathway, 

requires fewer enzymatic steps and is more thermodynamically favorable, but is generally 

inactive in E. coli when grown on glucose (Conway, 1992; Hollinshead et al., 2016). More and 

more evidence suggests that the ED pathway is essential to E. coli for the metabolism of sugar 

acids such as gluconate and for colonization in both intestinal and aquatic habitats (Peekhaus and 

Conway, 1998; Chang et al., 2004). 

1.3.2 Pentose phosphate pathway 

The pentose phosphate pathway (PPP), a metabolic pathway parallel to glycolysis, is a 

fundamental component of cell metabolism. The pathway was first presented in 1955 

(GUNSALUS, HORECKER and WOOD, 1955) after decades of effort by many biochemists 

(Stincone et al., 2015). There are two phases in the pentose phosphate pathway: the oxidative 

phase and the non-oxidative phase. In the oxidative phase, the reducing equivalent nicotinamide 
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adenine dinucleotide phosphate (NADPH) is generated for reductive biosynthesis reactions 

(Kruger and Von Schaewen, 2003). In the non-oxidative phase, several precursors are generated 

for the synthesis of nucleic acids and amino acids. For instance, ribose 5-phosphate (R5P) is 

required for DNA and RNA synthesis and erythrose 4-phosphate (E4P) is a precursor for the 

aromatic acids tyrosine, phenylalanine, and tryptophan (Stincone et al., 2015).  

1.3.3 Tricarboxylic cycle 

The tricarboxylic Acid (TCA) cycle, also known as the Krebs cycle or the citric acid 

cycle, is a crucial metabolic pathway that plays a central role in cellular respiration. The TCA 

cycle is the major energy generating pathway and produces several precursors for various 

biosynthetic processes (Vuoristo et al., 2016). Acetyl-CoA derived from sugars or fatty acids is 

oxidized through a series of chemical reactions to release energy stored in the nutrients, which 

provides reducing equivalent nicotinamide adenine dinucleotide (NADH) (Guest and Russell, 

1992). The TCA cycle not only provides energy for cellular processes, but also serves as a hub 

for the synthesis of amino acids (Kaleta et al., 2013). Alpha-ketoglutarate (AKG) is the precursor 

for synthesizing glutamate, which can further be converted into proline, glutamine and arginine. 

Oxaloacetate is another important precursor for aspartate, which can then be utilized for the 

biosynthesis of methionine, asparagine, threonine and isoleucine (Akashi and Gojobori, 2002). 

1.3.4 Anaplerosis 

Anaplerotic reactions are essential metabolic processes that replenish the TCA cycle 

intermediates that are withdrawn for amino acid biosynthesis. The principal anaplerotic reactions 

in E. coli involve the enzyme phosphoenolpyruvate carboxylase (PPC) that catalyzes the 

conversion of phosphoenolpyruvate (PEP) to oxaloacetate (OAC), which is the precursor for 6 
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amino acids (Ashworth and Kornberg, 1966; March, Eiteman and Altman, 2002; Muñoz-Elías 

and McKinney, 2006). Another important anaplerotic pathway is the glyoxylate shunt, which 

allows the bypassing of the decarboxylation steps of the TCA cycle, facilitating the net synthesis 

of four-carbon dicarboxylic acids from two-carbon acetyl-CoA (Dolan and Welch, 2018). The 

glyoxylate shunt is generally inactive in E. coli growing on glucose, but can be induced during 

growth on acetate and fatty acids (Kornberg, 1966; Farmer and Liao, 1997). Anaplerotic 

reactions are crucial for maintaining the balance of TCA cycle intermediates, thereby supporting 

both energy production and the biosynthesis of various cellular components. 

1.4 Metabolic flux analysis 

Metabolic flux analysis (MFA) is a quantitative approach that provides critical insights 

into cellular metabolism, identifies bottlenecks in the metabolic network and reveals regulatory 

mechanisms within the cells (Stephanopoulos and Vallino, 1991; Vallino and Stephanopoulos, 

2000). To date, MFA has been applied not only to native strains to understand the regulation of 

in vivo metabolism, but also to optimize the performance of metabolically engineered strains 

(Tang et al., 2009). Applications on native organisms range from investigating microbial 

responses to environmental perturbations (Yang, Hua and Shimizu, 2002; Shastri and Morgan, 

2005; Young et al., 2011) to studying mammalian cells, such as cancer cells, for therapeutic 

targets (Dai and Locasale, 2017; Antoniewicz, 2018). In the field of metabolic engineering, 

which focuses on modifying metabolic pathways within an organism to enhance the production 

of desired products or to endow the organism with new capabilities, metabolic flux analysis and 

metabolic engineering are closely intertwined, collectively driving advancements in 

biotechnology (Stephanopoulos, 1999; Toya and Shimizu, 2013). Metabolic engineering 

techniques enable scientists to introduce new metabolic pathways, alter the expression levels of 
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enzymes or remove competing pathways to drive the production of desired products (Bailey, 

1991). A key aspect in this process is understanding and manipulating metabolic fluxes, in which 

metabolic flux analysis serves as a powerful tool by providing critical quantitative information 

(Stephanopoulos, 1999). Overall, MFA is an indispensable tool for elucidating cellular metabolic 

processes, identifying regulatory mechanisms, and enhancing our ability to investigate and 

manipulate metabolic networks. 

Over the past three decades, three main stoichiometry based approaches have been 

developed to quantify metabolic fluxes: flux balance analysis (FBA), metabolic flux analysis 

(MFA) and 13C metabolic flux analysis (13C MFA) (Antoniewicz, 2021). Flux balance analysis 

(FBA) leverages stoichiometric models that represent the biochemical reactions in a cell to 

calculate optimal flux distributions that maximize or minimize specific objective functions, such 

as biomass production or the synthesis of a particular metabolite (Orth, Thiele and Palsson, 

2010). Although much progress has been made in FBA through the integration of additional 

constraints and regulatory information, the accuracy of metabolic fluxes predicted by FBA 

remains limited due to the challenge of identifying a proper objective function (Lee, 

Gianchandani and Papin, 2006; Raman and Chandra, 2009). Metabolic flux analysis (MFA), on 

the other hand, estimates fluxes based on experimentally measured rates such as nutrient uptake 

rate, growth rate and production rate. Fluxes are determined by fitting the metabolic network 

model predictions to the measured rates, which do not require an objective function as in FBA, 

therefore having broader applications on engineered strains under various growth conditions 

(Antoniewicz, 2021). MFA, however, often requires a simplified network model due to limited 

constraints, which sometimes causes MFA to fail to predict accurate fluxes when new pathways 

are activated under different growth conditions (Antoniewicz, 2015). 13C metabolic flux analysis 
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(13C MFA) is the gold standard for determining fluxes by model-based analysis and the isotope 

labeling pattern. This technique does not require optimality assumptions or model simplification, 

therefore providing precise flux results (Sauer, 2006; Zamboni, 2011; Crown and Antoniewicz, 

2013)  

1.4.1 13C Metabolic flux analysis 

13C MFA quantifies metabolic fluxes by fitting the experimental measurements, including 

external rates and isotopic labeling, to the metabolic network model. The isotopic labeling 

patterns, which provide additional constraints, are generated by culturing the organism with a 

labeled substrate, known as a tracer, in the culture medium. Tracer selection can largely impact 

the precision of flux estimation (Crown and Antoniewicz, 2012; Antoniewicz, 2013). Recent 

literature (Crown, Long and Antoniewicz, 2016) has provided a comprehensive guidance on 

selecting proper tracers for elucidating fluxes in central carbon metabolism. Overall, [1,6-13C] 

glucose and [1,2-13C] glucose are the optimal choices for parallel tracer experiments, which are 

also utilized in my thesis work. The isotopic distributions can be measured by gas 

chromatography mass spectrometry (GC-MS) (Fischer and Sauer, 2003; Zhao and Shimizu, 

2003), liquid chromatography mass spectrometry (LC-MS) (Nöh et al., 2007) or NMR (Goudar 

et al., 2010). Isotopic labeling measurements are extremely useful for elucidating relative flux 

distributions in the metabolic network. However, at least one external rate measurement is 

required to obtain the absolute metabolic fluxes. In my thesis work, isotopic labeling 

distributions and glucose uptake rate, which serves as the external rate measurement, are both 

measured by GC-MS. 

The metabolic network used for fitting the experimental measurements is the core of 13C 

metabolic flux analysis. The network can be constructed from databases such as KEGG (Feng et 
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al., 2012; Kanehisa et al., 2012). It is critical to include all the reactions that are related to the 

transition of labeled atoms in order to obtain accurate estimates. Flux estimation requires solving 

a non-linear regression problem with a set of fluxes so that the derived labeling pattern best 

matches with the experimental measured isotopic labeling distributions (Gopalakrishnan and 

Maranas, 2015; Antoniewicz, 2021). The mathematical framework to predict the labeling 

patterns from a given set of fluxes is critical for flux estimation efficiency. Various frameworks 

have been developed to allow more efficient calculation including isotopomers (Schmidt et al., 

1997), cumomers (Wiechert et al., 1999) and elementary metabolite units (EMU) (Antoniewicz, 

Kelleher and Stephanopoulos, 2007b). The development of the EMU framework has 

significantly reduced the computational calculation. It has been extensively applied in several 

commonly used 13C metabolic flux analysis tools such as Metran (Yoo et al., 2008), INCA 

(Young, 2014), OpenFLUX2 (Shupletsov et al., 2014) and 13CFLUX2 (Weitzel et al., 2013). 

These software tools apply different optimized strategies to estimate fluxes that minimize the 

difference between experimental measurements and the simulated results. The estimated fluxes 

should be assessed for goodness of fit to ensure the fit is statistically acceptable (Antoniewicz, 

Kelleher and Stephanopoulos, 2006). 

1.4.2 13C Metabolic flux analysis in co-culture 

In most studies using applying 13C MFA, it was applied in mono-culture, which provides 

the intracellular fluxes for a single strain (Crown and Antoniewicz, 2013). In a few cases where 

13C MFA was applied in a co-culture system, it required physical separation of cells in order to 

estimate individual fluxes. The separation of cells was usually accomplished through 

overexpressing heterologous reporter protein such as fluorescent protein for cell sorting, which 

raises the concern of altering cell metabolism (Shaikh et al., 2008; Rühl, Hardt and Sauer, 2011). 
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An alternative approach based on labeled peptides was proposed in 2014 (Ghosh et al., 2014) 

and further tested experimentally in recent work to elucidate cross-feeding metabolites (Gabrielli 

et al., 2023). However, the peptide approach can only be applied to two species with distinct 

protein sequences in order to assign the measured labeled peptides to corresponding strains. 

Furthermore, this approach requires different preferences in carbon source for the two strains as 

well. 

In 2015, a new approach, which only requires the measurement of total biomass and does 

not require any physical separation of cells or protein. was developed (Gebreselassie and 

Antoniewicz, 2015). It demonstrated that with proper tracer design and by employing a new co-

culture model framework, fluxes within a co-culture system could be resolved. This new 

approach was tested with both simulated data and a co-culture experiment, in which two 

Escherichia coli single knockout strain ∆pgi and ∆zwf were cultured together. The fluxes were 

successfully predicted for individual strains. In this thesis, I take a step further to apply 13C MFA 

to a co-culture system with interactions. Specifically, I aim to study syntrophic interactions and 

elucidate cross-feeding of metabolites. 

1.5 Fluorescent protein 

Green fluorescent protein (GFP) was first discovered in 1962 by Shimomura et al 

(Shimomura, Johnson and Saiga, 1962). After 30 years, the heterologous expression of GFP in 

prokaryotic and eukaryotic cells (Chalfie et al., 1994) was recognized as a major breakthrough in 

cellular biology and the beginning of the GFP revolution (Ward, 2005; Remington, 2011). To 

date, fluorescent proteins have broad applications including protein localization, organism 

visualization and transcriptional reporter (Gerdes and Kaether, 1996; Misteli and Spector, 1997; 

March, Rao and Bentley, 2003).  
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In the field of metabolic engineering, fluorescent proteins allow us to expand our 

understanding of engineered organisms. Throughout the Design-Build-Test (DBT) cycle for 

strain engineering, the limiting step has always been product detection and selection due to the 

low throughput of traditional measurement approaches such as gas chromatography (GC) and 

mass spectrometry (MS) (Dietrich, McKee and Keasling, 2010; Lin, Wagner and Alper, 2017). 

Various types of specific biosensors were developed to provide high throughput screening. These 

biosensors are designed to target different molecules and often utilize fluorescent protein as a 

reporter to transduce the response of biosensors into an easily measurable transcriptional output 

(March, Rao and Bentley, 2003). These outputs can be further sorted and isolated through 

screening methods such as Fluorescence-Activated Cell Sorting (FACS) or a microdroplet 

system, providing an efficient tool for strain engineering (Morgan et al., 2016; Bowman and 

Alper, 2020). Moreover, fluorescence coupled with advanced techniques such as 

Multiparametric Flow Cytometry (MPF) can be applied to bioprocess development. Applications 

include monitoring fermentation processes, analyzing metabolism and stress physiology and 

identifying productive cellular states (Tracy, Gaida and Papoutsakis, 2010). 

Despite the broad application of fluorescent proteins, the metabolic stress caused by 

overexpressing heterologous proteins can be undesired for the host cells. The expression of 

foreign proteins often utilizes significant amount of energy and resources and places metabolic 

burden on the host cells (Glick, 1995). Altered cell physiology, especially growth reduction in 

recombinant cells has been widely reported in much literature (Peretti and Bailey, 1987; 

Neubauer, Lin and Mathiszik, 2003; Rozkov et al., 2004). More detailed analysis such as 

transcriptomic analysis or even metabolic flux analysis has provided insights to how cells 

respond to metabolic stress (Rozkov et al., 2004; Haddadin and Harcum, 2005; Wang et al., 
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2006). Computational approaches have also been developed for predicting resource allocation 

and the trade of between growth and heterologous protein production (Weiße et al., 2015; Zeng 

and Yang, 2019; Oftadeh and Hatzimanikatis, 2024). Despite extensive studies on recombinant 

proteins, there are only a handful of papers focusing on quantifying the impact of fluorescent 

proteins themselves. Therefore, in the second part of my thesis, I will focus on analyzing the 

impact of fluorescence protein production on cell metabolism. Furthermore, I will study how the 

overexpression of heterologous proteins might impact the interaction between microbes. 

1.6 Aim and outline of each chapter 

In my thesis, I aim to accomplish two goals: In the first part, I aim to develop reliable 

method to elucidate cross-feeding of metabolites. In the second part, I aim to provide detailed 

analysis of how fluorescent proteins impact cells. Toward these goals: 

Chapter 2 introduces the two Escherichia coli single knockout strains ∆ilvc and ∆icd I 

selected for this work. These are both amino acid auxotrophic strains that have been previously 

shown to grow when cultured together. In this chapter, strains were cultured alone with the 

supplementation of corresponding amino acids they required. This is the first work applying 13C 

MFA on auxotrophic strains to uncover how their metabolism is affected.  

Chapter 3 demonstrates how 13C MFA was applied to syntrophic partners to elucidate 

the cross-feeding interaction. We verified the growth of ∆ilvc and ∆icd co-culture and conduct 

labeling experiments. Several metabolic networks were constructed for flux estimation. I 

carefully evaluated the performance of each network model to identify the exchanging 

metabolites. In this work, I found that out not only the deficient amino acids are being cross-fed, 

but some intermediates are also being exchanged at significant rates. This unexpected finding 

leads to the next chapter where I investigated the cross-feeding of amino acid intermediates. 
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Chapter 4 further investigates if metabolic pathway intermediates could be exchanged 

and to what extent this exchange is common between auxotrophic strains. For this purpose, I 

selected 37 Escherichia coli single gene knockout strains that are auxotrophic for 9 different 

amino acids. Strains that share the same amino acid deficiency were paired and their growth 

were monitored. Growth of the co-culture would indicate the exchange of amino acid 

intermediates. I also verified the growth on intermediates for these auxotrophic strains. 

Chapter 5 investigates five commonly used fluorescent proteins CFP, Crimson, GFP, 

Tomato and YFP and how they impact the cell when overexpressed in wild type E. coli. I 

evaluated the impact of fluorescent protein overexpression including cell physiology and 

metabolism. I analyzed cell growth, biomass composition and most importantly, metabolic 

states. 

Chapter 6 starts with a case study of applying 13C MFA on fluorescent syntrophic co-

culture consisting of ∆ilvc-Crimson and ∆icd-CFP. I will highlight some of the challenges for co-

culture MFA. Future directions with respect to 13C MFA are also discussed in this chapter. 
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Chapter 2 13C Metabolic Flux Analysis on E. coli Lethal Knockout Strains Reveal How 

Metabolism is Restored in Auxotrophic Strains Supplemented with Required Metabolites 

2.1 Abstract 

Amino acid auxotrophy, i.e., the inability to synthesize one or more essential amino 

acids, is commonly found in nature. To date, amino acid auxotrophic strains have widely been 

used as model strains in various fields. In this work, by applying 13C Metabolic Flux Analysis 

(13C MFA), we aim to understand how auxotrophic strains restore their metabolism when 

supplemented with required metabolites. Specifically, we selected two auxotrophic Escherichia 

coli single knockout strains, ∆ilvc and ∆icd, as our model strains. The two strains were grown 

under supplementation of the required amino acid based on the knockout phenotypes. The 

restored metabolism was analyzed by conducting parallel labeling experiments with [1,2-13C] 

glucose and [1,6-13C] glucose.  The isotopic labeling of intracellular metabolites was analyzed by 

GC-MS and used to perform flux analysis. We found that ∆ilvc, which has a knockout further 

away from central carbon metabolism, shows similar flux distribution to wild type E. coli. On the 

other hand, ∆icd shows significant flux rewiring with its knockout located in the TCA cycle. In 

conclusion, we visualized the restored metabolism of the auxotroph strains growing on the 

required amino acid and discovered that the location of the gene knockout could impact how the 

cells restore their metabolism. 
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2.2 Introduction 

Auxotrophy, i.e., the inability to synthesize essential compound for growth, is prevalent 

in nature (D’Souza et al., 2014; Mee et al., 2014). In scientific studies, auxotrophic strains, 

especially auxotrophs for amino acid biosynthesis, are wildly applied for different purposes. For 

example, they are commonly used to study fundamental microbial interaction (Wintermute and 

Silver, 2010; Mee et al., 2014; Noto Guillen et al., 2021), engineered for applications such as 

biosensors (Bertels, Merker and Kost, 2012) or producing valuable chemicals through synthetic 

cultures (Liu et al., 2018; Müller et al., 2023) .  

The inability to synthesize essential amino acids indicates that the auxotrophic strains 

require the lacking amino acid to be cross-fed from another strain or directly provided in the 

culture medium. In this work, we aim to understand how auxotrophic strains restore their growth 

when the required essential metabolites are provided and how the knockout impacts the 

recovered metabolism. Specifically, we will apply 13C Metabolic Flux Analysis (13C MFA) to 

obtain detailed metabolic fluxes. 13C MFA is a powerful and widely used tool that determines 

fluxes by isotopic labeling patterns and model-based analysis (Antoniewicz, 2021). Previous 

studies have applied 13C MFA on different knockout strains to understand the metabolic rewiring 

in response to genetic perturbation (Li et al., 2006; Toya et al., 2010; Long et al., 2018; Long 

and Antoniewicz, 2019b). In this work, it is the first time that 13C MFA is applied on auxotroph 

strains to uncover their metabolism. Here, we selected two E. coli single knockout strains, ∆ilvc 

and ∆icd, which are both auxotrophic for essential amino acids, and demonstrated their restored 

metabolism fluxes when the required amino acid is provided. We found that the location of the 

knockout can determine how the metabolism is impacted. We also discussed some other possible 
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metabolic rewiring scenarios that emphasize the importance of conducting 13C MFA to elucidate 

cell metabolism. 

2.3 Methods 

2.3.1 Cell strain 

The two model strains, ∆ilvC and ∆icd, are Escherichia coli (E. coli) single knockout 

strains obtained from the Keio knockout collection (GE Healthcare Dharmacon), which were 

generated by one-step gene inactivation in E. coli K-12 BW25113. They are both auxotrophic 

strain that are unable to synthesize essential amino acid(s). As shown in Figure 2.1, the ilvC gene 

encodes ketol-acid reductoisomerase, which is involved in the biosynthesis of valine, leucine and 

isoleucine. The icd gene encodes isocitrate dehydrogenase that catalyzes the reaction from 

isocitrate to alpha ketoglutarate, which is required to synthesize glutamate. Both strains have 

resistance to antibiotic kanamycin. 

 

Figure 2.1 Gene knockout location of the two model strains ∆ilvC and ∆icd. The location of the knockout gene 
in the two selected strains ∆ilvc and ∆icd are marked with red crosses. ∆ilvc has knockout further away from central 
carbon metabolism and is not able to produce valine and isoleucine; while ∆icd has knockout in the TCA cycle and 
is not able to produce glutamate. 
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2.3.2 Cell growth 

Both strains are precultured in 3% of LB Broth Miller, 1mM of glucose and 50µg/L of 

kanamycin in M9 minimal medium overnight before inoculation. For growth test, 100µL of cells 

from preculture are inoculated in 10 mL of minimal medium (M9) with 10mM of glucose and 

50µg/L of kanamycin in shake flask. The optical density (OD) at 600nm is measured by 

spectrophotometer to obtain the cell growth.  

For parallel labeling experiments, cells are precultured and inoculated as above. Cells are 

cultured with either 10mM of [1,2-13C] glucose or 10mM of [1,6-13C] glucose. Additional 2mM 

of valine and isoleucine are added in ∆ilvC culture. Likewise, 2mM of glutamate is 

supplemented for the ∆icd culture. Medium smaples from the cultures were taken at different 

time points during the growth for medium analysis. Cell samples are collected at mid-

exponential growth phase when the OD600 is around 0.7 and stored in -20°C before further 

analysis. 

2.3.3 Gas chromatography-mass spectrometry and chemical derivatization 

All the biomass and medium samples were derivatized for gas chromatography-mass 

spectrometry (GC-MS) detection to obtain isotopic distributions. We followed the standard 

protocol for sample derivatization as previously described (Long and Antoniewicz, 2019a).  

2.3.3.1 Biomass amino acid 

For proteinogenic amino acids, the cell samples were derivatized by tert-

butyldimethylsilyl (TBDMS) before GC-MS measurement. The collected cell pellets were 

resuspended in 500µL of 6N HCl and heated on 110°C for 12-18 hours. The heated samples 

were cooled under room temperature before centrifuging for 5 minutes at maximum speed. 
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400µL of the supernatants were transferred to new Eppendorf and dried at 65°C under air. 35µL 

of pyridine and 50µL of TBDMS were added to the dried samples and mixed by pipetting, 

followed by incubation at 60°C for 30 minutes. After cooling, the samples were centrifuged for 1 

minutes at maximum speed and transfer to GC-MS vials for analysis.  

2.3.3.2 Intracellular metabolites 

For intracellular metabolites, we prepared 70% of ethanol that was heated to 70°C and 

mixed 1mL with the cell pellets by vortexing. The samples were incubated for 5 minutes at 95°C 

for extraction. After cooling on ice for 5 minutes, the samples were centrifuged for 5 minutes at 

the maximum speed and dried in lyophilizer (Labconco) overnight. The dried samples were 

resuspended with 50µL of 2% methoxyamine (MOX) in pyridine and incubated for 90 minutes 

at 37°C, followed by the derivatization of TBDMS at 60°C for 30 minutes. The samples were 

cooled and then centrifuged for 1 minute at maximum speed before transferring to GC-MS vials 

for analysis.  

2.3.3.3 Biomass RNA and glycogen 

For biomass RNA and glycogen, which provide the labeling of ribose and glucose in the 

biomass, were derivatized by propionic anhydride. The cell pellets were first washed with 500µL 

of glucose free medium twice. 50µL of 6N HCl was added to the pellets and incubated at 30°C 

for 30 minutes. After incubation, the samples were diluted with 250µL of DI water and incubated 

for 1 hour at 110°C. After cooling, the samples were briefly centrifuged before adding 40µL of 

5N NaOH to neutralize the reaction, followed by drying at 65°C under air. The dried samples 

were resuspended in 50µL of 2% hydroxylamine in pyridine and incubate at 90°C for 1 hour. 

After cooling, the samples were centrifuged briefly before adding 100µL of propionic anhydride 
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and incubating at 60°C for 30 minutes. The samples were centrifuged for 1 minutes at maximum 

speed before transferring to GC-MS vials for analysis.  

2.3.3.4 Biomass fatty acid 

For biomass fatty acid analysis, which provide labeling information for acetyl Coenzyme 

A (AcCoA), it was measured by fatty acid methyl ester (FAME) derivatization. The cell pellets 

were resuspended by 50µL of DI water and transferred to glass tubes, followed by drying at 

65°C under air. The dried samples were dissolved in 1mL of methanol and 50µL of sulfuric acid. 

The glass tubes were tightly sealed with caps and the samples were incubated at 100°C for 2 

hours. After cooling, 1.5mL of DI water and 3mL of hexane were added to the sample and 

vortexed for 1minute for extraction. The mixtures were centrifuged for 5 minutes at 2500 rpm for 

phase separation, followed by transferring the upper organic to new tubes. The samples were 

dried at 40°C under nitrogen. Dried samples were redissolved with 100µL of hexane and 

transferred to GC-MS vials for analysis. 

2.3.3.5 Glucose from medium 

In order to obtain the glucose uptake rate, the supernatants from the cultures were taken 

at different time points. 20µL of medium samples were mixed with 20µL of 10mM of [U]-

glucose which served as standard before derivatization. The mixtures were dried at 65°C under 

air before adding 50µL of 2% hydroxylamine in pyridine and incubating at 90°C for 1 hour. 

After cooling, the samples were centrifuged briefly. 100µL of propionic anhydride was added to 

the samples and incubated at 60°C for 30 minutes. The samples were centrifuged for 1 minute at 

maximum speed before transferring to GC-MS vials for analysis.  
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2.3.3.6 Acetate from medium 

The acetate secretion rate was calculated by measuring the acetate concentration in the 

supernatant through TBDMS derivatization. 50µL of supernatants were mixed with 50µL of D-

acetate, followed by adding 20µL of 6N HCl and 100µL of methyl propionate. The mixtures 

were vortex for over 30 seconds and centrifuged for 5 minutes at maximum speed. 50µL of the 

top layer were transferred to new Eppendorf and added with 20µL of TBDMS. The samples 

were incubated for 30 minutes at 60°C for 30 minutes and cooled at room temperature for over 

15 minutes. The cooled samples were centrifuged for 2 minutes at maximum speed and 

transfered to GC-MS vials for further analysis. 

2.3.3.7 Data processing 

All the GC-MS measurements were integrated by mstool to obtain mass isotopomer 

distributions and corrected for natural abundance (Fernandez et al., 1996) for 13C metabolic flux 

analysis. 

2.3.4 13C metabolic flux analysis 

The full metabolic network model for 13C MFA is provided in Appendix A.1. In short, 

the model contains central carbon metabolism including glycolysis, pentose phosphate pathway, 

ED pathway, TCA cycle and glyoxylate shunt; lumped amino acid biosynthesis and biomass 

formation reaction. 13C MFA are performed by using Metran (Yoo et al., 2008), which is based 

on elementary metabolite units (EMU) framework (Antoniewicz, Kelleher and Stephanopoulos, 

2007b). Fluxes were estimated by minimizing the sum of squared residual (SSR) between the 

experimental measured isotopomer distributions and the simulation results. To ensure global 

minimum, each estimation started with random values, and reiterated based on the previous 
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result for at least 20 times or until no improvement in SSR. This process is repeated at least 10 

times to find the global solution.  

2.3.5 Statistical analysis 

The final flux result was subjected to 𝜒2 statistical analysis for goodness-of-fit as 

described in previous literature (Antoniewicz, Kelleher and Stephanopoulos, 2006). In short, 

assuming the model is correct and the experimental data are without gross measurement errors, 

the SSR should be a stochastic variable with 𝜒2 distribution with degree of freedom equal fitted 

measurements n minus independent parameter p. The minimized SSR is considered acceptable 

within the range of χ!/## (𝑛 − 𝑝) and χ$%!/## (𝑛 − 𝑝), with 𝛼 being a chosen threshold value, for 

example 0.05 for 95% confidence intervals. For each flux, we calculated 95% confidence 

intervals by evaluating the sensitivities of the minimized SSR to flux variations. 

2.4 Results 

2.4.1 Cell growth 

∆ilvC and ∆icd were both grown in 96 well plates and the growth was monitored by 

BioTek Cytation 5. Figure 2.2A shows the growth of ∆ilvC in minimal medium (M9) with or 

without additional 1mM valine and isoleucine. Similarly, Figure 2.2B shows the growth of ∆icd 

with or without 1mM glutamate. Both strains show no growth in M9 and their growth is restored 

when supplemented with amino acid supplementation. The growth rate of ∆ilvC with 1mM of 

valine and isoleucine is 0.52 1/h, and 0.58 1/h for ∆icd with 1mM of glutamate. This result 

confirms the auxotrophic phenotypes of the strains. 
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Figure 2.2 Growth of ∆ilvC and ∆icd with only minimal medium M9 or 1mM of required amino acid valine 
(Val), isoleucine (Ile) or glutamate (Glu). ∆ilvc and ∆icd are both lethal knockout strains that no growth is 
observed when culture in M9 only. Growth is restored when culture with corresponding lacking amino acid. Val: 
valine; Ile: isoleucine; Glu: glutamate; OD: optical density. 

2.4.2 Labeling experiment 

For parallel labeling experiments, cells were culture with either 10mM of [1,2-13C] 

glucose or [1,6-13C] glucose in flask. Both strains were supplemented with 2mM of required 

amino acids. The growth of ∆ilvC and ∆icd with labeled glucose are shown in Fig. 2.3. The 
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growth rate of different tracers showed similar trend for both strains. The average growth rate of 

∆ilvc and ∆icd is 0.53 1/h and 0.47 1/h, respectively. 

 

 

 

Figure 2.3 Parallel labeling experiment of ∆ilvC and ∆icd supplemented with 2mM of required amino acid 
valine (Val), isoleucine (Ile) or glutamate (Glu). The growth of ∆ilvC and ∆icd with labeled glucose as tracer. The 
OD was measured by spectrophotometer at 600nm. 
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2.4.3 13C metabolic flux analysis 

We performed 13C metabolic flux analysis on the lethal knockout strains, ∆ilvc and ∆icd, 

to better understand how the metabolism was restored when supplemented with corresponding 

amino acids. Flux analysis was also conducted on wild type (WT) Escherichia coli (E. coli) to 

serve as a base comparison.  

Figure 2.4 demonstrates the estimated metabolic fluxes in central carbon metabolism for 

wildtype E. coli, ∆ilvC and ∆icd. The flux values are normalized to 100 glucose uptake. The 

specific glucose uptake rate estimated from flux analysis are noted on the top of the flux maps. 

Specifically, it was estimated by dividing biomass formation flux value, whose unit is kgDW/100 

mol glucose uptake, by growth rate. The knockout strains have similar growth rate and specific 

glucose uptake rate as wild type when supplemented with amino acid. 

The flux distribution of the wildtype agreed well with previous report (Long and 

Antoniewicz, 2019b). In the knockout strains, the fluxes of the knockout reactions are all 

estimated to be zero (∆ilvc not shown), confirming the knockout phenotype of the two lethal 

strains. Overall, ∆ilvc strain shows very similar flux distribution as wildtype. We only observed a 

slightly lower flux value from pyruvate (Pyr) to acetyl CoA (AcCoA) in ∆ilvC despite similar 

flux value from phosphoenolpyruvic acid (PEP) to pyruvate as wildtype. This could result from 

the fact that ∆ilvc is not able to produce valine, leucine and isoleucine, which use pyruvate as the 

main precursor. Therefore, more pyruvate is converted to acetyl CoA. On the other hand, ∆icd 

shows several differences from WT. We observed a lower TCA flux and an active glyoxylate 

shunt, which is likely due to the knockout located in the TCA cycle. In addition, the replenishing 

flux for oxaloacetate (OAC) from phosphoenolpyruvic acid (PEP), which is the main anaplerotic 

reaction in E. coli metabolism, in ∆icd is lower compared to WT. This might be due to the 
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activation of glyoxylate shunt, which serve as another source of oxaloacetate replenishment. In 

additional to these metabolic flux rewiring, we also observed a higher flux from malate to 

pyruvate.  

Taken together, in this work, we visualize how the knockout strains restore their 

metabolism. We conclude that the location of the knockout could determine how much the 

central carbon metabolism is impacted. We found out that ∆ilvc, having knockout located further 

away from the central carbon metabolism, has very similar flux distribution as WT; and ∆icd, 

having knockout located in the TCA cycle, shows several differences. 
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Figure 2.4 The flux maps of central carbon metabolism in (A) Wild type E. coli. (B) ∆ilvC strain. (C) ∆icd 
strain. The growth rate and specific glucose uptake rate are shown on the top of each flux map. Flux values are 
normalized to per 100 glucose uptake and are shown with standard deviation.  
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2.5 Discussion  

In central carbon metabolism, TCA cycle is critical for producing precursors such as 

oxaloacetate (OAC) and alpha ketoglutarate (AKG) for amino acid biosynthesis. The loss of 

these intermediates in TCA cycle is replenished by anaplerotic reactions in order to remain stable 

TCA fluxes. In E. coli metabolism, the reaction from phosphoenolpyruvic acid (PEP) to 

oxaloacetate is the main anaplerotic reaction, converting C3 metabolites to replenish 

oxaloacetate extracted for biosynthesis. Glyoxylate shunt is another anaplerotic reaction that 

could generate oxaloacetate, but is typically inactive for E. coli when growing on glucose.  

For ∆ilvc strain, we observed similar anaplerotic reaction as wildtype E. coli, i.e., active 

flux from PEP to OAC but inactive glyoxylate shunt. However, in the ∆icd strain, due to the 

knockout in TCA cycle, the cells rewired their metabolism to produce required precursors for 

growth. In this discussion, we will focus on some possible ways of how ∆icd strain can produce 

oxaloacetate. 

Three possible scenarios for cells to produce oxaloacetate are shown in Fig 2.5. The first 

possible way in Fig 2.5A is to completely rely on the original anaplerotic reaction to produce 

OAC from PEP. In this case, since we supplemented additional glutamate to the culture, all the 

important precursors for amino acid can be produced/supported without TCA cycle being active. 

Another possible way to produce oxaloacetate is through the activation of glyoxylate shunt, as 

shown in Fig 2.5B. In E. coli, glyoxylate shunt is usually inactive during growth on glucose 

(Kornberg, 1966)(Farmer and Liao, 1997). However, it has been previously reported that the 

glyoxylate shunt could be activated in E. coli  knockout strains (Long and Antoniewicz, 2019b), 

suggesting that this is a possible metabolic flux rewiring. The third possible scenario shown in 

Fig 2.5C is that the cell could simply convert the supplemented glutamate (Glu) into alpha 
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ketoglutarate (AKG) and restore the TCA cycle to produce oxaloacetate. In this hypothetical 

scenario, since no Acetyl CoA (AcCoA) enters the TCA or glyoxylate cycle, more acetate will 

be secreted. 

 

Figure 2.5 Three possible scenarios for ∆icd to replenish oxaloacetate (OAC). A) The first possible scenario for 
∆icd to produce oxaloacetate (OAC) for amino acid biosynthesis. The cell could rely solely on anaplerotic reaction 
that converts phosphoenolpyruvic acid (PEP) to OAC to produce enough OAC. B) Another possible way to produce 
OAC is through the activation of glyoxylate shunt. C) The cell could also simply convert the external glutamate 
(Glu) into alpha ketoglutarate (AKG) and restore the lower half of the TCA cycle.  

In our flux result, we observed a combination of all these scenarios (Fig 2.3C). The main 

production of oxaloacetate (OAC) is from the two anaplerotic reaction, PEP to OAC and the 

activation of glyoxylate shunt. When we compare the flux results between the wildtype and ∆icd, 

the anaplerotic reaction from PEP to OAC is slighting lower in ∆icd, but the influx of OAC 

could still maintain similar value through the activation of glyoxylate shunt. Besides the two 

anaplerotic reaction, we also observed a net flux of glutamate (Glu) converted into alpha 

ketoglutarate (AKG) and enter TCA cycle, which is another important source to produce these 

important precursors.  
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This observation serves as a good example of how difficult it is to predict the outcome of 

genetic perturbations. It also emphasizes the importance of conducting accurate flux analysis to 

elucidate rewired metabolism. In the future, a more comprehensive study of different 

auxotrophic strains could be valuable that provides a boarder understanding of how cells respond 

when the required metabolites are presented in the environment. 

2.6 Supplementary experiment 

2.6.1 Glucose uptake rate 

Glucose concentration for the cultures were measured as described in the method section. 

Glucose specific uptake rate was obtained by plotting OD to glucose concentration for the slope 

and then divided by growth rate. Fig 2.6 and Fig 2.7 show the slope of labeling experiments and 

the calculation for glucose specific uptake rate for ∆ilvC and ∆icd, respectively. Here we convert 

1 OD to 0.4 gDW/L. For both strains, the measured glucose specific uptake rates are comparable 

with the rates estimated from MFA.  
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Figure 2.6 Glucose specific uptake rate for ∆ilvC. The plots show OD to glucose concentration. The slopes were 
shown on the plots and the table. The growth rates were calculated from the growth curve in Fig 2.3. Glucose 
specific uptake rate is the slope divided by growth rate. The last column in the table is for unit conversion.  
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Figure 2.7 Glucose specific uptake rate for ∆icd. The plots show OD to glucose concentration. The slopes were 
shown on the plots and the table. The growth rates were calculated from the growth curve in Fig 2.3. Glucose 
specific uptake rate is the slope divided by growth rate. The last column in the table is for unit conversion.  

2.6.2 Acetate secretion rate 

Acetate concentration for the cultures were measured as described in the method section. 

Acetate concentration was plotted against glucose concentration, as shown in Fig. 2.8 and Fig. 

2.9 for ∆ilvC and ∆icd, respectively. The slope of each plot times the glucose specific uptake rate 

calculated from section 2.6.1 will be the acetate secretion rate, as shown in the table in Fig 2.8 

and Fig. 2.9. 

 

Figure 2.8 Acetate secretion rate for ∆ilvC. The plots show acetate concentration to glucose concentration. The 
slopes were shown on the plots and the table. The glucose uptake rate was calculated from the previous section. The 
acetate secretion was the slope times glucose uptake rate. 

y = -0.7594x + 8.0031
R² = 0.9805

0
0.5

1
1.5

2
2.5

6 8 10 12 14

Ac
 (m

M
)

Gluc (mM)

∆ilvC [1,2-13C] glucose

y = -0.8892x + 8.8226
R² = 0.9999

0
0.5

1
1.5

2
2.5

6 8 10 12 14

Ac
 (m

M
)

Gluc (mM)

∆ilvC [1,6-13C] glucose

acetate secretion 
(mmol/gDW/h)

gluc uptake rate 
(mmol/gDW/h)

Slope
(mol/mol)

5.16.7-0.8∆ilvC [1,2-13C] glucose

4.85.4-0.9∆ilvC [1,6-13C] glucose



 35 

 

Figure 2.9 Acetate secretion rate for ∆icd. The plots show acetate concentration to glucose concentration. The 
slopes were shown on the plots and the table. The glucose uptake rate was calculated from the previous section. The 
acetate secretion was the slope times glucose uptake rate. 
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Chapter 3   13C Metabolic Flux Analysis Identifies Unexpected Metabolite Exchanges in E. 

Coli Co-Culture 

3.1 Abstract 

A key characteristic of microbial communities is the cross-feeding of nutrients, termed 

syntrophy. However, currently there are few methods to identify and quantify such metabolite 

exchanges. In most studies to date, the exchanging metabolites were assumed based on genomic 

or transcriptomic information. In this work, we show that by applying 13C metabolic flux 

analysis (13C MFA) on a syntrophic E. coli co-culture, we are capable of not only resolving the 

individual intracellular fluxes with high precision, but also elucidating and quantifying the rates 

of exchanged metabolites. Specifically, we have analyzed metabolite exchange in the co-culture 

of two auxotrophic E. coli strains, Δicd and ΔilvC, using parallel labeling experiments with [1,2-

13C] glucose and [1,6-13C] glucose combined with isotopic labeling analysis by GC-MS. We 

have discovered that the interaction between the syntrophic partners was more complicated than 

was previously assumed. In addition to amino acid exchange, we show that metabolic pathway 

intermediates are also exchanged at significant rates. The results from this study provide a more 

comprehensive view of syntrophic interactions in co-cultures. Moreover, the methods developed 

in this study can be applied to other types of interactions, or even in multi-culture systems to 

improve our understanding of microbial communities. 
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3.2 Introduction 

The coexistence of microbes as communities is critical for regulating body functions, 

coupling element cycle such as carbon (C), nitrogen (N), and phosphorus (P) cycle in the 

ecosystem (Burgin et al., 2011; Kumar and Chordia, 2017). It is estimated that only 1% of the 

identified archaea and bacteria can be cultivated and studied under laboratory condition (Pande 

and Kost, 2017). Most microorganisms in nature are auxotrophs, which means that they lack the 

key gene(s) to synthesize essential molecule(s) for growth (D’Souza et al., 2014; Mee et al., 

2014). Therefore, the cross-feeding of metabolites i.e., syntrophic interactions between microbes 

is commonly found in microbial communities. The exchanging molecules include electron 

donors, sugar, organic acid, amino acids, vitamins and other co-factors (Jones, 1967; Rodionova 

et al., 2015; Zengler and Zaramela, 2018; Fritts, McCully and McKinlay, 2021). In this study, we 

focus on deciphering syntrophic interactions and tackle the challenge that we currently face. 

The exchange of metabolites is a critical part for supporting growth and shaping 

microbial communities (Mee et al., 2014), but it remains challenging to elucidate the cross-

feeding of metabolites due to the dynamic interaction and system complexity (Ponomarova and 

Patil, 2015). Studies that focus on syntrophic interactions often assume the exchanging 

metabolites based on the genomic information i.e., the gene knockout. For example, if a microbe 

has a gene knockout that encodes an enzyme that catalyzed the reaction for the biosynthesis of 

essential amino acid, it is often assumed that the cross-feeding metabolite is that amino acid 

(Mee et al., 2014; Pande et al., 2014; Germerodt et al., 2016; Antoniewicz, 2020). In the past 

decade, genomic, transcriptomic and proteomic information combined with computational 

models has been developed to provide a more comprehensive analysis (Zuñiga, Zaramela and 

Zengler, 2017). For examples, flux balance analysis (FBA), dynamic flux balance analysis 
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(DFBA), community flux balance analysis (cFBA) and other related constraint-based 

reconstruction and analysis (COBRA) are approaches that combined omic information with a 

model to predict exchanging metabolites (Khandelwal et al., 2013; Henson and Hanly, 2014; 

Embree et al., 2015; Zelezniak et al., 2015; Sarkar et al., 2021) However, although flux balance 

analysis (FBA) serves as one of the most common way so far to decipher microbial interactions 

(Basile et al., 2020), there are some limitations. First, the accuracy of FBA is limited due to some 

assumptions such as maximum growth rate (Long et al., 2017; Antoniewicz, 2021) and this 

could appear even more challenging in a complex system since it requires finding community 

objective function (Gottstein et al., 2016). Second, FBA usually produces multiple flux solutions 

when calculating large metabolic network (Antoniewicz, 2021). Therefore, in some examples it 

can only determine a sets of possible cross-feeding metabolites rather than uncover the actual 

interactions (Khandelwal et al., 2013; Sarkar et al., 2021). A promising approach to resolve this 

is by tracing metabolic flow by isotope labeling, which is the most conclusive way to show 

metabolite exchange (Ponomarova and Patil, 2015; Zuñiga, Zaramela and Zengler, 2017). The 

major challenge of isotope labeling, however, is to resolve the labeling pattern for a complex 

system. Therefore, most examples that utilize isotopic analysis are under simplify assumptions 

(Ponomarova and Patil, 2015; Gottstein et al., 2016). These challenges lead to the goal of this 

study: develop an effective and reliable method to elucidate syntrophic interactions, specifically 

on the cross-feeding of metabolites between syntrophic partners. 

In this study, I apply 13C metabolic flux analysis (13C MFA) on a syntrophic co-culture to 

obtain detailed metabolic fluxes and identify exchanging metabolites between syntrophic 

partners. 13C MFA is a powerful and widely used tool to determine fluxes by model-based 

analysis and the isotope labeling pattern. This technique does not require optimality assumptions 
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or model simplification, therefore providing precise flux results (Long and Antoniewicz, 2019a; 

Antoniewicz, 2020). In the past, 13C MFA was mostly applied in mono-culture, which only 

provides the intracellular fluxes for a single strain (Crown and Antoniewicz, 2013). In 2015, a 

new approach was developed for utilizing 13C MFA in a co-culture system. This is the only 

method so far that does not require physical separation of cells or proteins. It was demonstrated 

that with proper tracer design and by employing a co-culture model, fluxes within the co-culture 

system could be resolved (Gebreselassie and Antoniewicz, 2015). In this study, we take a step 

further to apply 13C MFA to a co-culture system with interactions, specifically syntrophic 

interactions. We select two E. coli knockout strain ∆ilvC (valine and isoleucine auxotroph) and 

∆icd (glutamate auxotroph), which have been previously reported to be syntrophic partners 

(Wintermute and Silver, 2010), as our model system for this study. We show that 13C MFA is not 

only capable for predicting fluxes of individual strain in a co-culture system, but also distinguish 

metabolites that are being exchanged. Interestingly, the result shows that the syntrophic partners 

are exchanging not only the intuitive metabolites predicted from genomic information, which in 

our case are amino acids, but also the intermediates along the synthetic pathway. This new 

finding suggests that syntrophic interaction may be more complicated than we thought: instead 

of exchanging single metabolite for essential growth, microbes form a more convoluted network 

for better cooperation. 

3.3 Methods 

3.3.1 Cell strain  

The two strains, ∆ilvC and ∆icd are knockout strains in amino acid metabolism. The ilvC 

gene encodes ketol-acid reductoisomerase, which is involved in the biosynthesis of valine and 

isoleucine. Ketol-acid reductoisomerase catalyzes the reaction of (S)-2-acetolactate (aclact) to 3-
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methyl-2-oxobutanoate (kVal) and (S)-2-aceto-2-hydroxybutanoate (acbut) to (3S)-3-methyl-2-

oxopentanoate (kIle) for valine and isoleucine biosynthesis, repectively. The icd gene encodes 

isocitrate dehydrogenase, it catalyzes the reaction of isocitrate to alpha ketoglutarate, which is a 

precursor for glutamate biosynthesis. Both strains have antibiotic resistance for kanamycin. 

3.3.2 Growth condition 

The two auxotrophic strains were precultured in 3% of LB Broth Miller, 1mM of glucose 

and 50µg/L of kanamycin in 10 mL of M9 minimal medium separately overnight before 

inoculation. For mono-culture, 100µL of cells are inoculated into separate flasks and cultured in 

10mL of minimal medium (M9) with 10mM of glucose and 50µg/L of kanamycin in shake flask. 

For co-culture, we took 100µL from each pre-culture and inoculate into the same shake flask. 

The optical density (OD) at 600nm was measured by spectrophotometer to obtain the cell 

growth. For parallel labeling experiments, cells were precultured and inoculated as above. Cells 

were cultured with either 10mM of [1,2-13C] glucose or 10mM of [1,6-13C] glucose. Cells pellets 

were collected during mid-exponential growth when the OD600 was around 0.7 for further 

analysis. 

3.3.3 Gas chromatography-mass spectrometry and chemical derivatization 

Tert-Butyldimethylsilyl ethers (TBDMS) derivatized amino acids sample are prepared 

and analyzed as previously described. Fatty acid labeling data was determined from acetyl 

coenzyme A (AcCoA) as described (Long and Antoniewicz, 2019a). The results are integrated 

by mstool to obtain mass isotopomer distributions (Antoniewicz, Kelleher and Stephanopoulos, 

2007a) and corrected for natural abundance (Fernandez et al., 1996)for further analysis  

3.3.4 13C metabolic flux analysis 
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In order to perform 13C MFA on co-culture, we construct a co-culture metabolic network 

model. The full metabolic network is provided in Appendix A.2. In brief, for mono-culture 

model, the model is same as the previous chapter that contains the central metabolism pathway, 

lumped amino acid biosynthesis and biomass formation for cell growth. Co-culture model 

includes two compartments that represent individual species. Each compartment has identical 

metabolic pathways as described in the mono-culture model. The pathway reactions that ∆ilvC 

and ∆icd are not able to catalyze are deselected for the first and second compartment, 

respectively. The exchanging flux(es) is(are) added manually for each test run. 

13C MFA is performed by Metran software as previous paper (Gebreselassie and 

Antoniewicz, 2015). Metran calculations are based on elementary metabolite units (EMU) 

framework (Antoniewicz, Kelleher and Stephanopoulos, 2007b). Fluxes are estimated by 

minimizing the sum of squared residual (SSR) between the experimental measured isotopomer 

distributions and the predicted result. For each model (without/with exchange(s)), we start with a 

random value for each flux, and reiterate based on the previous result for at least 20 times until 

no improvement in SSR. This process is repeated at least 15 times to find the global solution. For 

the result that gives the lowest SSR, we calculate 95% confidence interval for each flux by 

evaluating the sensitivities of the minimized SSR to flux variation. The flux result is subjected to 

𝜒2 statistical analysis for goodness-of-fit, as described in previous literature (Antoniewicz, 

Kelleher and Stephanopoulos, 2006). 

3.4 Results 

3.4.1 Syntrophic growth for two auxotrophic strains. 

The growth of ∆ilvC and ∆icd are shown in Fig 3.1. When cultured alone, both strains 

show no growth in minimal medium over 48 hours culture, confirming their auxotrophic 
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phenotype. When we co-culture the two strains together, they show an apparent grow rate 0.062 

1/h. This suggests that the two are syntrophic partners, i.e., they secret essential nutrients to 

support each other. 

 

Figure 3.1 Syntrophic growth of ∆ilvC and ∆icd. Figure shows the growth curve of	∆ilvC and ∆icd mono-culture 
and co-culture. Neither auxotrophic strain grows when culture alone in minimal medium M9. Growth is only seen in 
coculture with growth rate 0.062 1/h. 

3.4.2 Parallel labeling experiment and new metabolic models for flux analysis 

Parallel labeling experiments for 13C MFA were conducted by replacing non-labeled 

glucose with [1,2-13C] glucose and [1,6-13C] glucose for cell culture. Cell pellets were collected 

in mid growth phase when OD value was around 0.7. Metabolites including amino acid, fatty 

acid, glycogen and RNA were derivatized by corresponding methods (Long and Antoniewicz, 

2019a). Isotopic distributions of these metabolites were measured by GC-MS for metabolic flux 

analysis. 

Flux analysis was performed by Metran. Metabolic models with increased complexity 

were tested for best fit. The initial base model to start with is the mono-culture model, which has 

only one set of metabolic path way as shown in Fig 3.2 left box. The model includes lumped 

amino acid synthetic pathway, biomass formation reaction and central carbon metabolism. A 
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coculture model is shown in Fig 3.2 middle box, which includes another set of identical 

metabolic path way added to the original model to create a co-culture model. This allows two 

different metabolisms exist, but no exchange fluxes are present in this model. In the third model 

shown in Fig 3.2 right box, metabolites exchanges would be added between the co-culture 

partners. Different combinations of exchanging fluxes were tested to find out the best model that 

predicts accurate flux distribution to fit the experimental measurement. 

 

Figure 3.2 Illustrations of models used in 13C Metabolic Flux Analysis. Mono culture model (left): contain one 
set of metabolic pathways in E. coli, including lumped amino acid synthetic pathway, biomass formation reaction 
and central carbon metabolism such as glycolysis, Entner-Doudoroff pathway, pentose phosphate pathway, TCA 
cycle and glyoxylate shunt. Co-culture model w/o exchange (middle): contain two identical sets of metabolic 
pathways same as described in mono-culture. Identical reactions are name with number 1 and 2 to distinguish the 
two strains. Co-culture model w/ exchange (right): different exchanging flux(es) is(are) added between microbe 1 
and 2 with no boundary to allow either direction of cross-feeding. The pathways are deselected for individual strain 
based on their knockout gene. 

3.4.3 13C metabolic flux analysis with new co-culture metabolic models 

The first attempt using mono-culture model resulted in high SSR (Sum of Squared 

Residuals) around 1.6×105, which indicates that one set of metabolisms is not sufficient enough 

to describe this co-culture system. This result leads to testing the co-culture model with different 

exchanges. In Fig 3.3, the bars represent the SSR value of different models, which indicate how 

well each model is able to fit the experimental data. The red dotted line marks the statistically 

acceptable value calculated as described in previous section which is about 210 in our case. The 

first attempt with no exchange flux added, as shown in the first bar in Fig 3.3, resulted in SSR 
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1.25×105. The co-culture model fitted better than the mono-culture model, but the poor fit 

suggested that the model was lacking important interactions. Therefore, metabolite exchanging 

fluxes were included in the model and tested. We begin with the amino acids that individual 

strain cannot produce: glutamate, valine and isoleucine. Noted here that in the simulation, the 

model is not able to distinguish the exchange between glutamate (Glu) and alpha ketoglutarate 

(AKG); valine (Val) and keto-valine (kVal); isoleucine (Ile) and keto-isoleucine (kIle) since 

there is no carbon rearrangement. The three additional exchanges lead to a significant 

improvement in SSR to about 2×103. This result shows that adding the direct auxotroph amino 

acid did not give an acceptable SSR, which indicates that these intuitive amino acids might not 

be the only exchanging metabolites.  

Moving forward, we included additional leucine (Leu), aspartate (Asp) and threonine 

(Thr) exchanging fluxes, which are the amino acids related to the biosynthesis pathway of the 

auxotroph amino acids, into the model. We find out that this expanded model did not improve 

the result as shown in the third bar in Fig 3.3. Therefore, instead of including the related amino 

acids, we try including the intermediates in the biosynthetic pathway, acetolactate (aclact) and 2-

aceto-hydroxybutanoate (acbut) into the model. This attempt significantly improved the SSR 

value to the magnitude of acceptable range. This suggests that the intermediates are likely to be 

involved in the exchanging network.  

If all the relevant metabolites are included as shown in the fifth bar in Fig 3.3, we are able 

to obtain the minimal SSR, which is the best fit so far. However, the result does not imply that all 

the metabolites exchange in this model are valid. In order to determine the exchanging 

metabolites, we apply two verification steps to eliminate the exchanging flux that is unlikely to 

be involved. First, we evaluate the flux value and the confidence interval of the predicted 
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exchange flux. If the predicted flux value is close to 0 with the standard deviation suggest that 

this flux could be either negative or positive, this exchanging flux could potentially be excluded 

from the exchanging map. We then took this exchanging flux out of the model and see how that 

impact SSR value. If there is no significant increase in the SSR value, we conclude that this 

additional flux is likely not the major exchanging metabolite. Following this principle and the 

exchange flux map shown in Fig 3.4, threonine (Thr) exchange flux is eliminated. New models 

without threonine exchange fluxes were testes and confirmed that there is almost no impact when 

it is removed from the model as shown in the last bar in Fig 3.3. Noted here that aspartate and 2-

aceto-hydroxybutanoate exchange fluxes, which both had relatively low exchange fluxes, were 

tested as well and resulted in unacceptable fit. Taken together, our final exchanging metabolites 

include the essential amino acid that the cell required: glutamate, valine and isoleucine; the 

amino acid that are related: leucine and aspartate; and most importantly, the intermediates: 

acetolactate and 2-aceto-hydroxybutanoate. 
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Figure 3.3 Sum of square residual (SSR) of co-culture models with different exchange metabolites. The bars 
represent the SSR values of each metabolic model, with the red dashed line indicating the threshold for an 
acceptable SSR. The chart below the bar graph displays the metabolite exchange fluxes included in the metabolic 
network model for each fit. Glu/AKG: glutamate/alpha-ketoglutarate; Val/kVal: valine/keto-valine; Ile/kIle: 
isoleucine/keto-isoleucine; Leu: leucine; Asp: aspartate; Thr: threonine; aclact: acetolactate; acbut: 2-aceto-
hydroxybutanoate. 
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Figure 3.4 Exchange flux map with co-culture model that include all possible exchanges. The exchange flux 
map when all exchange fluxes are included in the model. Fluxes values are shown with standard deviation. Yellow 
box (top): Valine/Leucine biosynthesis pathway. Gray box (middle): Isoleucine biosynthesis pathway. Orange box 
(bottom): Glutamate biosynthesis pathway. 
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with Glu cross-fed from ∆ilvC. The flux map also shows the exchange of leucine between the 

two strains, which are unexpected since ∆icd is capable of synthesizing leucine and so does 

∆ilvC with Val/kVal being cross-fed. The exchange of intermediates and metabolites other than 

the required amino acid glutamate, valine and isoleucine shows that there is a complex metabolic 

network formed even in a simple co-culture system, suggesting a higher degree of cooperation 

between microbes than previously expected. 

 

Figure 3.5 Exchange flux map of ∆ilvC and ∆icd syntrophic co-culture. Fluxes values are shown with standard 
deviation. Yellow box (top): Valine/Leucine biosynthesis pathway. Gray box (middle: Isoleucine biosynthesis 
pathway. Orange box (bottom): Glutamate biosynthesis pathway. The exchanging flux map demonstrates how two 
auxotroph strains form a complicated exchanging cycle to overcome the auxotroph.  
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3.4.5 Central carbon metabolism 

Central carbon metabolism of the two strains is shown in Fig. 3.6 and Fig. 3.7. The ∆ilvC 

strain has a roughly similar flux distribution as the wild type E. coli shown in the previous 

chapter. The main difference is that the TCA cycle flux is significantly higher in ∆ilvC due to 

low acetate secretion. Typically, we observe overflow metabolism for fast growing E. coli, 

which means that the cell use fermentation instead of respiration to generate energy (Basan et al., 

2015). Both of our strains were growing slow in co-culture, which is likely the reason that both 

strains have low acetate secretion. For ∆icd, instead of TCA cycle, where the gene knockout is 

located, the glyoxylate cycle has very high flux. The high flux seems to provide enough 

oxaloacetate that the reaction from phosphoenolpyruvic acid (PEP) to oxaloacetate (OAC), 

which is originally the main anaplerotic reaction for replenishing oxaloacetate, is nearly shut 

down in ∆icd. We also observe a high flux from malate (Mal) to pyruvate (Pyr), which might be 

an overflow from the glyoxylate cycle.  
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Figure 3.6 Central carbon metabolism flux map of ∆ilvC in co-culture. Fluxes are normalized to 100 unit of 
glucose uptake. Estimated fluxes value are shown with standard deviation. Red cross represents the knockout 
pathway (∆ilvC knockout not shown). Width of arrows represent the relative value of fluxes.  
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Figure 3.7 Central carbon metabolism flux map of ∆icd in co-culture. Fluxes are normalized to 100 unit of 
glucose uptake. Estimated fluxes value are shown with standard deviation. Red cross represents the knockout 
pathway. Width of arrows represent the relative value of fluxes.  
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3.5 Discussion  

In this work, we demonstrated how we can apply 13C metabolic flux analysis on an 

interacting co-culture system to elucidate the cross-feeding metabolites. In this approach, total 

biomass measurement from the co-culture is sufficient enough to estimate the metabolic fluxes. 

Co-culture metabolic models with different metabolite exchanges were constructed and tested. 

We applied statistical analysis to evaluate the performance of each model and which exchange 

fluxes were critical. We discovered that not only the “expected” amino acids are being 

exchanged, other amino acid and pathway intermediates also play important part in the exchange 

flux map. This finding is critical as it sheds light on our understanding of microbial communities. 

Beside exchanging the required metabolites for survival, the interactions between microbes were 

found to be more complex than we previously thought.   

Although 13C metabolic flux analysis can be a powerful tool to elucidate exchanging 

metabolites, there are still limitations and challenges that it could face when applying on a more 

complex system. In our co-culture metabolic flux analysis, statistical analysis provides valuable 

guidance in identifying which exchange fluxes are critical for fitting our experimental 

measurements. Specifically, the goodness of fit is quantified by calculating the sum of squared 

residuals (SSR). However, the SSR value only represents how well the overall model fits the 

measured data. Therefore, in some cases, we could achieve a statistically acceptable fit with 

different exchange fluxes combination, even if we removed exchange fluxes from the model that 

estimated to be present at significant rates. 

Taking our co-culture as an example, in Fig. 3.8, the SSR value of more metabolic 

models with different exchange fluxes combination were shown. The first bar represents the best 

fit with all the amino acids and intermediates exchange fluxes in the model. We found that 
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including pyruvate (Pyr) can further reduce the SSR to around 170, as shown in the second bar. 

Fig. 3.9 demonstrates the exchange flux map when pyruvate exchange flux was included. 

Followed the same principle described above, we removed threonine and aspartate exchange flux 

due to both fluxes exhibiting extremely low values, with their standard deviations indicating that 

they could be zero. When both exchange fluxes were removed from the model, the fit was nearly 

as good as when they were included, as shown in the third bar. This result shows that addition of 

pyruvate exchange flux allowed us to further eliminate the aspartate exchange flux with 

acceptable fit. 

Moving forward, we removed more exchange fluxes alongside threonine and aspartate to 

evaluate the impact of each elimination on the model fit. A rational choice was to remove the 2-

aceto-hydroxybutanoate exchange flux, which also had a low exchange flux value similar to 

threonine and aspartate. This resulted in a statistically acceptable fit, with the SSR increasing by 

20, as shown in the fourth bar of Fig. 3.8. However, removing the leucine exchange flux instead 

of the 2-aceto-hydroxybutanoate exchange flux also yielded an acceptable fit, with the SSR 

increasing by 35, as shown in the fifth bar. It was unexpected that the model without the leucine 

exchange could still be statistically acceptable, considering it was always predicted to be 

exchanged at a significant rate, as shown in Fig. 3.4, 3.5 and 3.9. This serves as a good example 

that statistical analysis alone is sometimes insufficient to definitively determine which 

metabolites are being exchanged, as the SSR can only evaluate the overall fitness of the model.  

In this case, when pyruvate exchange fluxes were included, we were able to obtain 

acceptable fit without leucine being exchanged. It is important to keep in mind that there might 

be some other combination of exchange fluxes that could yield acceptable fit. For these exchange 

fluxes that could improve the SSR mildly, we do not have a statistically strong argument to keep 
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or eliminate either exchange fluxes. Therefore, even though pyruvate exchange flux was not 

included in the main part of this chapter, this does not imply that it was not being exchanged. In 

the future, collecting additional experimental measurements could potentially resolve the issue 

by providing more constraints to the simulation. Alternatively, designing new experiments to 

verify the exchange of metabolites predicted by the flux analysis could also be effective.  

On the other hand, in some cases, statistical analysis can provide strong evidence that 

metabolites are being exchange. For example, the elimination of the acetolactate exchange flux 

from the model led to a significant increase in SSR, as shown in the sixth bar in Fig. 3.8, which 

is a solid proof that this intermediate was being exchanged. This also illustrates that the flux 

value itself does not solely determine its impact on the fit, as the acetolactate exchange flux, 

having similar value as leucine exchange flux, had a much greater impact on the fit. Taken 

together, currently, 13C metabolic flux analysis can provide sufficient evidence of critical 

exchange fluxes through statistical analysis. More experimental works will be required to 

support the minor exchanging flux between microbes. 
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Figure 3.8 Sum of square residual (SSR) for co-culture model with different exchange metabolites 
combination. The bars represent the SSR values of each metabolic model, with the red dashed line indicating the 
threshold for acceptable SSR. The chart below the bar graph displays the metabolite exchange fluxes included in the 
metabolic network model for each fit. Glu/AKG: glutamate/alpha-ketoglutarate; Val/kVal: valine/keto-valine; 
Ile/kIle: isoleucine/keto-isoleucine; Leu: leucine; Asp: aspartate; Thr: threonine; aclact: acetolactate; acbut: 2-aceto-
hydroxybutanoate; Pyr: pyruvate. 
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Figure 3.9 Exchange flux map of ∆ilvC and ∆icd with all amino acids, intermediates and pyruvate exchange 
fluxes included in the metabolic model. Fluxes values are shown with standard deviation. Yellow box (top): 
Valine/Leucine biosynthesis pathway. Gray box (middle: Isoleucine biosynthesis pathway. Orange box (bottom): 
Glutamate biosynthesis pathway.  
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metabolic flux analysis could be extended to tri-culture systems or even more complex systems 

with currently collected measurements. The true challenges, however, lie in the intricate 

interactions between microbial species. In the co-culture model, we can elucidate the exchanging 

metabolites by manually incorporating exchange fluxes into the model. However, in more 

complex systems, the number of possible combinations of exchanging metabolites between each 

species increases exponentially with the addition of more species. Consequently, numerous 

models with different exchange combinations must be tested, which can become highly 

inefficient as the system complexity increases. As a result, a more efficient model network will 

be required in the future to overcome this limitation. 

In summary, in this work, we demonstrate the power of 13C metabolic flux analysis to 

elucidate the exchanging metabolites in syntrophic co-culture. We discover a more complex 

exchange network than previously assumed. In most cases where researchers investigated 

syntrophic interactions, they constructed the community metabolic model based on genomic 

information. We show that genomic information can be valid, but not comprehensive. Our work 

improves our understanding for syntrophic partner and can help build more accurate models for 

future applications. 

3.6 Supplementary experiment 

3.6.1 Growth verification 

In our simulation, we are unable to distinguish the difference between valine and keto-

valine exchange flux; isoleucine and keto-isoleucine exchange flux; and glutamate and alpha-

ketoglutarate exchange flux. Here we demonstrate that the auxotrophic strain ∆icd can grow on 

either glutamate or alpha-ketoglutarate and ∆ilvC can utilize either the amino acid or the keto-

forms of them. In Fig. 3.8, the growth rate and final OD of ∆icd cultured with glutamate and 
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alpha-ketoglutarate at different concentration are shown. The growth rate across all conditions is 

similar, and the final OD is limited by the total concentration of the two metabolites. ∆icd 

appears to have a slight preference for utilizing glutamate, as the group with a higher glutamate 

concentration grows better under the same total concentration. 

 

Figure 3.10 Growth rate and final OD of ∆icd growing on different concentration of glutamate and alpha-
ketoglutarate. The ∆icd strains are cultured with glutamate (Glu) and alpha-ketoglutarate (AKG) in 96 well plate 
and monitored by BioTek Cytation 5. The growth rate and final OD of each condition are shown. 

 For ∆ilvC strain, we supplemented the cells with either valine and isoleucine or their 

keto-form, resulting in 4 different combinations. In Fig. 3.9, we show the growth rate and final 
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Ile/Val group when isoleucine is at a high concentration and valine is at a low concentration. 

Such inhibitory interrelationship between branch chain amino acid has been reported in previous 

literature (Dien, Ravel and Shive, 1954). The inhibition is likely due to the competition of the 

shared transporter (Guardiola et al., 1974). Similar inhibition effect is observed in the kVal/kIle 

group as well but not the combination of amino acid/keto-acid group. Currently, there is no 

known transporter for keto-acid although it was demonstrated here that the cells could indeed 
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utilize the keto-acid. If the growth inhibition in the kVal/kIle was also due to transporter 

competition, it is likely that the keto-acids do not share the same transporter with the branch 

chain amino acids since no inhibition was observed in amino acid/keto-acid group.  
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Figure 3.11 Growth rate and final OD of ∆ilvC growing on different concentration of valine and isoleucine 
and their keto-acid. The ∆ilvC strains are cultured with either valine (Val) and isoleucine (Ile) or their keto-acid in 
96 well plate and monitored by BioTek Cytation 5. The growth rate and final OD of each condition are shown. 
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Normally, there is no cross-feeding between the two strains in the co-culture, as shown in 

previous case (Gebreselassie and Antoniewicz, 2015), the two sets of metabolism were 

calculated independently and combined with an estimated fraction for overall predicted labeling. 

The overall labeling simulated from the calculation is then fitted to the total biomass measured in 

the experiment. The estimated fluxes for both strains are normalized to 100 glucose uptake, 

which represent their relative flux distributions. In our case, however, the two strains are linked 

with the cross-feeding fluxes. When both strains are normalized to 100 glucose uptake, the 

inherent assumption is that they have the same total glucose uptake. Noted that the total glucose 

uptake here represents the glucose uptake of individual cell times their population. If we assume 

both strains have similar glucose uptake, since there is no mutant in the transporter, the 

population of the two strains should be roughly 50%: 50% for accurate simulation when we set 

both uptake to 100 in the model.  

To test this, we grew the co-culture at different initial ratio and monitored their 

population dynamic over time. Three initial ratios were selected: 25%: 75%, 50%: 50% and 

75%: 25%. The population was measured by selective plating. In brief, we prepared two 

different conditioned agar plate: M9 with 2mM of valine and isoleucine, M9 with 2mM of 

glutamate. The cultures were sampled at different timing on the three plates, where the 

conditioned plates should only allow one auxotrophic strain to grow and a LB plate can support 

both strains. Fig. 3.10 demonstrate the population dynamic over time at different inoculation 

ratio. Noted that the time points are not equally distributed. The three co-cultures, although starts 

at a different inoculation ratio, eventually stabilized to roughly ∆ilvC: ∆icd = 40%: 60%. 

Interestingly, in all cases, ∆icd seems to grow a lot faster initially compare to ∆ilvC, especially 

when the initial ratio of ∆ilvC: ∆icd = 75%: 25%. Based on this result, we confirmed that the 
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population is overall stable when the inoculation ration is 50%: 50% and the culture can roughly 

maintain similar population ratio overtime.  

 

Figure 3.12 Population dynamic of the ∆ilvC/∆icd co-culture with different inoculation ratio. The bar graphs 
show the percentage of each strain, where yellow represent ∆icd and blue represent ∆ilvC. The OD of the co-
cultures are also shown in this graph. Noted that the time points are not equally distributed. 
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Chapter 4 Cross-feeding of Amino Acid Pathway Intermediates is Common in Co-culture 

of Auxotrophic Escherichia coli 

4.1 Abstract 

Amino acid auxotrophy refers to an organism’s inability to synthesize one or more amino 

acids that are required for cell growth. In microbiome research, co-cultures of amino acid 

auxotrophs are often used to investigate metabolite cross-feeding interactions and model 

community dynamics. Thus far, it has been implicitly assumed that amino acids are cross-fed 

between these auxotrophs. However, this assumption has not been fully verified. For example, it 

could be that intermediates of amino acid biosynthesis pathways are exchanged instead, or in 

addition to amino acids. If true, this would significantly increase the complexity of metabolic 

interactions that needs to be considered. Here, we show that metabolic pathway intermediates are 

indeed exchanged in many co-cultures of amino acid auxotrophs. To demonstrate this, we 

selected 25 E. coli single gene knockouts that are auxotrophic for five different amino acids: 

arginine, histidine, isoleucine, proline, and tryptophan. In co-culture experiments, we paired 

strains that shared the same amino acid auxotrophy and monitored cell growth. We observed 

growth in 23 out of 55 strain pairings, indicating that pathway intermediates were exchanged 

between the strains. To provide further support for cross-feeding of pathway intermediates, 

auxotrophic E. coli strains were cultured in media supplemented with commercially available 

metabolic pathway intermediates. Supplementing media with many of these metabolites 

recovered cell growth as was predicted from the co-culture experiments. Taken together, this 

work demonstrates that exchange of metabolic pathway intermediates is more common than has 
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been assumed so far. In future, these exchanges must be explicitly considered when constructing 

models of metabolite cross-feeding interactions in microbial communities and when interpreting 

results from microbiome studies involving auxotrophic strains.  

4.2 Resulting publication 

This manuscript is currently submitted to the journal Metabolic Engineering. 

4.3 Introduction 

Auxotrophy is defined as the inability of an organism to synthesize one or more 

metabolites that are essential for cell growth. Amino acid auxotrophs are widespread in nature 

(Mee and Wang, 2012; D’Souza et al., 2014), and have been extensively used in academic 

research as model systems to study microbial interactions and community dynamics (Wintermute 

and Silver, 2010; Mee et al., 2014; Germerodt et al., 2016) It is well known that certain E. coli 

amino acid auxotrophs, when paired together in co-cultures, are able to grow in minimal 

media(Wintermute and Silver, 2010). Thus far, it had been commonly assumed that these strains 

are able to grow together by cross-feeding amino acids (Antoniewicz, 2020). However, an 

alternative explanation is that instead of amino acids, metabolic pathway intermediates could be 

exchanged. If true, then this would require significant revision of our models to describe 

metabolic interactions in such communities. To date, however, this hypothesis has not been fully 

explored.  

In this study, we therefore investigated if pathway intermediates could be exchanged and 

how widespread such cross-feeding interactions are for auxotrophic E. coli strains. Specifically, 

we selected 25 E. coli single knockout strains that were auxotrophic for five different amino 

acids: arginine, histidine, isoleucine, proline, and tryptophan. Strains that shared the same amino 
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acid auxotrophy were paired in co-cultures and growth was monitored. Assuming only amino 

acids could be exchanged, we expected to observe no growth in any of these co-cultures. 

However, if growth would be observed, then this would indicate that exchange of metabolic 

pathway intermediates had occurred. Indeed, we found that nearly half of the co-cultures showed 

significant growth in minimal medium. To provide additional support for these results, follow up 

experiments were performed using media supplemented with specific metabolites that were 

identified as likely to be exchanged. Growth of auxotrophs was recovered as predicted. Taken 

together, results from this study demonstrate that cross-feeding of metabolic pathway 

intermediates is common in co-cultures of E. coli auxotrophs and that these interactions must be 

explicitly considered when constructing metabolic interaction models of microbial communities, 

or when interpreting results from studies involving these auxotrophic strains. 

4.4 Methods 

4.4.1 Strains and materials 

All auxotrophic E. coli strains were obtained from the Keio knockout collection (GE 

Healthcare Dharmacon), which were generated by one-step gene inactivation in E. coli K-12 

BW25113. Chemicals and M9 minimal medium were purchased from Sigma-Aldrich (St. Louis, 

MO). The following metabolic pathway intermediates were used: N-acetyl-L-ornithine (Cat# 

A3626), L-ornithine (Cat# W419001), L-citrulline (Cat# PHR3191), N-acetyl-L-glutamate (Cat# 

855642), L-arginino-succinate (Cat# 73097), histidinol (Cat# H6647), keto-isoleucine (Cat# 

198978), 2-oxobutanoate (Cat# K0875), and anthranilate (Cat# 10680). All media and stock 

solutions were sterilized by filtration. 

4.4.2 Culture condition 
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Pre-cultures were grown overnight in M9 medium with 3% LB, 1 mM glucose and 50 

µg/L kanamycin at 37°C, and then used to inoculate the experimental cultures. Growth medium 

for co-cultures and monocultures was M9 medium with 10 mM glucose and 50 µg/L kanamycin. 

For medium supplementation experiments, additional metabolites were added at 0.1 mM final 

concentration. All growth experiments were performed in 96-well plates with 200 µL of medium 

at 37°C and 800 rpm shaking using the BioTek Cytation 5 incubating plate reader. Growth was 

monitored by measuring OD600 every 30 minutes. Co-cultures and monocultures were inoculated 

with 1 µL of the overnight pre-cultures into 200 µL medium.  

4.5 Results 

4.5.1 Arginine auxotroph 

The Keio E. coli knockout collection has six arginine auxotrophs: ∆argA, ∆argB, ∆argC, 

∆argE, ∆argG and ∆argH (Fig. 4.1B). All six strains were used in this study for co-culture 

experiments. There are three other knockout strains in the arginine biosynthesis pathway, ∆argD, 

∆argF, and ∆argI, however, these strains are not auxotrophic for arginine and were therefore not 

used. All 15 pairs of the six auxotrophic strains were co-cultured in duplicate in M9 medium 

with glucose as the only carbon source. As negative controls, the strains were also inoculated as 

monocultures. We observed significant growth in 11 out of the 15 co-culture pairs, while no 

growth was observed in the negative controls. Fig. 4.1A shows the maximum OD600 measured 

during 4-day cultures. The data on the diagonal corresponds to the monoculture controls. 

Results from these co-cultures suggested that multiple pathway intermediates must have 

been exchanged. For example, the fact that ∆argE grew in co-cultures with ∆argA, ∆argB and 

∆argC suggests that ∆argE secreted N-acetyl-L-glutamate-5-semialdehyde and/or N-acetyl-L-
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ornithine (highlighted blue in Fig. 4.1B), and that ∆argA, ∆argB and ∆argC secreted either 

ornithine, citrulline, arginino-succinate or arginine. Since the strain ∆argG also grew in co-

cultures with ∆argA, ∆argB and ∆argC, suggests that ∆argG likely secreted L-ornithine and/or 

L-citrulline (highlighted yellow in Fig. 1B). This was also supported by the fact that growth was 

observed in the co-culture between ∆argE and ∆argG. The strain ∆argH grew with all arginine 

auxotrophic strains except ∆argG, indicating that L-arginino-succinate was not likely exchanged 

between the strains. Moreover, no growth was observed in co-cultures between ∆argA, ∆argB 

and ∆argC, suggesting that neither N-acetyl-L-glutamate, nor N-acetyl-glutamyl 5-phosphate 

were exchanged. Taken together, these data suggest that two to four metabolic pathway 

intermediates must have been exchanged between the E. coli arginine auxotrophs.  

 

Figure 4.1 Growth of arginine auxotrophic co-culture and arginine biosynthetic pathway. (A) Growth of 
arginine auxotrophic strains in co-cultures in minimal medium. The maximum OD600 measured in 96-well plates are 
shown. The values on the diagonal correspond to maximum OD600 measured in monoculture controls. (B) Diagram 
of the arginine biosynthetic pathway. E. coli knockout strains ∆argD, ∆argF and ∆argI (genes highlighted in gray 
font) are not auxotrophic and were not investigated. The most likely metabolic pathway intermediates that were 
exchanged in co-cultures are highlighted in blue and yellow. 
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To provide additional support for these results, the auxotrophic strains were next grown 

in medium containing glucose and specific pathway intermediates. For these experiments, five 

commercially available pathway intermediates were used, three intermediates that were 

identified above as likely to be exchanged: N-acetyl-L-ornithine, L-ornithine, and L-citrulline; 

and two intermediates that were identified above as unlikely to be exchanged: N-acetyl-L-

glutamate and L-arginino-succinate. As positive controls, the strains were also grown in medium 

supplemented with arginine. The results from these experiments are summarized in Fig. 4.2. As 

expected, N-acetyl-L-ornithine supported the growth of ∆argA, ∆argB and ∆argC; and L-

ornithine and L-citrulline supported the growth of ∆argA, ∆argB, ∆argC, and ∆argE. 

Furthermore, neither N-acetyl-L-glutamate, nor L-arginino-succinate supported the growth of 

any arginine auxotroph, while all strains grew when supplemented with arginine. Taken together, 

these results confirm that the co-culture experiments correctly identified the specific metabolic 

pathway intermediates that were exchanged. 

 

Figure 4.2 Growth of the arginine auxotrophic strains on arginine biosynthesis pathway intermediates. 
Growth of arginine auxotrophic strains in minimal medium supplemented with one of six different metabolites at 0.1 
mM. The maximum OD600 measured in 96-well plates cultures are shown. 
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4.5.2 Histidine auxotroph 

Next, seven histidine auxotrophs were investigated: ∆hisG, ∆hisI, ∆hisA, ∆hisF, ∆hisB, 

∆hisC and ∆hisD. All 21 possible paired combination of co-cultures were performed, as well as 

monoculture controls, in minimal medium with glucose as the only carbon source. We observed 

that the only co-cultures that showed significant growth were the ones with ∆hisD as the co-

culture partner (Fig. 4.3A). HisD is the last enzyme in the histidine biosynthesis pathway that 

converts histidinol to histidine in two steps (Fig. 4.3B). This result suggests that the most likely 

metabolic intermediate in the histidine pathway that was exchanged was histidinol (highlighted 

with blue in Fig. 4.3B).  

 

Figure 4.3 Growth of histidine auxotrophic co-culture and histidine biosynthetic pathway. (A) Growth of 
histidine auxotrophic strains in co-cultures in minimal medium. The maximum OD600 measured in 96-well plates are 
shown. The values on the diagonal correspond to maximum OD600 measured in monoculture controls. (B) Diagram 
of the histidine biosynthetic pathway. The most likely metabolic pathway intermediate that was exchanged in co-
cultures, histidinol, is highlighted in blue. 
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To provide further support for this result, all seven histidine auxotrophic strains were then 

grown in medium containing glucose and either histidinol or histidine. As expected, histidinol 

supported the growth of ∆hisG, ∆hisI, ∆hisA, ∆hisF, ∆hisB, and ∆hisC, but not ∆hisD, while 

histidine supported the growth of all histidine auxotrophs (Fig. 4.4). Because no other 

metabolites from the histidine biosynthesis pathway were commercially available, we could not 

determine if other pathway intermediates could also have supported the growth of histidine 

auxotrophs. Regardless, our results clearly demonstrate that at least one pathway intermediate 

(i.e. histidinol) was exchanged between histidine auxotrophs. 

 

Figure 4.4 Growth of the histidine auxotrophic strains on histidine biosynthesis pathway intermediates. 
Growth of histidine auxotrophic strains in minimal medium supplemented with either histidinol or histidine at 0.1 
mM. The maximum OD600 measured in 96-well plates cultures are shown. 
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pathway, i.e., ∆ilvE for isoleucine and ∆proC for proline, grew with all other auxotrophic strains 

in the same pathway, while no other co-culture pairs showed significant growth (Fig. 4.5A and 

4.5B). These results therefore suggest that for both pathways the last metabolic pathway 

intermediate was likely exchanged, i.e., keto-isoleucine for isoleucine auxotrophs and glutamate-

semialdehyde for proline auxotrophs (Fig. 4.5C and 4.5D).  

 

 

Figure 4.5 Growth of isoleucine auxotrophic co-culture proline auxotrophic co-culture and their biosynthetic 
pathway. Growth of isoleucine auxotrophic strains (A) and proline auxotrophic strains (B) in co-cultures in minimal 
medium. The maximum OD600 measured in 96-well plates are shown. The values on the diagonal correspond to 
maximum OD600 measured in monoculture controls. (C, D) Diagrams of the isoleucine and proline biosynthetic 
pathways. E. coli knockout strains ∆ridA, ∆ilvH and ∆ilvI (genes highlighted in gray font) are not auxotrophic and 
were not investigated. The most likely metabolic pathway intermediates that were exchanged in co-cultures, i.e., 
keto-isoleucine and glutamate-semialdehyde, are highlighted in green and yellow, respectively. 
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To provide support for the exchange of keto-isoleucine, all four isoleucine auxotrophs 

were grown in medium containing glucose supplemented with either keto-isoleucine, 2-

oxobutanoate (a commercially available intermediate in this pathway), or isoleucine. Growth of 

the strain ∆ilvA was recovered with all three metabolites, while ∆ilvE only grew in the presence 

of isoleucine (Fig. 4.6). Interestingly, no growth was observed for ∆ilvC and ∆ilvD with any of 

the three metabolites added. It is known that these two knockout strains are auxotrophic for both 

leucine and isoleucine. Taken together, these results suggest that in the co-culture experiments 

where growth was observed (Fig. 4.5A), an additional metabolite from the leucine pathway must 

also have been exchanged. None of the pathway intermediates in the proline pathway were 

commercially available, as such, exchange of metabolic intermediates in this pathway could not 

be further verified.  

 

Figure 4.6 Growth of the isoleucine auxotrophic strains on isoleucine biosynthesis pathway intermediates. 
Growth of isoleucine auxotrophic strains in minimal medium supplemented with either 2-oxobutanoate, keto-
isoleucine, or isoleucine at 0.1 mM. The maximum OD600 measured in 96-well plates cultures are shown. 
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specifically, the in co-culture between ∆trpE and ∆trpC (Fig 4.7A). Given that no growth was 

observed in the co-culture between ∆trpE and ∆trpD suggests that the most likely pathway 

intermediate that was exchanged was anthranilate (highlighted in blue in Fig 4.7B). To verify 

this, all five tryptophan auxotrophs were grown in medium containing glucose supplemented 

with either anthranilate or tryptophan. As expected, anthranilate supplementation supported the 

growth of ∆trpE and all tryptophan auxotrophs grew when supplemented with tryptophan (Fig. 

4.8). 
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Figure 4.7 Growth of tryptophan auxotrophic co-culture and tryptophan biosynthetic pathway. (A) Growth of 
histidine auxotrophic strains in co-cultures in minimal medium. The maximum OD600 measured in 96-well plates are 
shown. The values on the diagonal correspond to maximum OD600 measured in monoculture controls. (B) Diagram 
of the histidine biosynthetic pathway. The most likely metabolic pathway intermediate that was exchanged in co-
cultures, histidinol, is highlighted in blue. 

∆trpB∆trpA∆trpC∆trpD∆trpE
0.0200.0240.5450.0620.020∆trpE
0.0510.0240.0510.0320.070∆trpD
0.0120.0190.0140.0180.512∆trpC
0.0470.0130.0370.0450.020∆trpA
0.0130.0150.0140.0220.012∆trpB

trpE/trpD
Chorismate

anthranilate

N-(5-phosphoribosyl)-anthranilate

1-(2-carboxyphenylamino)-1-deoxy-D-
ribulose 5-phosphate

indole-3-glycerol-phosphate

indole

L-tryptophan

trpD

trpC

trpC

trpA

trpB

∆trpE

trpE/trpD
Chorismate

anthranilate

N-(5-phosphoribosyl)-anthranilate

1-(2-carboxyphenylamino)-1-deoxy-D-
ribulose 5-phosphate

indole-3-glycerol-phosphate

indole

L-tryptophan

trpD

trpC

trpC

trpA

trpB

∆trpC

0.020.020.550.060.02

0.050.020.050.030.07

0.010.020.010.020.51

0.050.010.040.050.02

0.010.010.010.020.01

A

B



 75 

 

Figure 4.8 Growth of the tryptophan auxotrophic strains on tryptophan biosynthesis pathway intermediates. 
Growth of tryptophan auxotrophic strains in minimal medium supplemented with either anthranilate or tryptophan at 
0.1 mM. The maximum OD600 measured in 96-well plates cultures are shown. 

4.6 Discussion 

Rational design of microbial communities for metabolic engineering and medical 

applications will require a fundamental understanding how interactions between community 

members give rise to complex community behaviors such as population dynamics, stability, 

resistance to invasion and other emergent properties (Zhang et al., 2015; Liu et al., 2018; 

Lawson et al., 2019; Müller et al., 2023). Interactions between community members can involve 

both cell signaling interactions and exchange of metabolites. Thus far, it has proven challenging 

to construct predictive models of microbial communities that formally consider metabolite cross-

feeding interactions, even for simple co-cultures consisting of two microbial strains 

(Antoniewicz, 2020). Instead, most computational models used to simulate population dynamics 

use empirical so-called cooperation parameters that are supposed to capture the net effect of all 

interactions (Wintermute and Silver, 2010; Mee et al., 2014). One important reason for the lack 

of more mechanistic models based on metabolite cross-feeding interactions is the fact that it is 

experimentally difficult to identify which metabolites are exchanged between strains (Shoaie et 
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al., 2013; Kumar et al., 2019). Moreover, tools for measuring the rates of these cross-feeding 

fluxes are underdeveloped (Gebreselassie and Antoniewicz, 2015; Wolfsberg, Long and 

Antoniewicz, 2018; Antoniewicz, 2020). 

In many studies, auxotrophic strains have been used to construct synthetic communities 

where community members rely on each other to supply the missing nutrient. E. coli amino acid 

auxotrophs, in particular, have been widely used in the past, since it is well known that some of 

these strains can support each other’s growth (Wintermute and Silver, 2010). The basic 

assumption has been that the strains complement each other by exchanging amino acids. 

However, several important questions remain unanswered. For example, it is still unknown why 

only certain combinations of auxotrophic strains can support each other’s growth (Wintermute 

and Silver, 2010). If amino acid exchange is indeed so common, then many more combinations 

of auxotrophic strains would be expected to grow in minimal media. One possible explanation is 

that other metabolites are primarily exchanged. In this study, we tested if metabolic 

intermediates of amino acid biosynthesis pathways could be exchanged between E. coli 

auxotrophic strains. For this, we selected 25 amino acid knockout strains that were auxotrophic 

for five different amino acids. By pairing strains that shared the same amino acid auxotrophy and 

observing growth we clearly demonstrated that metabolites other than amino acids must be 

exchanged. We observed growth in nearly half of the co-cultures (i.e. 23 out of 55). These 

experiments also allowed us to pinpoint the most likely metabolic pathway intermediates that 

were exchanged. To verify these predictions, additional experiments were conducted using 

media supplemented with the identified intermediates (if commercially available). In total, we 

identified eight metabolic pathway intermediates that were likely exchanged between E. coli 

strains and verified six of these using follow-up experiments.  
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Many questions still remain that should be investigated in future work. For example, it 

would be valuable to identify how metabolic intermediates are transferred between strains. Given 

that these are large and charged molecules, transport via membrane diffusion is unlikely. It is 

possible that amino acid transporters are involved in the transport of some of these metabolites. 

For example, L-ornithine has been reported to share the same transporter as arginine and lysine 

(Wissenbach et al., 1995) , although specific transporters for pathway intermediates have also 

been identified (Zhang et al., 2015). Second, future investigation should determine how many of 

these metabolic intermediates are cross-fed in other microbial communities (Harcombe et al., 

2014). In this study, we used auxotrophic E. coli knockout strains since these are easily available 

through the Keio knockout collection and many studies have used E. coli knockout strains in the 

past (Long and Antoniewicz, 2014a, 2019b). It is possible that the metabolite cross-feeding 

interactions uncovered here are specific to the E. coli knockout strains. While many strains in 

natural communities are also amino acid auxotrophs, their metabolism has co-evolved for 

thousands, or millions of years (Long and Antoniewicz, 2018), and it is possible that other, 

perhaps more efficient, cross-feeding interactions have emerged in the process. To test this, it 

would be, for example, interesting to co-evolve E. coli auxotrophs and investigate if additional 

cross-feeding interactions emerge through evolution.  

In summary, in this work we have demonstrated that exchange of metabolic pathway 

intermediates is more common than has been assumed so far. We argue that in future work these 

metabolite exchanges must be explicitly considered when constructing models of cross-feeding 

interactions and interpreting results from microbiome studies involving auxotrophic strains. 
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Chapter 5 Overexpression of Fluorescent Proteins in Escherichia Coli Has Negligible 

Impact on Cell Physiology and Metabolism 

5.1 Abstract 

Fluorescent proteins are widely used in metabolic engineering for a range of applications, 

including as visual reporters to provide easily measured data for strain selection. In microbiome 

studies, fluorescent proteins are also used to track growth of multiple strains and quantify 

population compositions. Despite the broad usage of fluorescent proteins, overexpression of 

heterologous proteins could add a metabolic burden on the host cell and alter cell physiology and 

metabolism. Until now, few studies have focused on quantifying this effect. To address this 

knowledge gap, in this study, we characterized the metabolic burden of fluorescent protein 

overexpression in E. coli. Specifically, we selected five common fluorescent proteins that were 

then overexpressed in wild-type Escherichia coli: CFP, Crimson, GFP, Tomato and YFP. To 

quantify metabolic burden, we measured cell growth physiology, biomass composition, and 

metabolic flux phenotypes and compared them to wild-type E. coli. Overall, we found only slight 

decreases in growth rates for most strains overexpressing fluorescent proteins. Biomass 

composition analysis showed negligible impact on macromolecular composition, and little or no 

impact on amino acid and fatty acid distributions. Finally, using 13C metabolic flux analysis we 

quantified precise metabolic fluxes for all strains. Our results indicated that there was no 

significant flux rewiring compared to wild-type E. coli. Taken together, this study demonstrates 

that overexpression of fluorescent proteins in E. coli has negligible impact on cell physiology 

and metabolism. 
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5.2 Introduction 

Fluorescent proteins have emerged as pivotal tools since the first discovery of green 

fluorescent protein (GFP) in 1962 by Shimomura et al. (Shimomura, Johnson and Saiga, 1962), 

followed by the heterologous expression of GFP in cells 30 years later (Chalfie et al., 1994). One 

of the major applications of fluorescent proteins is as a reporter to study gene expression or as a 

fusion protein to locate targeted protein (Feilmeier et al., 2000; Soboleski, Oaks and Halford, 

2005). Another popular application in ecology is as a marker to track microbial populations (Leff 

and Leff, 1996; Scott et al., 1998; Gandhi et al., 2001). Over the past decades, fluorescent 

proteins have become an invaluable tool for visualizing and tracking various biological processes 

within living cells and organisms. 

Despite board applications of fluorescent proteins, the expression of foreign proteins can 

impose metabolic stress on the host cell (Glick, 1995; Mattanovich et al., 2004). The production 

of heterologous proteins can divert resources and energy from normal cellular processes, thereby 

impacting cell physiology. Several studies have found that recombinant protein production can 

altered cell physiology and metabolism such as decreased growth rate, lower biomass yield and 

redirected metabolic fluxes (Silva, Queiroz and Domingues, 2012; Carneiro, Ferreira and Rocha, 

2013). Factors attributing to these negative effects include competition of translational and 

transcriptional resources, toxicity of heterologous proteins, overaccumulation of metabolite 

intermediates due to host cell lacking immediate regulatory mechanisms for recombinant protein 

(Chou, 2007; Cardinale and Arkin, 2012; Borkowski et al., 2016). Many of these studies, 

however, have focused on the recombinant proteins related to desired industrial product 

production. To date, only a few studies investigated the potential metabolic burden imposed by 

fluorescent proteins. 
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In previous studies, it has been shown that GFP plasmid has insignificant impact on cell 

growth on bacteria such as Escherichia coli and Salmonella (Bloemberg et al., 1997; Dandie, 

Thomas and McClure, 2001; Ma, Zhang and Doyle, 2011). In a more recent study, the metabolic 

burden of GFP overexpression in four different Escherichia coli strains was investigated 

(Matsuyama et al., 2024). Metabolomic analysis reveals that the GFP overexpression led to 

shortages of nucleic acids and amino acids. The study further indicated that the impact was 

strain-dependent, with the BL21star-GFP strain, which had the highest level of GFP expression, 

exhibiting the most significant changes in its metabolomic profile. In this chapter, we aim to 

investigate several commonly used fluorescent proteins and apply 13C metabolic flux analysis to 

assess the metabolic state of the recombinant cells. 

To this end, we choose five common fluorescent proteins created by M. Barbier et al. 

(Barbier and Damron, 2016) and use wild type E. coli as host cell. The chosen fluorescent 

proteins cover a board spectrum including eCFP, E2-Crimson, GFPmut3, tdTomato and eYFP. 

Cell physiology, including growth rate, acetate secretion and biomass yield, with or without 

plasmid were analyzed. Moreover, we measured metabolic fluxes of each strain in order to 

obtain the metabolic response. Metabolic Flux Analysis (MFA) can provide the detailed 

information such as the distribution of resources in the cell (Wu et al., 2016), enzyme activity in 

various metabolic pathway and the overall metabolic state (Stephanopoulos, 1999). MFA has 

been applied in similar studies that analyzed the metabolic burden projected to engineered strains 

(Rozkov et al., 2004; Wang et al., 2006). In this study, we applied 13C Metabolic Flux Analysis 

(13C MFA) to precisely quantify fluxes in the living cell. Overall, we aim to provide 

complementary analysis of fluorescence cells metabolism and expand our understanding for 

future research. 



 81 

5.3 Methods 

5.3.1 Cell strains and plasmid 

Wild type Escherichia coli was used for this study. The five fluorescence plasmids we 

chose were sourced from a set of rainbow plasmids created by M. Barbier et al. (Barbier and 

Damron, 2016). The plasmids that were used include pUCP20T-eCFP, pUCP20T-E2Crimson, 

pUCP20T-gfpmut3, pUCP20T-tdTomato and PUCP20T-eYFP. pUCP20T plasmids have 

antibiotic resistance to ampicillin and is a high copy plasmid (West et al., 1994).  

For the rest of this article, WT refers to the original wild type E. coli strain that does not 

carry fluorescence plasmid; and CFP, Crimson, GFP, Tomato and YFP represents the wild type 

E. coli strain harboring corresponding fluorescence plasmids.  

5.3.2 Competent cell preparation 

Cells were pre-cultured overnight before preparing competent cells. 250µL of the pre 

culture was inoculated to 50mL of fresh medium and grown for 2-3 hours until OD reached 0.5. 

Centrifuge the 50mL of the culture at maximum speed for 10 minutes and discard the 

supernatant. Keep everything on ice or below 4°C after the previous step. Resuspend the cells in 

15mL of CaCl2 by pipetting. CaCl2 solution is prepared by dissolving 1.1g of CaCl2 in 100mL of 

DI water. Leave the resuspended cells on ice for at least 4 hours. Centrifuge the cell and discard 

the supernatant. Resuspend the cells in 4mL of CaCl2 solution with 15% of glycerol. The 

prepared competent cells can be used immediately or stored in -80°C. 

5.3.3 Plasmid transformation 

Plasmid transformation was done by using heat shock method. In short, we mix 20µL of 

competent E. coli with 2µL of fluorescence plasmid solution by gently flicking the Eppendorf 
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tube. The mixture was left on ice for 10 minutes and placed at 42°C for 45 seconds. After the 

heat shock step, the cells were left on ice for another 2 minutes and recovered by incubating at 

37°C for 1 hour with 200µL of LB. Strains with successful plasmid transformation were selected 

by plating the culture on agar plates with carbenicillin. 

5.3.4 Growth condition 

All strains were cultured in minimal medium (M9) with 10mM of glucose as carbon 

source. Strains with fluorescence plasmids were cultured with additional 50µg/L carbenicillin. 

OD 600 measured by spectrophotometer was used to calculate the specific growth rate. For the 

labeling experiments, [1,2-13C] glucose or [1,6-13C] glucose was used in parallel instead of 

unlabeled glucose. Cells pellets were collected in mid-exponential growth phase for GC-MS 

analysis.  

5.3.5 Fluorescent measurement 

Cell growth and fluorescence signal for WT E. coli with/without plasmid were monitored 

by BioTek Cytation 5. The 6 strains were cultured in the medium described above, placed in 96 

well plate and shake under the highest speed of the instrument. Excitation and emission 

wavelengths were setup based on the sourced paper (Barbier and Damron, 2016). OD 600 and 

the five fluorescence signals were measured every 30 minutes. 

5.3.6 Gas chromatography-mass spectrometry 

Cell pellets collected from the labeling experiments were derivatized as described in 

previous paper (Long and Antoniewicz, 2019a). In short, samples are prepared in three ways for 

different metabolites: hydrolysis of protein and TBDMS derivatization for amino acid, methyl 

ester derivatization for fatty acid, hydrolysis of glycogen and RNA followed by propionic 
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anhydride derivatization for glucose and ribose. We integrated peaks of measured metabolites 

and their isotopomers by mstool to obtain mass isotopomers distribution, and corrected for 

natural isotope abundances (Fernandez et al., 1996).  

5.3.7 13C metabolic flux analysis  

The metabolic model for 13C MFA is listed in Appendix A.1. Reactions include central 

carbon metabolism, lumped amino acid biosynthesis and biomass formation. Flux analysis was 

calculated by software Metran which is based on elementary metabolites framework (EMU) 

framework developed in 2007 (Antoniewicz, Kelleher and Stephanopoulos, 2007b). For each run 

performed by metran, fluxes were estimated by minimizing the sum of squared residuals (SSR) 

between the measured and stimulated mass isotopomer distributions and external rate, i.e., 

acetate production rate. We start the first run with random initial value, and reiterate at least 20 

times based on the estimated fluxes from pervious run until there is no improvement in SSR. 

This cycle was repeated for at least 10 times to obtain global minimal SSR. For the result that 

gave the lowest SSR, we calculated 95% confidence interval for each flux by evaluating the 

sensitivities of the minimized SSR to flux variation. The results were subjected to 𝜒2 statistical 

analysis for goodness-of-fit, as described in previous literature (Antoniewicz, Kelleher and 

Stephanopoulos, 2006). 

5.3.8 Biomass composition 

The methods for determining biomass composition are described in previous paper (Long 

and Antoniewicz, 2014b). Briefly, cell pellets collected from labeling experiment were mixed 

1:1 with the standard biomass. Here, standard biomass was generated by growing cells in fully 

labeled glucose. Cells were collected to create identical aliquot (1mL, OD600 = 1.0) as standard. 
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The mixtures of sample and standard were derivatized following the steps described above for 

amino acids, fatty acids, glycogen and RNA. Mass isotopomer distributions measured by GC-

MS corresponds to the ratio of our samples to standard, and can be used to calculate sample 

biomass composition. The composition of the fully labeled standard was measured with chemical 

standard. Here, we used the data from pervious paper (Long et al., 2016).  

For amino acid distribution, 16 amino acids were quantified by the method described 

above. Arginine, cysteine and tryptophan degrade during the hydrolysis process and histidine 

fragment has low ion count for providing reliable calculation, therefore the four amino acids 

were eliminated in the calculation. When calculating the total protein composition, the four 

amino acids content were estimated from previous literature (Long et al., 2016). We combined 

the pool of asparagine and aspartate (represent as Asx) and glutamine and glutamate (represent 

as Glx) due to the deamination of asparagine and glutamine to aspartate and glutamate, 

respectively, during the hydrolysis of biomass 

5.4 Results 

5.4.1 Cell growth and fluorescence 

Growth and fluorescence signal of wild type (WT) E. coli and five fluorescent strains 

were monitored by BioTek Cytation 5. The fluorescence strains CFP, Crimson, GFP, Tomato 

and YFP are compared with WT in Fig. 5.1. The left column shows the growth in units of 

OD600, and the middle column presents the growth on a logarithmic scale. The right column 

shows the fluorescence signal detected by our instrument. The fluorescence signal is measured 

with respective excitation/emission wavelengths reported by sourcing literature (Barbier and 

Damron, 2016). 



 85 

WT was fully grown in shorter time due to slightly higher inoculation. All fluorescence 

strains were able to grow with antibiotic added, indicating successful plasmid transformation. 

The fluorescence signal of fluorescent strains increased with the growth of the cells, while WT 

only had background noise under all excitation/emission settings. We noticed that the 

fluorescence signal continued to increase after the cells entered stationary phase. This 

phenomenon, where cells can still overexpress recombinant protein during stationary phase, had 

been reported by previous literature (Ou et al., 2004). 
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Figure 5.1 The growth and fluorescence signal of wild type and fluorescent strains CFP, Crimson, GFP, 
Tomato and YFP. The growth and fluorescent signal are monitored by BioTek Cytation 5. The left column is the 
growth curve with the units of OD600. The middle column is shown with logarithmic scale. The right column shows 
the fluorescence signal overtime. The grey dots represent the wild type E. coli and color dots represent the 
fluorescent strains. 
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Growth rate was calculated by taking natural logarithm of the OD600 measurement. Fig. 

5.2 shows the growth rate for WT E. coli and the fluorescence strains. Each strain has two bars 

with the left one representing the 96 well plate culture and the right one representing flask 

culture. In either type of culture, most of the fluorescence strains displayed lower growth rates 

compared to the WT strain. We observed -13% to -28% change in growth rate in the 96 well 

plate culture and 5% to -22% in flask culture. In both cultures, YFP was the least effected strain 

and Crimson was the most effected strain, which showed over 20% decrease in growth rate in 

both cultures. 

 

 

Figure 5.2 Growth rate of wild type and fluorescent strains CFP, Crimson, GFP, Tomato and YFP. Here we 
show the growth rate of all strains. Each strain has two bars representing the growth rate measured by plate reader 
from 96 well plate cultures (left, light color) or by photometer from flask cultures (right, dark color). Growth rates 
are consistent between the two methods. WT has slightly higher growth rate compared to most of the strains. 
Crimson strain has the most decrease of all the fluorescence strains. Error bar for plate reader represents the standard 
deviation of the measured growth rate (n=3) and for flask represents the highest and lowest value of the measured 
growth rate (n=2). 
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5.4.2 Biomass composition 

Biomass composition for all strains is shown in Fig. 5.3. We measured 4 major biomass 

components including protein, lipid, RNA and glycogen. Protein content did not vary much 

between WT and the fluorescence strains and between the five fluorescence strains. On the other 

hand, the Crimson and YFP strain had slightly higher lipid content compared to WT (1.2% and 

1.1% difference, respectively). For RNA and glycogen content, CFP and Crimson strain had 

lower RNA content comparing to WT strain (1.3% and 2.2% difference, respectively) while 

having higher glycogen content (0.9% and 1.1% difference, respectively). Overall, there were no 

major differences between WT and the fluorescence strains in biomass composition. 
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Figure 5.3 The contents of four major macromolecules: protein, lipid, RNA and glycogen of wild type and 
fluorescent strains. The four major biomass contents were measured and shown in % dry weight. The biomass 
composition does not vary much (less than 2% difference for all four biomass contents) with or without fluorescence 
plasmid overexpressing in the cell. Error bar represents the highest and lowest value of the measured biomass 
composition (n=2). 

Amino acid distribution for each strain is shown in Fig. 5.4. The distribution is 

normalized to mmol/g protein. We did not observe significant differences in amino acid 

distribution between WT and fluorescence strains. Fig. 5.5. shows the fatty acid distribution. 

C14:0 and C18:0 fatty acid content was consistent between all strains. Fluorescent strains 

appeared to have a slightly higher C16:1 fatty acid content and a lower C18:1 fatty acid content 

compared to the wild-type strain. Previous studies characterizing the physiological responses of 

E. coli knockout strains have reported a positive correlation between C18:1 content and cell 

growth (Long et al., 2016). This finding is consistent with our observation that the fluorescent 

strains, which exhibited a lower growth rate, also showed a reduced C18:1 content. For C16:0, 

only Crimson and GFP were slightly lower comparing to WT, while other fluorescence strains 

had similar level as WT. Altogether, the detailed biomass contents, i.e., amino acid and fatty acid 

distributions, did not vary much whether there was fluorescence plasmid or not. 
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Figure 5.4 Amino acid distribution of wild type and fluorescent strains. Amino acid contents are normalized to 
mmol/g protein. Asx represents the combined pool of asparagine and aspartate. Glx represents the combined pool of 
glutamine and glutamate. Arginine, cysteine, tryptophan and histidine are not shown due to measurement limitation. 
Overall, the amino acid distribution is consistent between all strain. Error bar represents the highest and lowest value 
of the amino acid content (n=2). 

 

 

Figure 5.5 Fatty acid distribution of wild type and fluorescent strains. Fatty acid contents are normalized to 
mmol/g fatty acid. Fluorescence strain has slightly higher C16:1 fatty acid content while slightly lower in C18:1 
fatty acid. Other fatty acids stay consistent with or without fluorescence plasmid.  Error bar represents the highest 
and lowest value of the fatty acid content (n=2). 
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lower in some strains. Overall, we did not observe significant flux rewiring between WT strain 

and fluorescence strains.  

 

Figure 5.6 Central carbon metabolism of wild type and fluorescent strains. Independent fluxes in central carbon 
metabolism were shown in this figure. The fluxes are normalized to 100 unit glucose uptake. Fluxes distributions are 
similar between all strain. Error bar in all figures represent 95% confidence interval. 

External rate including glucose uptake and acetate secretion were estimated by 13C 

Metabolic Flux Analysis as well, shown in Fig. 5.7. The trend of glucose uptake rate of all 

strains was roughly similar to growth rate, with Crimson being slightly lower and YFP higher 

compared to the WT. Acetate secretion rate shown in Fig. 5.7 was normalized to 100 glucose 

uptake to demonstrate the carbon source distribution. YFP had slightly higher acetate secretion 

compared to WT while other fluorescence strains remain consistent with WT. Overall, the 

distribution of fluxes of the cell did not alter much when the fluorescence plasmid was 

expressed. 
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Figure 5.7 Acetate secretion and glucose uptake of wild type and fluorescent strains. External fluxes acetate 
secretion and glucose uptake are shown. Acetate secretions are normalized to 100 unit glucose uptake, which do not 
alter much between each strain. Glucose uptakes (unit mmol/gDW/hr) are obtained by the estimate biomass yield 
from 13C Metabolic Flux Analysis and growth rate measured in the labeling experiment. YFP has higher glucose 
uptake compared to WT while other fluorescence strains have similar to WT. Error bar in both figures represent 
95% confidence interval. 
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et al., 2024). It was reported that GFP overexpression did not impact the specific growth rate of 

all 4 strains. However, in our study, we observed growth rate reduction in the fluorescent strains. 

In the following paragraph, we will discuss the potential reason for these differing observations.  

In our study, after plasmid transformation, the cultures were plated on antibiotic 

containing LB agar plates for clone selection. We selected four colonies from the GFP plasmid-

transformed cultures for growth testing. The growth curves and growth rates of the wild-type and 

the four GFP strains are shown in Fig. 5.8. We found that GFP 1 and GFP 2 had growth rates 

comparable to the wild type but exhibited significantly longer lag phases. In contrast, GFP 3 and 

GFP 4 showed more substantial growth reductions, with GFP 4 exhibiting an approximate 27% 

decrease in growth rate. The distinct growth behavior between these strains demonstrates that 

strain selection can cause differing observations. 
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Figure 5.8 The growth curve and growth rate of wild type and four GFP strains. The growth of wild type and 4 
GFP colony from the same transformation culture were monitored by Biotek Cytation 5. The growth rate of each 
culture is shown in the bottom table. 

 During the cell growth, the fluorescent signal was measured as well, as shown in Fig. 5.9. 

Interestingly, the fluorescence signal intensity varied among the different strains. We observed 

an inverse correlation between growth rate and fluorescence signal intensity. GFP 1 and GFP 2, 

which had growth rates similar to the wild type, exhibited much lower fluorescence signals 

compared to the other two strains. In contrast, GFP 3 and GFP 4, which showed significant 

growth reductions, displayed strong fluorescence signals. It is likely that these "highly 

fluorescent strains" allocate more energy or resources to fluorescent protein production, resulting 
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in a more pronounced impact on cell growth. In this study, GFP 3 was selected to investigate the 

metabolic burden. GFP 3 had stronger fluorescence signal but slower growth rate, which is likely 

the reason why we had different observation in growth rate compared to previous literature. 

 

Figure 5.9 The GFP fluorescent signal of four GFP strains during cell growth. The GFP fluorescent signal of 
four GFP strains were measured by Biotek Cytation 5. The wild type has signal below 1000 throughout the entire 
growth, which is not shown in this figure. 

 In our characterization, we provided a detailed distribution of macromolecules in biomass 

and amino acids in protein. Our results suggest that the cells did not utilize an excessive amount 

of carbon sources to synthesize fluorescent proteins, as we did not observe significant changes in 

protein content (Fig. 5.3) or amino acid distribution (Fig. 5.4). One could argue that, although the 

overall protein content remains the same, the cells are producing fluorescent protein instead of 

biomass. However, if that were the case, we should see some differences in amino acid 

distribution between each strain. In Fig. 5.10, we compare the amino acid distribution of wild-

type E. coli biomass and fluorescent proteins. The wild-type E. coli biomass was obtained 
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through our experiment. The amino acid distribution of the fluorescent proteins was calculated 

based on their sequences and converted into mmol per gram protein. Several amino acids differ 

significantly when comparing the fluorescent protein to the cell biomass. For example, wild-type 

biomass had much more alanine but less lysine, histidine, and tyrosine. Differences were also 

observed between different fluorescent proteins. If fluorescent protein production diverted a 

significant amount of carbon from biomass production, we would expect to see a distinct 

distribution between the wild-type strain and the fluorescent strains. Our result, however, suggest 

that there is no excessive carbon being directed to fluorescent protein production, which agrees 

with our flux analysis result that not significant flux rewiring was observed. 

 

Figure 5.10 Amino acid distribution of wild type E. coli biomass and fluorescent protein. The amino acid 
content of wild type E. coli biomass and fluorescent protein is shown in mmol per gram protein for comparison. The 
amino acid distribution of wild type biomass is obtained through experiment and the fluorescent protein is calculated 
from the protein sequence. 

 In summary, we characterized the impact of five fluorescent protein overexpression in 

wild type E. coli in this chapter. Although we observed growth reduction in the fluorescent 
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strains, we did not find changes in biomass composition or metabolic state. In previous literature, 

it has been reported that overexpression of protein containing less abundant amino acids (His, 

Trp, Tyr, Phe and Met) in E. coli can result in less efficient translation (Bonomo and Gill, 2005), 

which could potentially explain what we observed. More advanced genome scale modeling can 

also provide insights into the resource allocation in the recombinant cells (Oftadeh and 

Hatzimanikatis, 2024). Overall, we provide a comprehensive characterization of cell physiology 

and metabolism for cells that overexpress fluorescent protein, which could serve as a solid 

foundation for future studies that apply fluorescent proteins.  

5.6 Supplementary experiment 

5.6.1 IPTG induction 

The fluorescent plasmids we purchased are isopropyl-β-d-thiogalactoside (IPTG) inducible 

plasmids (Barbier and Damron, 2016). After transformation, all fluorescent strains were tested 

with different concentrations of IPTG from 0.01mM to 0.5mM. We noticed that the addition of 

IPTG did not impact cell growth and fluorescence intensity, as shown in Fig. 5.11. Therefore, for 

the experiments we conducted in this chapter, we did not add any IPTG into the culture.  
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Figure 5.11 The growth and fluorescence signal with inducer IPTG. The growth and fluorescence signal with 
different concentration from 0 to 0.5mM of IPTG are monitored by BioTek Cytation 5.   
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Chapter 6 The Future and Challenge for Co-culture 13C Metabolic Flux Analysis 

In this chapter, we first discuss a new application of 13C metabolic flux analysis (13C 

MFA) on a fluorescent syntrophic co-culture consisting ∆ilvC-Crimson/∆icd-CFP. Following 

this, we conclude by highlighting some of the challenges of applying 13C MFA on a co-culture 

system and propose new directions for future studies. 

6.1 Case study for fluorescent co-culture by applying 13C metabolic flux analysis 

6.1.1 Cell strain and growth 

Fluorescent proteins, as described in the previous chapter, can serve as a tool to track 

population composition in co-culture. After confirming they have negligible impact on cell 

physiology and metabolism, we overexpressed two selected fluorescent proteins, Crimson and 

CFP, in E. coli auxotrophic strains ∆ilvC and ∆icd, respectively. Cells overexpressing fluorescent 

proteins were easily visible under fluorescent microscopy using the BioTek Cytation 5 cell 

imaging reader, as shown in Fig. 6.1A. By utilizing the built-in software, we were able to 

determine the population composition by counting individual cells based on their color, as shown 

in Fig 6.1A and B.  
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Figure 6.1 ∆ilvC-Crimson and ∆icd-CFP co-culture under fluorescent microscopy. The picture was capture by 
BioTek Cytation 5 cell imaging reader. CFP fluorescent proteins are cyan and Crimson fluorescent proteins are red. 
The scale car shows 100µm. A): the picture of the co-culture. B): Cell with CFP fluorescent protein overexpression 
is counted by the software. C): Cell with Crimson fluorescent protein overexpression is counted by the software. 

A
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By employing fluorescent proteins, we were able to track the population dynamics in the 

∆ilvC-Crimson and ∆icd-CFP co-culture. The growth and population composition of the co-

culture over time are shown in Fig. 6.2. The fluorescent syntrophic co-culture, has a growth rate 

around 0.09 1/h, which is slightly higher than the non-fluorescent syntrophic co-culture. We also 

noticed that the population composition seems to be more unbalanced, where the regular co-

culture is around 40%: 60% and the fluorescent co-culture is 30%: 70%. In the next part, we will 

first apply 13C MFA assuming both strains have the same glucose uptake. 

 

Figure 6.2 Growth and population dynamic of ∆ilvC-Crimson and ∆icd-CFP co-culture. The bar graph 
demonstrates the population composition as different time points, measured by BioTek Cytation 5. The red 
represents ∆ilvC-Crimson strain and the blue represents ∆icd-CFP strain. The growth of the co-culture is also shown 
in this graph. Noted that the time points are not evenly distributed. 

6.1.2 13C metabolic flux analysis 

Since it was uncertain whether fluorescent protein overexpression would impact the 

syntrophic interaction between the two strains, we followed the same procedure as outlined in 
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chapter 3 to determine the cross-feeding metabolites. Fig. 6.3 demonstrates the SSR when 

exchange fluxes were included into the metabolic model. We started with adding the required 

amino acids, glutamate, valine and isoleucine, for the auxotrophic strains, which resulted in an 

unacceptable fit, as shown in the first bar. Additional leucine, aspartate and threonine exchange 

fluxes improved the fit significantly but remained statistically unacceptable, as shown in the 

second bar. When we further included the intermediates acetolactate and 2-hydroxybutanoate 

into the model, the SSR dropped significantly to 56.1, which indicated that we might be 

overfitting our model.  

During flux analysis, the results were subjected to a 𝜒2 statistical test at 95% confidence 

level to determine the goodness of fit. The acceptable SSR value should fall between 𝜒#!/#(𝑛 −

𝑝) and 𝜒#$%!/#(𝑛 − 𝑝), where 𝛼 is a chosen threshold value 0.05 for 95% confidence level and 

(n-p) represents the degree of freedom with n being the number of fitted measurement and p 

being the estimated independent parameter (Antoniewicz, Kelleher and Stephanopoulos, 2006). 

In our co-culture MFA, the acceptable SSR value fell between 130 to 210. Therefore, SSR value 

lower than 130 suggests potential overfitting. 

Here we argue that, in some cases, the addition of metabolite exchange fluxes may lead 

to overfitting. In other words, the model becomes overly complex, and insufficient experimental 

data is available to serve as a constraint. Generally, to address overfitting, either the model must 

be simplified, or additional constraints must be incorporated. In our case, we are elucidating 

metabolite cross-feeding by adding exchange fluxes to the model. Thus, simplification is not an 

option, as the expanded model is what we are evaluating. In the future, we would recommend 

conducting three or four parallel labeling experiments to provide additional constrains for 

conducting co-culture MFA. 
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In Fig. 6.4, the exchange flux map of the co-culture, with all exchange fluxes included, is 

shown. We further continued our analysis by systematically removing exchange fluxes from the 

metabolic model and evaluating the impact on the SSR. Threonine and leucine exchange fluxes 

were removed first, as they were predicted to be relatively insignificant in Fig. 6.4. The SSR 

remained roughly the same after the removal of these two exchange fluxes, as shown in the 

fourth and fifth bar in Fig. 6.3. Interestingly, removing the 2-aceto-hydroxybutanoate exchange 

flux instead of the leucine exchange flux from the metabolic model resulted in a significant 

increase in SSR. This fit suggested that the exchange of 2-aceto-hydroxybutanoate was critical, 

unlike the observations discussed in Chapter 3, where its removal did not significantly impact the 

SSR (Fig. 3.8, fourth bar). Notably, in another fluorescent syntrophic co-culture consisting of 

∆ilvC-CFP and ∆icd-Crimson, the exchange of 2-aceto-hydroxybutanoate was also critical, with 

the SSR exceeding 2000 when it was excluded. At this point, we are unable to confirm whether 

this is due to the overexpression of fluorescent proteins altering the dependency between the two 

auxotrophic strains or a measurement issue. 

If we removed the aspartate exchange flux from the model instead of leucine, the SSR 

increased and became statistically acceptable without overfitting. This suggests that the inclusion 

of aspartate exchange flux is likely causing the overfitting. Determining whether aspartate is 

being exchanged is challenging with the current data. Although the model predicted that 

aspartate was exchanged at a significant rate, as shown in Fig. 6.4, the accuracy of this prediction 

is uncertain due to the potential overfitting. In our case, we decided to not include aspartate 

exchange in the final model as we were unsure if we could trust the result. The final model also 

excluded leucine exchange flux as it did not impact the fit, as shown in the last bar in Fig. 6.3.  
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Figure 6.3 Sum of square residual (SSR) of co-culture model with different exchange metabolites combination 
for the fluorescent co-culture ∆ilvC-Crimson/ ∆icd-CFP. The bars represent the SSR values of each metabolic 
model, with the red and blue dashed line indicating the range for acceptable SSR. The chart below the bar graph 
displays the metabolite exchange fluxes included in the metabolic network model for each fit. Glu/AKG: 
glutamate/alpha-ketoglutarate; Val/kVal: valine/keto-valine; Ile/kIle: isoleucine/keto-isoleucine; Leu: leucine; Asp: 
aspartate; Thr: threonine; aclact: acetolactate; acbut: 2-aceto-hydroxybutanoate. 
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Figure 6.4 Exchange flux map of co-culture model that include all possible exchanges. The exchange flux map 
when all exchange fluxes are included in the model. Fluxes values are shown with standard deviation. Yellow box 
(top): Valine/Leucine biosynthesis pathway. Gray box (middle): Isoleucine biosynthesis pathway. Orange box 
(bottom): Glutamate biosynthesis pathway. 

The final exchange flux map is shown in Fig 6.5. Note that we were unable to compare 

the exchange fluxes with those in the previous co-culture consisting ∆ilvC and ∆icd since they 

used different metabolic model. However, this result also demonstrates the importance of 

intermediate exchange, as we concluded in the previous chapter. Most importantly, in this 

example, we want to highlight the potential challenge of overfitting due to the increasingly 

model complexity.  
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Figure 6.5 Exchange flux map of ∆ilvC-Crimson and ∆icd-CFP co-culture. The final exchange flux map for the 
∆ilvC-Crimson and ∆icd-CFP co-culture. Fluxes values are shown with standard deviation. Yellow box (top): 
Valine/Leucine biosynthesis pathway. Gray box (middle): Isoleucine biosynthesis pathway. Orange box (bottom): 
Glutamate biosynthesis pathway. 
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cell multiplied by its population size. In chapter 3, we assumed both strains had the same glucose 

uptake since there was no mutation related to glucose uptake and the population of the two 

strains was roughly 50%: 50%. However, in the fluorescent co-culture described in this chapter, 

the population composition of ∆ilvC-Crimson: ∆icd-CFP is about 30%: 70% (Fig. 6.2), which is 

more skewed than the co-culture in chapter 3. Therefore, we modified the glucose uptake of 

∆ilvC-Crimson, which is strains 1 in the model, and performed flux analysis. Since the 

population ratio is roughly 1: 2.33, the glucose uptake of strain 1 was set to 40 and strain 2 

remained 100 to achieve a glucose uptake ratio of 1: 2.5, as shown in Fig. 6.6.  

 

Figure 6.6 Metabolic model for different glucose uptake. (A) In the case where the two strains had similar 
population size, the glucose uptake was set to 100 for both strains. (B) In the fluorescent, the population sizes were 
not equal between the two strains, the glucose uptake were manually edited. In our case, ∆ilvC-Crimson: ∆icd-CFP 
is 30%: 70%, which is roughly 1: 2.3. We adjusted the glucose uptake for strain 1 to 40 so that the uptake ratio 
between the two strains is 1:2.5. 

With the glucose uptake adjusted, the exchange between the two strains is shown in Fig. 

6.7. For easier comparison to Fig. 6.5, we normalized ∆ilvC-Crimson back to 100 glucose 

uptake, which is why the exchange flux values differed between the two strains. Overall, the 

fluxes of ∆icd-CFP were similar between equal glucose uptake (Fig. 6.5) and different glucose 

uptake (Fig. 6.7). On the other hand, ∆ilvC-Crimson was cross-feeding more acetolactate and 

glutamate to ∆icd-CFP, but gaining less valine/keto-valine and isoleucine/keto-isoleucine when 
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the glucose uptake was different. Interestingly, although there were differences in exchange 

fluxes, the two models fit equally well (SSR for equal uptake: 166.3; SSR for different uptake: 

169.4). When we compared central carbon metabolism, both strains had similar flux distribution 

between the equal glucose uptake model and the different glucose uptake model. As this point, 

we do not have a strong argument regarding which model is more correct. However, our results 

suggested that the population differences did not impact the fitting as much as we concerned. 

 

Figure 6.7 Exchange flux map of ∆ilvC-Crimson and ∆icd-CFP co-culture for different glucose uptake. The 
exchange flux map for the ∆ilvC-Crimson and ∆icd-CFP co-culture when the glucose uptake of ∆ilvC-Crimson is set 
to 40 in the model. The flux of ∆ilvC-Crimson was adjusted back to per 100 glucose uptake for easier comparison to 
Fig. 6.5. Fluxes values are shown with standard deviation. Yellow box (top): Valine/Leucine biosynthesis pathway. 
Gray box (middle): Isoleucine biosynthesis pathway. Orange box (bottom): Glutamate biosynthesis pathway. 
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6.2 Challenges for 13C metabolic flux analysis 

In this thesis, 13C MFA was applied for the first time on syntrophic co-cultures that 

consisted of two strains exchanging metabolites. In this section, we will discuss potential 

challenges of applying 13C MFA to co-culture systems.  

In Chapter 3, we demonstrated our ability to elucidate exchanging metabolites by 

constructing metabolic models with increasing complexity and evaluating their performance 

through statistical analysis. Specifically, the calculated sum of square residuals (SSR) was used 

to represent how well the metabolic models fit the experimental measurements. However, SSR 

only reflects the overall performance of the model. We found that, in some cases, different 

combinations of exchange fluxes can yield statistically acceptable fits. Specifically, exchange 

fluxes that improve the SSR by 50 or less can be substituted by other fluxes. Thus, we were 

unable to provide a strong statistical argument to confirm or refute the existence of specific 

metabolite exchanges solely based on flux analysis. These non-critical metabolite exchanges will 

require further investigation to confirm their presence. Nevertheless, we demonstrated that 13C 

MFA could provide solid evidence when critical metabolites were being exchanged such as the 

required amino acid and their pathway intermediates.  

Another challenge, as mentioned in this chapter, is that including exchange fluxes in the 

model can sometimes lead to overfitting. This overfitting can obscure the identification of actual 

exchanging metabolites, as it becomes unclear whether the fluxes are real or simply artifacts of 

fitting measurement errors or noise. A potential solution is to provide additional measurements to 

the model as constraints. Conducting three or four parallel experiments could be valuable to test 

if this resolves the overfitting issue. 
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While utilizing different tracers can provide more measurements, which may help resolve 

interactions in more complex systems, we will eventually be constrained by the exponentially 

increasing number of possible exchanging metabolites between strains. In a more complex 

system that contains four or more strain, the possible interactions between each strain can 

increase rapidly. This would result in an overwhelming number of metabolic models with 

different exchange scenarios to test, ultimately becoming inefficient.  

Nevertheless, although there remain challenges for 13C MFA, it is important to keep in 

mind that currently there are only limited methods to elucidate the exchanging metabolites.  

6.3 Future direction 

In this work, we focused on studying the syntrophic interactions between auxotrophic 

strains. In Chapter 2, we investigated how these strains restored their growth when the missing 

amino acids were supplemented. Our findings revealed that the glutamate-deficient strain ∆icd, 

with a gene knockout in the TCA cycle, undergoes a more complex flux rewiring rather than 

simply restoring the TCA cycle when supplemented with glutamate. In the future, a 

comprehensive study on how various auxotrophic strains restore their growth could provide 

valuable insights into how other strains rewire metabolism when required resources are 

available. Besides amino acid auxotrophic strains, other knockout strains could also be studied. 

Previous research has explored metabolic responses to the deletion of 20 core enzymes in the 

upper central carbon metabolism using 13C MFA (Long and Antoniewicz, 2019b). It would also 

be interesting to examine how these knockout strains respond when the deficient metabolites are 

supplied in the medium. 

In chapter 3, 13C MFA was applied to a syntrophic co-culture. When different metabolic 

network models were tested, we observed a significant improvement from the mono-culture 
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model to the co-culture model. This is likely due to the distinct central carbon metabolism 

between the two auxotrophic strains we used. ∆ilvC exhibited similar flux distribution to wild 

type while ∆icd showed more active pentose phosphate pathway and glyoxylate shunt. In another 

syntrophic pair consisting of ∆argE and ∆tyrA, both of which had gene knockouts located away 

from central carbon metabolism, we noticed that the mono-culture model was able to fit 

comparably to the co-culture model without exchange fluxes. Future studies could investigate 

how much difference in central carbon metabolic fluxes is required for the co-culture model to fit 

better than the mono-culture model. In Fig. 6.8, we demonstrate how this can be achieved by 

running simulations to generate labeling data from two sets of metabolic fluxes with different 

distributions. We will start with identical flux distribution for the two strains and increase the 

differences in the flux distribution. The resulting labeling data can be fitted with mono-culture 

and co-culture models and analyzed statistically. We should expect the group with identical flux 

distribution to fit equally well with the mono-culture model and co-culture model. As the 

difference in the flux distribution increases, mono culture should no longer be sufficient to fit the 

generated labeling data and. Therefore, we should start observing higher SSR in mono culture 

model compared to a co-culture model. This analysis will help us understand how differences in 

metabolic fluxes impact the fitting performance between mono-culture and co-culture models. 

Additionally, we can study flux differences in various pathways. For instance, instead of altering 

fluxes in glycolysis and the pentose phosphate pathway, we could adjust the flux in the TCA 

cycle to evaluate the model's sensitivity to changes in different pathways. Overall, this analysis 

can provide valuable insights for future applications of 13C MFA on co-culture. 
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Figure 6.8 Workflow for evaluating how flux differences in two strains impact the mono-culture model and 
co-culture model performance. For the simulation, we will generate labeling data from designed flux distribution. 
As shown in top, the metabolic flux distribution of the two strains starts from being identical to having huge 
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difference. We can create several sets of distribution for more detailed analysis. The resulting labeling data from 
these flux distributions will then be tested the mono culture model and co-culture model. In the figure at bottom 
right the yellow bars represent the SSR for mono culture model and the blue bars represent co-culture model. Each 
group of yellow and blue bar represent on pair of flux distribution. As shown on the plot, we should expect as the 
flux difference increase, the performance of mono culture model will become worse.  

 In syntrophic co-cultures, growth is likely constrained by the exchange of metabolites. 

Such constraints may arise from factors including the concentration of metabolites in the 

medium, the rate at which transporters uptake the metabolites, and the number of available 

transporters. To gain a more detailed understanding, experiments could be designed to measure 

the Km value for metabolite uptake. If growth is limited by substrate uptake, the growth rate 

should be proportional to the rate of substrate uptake. Consequently, the Km value can be 

determined by supplementing the auxotrophic strain with varying concentrations of metabolite 

and measuring the corresponding growth rate. The Km value is the metabolite concentration at 

which the growth rate is half of the maximum growth rate. This parameter is crucial for 

constructing mathematical models to predict co-culture growth. Future work could involve 

developing more robust models for syntrophic co-cultures by incorporating growth-limiting 

factors into the model. Another promising avenue for research is to investigate whether cells 

alter their transporter expression levels in a co-culture to enhance growth. To conduct 

transcriptomic analysis of individual strains within the co-culture, a transwell system can be 

employed, wherein the strains are physically separated by a membrane that permits metabolite 

diffusion. This setup allows for comparison of transporter expression levels between syntrophic 

co-cultures and mono-cultures. Taken together, we present several future directions that could be 

further investigated to better understand syntrophic interactions. 

Besides the ∆ilvC and ∆icd co-culture mentioned in this thesis, more syntrophic pairs 

could also be investigated in the future. Specifically, auxotrophic E. coli pairs that could grow 

together have been reported in previous literature (Wintermute and Silver, 2010). These 
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syntrophic pairs can be analyzed through the method developed in this thesis. Furthermore, it 

would be valuable to test if we could apply the new information that we learn from the co-culture 

to design or elucidate a more complex system. For example, if we uncover the interaction 

between strain A and B, strain B and C, strain A and C, are they going to interact the same way 

in a tri-culture system? As mentioned earlier, 13C MFA has enough redundancy to solve a tri-

culture system. Therefore, it is possible to answer the above question with our current tool.  

In this thesis, we demonstrate the application of 13C metabolic flux analysis (13C MFA) 

on syntrophic co-cultures. 13C MFA can provide compelling evidence for the exchange of critical 

metabolites through rigorous statistical analysis. We discovered that the exchange of metabolic 

pathway intermediates is also crucial between auxotrophic strains. This finding was further 

supported by investigating 55 pairs of E. coli that shared the same amino acid deficiency. We 

hope that in the future, this method can be applied to different strain combinations to broaden our 

understanding of microbial interactions. 
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Appendix 

A.1 Mono-culture Metabolic Network Model 

Glycolysis 

Gluc.ext + PEP -> G6P + Pyr                                                 

G6P <=> F6P (net)                                                       

G6P <=> F6P (exch)                                                          

F6P + ATP -> FBP + ADP                                                      

FBP <=> DHAP + GAP (net)                                                    

FBP <=> DHAP + GAP (exch)                                                   

DHAP <=> GAP (net)                                                          

DHAP <=> GAP (exch)                                                         

GAP + NAD + ADP + Pi <=> 3PG + ATP + NADH (net)                             

GAP + NAD + ADP + Pi <=> 3PG + ATP + NADH (exch)                            

3PG <=> PEP (net)                                                           

3PG <=> PEP (exch)                                                          

PEP + ADP <=> Pyr + ATP (net)                                               

PEP + ADP <=> Pyr + ATP (exch)                                              

Pentose Phosphate Pathway 

G6P + NADP -> 6PG + NADPH                                                   

6PG + NADP -> Ru5P + CO2 + NADPH                                            

Ru5P <=> X5P (net)                                                          

Ru5P <=> X5P (exch)                                                         

Ru5P <=> R5P (net)                                                          

Ru5P <=> R5P (exch)                                                         

X5P <=> GAP + E-C2 (net)                                                    

X5P <=> GAP + E-C2 (exch)                                                   
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F6P <=> E4P + E-C2 (net)                                                    

F6P <=> E4P + E-C2 (exch)                                                   

S7P <=> R5P + E-C2 (net)                                                    

S7P <=> R5P + E-C2 (exch)                                                   

F6P <=> GAP + E-C3 (net)                                                    

F6P <=> GAP + E-C3 (exch)                                                   

S7P <=> E4P + E-C3 (net)                                                    

S7P <=> E4P + E-C3 (exch)                                                   

ED Pathway 

6PG -> KDPG                                                                 

KDPG -> GAP + Pyr                                                           

TCA Cycle 

Pyr + NAD -> AcCoA + CO2 + NADH                                             

AcCoA + OAC -> Cit                                                          

Cit <=> ICit (net)                                                          

Cit <=> ICit (exch)                                                         

ICit + NADP <=> AKG + CO2 + NADPH (net)                                     

ICit + NADP <=> AKG + CO2 + NADPH (exch)                                    

AKG + NAD <=> SucCoA + CO2 + NADH (net)                                     

AKG + NAD <=> SucCoA + CO2 + NADH (exch)                                    

SucCoA + ADP + Pi <=> Suc + ATP (net)                                       

SucCoA + ADP + Pi <=> Suc + ATP (exch)                                      

Suc + FAD <=> Fum + FADH2 (net)                                             

Suc + FAD <=> Fum + FADH2 (exch)                                            

Fum <=> Mal (net)                                                           

Fum <=> Mal (exch)                                                          

Mal + NAD <=> OAC + NADH (net)                                              

Mal + NAD <=> OAC + NADH (exch)                                             
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Glyoxylate Shunt 

ICit <=> Glyox + Suc (net)                                                  

ICit <=> Glyox + Suc (exch)                                                 

AcCoA + Glyox -> Mal                                                        

Amphibolic Reactions 

Mal + NADP -> Pyr + CO2 + NADPH                                             

Mal + NAD -> Pyr + CO2 + NADH                                               

PEP + CO2 -> OAC + Pi                                                       

OAC + ATP -> PEP + CO2 + ADP                                                

Acetate Production 

AcCoA + ADP + Pi <=> Ac + ATP (net)                                         

AcCoA + ADP + Pi <=> Ac + ATP (exch)                                        

Amino Acid Biosynthesis 

AKG + NADPH + NH3 -> Glu + NADP                                             

Glu + ATP + NH3 -> Gln + ADP + Pi                                           

Glu + 2 NADPH + ATP -> Pro + 2 NADP + ADP + Pi                              

Glu + CO2 + Gln + NADPH + Asp + AcCoA + 5 ATP -> Arg + AKG + NADP + Fum + 

Ac + 5ADP + 5Pi 

OAC + Glu -> Asp + AKG                                                      

Asp + NH3 + 2 ATP -> Asn + 2 ADP + 2 Pi                                     

Pyr + Glu -> Ala + AKG                                                      

3PG + Glu + NAD -> Ser + NADH + AKG + Pi                                    

Ser + THF <=> Gly + MEETHF (net)                                            

Ser + THF <=> Gly + MEETHF (exch)                                           

Gly + THF + NAD <=> CO2 + MEETHF + NH3 + NADH (net)                         

Gly + THF + NAD <=> CO2 + MEETHF + NH3 + NADH (exch)                        

Thr + NAD -> Gly + AcCoA + NADH                                             
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Ser + AcCoA + SO4 + 3 ATP + 4 NADPH -> Cys + Ac + 4 NADP + 3 ADP + 3 Pi     

Asp + Pyr + Glu + 2 NADPH + ATP + SucCoA -> LL-DAP + AKG + 2 NADP + ADP + 

Pi + Suc 

LL-DAP -> Lys + CO2                                                         

Asp + 2 NADPH + 2 ATP -> Thr + 2 NADP + 2 ADP + 2 Pi                        

Asp + METHF + Cys + 2 NADPH + ATP + SucCoA -> Met + Pyr + 2 NADP + ADP + Pi 

2 Pyr + NADPH + Glu -> Val + CO2 + NADP + AKG                               

2 Pyr + AcCoA + Glu + NADPH + NAD -> Leu + 2 CO2 + AKG + NADP + NADH        

Thr + Pyr + Glu + NADPH -> Ile + CO2 + AKG + NADP + NH3                     

E4P + 2 PEP + Glu + NADPH + ATP -> Phe + CO2 + AKG + NADP + ADP + 4 Pi      

E4P + 2 PEP + Glu + NADPH + NAD + ATP -> Tyr + CO2 + AKG + NADP + NADH + 

ADP + 4Pi 

E4P + 2 PEP + R5P + Ser + Gln + NADPH + 3 ATP -> Trp + CO2 + Pyr + GAP + Glu + 

NADP + 3ADP + 6Pi 

R5P + FTHF + Gln + Asp + 5 ATP + 2 NAD -> His + 2 NADH + AKG + Fum + 5 ADP + 

6Pi + THF 

One Carbon Metabolism 

MEETHF + NADH -> METHF + NAD                                                

MEETHF + NADP -> FTHF + NADPH                                               

Oxidative Phosphorylation 

NADH + 0.5 O2 + 1.5 ADP + 1.5 Pi -> NAD + 1.5 ATP                           

FADH2 + 0.5 O2 + 0.5 ADP + 0.5 Pi -> FAD + 0.5 ATP                          

Transhydrogenation 

NADH + NADP <=> NADPH + NAD (net)                                           

NADH + NADP <=> NADPH + NAD (exch)                                          

ATP Hydrolysis 

ATP -> ADP + Pi                                                             
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Transport 

Ac -> Ac.ext                                                                

CO2 -> CO2.ext                                                              

O2.ext -> O2                                                                

NH3.ext -> NH3                                                              

SO4.ext -> SO4                                                              

Pi.ext -> Pi                                                                

CO2.atm + CO2 -> CO2 + CO2.snk                                              

Biomass Formation 

0.488 Ala + 0.281 Arg + 0.229 Asn + 0.229 Asp + 0.087 Cys + 0.25 Glu + 0.25 Gln + 

0.582 Gly + 0.09 His + 0.276 Ile + 0.428 Leu + 0.326 Lys + 0.146 Met + 0.176 Phe + 0.21 

Pro + 0.205 Ser + 0.241 Thr + 0.131 Tyr + 0.402 Val + 0.205 G6P + 0.071 F6P + 0.129 

GAP + 0.619 3PG + 0.083 Pyr + 2.51 AcCoA + 0.087 AKG + 0.34 OAC + 0.054 Trp + 

0.754 R5P + 0.051 PEP + 33.247 ATP + 5.363 NADPH + 0.443 MEETHF + 1.455 NAD -

> 39.683 Biomass + 1.455 NADH + 33.247 ADP + 33.247 Pi + 5.363 NADP + 0.443 

THF 
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A.2 Co-Culture Metabolic Network Model 

Glycolysis 

PEP.1 + 2 Gluc.Ext + PEP.2 -> G6P.1 + Pyr.1 + G6P.2 + Pyr.2 + X-glc1 + X-glc2 

G6P.1 <=> F6P.1 (net)                                                       

G6P.1 <=> F6P.1 (exch)                                                      

G6P.2 <=> F6P.2 (net)                                                       

G6P.2 <=> F6P.2 (exch)                                                      

F6P.1 + ATP.1 -> FBP.1 + ADP.1                                              

F6P.2 + ATP.2 -> FBP.2 + ADP.2                                              

FBP.1 <=> DHAP.1 + GAP.1 (net)                                              

FBP.1 <=> DHAP.1 + GAP.1 (exch)                                             

FBP.2 <=> DHAP.2 + GAP.2 (net)                                              

FBP.2 <=> DHAP.2 + GAP.2 (exch)                                             

DHAP.1 <=> GAP.1 (net)                                                      

DHAP.1 <=> GAP.1 (exch)                                                     

DHAP.2 <=> GAP.2 (net)                                                      

DHAP.2 <=> GAP.2 (exch)                                                     

GAP.1 + NAD.1 + ADP.1 + Pi.1 <=> 3PG.1 + ATP.1 + NADH.1 (net)               

GAP.1 + NAD.1 + ADP.1 + Pi.1 <=> 3PG.1 + ATP.1 + NADH.1 (exch)              

GAP.2 + NAD.2 + ADP.2 + Pi.2 <=> 3PG.2 + ATP.2 + NADH.2 (net)               

GAP.2 + NAD.2 + ADP.2 + Pi.2 <=> 3PG.2 + ATP.2 + NADH.2 (exch)              

3PG.1 <=> PEP.1 (net)                                                       

3PG.1 <=> PEP.1 (exch)                                                      

3PG.2 <=> PEP.2 (net)                                                       

3PG.2 <=> PEP.2 (exch)                                                      

PEP.1 + ADP.1 <=> Pyr.1 + ATP.1 (net)                                       

PEP.1 + ADP.1 <=> Pyr.1 + ATP.1 (exch)                                      

PEP.2 + ADP.2 <=> Pyr.2 + ATP.2 (net)                                       
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PEP.2 + ADP.2 <=> Pyr.2 + ATP.2 (exch)                                      

Pentose Phosphate Pathway 

G6P.1 + NADP.1 -> 6PG.1 + NADPH.1                                           

G6P.2 + NADP.2 -> 6PG.2 + NADPH.2                                           

6PG.1 + NADP.1 -> Ru5P.1 + CO2.1 + NADPH.1                                  

6PG.2 + NADP.2 -> Ru5P.2 + CO2.2 + NADPH.2                                  

Ru5P.1 <=> X5P.1 (net)                                                      

Ru5P.1 <=> X5P.1 (exch)                                                     

Ru5P.2 <=> X5P.2 (net)                                                      

Ru5P.2 <=> X5P.2 (exch)                                                     

Ru5P.1 <=> R5P.1 (net)                                                      

Ru5P.1 <=> R5P.1 (exch)                                                     

Ru5P.2 <=> R5P.2 (net)                                                      

Ru5P.2 <=> R5P.2 (exch)                                                     

X5P.1 <=> GAP.1 + E-C2.1 (net)                                              

X5P.1 <=> GAP.1 + E-C2.1 (exch)                                             

X5P.2 <=> GAP.2 + E-C2.2 (net)                                              

X5P.2 <=> GAP.2 + E-C2.2 (exch)                                             

F6P.1 <=> E4P.1 + E-C2.1 (net)                                              

F6P.1 <=> E4P.1 + E-C2.1 (exch)                                             

F6P.2 <=> E4P.2 + E-C2.2 (net)                                              

F6P.2 <=> E4P.2 + E-C2.2 (exch)                                             

S7P.1 <=> R5P.1 + E-C2.1 (net)                                              

S7P.1 <=> R5P.1 + E-C2.1 (exch)                                             

S7P.2 <=> R5P.2 + E-C2.2 (net)                                              

S7P.2 <=> R5P.2 + E-C2.2 (exch)                                             

F6P.1 <=> GAP.1 + E-C3.1 (net)                                              

F6P.1 <=> GAP.1 + E-C3.1 (exch)                                             

F6P.2 <=> GAP.2 + E-C3.2 (net)                                              

F6P.2 <=> GAP.2 + E-C3.2 (exch)                                             
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S7P.1 <=> E4P.1 + E-C3.1 (net)                                              

S7P.1 <=> E4P.1 + E-C3.1 (exch)                                             

S7P.2 <=> E4P.2 + E-C3.2 (net)                                              

S7P.2 <=> E4P.2 + E-C3.2 (exch)                                             

ED Pathway 

6PG.1 -> KDPG.1                                                             

6PG.2 -> KDPG.2                                                             

KDPG.1 -> GAP.1 + Pyr.1                                                     

KDPG.2 -> GAP.2 + Pyr.2                                                     

TCA Cycle 

Pyr.1 + NAD.1 -> AcCoA.1 + CO2.1 + NADH.1                                   

Pyr.2 + NAD.2 -> AcCoA.2 + CO2.2 + NADH.2                                   

AcCoA.1 + OAC.1 -> Cit.1                                                    

AcCoA.2 + OAC.2 -> Cit.2                                                    

Cit.1 <=> ICit.1 (net)                                                      

Cit.1 <=> ICit.1 (exch)                                                     

Cit.2 <=> ICit.2 (net)                                                      

Cit.2 <=> ICit.2 (exch)                                                     

ICit.1 + NADP.1 <=> AKG.1 + CO2.1 + NADPH.1 (net)                           

ICit.1 + NADP.1 <=> AKG.1 + CO2.1 + NADPH.1 (exch)                          

AKG.1 + NAD.1 -> SucCoA.1 + CO2.1 + NADH.1                                  

AKG.2 + NAD.2 -> SucCoA.2 + CO2.2 + NADH.2                                  

SucCoA.1 + ADP.1 + Pi.1 <=> Suc.1 + ATP.1 (net)                             

SucCoA.1 + ADP.1 + Pi.1 <=> Suc.1 + ATP.1 (exch)                            

SucCoA.2 + ADP.2 + Pi.2 <=> Suc.2 + ATP.2 (net)                             

SucCoA.2 + ADP.2 + Pi.2 <=> Suc.2 + ATP.2 (exch)                            

Suc.1 + FAD.1 <=> Fum.1 + FADH2.1 (net)                                     

Suc.1 + FAD.1 <=> Fum.1 + FADH2.1 (exch)                                    

Suc.2 + FAD.2 <=> Fum.2 + FADH2.2 (net)                                     
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Suc.2 + FAD.2 <=> Fum.2 + FADH2.2 (exch)                                    

Fum.1 <=> Mal.1 (net)                                                       

Fum.1 <=> Mal.1 (exch)                                                      

Fum.2 <=> Mal.2 (net)                                                       

Fum.2 <=> Mal.2 (exch)                                                      

Mal.1 + NAD.1 <=> OAC.1 + NADH.1 (net)                                      

Mal.1 + NAD.1 <=> OAC.1 + NADH.1 (exch)                                     

Mal.2 + NAD.2 <=> OAC.2 + NADH.2 (net)                                      

Mal.2 + NAD.2 <=> OAC.2 + NADH.2 (exch)                                     

Glyoxylate Shunt 

ICit.1 <=> Glyox.1 + Suc.1 (net)                                            

ICit.1 <=> Glyox.1 + Suc.1 (exch)                                           

ICit.2 <=> Glyox.2 + Suc.2 (net)                                            

ICit.2 <=> Glyox.2 + Suc.2 (exch)                                           

AcCoA.1 + Glyox.1 -> Mal.1                                                  

AcCoA.2 + Glyox.2 -> Mal.2                                                  

Amphibolic Reactions 

Mal.1 + NADP.1 -> Pyr.1 + CO2.1 + NADPH.1                                   

Mal.2 + NADP.2 -> Pyr.2 + CO2.2 + NADPH.2                                   

PEP.1 + CO2.1 -> OAC.1 + Pi.1                                               

PEP.2 + CO2.2 -> OAC.2 + Pi.2                                               

OAC.1 + ATP.1 -> PEP.1 + CO2.1 + ADP.1                                      

OAC.2 + ATP.2 -> PEP.2 + CO2.2 + ADP.2                                      

Acetate Production 

AcCoA.1 + ADP.1 + Pi.1 <=> Ac.1 + ATP.1 (net)                               

AcCoA.1 + ADP.1 + Pi.1 <=> Ac.1 + ATP.1 (exch)                              

AcCoA.2 + ADP.2 + Pi.2 <=> Ac.2 + ATP.2 (net)                               

AcCoA.2 + ADP.2 + Pi.2 <=> Ac.2 + ATP.2 (exch)                              
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Amino Acid Biosynthesis 

AKG.1 + NADPH.1 + NH3.1 -> Glu.1 + NADP.1                                   

AKG.2 + NADPH.2 + NH3.2 -> Glu.2 + NADP.2                                   

Glu.1 + ATP.1 + NH3.1 -> Gln.1 + ADP.1 + Pi.1                               

Glu.2 + ATP.2 + NH3.2 -> Gln.2 + ADP.2 + Pi.2                               

Glu.1 + 2 NADPH.1 + ATP.1 -> Pro.1 + 2 NADP.1 + ADP.1 + Pi.1                

Glu.2 + 2 NADPH.2 + ATP.2 -> Pro.2 + 2 NADP.2 + Pi.2 + ADP.2                

Glu.1 + CO2.1 + Gln.1 + NADPH.1 + Asp.1 + AcCoA.1 + 5 ATP.1 -> Arg.1 + AKG.1 

+ NADP.1 + Fum.1 + Ac.1 + 5 ADP.1 + 5 Pi.1 

Glu.2 + CO2.2 + Gln.2 + NADPH.2 + Asp.2 + AcCoA.2 + 5 ATP.2 -> Arg.2 + AKG.2 

+ NADP.2 + Fum.2 + Ac.2 + 5 ADP.2 + 5 Pi.2 

OAC.1 + Glu.1 -> Asp.1 + AKG.1                                              

OAC.2 + Glu.2 -> Asp.2 + AKG.2                                              

Asp.1 + NH3.1 + 2 ATP.1 -> Asn.1 + 2 ADP.1 + 2 Pi.1                         

Asp.2 + NH3.2 + 2 ATP.2 -> Asn.2 + 2 ADP.2 + 2 Pi.2                         

Pyr.1 + Glu.1 -> Ala.1 + AKG.1                                              

Pyr.2 + Glu.2 -> Ala.2 + AKG.2                                              

3PG.1 + Glu.1 + NAD.1 -> Ser.1 + NADH.1 + AKG.1 + Pi.1                      

3PG.2 + Glu.2 + NAD.2 -> Ser.2 + NADH.2 + AKG.2 + Pi.2                      

Ser.1 + THF.1 <=> Gly.1 + MEETHF.1 (net)                                    

Ser.1 + THF.1 <=> Gly.1 + MEETHF.1 (exch)                                   

Ser.2 + THF.2 <=> Gly.2 + MEETHF.2 (net)                                    

Ser.2 + THF.2 <=> Gly.2 + MEETHF.2 (exch)                                   

Gly.1 + THF.1 + NAD.1 <=> CO2.1 + MEETHF.1 + NH3.1 + NADH.1 (net)           

Gly.1 + THF.1 + NAD.1 <=> CO2.1 + MEETHF.1 + NH3.1 + NADH.1 (exch)          

Gly.2 + THF.2 + NAD.2 <=> CO2.2 + MEETHF.2 + NH3.2 + NADH.2 (net)           

Gly.2 + THF.2 + NAD.2 <=> CO2.2 + MEETHF.2 + NH3.2 + NADH.2 (exch)          

Thr.1 + NAD.1 -> Gly.1 + AcCoA.1 + NADH.1                                   

Thr.2 + NAD.2 -> Gly.2 + AcCoA.2 + NADH.2                                   



 125 

Ser.1 + AcCoA.1 + SO4.1 + 3 ATP.1 + 4 NADPH.1 -> Cys.1 + Ac.1 + 4 NADP.1 + 3 

ADP.1 + 3 Pi.1 

Ser.2 + AcCoA.2 + SO4.2 + 3 ATP.2 + 4 NADPH.2 -> Cys.2 + Ac.2 + 4 NADP.2 + 3 

ADP.2 + 3 Pi.2 

Asp.1 + Pyr.1 + Glu.1 + 2 NADPH.1 + ATP.1 + SucCoA.1 -> LL-DAP.1 + AKG.1 + 2 

NADP.1 + ADP.1 + Pi.1 + Suc.1 

Asp.2 + Pyr.2 + Glu.2 + 2 NADPH.2 + ATP.2 + SucCoA.2 -> LL-DAP.2 + AKG.2 + 2 

NADP.2 + ADP.2 + Pi.2 + Suc.2 

LL-DAP.1 -> Lys.1 + CO2.1                                                   

LL-DAP.2 -> Lys.2 + CO2.2                                                   

Asp.1 + 2 NADPH.1 + 2 ATP.1 -> Thr.1 + 2 NADP.1 + 2 ADP.1 + 2 Pi.1          

Asp.2 + 2 NADPH.2 + 2 ATP.2 -> Thr.2 + 2 NADP.2 + 2 ADP.2 + 2 Pi.2          

Asp.1 + METHF.1 + Cys.1 + 2 NADPH.1 + ATP.1 + SucCoA.1 -> Met.1 + Pyr.1 + 2 

NADP.1 + ADP.1 + Pi.1 + Suc.1 + NH3.1 + THF.1 

Asp.2 + METHF.2 + Cys.2 + 2 NADPH.2 + ATP.2 + SucCoA.2 -> Met.2 + Pyr.2 + 2 

NADP.2 + ADP.2 + Pi.2 + Suc.2 + NH3.2 + THF.2 

E4P.1 + 2 PEP.1 + Glu.1 + NADPH.1 + ATP.1 -> Phe.1 + CO2.1 + AKG.1 + NADP.1 

E4P.2 + 2 PEP.2 + Glu.2 + NADPH.2 + ATP.2 -> Phe.2 + CO2.2 + AKG.2 + NADP.2 

E4P.1 + 2 PEP.1 + Glu.1 + NADPH.1 + NAD.1 + ATP.1 -> Tyr.1 + CO2.1 + AKG.1 + 

NADP.1 + NADH.1 + ADP.1 + 4 Pi.1 

E4P.2 + 2 PEP.2 + Glu.2 + NADPH.2 + NAD.2 + ATP.2 -> Tyr.2 + CO2.2 + AKG.2 + 

NADP.2 + NADH.2 + ADP.2 + 4 Pi.2 

E4P.1 + 2 PEP.1 + R5P.1 + Ser.1 + Gln.1 + NADPH.1 + 3 ATP.1 -> Trp.1 + CO2.1 + 

Pyr.1 + GAP.1 + Glu.1 + NADP.1 + 3 ADP.1 + 6 Pi.1 

E4P.2 + 2 PEP.2 + R5P.2 + Ser.2 + Gln.2 + NADPH.2 + 3 ATP.2 -> Trp.2 + CO2.2 + 

Pyr.2 + GAP.2 + Glu.2 + NADP.2 + 3 ADP.2 + 6 Pi.2 

R5P.1 + FTHF.1 + Gln.1 + Asp.1 + 5 ATP.1 + 2 NAD.1 -> His.1 + 2 NADH.1 + 

AKG.1 + Fum.1 + 5 ADP.1 + 6 Pi.1 + THF.1 

R5P.2 + FTHF.2 + Gln.2 + Asp.2 + 5 ATP.2 + 2 NAD.2 -> His.2 + 2 NADH.2 + 

AKG.2 + Fum.2 + 5 ADP.2 + 6 Pi.2 + THF.2 
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kVal.1 + Glu.1 <=> Val.1 + AKG.1 (net)                                      

kVal.1 + Glu.1 <=> Val.1 + AKG.1 (exch)                                     

kVal.2 + Glu.2 <=> Val.2 + AKG.2 (net)                                      

kVal.2 + Glu.2 <=> Val.2 + AKG.2 (exch)                                     

kVal.1 + AcCoA.1 + NAD.1 + Glu.1 -> Leu.1 + CO2.1 + NADH.1 + AKG.1          

kVal.2 + AcCoA.2 + NAD.2 + Glu.2 -> Leu.2 + CO2.2 + NADH.2 + AKG.2          

2 Pyr.1 -> aclact.1 + CO2.1                                                 

2 Pyr.2 -> aclact.2 + CO2.2                                                 

aclact.2 + NADPH.2 -> kVal.2 + NADP.2                                       

Thr.1 + Pyr.1 -> acbut.1 + CO2.1                                            

Thr.2 + Pyr.2 -> acbut.2 + CO2.2                                            

acbut.2 + NADPH.2 -> kIle.2 + NADP.2                                        

kIle.1 + Glu.1 -> Ile.1 + AKG.1                                             

kIle.2 + Glu.2 -> Ile.2 + AKG.2                                             

One Carbon Metabolism 

MEETHF.1 + NADH.1 -> METHF.1 + NAD.1                                        

MEETHF.2 + NADH.2 -> METHF.2 + NAD.2                                        

MEETHF.1 + NADP.1 -> FTHF.1 + NADPH.1                                       

MEETHF.2 + NADP.2 -> FTHF.2 + NADPH.2                                       

Oxidative Phosphorylation 

NADH.1 + 0.5 O2.1 + 2 ADP.1 + 2 Pi.1 -> NAD.1 + 2 ATP.1                     

NADH.2 + 0.5 O2.2 + 2 ADP.2 + 2 Pi.2 -> NAD.2 + 2 ATP.2                     

FADH2.1 + 0.5 O2.1 + ADP.1 + Pi.1 -> FAD.1 + ATP.1                          

FADH2.2 + 0.5 O2.2 + ADP.2 + Pi.2 -> FAD.2 + ATP.2                          

Transhydrogenation 

NADH.1 + NADP.1 <=> NADPH.1 + NAD.1 (net)                                   

NADH.1 + NADP.1 <=> NADPH.1 + NAD.1 (exch)                                  
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NADH.2 + NADP.2 <=> NADPH.2 + NAD.2 (net)                                   

NADH.2 + NADP.2 <=> NADPH.2 + NAD.2 (exch)                                  

ATP Hydrolysis 

ATP.1 -> ADP.1 + Pi.1                                                       

ATP.2 -> ADP.2 + Pi.2                                                       

Transport 

Ac.1 -> Ac.Ext + X-ac1                                                      

Ac.2 -> Ac.Ext + X-ac2                                                      

CO2.1 -> CO2.Ext                                                            

CO2.2 -> CO2.Ext                                                            

O2.Ext -> O2.1                                                              

O2.Ext -> O2.2                                                              

NH3.Ext -> NH3.1                                                            

NH3.Ext -> NH3.2                                                            

SO4.Ext -> SO4.1                                                            

SO4.Ext -> SO4.2                                                            

CO2.M0 + CO2.1 -> CO2.1 + CO2.snk                                           

CO2.M0 + CO2.2 -> CO2.2 + CO2.snk                                           

Pi.Ext -> Pi.1                                                              

Pi.Ext -> Pi.2                                                              

Biomass Formation 
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0.488 Ala.1 + 0.281 Arg.1 + 0.229 Asn.1 + 0.229 Asp.1 + 0.087 Cys.1 + 0.25 Glu.1 + 

0.25 Gln.1 + 0.582 Gly.1 + 0.02 His.1 + 0.276 Ile.1 + 0.428 Leu.1 + 0.326 Lys.1 + 

0.146 Met.1 + 0.176 Phe.1 + 0.21 Pro.1 + 0.205 Ser.1 + 0.241 Thr.1 + 0.131 Tyr.1 + 

0.402 Val.1 + 0.205 G6P.1 + 0.071 F6P.1 + 0.129 GAP.1 + 0.619 3PG.1 + 0.083 Pyr.1 

+ 2.51 AcCoA.1 + 0.087 AKG.1 + 0.34 OAC.1 + 0.054 Trp.1 + 0.754 R5P.1 + 0.051 

PEP.1 + 33.247 ATP.1 + 5.363 NADPH.1 + 0.443 MEETHF.1 + 1.455 NAD.1 -> 1.455 

NADH.1 + 33.247 ADP.1 + 33.247 Pi.1 + 0.443 THF.1 + 5.363 NADP.1 + 39.683 

Biomass.1 

0.488 Ala.2 + 0.281 Arg.2 + 0.229 Asn.2 + 0.229 Asp.2 + 0.087 Cys.2 + 0.25 Glu.2 + 

0.25 Gln.2 + 0.582 Gly.2 + 0.02 His.2 + 0.276 Ile.2 + 0.428 Leu.2 + 0.326 Lys.2 + 

0.146 Met.2 + 0.176 Phe.2 + 0.21 Pro.2 + 0.205 Ser.2 + 0.241 Thr.2 + 0.131 Tyr.2 + 

0.402 Val.2 + 0.205 G6P.2 + 0.071 F6P.2 + 0.129 GAP.2 + 0.619 3PG.2 + 0.083 Pyr.2 

+ 2.51 AcCoA.2 + 0.087 AKG.2 + 0.34 OAC.2 + 0.054 Trp.2 + 0.754 R5P.2 + 0.051 

PEP.2 + 33.247 ATP.2 + 5.363 NADPH.2 + 0.443 MEETHF.2 + 1.455 NAD.2 -> 1.455 

NADH.2 + 33.247 ADP.2 + 33.247 Pi.2 + 0.443 THF.2 + 5.363 NADP.2 + 39.683 

Biomass.2 

8 AcCoA.1 <=> C16:0.1 (net)                                                 

8 AcCoA.1 <=> C16:0.1 (exch)                                                

8 AcCoA.2 <=> C16:0.2 (net)                                                 

8 AcCoA.2 <=> C16:0.2 (exch)                                                

Co-culture Exchange Fluxes 

Leu.1 <=> Leu.2 (net)                                                       

Leu.1 <=> Leu.2 (exch)                                                      

Thr.1 <=> Thr.2 (net)                                                       

Thr.1 <=> Thr.2 (exch)                                                      

Asp.1 <=> Asp.2 (net)                                                       

Asp.1 <=> Asp.2 (exch)                                                      

Glu.1 <=> Glu.2 (net)                                                       

Glu.1 <=> Glu.2 (exch)                                                      

kVal.1 <=> kVal.2 (net)                                                     
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kVal.1 <=> kVal.2 (exch)                                                    

aclact.1 <=> aclact.2 (net)                                                 

aclact.1 <=> aclact.2 (exch)                                                

acbut.1 <=> acbut.2 (net)                                                   

acbut.1 <=> acbut.2 (exch)                                                  

kIle.1 <=> kIle.2 (net)                                                     

kIle.1 <=> kIle.2 (exch)                                                    

Pyr.1 <=> Pyr.2 (net) 

Pyr.1 <=> Pyr.2 (exch) 

Co-culture reaction 

Ala.s1 + Gly.s1 + Val.s1 + Leu.s1 + Ile.s1 + Pro.s1 + Met.s1 + Ser.s1 + Thr.s1 + Phe.s1 

+ Asp.s1 + Glu.s1 + Lys.s1 + His.s1 + Tyr.s1 -> X-s1 

Ala.s2 + Gly.s2 + Val.s2 + Leu.s2 + Ile.s2 + Pro.s2 + Met.s2 + Ser.s2 + Thr.s2 + Phe.s2 

+ Asp.s2 + Glu.s2 + Lys.s2 + His.s2 + Tyr.s2 -> X-s2 

Ala.1 + Gly.1 + Val.1 + Leu.1 + Ile.1 + Pro.1 + Met.1 + Ser.1 + Thr.1 + Phe.1 + Asp.1 

+ Glu.1 + Lys.1 + His.1 + Tyr.1 -> Ala.s1 + Gly.s1 + Val.s1 + Leu.s1 + Ile.s1 + Pro.s1 

+ Met.s1 + Ser.s1 + Thr.s1 + Phe.s1 + Asp.s1 + Glu.s1 + Lys.s1 + His.s1 + Tyr.s1 + 

Ala.1 + Gly.1 + Val.1 + Leu.1 + Ile.1 + Pro.1 + Met.1 + Ser.1 + Thr.1 + Phe.1 + Asp.1 

+ Glu.1 + Lys.1 + His.1 + Tyr.1 

Ala.1 + Gly.1 + Val.1 + Leu.1 + Ile.1 + Pro.1 + Met.1 + Ser.1 + Thr.1 + Phe.1 + Asp.1 

+ Glu.1 + Lys.1 + His.1 + Tyr.1 -> Ala.s2 + Gly.s2 + Val.s2 + Leu.s2 + Ile.s2 + Pro.s2 

+ Met.s2 + Ser.s2 + Thr.s2 + Phe.s2 + Asp.s2 + Glu.s2 + Lys.s2 + His.s2 + Tyr.s2 + 

Ala.1 + Gly.1 + Val.1 + Leu.1 + Ile.1 + Pro.1 + Met.1 + Ser.1 + Thr.1 + Phe.1 + Asp.1 

+ Glu.1 + Lys.1 + His.1 + Tyr.1 

Ala.2 + Gly.2 + Val.2 + Leu.2 + Ile.2 + Pro.2 + Met.2 + Ser.2 + Thr.2 + Phe.2 + Asp.2 

+ Glu.2 + Lys.2 + His.2 + Tyr.2 -> Ala.s1 + Gly.s1 + Val.s1 + Leu.s1 + Ile.s1 + Pro.s1 

+ Met.s1 + Ser.s1 + Thr.s1 + Phe.s1 + Asp.s1 + Glu.s1 + Lys.s1 + His.s1 + Tyr.s1 + 

Ala.2 + Gly.2 + Val.2 + Leu.2 + Ile.2 + Pro.2 + Met.2 + Ser.2 + Thr.2 + Phe.2 + Asp.2 

+ Glu.2 + Lys.2 + His.2 + Tyr.2 
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Ala.2 + Gly.2 + Val.2 + Leu.2 + Ile.2 + Pro.2 + Met.2 + Ser.2 + Thr.2 + Phe.2 + Asp.2 

+ Glu.2 + Lys.2 + His.2 + Tyr.2 -> Ala.s2 + Gly.s2 + Val.s2 + Leu.s2 + Ile.s2 + Pro.s2 

+ Met.s2 + Ser.s2 + Thr.s2 + Phe.s2 + Asp.s2 + Glu.s2 + Lys.s2 + His.s2 + Tyr.s2 + 

Ala.2 + Gly.2 + Val.2 + Leu.2 + Ile.2 + Pro.2 + Met.2 + Ser.2 + Thr.2 + Phe.2 + Asp.2 

+ Glu.2 + Lys.2 + His.2 + Tyr.2 

C16:0.1 -> C16:0.s1 + C16:0.1 + F-s1                                        

C16:0.1 -> C16:0.s2 + C16:0.1 + F-s2                                        

C16:0.2 -> C16:0.s1 + C16:0.2 + F-s1                                        

C16:0.2 -> C16:0.s2 + C16:0.2 + F-s2                                        

 

 

 

  



 131 

Bibliography 

Akashi, H. and Gojobori, T. (2002) ‘Metabolic efficiency and amino acid composition in the 

proteomes of Escherichia coli and Bacillus subtilis’, Proceedings of the National Academy of 

Sciences of the United States of America, 99(6). doi: 10.1073/pnas.062526999. 

Akram, M. (2013) ‘Mini-review on glycolysis and cancer’, Journal of Cancer Education. doi: 

10.1007/s13187-013-0486-9. 

Amann, R. I., Ludwig, W. and Schleifer, K. H. (1995) ‘Phylogenetic identification and in situ 

detection of individual microbial cells without cultivation’, Microbiological Reviews. doi: 

10.1128/mmbr.59.1.143-169.1995. 

Antoniewicz, M. R. (2013) ‘13C metabolic flux analysis: Optimal design of isotopic labeling 

experiments’, Current Opinion in Biotechnology. doi: 10.1016/j.copbio.2013.02.003. 

Antoniewicz, M. R. (2015) ‘Methods and advances in metabolic flux analysis: a mini-review’, 

Journal of Industrial Microbiology and Biotechnology, 42(3). doi: 10.1007/s10295-015-1585-x. 

Antoniewicz, M. R. (2018) ‘A guide to 13C metabolic flux analysis for the cancer biologist’, 

Experimental and Molecular Medicine. doi: 10.1038/s12276-018-0060-y. 

Antoniewicz, M. R. (2020) ‘A guide to deciphering microbial interactions and metabolic fluxes 

in microbiome communities’, Current Opinion in Biotechnology. doi: 

10.1016/j.copbio.2020.07.001. 

Antoniewicz, M. R. (2021) ‘A guide to metabolic flux analysis in metabolic engineering: 

Methods, tools and applications’, Metabolic Engineering. doi: 10.1016/j.ymben.2020.11.002. 

Antoniewicz, M. R., Kelleher, J. K. and Stephanopoulos, G. (2006) ‘Determination of 

confidence intervals of metabolic fluxes estimated from stable isotope measurements’, Metabolic 

Engineering, 8(4). doi: 10.1016/j.ymben.2006.01.004. 

Antoniewicz, M. R., Kelleher, J. K. and Stephanopoulos, G. (2007a) ‘Accurate assessment of 

amino acid mass isotopomer distributions for metabolic flux analysis’, Analytical Chemistry, 

79(19). doi: 10.1021/ac0708893. 



 132 

Antoniewicz, M. R., Kelleher, J. K. and Stephanopoulos, G. (2007b) ‘Elementary metabolite 

units (EMU): A novel framework for modeling isotopic distributions’, Metabolic Engineering, 

9(1). doi: 10.1016/j.ymben.2006.09.001. 

Ashworth, J. M. and Kornberg, H. L. (1966) ‘The anaplerotic fixation of carbon dioxide by 

Escherichia coli.’, Proceedings of the Royal Society of London. Series B, Containing papers of a 

Biological character. Royal Society (Great Britain), 165(999). doi: 10.1098/rspb.1966.0063. 

Bailey, J. E. (1991) ‘Toward a science of metabolic engineering’, Science, 252(5013). doi: 

10.1126/science.2047876. 

Barbier, M. and Damron, F. H. (2016) ‘Rainbow vectors for broad-range bacterial fluorescence 

labeling’, PLoS ONE, 11(3). doi: 10.1371/journal.pone.0146827. 

Basan, M. et al. (2015) ‘Overflow metabolism in Escherichia coli results from efficient proteome 

allocation’, Nature, 528(7580). doi: 10.1038/nature15765. 

Basile, A. et al. (2020) ‘Revealing metabolic mechanisms of interaction in the anaerobic 

digestion microbiome by flux balance analysis’, Metabolic Engineering, 62. doi: 

10.1016/j.ymben.2020.08.013. 

Bertels, F., Merker, H. and Kost, C. (2012) ‘Design and characterization of auxotrophy-based 

amino acid biosensors’, PLoS ONE, 7(7). doi: 10.1371/journal.pone.0041349. 

Bloemberg, G. V. et al. (1997) ‘Green fluorescent protein as a marker for Pseudomonas spp.’, 

Applied and Environmental Microbiology, 63(11). doi: 10.1128/aem.63.11.4543-4551.1997. 

Bonomo, J. and Gill, R. T. (2005) ‘Amino acid content of recombinant proteins influences the 

metabolic burden response’, Biotechnology and Bioengineering, 90(1). doi: 10.1002/bit.20436. 

Borkowski, O. et al. (2016) ‘Overloaded and stressed: whole-cell considerations for bacterial 

synthetic biology’, Current Opinion in Microbiology. doi: 10.1016/j.mib.2016.07.009. 

Bowman, E. K. and Alper, H. S. (2020) ‘Microdroplet-Assisted Screening of Biomolecule 

Production for Metabolic Engineering Applications’, Trends in Biotechnology. doi: 

10.1016/j.tibtech.2019.11.002. 

Burgin, A. J. et al. (2011) ‘Beyond carbon and nitrogen: How the microbial energy economy 

couples elemental cycles in diverse ecosystems’, in Frontiers in Ecology and the Environment. 

doi: 10.1890/090227. 



 133 

Cardinale, S. and Arkin, A. P. (2012) ‘Contextualizing context for synthetic biology - identifying 

causes of failure of synthetic biological systems’, Biotechnology Journal. doi: 

10.1002/biot.201200085. 

Carneiro, S., Ferreira, E. C. and Rocha, I. (2013) ‘Metabolic responses to recombinant 

bioprocesses in Escherichia coli’, Journal of Biotechnology, 164(3). doi: 

10.1016/j.jbiotec.2012.08.026. 

Chalfie, M. et al. (1994) ‘Green fluorescent protein as a marker for gene expression’, Science, 

263(5148). doi: 10.1126/science.8303295. 

Chang, D. E. et al. (2004) ‘Carbon nutrition of Escherichia coli in the mouse intestine’, 

Proceedings of the National Academy of Sciences of the United States of America, 101(19). doi: 

10.1073/pnas.0307888101. 

Chaudhry, R. and Varacallo, M. (2018) Biochemistry, Glycolysis, StatPearls. 

Che, S. and Men, Y. (2019) ‘Synthetic microbial consortia for biosynthesis and biodegradation: 

promises and challenges’, Journal of Industrial Microbiology and Biotechnology, 46(9–10). doi: 

10.1007/s10295-019-02211-4. 

Chou, C. P. (2007) ‘Engineering cell physiology to enhance recombinant protein production in 

Escherichia coli’, Applied Microbiology and Biotechnology. doi: 10.1007/s00253-007-1039-0. 

Conway, T. (1992) ‘The Entner-Doudoroff pathway: history, physiology and molecular biology’, 

FEMS Microbiology Letters, 103(1). doi: 10.1016/0378-1097(92)90334-K. 

Crown, S. B. and Antoniewicz, M. R. (2012) ‘Selection of tracers for 13C-Metabolic Flux 

Analysis using Elementary Metabolite Units (EMU) basis vector methodology’, Metabolic 

Engineering, 14(2). doi: 10.1016/j.ymben.2011.12.005. 

Crown, S. B. and Antoniewicz, M. R. (2013) ‘Parallel labeling experiments and metabolic flux 

analysis: Past, present and future methodologies’, Metabolic Engineering. doi: 

10.1016/j.ymben.2012.11.010. 

Crown, S. B., Long, C. P. and Antoniewicz, M. R. (2016) ‘Optimal tracers for parallel labeling 

experiments and 13C metabolic flux analysis: A new precision and synergy scoring system’, 

Metabolic Engineering, 38. doi: 10.1016/j.ymben.2016.06.001. 

D’Onofrio, A. et al. (2010) ‘Siderophores from Neighboring Organisms Promote the Growth of 

Uncultured Bacteria’, Chemistry and Biology, 17(3). doi: 10.1016/j.chembiol.2010.02.010. 



 134 

D’Souza, G. et al. (2014) ‘Less is more: Selective advantages can explain the prevalent loss of 

biosynthetic genes in bacteria’, Evolution. doi: 10.1111/evo.12468. 

Dai, Z. and Locasale, J. W. (2017) ‘Understanding metabolism with flux analysis: From theory 

to application’, Metabolic Engineering. doi: 10.1016/j.ymben.2016.09.005. 

Dandie, C. E., Thomas, S. M. and McClure, N. C. (2001) ‘Comparison of a range of green 

fluorescent protein-tagging vectors for monitoring a microbial inoculant in soil’, Letters in 

Applied Microbiology, 32(1). doi: 10.1046/j.1472-765X.2001.00848.x. 

Dien, L. T. H., Ravel, J. M. and Shive, W. (1954) ‘Some inhibitory interrelationships among 

leucine, isoleucine and valine’, Archives of Biochemistry and Biophysics, 49(2). doi: 

10.1016/0003-9861(54)90199-X. 

Dietrich, J. A., McKee, A. E. and Keasling, J. D. (2010) ‘High-throughput metabolic 

engineering: Advances in small-molecule screening and selection’, Annual Review of 

Biochemistry. doi: 10.1146/annurev-biochem-062608-095938. 

Dolan, S. K. and Welch, M. (2018) ‘The Glyoxylate Shunt, 60 Years on’, Annual Review of 

Microbiology. doi: 10.1146/annurev-micro-090817-062257. 

Embree, M. et al. (2015) ‘Networks of energetic and metabolic interactions define dynamics in 

microbial communities’, Proceedings of the National Academy of Sciences of the United States 

of America, 112(50). doi: 10.1073/pnas.1506034112. 

Farmer, W. R. and Liao, J. C. (1997) ‘Reduction of aerobic acetate production by Escherichia 

coli’, Applied and Environmental Microbiology, 63(8). doi: 10.1128/aem.63.8.3205-3210.1997. 

Faust, K. and Raes, J. (2012) ‘Microbial interactions: From networks to models’, Nature Reviews 

Microbiology. doi: 10.1038/nrmicro2832. 

Feilmeier, B. J. et al. (2000) ‘Green fluorescent protein functions as a reporter for protein 

localization in Escherichia coli’, Journal of Bacteriology, 182(14). doi: 10.1128/JB.182.14.4068-

4076.2000. 

Feng, X. et al. (2012) ‘MicrobesFlux: a web platform for drafting metabolic models from the 

KEGG database’, BMC Systems Biology, 6. doi: 10.1186/1752-0509-6-94. 

Fernandez, C. A. et al. (1996) ‘Correction of 13C mass isotopomer distributions for natural 

stable isotope abundance’, Journal of Mass Spectrometry, 31(3). doi: 10.1002/(SICI)1096-

9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3. 



 135 

Fester, T. et al. (2014) ‘Plant-microbe interactions as drivers of ecosystem functions relevant for 

the biodegradation of organic contaminants’, Current Opinion in Biotechnology. doi: 

10.1016/j.copbio.2014.01.017. 

Fischer, E. and Sauer, U. (2003) ‘Metabolic flux profiling of Escherichia coli mutants in central 

carbon metabolism using GC-MS’, European Journal of Biochemistry, 270(5). doi: 

10.1046/j.1432-1033.2003.03448.x. 

Fritts, R. K., McCully, A. L. and McKinlay, J. B. (2021) ‘Extracellular Metabolism Sets the 

Table for Microbial Cross-Feeding’, Microbiology and Molecular Biology Reviews, 85(1). doi: 

10.1128/mmbr.00135-20. 

Gabrielli, N. et al. (2023) ‘ Unravelling metabolic cross‐feeding in a yeast–bacteria community 

using  13 C  ‐based proteomics ’, Molecular Systems Biology, 19(4). doi: 

10.15252/msb.202211501. 

Gandhi, M. et al. (2001) ‘Use of green fluorescent protein expressing Salmonella Stanley to 

investigate survival, spatial location, and control on alfalfa sprouts’, Journal of Food Protection, 

64(12). doi: 10.4315/0362-028X-64.12.1891. 

Garrett, W. S. (2015) ‘Cancer and the microbiota’, Science, 348(6230). doi: 

10.1126/science.aaa4972. 

Gebreselassie, N. A. and Antoniewicz, M. R. (2015) ‘13C-metabolic flux analysis of co-cultures: 

A novel approach’, Metabolic Engineering. doi: 10.1016/j.ymben.2015.07.005. 

Gerdes, H. H. and Kaether, C. (1996) ‘Green fluorescent protein: Applications in cell biology’, 

in FEBS Letters. doi: 10.1016/0014-5793(96)00586-8. 

Germerodt, S. et al. (2016) ‘Pervasive Selection for Cooperative Cross-Feeding in Bacterial 

Communities’, PLoS Computational Biology, 12(6). doi: 10.1371/journal.pcbi.1004986. 

Ghosh, A. et al. (2014) ‘A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial 

Communities’, PLoS Computational Biology, 10(9). doi: 10.1371/journal.pcbi.1003827. 

Glick, B. R. (1995) ‘Metabolic load and heterologous gene expression’, Biotechnology 

Advances. doi: 10.1016/0734-9750(95)00004-A. 

Gopalakrishnan, S. and Maranas, C. D. (2015) ‘13C metabolic flux analysis at a genome-scale’, 

Metabolic Engineering, 32. doi: 10.1016/j.ymben.2015.08.006. 

Gottstein, W. et al. (2016) ‘Constraint-based stoichiometric modelling from single organisms to 

microbial communities’, Journal of the Royal Society Interface. doi: 10.1098/rsif.2016.0627. 



 136 

Goudar, C. et al. (2010) ‘Metabolic flux analysis of CHO cells in perfusion culture by metabolite 

balancing and 2D [13C, 1H] COSY NMR spectroscopy’, Metabolic Engineering, 12(2). doi: 

10.1016/j.ymben.2009.10.007. 

Guardiola, J. et al. (1974) ‘Multiplicity of isoleucine, leucine, and valine transport systems in 

Escherichia coli K 12’, Journal of Bacteriology, 117(2). doi: 10.1128/jb.117.2.382-392.1974. 

Guest, J. R. and Russell, G. C. (1992) ‘Complexes and Complexities of the Citric Acid Cycle in 

Escherichia coli’, in Current Topics in Cellular Regulation. doi: 10.1016/B978-0-12-152833-

1.50018-6. 

GUNSALUS, I. C., HORECKER, B. L. and WOOD, W. A. (1955) ‘Pathways of carbohydrate 

metabolism in microorganisms.’, Bacteriological reviews, 19(2). doi: 10.1128/mmbr.19.2.79-

128.1955. 

Haddadin, F. T. and Harcum, S. W. (2005) ‘Transcriptome profiles for high-cell-density 

recombinant and wild-type Escherichia coli’, Biotechnology and Bioengineering, 90(2). doi: 

10.1002/bit.20340. 

Harcombe, W. R. et al. (2014) ‘Metabolic resource allocation in individual microbes determines 

ecosystem interactions and spatial dynamics’, Cell Reports, 7(4). doi: 

10.1016/j.celrep.2014.03.070. 

Henson, M. A. and Hanly, T. J. (2014) ‘Dynamic flux balance analysis for synthetic microbial 

communities’, IET Systems Biology, 8(5). doi: 10.1049/iet-syb.2013.0021. 

Hollinshead, W. D. et al. (2016) ‘Examining Escherichia coli glycolytic pathways, catabolite 

repression, and metabolite channeling using Δpfk mutants’, Biotechnology for Biofuels, 9(1). doi: 

10.1186/s13068-016-0630-y. 

Hugenholtz, P., Goebel, B. M. and Pace, N. R. (1998) ‘Impact of culture-independent studies on 

the emerging phylogenetic view of bacterial diversity’, Journal of Bacteriology. doi: 

10.1128/jb.180.18.4765-4774.1998. 

Huttenhower, C. et al. (2012) ‘Structure, function and diversity of the healthy human 

microbiome’, Nature, 486(7402). doi: 10.1038/nature11234. 

Jagmann, N. and Philipp, B. (2014) ‘Design of synthetic microbial communities for 

biotechnological production processes’, Journal of Biotechnology, 184. doi: 

10.1016/j.jbiotec.2014.05.019. 



 137 

Johns, N. I. et al. (2016) ‘Principles for designing synthetic microbial communities’, Current 

Opinion in Microbiology. doi: 10.1016/j.mib.2016.03.010. 

Jones, R. G. (1967) ‘Ubiquinone deficiency in an auxotroph of Escherichia coli requiring 4-

hydroxybenzoic acid.’, The Biochemical journal. doi: 10.1042/bj1030714. 

Judge, A. and Dodd, M. S. (2020) ‘Metabolism’, Essays in Biochemistry, pp. 607–647. doi: 

10.1042/EBC20190041. 

Jullesson, D. et al. (2015) ‘Impact of synthetic biology and metabolic engineering on industrial 

production of fine chemicals’, Biotechnology Advances. doi: 10.1016/j.biotechadv.2015.02.011. 

Kaleta, C. et al. (2013) ‘Metabolic costs of amino acid and protein production in Escherichia 

coli’, Biotechnology Journal, 8(9). doi: 10.1002/biot.201200267. 

Kanehisa, M. et al. (2012) ‘KEGG for integration and interpretation of large-scale molecular 

data sets’, Nucleic Acids Research, 40(D1). doi: 10.1093/nar/gkr988. 

Khandelwal, R. A. et al. (2013) ‘Community Flux Balance Analysis for Microbial Consortia at 

Balanced Growth’, PLoS ONE, 8(5). doi: 10.1371/journal.pone.0064567. 

Klitgord, N. and Segrè, D. (2010) ‘Environments that induce synthetic microbial ecosystems’, 

PLoS Computational Biology, 6(11). doi: 10.1371/journal.pcbi.1001002. 

Kornberg, H. L. (1966) ‘The role and control of the glyoxylate cycle in Escherichia coli.’, The 

Biochemical journal. doi: 10.1042/bj0990001. 

Kouzuma, A., Kato, S. and Watanabe, K. (2015) ‘Microbial interspecies interactions: Recent 

findings in syntrophic consortia’, Frontiers in Microbiology. doi: 10.3389/fmicb.2015.00477. 

Kruger, N. J. and Von Schaewen, A. (2003) ‘The oxidative pentose phosphate pathway: 

Structure and organisation’, Current Opinion in Plant Biology. doi: 10.1016/S1369-

5266(03)00039-6. 

Kumar, A. and Chordia, N. (2017) ‘Role of Microbes in Human Health’, Applied Microbiology: 

Open Access. doi: 10.4172/2471-9315.1000131. 

Kumar, M. et al. (2019) ‘Modelling approaches for studying the microbiome’, Nature 

Microbiology. doi: 10.1038/s41564-019-0491-9. 

Lane, N. (2015) ‘The unseen World: Reflections on Leeuwenhoek (1677) “Concerning little 

animals”’, Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 

10.1098/rstb.2014.0344. 



 138 

Lawson, C. E. et al. (2019) ‘Common principles and best practices for engineering 

microbiomes’, Nature Reviews Microbiology. doi: 10.1038/s41579-019-0255-9. 

Lee, J. M., Gianchandani, E. P. and Papin, J. A. (2006) ‘Flux balance analysis in the era of 

metabolomics’, Briefings in Bioinformatics. doi: 10.1093/bib/bbl007. 

Leewenhoeck, A. van (1676) ‘Concerning little Animals by him observed in Rain- Well- Sea- 

and Snow-water; as also in water wherein Pepper had lain infused.’, Philosophical transactions, 

12. 

Leff, L. G. and Leff, A. A. (1996) ‘Use of green fluorescent protein to monitor survival of 

genetically engineered bacteria in aquatic environments’, Applied and Environmental 

Microbiology, 62(9). doi: 10.1128/aem.62.9.3486-3488.1996. 

Li, M. et al. (2006) ‘Effect of lpdA gene knockout on the metabolism in Escherichia coli based 

on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-

labeling experiments’, Journal of Biotechnology, 122(2). doi: 10.1016/j.jbiotec.2005.09.016. 

Lin, J. L., Wagner, J. M. and Alper, H. S. (2017) ‘Enabling tools for high-throughput detection 

of metabolites: Metabolic engineering and directed evolution applications’, Biotechnology 

Advances. doi: 10.1016/j.biotechadv.2017.07.005. 

Liu, X. et al. (2018) ‘Convergent engineering of syntrophic Escherichia coli coculture for 

efficient production of glycosides’, Metabolic Engineering, 47. doi: 

10.1016/j.ymben.2018.03.016. 

Lloyd-Price, J., Abu-Ali, G. and Huttenhower, C. (2016) ‘The healthy human microbiome’, 

Genome Medicine. doi: 10.1186/s13073-016-0307-y. 

Long, C. P. et al. (2016) ‘Characterization of physiological responses to 22 gene knockouts in 

Escherichia coli central carbon metabolism’, Metabolic Engineering, 37. doi: 

10.1016/j.ymben.2016.05.006. 

Long, C. P. et al. (2017) ‘Fast growth phenotype of E. coli K-12 from adaptive laboratory 

evolution does not require intracellular flux rewiring’, Metabolic Engineering, 44. doi: 

10.1016/j.ymben.2017.09.012. 

Long, C. P. et al. (2018) ‘Dissecting the genetic and metabolic mechanisms of adaptation to the 

knockout of a major metabolic enzyme in Escherichia coli’, Proceedings of the National 

Academy of Sciences of the United States of America, 115(1). doi: 10.1073/pnas.1716056115. 



 139 

Long, C. P. and Antoniewicz, M. R. (2014a) ‘Metabolic flux analysis of Escherichia coli 

knockouts: Lessons from the Keio collection and future outlook’, Current Opinion in 

Biotechnology. doi: 10.1016/j.copbio.2014.02.006. 

Long, C. P. and Antoniewicz, M. R. (2014b) ‘Quantifying Biomass Composition by Gas 

Chromatography/Mass Spectrometry’, Analytical Chemistry, 86(19). doi: 10.1021/ac502734e. 

Long, C. P. and Antoniewicz, M. R. (2018) ‘How adaptive evolution reshapes metabolism to 

improve fitness: recent advances and future outlook’, Current Opinion in Chemical Engineering. 

doi: 10.1016/j.coche.2018.11.001. 

Long, C. P. and Antoniewicz, M. R. (2019a) ‘High-resolution 13C metabolic flux analysis’, 

Nature Protocols. doi: 10.1038/s41596-019-0204-0. 

Long, C. P. and Antoniewicz, M. R. (2019b) ‘Metabolic flux responses to deletion of 20 core 

enzymes reveal flexibility and limits of E. coli metabolism’, Metabolic Engineering, 55. doi: 

10.1016/j.ymben.2019.08.003. 

Ma, L., Zhang, G. and Doyle, M. P. (2011) ‘Green fluorescent protein labeling of Listeria, 

Salmonella, and Escherichia coli O157:H7 for safety-related studies’, PLoS ONE, 6(4). doi: 

10.1371/journal.pone.0018083. 

March, J. C., Eiteman, M. A. and Altman, E. (2002) ‘Expression of an anaplerotic enzyme, 

pyruvate carboxylase, improves recombinant protein production in Escherichia coli’, Applied 

and Environmental Microbiology, 68(11). doi: 10.1128/AEM.68.11.5620-5624.2002. 

March, J. C., Rao, G. and Bentley, W. E. (2003) ‘Biotechnological applications of green 

fluorescent protein’, Applied Microbiology and Biotechnology. doi: 10.1007/s00253-003-1339-y. 

Matsuyama, C. et al. (2024) ‘Metabolome analysis of metabolic burden in Escherichia coli 

caused by overexpression of green fluorescent protein and delta-rhodopsin’, Journal of 

Bioscience and Bioengineering, 137(3). doi: 10.1016/j.jbiosc.2023.12.003. 

Mattanovich, D. et al. (2004) ‘Stress in recombinant protein producing yeasts’, in Journal of 

Biotechnology. doi: 10.1016/j.jbiotec.2004.04.035. 

Mee, M. T. et al. (2014) ‘Syntrophic exchange in synthetic microbial communities’, Proceedings 

of the National Academy of Sciences of the United States of America. doi: 

10.1073/pnas.1405641111. 

Mee, M. T. and Wang, H. H. (2012) ‘Engineering ecosystems and synthetic ecologies’, 

Molecular BioSystems. doi: 10.1039/c2mb25133g. 



 140 

Mesquita, I. and Rodrigues, F. (2018) ‘Cellular Metabolism at a Glance’, Experientia 

supplementum (2012), 109. doi: 10.1007/978-3-319-74932-7_1. 

Misteli, T. and Spector, D. L. (1997) ‘Applications of The Green Fluorescent Protein In Cell 

Biology and Biotechnology’, Nature Biotechnology, 15(10). doi: 10.1038/nbt1097-961. 

Morgan, S. A. et al. (2016) ‘Biofuel metabolic engineering with biosensors’, Current Opinion in 

Chemical Biology. doi: 10.1016/j.cbpa.2016.09.020. 

Morris, B. E. L. et al. (2013) ‘Microbial syntrophy: Interaction for the common good’, FEMS 

Microbiology Reviews. doi: 10.1111/1574-6976.12019. 

Morris, J. J. et al. (2008) ‘Facilitation of robust growth of Prochlorococcus colonies and dilute 

liquid cultures by “helper” heterotrophic bacteria’, Applied and Environmental Microbiology, 

74(14). doi: 10.1128/AEM.02479-07. 

Müller, T. et al. (2023) ‘Synthetic mutualism in engineered E. coli mutant strains as functional 

basis for microbial production consortia’, Engineering in Life Sciences, 23(1). doi: 

10.1002/elsc.202100158. 

Muñoz-Elías, E. J. and McKinney, J. D. (2006) ‘Carbon metabolism of intracellular bacteria’, 

Cellular Microbiology. doi: 10.1111/j.1462-5822.2005.00648.x. 

Nemergut, D. R. et al. (2013) ‘Patterns and Processes of Microbial Community Assembly’, 

Microbiology and Molecular Biology Reviews, 77(3). doi: 10.1128/mmbr.00051-12. 

Neubauer, P., Lin, H. Y. and Mathiszik, B. (2003) ‘Metabolic load of recombinant protein 

production: Inhibition of cellular capacities for glucose uptake and respiration after induction of 

a heterologous gene in Escherichia coli’, Biotechnology and Bioengineering, 83(1). doi: 

10.1002/bit.10645. 

Nöh, K. et al. (2007) ‘Metabolic flux analysis at ultra short time scale: Isotopically non-

stationary 13C labeling experiments’, Journal of Biotechnology, 129(2). doi: 

10.1016/j.jbiotec.2006.11.015. 

Noor, E. et al. (2010) ‘Central Carbon Metabolism as a Minimal Biochemical Walk between 

Precursors for Biomass and Energy’, Molecular Cell, 39(5). doi: 10.1016/j.molcel.2010.08.031. 

Noto Guillen, M. et al. (2021) ‘Assembling stable syntrophic Escherichia coli communities by 

comprehensively identifying beneficiaries of secreted goods’, Cell Systems, 12(11). doi: 

10.1016/j.cels.2021.08.002. 



 141 

Oftadeh, O. and Hatzimanikatis, V. (2024) ‘Genome-scale models of metabolism and expression 

predict the metabolic burden of recombinant protein expression’, Metabolic Engineering. 

Elsevier Inc., 84(May), pp. 109–116. doi: 10.1016/j.ymben.2024.06.005. 

Orth, J. D., Thiele, I. and Palsson, B. O. (2010) ‘What is flux balance analysis?’, Nature 

Biotechnology. doi: 10.1038/nbt.1614. 

Ou, J. et al. (2004) ‘Stationary phase protein overproduction is a fundamental capability of 

Escherichia coli’, Biochemical and Biophysical Research Communications, 314(1). doi: 

10.1016/j.bbrc.2003.12.077. 

Pande, S. et al. (2014) ‘Fitness and stability of obligate cross-feeding interactions that emerge 

upon gene loss in bacteria’, ISME Journal, 8(5). doi: 10.1038/ismej.2013.211. 

Pande, S. and Kost, C. (2017) ‘Bacterial Unculturability and the Formation of Intercellular 

Metabolic Networks’, Trends in Microbiology. doi: 10.1016/j.tim.2017.02.015. 

Peekhaus, N. and Conway, T. (1998) ‘What’s for dinner?: Entner-Doudoroff metabolism in 

Escherichia coli’, Journal of Bacteriology. doi: 10.1128/jb.180.14.3495-3502.1998. 

Peretti, S. W. and Bailey, J. E. (1987) ‘Simulations of host–plasmid interactions in Escherichia 

coli: Copy number, promoter strength, and ribosome binding site strength effects on metabolic 

activity and plasmid gene expression’, Biotechnology and Bioengineering, 29(3). doi: 

10.1002/bit.260290305. 

Petersen, C. and Round, J. L. (2014) ‘Defining dysbiosis and its influence on host immunity and 

disease’, Cellular Microbiology. doi: 10.1111/cmi.12308. 

Ponomarova, O. and Patil, K. R. (2015) ‘Metabolic interactions in microbial communities: 

Untangling the Gordian knot’, Current Opinion in Microbiology. doi: 

10.1016/j.mib.2015.06.014. 

Raman, K. and Chandra, N. (2009) ‘Flux balance analysis of biological systems: Applications 

and challenges’, Briefings in Bioinformatics. doi: 10.1093/bib/bbp011. 

Rani, N. et al. (2019) ‘Microbes: A key player in industrial wastewater treatment’, in Microbial 

Wastewater Treatment. doi: 10.1016/B978-0-12-816809-7.00005-1. 

Remington, S. J. (2011) ‘Green fluorescent protein: A perspective’, Protein Science. doi: 

10.1002/pro.684. 



 142 

Rodionova, I. A. et al. (2015) ‘Genomic distribution of B-vitamin auxotrophy and uptake 

transporters in environmental bacteria from the Chloroflexi phylum’, Environmental 

Microbiology Reports. doi: 10.1111/1758-2229.12227. 

Rozkov, A. et al. (2004) ‘Characterization of the metabolic burden on Escherichia coli DH1 cells 

imposed by the presence of a plasmid containing a gene therapy sequence’, Biotechnology and 

Bioengineering, 88(7). doi: 10.1002/bit.20327. 

Rühl, M., Hardt, W. D. and Sauer, U. (2011) ‘Subpopulation-specific metabolic pathway usage 

in mixed cultures as revealed by reporter protein-based 13C analysis’, Applied and 

Environmental Microbiology. doi: 10.1128/AEM.02696-10. 

Sarkar, D. et al. (2021) ‘Elucidation of trophic interactions in an unusual single-cell nitrogen-

fixing symbiosis using metabolic modeling’, PLoS Computational Biology, 17(5). doi: 

10.1371/journal.pcbi.1008983. 

Sauer, U. (2006) ‘Metabolic networks in motion: 13C-based flux analysis’, Molecular Systems 

Biology. doi: 10.1038/msb4100109. 

Schmidt, K. et al. (1997) ‘Modeling isotopomer distributions in biochemical networks using 

isotopomer mapping matrices’, Biotechnology and Bioengineering, 55(6). doi: 

10.1002/(SICI)1097-0290(19970920)55:6<831::AID-BIT2>3.0.CO;2-H. 

Scott, K. P. et al. (1998) ‘The green fluorescent protein as a visible marker for lactic acid 

bacteria in complex ecosystems’, FEMS Microbiology Ecology, 26(3). doi: 10.1016/S0168-

6496(98)00037-3. 

Shaikh, A. S. et al. (2008) ‘Isotopomer distributions in amino acids from a highly expressed 

protein as a proxy for those from total protein’, Analytical Chemistry. doi: 10.1021/ac071445+. 

Shastri, A. A. and Morgan, J. A. (2005) ‘Flux balance analysis of photoautotrophic metabolism’, 

Biotechnology Progress, 21(6). doi: 10.1021/bp050246d. 

Shimomura, O., Johnson, F. H. and Saiga, Y. (1962) ‘Extraction, Purification and Properties of 

Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan,Aequorea’, Journal of 

Cellular and Comparative Physiology, 59(3). doi: 10.1002/jcp.1030590302. 

Shoaie, S. et al. (2013) ‘Understanding the interactions between bacteria in the human gut 

through metabolic modeling’, Scientific Reports, 3. doi: 10.1038/srep02532. 



 143 

Shupletsov, M. S. et al. (2014) ‘OpenFLUX2: 13C-MFA modeling software package adjusted 

for the comprehensive analysis of single and parallel labeling experiments’, Microbial Cell 

Factories, 13(1). doi: 10.1186/s12934-014-0152-x. 

Silva, F., Queiroz, J. A. and Domingues, F. C. (2012) ‘Evaluating metabolic stress and plasmid 

stability in plasmid DNA production by Escherichia coli’, Biotechnology Advances. doi: 

10.1016/j.biotechadv.2011.12.005. 

Soboleski, M. R., Oaks, J. and Halford, W. P. (2005) ‘Green fluorescent protein is a quantitative 

reporter of gene expression in individual eukaryotic cells’, The FASEB Journal, 19(3). doi: 

10.1096/fj.04-3180fje. 

Stephanopoulos, G. (1999) ‘Metabolic Fluxes and Metabolic Engineering’, Metabolic 

Engineering, 1(1). doi: 10.1006/mben.1998.0101. 

Stephanopoulos, G. and Vallino, J. J. (1991) ‘Network rigidity and metabolic engineering in 

metabolite overproduction’, Science, 252(5013). doi: 10.1126/science.1904627. 

Stincone, A. et al. (2015) ‘The return of metabolism: Biochemistry and physiology of the 

pentose phosphate pathway’, Biological Reviews, 90(3). doi: 10.1111/brv.12140. 

Tang, X. et al. (2010) ‘Construction of an artificial microalgal-bacterial consortium that 

efficiently degrades crude oil’, Journal of Hazardous Materials, 181(1–3). doi: 

10.1016/j.jhazmat.2010.05.033. 

Tang, Y. J. et al. (2009) ‘Advances in analysis of microbial Metabolic fluxes via 13C isotopic 

labeling’, Mass Spectrometry Reviews, 28(2). doi: 10.1002/mas.20191. 

Torsvik, V., Øvreås, L. and Thingstad, T. F. (2002) ‘Prokaryotic diversity - Magnitude, 

dynamics, and controlling factors’, Science. doi: 10.1126/science.1071698. 

Toya, Y. et al. (2010) ‘13C-Metabolic flux analysis for batch culture of Escherichia coli and its 

pyk and pgi gene knockout mutants based on mass isotopomer distribution of intracellular 

metabolites’, Biotechnology Progress, 26(4). doi: 10.1002/btpr.420. 

Toya, Y. and Shimizu, H. (2013) ‘Flux analysis and metabolomics for systematic metabolic 

engineering of microorganisms’, Biotechnology Advances. doi: 

10.1016/j.biotechadv.2013.05.002. 

Tracy, B. P., Gaida, S. M. and Papoutsakis, E. T. (2010) ‘Flow cytometry for bacteria: Enabling 

metabolic engineering, synthetic biology and the elucidation of complex phenotypes’, Current 

Opinion in Biotechnology. doi: 10.1016/j.copbio.2010.02.006. 



 144 

Vallino, J. J. and Stephanopoulos, G. (2000) ‘Metabolic flux distributions in corynebacterium 

glutamicum during growth and lysine overproduction’, Biotechnology and Bioengineering, 

67(6). doi: 10.1002/(sici)1097-0290(20000320)67:6<872::aid-bit21>3.0.co;2-x. 

Vartoukian, S. R., Palmer, R. M. and Wade, W. G. (2010) ‘Strategies for culture of 

“unculturable” bacteria’, FEMS Microbiology Letters. doi: 10.1111/j.1574-6968.2010.02000.x. 

Vuoristo, K. S. et al. (2016) ‘Metabolic Engineering of TCA Cycle for Production of 

Chemicals’, Trends in Biotechnology. doi: 10.1016/j.tibtech.2015.11.002. 

Wang, Z. et al. (2006) ‘Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the 

host cell metabolism’, Microbial Cell Factories. BioMed Central, 5(1), pp. 1–18. 

Ward, W. W. (2005) ‘Biochemical and physical properties of green fluorescent protein’, 

Methods of Biochemical Analysis, 47. doi: 10.1002/0471739499.ch3. 

Weiße, A. Y. et al. (2015) ‘Mechanistic links between cellular trade-offs, gene expression, and 

growth’, Proceedings of the National Academy of Sciences of the United States of America, 

112(9). doi: 10.1073/pnas.1416533112. 

Weitzel, M. et al. (2013) ‘13CFLUX2 - High-performance software suite for 13C-metabolic flux 

analysis’, Bioinformatics, 29(1). doi: 10.1093/bioinformatics/bts646. 

West, S. E. H. et al. (1994) ‘Construction of improved Escherichia-Pseudomonas shuttle vectors 

derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas 

aeruginosa’, Gene, 148(1). doi: 10.1016/0378-1119(94)90237-2. 

Wiechert, W. et al. (1999) ‘Bidirectional reaction steps in metabolic networks: III. Explicit 

solution and analysis of isotopomer labeling systems’, Biotechnology and Bioengineering, 66(2). 

doi: 10.1002/(SICI)1097-0290(1999)66:2<69::AID-BIT1>3.0.CO;2-6. 

Wintermute, E. H. and Silver, P. A. (2010) ‘Emergent cooperation in microbial metabolism’, 

Molecular Systems Biology. doi: 10.1038/msb.2010.66. 

Wissenbach, U. et al. (1995) ‘ A third periplasmic transport system for l ‐arginine in Escherichia 

coli : molecular characterization of the artPIQMJ genes, arginine binding and transport ’, 

Molecular Microbiology, 17(4). doi: 10.1111/j.1365-2958.1995.mmi_17040675.x. 

Wolfsberg, E., Long, C. P. and Antoniewicz, M. R. (2018) ‘Metabolism in dense microbial 

colonies: 13 C metabolic flux analysis of E. coli grown on agar identifies two distinct cell 

populations with acetate cross-feeding’, Metabolic Engineering, 49. doi: 

10.1016/j.ymben.2018.08.013. 



 145 

Wu, G. et al. (2016) ‘Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic 

Engineering Applications’, Trends in Biotechnology. doi: 10.1016/j.tibtech.2016.02.010. 

Yang, C., Hua, Q. and Shimizu, K. (2002) ‘Metabolic flux analysis in Synechocystis using 

isotope distribution from 13C-labeled glucose’, Metabolic Engineering, 4(3). doi: 

10.1006/mben.2002.0226. 

Yoo, H. et al. (2008) ‘Quantifying reductive carboxylation flux of glutamine to lipid in a brown 

adipocyte cell line’, Journal of Biological Chemistry, 283(30). doi: 10.1074/jbc.M706494200. 

Young, J. D. et al. (2011) ‘Mapping photoautotrophic metabolism with isotopically 

nonstationary 13C flux analysis’, Metabolic Engineering, 13(6). doi: 

10.1016/j.ymben.2011.08.002. 

Young, J. D. (2014) ‘INCA: A computational platform for isotopically non-stationary metabolic 

flux analysis’, Bioinformatics, 30(9). doi: 10.1093/bioinformatics/btu015. 

Zamboni, N. (2011) ‘13C metabolic flux analysis in complex systems’, Current Opinion in 

Biotechnology. doi: 10.1016/j.copbio.2010.08.009. 

Zelezniak, A. et al. (2015) ‘Metabolic dependencies drive species co-occurrence in diverse 

microbial communities’, Proceedings of the National Academy of Sciences of the United States 

of America, 112(20). doi: 10.1073/pnas.1421834112. 

Zeng, H. and Yang, A. (2019) ‘Quantification of proteomic and metabolic burdens predicts 

growth retardation and overflow metabolism in recombinant Escherichia coli’, Biotechnology 

and Bioengineering, 116(6). doi: 10.1002/bit.26943. 

Zengler, K. and Zaramela, L. S. (2018) ‘The social network of microorganisms - How 

auxotrophies shape complex communities’, Nature Reviews Microbiology. doi: 10.1038/s41579-

018-0004-5. 

Zhang, H. et al. (2015) ‘Engineering Escherichia coli coculture systems for the production of 

biochemical products’, Proceedings of the National Academy of Sciences of the United States of 

America, 112(27). doi: 10.1073/pnas.1506781112. 

Zhao, J. and Shimizu, K. (2003) ‘Metabolic flux analysis of Escherichia coli K12 grown on 13C-

labeled acetate and glucose using GC-MS and powerful flux calculation method’, Journal of 

Biotechnology, 101(2). doi: 10.1016/S0168-1656(02)00316-4. 



 146 

Zuñiga, C., Zaramela, L. and Zengler, K. (2017) ‘Elucidation of complexity and prediction of 

interactions in microbial communities’, Microbial Biotechnology. doi: 10.1111/1751-

7915.12855. 

 

 
 
 


