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ABSTRACT

In neuroimaging studies, mediation analysis plays a crucial role in understanding the mech-

anisms through which certain exposures or interventions affect health outcomes. This dis-

sertation develops a novel modeling framework for Bayesian mediation analysis tailored to

large-scale and complex imaging data. The framework provides a robust theoretical basis

for image mediation analysis and introduces innovative Bayesian inference methods and effi-

cient computational tools. A rigorous theoretical analysis evaluates the method’s robustness,

considering the impact of unmeasured confounders.

In Chapter 2, we introduce a new spatially varying coefficient structural equation model

for Bayesian image mediation analysis (BIMA). Using the potential outcome framework, we

define the spatially varying mediation effects of the exposure on outcomes mediated through

imaging mediators. We adopt the soft-thresholded Gaussian process (STGP) for prior spec-

ifications, which supports sparse and piece-wise smooth functions. We establish posterior

consistency for the mediation effects and selection consistency for significant regions impact-

ing the mediation. An efficient posterior computation algorithm for BIMA, scalable to large-

scale data, is developed and validated through extensive simulations, showing at least 20%

increase in power over existing methods. We apply BIMA to analyze behavioral and fMRI

data from the Adolescent Brain Cognitive Development (ABCD) study, focusing on media-

tion effects of parental education on children’s cognitive abilities through working memory

brain activities. We identified important mediation regions such as the left Precuneus (in-

volved in the recall of episodic memories), the left Inferior parietal gyrus (involved in sensory

processing and sensorimotor integration), and the left Supplementary motor area(involved

in motor sequencing).

In Chapter 3, to enhance BIMA’s computational efficiency, we develop a general prior

with variational inference algorithms for regression models with large-scale imaging data.

We introduce a soft-thresholded conditional autoregressive (ST-CAR) prior, which is robust

to pre-fixed correlation structures and facilitates active voxel selection. Applying ST-CAR to

scalar-on-image and image-on-scalar regression models, we develop coordinate ascent varia-

tional inference (CAVI) and stochastic subsampling variational inference (SSVI) algorithms.

Simulations demonstrate that the ST-CAR prior excels in selecting active areas with complex

x



correlations, and CAVI and SSVI offer superior computational performance. We implement

these methods in the ABCD study. The SSVI on Image-on-scalar regression brings down

the computation time from 86 hours (BIMA) to 7.3 hours.

In Chapter 4, we explore methods to reduce the impact of unobserved confounders on the

causal mediation analysis of high-dimensional mediators with spatially smooth structures,

such as brain imaging data. The key approach is to incorporate the latent individual effects,

which influence the structured mediators, as unobserved confounders in the outcome model,

thereby potentially debiasing the mediation effects. We develop BAyesian Structured Medi-

ation analysis with Unobserved confounders (BASMU) framework, and establish its model

identifiability conditions. Theoretical analysis is conducted on the asymptotic bias of the

Natural Indirect Effect (NIE) and the Natural Direct Effect (NDE) when the unobserved

confounders are omitted in mediation analysis. For BASMU, we propose a two-stage esti-

mation algorithm to mitigate the impact of these unobserved confounders on estimating the

mediation effect. Extensive simulations demonstrate that BASMU substantially reduces the

bias in various scenarios. We apply BASMU to the analysis of fMRI data in the Adoles-

cent Brain Cognitive Development (ABCD) study, focusing on four brain regions previously

reported to exhibit meaningful mediation effects. Compared with the existing image media-

tion analysis method, BASMU identifies two to four times more voxels that have significant

mediation effects, with the NIE increased by 41%, and the NDE decreased by 26%.

xi



CHAPTER 1

Introduction

1.1 Background, motivating problem and datasets

Mediation analysis has played an important role in modern medical and biological research,

psychological theory, and many areas in social sciences [88, 59, 55, 58]. In the causal in-

ference framework, when the treatment (exposure) variable is fully randomized, we expect

to see the causal effect of treatment on the outcome variable. But sometimes researchers

are also interested in a third component, the mediator, that acts as a pathway from the

treatment to the outcome. In our motivating example with Adolescent Brain Cognitive De-

velopment (ABCD) study, task-based functional Magnetic Resonance Imaging (fMRI) data

are collected for children of age 9 to 10. We hypothesize that parental education level can

have a positive impact on children’s IQ score, but we are also interested in knowing whether

parental education level can have a positive impact on children’s cognitive ability develop-

ment (reflected from task fMRI images) that further influences their IQ score. The cognitive

ability development acts as a pathway that carries part of impact of the exposure to the

outcome.

There are some challenges in studying the mediation effect of neuroimaging data. De-

pending on the resolution of the neuroimages, the number of voxels for one fMRI image can

be over ten thousand. In the ABCD study [10], we use the 3D task-fMRI data that contains

N = 1861 individuals, with p = 47636 voxels after preprocessing. The fMRI data contains

spatially correlated signals based on complex brain anatomical structure. Moreover, the size

of the cognitive signal on each voxel can be very small, and has relative small signal-to-

noise ratio even for the active voxels. Hence we need a method that can (1) identify active

mediation regions in a 3D high-dimensional mediator, (2) have theoretical guarantee for con-

sistency when the number of sample increases to infinity, (3) provide efficient computation

tools that are scalable for large-scale data set. The goal of this dissertation is to provide a

solution to meet these challenges.
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1.2 Neuroimaging

Neuroimaging techniques, encompassing a wide array of scanning methods, are critical tools

in understanding the intricate workings of the human brain. Widely utilized techniques

include EEG (Electroencephalography), MEG (Magnetoencephalography), PET (Positron

Emission Tomography), and MRI (Magnetic Resonance Imaging). Each of these techniques

offers unique insights into the complex neural activities and structural characteristics of

the brain. EEG and MEG provide valuable data on brain activity patterns, through the

measurement of electrical potentials. PET measures the radioactive tracer distribution. MRI

stands out for its comprehensive insight into the brain’s structure and function. MRI utilizes

a potent magnetic field to align the body’s protons, creating detailed 3D images of internal

structures. Notably, functional MRI (fMRI) measures variations in blood oxygenation levels,

which serve as indicators of brain activity.

Structural and functional brain imaging has been an important tool in clinical diagnostics

and neuroscience advances over the last 40 years. Traditional neuroimaging studies usually

involve a modest number of subjects (less than 50), recent years many large scale neuroimag-

ing studies have made it possible for tens of thousand subjects [75]. For example, the Human

Connectome Project (HCP) [85] has more than 1000 subjects, and the UK Biobank (UKB)

[60] has collected more than 10,000 subjects, with the overall aim of over 50,000 subjects.

These large-scale neuroimaging data projects have set off the big data era in brain imaging.

There are many statistical challenges in analyzing large scale fMRI data. As discussed in

[50], the signal to noise ratio for fMRI data is usually very small compared to regular clinical

studies, and small confounding effect can induce false associations [76]. In addition, the brain

anatomical structure intrinsically requires complex spatial-temporal correlation structure.

The main statistical problems for analyzing fMRI data including voxel-level analysis and

network connectivity analysis [111]. The voxel level analysis aims to find active areas that

are related with certain tasks or stimulus, and the common practice involves generalized

linear models and post-analysis multiple comparison methods. The network analysis aims to

find associated groups of ROIs that are related with certain brain functions, and the main

methods involve clustering, independent Component Analysis (ICA), and other network and

machine learning algorithms.

The ABCD neuroimage data we use in Chapter 2 is the 2-back contrast emotional task

fMRI data [15, 4], where the participants are required to perform several rounds of tasks

of identifying fearful or happy faces versus neutral faces. The 2-back contrast data refer to

the contrast fMRI image of performing the task shown 2 rounds ago compared to a task

just shown (0-back). This task contrast fMRI data can reflect the participants’ cognitive

2



ability of working memory, encoding, retrieval, forgetting, recognition [10]. Because of the

anatomical structure of human brain, subdividing the human cerebral cortex based on the

fMRI images can give us brain parcellation by different cognitive functions [17]. This also

allows us to summarize the mediation effect by brain regions.

Our method can also be applied to other types of neuroimage data. As detailed in [10],

other than the emotional task contrast data, there are also Monetary Incentive Delay (MID)

tasks [44] that are designed to measure the ability of reward processing and motivation

control; the Stop Signal Task (SST) [52] to measure the impulse control ability.

Aside from the task-based fMRI data, resting state fMRI (RS-fMRI) data [47, 77] is

another research focus in neuroimaging. The RS-fMRI is measured when the participant is at

rest (without task or stimulus), and it focuses on the spontaneous low frequency fluctuations

in the blood oxygen level dependent signal. RS-fMRI is often used to infer the synchronous

activation between spatially-distinct regions, and identify the resting state network. This

can help provide diagnostic and disease prognostic information.

1.3 Mediation Analysis

The history of causal mediation analysis can date back to [5], where they first formally

proposed the mediation framework under the linear structural equation models (LSEM),

and decomposes the total effect of exposure on the outcome into the direct effect and the

indirect effect mediated through the pathway mediator. Similar to all other causal inference

problems, the identification of mediation effect relies on a set of causal assumptions, and

some of them may not be verifiable in practice. Many follow-up works used the LSEM or its

extended version to test for the existence of mediation effect [59, 38, 37]. Under the single

mediator LSEM framework (denote Y as the outcome, X as the exposure, and M as the

mediator), suppose both the exposure and mediator are fully randomized,

Y = i1 + cX + e1, Y = i2 + c′X + bM + e2, M = i3 + aX + e3 (1.1)

c is the total effect of X on Y , and c′ is the direct effect in the presence of the mediator.

The indirect effect can be expressed either as a difference of c− c′ [57] or as a product of ab

[54]. These are referred to as the difference method or the product method. The product

method is particularly useful when the mediator is a random process over a spatial support.

In this case the coefficient a and b become functions over the support, and the functional

product a(·)b(·) can identify areas with active mediation effect, not just the scalar-valued

indirect effect. [37] focused on the difference method and proposed the sequential ignorability
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assumption to ensure the identification of mediation effect. Its follow-up works [83] and [104]

further discussed the sensitivity analysis of a biased mediation effect when the identification

assumptions are violated. In this dissertation, we focus on the last 2 equations in the

LSEM (1.1) and use the product method to define the indirect effect, under the causal

assumptions proposed in [87]. Many recent studies [80, 107, 51, 39] especially for high

dimensional complex mediators all adopt this approach. In terms of imaging mediators, the

structural equation model based on the last 2 equations (1.1) involves a scalar-on-image

regression and an image-on-scalar regression. There are abundant literature on these two

classical problems in imaging statistics, and we provide a more detailed review on this in the

introduction section of Chapter 2. In Chapter 4, we also provide a limiting bias formula for

the natural indirect effect when the no-unmeasured-confounder assumption is violated.

The challenges for imaging mediation analysis originate from the complexity of imaging

data: low signal-to-noise ratio, super high dimensionality, complex correlation structure,

and difficulty in false discovery control. Recent contributions to high-dimensional mediation

analysis try to meet these challenges, including recent works which explored machine learning

tools [61]. [109] proposed a multilevel parametric structural equation model to circumvent the

no-unmeasured-confounder assumption for a specific data set. [105] extended the mediation

problem to where both the outcome and the mediator are high dimensional.

With the development of Bayesian nonparametrics theory and advances in computational

power and techniques, more researchers favor applying various flexible Bayesian priors on

mediation problem to handle more complex data [99, 79, 80].

1.4 Bayesian Nonparametric Theory

The prior we use in Chapter 2 and 4 is based on a latent Gaussian process prior, which is

one type of Bayesian nonparametric priors. Based on the Bayesian nonparametric theory

[30], in Chapter 2 we provide posterior consistency proof for the spatially-varying sparse

functional parameters in the outcome and mediator models, and further provide proof for

the sign consistency in the functional indirect mediator.

Our theory is based on the general consistency theorem proposed in [13]. Since [74] first

proposed the general consistency theorem, there have been many different extensions [6, 28].

These theorems provide general sufficient conditions in terms of the existence of proper test

statistics, the prior positivity on a neighborhood defined by the Kullback–Leibler divergence.

Our consistency theory is also based on verifying these sufficient conditions in [13].

The soft-thresholded Gaussian process prior in Chapter 2 and 4 rely on the nonparametric

theory of Gaussian process developed in [29], [84], and [43]. In particular, [29] defined the
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sieve space of the Gaussian process with smooth kernels. Based on this definition, they

provided a tail bound for the prior probability outside of the sieve space, and an upper

bound for the entropy number of the sieve space. These results provide the theoretical

foundation on Gaussian process priors in our theory when verifying the existence of test

conditions.

When constructing the test statistics, we use the same test as in [84] for the image-on-

scalar regression, which is an easier problem compared to the scalar-on-image regression.

Unlike separately fitted scalar-on-image (outcome model) and image-on-scalar (mediator

model) regression models, in mediation analysis, the mediator model specifies the true gen-

erative process for the mediator in the scalar-on-image (outcome model). This prohibits us

to make some common assumptions such as mean-zero assumptions for the mediator like

in other scalar-on-image literature [43, 70]. Hence we use the chi-square test and similar

conditions for the mediator as in [1], and provide a proof that the mediator process satisfy

these conditions under some constraints.

1.5 Posterior computation

To make our mediation model applicable for large-scale, high resolution imaging data, we

need efficient computational tools. Either the soft-thresholded Gaussian process (STGP)

prior used in Chapter 2 and 4 or the soft-thresholded conditional autoregressive (ST-CAR)

prior used in Chapter 3 utilizes the soft-thresholding operator on a latent spatially-correlated

process. Hence the computational method not only has to provide efficient and accurate

estimation for the posterior mean, but also uncertainty quantification for the selection of

active mediation areas. To achieve this goal, we explore the MCMC based methods [68] and

variational inference methods [9].

To make the latent Gaussian process computationally applicable in high-dimensions, we

use the basis decomposition approach [94] to sample the coefficient of basis functions as

independent Gaussian priors. The basis decomposition as a dimension reduction method

is often used in many imaging models [24, 98]. Although this requires choosing a kernel

function suitable for the smoothness of the real data, some sensitivity analysis is needed for

the choice of the kernel function. For fMRI imaging applications, as aforementioned [17] we

can utilize the brain region atlas and assume inter-region independence structure, which is

another way to reduce the correlation matrix into smaller block matrices.

The STGP prior has a complex posterior as a mixture of truncated normal distributions.

Traditional Gibbs sampler might be computationally expansive. For efficient posterior sam-

pling, we adapt the Metropolis-adjusted Langevin algorithm (MALA) [69]. MALA is an
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MCMC method using the Langevin diffusion as proposal densities. One disadvantage of

MALA is that in high-dimensions, if the step size for the gradient of the log posterior remains

the same on all dimensions, the posterior space cannot be sufficiently explored. Remedies for

this including specifying a pre-conditioning matrix to explore different direction at different

rate, and adjust the step-size according to the acceptance rate. [31] proposed the manifold

MALA where the pre-conditioning matrix is determined by the Fisher Information matrix.

[95] further proposed a position dependent MALA that could yield higher effective sample

size than [31]. In our implementation, we use MALA with an approximated gradient since

STGP posterior is not directly differentiable, and use the adaptive step size adjusted to the

acceptance rate. Both [31] and [95] could potentially improve our implementation. Since

the posterior of STGP is a mixture of 0 and some other continuous process, we can directly

compute the posterior inclusion probability as a measure for uncertainty quantification of

the active mediation areas.

Although MCMC methods allow for the sampling of the entire distribution, variational

inference (VI) methods provide a more efficient counterpart at the cost of only approximating

the posterior mean. There has been increasing popularity in using VI for high-dimensional

posteriors such as imaging data analysis [41, 45], and various scalable extensions of VI

[35, 64, 8]. In Chapter 3, we use the mean-field variational inference on ST-CAR prior,

and use the posterior mixing probability as the uncertainty quantification for active region

selection. We provide a more detailed literature review on different variational inference

methods in the introduction of Chapter 3.

1.6 Dissertation contributions

In this dissertation, we contribute to the imaging mediation analysis in three aspects: model-

ing, theory and computation. For the modeling contribution, we adopt the Soft-thresholded

prior in Chapter 2 and propose a Bayesian mediation analysis framework for analyzing high-

dimensional imaging mediators. We further extend the framework in Chapter 2 to the case

where the unmeasured confounder is allowed to correlate with both the mediator and the

outcome, but not the exposure, and we provide a formula for the limiting bias of the indirect

effect, and propose a joint model that allows us to estimate the unmeasured confounders.

For the theoretical contribution, we provide theoretical guarantees for the sign consistency

and L1 consistency of the functional indirect effect. For the computational contribution,

we provide an efficient posterior sampling algorithm based on MALA and apply it to the

ABCD data in Chapter 2. We further explore the efficient posterior optimization method,

variational inference, and propose a Soft-thresholded conditional autoregressive prior that
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can achieve fast convergence and scalable to large-scale data set in Chapter 3.
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CHAPTER 2

Bayesian Image Mediation Analysis

2.1 Introduction

Mediation analysis is an important statistical tool that decomposes the total effects of an

exposure or treatment variable on an outcome variable into direct effects and indirect effects

through mediator variables [56]. Mediation analysis has been widely adopted to gain insights

into mechanisms of exposure-outcome effects in many research areas including epidemiology,

environmental science, genomics, and neuroimaging. Recent advances in neuroimaging have

presented great opportunities and challenges for mediation analysis with large-scale complex

neuroimaging data. In many neuroimaging studies, it is of great interest to identify important

brain image mediators that mediate the effect of an exposure variable, such as age, social

economic status, medical treatment, or substance use, to an outcome variable, such as the

cognitive status, disease status.

Our work is motivated by the brain image mediation analysis in the Adolescent Brain

Cognitive Development (ABCD) study, the largest long-term study of brain development and

child health in the United States. Our objective is to investigate how parental education

levels impact the children’s general cognitive ability that is mediated through brain function

development measured by working memory task fMRI.

We consider voxel-level task fMRI contrast maps as the image mediators which pose sev-

eral challenges for mediation analysis. First, the number of voxel-level image mediators can

be up to 200,000 in a standard brain template, potentially requiring large computational

resources for implementing the statistical algorithm. Second, brain image mediators ex-

hibit complex correlation patterns such as the correlations among neighboring voxels and

the correlation between brain regions with the same functions. Ignoring or inappropriately

accounting for the correlation may introduce bias or lose statistical efficiency in estimating

the mediation effects. Third, due to the low signal to noise ratio of brain imaging data, the

voxel-level image mediators may have weak or zero effects on the outcome variable. The
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standard mediation analysis approach may suffer from low power and high false positive

rates when detecting active mediators.

Recent work on high dimensional mediation analysis provides different angles to tackle

these challenges, with different statistical models tailored to specific application domains,

such as penalized high dimensional survival analysis [53], DNA methylation markers [103, 33].

For imaging applications, [51] first extended the mediation analysis framework into functional

data analysis and proposed a model based on least-squares estimation and penalized regres-

sion, without considering correlation among individual level noises in the mediators. Built

upon this work, [11] proposed a method based on principle component analysis, where high

dimensional correlated mediators are mapped to uncorrelated ones through orthogonal trans-

formation. The orthogonal maps are sequentially estimated from maximizing the likelihood

of the joint model on each direction of mediators separately. However, interpreting the esti-

mated coefficients relies on untestable assumptions that mediators are randomly assigned to

individuals, making the functional causal effect inseparable from the individual level noise.

Aside from the sequential mediator modeling idea, [108] proposed a marginal mediator

model with correlated error term, and defined a convex Pathway Lasso penalty to penalize

the product term in the indirect effect, instead of penalizing each functional coefficient. The

Pathway Lasso method demonstrated strong computation efficiency and accuracy compared

to the sequential mediator model, but sparsity in the functional coefficients was not consid-

ered. [106] proposed another frequentist approach to high dimensional mediation problems,

where sparse principle component analysis is used to map the correlated mediators onto a

space of independent mediators, and penalized regression techniques such as the elastic net

are employed in the outcome model to enforce sparsity in high dimensional mediators. [61]

used machine learning models to map a high dimensional imaging mediator to a single la-

tent variable and treated this single latent variable as a mediator in the classical mediation

triangle, sacrificing the interpretability of mediation effects.

Focusing on the temporal mediation effects, [107] proposed Granger mediation analysis,

a novel framework for causal mediation analysis of multiple time series, inspired by an fMRI

experiment. The framework combines causal mediation analysis and vector autoregressive

(VAR) models to address challenges in time-series data, improving estimation bias and sta-

tistical power compared to existing approaches.

For Bayesian analysis of mediation effects, [99] presented a pioneering work in both single-

level and multi-level models, demonstrating that Bayesian mediation analysis can improve

estimation efficiency by incorporating prior knowledge. [78] proposed Bayesian mixture

models to account for a large set of correlated mediators with application to biomarker

identification. In particular, to deal with the sparsity and correlation in a high dimensional

9



parameter, a membership parameter was used to indicate whether the signal at a certain

location is zero or not, and correlation structure is assumed for this membership parameter.

In [79] and [80], different types of Bayesian mixture models were proposed with less focus on

the correlation among different locations. In Section 2.5.1 we provide more details to these

methods and compare them with our proposed method through simulation studies.

To the best of our knowledge, there is a lack of a Bayesian mediation analysis method

for high-dimensional imaging data that can incorporate flexible spatial correlation structure,

individual-level spatial noise, and sparsity in the functional coefficients. To fill this gap,

we propose a new structural equation model with spatially varying coefficients and adopt

the soft-thresholded Gaussian processes [43, STGP] as priors for Bayesian Image Mediation

Analysis (BIMA). Under the potential outcome framework, the proposed BIMA framework

consists of two spatially varying coefficient models: a scalar-on-image regression model for

the joint effect from the exposure and the image mediator on the outcome (the outcome

model), and an image-on-scalar regression model for the effect of the exposure on the im-

age mediator (the mediator model). By assigning the STGP priors, we ensure large prior

support for the piecewise smooth and sparse spatially varying coefficients in both models,

based on which we formally define the spatially varying mediation effects under the potential

outcome framework. To accommodate population heterogeneity in imaging data, we intro-

duce spatially varying random effects for each individual in the mediator model, improving

the efficiency of estimating the mediation effects. For posterior computation, we develop a

modified Metropolis-adjusted Langevin algorithm (MALA) that boosts the computational

efficiency via block updating and is scalable to high-dimensional imaging data analysis with

many observations.

We perform rigorous theoretical analyses of BIMA. We establish the posterior consistency

of all the spatially varying coefficients in the mediator and outcome models under the L2

empirical norm, leading to the posterior consistency of the spatially varying mediation ef-

fects under the L1 empirical norm. Different from the previous theoretical work on Bayesian

scalar-on-image models [43], the image mediation analysis requires us to address the ran-

domness of the functional mediator in the scalar-on-image outcome model while considering

the mediator model as the generative model. Hence we proposed a new formulation for func-

tional mediation where the mediator is treated as a random signed measure in the outcome

model, and as a random function in the mediator model. This new formulation provides

a coherent definition of the natural indirect effect with existing mediation literature while

keeping the image mediator bounded in probability in the outcome model.

The rest of the article is structured as follows. In Section 2.2, we introduce the BIMA

framework with definitions, models and prior specifications. In Section 2.3, we perform
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the theoretical analysis of the proposed methods, where we establish model identifiability

and posterior consistency of the spatially varying mediation effects. Then, we develop the

posterior computation algorithm in Section 2.4 and perform extensive simulations in Section

2.5. Finally, we apply BIMA to the analysis of the fMRI and cognitive data in the Adolescent

Brain Cognitive Development (ABCD) study in Section 2.6 and conclude the paper in Section

2.7.

2.2 Bayesian Image Mediation Analysis

2.2.1 General Notations

Let Rd denote a d-dimensional Euclidean vector space. Let S ⊂ Rd be a compact support.

Let N(µ, σ2) represent a normal distribution with mean µ and variance σ2. Let L2(S) be

the space of square-integrable functions supported on S. Let {s1, . . . , sp} be a set of p fixed

design points in S. For any function f(s) in L2(S), let ∥f∥q,p =
{
p−1

∑p
j=1 |f(sj)|q

}1/q

be

the Lq empirical norm on the fixed grid with p voxels. For any vector a = (a1, . . . , ad)
⊤ ∈ Rd,

let ∥a∥q =
{∑d

i=1 |ai|q
}1/q

be the Lq vector norm. For any functions f, g ∈ L2(S), define the
inner product ⟨f, g⟩ :=

∫
S f(s)g(s)λ(ds) where λ is the Lebesgue measure. The empirical

inner product is defined as ⟨f, g⟩p := p−1
∑p

j=1 f(sj)g(sj). Let Cρ(S) be the order-ρ Hölder

space on S for a positive integer ρ. For a set B, B̄ is used to denote the closure of the set,

and ∂B denotes the boundary. Let GP(ν, κ) denote a Gaussian Process with mean function

ν(·) and covariance matrix κ(·, ·).

2.2.2 Spatially-Varying Coefficient Structural Equation Models

Suppose the data consists of n individuals. For individual i(i = 1, . . . , n), let Yi denote the

outcome variable, Xi denote the exposure variable, Ci = (Ci,1, . . . , Ci,q)
⊤ ∈ Rq be a vector

of q potential confounding variables. Suppose the imaging data are observed on a compact

support S. Let {∆s1, . . . ,∆sp} are a partition of S, i.e., S =
⋃p

j=1∆sj and ∆sj ∩∆sj′ = ∅.
Let sj be the center of the voxel ∆sj for j = 1, . . . , p. Let Mi = {Mi(sj), . . . ,Mi(sp)}⊤ be a

vector of observed image intensities, where Mi(s) represent the image intensity function at

location s ∈ S.
To perform image mediation analysis, we consider spatially varying coefficient structural

equation models which consist of scalar-on-image regression as the outcome model (2.1) and
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image-on-scalar regression as the mediator model (2.2). For i = 1, . . . , n, we assume

Yi =

p∑
j=1

β(sj)Mi(∆sj) + γXi + ξ⊤Ci + ϵY,i, ϵY,i
iid∼ N(0, σ2

Y ), (2.1)

Mi(sj) = α(sj)Xi + ζ⊤(sj)Ci + ηi(sj) + ϵM,i(sj), ϵM,i(sj)
iid∼ N(0, σ2

M) (2.2)

whereMi(∆s) =
∫
∆s
Mi(s)λ(ds) is the total intensity measure over the small partition ∆s

and λ(·) is the Lebesgue measure. Throughout this paper, we assume that the Lebesgue

measure on one partition λ(∆sj) = p−1 for any j = 1, . . . , p.

In the outcome model (2.1), β(s) represents the spatially-varying effects of the image

mediator on the outcome variable. The scalar coefficient γ is the direct effect of Xi on Yi.

The vector coefficient ξ ∈ Rq represents the confounding effects. The random noises ϵY,i are

independent and follow a normal distribution with mean zero and variance σ2
Y .

In the mediator model (2.2), α(s) is the spatially-varying functional parameter of our

interest. ζ(s) = {ζ1(s), . . . , ζq(s)}⊤ is a vector of the coefficients for the confounders; ηi(s)

is the spatially-varying individual effect that capture the individual variations unexplained

by the exposure variable Xi and the observed confounders Ci; and ϵM,i(sj) is the spatially

independent noise term across locations and subjects with constant variance σ2
M .

2.2.3 Connection to the Wiener process

When S is one-dimensional, the finite summation
∑p

j=1 β(sj)Mi(∆sj) in model (2.1) is an

approximation to the continuous integral
∫
S β(s)Mi(ds). In fact, when S = [0, 1] ∈ R, the

continuous version of model (2.1) and (2.2) can be represented as

Yi =

∫
S
β(s)Mi(ds) + γXi + ξ⊤Ci + ϵY,i,

Mi(ds) =
{
α(s)Xi + ζ⊤(s)Ci + ηi(s)

}
λ(ds) + σMdWi,M(s), (2.3)

where ϵY,i
iid∼ N(0, σ2

Y ) and Wi,M(s) is the Wiener process [20].

In neuroimaging applications, we can only observe Mi(s) on fixed grids {j = 1, . . . , p},
without loss of generality, we can approximate the values ofMi(s), α(s), ζ(s) and ηi(s) within

each ∆sj by the functional values at its center sj. Therefore the model (2.3) can be approx-

imated by

Mi(∆sj) =
{
α(sj)Xi + ζ⊤(sj)Ci + ηi(sj)

}
λ(∆sj) + εM,i(∆sj), (2.4)
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Figure 2.1: Graphical illustration of
the structure of the proposed model

∆s

M(s)

S

M(∆s)

Figure 2.2: Illustration of the def-
initions of the intensity measure
M(∆s) and the intensity function
M(s) in one-dimensional support S.

where εM,i(∆sj) ∼ N{0, σ2
Mλ(∆sj)}. The advantage of using

∑p
j=1 β(sj)Mi(∆sj) in the

scalar-on-image model (2.1) compared to other existing formulations [43, 51] can be explained

in two ways. First, the finite summation in (2.4) is a natural approximation to the inner-

product on L2(S), hence in mediation analysis, as explained in the next section, we can

naturally express the total indirect effect as
∑p

j=1 β(sj)α(sj)λ(∆sj). Other formulations

such as β(sj)Mi(sj)/
√
p in [43] do not have this property. Second, the variance of εM,i(∆sj)

is by design proportional to λ(∆sj) instead of (λ(∆sj))
2. This plays a key role in constructing

a test function when showing the posterior consistency in model (2.1), and ensures that we

have enough variability in the design matrix in (2.1) to be able to estimate β(s). In fact, the

Mi(sj)/
√
p as used in [43] also has the variance proportional to 1/p, but they assume the

mean part of Mi(s) to be zero for all s ∈ S, so that β(sj)E {Mi(sj)} /
√
p will not explode

as p → ∞, but this assumption is not practical in mediation problem. [51] also uses an

inner product formulation, but they only assume that all the functional parameters can be

represented by finitely many basis functions, and the number of basis does not increase with

n or p, whereas in our case, we study all sparse, piece-wise smooth function in L2(S).

2.2.4 Causal Mediation Analysis

We define the main mediation parameter of interest first.

Definition 1. Let E(s) = α(s)β(s) be the spatially-varying mediation effect (SVME) func-

tion.

Under the causal inference framework [71], for individual i, we define Yi,(x,m) as the

potential outcome variable that would have been observed when the image mediatorMi = m

and the exposure variable Xi = x; and define Mi,(x) as the potential image mediator when

the individual i receive exposure x. When the exposure variable Xi changes from x to x′,
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combining equations (2.1) and (2.4), we represent the natural indirect effect (NIE) and the

natural direct effect (NDE) as follows:

NIE(x, x′) = E
[
Yi,{x,Mi,(x)} − Yi,{x,Mi,(x′)} | Ci

]
=

p∑
j=1

β(sj)α(sj)λ(∆sj)(x− x′), (2.5)

=

p∑
j=1

E(sj)λ(∆sj)(x− x′) (2.6)

NDE(x, x′) = E
[
Yi,{x,Mi,(x′)} − Yi,{x′,Mi,(x′)} | Ci

]
= γ(x− x′). (2.7)

To ensure the above definitions are valid under the causal inference framework, we make

the stable unit treatment value assumption (SUTVA) [72] and the following modeling as-

sumptions: for any i, x and m, (1) Yi,(x,m) ⊥ Xi | Ci, (2) Yi,(x,m) ⊥ Mi | {Ci, Xi}, (3)
Mi,(x) ⊥ Xi | Ci, (4) Yi,(x,m) ⊥ Mi,(x′) | Ci. These assumptions ensure that: (i) NIE and

NDE can be identified, and (ii) NIE and NDE can be estimated from observable data. See

[87] for the detailed interpretation of the above assumptions.

In image mediation analysis, we are interested in which locations contribute to the NIE

or the mediation effects. From (2.6), it is straightforward to see that E(sj) represents the

contribution of location sj to the NIE(x, x′) for any x ̸= x′, which is the motivation of

Definition 1. For any location s ∈ S, E(s) characterizes the impact of the location s on the

NIE. Both E(s) and p−1
∑p

j=1 E(sj) are the parameters of our main interest. It is generally

believed that not all brain locations contribute to the mediation effects, and E(s) is naturally
a sparse function when α(s) and β(s) are both sparse.

2.2.5 Prior Specifications

To model the sparsity and the spatial smoothness in the spatially varying mediation effects

E(s), we adopt the soft-thresholded Gaussian process (STGP) proposed in [43] for α(s) and

β(s), separately. For the individual effects ηi(s) and confounding effects ζk(s), we assign the

regular Gaussian process priors. Let Tν : R 7→ R be a soft-thresholded operator defined as

Tν(x) := {x− sgn(x)ν}I(|x| > ν) for any ν ≥ 0.

Definition 2 ([43]). Let f̃(s) be a Gaussian process (GP) with mean zero and the covariance

kernel κf , denoted as f̃ ∼ GP(0, κf ). For any ν ≥ 0, set f(s) = Tν{f̃(s)}. Then f(s) is a

STGP with covariance kernel κf and threshold parameter ν, denoted as f ∼ ST GP(νf , κf ).

In summary, we have the following prior specifications,

β ∼ ST GP(νβ, σ2
βκ), α ∼ ST GP(να, σ2

ακ), ζk ∼ GP(0, σ2
ζκ), ηi ∼ GP(0, σ2

ηκ), (2.8)
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for i = 1, . . . , n and k = 1, . . . , q. As explained in Section 3.2 in [43], given a positive

threshold value ν > 0, STGP is flexible to fit a wide range of sparsity levels. The specific

values for the thresholding parameters να and νβ in practice are chosen within a reasonable

range according to the effect size of α and β.

The choice of κ, the kernel function for the latent Gaussian process, controls the smooth-

ness of the functional parameters. For the rest of the parameters, the normal priors with

mean zero are assigned for γ, ξ, the inverse-gamma priors are assigned for the variance pa-

rameters σ2
Y , σ

2
M , σ2

β, σ
2
α and σ2

η.

2.3 Theoretical Properties

This section aims to establish the posterior consistency for spatially varying mediation effects

E(s) under the empirical L1 norm. To achieve this goal, we first show the posterior consis-

tency for β(s) in the outcome model (2.1) and α(s) in the mediator model (2.2), respectively.

All the derivations and proofs are provided in the Supplementary Material.

2.3.1 Notations and Assumptions

To perform the theoretical analysis, we introduce additional notation. Let Y =

(Y1, . . . , Yn) ∈ Rn, X = (X1, . . . , Xn)
⊤ ∈ Rn, M = (M1, . . . ,Mn)

⊤ ∈ Rn×p and C =

(C1, . . . ,Cn)
⊤ ∈ Rn×q. Let α0(s), β0(s), ηi,0(s) and ζ0(s) represent the corresponding true

spatially varying coefficients in the BIMA models (2.1) and (2.2) that generate the observed

data Y and M given X and C. Let E0(s) = α0(s)β0(s) represent the true spatially varying

mediation effects. We assume that all those true spatially varying coefficients are square-

integrable in L2(S). For matrix A, det(A) denotes the determinant of A, σmin(A), σmax(A)

denote the smallest and the largest singular value of A respectively.

Next, we define a functional space for the sparse and piecewise smooth spatially varying

coefficients.

Definition 3 (Sparse functional space). Define the sparse functional space ΘSP = {f(s) : s ∈
S} as the collection of spatially-varying coefficient functions that satisfy the three conditions.

a) (Continuous) f(s) is a continuous function on S; b) (Sparse) Assume there exist two

disjoint nonempty open sets R−1 and R1, and ∂R−1∩∂R1 = ∅ such that ∀s ∈ R1, f(s) > 0;

∀s ∈ R−1, f(s) < 0. R0 = S − (R1 ∪R−1), and assume R0 has nonempty interior; and c)

(Piecewise smooth) For any s ∈ R̄1 ∪ R̄−1, f(s) ∈ Cρ(R̄1 ∪ R̄−1), ρ ≥ 1.

This definition has been adopted for specifying the true parameter space of scalar-on-

image regression, see Definition 2 in [43]. In BIMA, α(s) and β(s) are assumed to be in the
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sparse functional space in Definition 3, and later in the proof of Theorem 3, we will show

that E(s) as defined in Definition 1 also belongs to the sparse functional space in Definition 3

when both α(s) and β(s) are in this sparse functional space. In brain imaging application, we

also consider region parcellation based on the anatomic structure of the human brain. When

we allow a partition of R regions in the support S, S = ∪Rr=1Sr, we make the additional

assumption that there is no piece-wise smooth area across different regions for α and β,

which means that the nonzero areas in α and β only exist within each region Sr, and not

across regions or on the region boundaries. Hence, α and β are still continuous functions on

S.
Next, we will introduce the parameter space for each of the functional parameters in

model (2.1)-(2.2).

Definition 4 (Parameter space). Let Θα, Θβ, Θη, Θζ be the parameter space for α, β,

{ηi}ni=1, {ζk}
q
k=1 respectively, and they are all subsets of the square-integrable space L2(S). Let

{ψl(s)}∞l=1 be a set of basis of L2(S), we specify the following constraints for each parameter

space: (a) Θα ⊂ ΘSP ; (b) Θβ ⊂ ΘSP , and for any β ∈ Θβ, define θβ,l =
∫
S β(s)ψl(s)λ(ds),

there exists Ln = nν1 where ν1 ∈ (0, 1) and ν2 > 0 such that
∑∞

l=Ln
θ2β,l ≤ L−ν2

n ; (c) Θη,Θζ ⊂
Cρ(S); (d) There exists a constant K > 0 such that for any f, g in Θα, Θβ, Θη, Θζ and

{ψl(s)}∞l=1, the fixed grid approximation error |
∫
S f(s)g(s)λ(ds) − p−1

∑p
j=1 f(sj)g(sj)| ≤

Kp−2/d.

Remark. In the case of region partition S = ∪Rr=1Sr, we can construct the basis based on

each region. Let {ψl,r(s)}∞l=1 be the basis of L
2(Sr), and construct ψl(s) =

∑R
r=1 ψl,r(s)I(s ∈

Sr). The basis decomposition for f(s) ∈ L2(S) can be written as θf,l =
∫
S ψl(s)f(s)λ(ds) =∑R

r=1

∫
Sr
ψl(s)f(s)λ(ds) =

∑R
r=1 θf,r,l. The decay rate condition in Definition 4 stays the

same for θf,l because of the finite summation.

In Definition 4, (a)-(c) define the smoothness and sparse feature of the parameter space,

where α(s), β(s) are assumed to be piecewise-smooth, sparse and continuous functions, and

the individual effect ηi(s) and the confounding effects ζk(s) in model (2.2) are only required

to be smooth but not necessarily sparse. Definition 4(d) sets an upper bound for the fixed

grid approximation error. Assumption 1 below specifies the smoothness of the underlying

Gaussian processes and the rate of p as n→∞.

Assumption 1. Given the dimension d of S and a constant τ satisfying d > 1+1/τ , τ ≥ 1,

assume that a) (Smooth Kernel) for each s, the kernel function κ(s, ·) introduced in the priors

(2.8) has continuous partial derivatives up to order 2ρ + 2 for some positive integer ρ, i.e.

κ(s, ·) ∈ C2ρ+2(S), and d+ 3/(2τ) < ρ; b) (Dimension Limits) p ≥ O(nτd).
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The Assumption 1(a) is the standard condition [29] to ensure the sufficient smoothness of

the latent Gaussian processes β̃(s), α̃(s), ζk(s) and ηi(s). The Assumption 1(b) is to specify

the order of the number of voxels as the sample size increases, implying that our method

can handle high resolution images.

As the mediator model (2.2) involves spatially varying coefficients ηi(s) as individual effect

parameters, the model identifiability is not trivial and requires some mild conditions on the

observations of exposure variables and confounding factors.

Assumption 2. (a) Each element in (X,C) has a finite fourth moment with sub-Gaussian

tails, and σmin {(X,C)} >
√
n almost surely; (b) Conditioning on (X,C), there exists a

matrix W = (Wi,k) ∈ Rn×(q+1) such that det{W⊤(X,C)} ≠ 0; and (c) there exists a constant

vector b = (b1, . . . , bq)
⊤ such that for any s ∈ S and k = 1, . . . , q + 1,

∑n
i=1Wi,kηi(s) = bk.

Assumption 2(a) is a reasonable assumption in linear regression with the design matrix

(X,C) [1]. For (b) and (c), one example that can satisfy the above assumption is to set

b = 0 ∈ Rq+1, W = (X,C), and if we express ηi(s) =
∑∞

l=1 θη,i,lψl(s) as infinite sums of

basis in the Hilbert space, then each (θη,i,l)
n
i=1 ∈ Rn is generated from a subspace orthogonal

to span{X,C1, . . . ,Cq}. We enforce this assumption in the sampling algorithm by updating

(θη,i,l)
n
i=1 from a constrained multivariate normal distribution.

With Assumption 2, we can establish the model identifiability in (2.2) and show that

if the spatially varying coefficients are different from the true value, the mean function of

Mi(s), denoted as µM,i(s) := α(s)Xi + ζ⊤(s)Ci + ηi(s), will also be deviated from the true

mean function µM,i,0(s) := α0(s)Xi + ζ⊤
0 (s)Ci + ηi,0(s).

Let ΘM = Θα × Θζ × (
∏

i Θη,i) be the joint parameter space for all parameters in the

mean function µM,i(s). For any ϵ > 0 and some constant c0 > 0, define the following two

subsets of ΘM as

U c
M =

{
ΘM : ∥α− α0∥22,p +

q∑
k=1

∥ζk − ζk,0∥2p +
1

n

n∑
i=1

∥ηi − ηi∥22,p > ϵ2

}

U c
M,µ =

{
ΘM :

1

n

n∑
i=1

∥µM,i − µM,i,0∥22,p > c0ϵ
2

}

Proposition 1. Under Assumptions 2, (a) the mediator model (2.2) is identifiable; and (b)

U c
M ⊂ U c

M,µ almost surely with respect to (X,C).
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2.3.2 Posterior consistency

First, we show joint posterior consistency of all the spatially varying coefficients in the

mediator model (2.2) as the number of images n→∞ and the number of voxels p→∞.

The following empirical L2 norm consistency result is proved by verifying conditions

in Theorem A.1 in [13]. For the proof of existence of test, we borrow techniques from

Proposition 11 in [84].

Theorem 1. Suppose Assumptions 1-2 hold in the mediator model (2.2). For any ϵ > 0,

as n → ∞, we have Π(U c
M | M,X,C) → 0 in P n

0 - probability. This further implies that

Π(∥α−α0∥2,p > ϵ |M,X,C)→ 0 and Π(n−1
∑n

i=1 ∥ηi− ηi,0∥22,p > ϵ2 |M,X,C)→ 0 in P n
0 -

probability.

Next, we give the L2 consistency result on β(s) with the following notations and assump-

tions.

For any f ∈ L2(S), given the basis {ψl(s)}∞l=1 in Definition 4, f(s) =
∑∞

l=1 θf,lψl(s), where∑∞
l=1 θ

2
f,l <∞. Let rL(s) =

∑∞
l=L θf,lψl(s) be the remainder term after choosing a cutoff L as

the finite sum approximation. Note that the remainder term
∫
S rL(x)

2λ(ds) =
∑∞

l=L θ
2
f,l → 0

as L → ∞ (Appendix E in [30]). We employ the basis expression to show the posterior

consistency in model (2.1), especially for studying the role ofMi(∆sj).

Denote γ̃ = (γ, ξ⊤)⊤ ∈ Rq+1, X̃i = (Xi,C
T
i )

T ∈ Rq+1. Let β(s) =
∑∞

l=1 θβ,lψl(sj). Let

M̃i,l =
∑p

j=1 ψl(sj)Mi(∆sj), and define the n × Ln matrix M̃n := (M̃i,l)i=1,...,n,l=1,...,Ln .

Further, denote W̃n = (M̃n, X̃) ∈ Rn×(Ln+1+q) as the design matrix.

We state the following assumption for constructing the consistency test in Theorem 2.

Assumption 3. The least singular value of W̃n satisfies 0 < cmin <

lim infn→∞ σmin(W̃n)/
√
n with probability 1− exp(−c̃n) for some constant c̃, cmin > 0.

A similar assumption has been made in [1]. One extreme example that satisfies Assump-

tion 3 is when W̃n has mean-zero i.i.d. subgaussian entries. We will also give an example

in the Supplementary Material A.2 that satisfies Assumption 3 and follows the generative

model (2.2) under some conditions.

Remark. Assumption 3 demonstrates the variability in the design matrix W̃n: the

posterior consistency of β(s) can only be guaranteed when the variability of the design

matrix is sufficiently large, implying that the level of complexity of the functional parameter

β(s) we can possibly estimate is determined by the complexity of the input imaging data.

Theorem 2. Suppose Assumptions 1 - 3 hold in the outcome model (2.1) and the priors

on γ̃ satisfy that Π(∥γ̃ − γ̃0∥22 < ϵ) > 0 for any ϵ > 0. Then for any ϵ > 0, we have, as
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n→∞, Π(∥β − β0∥2,p + ∥γ̃ − γ̃0∥2 > ϵ | Y,M,X,C)→ 0 in P n
0 - probability. This implies

that Π(∥β − β0∥2,p > ϵ | Y,M,X,C)→ 0 in P n
0 - probability.

In the proof of Theorem 2, especially in constructing the test for H0 : β(s) =

β0(s) v.s. H1 : ∥β − β0∥2,p > ϵ through the basis approximation of β(s), verifying con-

ditions in the Supplementary Material for Mi(s) in model (2.2) provides insight into the

relationship between models (2.1) and (2.2): sufficient variability in Mi(s) ensures posterior

consistency of β(s).

Theorem 3. (Posterior consistency of SVME) Under Assumptions 1 - 3, for any ϵ > 0, as

n→∞, Π(∥E − E0∥1,p < ϵ | Y,M,X,C)→ 1 in P n
0 -probability.

This theorem implies that the posterior distribution of SVME concentrates on an arbitrar-

ily small neighborhood of its true value with probability tending to one when the sample size

goes to infinity. Here the sample size refers to the number of images n. By Assumption 1,

in this case. the number of voxels p also goes to infinity. This theorem also implies the

consistency of estimating NIE using posterior inference by BIMA in the following corollary.

Corollary 1. (Posterior consistency of NIE) For any ϵ > 0, as n→∞,

Π

(
p−1

∣∣∣∣∣
p∑

j=1

E(sj)−
p∑

j=1

E0(sj)

∣∣∣∣∣ < ϵ

∣∣∣∣∣ Y,M,X,C

)
→ 1

in P n
0 -probability.

From Theorem 3, we can further establish the posterior sign consistency of SVME. Con-

sider a minimum effect size δ > 0, define R+
δ = {s : E0(s) > δ} and R−

δ = {s : E0(s) < −δ},
which represent the true positive SVME region and the true negative SVME region respec-

tively. Let R0 = {s : E0(s) = 0} represent a region of which the true SVME is zero.

Corollary 2. (Posterior sign consistency of SVME) For any δ > 0, let Rδ = R+
δ ∪R

−
δ ∪R0,

Then as n→∞, Π [sign{E(s)} = sign{E0(s)},∀s ∈ Rδ | Y,M,X,C]→ 1 in P n
0 -probability,

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(0) = 0.

This corollary ensures that with a large posterior probability BIMA can identify the

important regions with significant positive and negative SVMEs that contributes the NIE.

2.4 Posterior Computation

The posterior computation for BIMA is challenging due to the complexity of the nonpara-

metric inference, the high-dimensional parameter space and the non-conjugate prior speci-
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fications for the spatially-varying coefficients in the model. To address these challenges, we

next construct an equivalent model representation.

2.4.1 Model representation and approximation

We approximate the STGPs and GPs using a basis expansion approach. By Mercer’s the-

orem [94], the correlation kernel function in (2.8) can be decomposed by infinite series

of orthonormal basis functions κ(s, s′) =
∑∞

l=1 λlψl(s)ψl(s
′), and the corresponding GP

g(s) ∼ GP(0, σ2
gκ) can be expressed as g(s) =

∑∞
l=1 θg,lψl(s) where θg,l

ind∼ N(0, λlσ
2
g).

In our implementation, we allow region partition to speed up the computation, and assume

a region-independence prior kernel structure for the spatially varying parameters β, α, ζk, ηi.

In real data analysis, the brain anatomic region parcellation defines the region partition.

Assume there are r = 1, . . . , R regions that form a partition of the support S, denoted as

S1, . . . ,SR. The kernel function κ(sj, sk) = 0 for any sj ∈ Sr, sk ∈ Sr′ , r ̸= r′, and the prior

covariance matrix on the fixed grid has a block diagonal structure. For the whole brain

analysis as one region, one can choose R = 1.

For the r-th region, let pr be the number of voxels in Sr, Qr = (ψl(sr,j))
Lr,pr
l=1,j=1 ∈ RLr×pr be

the matrix with the (l, j)-th component ψl(sr,j), {sr,j}prj=1 forms the fixed grid in Sr. Because
of the basis approximation with cutoff Lr, Qr is not necessarily an orthonormal matrix, hence

we use QR decomposition to get an approximated orthonormal Qr, i.e. Q
T
r Qr = ILr , where

ILr is the identity matrix. With the region partition, the GP priors on the r-th region can

be approximated as gr = (g(sr,1), . . . , g(sr,pr))
T ≈ Qrθg,r, where θg,r ∼ N

(
0, σ2

gDr

)
, Dr is a

diagonal matrix with eigenvalues (λr,1, . . . , λr,Lr)
T ∈ RLr .

After truncating the expansion at sufficiently large {Lr}Lr=1, STGPs and GPs in the prior

specifications (2.8), which all share the same kernel, can be approximated by

βr = Tν(β̃r) ≈ Tν
(
Qrθβ̃,r

)
, αr = Tν(α̃r) ≈ Tν (Qrθα̃,r) ,

ζk,r ≈ Qrθζ,k,r, ηi,r ≈ Qrθη,i,r,

where the corresponding basis coefficients follow independent normal priors:

θβ̃,r ∼ NLr(0, σ
2
βDr), θα̃,r ∼ NLr(0, σ

2
αDr), θζ,k,r ∼ NLr(0, σ

2
ζDr), θη,i,r ∼ NLr(0, σ

2
ηDr).

We discuss the details for choosing Lr in Section 4.2. DenoteMi(Sr) = (Mi(∆sr,j))
pr
j=1 ∈
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Rpr , Mi(Sr) = (Mi(sr,j))
pr
j=1 ∈ Rpr , Then the BIMA model can be approximated as follows.

Yi =
R∑

r=1

Tν
(
Qrθβ̃,r

)
Mi(Sr) + γXi + ζT

YCi + ϵY,i,

Mi(Sr) = Tν (Qrθα̃,r)Xi +

q∑
k=1

Qrθζ,k,rCi,k +Qrθη,i,r + ϵMr,i

where ϵY,i ∼ N(0, σ2
Y ) and ϵMr,i ∼ Npr(0, σ

2
MIpr). From the above model representation,

both θζ,k,r and θη,i,r have conjugate posteriors, but Tν is not a linear function, and θβ̃,r and

θα̃,r do not have conjugate posteriors. To overcome this, the Metropolis-adjusted Langevin

algorithm (MALA) is used to sample θβ̃,r and θα̃,r. However, the first-order derivative

of the soft-thresholded function Tν(x) does not exist at the two change points x = ±ν.
To approximate the first-order derivative, either the derivative of a smooth approximation

function or a piece-wise function dT̂ν(x) = I(|x| ≥ ν) works in our case. The later one

dT̂ν(x) = I(|x| ≥ ν) provides better computational efficiency, and is implemented in our

algorithm.

2.4.2 Covariance kernel specifications and estimation

We can choose different covariance kernels for the GPs in models (2.1) and (2.2). Given

the covariance kernel function κ(·, ·), to obtain the coefficients λl and the basis functions

ψl(s), Sections 4.3.1 and 4.3.2 in [94] provide the analytic solution for squared exponential

kernel, and an approximation method for other kernel functions with no analytic solutions.

In practice when ψl(s) has no analytical solutions, such as the Matérn kernel, we use eigen

decomposition on the covariance matrix, and take the first L eigenvalues as the approximated

λl, the first L eigenvectors as the approximated ψl(s), then apply QR decomposition on the

approximated basis functions to obtain orthonormal basis. The limitation of this method is

that the covariance matrix is difficult to compute in high dimensions due to precision issues.

Hence in high dimensions we split the entire space S into smaller regions, and compute the

basis functions on each region independently. This also aligns with the imaging application

with the whole brain atlas. Another benefit is that by splitting the whole parameter space

into smaller regions, the sampling space gets smaller and it becomes easier to accept the pro-

posed vector β(s) on each region with much less directions to explore. In practice, to choose

the number of basis functions Lr for region r with pr voxels, we first compute the covariance

matrix in Rpr×pr with appropriately tuned covariance parameters, get the eigen-value of such

covariance matrix, and choose the cutoff such that the summation
∑Lr

l=1 λl is over 90% of∑pr
l=1 λl, i.e. the eigenvalues before cutoff account for over 90% of the total eigenvalues.
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We provide the detailed sensitivity analysis on choosing the covariance parameters in the

Supplementary Material.

2.4.3 The MCMC algorithm

We develop an efficient Markov chain Monte Carlo (MCMC) algorithm for posterior com-

putation. To update parameters
{
θβ̃,r,θα̃,r

}R
r=1

, we adopt the Metropolis-adjusted Langevin

algorithm (MALA). The step size is tuned during the burn-in period to ensure an acceptance

rate between 0.2 and 0.4. The target acceptance rate for each region is set to be proportional

to the inverse of the number of basis functions in that region, in order to produce a relatively

large effective sample size of the MCMC sample.

To incorporate the block structure with MALA, in each iteration, the proposal θβ̃,r or θα̃,r

for region Sr is based on the target posterior density conditional on θβ̃,r′ or θα̃,r′ supported

on all other regions where r′ ̸= r. The acceptance ratio is also computed region by region.

MALA has a considerable computational cost especially in high dimensional sampling,

where the step size has to be very small to have an acceptance rate reasonably greater than

0. It is important to have a good initial value. To obtain the initial values, we consider

a working model with the spatially varying coefficients β(s) and α(s) following GP instead

of STGP. With the basis expansion approach, we can straightforwardly use Gibbs sampling

to obtain the approximated posterior samples of β(s) and α(s) of the working model. The

posterior mean values of β(s) and α(s) estimated from the working model can be used to

specify the initial value of the basis coefficients in the MALA algorithm. More detailed

discussion on choosing the initial value can be found in Supplementary Material Section S4.

To impose identifiability Assumption 2, the posterior of θη,i,l is sampled from a con-

strained multivariate normal distribution, with the constraint X̃Tθη,l = 0 where θη,l =

(θη,1,l, . . . , θη,n,l)
T. The algorithm for sampling multivariate normal distribution constrained

on a hyperplane follows Algorithm 1 in [16].

For the rest of the parameters, with available conjugate full conditional posteriors, we use

Gibbs sampling to update. The algorithm is implemented in Rcpp [21] with RcppArmadillo

[22]. The implementation is wrapped as an R package BIMA. 1

2.5 Simulations

To demonstrate the performance of BIMA, two sets of simulation studies are analyzed. In the

first simulation study, we compare the performance with other existing Bayesian mediation

1Available on Github https://github.com/yuliangxu/BIMA
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methods in a low dimensional setting with relative small sample sizes, since some competing

methods cannot handle high-dimensional settings efficiently. In the second simulation study,

we vary the sample size, noise variance, and image patterns, and conduct a sensitivity analysis

on the performance of our method under different settings with different prior specifications.

2.5.1 Comparison with existing methods

To make fully Bayesian inferences in mediation model, there exist a number of methods

utilizing threshold priors and mixture models to impose sparsity and model correlation. In

this section, we compare BIMA with two recently proposed Bayesian methods: product

threshold Gaussian prior (PTG) and Correlated Selection Model (CorS).

Product Threshold Gaussian prior (PTG) [79] constructs prior distribution of the

bivariate vector {β(sj), α(sj)} for each location sj by thresholding a bivariate Gaussian latent

vector {β̃(sj), α̃(sj)} ∼ N2(0,Σ) and their product. i.e.

β(sj) = β̃(sj)max
{
I(|β̃(sj)| > λ1), I(|β̃(sj)α̃(sj)| > λ0)

}
,

α(sj) = α̃(sj)max
{
I(|α̃(sj)| > λ2), I(|β̃(sj)α̃(sj)| > λ0)

}
.

PTG model uses the threshold parameters λ1, λ2 and λ0 to control the sparsity in β(sj),

α(sj) and the indirect effect β(sj)α(sj) respectively, and [79] directly set Σ = diag
{
σ2
β, σ

2
α

}
.

However, the spatial correlation in spatially-varying coefficients among different locations

sj is not taken into consideration. Hence we anticipate this method to be less suitable for

spatially correlated applications such as brain imaging. This method has been implemented

in the R package bama [67]. We set λ1 = λ2 = λ0 = 0.01. A total number of 1500 MCMC

iterations are performed with 1000 burnins.

Correlated Selection model [78, CorS] adopts a mixture model with four components

to specify different sparsity patterns of α(sj) and β(sj) and incorporate the spatial correla-

tions into prior specifications of mixing weights.

[β(sj), α(sj)]
T ∼ π1(sj)N2(0,V1) + π2(sj)N2(0,V2) + π3(sj)N2(0,V3) + π4(sj)δ0,

and a membership variable γ(sj) ∈ {1, 2, 3, 4}, where γ(sj) = 1 indicates β(sj)α(sj) ̸= 0,

γ(sj) = 2 indicates β(sj) ̸= 0, α(sj) = 0, γ(sj) = 3 indicates β(sj) = 0, α(sj) ̸= 0, and

γ(sj) = 4 indicates β(sj) = α(sj) ̸= 0. When γ(sj) = 1, V1 is assigned an inverse Wishart

prior. When γ(sj) = 2 or 3, V2 or V3 only contains σ2
β or σ2

α on the diagonal and 0

otherwise. Each γ(sj) is assumed to follow a multinomial distribution with probability

π(sj) = {π1(sj), π2(sj), π3(sj), π4(sj)}⊤ with
∑4

k=1 πk(sj) = 1. For each m = 1, 2, 3, let
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πm = {πm(s1), . . . , πm(sj)} ∈ Rp. logit(πm) is assumed to follow a multivariate normal prior

with a pre-specified covariance matrix σ2
mD ∈ Rp×p, independently for each m = 1, 2, 3.

Hence D is used to reflect the mediator-wise correlation.

We anticipate this method to have good performance in the spatially correlated data

application. We use the GitHub implementation of this method (https://github.com/

yanys7/Correlated_GMM_Mediation.git). In the simulation study, we set the initial values

for all α(s) and β(s) to be 0.5, the initial values for {πk(sj), k = 1, 2, 3, 4} to be 0.25, the 2 by

2 scale matrix in Inverse-wishart prior for V1 to be [1, 0.5; 0.5, 1], and the p× p matrix D to

be estimated from the input image correlations. A total number of 2000 MCMC iterations

are performed with 1000 burn-ins.

Bayesian Image Mediation Analysis (BIMA) adopts a modified square-exponential

kernel κ(s, s′; a, b) = cor{β(s), β(s′)} = exp{−a(s2 + s′2) − b∥s − s′∥2} with a = 0.01 and

b = 10. We split the input image into four regions. We use Hermite polynomials up to the

10th degree, resulting in 66 basis coefficients to approximate each region. The initial values

for all parameters are obtained from Gibbs sampling with Gaussian process priors for α and

β. The threshold parameter ν = 0.5 in STGP priors. For the outcome model (2.1), a total

of 105 iterations are performed, with the acceptance probability tuned to be around 0.2 for

each region during the first 80% of burn-in iterations. The mediator model (2.2) follows the

same setting, except with a total of 5000 iterations and a burn-in period comprising the first

90%.

Figure 2.3 shows the true image for α(s), β(s), and E(s), i.e. natural indirect effect (NIE).
Table 2.1 gives summary statistics of sampled NIE using 3 methods with 100 replicated

simulations. The final result of NIE is tuned using the inclusion probability of the sampled

NIE for all 3 methods in the following way: for each location sj, we estimate the empirical

probability P̂ (NIE(sj) ̸= 0) from the MCMC sample of NIE, and set a threshold t on

P̂ (NIE(sj) ̸= 0): if P̂ (NIE(sj) ̸= 0) < t, NIE(sj) = 0, otherwise NIE(sj) equals the posterior

sample mean. By tuning t, we can control the FDR to be below 10%. Although we set the

target FDR to be 10% for all 3 methods, it is still possible that FDR cannot be tuned to

be less than 10% with any t < 1 when the sample is very noisy, in which case the largest

possible t is used, and the tuned FDR can be larger than 10%. In the extreme case where

the largest possible t still maps all location to 0, we get the NAs as shown in Table 2.1.

These NA replication results are excluded from the summary statistics in Table 2.1.

From Table 2.1, PTG performs the least ideal in the correlated image setting as shown in

Figure 2.3, especially in the estimation for the mediator effect β(s). In general, β(s) is more

challenging to estimate than α(s) for two reasons: i) The mediator model (2.2) has n × p
observations to estimate p dimensional α(s), leading to a higher signal to noise ratio than
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Figure 2.3: Comparison on the posterior mean of the 3 methods with the true images. Rows
from top to bottom represent functional NIE E(s), α(s), β(s). Columns from left to right
represent true images, posterior mean from PTG model, posterior mean from CorS model,
posterior mean from BIMA model.

β in model (2.1); ii) In the outcome model (2.1), M and X are correlated through (2.2),

making it more difficult to separate the effect β(s) from γ.

CorS model performs very well when n is close to p. However in the higher dimensional

setting, when n is much smaller than p, CorS has a lower power than BIMA. BIMA performs

well and is stable across all four settings, indicating that it is a suitable method especially

for high-dimensional spatially correlated mediators, when n is considerably less than p, such

as in brain imaging application. Potential improvement can be made for BIMA when the

kernel bases are tuned to accurately represent the smoothness of input mediators.

2.5.2 High-dimensional simulation

To further illustrate the performance of our proposed method, we conduct simulation studies

under 4 different settings with 2 sets of patterns as shown in Figure 2.4. Each image is split
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Table 2.1: Comparison of posterior inferences on NIE among different methods including
PTG, CorS and BIMA based on 100 replications. The standard errors are reported in the
brackets

(a) Selection accuracy including the overall accuracy (ACC), false discovery rate (FDR) and true
positive rate (TPR). All values are multilied by 100.

Selection Accuracy

PTG CorS BIMA
(n, p) FDR TPR ACC FDR TPR ACC FDR TPR ACC

(200, 400) 9 (15) 20 (19) 93 (1) 1 (2) 80 (37) 98 (3) 7 (3) 95 (3) 99 (0)
(300, 400) 21 (21) 16 (14) 93 (1) 1 (2) 100 (0) 100 (0) 6 (3) 93 (5) 99 (0)
(200, 676) 14 (14) 11 (12) 93 (1) 0 (0) 3 (2) 93 (0) 8 (2) 96 (3) 99 (0)
(300, 676) 10 (14) 17 (11) 94 (1) 1 (1) 80 (36) 98 (3) 7 (2) 96 (3) 99 (0)

(b) Estimation and computation performance including mean squared errors (MSE) in the true
activation region (multiplied by 100) and computation time in seconds.

Estimation and Computation time

MSE (Activation) Time (Seconds) #of NA
(n, p) PTG CorS BIMA PTG CorS BIMA (2.1) BIMA (2.2) PTG CorS

(200, 400) 24 (1) 5 (10) 2 (1) 251 (7) 26 (3) 27 (2) 28 (1) 31 7
(300, 400) 24 (1) 0 (0) 2 (1) 385 (8) 25 (2) 35 (3) 61 (1) 22 0
(200, 676) 24 (0) 25 (1) 2 (1) 663 (13) 75 (1) 54 (6) 35 (1) 60 60
(300, 676) 24 (0) 5 (9) 1 (1) 1026 (21) 76 (2) 64 (11) 71 (2) 21 11

into 4 regions, each region being a 32× 32 grid. The threshold parameter ν = 0.5 in STGP

priors. In this simulation, we use Matérn kernel in accordance with the sharp patterns in

Figure 2.4.

κ(s′, s;u, ρ) = Cu(∥s′ − s∥22/ρ), Cu(d) :=
21−u

Γ(u)

(√
2ud
)u
Ku(
√
2ud) (2.9)

The number of basis for each region is set to be 20% of the region size. The scale parameter

ρ = 2, and u = 1/5. Due to the high dimension of mediators, we let the MALA algorithm

update only β(s) for the first 40% of MCMC iterations to get β(s) to a stable value, then

jointly updating all other parameters in (2.1) using Gibbs Sampling. All other settings

are the same as in Section 2.5.1, and the summary statistics for NIE in Table 2.2 are also

tuned in the same way using inclusion probability. Table 2.2(b) gives a sensitivity analysis

result using different thresholds ν in the STGP priors to show that the estimation is not too

sensitive to the choice of ν within a small range.
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Figure 2.4: Input image pattern for the simulation study. Rows from top to bottom represent
dense pattern and sparse pattern. Columns from left to right represent input image NIE,
α(s), β(s). p = 4096.

Table 2.2 demonstrates that our proposed method has stable performance across different

settings. In Table 2.2, the mediator model is fully updated and converged including all

individual effects (ηi)
n
i=1. Fully updating (ηi)

n
i=1 can take much longer time for the entire

model to converge compared to directly setting the individual effects all to 0. In the case all

ηi fixed at 0, the estimation for α and ζ are almost the same compared to updating the full

model from the p = 4096 simulation studies that we have observed. When n = 1000 and

p = 4096, the computational time of fitting BIMA with running 30, 000 MCMC iterations is

less than four hours for both models (2.1) and (2.2). In comparison, the CorS method takes

9.8 hours when N = 1000, p = 2000, with 1.5× 105 iterations. Our approach shows a much

better computational efficiency in the high-dimensional setting.

2.6 Analysis of ABCD fMRI Data

In this section, we apply our method to the Adolescent Brain Cognitive Development

(ABCD) study release 1 [10]. The 2-back 3mm task fMRI contrast data is used, and the

preprocessing method is described in [81]. After preprocessing and removing missing data,

the final complete data set consists of N = 1861 subjects. The initial size of one image

is 61 × 73 × 61, which contains 116 brain regions, but only 90 regions are chosen for this
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Table 2.2: High-dimensional simulation results. Selection accuracy (multiplied by 100) in-
cludes false discovery rate (FDR), true positive rate (TPR) and overall accuracy (ACC).
Computational time (in minutes) are separately reported for fitting model (2.1) (T1) and
model (2.2) (T2). The reported values are the average over 100 replications. The standard
deviations are reported in the brackets.

(a) Peformance of BIMA in simulations for different sample sizes (n) and the random noise standard
deviations in model (2.1) (σY ).

Under different generative model, λ = 0.5

Pattern n σY FDR TPR ACC T1 T2

Dense 1000 0.1 1 (1) 98 (1) 100 (0) 13 (2) 184 (16)
Sparse 1000 0.1 3 (3) 100 (0) 100 (0) 19 (4) 212 (28)
Dense 5000 0.1 1 (2) 97 (4) 100 (1) 54 (15) 1145 (140)
Dense 1000 0.5 1 (1) 98 (1) 100 (0) 17 (5) 209 (37)

(b) Sensitivity analysis with different threshold values (ν).

Under different sensitivity parameter ν.
Dense pattern, n = 1000, σY = 0.1.

ν FDR TPR ACC T1 T2

0.3 5 (1) 99 (0) 99 (0) 20 (5) 198 (18)
0.6 0 (0) 97 (10) 100 (1) 17 (4) 222 (28)

application, and the resulting number of mediators in brain image is p = 47636.

We are interested in examining the natural indirect effect (NIE) of parental education level

on children’s IQ scores, mediated through brain imaging data. Our aim is to explore the

varying roles of different brain regions as mediators in the cognitive ability development of

a child. Hence the exposure is a binary variable indicating whether the parent has a college

or higher degree. The outcome variable is g-score that reflects children’s IQ, obtained in

the same way as in [81] from the raw data. The confounders in our model include age,

gender, race and ethnicity, and household income. For the multi-level variables race and

ethnicity (Asian, Black, Hispanic, Other, White), household income (less than 50k, between

50k and 100k, greater than 100k), we use binary coding for each level. Table 2.3 provides

the summary statistics of the ABCD data.

In this analysis, we use the Matérn kernel where the hyper-parameters u and ρ are specified

for each region according to the estimated covariance matrices. The number of voxels for

each region varies from 62 to 1510. To determine the number of basis, we select up to 500
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Table 2.3: Summary statistics of the ABCD data stratified by Parent Degree. Mean (stan-
dard deviation) are reported for g-Score and Age. Counts are reported for Gender, Income,
Race and Ethnicity

Parent degree Bachelor or higher No bachelor Overall

g-Score 0.47 (0.77) -0.15 (0.80) 0.27 (0.83)
Age 10.09 (0.61) 10.01 (0.63) 10.06 (0.62)

Gender
Female 611 281 892
Male 635 334 969

Race and Ethnicity
Asian 30 3 33
Black 47 84 131

Hispanic 151 216 367
White 924 254 1178
Other 94 58 152

Income
<50K 98 336 434

50∼100K 375 213 558
>=100K 773 66 839

Total 1246 615 1861

locations within a certain range of the centroid for each region. Using these locations, we

compute the empirical covariance matrix for each region. The cutoff for the number of basis

is then chosen in such a way that it accounts for 90% of the total sum of all the singular

values of the estimated covariance matrix. Because the hyper-parameter ν in the STGP

prior and the kernel parameters u, ρ in each region are all prefixed, we provide a detailed

description of selecting these parameters via testing MSE in the Supplementary Material.

The final threshold νβ for β(s) is set to be 0.05, and the final threshold να for α(s) is set to

be 0.1. The choice of ν is also based on testing MSE. Detailed sensitivity analysis can be

found in the Supplementary Material.

A total of 100, 000 iterations were performed for the outcome model (2.1) with the first

50% as burn-in, and thinning the posterior sample gives us 1000 samples out of the original

50, 000 samples. A total of 40, 000 iterations were performed for the mediator model (2.2)

with the first 30, 000 as burn-in, and the posterior sample are thinned every 10 iterations

to have 1000 sample. Based on this 1000 posterior sample, Table 2.4 gives a summary of

both the overall NIE and NDE and the top 7 regions identified with the largest number

of active voxels. The definition of NIE in each region is 1
p

∑
s∈Sr

β(s)α(s), where Sr is the
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collection of all voxels in region r. The rule for selecting the active voxels is based on

cutting the posterior inclusion probability (PIP) at 10%. Voxels with PIP values above this

threshold are identified as active. The posterior of NDE γ has a mean of 0.27 with the

95% credible interval (0.20, 0.36). The posterior of NIE E has a mean of 0.0885 with the

95% credible interval (0.066, 0.111). This suggests that parents with college degrees have

a positive impact on children’s cognitive abilities, and about 25% of the effect is mediated

through brain cognitive development. Figure 2.5 shows the estimated active regions and the

NIE in coronal view slides.

Table 2.4: Top 7 regions ordered by the number of active voxels with PIP > 10%. Columns
2 to 5 are timed by 100. NIE(+) and NIE(-) are defined as 1

pn

∑
s∈∇r
E(s)I(E(s) > 0) and

1
pn

∑
s∈∇r
E(s)I(E(s) < 0) for each region r. Average IP is the averaged inclusion probability

over all voxels in the entire region.

NIE NIE(+) NIE(-) NDE
Time (hours)
model (2.1)

Time (hours)
model (2.2)

Overall 8.85 10.57 -1.72 27.37 1.60 85.93

Region Name (AAL Atlas) NIE NIE(+) NIE(-)
Average
PIP

# of active
voxels

Region
Size

Precuneus L 3.53 3.53 -0.01 4.98 109 1079
Parietal Inf L 2.83 2.83 0.00 5.67 99 696
Postcentral L 0.21 0.21 0.00 1.98 71 1159
Cingulum Mid R 1.82 1.82 0.00 8.98 67 605
Supp Motor Area L 1.14 1.16 -0.02 2.38 52 656
Frontal Inf Oper R -0.46 0.00 -0.47 1.83 27 421
Frontal Inf Orb L -0.12 0.02 -0.13 1.98 21 503

2.7 Conclusion and Discussions

In this paper, we assign soft-thresholded Gaussian process priors on the spatial-varying

coefficients in the outcome model and the mediator model. The thresholding parameter con-

trols the sparsity of the functional coefficients, and the soft-thresholded operator provides

a continuous mapping from the latent Gaussian process to the sparse coefficients. We ex-

tend the mediation analysis framework to incorporate spatial-varying mediators and provide

theoretical guarantees on the posterior consistency of the functional natural indirect effect.

Our computation approach utilizes the MALA algorithm, which is tailored to the imaging

application with block updates.

Through small-scale simulation studies, we compare our method with existing approaches

such as the Product Threshold Gaussian prior model (PTG) and the Correlated Selection

model (CorS). We demonstrate that our method outperforms existing methods, particularly
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Posterior inclusion probability (color range [0.1, 0.5])

Positive posterior mean of the spatial mediation effects (color range [10−5, 10−3])

Negative posterior mean of the spatial mediation effects (color range [−10−4,−10−5])

Figure 2.5: Posterior inference on spatially varying indirect effects of parental education on
the general cognitive ability that are mediated through the working memory brain activity.
The Coronal view slides cutting through 3 of the top 10 regions with largest number of active
pixels: the left Precuneus (Precuneus L), left Inferior parietal gyrus (Parietal Inf L) and the
left Supplementary motor area (Supp Motor Area L).
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in scenarios involving high-dimensional correlated mediators. Furthermore, our implemen-

tation is more than four times faster than the CorS method when N = 1000, p = 4096.

In the larger scale simulation where p = 4096, our proposed model performs better when

the true signals are smoother and when there is lower variability in the outcome model but

higher variability in the mediator model. We also apply our method to mediation analysis on

ABCD data, demonstrating its applicability to other mediation problems involving imaging

data or other types of high-dimensional mediation data, such as biomarker and genetic data.

However, there are several limitations to our proposed work. While the basis decompo-

sition approach reduces the number of parameters to update, the choice of the appropriate

number of basis still depends on the researcher’s discretion. The thresholding parameter

ν is fixed and determined by the researcher a priori. Further improvements are needed in

the sampling algorithm to handle higher-dimensional data, such as 2mm fMRI data with

mediators exceeding 2× 105.
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CHAPTER 3

Bayesian Image Regression With

Soft-Thresholded Conditional Autoregressive

Prior

3.1 Introduction

Regression problems with high-dimensional components have wide-ranging applications. In

the context of brain imaging, two prominent regression problems include (i) scalar-on-image

(SonI) regression, where the predictor is the image data, and can answer scientific questions

such as the impact of brain development on children’s IQ score, in the context of ABCD

study; and (ii) image-on-scalar (IonS) regression, where the outcome is the image data, and

can answer questions such as the impact of the parental education level on different areas

of the children’s brain development, again in the context of ABCD study. For the imaging

component, our primary focus centers on the functional Magnetic Resonance Imaging (fMRI)

data, a three-dimensional image commonly used to capture cognitive functions across distinct

spatial locations in the human brain. The challenges of involving image data in a regression

problem stems from (i) the complex anatomical structure of the human brain, (ii) the low

signal-to-noise ratio in fMRI data, and (iii) the computational challenges associated with

handling high-dimensional 3D images. In response to these challenges, this paper has two

main contributions.

1. We introduce a novel general Soft-thresholded Conditional Autoregressive (ST-CAR)

prior, designed to adapt to the correlation structure of the observed data and remain

insensitive to user-specified prior correlation structures.

2. We present two variational inference (VI) based algorithms that outperform Gibbs

sampler type Markov Chain Monte Carlo (MCMC) algorithms in computational effi-

ciency.
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3. The VI implementation of ST-CAR prior retains the inclusion probability that de-

scribes how confident we are in the non-null effect of certain voxel, which can be used

for downstream uncertainty quantification to control false discoveries.

3.1.1 High-dimensional Regression

Because of the high-dimensional spatially correlated nature of the imaging data, the func-

tional priors for imaging application usually need to be sparse and spatially correlated. For

the scalar-on-image (SonI) regression, [92] proposed a frequentist approach where the high-

dimensional parameter for the image predictor is penalized by total variation distance, but

the smoothness parameters need to be chosen through cross-validation. There are more re-

cent development for high-dimensional regression in the Bayesian regime. [32] and [36] use a

combination of Ising prior to control binary selection, and Gaussian Markov Random Field

(MRF) to control spatial correlation. In [32], the neighborhood structure in the Gaussian

MRF can be learned through the Ising prior, but the correlation among different voxels

is only determined by the spatial distance of voxels. [48] proposed a spike-and-slab prior

where the binary selection parameter is assigned an Ising prior and the non-zero compo-

nent is assigned a Dirichlet Process (DP) prior. The Ising prior is used to learn the spatial

sparsity, and the DP prior is used to group the effect of active voxels into discrete values.

However, the spatial structure of the Ising prior in [48] is assumed to be the same among

different voxel pairs. [46] proposed the T-LoHo method for scalar-on-graph regression where

the high-dimensional parameter is assigned a tree-based graph partition prior, with the aim

of clustering the spatially varying parameter into finite discrete values. [43] proposed a Soft-

thresholded prior that is continuous and piecewise smooth with a latent Gaussian process for

spatially correlation. But the Soft-thresholded Gaussian Process prior has complex posterior

densities for regression problems with normal noise, and the posterior computation can be

slow especially for large-scale problems.

For image-on-scalar (IonS) regression where the outcome is a high-dimensional data, the

most popular approach is to use low-rank approximation, including using principle compo-

nent or basis expansion [63, 66], spline function [98, 49] and local polynomial function [110].

A common problem with the frequentist approach of using low-rank approximation is that

it can be difficult to make inference on the active area selection when penalizing on the

low-rank models, and the choice of the low-rank mapping using basis functions has to reflect

the true correlation structure of the high-dimensional data. In the Bayesian regime, [100]

proposed a prior composed of latent binary variable for sparsity and latent Gaussian variable

for smoothness, however the covariance of the Gaussian variable is pre-fixed. [102] proposed
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a machine learning model where the high-dimensional parameter is learned through neural

networks, but the focus is on point estimation instead of the joint inference over the entire

spatial support.

Moreover, the majority of the above methods, whether based on Gaussian kernel or MRF,

the correlation matrix is usually user-defined instead of being learned from the data. Al-

though the smoothness parameters in the Gaussian Kernel or degrees of correlation in MRF

can be chosen adaptive to the data through methods like cross-validation, the performance

usually depends on the pre-fixed prior correlation structure, and our aim is to propose a

prior that is insensitive to the user-specified correlation structure and is able to learn var-

ious complex signal patterns. Based on this idea, we develop Soft-threholded conditional

autoregressive (ST-CAR) prior, where the Soft-thresholded operator is applied on a latent

Gaussian MRF, and the functional parameter can be independent across locations but with

spatially-correlated mean. We further develop variational inference algorithms for fast and

scalable estimation of the posterior mean.

3.1.2 Approximate Posterior Inference

Posterior sampling for high-dimensional large-scale data set has been challenging for tradi-

tional MCMC methods, especially for imaging applications. Variational inference provides

an approximation to the posterior mean that avoids sampling of the entire posterior distri-

bution, in exchange for computational efficiency. The main aim of this project is to propose

a spatially varying sparse prior that can be applied to various regression problems with

imaging component, and develop variational inference algorithms to efficiently obtain the

posterior mean estimates for large-scale data set.

As discussed in [9], variational inference techniques approximate the posterior sampling

problem by an optimization problem, with the goal to minimize the Kullback-Leibler (KL)

divergence between the posterior density and the candidate density function over a family of

densities. This allows us to borrow optimization techniques such as stochastic optimization

with subsampling, and develop scalable algorithm for massive imaging data. Recent advances

in variational inference focus in three directions: (a) scalable algorithms for large scale data

[35, 64, 82]; (b) general variational algorithm for more complex models [91]; (c) model-specific

applications of variational inference [19, 8]. The stochastic variational inference [35] exploits

the global and local exponential family structure for mixture models that are widely applied

in topic modeling and genetics applications. The black box variational inference [64] is a

general method that estimates the gradient of the evidence lower bound and updates the

candidate density by stochastic optimization. Inspired by both stochastic approaches, we
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develop a stochastic subsampling variational inference (SSVI) algorithm for the proposed

ST-CAR prior.

The ST-CAR prior and its SSVI algorithm can be used as a plug-in method for the

functional parameters in general imaging problems such as scalar-on-image regression, image-

on-scalar regression, logistic regression with imaging predictor, etc. The ST-CAR prior also

has a build-in posterior inclusion probability that can be readily used for signal selection. We

present simulation studies on scalar-on-image regression as an example to demonstrate the

fast and scalable performance of the SSVI compared to Gibbs sampler, Coordinate Ascent

variational inference (CAVI), and the Soft-thresholded prior updated through Metropolis-

adjusted Langevin algorithm (MALA).

The rest of the article is structured as follows. In Section 3.2, we introduce ST-CAR prior

and its application to the scalar-on-image and image-on-scalar regression models. In Section

3.3, we propose two variational inference algorithms, coordinate ascent variational inference

(CAVI) and stochastic subsampling variational inference (SSVI) algorithms, for ST-CAR

prior on SonI and IonS regressions. In Section 3.4, we demonstrate the performance of our

proposed method using various simulation settings, and compare with existing methods. In

Section 3.5, we apply our method to the Adolescent Brain Cognitive Development (ABCD)

study and conclude the paper in Section 3.6.

3.2 ST-CAR prior

3.2.1 General notations

Let N(µ, σ2) represent a normal distribution with mean µ and variance σ2. For the index set

{1, . . . , p}, let [−j] denote the set {1, . . . , p} \ {j}. For a square matrix A, let λmin(A) and

λmax(A) be the smallest and the largest eigenvalues of A respectively. Let C+(A) denote the

half Cauchy distribution with density function f(x) = 2
πA

1
1+x2/A2 I(x ≥ 0). Let Rq denote the

q-dimensional Euclidean space. Iq is the q by q dimensional identity matrix. IG(a, b) stands

for the inverse-gamma distribution. We use N (j) to denote a neighborhood index set for j-th

component, and |N (j)| to denote the cardinality of N (j). For a vector a, diag {a} is used
to denote the diagonal matrix with diagonal vector a. We use sgn(x) = I(x > 0)− I(x < 0)

to denote the sign of x.

3.2.2 ST-CAR prior

We use a similar idea as the soft-thresholded Gaussian Process (STGP) prior [43], and

apply a soft-thresholding operator on a latent spatially correlated process. Define the soft-
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thresholding operator as Tν(x) := {x− sgn(x)ν}I(|x| > ν) for any ν ≥ 0. We propose a new

noisy version of the STGP, referred to as the Soft-thresholded conditional auto-regressive

(ST-CAR) prior.

Definition 5. A sparse, spatially correlated parameter β(s) on a fixed grid s1, . . . , sp follows

the ST-CAR prior if

β(sj)
ind∼ N(Tν(µj), σ

2
β), j = 1, . . . , p

µj | µN (j) ∼ N(µ̄N (j), τ
2
µ,j), µ̄N (j) = ρj

∑
k∈N (j)

bj,kµk

Let β = (β(s1), . . . , β(sp))
T. We use β ∼ ST-CAR(ν,B) to denote β follows the ST-CAR

prior with thresholding parameter ν and the neighborhood matrix B where (B)j,k = bj,k.

Here, β is the target spatially varying parameter. The prior mean of β is the soft-

thresholded µ, where µ is the latent spatially varying process. The prior mean of µj is

determined by the correlation coefficient ρj, the neighborhood set N (j), and the neighbor-

hood weights bj,k.

The variance parameter σβ is not identifiable when the ST-CAR prior is applied to SonI

or IonS regression. In order to impose sparsity on β, we use the annealing idea on σβ, and

let σβ decays to 0 as the iteration increases. This will force the spatially independent β to

converge to the sparse and spatially correlated µ. The decay rate of σβ has impact on the

variable selection accuracy especially for low signal-to-noise ratio data. A general rule of

thumb is to set σβ relatively large at the beginning to allow for more flexibility and decays

to a small value at the end.

The correlation parameter ρj can either be pre-fixed at all locations, or updated by

ρj = δj ρ̃, δj ∼ Ber(pj),

where ρ̃j is pre-fixed. We find these two approaches to have similar result in terms of

variable selection accuracy, and the ST-CAR prior is not very sensitive to the choice of ρ

or the bandwidth |N (j)|. However, taking the second approach to adaptively update ρ can

give us extra information on the correlation structure of the high-dimensional coefficient.

The ST-CAR prior applies the soft-thresholding operator Tν to a latent process µj, and

the spatially-correlated structure of µj is imposed by setting its mean to a weighted average

over a neighborhood N (j). By applying a binary indicator δj to the correlation parameter

ρj, we are able to adaptively determine whether the value of µj is strongly correlated with its

neighborhood mean. We adopt the Conditional Auto-Regressive (CAR) covariance structure
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[27]. Define a matrix B and a diagonal matrix Dσµ as

(B)j,k = bj,k =
wj,k

wj+

, (Dσµ)j,j = τµ,j =
σ2
µ

wj+

(3.1)

where wj,k are the (j, k)-th index of a symmetric matrix W , and wj+ =
∑p

k=1wj,k is the

row(column) summation. The matrixW represents the correlation structure, and in practice

we set wj,k ∝ exp {−d(sj, sk)}, exponentially negatively associated with the distance between

sk and sj. In addition to the CAR structure, we set a bandwidth |N (j)| on the number of

components included in the neighborhood N (j), such that for each j, bj,k is nonzero only if

wj,k is within the first |N (j)| largest values among {wj,k}pk=1. Denote µ = (µ1, . . . , µp)
T ,ρ =

(ρ1, . . . , ρp)
T, the joint density of µ takes the form

f(µ|σµ) ∝ exp

[
−1

2
µTD−1

σµ
{I − diag (ρ)B}µ

]
If we denote Σ−1

µ := D−1
σµ
{I − diag (ρ)B}, it can be shown that Σ−1

µ is a symmetric, positive

definite matrix when each ρj ∈ (λmin(B)−1, λmax(B)−1). Note that B is not a symmetric

matrix in general. In the construction in (3.1), λmax(B) = 1 and λmin(B) < 0. Hence we

choose ρj ∈ [0, 1) for any j, and the joint density of µ is guaranteed to be non-degenerative.

One caveat of doing so is that the value of µj and the neighborhood mean µ̄N (j) is only allowed

to be either positively correlated or independent (ρj ≥ 0), but the negative correlation is not

taken into consideration. This constraint makes sense in brain imaging applications, because

the true signal is assumed to be sparse and piecewise smooth, which excludes the case where

the signal across neighboring voxels has a sharp drop from positive to negative values. In

general, the ST-CAR prior is suitable for the case where the positive and negative areas do

not share boundaries.

The proposed ST-CAR prior enjoys good computational properties as it has a conditional

conjugate posterior when applied to a parameter in a regression problem. The main challenge

in updating a thresholded parameter is that the thresholding function such as Tν is a non-

linear function. But we can show that µj conditional on all other µ[−j] and β has a mixture

of truncated normal distribution as its posterior.

Proposition 2. Within the ST-CAR prior, the posterior of µj can be expressed as a mixture

of three truncated normal distributions.

π(µj | β, µ[−j], σµ, σβ) =

P+
j · N[ν,+∞)(µ

+
j , Vj) + P 0

j · N[−ν,ν](µ̄N (j), V0) + P−
j · N(−∞,−ν](µ

−
j , Vj) (3.2)
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The expression for P+
j , P

0
j , P

−
j , µ

+
j , µ

−
j , Vj, V0 can be found in the proof of Proposition 2

in the Supplementary.

The proposed ST-CAR prior is a general prior that can be applied to many high-

dimensional regression settings, where the coefficient is assumed to be smooth and sparse

across their spatial domain. Here, we use scalar-on-image (SonI) and image-on-scalar (IonS)

regressions as two examples to illustrate the power of ST-CAR prior. Other potential ap-

plications including logistic regression with high-dimensional exposure and other types of

generalized linear models.

3.2.3 Application to scalar-on-image (SonI) model

The ST-CAR prior can be applied to various models with sparse and spatially-varying func-

tional parameters. In this section, we demonstrate its advantage using the scalar-on-image

(SonI) regression model.

Let Mi(sj) denote the image intensity at location sj for individual i, Xi ∈ Rq be a

vector-valued confounder variables. Let Yi denote the scalar-valued outcome for subject i.

i = 1, . . . , n, j = 1, . . . , p.

Yi =

p∑
j=1

β(sj)Mi(sj) + γTXi + ϵi ϵi
iid∼ N(0, σ2

Y )

β ∼ ST-CAR(ν,B), γ ∼ N(0, σ2
γIq)

σY ∼ C+(1), σγ ∼ C+(1) (3.3)

where β ∈ Rp is the high-dimensional spatially-varying coefficient of interest, and γ ∈ Rq is

the vector-valued coefficient for the confounders Xi.

For all of the Half-Cauchy parameters, we use their equivalent conjugate form to up-

date: σY ∼ C+(1) is equivalent to σ2
Y ∼ IG(1/2, 1/aY ), aY ∼ IG(1/2, 1). Because

β ∼ ST-CAR(ν,B) essentially assigns spatially independent prior to β with varying mean

function, we can use singular value decomposition (SVD) on the design matrix M ∈ Rn×p

to further boost the computation speed1.

3.2.4 Application to image-on-scalar (IonS) model

The second application we consider is the image-on-scalar (IonS) regression. The spatially

varying outcome is denoted asMi(sj) for individual i = 1, . . . , n and location sj, j = 1, . . . , p.

1Details on this derivation can be found in the Appendix
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The exposure of interest is denoted as Xi, and the confounder is denoted as Ci ∈ Rm. The

IonS model is as follows

Mi(sj) = α(sj)Xi +
m∑
k=1

ξk(sj)Ci,k + ηi(sj) + ϵi,j, ϵi,j
iid∼ N(0, σ2

M)

α ∼ ST-CAR(ν,B), ξk
iid∼ GP(0, σ2

ξκ), k = 1, . . . ,m, ηi
iid∼ GP(0, σ2

ηκ), i = 1, . . . , n,

σM ∼ C+(1), σξ ∼ C+(1), ση ∼ C+(1). (3.4)

Here, we only assign ST-CAR to α for selecting active region for the exposure. For

confounder coefficients ξk and the individual effects ηi, we assign Gaussian Process prior with

the same kernel function κ for computational convenience. The individual effect parameter

ηi separates the spatially correlated noise from the noise term ϵi, and avoids setting a dense

correlation matrix for the noise term ϵi, which speeds up the computation. This is similar to

the correlated noise model in [110]. The identifiability of model (3.4) has been shown in [102]

under the following sufficient conditions: (1) the design matrix X̃ := (X,C) ∈ Rn×(m+1) is

a full rank matrix, (2) for any i and any sj, denote η(sj) = (η1(sj), . . . , ηn(sj)) ∈ Rn,

X̃Tη(sj) = 0. The first condition is easily satisfied when the design matrix X̃ is not linearly

dependent.

For the Gaussian Process prior update of ξk and ηi, we use the basis decomposition

approach. Leveraging Mercer’s theorem, which asserts that for any function g(s) following

a Gaussian Process with mean zero and covariance function σ2
gκ(·, ·), we can utilize the

following basis decomposition.

g(s) =
∞∑
l=1

θg,lϕl(s), θg,l
ind∼ N (0, σ2

gλl),

where λl is the l-th eigen-value, and ϕl is the l-th eigen-function (see Section 4.2 in [65]). In

practice, we choose a finite L as the cutoff on the number of basis, and approximate g(s)

by
∑L

l=1 θg,lϕl(s). The number of basis L is chosen such that the summation
∑L

l=1 λl is over

90% of
∑p

l=1 λl. The choice of the kernel function includes exponential square kernel, Matérn

kernel and other kernel functions. For the simulation section we use the modified exponential

square kernel, κ(s, s′; a, b) = exp{−a(s2 + s′2) − b(s − s′)2}. For the real data analysis

with ABCD data, the kernel is a pre-tuned Matérn kernel with region-specific smoothness

parameters that can best align with the empirical correlation of the observed image data,

same as in [97].
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Figure 3.1: Illustration to use ST-CAR prior for regression models with imaging data.

3.3 Posterior Computation

In this section, we use the scalar-on-image regression (3.3) as an example, and introduce

three algorithms to estimate the posterior of β: (a) Gibbs sampler (Gibbs), (b) Coordinate

Ascent Variational Inference (CAVI), and (c) Stochastic subsampling version of variational

inference (SSVI).

Proposition 2 provides the closed-form posterior density for the sparse-mean latent pa-

rameter {µj}pj=1 as a mixture of 3 truncated normal distributions in the ST-CAR prior of β.

All other parameters in this hierarchical model have conjugate posteriors, and Gibbs sampler

can be directly applied.

For the neighborhood matrix B in ST-CAR(ν,B), in order to speed up the computation,

we use sparse matrix structure in RcppArmadillo [22], and set a fixed bandwidth |N (j)| for
all j. For a given fixed grids {s1, . . . , sp} in Rd, we use RANN package [2] to efficiently search

for the nearest neighbors in high-dimensional setting.

3.3.1 Coordinate Ascent Variational Inference (CAVI)

The variational inference methods (CAVI, SSVI) are based on the mean-field assumption

[9]. If we denote θ = (β,γ,µ, σY , σγ) as the collection of all parameters. The mean-field

variational inference minimizes the evidence lower bound

min
q

E [KL(q(θ) | p(θ|Y,M,X))] s.t. q(θ) = q(β)q(γ)q(µ)q(σY )q(σγ)

The conventional Coordinate Ascent Variational Inference (CAVI) algorithm iteratively re-

fines the approximated density q by updating each parameter in successive iterations.

log q(t)(β) ∝ Eq(t−1)(γ,µ,σY ,σγ) {log p(β | Y,M,X,γ,µ, σY , σγ)}

Because each parameter in the full hierarchical model has closed-form posterior density, we

can directly apply this iterative approach.
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One issue with the conventional CAVI is that although it can give a good point estimation

as an optimization algorithm, but cannot directly give inference results such as the credible

interval, compared with MCMC sampling methods. The novelty in our proposed ST-CAR

prior is that we can use the mixing probability in Proposition 2 as the uncertainty quantifi-

cation measure for selecting significant regions, circumventing the requirement for credible

interval based on MCMC samples, while leveraging the computational efficiency provided

by CAVI. Proposition 2 gives the posterior probability of µj belonging to the positive group

[ν,∞), zero group [−ν, ν), and negative group (−∞,−ν). When using CAVI, we can directly

compute the Posterior Inclusion Probability (PIP) under q density as (P+
j +P−

j ) in (3.2) as

a measure of coefficient significance.

3.3.2 Stochastic subsampling variational inference (SSVI)

To make the variational inference method scalable for large data set, we propose a stochastic

subsampling version of CAVI, referred as SSVI. The main computational bottleneck of CAVI

is to update β, which is a high-dimensional parameter, and the latent variable µ further

requires complex computation of mixed truncated normal densities. Hence given µ, when

updating β, we randomly select a subsample of data, indexed by I ⊂ {1, . . . , n}, and apply a

stochastic gradient update similar to the Stochastic Gradient Langevine Dynamics (SGLD)

[93]. Let st be the step size at t-th iteration, n be the total number of observations, ns be

the subsample size, and π be the prior density of βj at the jth voxel,

Eq(t) {βj} ← Eq(t−1) {βj}+ st

(
n

ns

∇Eq(t−1) log
∑
i∈I

p(Yi,Mi,Xi | θ) +∇Eq(t−1) log π(βj)

)
.

This is because under the mean-field assumption, the optimum density q∗(βj) has a closed-

form solution: a normal density with mean and variance

Eq∗(βj) = Varq∗(βj)×Eq∗(σ
−2
Y )

N∑
i=1

Mi,j

Yi − Eq∗γ
TXi −

∑
k∈[−j]

Eq∗βkMi,k + Eq∗
{
σ−2
β Tν(µj)

}
Varq∗(βj) =

(
Eq∗(σ

−2
Y )

N∑
i=1

M2
i,j + Eq∗(σ

−2
β )

)−1
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And Eq∗(βj) is also the maximizer to

Eq∗

N∑
i=1

log p(Yi,Mi,Xi | θ) + Eq∗ log π(βj).

We require the step size st to decrease to 0 as t→∞. In practice, we use the decay function

st = a(b+ t)−γ, as suggested in [93].

In practice, we find that in low signal-to-noise ratio (SNR) settings, the CAVI algorithm

gives better accuracy. Hence we recommend to use CAVI for SonI model, where the SNR

can be very low especially in brain imaging data, and to use SSVI for IonS model, since IonS

model has much higher SNR for the coefficient at each voxel.

3.4 Numerical Examples

In this section, we will present the simulation results for SonI (3.3) and IonS (3.4) regressions.

Our main goal is to compare the proposed prior ST-CAR with other existing methods, and

we will use CAVI as the main algorithm for estimating the spatially varying parameters.

This is because Gibbs is usually very slow, and SSVI as a stochastic method tends to be less

accurate for low signal-to-noise ratio case, whereas CAVI balances between computational

efficiency and selection accuracy, and has overall the best performance. We include a section

in the Supplementary that compares the performance of Gibbs, SSVI and CAVI.

3.4.1 Simulation I: Scalar-on-image regression with CAVI

For SonI model (3.3), we compare ST-CAR with 3 other methods: (1) Soft-thresholding

Gaussian Process prior (STGP) [43], (2) T-LoHo [46], (3) Elastic Net [112].

For the elastic net result implemented in the glmnet package [25], the mixing parameter

α is set to 0.5, and the penalty parameter λ is chosen using cross-validation.

The STGP prior is based on soft-thresholding on the latent Gaussian Process. When

β(s) ∼ ST GP(ν, κ), there exists a corresponding latent Gaussian Process β̃(s) ∼ GP(0, κ)
such that β(s) = Tν(β̃). This method requires a pre-specified kernel function κ, and the

posterior sampling algorithm is Metropolis-adjusted Langevin algorithm (MALA). In this

simulation we use the exponential square kernel

κ(s, s′; a, b) = cor{β(s), β(s′)} = exp{−a(s2 + s′
2
)− b(s− s′)2} (3.5)
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where a = 0.01, b = 10. The implementation is based on BIMA package 2, first developed for

[97]. Note that this implementation of STGP allows the users to specify different regions in

the image and specify a region-wise independent kernel in order to speed up the computation

in high dimensions and boost selection accuracy in each region. Hence for the simulation

pattern shown in Figure 3.2, we evenly split the entire 2D region into 4 sub-regions, and use

the modified exponential square kernel on each sub-region. The basis function is generated

using [42] with 10 degrees of Hermite polynomials for each sub-region. We use the elastic net

result as the initial values for β, and run a total of 104 iterations with the last 20% as the

converged MCMC sample. The thresholding parameter ν is set to be 0.2. For the variable

selection accuracy, we use the Posterior Inclusion Probability (PIP) based on the MCMC

sample of β, defined as PIPj =
∑T

t=1 I(βj ̸= 0)/T for the location j with T MCMC sample.

The T-LoHo method is designed for clustering nodes in graph models into finite discrete

values, and it shows great performance for this purpose especially under low SNR. However,

this method has several limitations when applied to SonI problem with continuous functional

value. As a clustering algorithm, T-LoHo can find the active areas accurately, but cannot

threshold the small values to 0. For the spatially smooth patterns, T-LoHo can only group

them into a few discrete values instead of capturing the smooth transition. In addition, the

implementation in the TLOHO package does not provide voxel-level uncertainty quantifica-

tion measure such as PIP. When comparing the variable selection result, we use the 95%

credible interval: βj is significant only if the 95% CI of βj does not contain 0. We use the

R package on Github for implementation of T-LoHo 3. This package does not provide the

confounder coefficients estimation, hence for the SonI simulation, we set true γ = 0. We use

a total of 50000 MCMC iterations and take the last 10000 as the converged sample.

For ST-CAR prior updated using CAVI algorithm, we use ridge regression result as the

initial value for β, and set the initial value for µ to be all 0. The thresholding parameter ν

is set to be the largest marginal value in β estimated from ridge regression. This is because

setting ν to be a large value can reduce false discoveries, and µ is still able to recover the

true signal pattern even when starting from all 0 initial values. This algorithm is much

less sensitive to the thresholding parameter compared to STGP. The decay rate of σ2
β is set

to be 0.5(1 + t)−0.7 where t represents the number of iterations. Since we use annealing

on σ2
β instead of fully conjugate update, we can no longer use ELBO as a stopping rule.

Instead, at the t + 1 iteration, we compute the difference of β(t) and β(t+1), defined as∑p
j=1(β

(t)
j −β

(t+1)
j )2/p, to determine whether the optimization has converged. The tolerance

is set to be 10−10. For the neighboring matrix B, we set the number of neighbors as 8, and

2BIMA package https://github.com/yuliangxu/BIMA
3TLOHO package https://github.com/changwoo-lee/TLOHO
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the correlation parameter ρ̃ is set to be 0.9. The variance parameter σµ is fixed at 1 for

CAVI update.

(a) Case 1. n = 600, p = 1600, σ2
Y = 1.

(b) Case 5. n = 6000, p = 10000, σ2
Y = 5.

Figure 3.2: SonI result illustration for all competing methods. The first figure in each row
is the true β signal.

Figure 3.2a and 3.2b provide visual comparison under two simulation settings. The true

β image is designed to include several challenging patterns where the active area can decay

smoothly to almost 0, has complex correlation structure such as the M-shape on the top-left

corner, and includes both positive and negative patterns. Case 1 (Figure 3.2a) is the low

resolution and low SNR setting, and Case 5 (Figure 3.2b) is the high resolution and high

SNR setting.

From this visual comparison, STGP is good at estimating smooth function pattern such

as the bottom-left circle, but without further tuning the Gaussian Process kernel, estimating

more complex pattern such as the M-shape would be difficult. Here, STGP already takes the

region partition into consideration. If we were to generate Gaussian Kernel over the entire

support, the result would be more smooth without further tuning the kernel. T-LoHo as a

clustering method is good at grouping larger effects together, but as the true signal decays

smoothly towards 0, T-LoHo can ignore some small non-zero effects, resulting in a lower

statistical power, as shown in the bottom-left circle in Figure 3.2b. Elastic Net can identify

the spatial pattern to a certain extent, but its efficacy is limited as it does not leverage
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correlation information. Consequently, it may yield a noisy estimation in case 1. Even in

case 5, where the point estimation is favorable, Elastic Net can still introduce background

noises. ST-CAR can estimate each pattern relatively well without specifying any region

partition or tuning the correlation matrix adaptive to different signal patterns. Although

some small effects such as the bottom tip of the T-shape can still be missed, ST-CAR provides

the best overall performance compared to other priors across different settings without any

tuning procedure.

Table 3.1 provides the detailed numerical comparison. The evaluation criteria for estima-

tion accuracy includes (i) Selection accuracy: false discovery rate (FDR), true positive rate

(TPR) and overall accuracy (ACC); (ii) Point estimation: root mean squared error (RMSE);

(iii) Goodness-of-fit: the predictive mean squared error on the outcome Yi using training

and testing data (train and test pMSE). We also include the computational time comparison

averaged over 100 replications. Note that because CAVI is an optimization algorithm and

we are able to set a stopping rule, whereas for MCMC sampling algorithms for STGP and

T-LoHo, a lot more number of iterations is required. Hence we report both the total time

and the number of iterations per second.

For the variable selection result for ST-CAR, Elastic Net and STGP, we use a tuning

procedure to find a cut such that the FDR can be controlled blow 10% within a fixed tuning

window. For STGP and ST-CAR, the PIP is used to control FDR. For elastic net, β is used

to control FDR. For T-LoHo, the 95% CI is used without tuning.

Based on Table 3.1, we can see that ST-CAR has the lowest testing pMSE in 3 relatively

high SNR cases (Case 2,3,5). For Case 1 and 4 with relatively low SNR, ST-CAR has the

second best performance next to T-LoHo. For the computation time in Table 3.1b, ST-CAR

has the shortest running time in all settings.

3.4.2 Simulation II: Image-on-scalar regression with SSVI

For IonS model (3.4), we compare ST-CAR with 3 other methods: (1) STGP prior, (2)

Scalable Bayesian Image-on-Scalar regression (SBIOS) [96], (3) Mass Univariate Analysis

(MUA). For the IonS regression (3.4), estimation of α has a larger SNR compared to esti-

mating β in SonI (3.3), hence we use SSVI for this application for ST-CAR prior. Because

we impose GP prior for the confounder parameters ξk and individual effect ηi, the GP kernels

used in this simulation are all the same for STGP, ST-CAR and SBIOS for fair comparison.

We also use region-wise independent kernels for the GP priors in (3.4). The GP kernel is

the same as (3.5) with a = 0.01 and b = 10.

The mass univariate analysis (MUA) is one of the most commonly used method for IonS
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Table 3.1: Numeric result for SonI simulation, under 100 replications.

(a) SonI: Comparison of estimation accuracy. The evaluation criteria for estimation includes false
discovery rate (FDR), true positive rate (TPR), overall accuracy (ACC), and root mean squared
error (RMSE), all multiplied by 100. The evaluation criteria for predictive performance includes
training and testing predictive MSE, denoted as Train and Test pMSE respectively

Case 1. n = 600, p = 1600, σ2
Y = 1 Case 2. n = 600,p = 900, σ2

Y = 1
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 9.52 9.54 10.42 4.41 FDR 9.40 1.82 9.77 3.92
TPR 97.47 44.85 95.37 97.32 TPR 99.81 98.45 94.06 99.34
ACC 98.05 90.87 97.60 98.62 ACC 98.45 99.50 97.63 98.65
RMSE 11.00 30.45 13.44 9.46 RMSE 5.51 7.12 13.00 6.56
Train pMSE 2.29 1.03 5.97 3.61 Train pMSE 1.10 0.33 3.40 1.55
Test pMSE 7.18 60.31 12.54 6.21 Test pMSE 2.02 3.04 6.36 2.24

Case 3. n = 1000, p = 1600, σ2
Y = 1 Case 4. n = 600, p = 1600,σ2

Y = 5
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 9.39 0.39 9.89 1.10 FDR 9.64 9.42 9.83 7.09
TPR 100.00 99.08 97.93 99.79 TPR 90.06 37.11 92.00 94.19
ACC 98.42 99.80 98.05 99.76 ACC 97.02 89.82 97.25 97.09
RMSE 4.27 6.53 12.04 5.83 RMSE 14.65 33.31 14.72 12.51
Train pMSE 1.08 0.48 6.47 1.92 Train pMSE 4.85 2.55 9.17 8.56
Test pMSE 2.03 3.79 9.92 2.78 Test pMSE 17.76 76.84 19.31 14.37

Case 5. n = 6000, p = 10000, σ2
Y = 5 Case 6. n = 6000, p = 10000, σ2

Y = 10
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 0.46 0.27 17.16 6.84 FDR 1.18 2.47 17.15 4.78
TPR 99.98 99.39 98.52 99.67 TPR 99.91 98.21 98.53 99.52
ACC 99.92 99.86 96.57 95.96 ACC 99.80 99.33 96.58 97.71
RMSE 3.73 6.73 13.78 5.25 RMSE 3.14 3.94 6.44 2.48
Train pMSE 5.48 3.12 80.90 12.78 Train pMSE 10.62 3.81 85.91 18.60
Test pMSE 9.37 22.94 86.88 15.54 Test pMSE 18.43 41.06 92.25 22.44

(b) Computation time for SonI simulation, averaged over 100 replications.

Computation time Total time (seconds) Number of iteratios per second
Case ST-CAR STGP T-LoHo ST-CAR STGP T-LoHo
Case 1. n = 600, p = 1600, σ2

Y = 1 103.0 503.0 306.5 11.4 208.0 262.6
Case 2. n = 600,p = 900, σ2

Y = 1 24.2 250.8 205.0 42.3 420.5 393.4
Case 3. n = 1000, p = 1600, σ2

Y = 1 111.2 866.2 426.2 10.2 122.9 189.5
Case 4. n = 600, p = 1600,σ2

Y = 5 108.5 486.0 312.5 11.1 212.4 259.8
Case 5. n = 6000, p = 10000, σ2

Y = 5 8034.9 40658.8 11141.1 0.2 2.6 7.3
Case 6. n = 6000, p = 10000, σ2

Y = 10 7811.3 40839.1 11297.8 0.2 2.6 7.2

regression. MUA analyzes IonS as a spatially independent problem, and treats the IonS

regression as p independent linear regression problems with exposure Xi and confounders

Ci. To select active voxels, we use the Benjamini-Hochberg adjusted p-values [7] to control

the false discovery rate. The active voxels selected by MUA have an adjusted p-value below

0.05.

The STGP method is similar to what has been discussed in the SonI regression. For IonS
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regression, we use a total of 2×104 iterations and take the last 10% as the converged MCMC

sample. The thresholding parameter ν is set to be 0.2. We use the point estimates of α and

ξk from MUA as the initial value for the MALA algorithm.

The Scalable Bayesian Image-on-Scalar regression (SBIOS) [96] is another Bayesian ap-

proach where the parameter of interest can be expressed as α(s) = α̃(s)δ(s). The latent

spatially smooth function α̃ is assigned a GP prior, and the binary selection variable δ(sj) is

assigned an independent prior Ber(p(sj)) for each location sj. SBIOS is designed to analyze

a large scale data set by using batch update with stochastic gradient Langevin dynamics

algorithm (SGLD). Hence it is more appropriate to be compared with the SSVI implemen-

tation of ST-CAR, since both methods are based on stochastic gradient updates of a small

random sample drawn from the entire observed data. Different from the idea of SSVI where

we simply use stochatic gradient update for an optimization problem, SGLD gives a smooth

transition from optimization to MCMC sampling as the step size decays to 0 [93]. Simi-

lar to STGP, we can use the MCMC sample of δ(sj) to determine the PIP at location j,

PIPj =
∑T

t=1 δ(sj)
(t) ̸= 0/T for T MCMC sample. In the simluation, we use 5000 SGLD

iterations, with the decay function of the step size set as st = 0.0001 · (10 + t)−0.35. We use

200 subsample in each iteration. The prior for δ(sj) is set to be Ber(0.5) for all locations.

The last 20% of iterations is used to compute the point estimation of α and PIP.

The ST-CAR method implemented using SSVI algorithm requires a stochastic gradient

update of α. We use a step of 10−4 and a subsample of 100 for the SGD optimization. The

decay rate function for σ2
α is (1 + t)−0.4. We use C+(1) as the prior for σµ in (3.1). Because

of the randomness in the SGD update, we cannot use the difference between α(t) and α(t+1)

or ELBO as a stopping rule. For the simulation, we simply run 104 iterations. In practice,

the convergence of SSVI can be roughly determined by the convergence of σ2
µ. For the point

estimation and inference of α, we use the averaged values over the last 20% iterations as the

posterior mean of α and PIP in order to avoid the randomness from SGD.

Note that updating the individual effects ηi for i = 1, . . . , n is computational challenging

for all Bayesian methods. We choose to update ηi every 100 iterations for ST-CAR, SBIOS,

and every 1000 iterations for STGP.

Figure 3.3 provides a visualization of the point estimation for each methods. MUA has the

most noisy point estimation since it does not consider the spatial correlation, and there is no

sparsity constraint directly imposed other than using the adjusted p-value to determine the

level of significance for each voxel location. STGP suffers from the same issue as in Figure

3.2, where the pre-specified kernel is too smooth for the Z-shape and recycle shape (top-

left). SBIOS uses the same kernel, but the binary selection parameter δ(sj) has a spatially

independent prior, and can get a clearer edge compared to STGP and better selection, but
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Figure 3.3: Point estimation result of IonS regression for all competing methods, n = 600,
p = 6400, σ2

M = 5. The top-left figure is the true α signal.

the latent GP kernel is still too smooth that the edge of the recycle shape and Z-shape tends

to be 0. In the ST-CAR plot, although the functional parameters ξk, ηi are all assigned

GP prior with the same kernel as STGP and SBIOS, we can still see that ST-CAR is able

to give a very clear edge for all 4 shapes. This demonstrates that ST-CAR prior is very

flexible to different correlation patterns without much tuning on the neighborhood matrix

B or correlation coefficient ρ, especially for the high SNR cases.

Table 3.2a provides the numerical result on IonS model based on 100 replications in

six different settings. Because the predictive MSE on the outcome averaged over all voxel

locations is very close for all methods, we do not report it here. Instead we focus on the

estimation of the coefficient α. The proposed ST-CAR prior with SSVI algorithm gives the

lowest RMSE except for case 2 and 6, for which the STGP has the lowest RMSE, although

STGP has a much larger FDR in both cases. To control the FDR below 10%, we use the

Benjamini-Hochberg (BH) adjusted p-values on MUA and set a threshold such that α(sj)

with the adjusted p-value below 0.1 are selected as active voxels. For ST-CAR, STGP, and

SBIOS, we compute the proportion of the active voxels selected by MUA, and apply the same

proportion to get the cut off on PIP. In this way, we select roughly the same proportion of

voxels as active. Based on the result in Table 3.2a, this selection method can control the

FDR for ST-CAR and SBIOS to be below 10%, whereas for STGP, the FDR is still over 10%.

The MUA has the worst power (TPR) in all scenarios after controling for FDR. The total

running time shown in Table 3.2b also shows a great improvement on the computational

speed for the SSVI algorithm when compared with other MCMC sampling type algorithms.
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Table 3.2: Numeric result for IonS simulation, under 100 replications.

(a) IonS: Comparison of estimation accuracy. The evaluation criteria includes false discovery rate
(FDR), true positive rate (TPR), overall accuracy (ACC), and root mean squared error (RMSE),
all multiplied by 100.

Case 1. n = 600, p = 1600, σ2
M = 5 Case 2. n = 600, p = 900, σ2

M = 5
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 5.8 7.98 16.88 6.3 FDR 4.95 8.23 12.75 4.69
TPR 95.41 93.2 94.18 94.94 TPR 84.34 81.42 85.01 84.61
ACC 97.86 96.95 94.89 97.66 ACC 96.27 95.19 94.9 96.36
RMSE 7.86 9.35 10.53 10.79 RMSE 7.88 9.4 6.85 7.36

Case 3. n = 1000, p = 1600, σ2
M = 5 Case 4. n = 600, p = 1600, σ2

M = 10
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 7.1 8.1 19.24 7.97 FDR 5.07 8.06 14.87 4.12
TPR 98.38 97.32 95.57 97.53 TPR 85.31 82.61 90.84 86.19
ACC 98.13 97.69 94.43 97.76 ACC 96.06 94.96 94.88 96.42
RMSE 6.44 7.21 10.16 10.35 RMSE 10.32 13.14 11.21 11.74

Case 5. n = 600, p = 6400, σ2
M = 5 Case 6. n = 1000, p = 6400, σ2

M = 20
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 5.97 7.84 20.78 6.04 FDR 5.93 7.93 19.94 2.95
TPR 93.64 91.78 97.19 93.62 TPR 81.83 80.09 96.64 84.46
ACC 97.35 96.55 93.9 97.33 ACC 95.06 94.32 94.18 96.16
RMSE 8.52 9.19 9.79 10.25 RMSE 13.84 14.19 9.76 10.72

(b) Computation time for IonS simulation, averaged over 100 replications.

Computation time Total time (seconds) Number of iteratios per second
Case ST-CAR STGP SBIOS ST-CAR STGP SBIOS
Case 1. n = 600, p = 1600, σ2

M = 5 73.7 588.4 717.4 137.5 3.4 7.3
Case 2. n = 600,p = 900, σ2

M = 5 55 381.6 874.5 186 5.3 6.3
Case 3. n = 1000, p = 1600, σ2

M = 5 117.3 1062.1 1968.4 88.9 1.9 3.1
Case 4. n = 600, p = 1600,σ2

M = 10 82.9 621.8 1214.1 122.7 3.2 4.9
Case 5. n = 600, p = 6400,σ2

M = 5 409.2 2190.3 1049.8 24.7 0.9 5.3
Case 6. n = 600, p = 6400,σ2

M = 20 596.7 5090.2 1733.2 17 0.4 3.2

On average, STGP takes 7.6 times long compared to SSVI, and SBIOS takes 10.4 times

long compared to SSVI. In the Supplemental Material, we also provide additional result of

using CAVI under ST-CAR prior and compare the performance with SSVI. SSVI still slightly

outperforms CAVI in the IonS regression in terms of both estimation and computation speed.

For a more comprehensive comparison between different estimation algorithms (Gibbs,

CAVI, SSVI) under ST-CAR prior, we include a small low-dimensional comparison for the

SonI regression in the Supplemental Material. The result suggests that CAVI tends to have

better estimation accuracy in SonI regression where the signal-to-noise ratio is low.
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3.5 Application to ABCD Study

In this section, we use our method to analyze the Adolescent Brain Cognitive Development

(ABCD) study release 1 data [10]. The ABCD study is a long-term study on the brain

development of children in the United States. In this real data analysis, we use the 2-back

3mm task fMRI contrast data [81]. The scientific questions of interest are: (i) whether the

brain signals in different regions have different impact on the children’s IQ score (SonI);

(ii) whether parents with higher education degree has an impact on the children’s cognitive

ability development (IonS). For the task fMRI data, after preprocessing, we have p = 47636

voxels and n = 1861 subjects in total.

To answer (i) with SonI model (3.3), we use the children’s IQ score as the scalar outcome

Yi, and use the task fMRI data as the high-dimensional predictor Mi(sj), where sj stands

for voxel locations in the brain. The confounders include parental education level (binary,

1 if the parent has a bachelor degree or higher), age, gender, race and ethnicity (Asian,

Black, Hispanic, Other, White), and household income (less than 50k, between 50k and

100k, greater than 100k). The coefficient of interest is β in (3.3). We expect β to be very

sparse and has small effect, since the interpretation for β(sj) = b is that one unit increase

in the brain signal in location sj is associated with b amount of change in the children’s IQ

score, and the range of the standardized IQ score is (−2.84, 3.26), a small range compared

to the large number of predictors p = 47636.

To answer (ii) with IonS model (3.4), we use the task fMRI data as the outcome, and

use the parental education level as the exposure. The confounders include age, gender, race

and ethnicity, and household income. For the IonS model, for ξk, ηi that are assigned GP

priors, we use region-independent kernel structure. The interpretation for α(sj) = a in (3.4)

is that, parent with bachelor degrees or higher is associated with a amount of change in the

brain signal at location sj. Hence we expect the effect size of α to be relatively larger than

that of β.

In ST-CAR prior, the two most important tuning parameters are the thresholding pa-

rameter ν, and the initial value for σ2
β which controls how close β is to the latent sparse

µ. In theory [43], the choice of ν does not have a huge impact as long as the initial values

are close enough to the truth, or the MCMC sampling algorithm can run long enough to

fully explore the parameter space. Because we are using VI algorithms, it is important to

start with a good initial value. Hence we perform a sensitivity analysis to select the best ν

and initial σ2
β in terms of the smallest testing pMSE. The entire data set is split into 70%

training data and 30% testing data. Based on the sensitivity analysis results in Table 3.3

and Appendix Table B.4 and B.3, we choose ν = 0.007, the initial value for σ2
β to be 10−5,
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bandwidth 9 and decay rate γ = 0.35 in the decay rate function of σ2
β for SonI, and choose

ν = 0.005, the initial value for σ2
α to be 0.1, bandwidth 26 and decay rate γ = 0.45 for IonS.

Although varying ν, bandwidth and decay rate have little influence on the results. Table 3.3

also reflects that our method has better testing pMSE compared to the competing methods

Elastic Net, STGP and MUA. Due to computational limitation of other methods, we chose

not to run all competing methods on the real data.

Table 3.3: Sensitivity Analysis on SonI and IonS regressions.

(a) SonI for varying ν and initial value for σ2
β. The Elastic Net and STGP results are shown

as a comparison. Bandwidth=9 in the ST-CAR model. Additional sensitivity analysis where
bandwidth=26 and varying decay rate γ for σ2

β is available in the Appendix.

σ2
β 10−5 10−5 10−5 10−5 5× 10−5 10−5 5× 10−6

ElasNet STGP
ν 0.003 0.005 0.007 0.01 0.005 0.005 0.005
test pMSE 0.58 0.5 0.48 0.48 0.61 0.5 0.55 0.53 0.5
Test R2 0.16 0.28 0.30 0.30 0.12 0.28 0.20 0.23 0.28
train pMSE 0.17 0.24 0.27 0.29 0.11 0.24 0.21 0.45 0.49
Train R2 0.75 0.65 0.61 0.58 0.84 0.65 0.70 0.35 0.29

(b) IonS for varying ν, initial value for σ2
α, and decay rate γ for σ2

α. The total test pMSE is the
summation of all voxel-level pMSE. Bandwidth is 26. Additional sensitivity result where band-
width=9 is available in the appendix.

initial σ2
α 1 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.1

MUAν 0.005 0.005 0.005 0.001 0.01 0.05 0.005 0.005 0.005
Decay rate γ 0.35 0.35 0.35 0.35 0.35 0.35 0.25 0.45 0.55
total test pMSE 47357.74 47351.78 47354.06 47354.13 47351 47354.1 47354.12 47350.7 47352.68 47487.05

We use CAVI on SonI, which takes 1.7 hours to run, and use SSVI on IonS, which takes

7.3 hours to run. Due to the vast sparsity and low SNR in β, the computational time of

SonI is similar to STGP (1.6 hours). But the IonS model with SSVI algorithm shows a huge

computational improvement compared to STGP (85.9 hours).

We present the final data analysis result in both visual illustration in Figure 3.4, and

numeric values in Table 3.4. Figure 3.4 is a visualization on the positive significant voxels

in SonI and IonS. The color range for the plots are between [a, b], where only voxels with

values greater than a are shown, and voxels with values greater than b are shown in the

brightest color. From Figure 3.4a, due to the low SNR in SonI, both the effect size and PIP

are small, and only a small amount of voxels with large effect size aligns with the mapping

of PIP greater than 0.25. In comparison, α in IonS has larger effect size, and as shown in

Figure 3.4b, the large effect areas aligns well with the mapping of PIP greater than 0.98.
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(a) SonI: values of β (Red) w. color range [0.0005,0.001], and values of PIP (overlaying blue) w.
color range [0.25, 0.5].

(b) IonS: values of α (Red) w. color range [0.05,0.1], and values of PIP (overlaying blue) w. color
range [0.95,1].

Figure 3.4: Visual illustration of β in SonI and α in IonS.

In Table 3.4, we show the region level numeric result. Note that, although both SonI

and IonS have a small amount of negative effects, they are very close to 0 compared to the

positive effect scale, hence we only report the positive effect here. From Table 3.4, for SonI,

Precuneus L is the region with the largest positive effect, which means brain development

in this region can have the most positive effect on the children’s IQ score. This aligns with

the previous study in [97] and scientific findings [90] that Precuneus is related with memory

tasks. For IonS, Frontal Mid region in both the left and right hemispheres have the largest

positive effect, and have been shown to play a key role in the development of literacy (left

Frontal Mid) and numeracy (right Frontal Mid) in previous findings [23].

3.6 Discussion and Conclusion

In this work, we have proposed the ST-CAR prior, which is a general and flexible prior that

could be applied to any regression problems with imaging component. Variational inference

algorithms are proposed for the ST-CAR prior. Especially, we implemented the coordinate

ascent variational inference (CAVI) as a baseline VI algorithm that can provide good es-

timation accuracy in low SNR settings, and we proposed a novel stochastic subsampling

variational inference (SSVI) algorithm that is more efficient computationally to be applied

to high SNR settings. We demonstrated the use the ST-CAR prior in both scalar-on-image
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Table 3.4: Numeric result for the top 10 regions sorted by number of significant positive voxels
in SonI and IonS. For SonI, sig count is the number of significant voxels (PIPj ≥ 0.25) in
each region, pos sig count is the number of significant voxels with β(sj) ≥ 0.0005, and pos
sum is

∑
j∈Sr

β(sj)I(β(sj) > 0), the sum of positive effect for all voxels in region r. The IonS
result has the same interpretation, except the cutoff for significant voxels is PIPj ≥ 0.95,
and the cutoff for positive effect in pos sig count is 0.05.

SonI IonS
region
name

region
code

sig
count

pos sig
count

pos
sum

region
name

region
code

sig
count

pos sig
count

pos
sum

Precuneus L 67 12 12 0.25 Parietal Inf L 61 382 357 38.94
Temporal Sup R 82 12 9 0.16 Precuneus L 67 377 312 37.26
Temporal Inf R 90 18 9 0.18 Precentral L 1 305 293 33.55
Precuneus R 68 12 8 0.14 Precuneus R 68 316 285 36.24
Temporal Inf L 89 14 8 0.15 Frontal Mid R 8 322 270 43.12
Occipital Mid L 51 6 6 0.12 Frontal Mid L 7 272 244 43.06
Parietal Inf L 61 8 6 0.15 Supp Motor Area L 19 215 205 23.82
Frontal Sup Orb R 6 6 5 0.08 Parietal Sup L 59 224 167 18.63
Frontal Mid L 7 11 5 0.15 Temporal Mid R 86 175 154 27.18
Frontal Mid Orb R 10 5 5 0.08 Frontal Sup L 3 155 147 21.81

and image-on-scalar regression models. Through comparisons in numeric studies, we find

our proposed method has better performance in terms of estimation and computation, com-

pared with existing methods such as T-LoHo, STGP, and SBIOS. The proposed method is

applied to the ABCD study with task fMRI image data, and identifies the left Precuneus

as a significant region to contribute the children’s IQ development, and the development of

the middle frontal gyrus as the significant region that can be most positively impacted by

parental education level.
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CHAPTER 4

Bayesian Structured Mediation Analysis

With Unobserved Confounders

4.1 Introduction

In the emerging field of causal inference with complex data, high-dimensional mediation

analysis is increasingly important, particularly with the surge in brain imaging and con-

nectome datasets [51, 12]. We propose a causal mediation framework to account for the

unobserved confounding effects for such high-dimensional complex mediators with certain

correlation structures, referred to as structured mediators. The structured mediators in-

clude a broad family of applications such as spatial climate data and health data with

repeated measurements. Our method development is motivated by the brain imaging appli-

cation. Using the functional Magnetic Resonance Imaging (fMRI) data from the Adolescent

Brain Cognitive Development (ABCD) study, we examine the relationship between parental

education and children’s general cognitive ability, seeking to identify the neural mediation

pathways that underlie this causal link. Despite the advances in imaging mediation [97],

the influence of unobserved confounders, such as stress levels or nutrient intake, have largely

been ignored. Traditional high-dimensional mediation analyses, including Bayesian Imaging

Mediation Analysis [BIMA, 97], [51, 80], and [61], rely on the no-unobserved-confounder as-

sumption, which is unverifiable in real data [62]. Existing mediation studies have proposed

sensitivity analyses to account for the violation of this assumption [38, 83, 18]. The sensi-

tivity analysis approach can provide a range for the Natural Indirect Effect (NIE) and the

Natural Direct Effect (NDE) with a known scale of the unobserved confounders [14, 104], or

assumes binary outcome and unobserved confounders [18]. However, it is almost impossible

to attain the accurate scale or data format of the unobserved confounders in practice. In

this work, we directly estimate the structured unmeasured confounder effects. As long as

the unobserved confounders have spatially smooth effects on the mediator, our method can

estimate them and debias the mediation effects.
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We propose a new framework for BAyesian Structured Mediation analysis with Unob-

served confounders (BASMU). BASMU aims to relax the no-unobserved-confounding as-

sumption by assuming that the unobserved confounders exist and correlate with both the

mediator and the outcome. This assumption can be viewed as one case that violates the

sequential ignorability assumption proposed in [38], where the predictor (treatment) is fully

randomized but the mediator is not. [38] provided parametric sensitivity analysis under

linear structural equation models with scalar mediators. Building upon the same sequential

ignorability assumptions, [83] extended this idea to the nonparametric mediator. A detailed

comparision among [38], [83], [34] and [37] is provided in [83]. [18] studied the sensitivity

bound on the direct and indirect effect of mediation with unobserved confounders for binary

treatment and outcomes. A recent and more interpretable bias analysis method proposed in

[14] uses partial R2 to analyze the bias when the unobserved confounder is omitted in linear

regression. However, they restricted the problem to a scalar predictor in linear regression.

[104] extended this idea to mediation analysis where the mediator can be a multi-dimensional

vector, and proposed a matrix version of partial R2. In addition to the potential bias due

to omitting unobserved confounders, there are unique challenges in brain imaging mediation

analysis. The fMRI data of the human brain as a mediator can be in high dimensions with

a complex spatial structure, and only small areas have active mediation effects where the

rest of brain voxels contribute near-zero effects. Hence, instead of the sensitivity analysis on

the average treatment effect, we are more interested in detecting which brain areas would

become active or nonactive mediators after accounting for the unobserved confounders.

Different from all the aforementioned sensitivity analysis-oriented methods, our proposed

mediation framework allows the estimation of unobserved confounders by estimating the

individual effect parameters in the mediator model. To our knowledge, BASMU is the first

attempt to adjust the unobserved confounders for structural mediation analysis directly.

Following the same framework as in [5], where they first formally proposed the medi-

ation framework under the linear structural equation models (LSEM), we propose a new

LSEM where the unobserved confounders are specified in both the outcome model and me-

diator model. When the structural mediators satisfy certain assumptions, we can estimate

the unobserved confounders from the mediator model and adjust the estimated unobserved

confounders in the outcome model.

Our proposed BASMU framework advances existing methodologies by directly estimating

unobserved confounder effects in high-dimensional mediation analysis, overcoming limita-

tions of traditional approaches that rely on unverifiable no-unobserved confounder assump-

tions. This approach enables direct estimation of individual effects on the outcome and

provides an asymptotic bias analysis when unobserved confounders are omitted. We propose
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a two-stage algorithm to estimate high-dimensional unobserved individual effects using only

the mediator model. This method allows a more flexible prior on the unobserved confounder

coefficient and performs better across all simulation settings. Our framework increases the

detection of significant mediation effects, as demonstrated in the analysis of brain imaging

data from the ABCD study.

In Section 4.2, we introduce the structured mediation framework with unobserved con-

founders, along with identifiability assumptions and asymptotic bias analysis. Section 4.3

details the two-stage estimation algorithm. Section 4.4 presents simulation studies compar-

ing BIMA and BASMU, while Section 4.5 applies our algorithm to ABCD data. We conclude

with a discussion in Section 4.6.

4.2 Bayesian Image Mediation with Unobserved Con-

founders Framework

Structured mediators refer to a broad range of multivariate mediators with latent correla-

tion structures. Examples include imaging data and climate data with spatial correlation,

gene expression data that share the same biological pathways, Electronic Health Records

data that correlate with multiple measurements, or patients with similar conditions. Our

proposed method targets such high-dimensional correlated data as mediators, and we give

the following generic definition of the structured mediator that has a smooth mean function

and a completely independent noise term.

Definition 6. For a given support S, for any s ∈ S, the structured mediator for subject i

is defined as Mi(s) = fi(s) + ϵi(s), ϵi(s) ∼ N(0, σ2
M), ϵi(s) is independent of ϵi(s

′) for any

s ̸= s′, and fi : S 7→ R is a real-value function that satisfies certain smoothness conditions.

Here, the domain S can be a subset of the vector space or a spatial domain such as a

three-dimensional brain in fMRI applications. The number of elements in S, or its size, is

strictly larger than one. The function fi(s) has a certain smoothness structure, for example,

fi(s) can be represented by a lower order basis. One counter-example to the structured

mediator is a single mediator, in which case we cannot separate the unobserved confounding

effect from the independent random noise.

Motivated by the ABCD study, we are interested in the mediation effect of children’s

brain development in the causal relation of parental education level on children’s general

cognitive ability. Let sj be the j-th voxel location in the brain. Let Mi(sj) denote the

image intensity at location sj for subject i, and Xi be a scalar-valued exposure variable of

interest. Let Ci ∈ Rq denote the observed confounders for individual i. Let Yi denote the
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scalar-valued outcome for subject i. i = 1, . . . , n, j = 1, . . . , p. Let S ∈ Rd be a compact

support, L2(S) be the square-integrable functional space on S, and {∆sj}pj=1 be an even

partition on S such that S =
⋃p

j=1∆sj and ∆sj ∩∆sj′ = ∅. We also assume the Lebesgue

measure on a pixel partition to be λ(∆sj) = p−1. Let sj be the center of the partition ∆sj.

We use the abbreviation ηi = {ηi(sj)}pj=1 to denote the functional value on the fixed grid,

and similarly for α, β, ξk. Let GP(0, κ) denote a Gaussian Process with mean function 0 and

covariance function κ(·, ·). For a set A, let |A| be the cardinality of A.

η

Mediator Model Outcome Model

BIMA BASMU: Two-stage
Individual effects

Individual effects Individual effects

A B

Figure 4.1: Model Overview. The green arrows represent the causal mediation triangle,
where X → Y is the Natural Direct Effect (NDE), and the mediation pathway X → M →
Y is the Natural Indirect Effect (NIE). A. Directed Acyclic Graph (DAG) for structured
mediation with unobserved confounders. Here, Z stands for the unobserved confounders. B.
Causal graph representation of BIMA and BASMU with Two-Stage estimation.

Define the mediator model

Mi(sj) = α(sj)Xi +

q∑
k=1

ξk(sj)Ci,k + ηi(sj) + ϵM,i(sj), ϵM,i(sj)
iid∼ N(0, σ2

M). (4.1)

We use α to denote the impact of the treatment Xi on the image mediator Mi, ξk the

functional-coefficient for the vector-valued confounders Ci ∈ Rq, ηi the spatially-varying

individual-specific parameter, and ϵM,i the spatially-independent noise term.

Observe that if there exists unobserved confounder Zi of unknown dimension m, there

would be a term
∑m

r=1 ξm,z(sj)Zr,i which plays the same role as
∑q

k=1 ξk(sj)Ci,k. Since

Zi is unobservable, if ξm,z(sj) is a spatially-varying effect, we can replace the term∑m
r=1 ξm,z(sj)Zr,i by the individual effects ηi(sj), as long as they have the same spatially-

varying structure so that ηi(sj) is separable from the independent noise ϵM,i(sj). The crucial

choice of whether to consider the unobserved confounding effect of ηi(sj) on the outcome

leads to the introduction of two distinct modeling frameworks in the following subsections.
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4.2.1 Structured Mediation When Omitting Unobserved Con-

founders

If we ignore the impact of individual effects on the outcome, the potentially biased outcome

model can be defined as

Yi =

p∑
j=1

β(sj)Mi(∆sj) + γXi +

q∑
k=1

ζkCi,k + ϵY,i, ϵY,i
i.i.d∼ N(0, σ2

Y ). (4.2)

We refer to model (4.1) and (4.2) as the Bayesian Image Mediation Analysis (BIMA) frame-

work [97], where the unobserved confounders are omitted. Here, β denotes the effect of the

image mediatorMi on the outcome Yi, γ the scalar-valued direct effect, and ζk the coefficient

for the kth observed confounder Ck.

In BIMA, with the stable unit treatment value assumption (SUTVA) [72], we follow the

mediation assumption proposed in [86]: for any i, endogenous x and m,

(i) Yi,(x,m) ⊥ Xi | {Ci} , (ii) Yi,(x,m) ⊥Mi | {Ci, Xi},

(iii) Mi,(x) ⊥ Xi | {Ci} , (iv) Yi,(x,m) ⊥Mi,(x′) | {Ci} . (4.3)

The first three assumptions ensure that the observed confounder Ci controls the outcome-

treatment confounding, the outcome-mediator confounding, and the mediator-treatment con-

founding respectively. The fourth assumption ensures the outcome-mediator confounders are

not affected by the underlying endogenous treatment x.

Under the causal inference framework [71] with no unobserved confounders, the average

treatment effect between x and x′ is E
[
Yi,{x,Mi,(x)} − Yi,{x′,Mi,(x′)}

]
, and can be decomposed

into the NIE

E
[
Yi,{x,Mi,(x)} − Yi,{x,Mi,(x′)}

]
=

p∑
j=1

β(sj)α(sj)λ(∆sj)(x− x′),

and the NDE E
[
Yi,{x,Mi,(x′)} − Yi,{x′,Mi,(x′)}

]
= γ(x−x′). Our primary interest is in estimating

the spatially-varying NIE, defined as E(s) = α(s)β(s), and the scalar-valued NIE is E =∑p
j=1 α(sj)β(sj)λ(∆sj). For spatial mediation analysis, we are not only interested in the

scalar-valued NIE E , but also the spatial areas in S where E(s) is nonzero.
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4.2.2 BAyesian Structured Mediation analysis with Unobserved

confounders (BASMU)

Define a full outcome model

Yi =

p∑
j=1

β(sj)Mi(∆sj) + γXi +

q∑
k=1

ζkCi,k +

p∑
j=1

ν(sj)ηi(sj)λ(∆sj) + ϵY,i, (4.4)

where ϵY,i
iid∼ N(0, σ2

Y ) and Mi(∆sj) = E {Mi(sj)}λ(∆sj) + ϵM,i(∆sj) with ϵM,i(∆sj)
ind∼

N(0, σ2
Mλ(∆sj)).

The structural equation models (4.1) and (4.4) together form the BASMU framework.

Under the BASMU framework, we include the effect of ηi on Yi to represent the impact of

unobserved confounders, denoted as ν.

4.2.3 Assumptions and Identification of BASMU

With the presence of unobserved confounders ηi as shown in the BASMI model (4.1) and

(4.4), the assumptions (4.3) are violated. Instead, we impose the following mediation as-

sumptions,

(i) Yi,(x,m) ⊥ Xi | {Ci, ηi} , (ii) Yi,(x,m) ⊥Mi | {Ci, Xi, ηi},

(iii) Mi,(x) ⊥ Xi | {Ci, ηi} , (iv) Yi,(x,m) ⊥Mi,(x′) | {Ci, ηi} (4.5)

The set of assumptions in (4.5) are the same as in [18]. But the scope of [18] is restricted

to the sensitivity analysis of a binary outcome with binary exposure and scalar mediator,

whereas we take advantage of the individual effect ηi as the unobserved confounders, and

propose the full outcome model in (4.4) to reduce the bias in β and the total indirect effect∑p
j=1 α(sj)β(sj).

The joint identifiability of models (4.1) and (4.4) is non-trivial, especially with the intro-

duction of ηi and ν. We impose a set of model identifiability assumptions.

Define column vectors X = (X1, . . . , Xn)
T ∈ Rn, C = (C1, . . . ,Cn)

T ∈ Rn×q. Let

{ψl(s)}∞l=1 be a set of basis of L2(S). Denote the basis coefficients θηi,l =
∫
S ηi(s)ψl(s)λ(ds),

and θη,l = (θηi,l, . . . , θηn,l).

Assumption 4. (i) Conditional on (X,C), there exists a constant matrix W = (Wi,k) ∈
Rn×(q+1) such that det{W⊤(X,C)} ≠ 0; (ii) There exists a constant vector b = (b1, . . . , bq)

⊤

such that for any s ∈ S and k = 1, . . . , q + 1,
∑n

i=1Wi,kηi(s) = bk; (iii) The design ma-

trix after basis decomposition {X,C,θη,1, . . . ,θη,L} ∈ Rn×(L+1+q) is assumed to be full rank,
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and for any subset Sm ⊂ S where |Sm| = m, the design matrix before basis decomposition{
X,C, {η(sk)}sk∈Sm

}
∈ Rn×(m+1+q) is also assumed to be full rank. (iv) The unobserved

confounding effect ν is either low-rank (i.e. ν(s) =
∑L

l=1 θν,lψl(s), L = o(n)), or is sparse

(i.e. ν = (ν(s1), . . . , ν(sp)) ∈ {v ∈ Rp : ∥v∥0 = m}, m = o(n)).

Remark. Assumption 4 is to guarantee the identifiability of the BASMU model. As-

sumption 4 (i) and (ii) are used in the proof of identifiability of {ηi}ni=1 in the mediator (4.1),

which guarantee the identifiability of all parameters in the mediator model (4.1). Assumption

4 (iii) and (iv) are to ensure that the design matrix in the outcome model (4.4) is full-rank

and ν is either sparse or low-rank, which guarantee the identifiability of β, γ, {ζk}qk=1 , ν, σY

in the outcome model (4.4) given {ηi}ni=1. One example of Assumption 4 is b = 0 and

W = (X,C), and θη,l ∈ Rn are sampled from a subspace of Rn orthogonal to span {X,C}.
Let θall = {α, {ξk}qk=1 , {ηi}

n
i=1 , σM , β, γ, {ζk}

q
k=1 , ν, σY } be the collection of all parameters

in model (4.1) and (4.4).

Proposition 3. Under Assumption 4, the BASMU model in (4.1) and (4.4) is jointly

identifiable, i.e. given density function
∏

i f(Yi,Mi;θ|Xi,Ci),
∏

i f(Yi,Mi;θall|Xi,Ci) =∏
i f(Yi,Mi;θ

∗
all|Xi,Ci) implies θall = θ∗

all.

Proposition 3 shows that as long as ν has a latent low dimensional representation, or ν

is sparse, the proposed BASMU model (4.1) and (4.4) are jointly identifiable. In the next

section, we analyze the bias induced by ignoring the unobserved confounder in (4.4).

4.2.4 Bayesian Bias Analysis With Omitted Unobserved Con-

founders

Based on the consistency result for (4.1) in [97], the posterior mean of α is a consistent

estimator. Hence the main focus is on the asymptotic bias of the posterior mean of β under

(4.2) as a point estimator. We assign Gaussian Process (GP) prior on β ∼ GP(0, σ2
βκ).

By Mercer’s theorem, for a given kernel κ(s, s′) =
∑∞

l=1 λlψl(s)ψl(s
′), we can represent

β(s) =
∑L

l=1 θθβ ,lψl(s), L = o(n) where θβ,l
ind∼ N(0, λlσ

2
β).

We use a superscript ‘0’ to denote a true parameter value, e.g., θ0. Denote the true

unobserved confounder term U0 := (η0)
T
ν0 ∈ Rn, and given estimators η̂ and ν̂, denote

Û := (η̂)T ν̂ ∈ Rn. The result below discusses the asymptotic bias of β under model

(4.2) where the unobserved confounder is omitted, and model (4.4) where the unobserved

confounder is considered.

For the structured mediator Mi(∆sj) = E {Mi(sj)}λ(∆sj) + ϵM,i(∆sj), ϵM,i(∆sj)
ind∼

N(0, σ2
Mλ(∆sj)), denote Ei(s) := E {Mi(s)}. In addition, denote the basis coefficients under
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GP basis decomposition as θE,i,l =
∫
S Ei(s)ψl(s)λ(ds), where ψl is the same basis function

in the GP prior of β.

Assumption 5. (i) For any l, l′, limn→∞ n−1
∑n

i=1 θE,i,lθE,i,l′ = Hl,l′, where Hl,l′ is some

finite constant; (ii) For any l, limn→∞ n−1
∑n

i=1 θE,i,lU
0
i = h0l , where h

0
l is a finite constant,

U0
i is the i-th element in U0.

Assumption 6. Conditional on η̂ and ν̂, limn→∞ n−1
∑n

i=1 θE,i,lÛi
p→ ĥl where ĥl is a

random variable that only depends on η̂ and ν̂.

One example of Assumption 5 is to view Ei(s) as i.i.d samples from some unknown

process E(s) (for example, Gaussian Process) with finite first and second moments, and Hl,l′

is the finite covariance for the basis coefficients at l and l′. If we view elements in U0 as n

i.i.d samples drawn from a distribution U with finite second moments, h0l is the covariance

between the l-th basis coefficient of E(s) and U , and is also finite (Holder’s inequality). The

same example applies to Assumption 6.

In the Proposition below, we use θ̂Bβ to denote the point estimator under the BIMA out-

come model and use θ̂Fβ to denote the point estimator under the full BASMU outcome model

that takes account into the unobserved confounders. Denote M̃i,l =
∫
S
Mi(s)ψl(s)λ(ds) and

M̃ ∈ Rn×L, (M̃)i,l = M̃i,l, and denote A := M̃TM̃ ∈ RL×L where L = o(n). Denote σmin(A)

and σmax(A) as the smallest and largest singular values of A respectively.

Proposition 4. Assume that A satisfy 0 < cmin < lim infn→∞ σmin(A)/n ≤
lim supn→∞ σmax(A)/n ≤ cmax < ∞ with probability 1 − exp {−c0n} for some positive con-

stant c0, cmin, cmax. In addition, in the GP prior basis coefficients θβ,l
ind∼ N(0, σ2

βλl) , assume

that λL > cλn
−1+aλ for some positive constant cλ, aλ. We can draw the following conclusions

given Assumptions 5 and 6:

(i) When U0 = 0, i.e. no unobserved confounder, the asymptotic bias of θ̂Bβ is 0.

(ii) Given Assumption 5 and 6, and assume that the true unobserved confounder term∑n
i=1 (U

0
i )

2
/n is finite, then the bias of the posterior mean of θβ under BIMA model (4.2)

bias(θ̂Bβ )
p→ (H + σ2

MIL)
−1h0, and the bias under the full model (4.4) bias(θ̂Fβ )

p→ (H +

σ2
MIL)

−1
(
h0 − ĥ

)
.

Remark. The result of Proposition 4 is conditional on the true values of γ and ζk in (4.4)

for simplicity of the analysis. A similar bias analysis result can be drawn on the NDE γ if

we treat X as one additional column in M̃ , and the bias of γ is the corresponding element

in bias(θ̂Bβ ) and bias(θ̂Fβ ).

Implications. Proposition 4 (i) can be seen as a corollary of (ii). Based on Proposition

4 (ii), we can expect that: (a) the bias of BIMA depends on the scale of the unobserved
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term h0, and is nonzero unless h0 = 0; (b) the bias of BASMU depends on the estimation

of η̂ and ν̂; (c) larger random noise σM in the mediator model may reduce the bias, because

larger random noise makes the observed mediator Mi(s) less correlated with the individual

effect ηi(s).

4.3 Two-stage Estimation

The most natural way to estimate model (4.1) and (4.4) is to use a fully Bayesian approach

to update all parameters iteratively. This involves updating the individual effects ηi jointly

from both models (4.1) and (4.4) in every iteration. Due to the large parameter space of

{ηi}ni=1 to search from, the joint estimation approach usually takes very long to converge.

For every iteration when {ηi}ni=1 is updated, the new {ηi}
n
i=1 can have a huge impact on the

likelihood of (4.4), and all other parameters in (4.4) need longer iterations to converge to

stable values, hence the joint estimation can make estimating the outcome model (4.4) very

unstable. Because the posterior of {ηi}ni=1 is mainly dominated by the mediator model (4.1),

sampling {ηi}ni=1 based solely on (4.1) can already give a consistent estimation (see remark

of Assumption 4), hence instead of the fully Bayesian joint estimation approach, we propose

the two-stage estimation.

In the two-stage estimation, we compute the posterior of model (4.1) and (4.4) separately.

First, we draw posterior samples based on model (4.1) based on the priors

α ∼ GP(0, σ2
ακ), ξk ∼ GP(0, σ2

ξκ), ηi ∼ GP(0, σ2
ηκ), (4.6)

and compute the posterior mean of ηi conditional only on model (4.1), denoted as η̂i. Using

η̂i as part of the fixed design matrix in (4.4), draw MCMC samples from (4.4) conditioning

on ηi = η̂i, based on the following prior for ν,

ν(s) = g(s)δ(s), g(s)
ind∼ N(0, σ2

ν), δ(s)
ind∼ Ber(1/2). (4.7)

The two-stage estimation uses a flexible prior on ν with a spatial independent structure,

and the selection variable δ allows sparsity in ν. Through simulation studies, we find that

η̂i can estimate ηi well when p is reasonably larger than L, i.e. when the kernel for ηi is

smooth. Estimating ν is still challenging for two-stage estimation, given that ηi can be mis-

specified. However due to the flexible prior on ν, even when ν cannot be fully recovered

from the two-stage estimation, the estimation for β can still be greatly improved compared

to BIMA. For fast posterior computation, we use Singular Value Decomposition (SVD) on

{ηi}ni=1. The detailed two-stage algorithm is provided in the Appendix C.3.
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So far, we have compared two model frameworks, BIMA and BASMU 1, the first of which

omits the unobserved confounders completely. Figure 4.1B provides a visual illustration of

the structure of the two methods. The two-stage estimation is expected to give good point

estimation results, although not fully Bayesian inference. The flexible prior on ν still allows

us to debias β, as long as η̂i is not too far from the truth.

4.4 Simulation Study

We compare the performance of BIMA and BASMU through extensive simulation studies.

For α, β, and ν, we simulate 2D p = 40× 40 images (true signals are shown as in Figure C.1

and Figure C.4a). For the GP priors in (4.6) and β, we use Matérn kernel with ρ = 2, τ =

0.2, d = 2,

κ(s′, s; τ, ρ) = Cν(∥s′ − s∥22/ρ), Cτ (d) :=
21−τ

Γ(τ)

(√
2τd
)τ
Kτ (
√
2τd). (4.8)

The GP prior parameters α, β, ηi, ξk use the same basis decomposition of the kernel function

in (4.8), denoted as κ(s′, s) =
∑∞

l=1 λlψl(s
′)ψl(s). For example, β(s) is approximated by∑L

l=1 θβ,lϕl(s) with the prior θβ,l
ind∼ N(0, λlσ

2
β). Set L = 120 basis coefficients as the cutoff.

We use the Metropolis-Adjusted Langevin Algorithm (MALA) for updating α and β, and

the Gibbs sampler for the rest of the parameters. For the outcome models in both BIMA

and BASMU, we use a total of 2× 104 iterations with the last 10% used as MCMC samples.

The mediator model (4.1) uses 103 iterations with the last 10% used as MCMC samples.

Table 4.1 summarizes the settings for six cases, varying ση, σM , and n to show the

theoretical implications of Proposition 4. We simulate three signal patterns for ν (dense,

sparse, and zero) as shown in Appendix Figure C.4a. Each case has 100 replications. The

dense ν signal is simulated using low dimensional basis coefficients mapped to p-dimension

through the same Matérn kernel in (4.8).

We present the scalar-valued NIE E in terms of the bias, variance and MSE over 100

replications as in Table 4.1, and visualize the spatial MSE (Appendix Figure C.2) and Bias

(Appendix Figure C.3) on the posterior mean of β(s) as a point estimator over 100 replica-

tions. Each voxel sj in Figure C.2 represents the MSE of the posterior mean of β(sj).

Results in Table 4.1 show that BASMU generally archives the lowest MSE for E , except
for Case 3 where no unobserved confounding effect is present. To verify the theoretical

implications by Proposition 4, comparing Case 2 and 4, as n increases, the MSE of BASMU

decreases, whereas the BIMA model has increased MSE and bias. This is because ∥h0− ĥ∥2
1The BASMU R package can be found on the GitHub page https://github.com/yuliangxu/BASMU
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Table 4.1: Simulation result of the scalar NIE E averaged over 100 replications. The smaller
MSE of E is bolded in each case. The default generative parameter settings are ση = 0.5,
n = 300, σM = 2.

BIMA BASMU BIMA BASMU BIMA BASMU
Case 1 dense ν Case 3 all 0 ν Case 5 dense ν, ση = 1
Bias -2.72 1.06 Bias -0.5 -0.17 Bias 13.31 2.21
Var 3.59 4.11 Var 2.31 4.49 Var 3.35 3.2
MSE 10.97 5.20 MSE 2.53 4.48 MSE 180.36 8.06
Case 2 sparse ν Case 4 sparse ν, n = 600 Case 6 dense ν, σM = 4
Bias 7.56 1.87 Bias 10.77 2.29 Bias -6.33 -0.57
Var 3.42 3.76 Var 1.54 1.54 Var 13.43 12.63
MSE 60.51 7.22 MSE 117.5 6.79 MSE 53.36 12.82

decreases as Û → U0 when n increases. Comparing Case 1 and 5, as ση increases, U0

increases, the MSE for BASMU has little changes compared to the huge increase in MSE

and bias for BIMA due to the increased scale of U0. Comparing Case 1 and 6, as σM

increases, the bias for BASMU decreases. In fact, from the spatial MSE and bias in Figure

C.3 Case 6 compared to Case 1, both BIMA and BASMU have an overall decreased MSE

and bias in β, though the decreased bias area does not overlap with the true nonzero signal

regions in α and β, hence not fully reflected on the result of scalar NIE. Figure C.2 and C.3

show straight-forward evidence that the two-stage estimation of BASMU can indeed reduce

the bias of β(s) and have a lower MSE over varying spatial locations in all scenarios. In

Appendix Table C.1 we also provide the NDE result with similar implications.

4.5 Analysis of ABCD Data

For the real data analysis, we use the ABCD study release 1 [10] as an example. The scientific

question of interest is the mediation effect of children’s brain development on the impact of

parental education level on children’s general cognitive ability. The structured mediator is

the task fMRI data of the children. The outcome is children’s general cognitive ability, the

exposure is the parental education level, a binary indicator of whether or not the parent

has a bachelor’s or higher degree. The confounders include age, gender, race and ethnicity

(Asian, Black, Hispanic, Other, White), and household income (less than 50k, between 50k

and 100k, greater than 100k). For the multi-level variables race and ethnicity, and household

income, we use binary coding for each level. The potential unobserved confounders can be

the stress level of the participants, nutrient supply, and other genetic factors that might

impact brain development.
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The task fMRI data is 2-back 3mm task contrast data, and the preprocessing method is

described in [81]. Each voxel in the 3D image mediator represents the brain signal intensity

when the subject tries to remember the tasks they performed 2 rounds ago.

A previous mediation analysis using the same data set has been conducted in [97] that

ignored unobserved confounders. In this analysis, we use the top four regions (shown in Table

4.2) previously identified in [97] with the most significant mediation effect, and perform a

BASMU analysis with the brain image data on these four regions. After preprocessing, we

have n = 1861 subjects and p = 3539 voxels as mediators. The GP kernel in use is the

same Matérn kernel as in [97]. BIMA and BASMU share the same mediator model result

with a total of 104 iterations. For the outcome model in BIMA, we use 3 × 104 total of

iterations. For BASMU, due to the SVD at each iteration, the computational speed of the

two-stage algorithm is relatively slow for the real data. Hence we set δ(s) in (4.7) to 1 at

the beginning and run for 104 iterations first to get the initial values and use these initial

values to run the two-stage algorithm for 2× 103 iterations with the last 20% as the MCMC

sample. The total running times are 54 minutes for the mediator model, 61 minutes for the

BIMA outcome model, and about 4 hours for the BASMU outcome model. All real data

analyses are performed on a laptop with an Apple M1 chip and 8GB memory.

Table 4.2: Comparison of ABCD data analysis under BIMA and BASMU. The top table
reports the active voxel selection, from column 3 to 8: number of active voxels selected by
BIMA/BASMU (brackets: percentage of selected voxels over the total number of voxels),
number of commonly selected voxels, number of voxels only selected by BIMA/BASMU, and
the total number of voxels in each region. The bottom table reports the numeric values of
the NIE, from column 3 to 8: summation of NIE over the region under BIMA/BASMU,
summation of NIE over voxels with positive effect under BIMA/BASMU, summation of NIE
over voxels with negative effect under BIMA/BASMU.

Selection of active mediation voxels E(sj)
Region code and name BIMA BASMU common BIMA only BASMU only size
34 Cingulum Mid R 80 (13%) 342 (57%) 68 12 274 605
57 Postcentral L 108 (9%) 246 (21%) 92 16 154 1159
61 Parietal Inf L 138 (20%) 387 (56%) 131 7 256 696
67 Precuneus L 150 (14%) 404 (37%) 137 13 267 1079

Effect size of E
Region code and name BIMA NIE BASMU NIE BIMA NIE (+) BASMU NIE (+) BIMA NIE (-) BASMU NIE (-)
34 Cingulum Mid R 0.007 0.007 0.022 0.032 -0.015 -0.025
57 Postcentral L 0.007 0.021 0.068 0.087 -0.062 -0.065
61 Parietal Inf L 0.009 0.000 0.163 0.163 -0.154 -0.162
67 Precuneus L 0.051 0.075 0.107 0.140 -0.057 -0.065

Table 4.2 shows the comparison of NIE between BIMA and BASMU. We use the criteria

of whether the 95% credible interval includes 0 for active mediation voxel selection. In the

bottom table of NIE size, the total, positive, and negative effects are separately reported for
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each method. The NDE under BIMA is 0.247, with a 95% credible interval (0.166, 0.329).

The NDE under BASMU is 0.183, with a 95% credible interval (0.145, 0.218). The NIE over

all locations is 0.073 for BIMA with (0.012, 0.127) as the 95% credible interval, and 0.103

for BASMU with (0.043, 0.155) as the 95% credible interval. To check the model fitting,

the R2 for the BIMA outcome model (4.2) is 0.41, and the R2 for the BASMU outcome

model (4.4) is 0.42. Figure 4.2 provides a visual illustration of the selected active mediation

voxels. Appendix Figure C.4b gives a scatter plot of each estimated E(sj) between BIMA

and BASMU.

Figure 4.2: Coronal view of active NIE E areas. The blue areas are active mediation voxels
selected by BIMA, the red areas are selected by BASMU, and the overlaying purple areas
are commonly selected by both methods.

Based on Table 4.2, BASMU tends to select more active mediation voxels in all top

four regions compared to BIMA. Especially in region 34 (right middle cingulum), an area

for integrating memory information, BASMU selects three times more mediation voxels,

although the scalar NIE for this region remains unchanged. In terms of effect size, BASMU

in region 57 (left postcentral), an area for episodic memory retrieval, has a larger scale in

NIE. In the scatter plot in Appendix Figure C.4b, we can see that the large positive voxels are

usually selected by both methods, whereas BASMU gives more selection on smaller positive

effects. In the coronal view of the brain image NIE Figure 4.2, the center of the large active

areas are usually selected by both methods, whereas the edge of those large areas tends

to differ between BIMA and BASMU. In summary, after accounting for the unobserved

confounders, we tend to select more active mediation voxels, and the effect of parental

education on children’s general cognitive ability mediated through children’s brain activity

takes a larger proportion in the total effect after adjusting for the unobserved confounders.

The NDE also tends to decrease after adjusting for unobserved confounders.

4.6 Conclusion and Discussion

In this work, based on the BIMA [97], we propose the BASMU framework for structured

mediators to account for the unobserved confounder effects. We utilize the individual effects
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as the unobserved confounders and incorporate them into the outcome model. We provide

rigorous proof for the theoretical analysis on the asymptotic bias of the outcome model, and

the identifiability of the BASMU model. For the estimation step, due to the complexity

of the BASMU model, we propose the two-stage estimation algorithm. While full Bayesian

inference from joint estimation is challenging, our two-stage estimation method yields rea-

sonably accurate point estimates for β and NIE, as evidenced by extensive simulation results.

Alternative ways of the two-stage algorithm include bootstrap, or updating ηi and updating

all other parameters until convergence and then iteratively updating ηi in loops until full

convergence. We apply BASMU in the ABCD study and find the mediation effect takes

a larger proportion after adjusting for the unobserved confounders. The limitation of this

work is that the mediator has to be spatially smooth or satisfy certain pre-fixed correlation

structures for the individual effects to be estimated. In practice, unobserved confounders

with more complex correlation structures may not be fully accounted for under the current

BASMU framework.
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CHAPTER 5

Future Work

The preceding chapters have discussed the Bayesian Image Mediation problem and proposed

novel methods with theoretical guarantees or computational advantages. However, there are

still several aspects of this problem that have not been the main focus of this dissertation,

but are important to address in the future. In this chapter, we provide some extended

discussion in using FDR control method in mediation signal selection, and other distribution-

free approaches to handle unobserved confounder in the mediation problem.

5.1 Variable Selection Procedure for FDR Control

In the scope of Chapters 2 and 3, the proposed thresholding priors can yield sparsity in the

posterior samples, and we use Posterior Inclusion Probability (PIP) to determine how likely

a voxel can be an active signal. However, there is a lack of discussion on how to use PIP to

control False Discoveries. For the Image-on-scalar regression in Chapter 3, we use multiple

comparison p-value correction method on the result of the Mass Univariate Analysis, and

use the proportion of active voxels as the cutoff to choose a cutoff on PIP, so that in the

simulation study, the ST-CAR prior result all has FDR below 10%. This can serve as one

naive way of FDR control, but for Scalar-on-Image regressions, there are no straight forward

ways to choose such a threshold on PIP.

One possible future direction is to use the knock-off idea [3]. The knock-off idea permutes

the order of the observed data to find false discoveries. For example, in Scalar-on-Image

regression, for one target location sj that may be an active signal, if we only permute the

individual indices i and replace Mi(sj) by the permuted M(i)(sj) but keep other locations

of observed data the same, and rerun the analysis. If the new result still shows location sj

as an active voxel, it is likely a false discovery. Using this approach, we can determine an

interval threshold (l, r) on the PIP, where if PIPj < l, it is deemed as a non-active voxel,

and if PIPj > r, it is deemed as an active voxel. During some preliminary simulation test, if
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we start from a conservative threshold (PIPj > 0.9) to determine the active voxels, permute

on voxels with PIPj < 0.9, we can let l be the smallest PIP on voxels that become active

from non-active after the permutation, and let r be the smallest PIP voxels that become

non-active from active after the permutation. We find this approach to work well in selecting

true negatives and true positives in some simple simulation case. The type I and type II error

using this approach requires further investigation into the knock-off and variable selection

literature.

5.2 Distribution-free Approach for Unobserved Con-

founders

One limitation of Chapter 4 is that the unobserved confounders must follow certain smooth-

ness assumptions to be estimated. This assumes the unobserved confounders must follow

certain distribution, although it can be very flexible if we choose a flexible Gaussian kernel.

Nonetheless, recent literature [40] has utlized the distributionally robust optimization. Dif-

ferent from traditional sensitivity analysis based on point-wise estimation, [40] proposes a

new sensitivity analysis approach based on a non-parametric model, and gives an estima-

tion on the bound of the odds ratio of selection bias caused by the unmeasured confounder.

This new direction has the potential for distribution-free sensitivity analysis on the image

mediation analysis with unmeasured confounders.
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APPENDIX A

Chapter 2: Appendix

A.1 Proof

A.1.1 Proof of Proposition 1

Proof of Proposition 1. In this proof we omit the notations µM,i to µi for simplicity. First

we show the identifiability of model (2.2), namely part (a) in Proposition 1.

Consider two parameter sets ΘM = {α, {ζk}qk=1 , {ηi}
n
i=1} and Θ′

M = {α′, {ζ ′k}
q
k=1 , {η′i}

n
i=1}

Suppose the probability distributions of M given X and C under ΘM and Θ′
M are equal,

i.e.,

π(M | X,C,ΘM) = π(M | X,C,Θ′
M),

where X and C satisfy the Assumption 2. Note that M = {Mi(s)}. The joint distributions

of two multi-dimensional random variables are the same implies that the corresponding

marginal distributions of any element of the two random variables are also the same. Hence

we have for any i ∈ {1, . . . , n} and any s ∈ B,

π(Mi(s) | X,C,ΘM) = π(Mi(s) | X,C,Θ′
M).

Since Mi(s) follows a normal distribution, for i ∈ {1, . . . , n} and any s ∈ B,

µ′
i(s) = µi(s) and σ

′2
M = σ2

M ,

where µi(s) = α(s)Xi + ηi(s)+
∑q

k=1 ζk(s)Ci,k and µ′
i(s) = α′(s)Xi + η′i(s)+

∑q
k=1 ζk(s)Ci,k.

Consider the decomposition of µi(s), µ
′
i(s), α(s), α

′(s), ηi(s) and η
′
i(s).

µi(s) =
∞∑
l=1

θµ,i,lψl(s), α(s) =
∞∑
l=1

θα,lψl(s), ηi(s) =
∞∑
l=1

θη,i,lψl(s), ζk(s) =
∞∑
l=1

θζ,k,lψl(s)
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µ′
i(s) =

∞∑
l=1

θµ′,i,lψl(s), α′(s) =
∞∑
l=1

θα′,lψl(s), η′i(s) =
∞∑
l=1

θη′,i,lψl(s), ζ ′k(s) =
∞∑
l=1

θζ′,k,lψl(s),

where the basis coefficients are satisfied with the following identities.

θµ,i,l = θα,lXi + θη,i,l +

q∑
k=1

θζ,k,lCi,k, and θµ′,i,l = θα′,lXi + θη′,i,l +

q∑
k=1

θζ′,k,lCi,k.

Since µi(s) = µ′
i(s) for any i ∈ {1, . . . , n} and any s ∈ B, then for any l ≥ 1, θµ,i,l = θµ′,i,l.

Then we have (θα,l− θα′,l)Xi+ θη,1,l− θη′,1,l+
∑q

k=1 (θζ,k,l − θζ′,k,l)C1,k = 0. According to the

Assumption 2, for t = 1, . . . , q+1,
∑n

i=1Wi,t(θη,i,l− θη′,i,l) = 0. Let bl = (θα1,l− θ′α1,l
, θζ,1,l−

θζ′,1,l, . . . , θζ,q,l − θζ′,q,l, θη,1,l − θ′η,1,,l, . . . , θη,n,,l − θ′η,n,,l)⊤ for any l ≥ 1 and

A =

(
0(q+1)×1 0(q+1)×q W⊤

X C In

)
,

where bl is of dimension (q + 1 + n) × 1 and A is of dimension (n + q + 1) × (n + q + 1).

Then we have the linear system: Abl = 0(n+q+1)×1.

Denote X̃ = (Xn×1,Cn×q) ∈ Rn×(q+1). Note that det(A) = det(0−W⊤I−1
n X̃) det(In) =

det(WTX̃) ̸= 0 by Assumption 2. This implies that 0n+1+q is the unique solution of Abl =

0n+1+q. Thus

θα,l = θα′,l, θη,i,l = θη′,i,l, θζ,k,l = θζ′,k,l

This further implies that for any s and any i,

α(s) = α′(s), ηi(s) = η′i(s), ζk(s) = ζ ′k(s)

This proves the identifiability of model (2.2). Next, we show the statement in (b) in Propo-

sition 1. Part (b) will be used in the proof of Theorem 1.

By directly setting W = X̃, and
∑n

i=1Wi,tηi(s) = 0 for t = 1, . . . , q + 1, we know that∑n
i=1 X̃i,tηi(s) = 0 for t = 1, . . . , q+1. For each s, let α̃(s) = {α(s), ζ1(s), . . . , ζq(s)}T ∈ Rq+1

and α̃′(s) = {α′(s), ζ ′1(s), . . . , ζ
′
q(s)}T ∈ Rq+1. Let b̃l = (θα1,l − θ′α1,l

, θζ,1,l − θζ′,1,l, . . . , θζ,q,l −
θζ′,q,l)

T and gl = (θη,1,l−θ′η,1,,l, . . . , θη,n,,l−θ′η,n,,l)T. Then X̃T
i {α̃(s)−α̃′(s)} =

∑∞
l=1 X̃

T
i b̃lψl(s)
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and η̃i(s)−η̃′i(s) =
∑∞

l=1 gl,iψl(s). Since
∫
S{µi(s)−µ′

i(s)}2λ(ds) is finite, by Fubini’s theorem,

1

n

n∑
i=1

∫
S
{µi(s)− µ′

i(s)}2λ(ds)

=
1

n

∫
S

n∑
i=1

{
X̃T

i (α̃(s)− α̃′(s))
}2

λ(ds) +
1

n

∫
S

n∑
i=1

{ηi(s)− η′i(s)}
2
λ(ds)

=
1

n

∫
S

n∑
i=1


(

∞∑
l=1

X̃Tb̃lψl(s)

)2

+

(
∞∑
l=1

g2l,iψl(s)

)2
λ(ds)

=
1

n

n∑
i=1

{
∞∑
l=1

(X̃T
i b̃l)

2 +
∞∑
l=1

g2l,i

}

=
1

n

∞∑
l=1

∥X̃b̃l∥22 +
1

n

∞∑
l=1

∥gl∥22.

By Assumption 2(a) that σmin(X̃) >
√
n, ∥X̃b̃l∥22 ≥ σ2

min(X̃)∥b̃l∥22 ≥ n∥b̃l∥22. Hence

1

n

n∑
i=1

∫
S
{µi(s)− µ′

i(s)}2λ(ds) ≥
∞∑
l=1

∥b̃l∥22 +
1

n

∞∑
l=1

∥gl∥22.

Note that the empirical norm ∥f∥2,p is a finite grid approximation of the Hilbert space

inner product
√∫

S f
2(s)λ(ds). By Definition 4(d), the approximation error is given by

err(f) =
∣∣∥f∥22,p − ∫S f 2(s)λ(ds)

∣∣ ≤ Kp−2/d.

∥α− α′∥22,p =
∞∑
l=1

(θα,l − θα′,l)
2 + err(α− α′)

∥ζk − ζ ′k∥22,p =
∞∑
l=1

(θζk,l − θζ′k,l)
2 + err(ζk − ζ ′k), k = 1, ..., q

∥ηi − η′i∥22,p =
∞∑
l=1

(θηi,l − θη′i,l)
2 + err(ηi − η′i), i = 1, ..., n

For n large enough such that Kp−2/d < 1
q+3

ϵ2, the following inequality

∥α(s)− α′(s)∥22,p +
q∑

k=1

∥ζk(s)− ζ ′k(s)∥22,p +
1

n

n∑
i=1

∥ηi(s)− η′i(s)∥22,p > ϵ2

implies that there exists constant c′1
∑∞

l=1 ∥b̃l∥22+n−1
∑∞

l=1 ∥gl∥22 > c′1ϵ
2 which further implies
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that there exists constant c0,

1

n

n∑
i=1

∥µi(s)− µ′
i(s)∥22,p > c0ϵ

2

Hence Proposition 1(b) follows.

A.1.2 Proof of Theorem 1

Theorem 1 is proved by checking the conditions in Theorem A.1 in [13].

For simplicity, throughout the proof of Theorem 1, we use the following notations:

θ = {α, {ζk}qk=1 , {ηi}
n
i=1}, and the true parameters denoted as θ0 = {α0, {ζ0k}

q
k=1 , {η0i }

n
i=1}.

In addition, let µi(s) = α(s)Xi +
∑q

k=1 ζk(s)Ci,k + ηi(s) be the mean function given

{Xi, {Ci,k}qk=1}ni=1, and µ
0
i (s) be the mean function under the true parameters.

Conditional on {Xi, {Ci,k}qk=1}ni=1, for individual i and location sj, Mi(sj) follows inde-

pendent distributions across i = 1, . . . , n, j = 1, . . . , p, with density function π(Mi(sj); θ) =

ϕ(µi(sj), σ
2), where ϕ(µi(sj), σ

2) is used to denote the normal density with mean µi(sj) and

variance σ2. Let Λi,j(θ0, θ) := log{π(Mi(sj); θ0)/π(Mi(sj); θ)}.
First, we verify the prior positivity condition as follows.

Lemma 1. (Prior positivity condition) There exists a set B, Π(B) > 0 such that

1. lim inf{n,p}→∞Π
{
θ ∈ B : (np)−1

∑n
i=1

∑p
j=1 Eθ0{Λi,j(θ0, θ)} < ϵ

}
> 0 for all ϵ > 0;

and

2. (np)−2
∑n

i=1

∑p
j=1Varθ0{Λi,j(θ0, θ)} → 0, as n→∞ and p→∞, for all θ ∈ B.

Proof. Define

∥θ − θ0∥∞ = max

{
sup
s∈S
|α(s)− α0(s)|,max

k
sup
s∈S
|ζk(s)− ζ0k(s)|,max

i
sup
s∈S
|ηi(s)− η0i (s)|

}
.

(A.1)

For constant δ > 0, consider

Bδ = {θ ∈ Θ : ∥θ − θ0∥∞ < δ} .

Since the prior distributions for the above parameters are independent, to show Π(Bδ) > 0,

we only need to show that the prior of each term in (A.1) being upper bounded by a constant

has a positive probability.
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By Theorem 4 in [29], for any i = 1, . . . , n, k = 1, . . . , q,

Π

(
sup
s∈S
|ηi(s)− η0i (s)| < δ

)
> 0, Π

(
sup
s∈S
|ζk(s)− ζ0k(s)| < δ

)
> 0.

By Lemma 2 in [43], for any threshold ν > 0 and any true α0(s) ∈ Θα, there exists

α̃(s) in the RKHS of κ(·, ·) such that α0 = Tν(α̃0). Note that the soft-thresholding func-

tion Tν(x) is a 1-Lipschitz continuous function of x, and by Theorem 4 in [29], we have

Π (sups∈S |α̃(s)− α̃0(s)| < δ) > 0, which implies Π (sups∈S |Tν(α̃(s))− Tν(α̃0(s))| < δ) > 0.

Hence for any θ ∈ Bδ, where Π(Bδ) > 0, we have

Eθ0 [Λi,j(θ0, θ)] =E [Eθ0 {Λi,j(θ0, θ) | X,C}]

=− 1

2σ2
M

E
[
Eθ0

{
(Mi(sj)− µ0

i (sj))
2 | X,C

}]
+

1

2σ2
M

E
[
Eθ0

{
(Mi(sj)− µ0

i (sj) + µ0
i (sj)− µi(sj))

2 | X,C
}]

=E
[

1

2σ2
M

(µ0
i (sj)− µi(sj))

2

]
Note that

1

2σ2
M

{µ0
i (sj)− µi(sj)}2

≤ 1

2σ2
M

[
{α(sj)− α0(sj)}Xi +

q∑
k=1

{ζk(sj)− ζ0k(sj)}Ci,k + {ηi(sj)− η0i (sj)}

]2

≤ 2

σ2
M

[
X2

i {α(sj)− α0(sj)}2 +
q∑

k=1

{ζk(sj)− ζ0k(sj)}2C2
i,k + {ηi(sj)− η0i (sj)}2

]

By choosing a constant Kmax such that maxi{E {|Xi|2} ,maxk E {|Ci,k|2}} ≤ Kmax, then

for any θ ∈ Bδ, (np)
−1
∑n

i=1

∑p
j=1 Eθ0 {Λi,j(θ0, θ)} < 2σ−2

M Kmax(2 + q)δ2, hence for a small

enough ϵ such that 0 < ϵ < σ−2
M Kmax(2 + q)δ2,

lim inf
{n,p}→∞

Π

{
θ ∈ Bδ :

1

np

n∑
i=1

p∑
j=1

Eθ0 (Λi,j(θ0, θ)) < ϵ

}

≥ Π

∥θ − θ0∥∞ ≤
√(

2

σ2
M

Kmax(2 + q)

)−1

ϵ

 > 0.

To show the second condition, we only need to show that for any i, j and any θ ∈ Bδ, the
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variance Varθ0 {Λi,j(θ0, θ)} is bounded by some constant.

Varθ0 {Λi,j(θ0, θ)} = E {Varθ0 {Λi,j(θ0, θ) | X,C}}+Var {Eθ0 {Λi,j(θ0, θ) | X,C}}

= E
{

1

σ2
M

(
µ0
i (sj)− µi(sj)

)2}
+Var

{
1

2σ2
M

(µ0
i (sj)− µi(sj))

2

}
≤ max

{
4

σ2
M

Kmax(2 + q)δ2,
4

σ4
M

Kmax,V (2 + q)δ4
}
<∞,

where Kmax,V ≥ maxi
{
Var(X2

i ),maxk Var(C
2
i,k)
}
.

Before the test construction, we add a useful lemma on the tail probability of the maximum

of sub-Gaussian random variables.

Lemma 2. Let Xi, i = 1, . . . , N be sub-Gaussian random variables. Let σ2
i be the constant

such that P(|Xi| > t) ≤ 2 exp(−t2/σ2
i ) for any t > 0 and i = 1, . . . , N . Let σ̃2

N =
∨N

i=1 σ
2
i .

Then for any t > 0, P
(
maxi |Xi| >

√
σ̃2
N log 2N + t

)
≤ exp(−t).

Proof. Let u =
√
σ̃2
N log 2N + t,

P
(
max

i
|Xi| > u

)
≤
∑
i

P(|Xi| > u) ≤ 2N exp
{
−u2/σ̃2

N

}
= exp(−t).

Next, we construct a test that satisfies the Type I and Type II error bound on a specified

sieve space.

Lemma 3. (Existence of tests) There exist test functions {Φnp}, subset Un,Θn ⊂ Θ, and

constant K1, K2, c1, c2 > 0 such that

(a) Eθ0Φnp → 0, as n→∞ and p→∞;

(b) supθ∈Uc
n∩Θn

Eθ(1− Φnp) ≤ K1e
−c1np;

(c) Π(Θc
n) ≤ K2e

−c2np.

Proof. Define the sieve space of θ as Θn, which be decomposed into product of the following
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parameter space:

Θn = Θα,n ×
q∏

k=1

Θζ,k,n ×
n∏

i=1

Θη,i,n

Θα,n =

{
α ∈ Θα : sup

s∈R1∪R−1

∥Dωα(s)∥∞ <
√
np, ∥ω∥1 ≤ ρ

}
Θζ,k,n =

{
ζk ∈ Θζ : sup

s∈S
∥Dωζk(s)∥∞ < np, ∥ω∥1 ≤ ρ

}
, k = 1, . . . , q

Θη,i,n =

{
ηi ∈ Θη : sup

s∈S
∥Dωηi(s)∥∞ < np, ∥ω∥1 ≤ ρ

}
, i = 1, . . . , n

where Dωf(s) stands for (∂∥ω∥1/∂ω1 , . . . , ∂∥ω∥1/∂ωd)f(s) for any ω = (ω1, . . . , ωd)
T with

ωj(j = 1, . . . , d) being positive intergers and s ∈ Rd.

To show the conditions (a) and (b), we use Lemma 8.27(i) in [30], by viewing M ∼
Nnp(µ, σ

2I), µ = {µi(sj)}n,pi=1,j=1 ∈ Rnp. By Lemma 8.27(i), for any µ1,µ0 ∈ Rnp, there

exists Φ(µ1) such that for any µ where ∥µ− µ1∥2 ≤ ∥µ0 − µ1∥2/2,

Eµ0Φ(µ1) ∨ Eµ{1− Φ(µ1)} ≤ exp
{
−c1∥µ0 − µ1∥22/σ2

M

}
Because the type II error in condition (b) does not depend on a single µ1, to remove

the dependence on µ1, and to use a neighborhood Un defined by the empirical norm as the

distance metric instead of the Euclidean norm, we use the same technique as the one in

Proposition 11 in [84]. For any r ≥ 1, any integer j ≥ 1, define shells for µ

Cj,r := {Θn : jr ≤ ∥µ− µ0∥2 ≤ (j + 1)r}

Denote P(Cj,r, jr/2, ∥ · ∥2) as the largest packing number of Cj,r with Euclidean distance

jr/2, and denote the corresponding jr/2-separated set of Cj,r as Pj. Note that Pj is also a

jr/2-covering set of Cj,r. Hence for any µ ∈ Cj,r, there exists µ1 ∈ Pj such that

∥µ− µ1∥2 ≤
jr

2
≤ 1

2
∥µ1 − µ0∥2.

Choose Φj = maxµ1∈Pj
{Φ(µ1)}, then for any µ ∈ Cj,r, conditioning on X,C,

Eµ0,σ0Φj ≤ 2P(Cj,r,
jr

2
, ∥ · ∥2) exp

{
−c1[(jr)2]/σ2

M

}
Eµ,σ(1− Φj) ≤ exp

{
−c1[(jr)2]/σ2

M

}
Denote N (Θn, r, ∥ · ∥∞) as the smallest covering number for the set Θn with radius r and
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distance function ∥ · ∥∞. Now we need an upper bound on logN (Θn, r, ∥ · ∥∞). Note that

by Lemma 2 in [29] and a similar approach in Lemma A1 in [43], there exist constants

Kα, Kζ , Kη, such that logN (Θα,n, r, ∥·∥∞) ≤ Kα(np)
d/(2ρ)r−d/ρ, and logN (Θη,i,n, r, ∥·∥∞) ≤

Kη(np)
d/ρr−d/ρ, logN (Θζ,k,n, r, ∥ · ∥∞) ≤ Kζ(np)

d/ρr−d/ρ. Hence there exists constant K0,

logN (Θn, r, ∥ · ∥∞)

≤ logN (Θα,n, r, ∥ · ∥∞) +

q∑
k=1

logN (Θζ,k,n, r, ∥ · ∥∞) +
n∑

i=1

logN (Θη,i,n, r, ∥ · ∥∞)

≤ K0n(np)
d/ρr−d/ρ

Conditioning on (X,C), denote

Θ∗
n :=

{
µ ∈ Rnp : µij = α(sj)Xi +

q∑
k=1

ζk(sj)Ci,k + ηi(sj), θ ∈ Θn

}
.

Now we first show that conditioning on (X,C), given c∗n = maxi {|Xi|, ∥Ci∥∞}i,

logN (Θ∗
n, r/ (4

√
np) , ∥ · ∥∞) ≤ logN (Θn, r/ (4c

∗
n

√
np) , ∥ · ∥∞).

Denote S∗
µ,n as a (c∗nr)-covering set of Θ∗

n under ∥ ·∥∞. S∗
µ,n is constructed in the following

way: for any µ ∈ Θ∗
n, there exists a corresponding θµ = (α, {ζk}qk=1 , {ηi}

n
i=1) ∈ Θn such

that µij = α(sj)Xi +
∑q

k=1 ζk(sj)Ci,k + ηi(sj), hence there exists θµ,1 ∈ Nµ,n where Nµ,n is

the smallest covering set with cardinality N (Θn, r, ∥ · ∥∞), and there exists corresponding

µ1 ∈ Θ∗
n given θ1.

|µ1,ij − µij| ≤ | (α(sj)− α1(sj))Xi|+
q∑

k=1

| (ζk(sj)− ζ1,k(sj))Ci,k|+ |ηi(sj)− η1,i(sj)| ≤ c∗nr

. Hence S∗
µ,n can be constructed as a collection of all such µ1. Let |S∗

µ,n| be the cardinality

of such S∗
µ,n. By the construction of S∗

µ,n, |S∗
µ,n| ≤ N (Θn, r, ∥ · ∥∞).

Since ∥ · ∥2,np ≤ ∥ · ∥∞, we have

logP(Θ∗
n, r/2, ∥ · ∥2) ≤ logN (Θ∗

n, r/4, ∥ · ∥2) = logN (Θ∗
n, r/ (4

√
np) , ∥ · ∥2,np)

≤ logN (Θ∗
n, r/ (4

√
np) , ∥ · ∥∞) ≤ log |S∗

µ,n|

≤ logN (Θn, r/ (4c
∗
n

√
np) , ∥ · ∥∞)

≤ K0(4c
∗
n)

d/ρn(np)3d/(2ρ)r−d/ρ (A.2)
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Denote event A =
[
c∗n < a

√
log {n}

]
and IA be its indicator, where a is an absolute constant,

Lemma 2 implies that P(IAc)→ 0 as n→∞, where Ac denotes the complement of A. Hence

given A, logP(Θ∗
n, r/2, ∥ · ∥2) ≤ Ka (log n)

d/(2ρ) n(np)3d/(2ρ)r−d/ρ.

Then for any µ ∈ ∪j≥1Cj,r, σ ∈ ∪j≥1Cj,ϵ, define Φ =
∑

j≥1ΦjI(µ ∈ Cj,r), for some

constants K2, K3, conditioning on X,C,

Eµ0Φ ≤
∑
j≥1

2P(Cj,r, jr/2, ∥ · ∥2) exp{−c1[(jr)2]/σ2
M}

≤ 2P(Θ∗
n, r/2, ∥ · ∥2)

∑
j≥1

exp{−c1[j(r)2]/σ2
M}

≤ 2P(Θ∗
n, r/2, ∥ · ∥2)K2 exp

(
− c1r

2

4σ2
M

)
≤ K3P(Θ∗

n, r/2, ∥ · ∥2) exp
(
−c1r

2

σ2
M

)
Eµ(1− Φ) ≤

∑
j≥1

exp{−c1[(jr)2]
(
2σ2

M

)−1}

≤ K3 exp

{
−c1r

2

σ2
M

}
Choose r =

√
npϵ, for any ϵ > 0, we can choose n, p large enough such that r > 1. By

Proposition 1(b), U c
M ⊂ U c

M,1 almost surely, where

U c
M =

{
Θ : ∥α(s)− α0(s)∥22,p +

q∑
k=1

∥ζk(s)− ζk,0(s)∥2p +
1

n

n∑
i=1

∥ηi(s)− ηi(s)∥22,p > ϵ2

}
U c
M,1 = {Θ : ∥µ− µ0∥2,np >

√
c0ϵ}

Then for any θ ∈ Θn ∩ U c
M,1, note that (log n)d/(2ρ)(np)d/ρ < nd/(2ρ)(np)d/ρ < p given

Assumption 1, ρ > d+ 3/(2τ).

E {Eµ0,σ0 {Φ | X,C}} ≤ EA {P(Θ∗
n,
√
npc0ϵ/2, ∥ · ∥2)}K4 exp{−c′′1npϵ2}+ E {IAc}

≤ K ′ exp
{
c′′′1 (log n)d/(2ρ) n(np)d/ρϵ−d/ρ − c′′1npϵ2

}
p→∞→ 0

EΘn∩Uc
M
(1− Φ) ≤ EΘn∩Uc

M,1
(1− Φ) ≤ K ′′ exp{−c′2npϵ2}

To verify (c), Π(Θc
n) ≤ Π(Θc

α,n) +
∑n

i=1 Π(Θ
c
η,i,n) +

∑q
k=1Π(Θ

c
ζ,k,n). Theorem 5 in [29]

ensures that Π(Θc
η,i,n) ≤ K3e

−c3(np)2 ,Π(Θc
ζ,k,n) ≤ K3e

−c3(np)2 , Lemma 4 in [43] ensures that
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Π(Θc
α,n) ≤ Kαe

−cαnp. Hence

Π(Θc
n) ≤ Kαe

−cαnp +K3e
−(c3(np)2−log(n+q))

≤ K2e
−c2np

The proof for Theorem 1 is complete. Note that this can be easily extended to the

marginal consistency of α alone by conditioning on other parameters at the true value.

A.1.3 Proof of Theorem 2

Similar to Theorem 1, we verify the conditions in Theorem A.1 in [13].

Let θ0 denote the set of true parameters {β0, γ0, ξ0} that generate the outcome variable Yi

givenMi, Xi and Ci. Let θ = (β, γ, ξ) ∈ Θβ ×Rq+1 denote any parameter in the parameter

space, where Θβ is defined in Definition 4.

Lemma 4. (Prior positivity condition) Under model (2.1), define Λi(θ0, θ) =

log {π(Yi; θ0)/π(Yi; θ)}, there exists a set B ⊂ Θ such that Π(B) > 0 and for any θ ∈ B:

(a) lim infn→∞ Π[θ ∈ B : n−1
∑n

i=1 Eθ0{Λi(θ0, θ)} < ϵ] > 0 for any ϵ > 0

(b) n−2
∑n

i=1 Varθ0{Λi(θ0, θ)} → 0

Proof. For one individual i, the density

πi(Yi,Mi, Xi,Ci; θ) = πi(Yi|Mi, Xi,Ci; θ)πi(Mi, Xi,Ci).

Here, with the abbreviated notation γ̃ = (γ, ξT)T ∈ Rq+1, and X̃i = (Xi,C
T
i )

T ∈ Rq+1.

Hence given
{
X̃i

}n

i=1
and {Mi(∆sj)}n,pi=1,j=1, and denote Mi = {Mi(∆sj)}pj=1,

Yi
ind∼ N

(
p∑

j=1

β(sj)Mi(∆sj) + γ̃TX̃i, σ
2
Y

)
.

Given the true parameters β0(s), γ̃0, define the subset

Bδ =

{
Θ : sup

j
|β(sj)− β0(sj)|2 ≤ δ, ∥γ̃ − γ̃0∥22 ≤ δ

}
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If we denote the mean of Yi under true parameters as µi,0, otherwise as µi, the log-

likelihood ratio for θ0 = (β0(s), γ̃0) versus θ = (β(s), γ̃) can be written as

Λi(Dn,i; θ0, θ) = log {πi(Yi; β0(s), γ̃0)} − log {πi(Yi; β(s), γ̃)}

= − 1

2σ2
Y

(Yi − µi,0)
2 +

1

2σ2
Y

(Yi − µi)
2

Hence,

Ki,n(θ0, θ) := Eθ0(Λi(Dn,i; θ0, θ)) = E
{
Eθ0

(
Λi|Mi, X̃i

)}
= E

{
1

2σ2
Y

(µi − µi,0)
2

}

≤ E

 1

2σ2
Y

{
(γ̃ − γ̃0)

TX̃i +

p∑
j=1

(β(sj)− β0(sj))Mi(∆sj)

}2


Note that by equation (2.4), given X̃i, Mi(∆sj) ∼ N(µi(sj)λ(∆sj), σ
2
Mλ(∆sj)) with its

second moment as σ2
Mλ(∆sj)− (µi(sj)λ(∆sj))

2. When λ(∆sj) = 1/p, the second moment is

σ2
M/p− (µi(sj))

2 /p2, and its 4th moment is of the order O(p−4). Hence E
{
∥Mi∥22

∣∣X̃i

}
can

be upper bounded by a constant, and so does Var
{
∥Mi∥22

∣∣X̃i

}
. For the finite dimensional

vector X̃i with finite 4-th moment (Assumption 2(a)), there is a finite bound E∥X̃i∥22 < K0.

For any (γ̃, β(s)) ∈ Bδ,

Ki,n(θ0, θ) ≤
1

2σ2
Y

E
{
δ∥X̃i∥22∥Mi∥22

}
Hence we have Ki,n(θ0, θ) ≤ δK ′ for some constant K ′ > 0. Similarly, denote Zi =
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(Yi − µi,0)/σY as the standard normal variable under H0,

Vi,n(θ0, θ) = Var
{
Eθ0(Λi | X̃i,Mi)

}
+ E

{
Varθ0(Λi | X̃i,Mi)

}
Var

{
Eθ0(Λi|X̃i,Mi)

}
=Var

{
1

2σ2
Y

(µi − µi,0)
2

}

≤ 1

4σ4
Y

Var

{(γ̃ − γ̃0)
TX̃i +

p∑
j=1

(β(sj)− β0(sj))Mi(∆sj)

}2


≤ 1

σ4
Y

Var
[
δ∥X̃i∥22 + δ∥Mi∥22

]
≤ 1

σ4
Y

Var

{
δ∥X̃i∥22 + E

(
δ∥Mi∥22

∣∣∣∣X̃i

)}
+

1

σ4
Y

E
{
Var

(
δ∥X̃i∥22 + δ∥Mi∥22,p

∣∣∣∣X̃i

)}
<∞

For the second term,

Eθ0

{
Varθ0(Λi|X̃i,Mi)

}
=E

[
Varθ0

{
−1

2
Z2

i +
1

2

(
Zi +

µi,0 − µi

σY

)2
∣∣∣∣∣ X̃i,Mi

}]

=E
[
Varθ0

{
µi,0 − µi

σY
Zi

∣∣∣∣ X̃i,Mi

}]
=E

{
1

σ2
Y

(µi − µi,0)
2

}
≤ 1

σ2
Y

E
(
δ∥X̃i∥22 + δ∥Mi∥22

)
<∞

Hence for any β ∈ Bδ,
1

n2

n∑
i=1

Vn,i(β0, β)→ 0

For any 0 < ϵ < δK ′,

Π

(
(β, γ̃, σY ) ∈ Bδ :

1

n

n∑
i=1

Kn,i < ϵ

)

≥ Π

(
sup
j
|β0(sj)− β(sj)| <

√
ϵ/K ′, ∥γ̃ − γ̃0∥22 < ϵ/K ′

)
> 0.

The last inequality follows from Theorem 1 in [43] and the assumption that for any ϵ > 0,

Π(∥γ̃ − γ̃0∥22 < ϵ) > 0.
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Verifying the Existence of test condition

To verify the existence of test condition, we need the basis expansion expression of model

(2.1). Recall model (2.1), we abbreviate the scalar and vector covariates and denote γ̃ =

(γ, ξT)T ∈ Rq+1, X̃i = (Xi,C
T
i )

T ∈ Rq+1. Let M̃i,l =
∑p

j=1 ψl(sj)Mi(∆sj), and define the

n× Ln matrix M̃n := (M̃i,l)i=1,..,N,l=1,...,Ln .

Yi =

p∑
j=1

β(sj)Mi(∆sj) + γ̃TX̃i + ϵi

=

p∑
j=1

{
∞∑
l=1

θβ,lψl(sj)

}
Mi(∆sj) + γ̃TX̃i + ϵi

=
∞∑
l=1

θβ,l

p∑
j=1

ψl(sj)Mi(∆sj) + γ̃TX̃i ++ϵi

=
∞∑
l=1

θβ,lM̃i,l + γ̃TX̃i + ϵi

= (M̃n, X̃n)

(
θβ

γ̃

)
+ rLn,i + ϵi (A.3)

The remainder term rLn,i =
∑∞

l=Ln
θβ,l
∑p

j=1 ψl(sj)Mi(∆sj).

Before verifying the existence of test condition, we introduce the following lemma

Lemma 5. Let independent residual terms

rLn,i =
∞∑

l=Ln

θβ,l

p∑
j=1

ψl(sj)Mi(∆sj)

as defined in (A.3) across i = 1, . . . , n. Denote the event ALn = [|rLn,i| < t]. Then for any

given i, and for some sufficiently large positive constant t , P[ALni.o.] = 1.

Proof. Denote the mean function in (2.4) ofMi(∆sj) as µi(sj). ThenMi(∆sj) = p−1µi(sj)+

p−1/2Zi,j where Zi,j is independent standard normal variable across i = 1, . . . , n, j = 1, . . . , p.

Let M̃i,l =
∑p

j=1Mi(∆sj)ψl(sj). Then

rLn,i =
∞∑

l=Ln

θβ,lM̃i,l =
∞∑

l=Ln

θβ,l
1

p

p∑
j=1

µi(sj)ψl(sj) +
∞∑

l=Ln

θβ,l
1
√
p

p∑
j=1

ψl(sj)Zi,j
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which implies that rLn,i follows a normal distribution with mean

µLn,i,r =
∞∑

l=Ln

θβ,l
1

p

p∑
j=1

µi(sj)ψl(sj)

and variance

σ2
Ln,r =

1

p

p∑
j=1

(
∞∑

l=Ln

θβ,lψl(sj)

)2

.

Let θM,i,l = p−1
∑p

j=1 µi(sj)ψl(sj). Since
∑∞

l=Ln
θ2M,i,l → 0 for any i, and

∑∞
l=Ln

θ2β,l → 0

as Ln →∞, the mean µLn,i,r → 0 as n→∞.

Given the orthonormality of the basis, and denote βLn(s) =
∑Ln

l=1 θβ,lψl(s) as the finite

basis smooth approximation of β(s), write

σ2
Ln,r =

∫
S
|β(s)− βLn(s)|2dλ(s) + rp =

∞∑
l=Ln

θ2β,l + rp,

where the approximation error rp =
∣∣∣∫S |β(s)− βLn(s)|2dλ(s)− p−1

∑p
j=1 |β(sj)− βLn(sj)|2

∣∣∣.
From Definition 4(d) rp < Kβp

−2/d, where Kβ > 0 is a constant. Hence σ2
Ln,r
→ 0 as n→∞.

For large enough n, µLn,i,r is bounded for all i. By the normal tail bound (Proposition

2.1.2 in [89]), for Z ∼ N(0, 1), P(Z > t) ≤ 1
t
√
2π

exp {−t2/2}. Then we have

P(rLn,i > t) ≤ σLn,r

t− µLn,i,r

exp

{
−(t− µLn,i,r)

2

2σ2
Ln,r

}
≤ an = CσLn,r exp(−c′/σ2

Ln,r). (A.4)

By Definition 4, an ≤ exp(−c′nν1ν2) < n−1, hence
∑n

i=1 P(rLn,i > t) <∞.

P(Ac
Ln
) = P(|rLn,i| > t) ≤ P(rLn,i > t) + P(rLn,i < −t)

For the P(rLn,i < −t) part, we only need to replace t− µLn,i,r by t+ µLn,i,r in (A.4), and the

same conclusion follows,
∑n

i=1 P(rLn,i < −t) < ∞. By Borel-Cantelli Lemma, we can draw

the conclusion.

Lemma 6. (Existence of tests) There exist test functions Φn, subsets Un,Θn ⊂ Θ, and

constant K1, K2, c1, c2 > 0 such that

(a) Eθ0Φn → 0;

(b) supθ∈Uc
n∩Θn

Eθ(1− Φn) ≤ K1e
−c1n;
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(c) Π(Θc
n) ≤ K2e

−c2n.

Proof. To verify the existence of tests, we define the sieve space of β as

Θp,n :=

{
β ∈ Θβ : sup

s∈R1∪R−1

∥Dωβ(s)∥∞ < p1/(2d), ∥ω∥1 ≤ ρ

}
The construction of the test follows a similar idea as in Lemma 1 in [1]. For any ϵ > 0,

denote

U c = {β ∈ Θβ, γ̃ ∈ Θγ̃ : ∥β − β0∥2,p + ∥γ̃ − γ̃0∥2 > ϵ}.

Following the notations and new formulation of model (2.1) in (A.3) under the basis

decomposition, we create the test as follows. Denote θβ = (θβ,1, . . . , θβ,Ln)
T, θw = (θ⊤

β , γ̃
⊤)⊤

as the vector of parameters.

For any ϵ > 0, to test the hypothesis

H0 : {β(s), γ̃} = {β0(s), γ̃0}, v.s. H1 : {β(s), γ̃} ∈ U c.

Define test function

Φn = I

{∥∥∥∥(W̃T
nW̃n

)−1

W̃T
nY − θ0

w

∥∥∥∥
2

>
ϵ

2

}
,

where Y = (Y1, . . . , Yn)
T ∈ Rn. Let Z ∼ N(0, In) be a standard normal vector. As defined

in the main text above Assumption 3, W̃n =
(
M̃n, X̃

)
∈ Rn×(Ln+1+q), and θ0

w denotes the

true value of θw.

Let Rn = (rLn,1, . . . , rLn,n)
T ∈ Rn be the remainder term. Then under H0,(

Y − W̃nθ
0
w

)
= R0

n +ZσY .

Let H :=
(
W̃T

nW̃n

)−1

W̃T
n .

HY − θ0
w = H

(
Y − W̃nθ

0
w

)
+HW̃nθ

0
w − θ0

w = H
(
Y − W̃nθ

0
w

)
Denote the singular value decomposition of W̃n as W̃n = UΛV T where UUT = In,

V V T = ILn , Λ is at most rank Ln, and the smallest singular value is σmin,n. Let σmin,n :=

σmin(W̃). For some positive constant cmin, denote event

Σ = [σmin,n > cmin

√
n].
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Let χ2(a, b) denote the non-central χ2 distribution with non-central parameter a and

degree b. Then under event Σ,∥∥∥H (Y − W̃nθ
0
w

)∥∥∥2
2
=
∥∥H (R0

n +ZσY
)∥∥2

2

=
(
R0

n +ZσY
)T
UΛ−2UT

(
R0

n +ZσY
)

≤
(
R0

n +ZσY
)T
σ−2
min,n

(
ILn 0

0 0n−Ln

)(
R0

n +ZσY
)

= σ2
Y σ

−2
min,n

(
R0

n/σY +Z
)T( ILn 0

0 0n−Ln

)(
R0

n/σY +Z
)
∼ σ2

Y σ
−2
min,nχ

2(Ln, un)

un = 1
σ2
Y

∥∥∥∥∥
(
ILn 0

0 0n−Ln

)
R0

n

∥∥∥∥∥
2

2

is the non-central parameter in the non-central χ2 distribu-

tion of order Ln. Each element in R0
n is the residual term rLn,i.

Several results are available for the upper bound of noncentral χ2 tail probability, here

we use Theorem 7 in [101], when x > Ln + 2un,σY
, for some constant c,

P
{
χ2(Ln, un)− (Ln + un) > x

}
< exp (−cx)

Hence if ϵ2/(4σ2
Y )σmin,n > Ln + 2un,σY

,

Eθ0 {ΦnI(Σ)} ≤ P
{
σ2
Y σ

−2
min,nχ

2(Ln, un,σY
) >

ϵ2

4

}
= P

{
χ2(Ln, un,σY

) >
ϵ2

4σ2
Y

σ2
min,n

}
≤ exp

{
−c
(
ϵ2

4σ2
Y

σ2
min,n − Ln − un,σY

)}
.

By Lemma 5, for sufficiently large n, |rLn,i| < c0 with probability 1. Note that Ln +

un,σY
< (1 + c20/σ

2
Y )Ln, given σmin,n >

√
ncmin > 0, for sufficiently large n, there exists

a constant c′ > 0 such that ϵ2/(4σ2
Y )σ

2
min,n − Ln − un,σY

> c′n. Hence by Assumption 3,

Eβ0 {ΦnI(Σ)} ≤ exp {−c′n} and Eβ0(Φ) = Eβ0 {ΦI(Σ)} + Eβ0 {ΦI(Σc)} ≤ exp {−c′n} +
exp {−c̃n} ≤ exp {−c̃′n} , for n > 2 log(2)/c̃′, where c̃′ = min{c̃, c′}/2.

To find the upper bound of the Type II error, let r̃p =
∫
S{β(s)− β0(s)}

2λ(ds)− ∥β(s)−
β0(s)∥22,p and rLn =

∑∞
l=Ln

θ2β,l. Then r̃p → 0 as p→∞ and rLn → 0 as n→∞. Note that

∫
S
{β(s)− β0(s)}2λ(ds) =

∫
S

{
∞∑
l=1

(θβ,l − θβ0,l)ψl(s)

}2

λ(ds) = ∥θβ − θβ0∥22 + rLn ,
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where θβ,θβ0 ∈ RLn . By ∥θw − θ0
w∥22 = ∥θβ − θβ0∥22 + ∥γ̃ − γ̃0∥22,

∥β(s)− β0(s)∥22,p + ∥γ̃ − γ̃0∥22 = ∥θw − θ0
w∥22 − r̃p + rLn .

For a sufficiently large n and p, we have r̃p < ϵ2/16 and rLn < ϵ2/16. Then rLn − rp < ϵ2/8.

Thus, when ∥β(s)− β0(s)∥22,p + ∥γ̃ − γ̃0∥22 > ϵ2/2, ∥θw − θ0
w∥22 > 3ϵ2/8.

Recall

U c = {β ∈ Θβ, γ̃ ∈ Θγ̃ : ∥β − β0∥p + ∥γ̃ − γ̃0∥2 > ϵ}.

Define the sieve space Θn := Θp,n ×Θγ .

sup
Uc∩Θn

Eβ(1− Φn)I(Σ) = sup
Uc∩Θn

P
{∥∥HY − θ0

w

∥∥
2
≤ ϵ

2

}
≤ sup

Uc∩Θn

P
{∣∣∥HY − θw∥2 −

∥∥θw − θ0
w

∥∥
2

∣∣ ≤ ϵ

2

}
≤ sup

Uc∩Θn

P
{
∥HY − θw∥2 > −

ϵ

2
+
∥∥θw − θ0

w

∥∥
2

}
≤ sup

Uc∩Θn

P {∥HY − θw∥2 > c1ϵ} ,

where c1 =
(√

3/8− 1/2
)
.

Lastly, by Lemma 4 in [43], for some constant c2, Π(Θ
c
n) ≤ K ′

2e
−c2p1/d ≤ K2e

−c2n with

Assumption 1(b) that p ≥ O(nτd).

A.1.4 Proof of Theorem 3

Proof. First we show that, conditioning on all other parameters, the joint posterior of

α(s) and β(s) can be factored into the marginal posteriors of α(s) and β(s). Let D =

{Y,M,X,C}. For simplicity, we omit “(s)” in α(s) and β(s) in the following derivation.

Π(α, β | D) =
Π(D | α, β)π(α, β)

Π(D)

=
Π(M,Y | α, β,X,C)π(α)π(β)π(X,C)

Π(Y |M,X,C)Π(M | X,C)π(X,C)

=
Π(Y |M, α, β,X,C)Π(M | α, β,X,C)π(α)π(β)

Π(Y |M,X,C)Π(M | X,C)

=
Π(Y |M, β,X,C)π(β)

Π(Y |M,X,C)

Π(M | α,X,C)π(α)

Π(M | X,C)

= Π(β | D)Π(α | D)
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Now,

Π (∥αβ − α0β0∥1,p > ϵ | D)

= Π (∥(β − β0)(α− α0) + α0(β − β0) + β0(α− α0)∥1,p > ϵ | D)

≤ Π(∥(β − β0)(α− α0)∥1,p + ∥α0(β − β0)∥1,p + ∥β0(α− α0)∥1,p > ϵ | D)

≤ Π(∥(β − β0)(α− α0)∥1,p > ϵ | D) + Π (∥β0(α− α0)∥1,p > ϵ | D)+

Π (∥α0(β − β0)∥1,p > ϵ | D) (A.5)

Given that both α0 and β0 are defined on a compact set S ∈ Rd (Definition 4), there exists

K > 0 such that ∥α0∥∞ ≤ K and ∥β0∥∞ ≤ K, by Theorem 1, 2, and the norm inequality

∥ · ∥1,p ≤ ∥ · ∥2,p, the last two terms in (A.5) goes to 0 in P
(n)
α0,β0

-probability as n→∞.

For any δ > 0,

Π (∥(β − β0)(α− α0)∥1,p > ϵ | D)

≤ Π(∥β − β0∥2,p∥α− α0∥2,p > ϵ | D)

≤ Π(∥β − β0∥2,p∥α− α0∥2,p > ϵ | D, ∥α− α0∥2,p > δ)Π (∥α− α0∥2,p > δ | D)+

Π (∥β − β0∥2,p∥α− α0∥2,p > ϵ | D, ∥α− α0∥2,p < δ)Π (∥α− α0∥2,p < δ | D)

≤ Π(∥α− α0∥2,p > δ | D) + Π (∥β − β0∥2,pδ > ϵ | D, ∥α− α0∥2,p < δ)

= Π (∥α− α0∥2,p > δ | D) + Π (∥β − β0∥2,pδ > ϵ | D) .

As n → ∞, Π (∥α− α0∥2,p > δ | D) → 0 and Π (∥β − β0∥2,pδ > ϵ | D) → 0 in P
(n)
α0,β0

-

probability, which implies that Π (∥(β − β0)(α− α0)∥1,p > ϵ | D)→ 0

A.1.5 Proof of Corollary 2

Proof. The proof of the sign consistency is similar to Theorem 3 in [43].

To show Corollary 2, for simplicity, denote E(s) := α(s)β(s) and E0(s) := α0(s)β0(s), ∀s ∈
S as the true function of the total effect. Since both α(s) and β(s) satisfy Definition 3, we

use the notations

Rf
i :=

{
s ∈ S : sgn{f(s)} = i

}
, f ∈ {α, β}, i ∈ {−1, 0, 1},

and by Definition 3, Rα
±1,R

β
±1 are open sets. Define RE

1 =
(
Rα

1 ∩ R
β
1

)
∪
(
Rα

−1 ∩ R
β
−1

)
,

RE
−1 =

(
Rα

−1 ∩R
β
1

)
∪
(
Rα

1 ∩R
β
−1

)
, RE

0 = S − (RE
1 ∪RE

−1), RE
±1 are open sets. To show RE

0
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has nonempty interior, if we denote Ā := S−A as the complementary set of A in S, we only

need to show (
Rα

1 ∪Rα
−1

)
∪
(
Rβ

1 ∪R
β
−1

)
⊆ RE

0

where the LHS has nonempty interior by the Definition 3. RE
0 = RE

1 ∩RE
−1,

RE
1 =

(
Rα

1 ∩R
β
1

)
∩
(
Rα

−1 ∩R
β
−1

)
=
(
Rα

1 ∪Rα
−1

)
∪
(
Rβ

1 ∪R
β
−1

)
∪
(
Rβ

1 ∪Rα
−1

)
∪
(
Rα

1 ∪R
β
−1

)
Similarly we can show

(
Rα

1 ∪Rα
−1

)
∪
(
Rβ

1 ∪R
β
−1

)
⊆ RE

−1, hence RE
0 has nonempty interior.

The parameter space of E , ΘE satisfies Definition 3.

Now denote S0 = {s ∈ S : E0(s) = 0}, S+ = {s ∈ S : E0(s) > 0}, S− = {s ∈ S : E0(s) <
0}. Notice that RE0

±1 ⊆ S±, and S0 ⊆ RE0
0 . The key difference is that S0,± are not necessarily

open sets.

For any A ⊆ S and any integer m ≥ 1, let Qp be the discrete measure that assigns 1/p

mass to each fixed design points in {sj}pj=1, define

Fm(A) :=
{
E ∈ ΘE :

∫
A
|E(s)− E0(s)|dQp(s) <

1

m

}
.

Note that for any A ⊆ B ⊆ S, we have Fm(S) ⊆ Fm(B) ⊆ Fm(A).

Π(Fm(S0) | D) ≥ Π(Fm(S) | D)→ 1, as n→∞.

By the monotone continuity of probability measure,

Π{E(s) = E0(s) = 0 | D} = Π{E(s) = 0, s ∈ S0 | D} = lim
m→∞

Π{Fm(S0) | s} = 1, as n→∞.

Now to show the consistency of the positive sign, for any small δ > 0, denote Sδ
+ := {s ∈

S : E0(s) > δ}. Because E0 is a continuous function, its preimage E−1((δ,∞)) supported on

Rd is also an open set, Sδ
+ = RE

1 ∩ E−1((δ,∞)) hence is also an open set.

For any s0 ∈ Sδ
+, we can find a small open ball B(s0, r1) = {s : ∥s− s0∥2 < r1} ⊆ Sδ

+.

By the continuity of E and E0, for any large m, there exists r2 > 0 such that ∥s− s0∥2 < r2

implies |E(s)− E(s0)| < 1/m. Let r = min {r1, r2}.
For any open subset B in S, Definition 4(d) implies that for any large m, there exists Nm
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such that for any n > Nm,∣∣∣∣∫
B

|E − E0|Qp(ds)−
∫
B

|E − E0|λ(ds)
∣∣∣∣ < Vm

2m
,

where we denote Vm = λ{B(s0, r)} → 0 as m→∞.

Hence for any small δ > 0, notice that

1

Vm

∫
B(s0,r)

|E(s)− E0(s)|λ(ds) <
1

m

⇒ 1

Vm

∫
B(s0,r)

E(s)λ(ds) > 1

Vm

∫
B(s0,r)

E0(s)λ(ds)−
1

m

⇒ 1

Vm

∫
B(s0,r)

E(s)λ(ds) > δ − 1

m

⇒ ∃s1 ∈ B(s0, r), s.t. E(s1) > δ − 1

m

⇒ E(s0) +
1

m
> δ − 1

m
,∀s0 ∈ Sδ

+.

Hence we have

Π
{
∀s0 ∈ Sδ

+, E(s0) > 0 | D
}
≥ Π

{
∀s0 ∈ Sδ

+, E(s0) ≥ δ | D
}

= lim
m→∞

Π

{
∀s0 ∈ Sδ

+, E(s0) > δ − 2

m

∣∣∣D}
≥ lim

m→∞
Π

{∫
B(s0,r)

|E(s)− E(s0)|λ(ds) <
Vm
m

∣∣∣D}
≥ lim

m→∞
Π

{∫
B(s0,r)

|E(s)− E(s0)|dQp(s) <
Vm
2m

∣∣∣D} = 1,

The proof for the consistency of the negative sign is similar to the positive sign.

A.2 Example for Assumption 3

In this section, we give an example that demonstrates the generative model (2.2) satisfies

Assumption 3 under some stronger assumptions.

Assumption 7. When viewing the mediator model (2.2) as the true generative model of

W̃n, assume

1. for any s ∈ S,
∑n

i=1XiϵM,i(s) = 0 and
∑n

i=1Ck,iϵM,i(s) = 0, k = 1, . . . , q, with
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probability one;

2. for the chosen basis {ψl(s)}∞l=1, the individual effects ηi(s) can be viewed as one real-

ization of the random Gaussian process ηi ∼ GP(0, σηκ), and can be decomposed as

ηi(s) =
∑∞

l=1 θη,i,lψl(s) where θη,i,l
ind∼ N(0, σ2

ηλl);

Proposition 5. Under Assumption 7, the least singular value of W̃n satisfies

0 < cmin < lim inf
n→∞

σmin(W̃n)/
√
n

with probability 1− exp(−c̃n) for some constant c̃, cmin > 0.

Recall the notations in (A.3), W̃n = (M̃n, X̃) ∈ Rn×(Ln+1+q), and X̃i = (Xi,C
T
i )

T ∈
Rq+2.

The proof of Proposition 5 needs to show that the least singular value of W̃n, denoted as

σmin(W̃n) satisfies that

P
(
σmin(W̃n) < c

√
n | X,C

)
≤ e−c′n

Proof. Given (2.4) forM(∆s) and λ(∆sj) =
1
p
, we can write

M̃i,l = θ̃α,lXi +

q∑
k=1

θ̃ζ,k,lCi,k + θη,i,l + ε̃i,l

where ε̃i,l ∼ N{0, (σ2
M/p)

∑p
j=1 ψl(sj)

2}, and each θ̃α,l = ⟨α, ψl⟩p, θ̃ζ,k,l = ⟨ζk, ψl⟩p. Hence we

can write

M̃n = X̃θM +ΘE

Here, θM =


θ̃α,1, . . . , θ̃α,Ln

θ̃ζ1,1, . . . , θ̃ζ1,Ln

. . .

θ̃ζq ,1, . . . , θ̃ζq ,Ln

 ∈ R(q+1)×Ln , (ΘE)i,l = ⟨ηi, ψl⟩p + ε̃i,l, .

By Assumption 2(c) and Assumption 7.1, we have that ΘT
EX̃ = 0. Denote An = X̃TX̃,
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then

W̃T
nW̃n =

(
M̃T

nM̃n M̃T

nX̃

X̃TM̃n X̃TX̃

)

=

 (
X̃θM +ΘE

)T (
X̃θM +ΘE

) (
X̃θM +ΘE

)T
X̃

X̃T
(
X̃θM +ΘE

)
X̃TX̃


=

(
θT
MAnθM +ΘT

EΘE θT
MAn

AnθM An

)
.

Furthermore,

(
W̃T

nW̃n

)−1

=

( (
ΘT

EΘE

)−1 −
(
ΘT

EΘE

)−1
θT
M

−θM

(
ΘT

EΘE

)−1
A−1

n + θM

(
ΘT

EΘE

)−1
θT
M

)
.

This implies that the Schur complement of An in
(
W̃T

nW̃n

)−1

is
(
ΘT

EΘE

)−1
. Denote ∥ · ∥

as the operator norm. Notice that 1

σ2
min(W̃n)

= ∥W̃−1
n ∥2 =

∥∥∥∥(W̃T
nW̃n

)−1
∥∥∥∥. By Lemma 7,

σmin (ΘE) has a lower bound c
√
n with probability 1− e−c′n.∥∥∥∥(W̃T

nW̃n

)−1
∥∥∥∥2 ≤ ∥∥∥(ΘT

EΘE

)−1
∥∥∥2 + 2

∥∥∥(ΘT
EΘE

)−1
θT
M

∥∥∥2 + ∥∥∥A−1
n + θM

(
ΘT

EΘE

)−1
θT
M

∥∥∥2
≤ 1

σ4
min (ΘE)

(
1 + ∥θM∥2

)2
+
∥∥A−1

n

∥∥2
Note that

∑∞
l=1 θ

2
α,l < ∞ and

∑∞
l=1 θ

2
ζk,l

< ∞, k = 1, .., q, hence ∥θM∥ is bounded by a

constant. With Assumption 2.(a), σmin(An) > n. Hence with probability 1− e−c′n,

1

σ4
min

(
W̃n

) ≤ C
1

σ4
min (ΘE)

+
1

n2
≤ C ′

n2

Hence σmin

(
W̃n

)
> c
√
n with probability 1− e−c′n.

Lemma 7. Under model (2.2),

M̃n = X̃θM +ΘE

Then under assumptions 1-7, the smallest singular value σmin (ΘE) satisfies that, for some

c1, c2 > 0,

P
{
σmin (ΘE) < c1

√
n |X,C

}
≤ e−c2n (A.6)
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Proof. To show (A.6), we can write

ΘE = Θ̃η + Θ̃E +Rp.

To unpack each matrix, we give the (i, l)th element in each matrix:
(
Θ̃η

)
i,l

=∫
S ηi(s)ψl(s)λ(ds),

(
Θ̃E

)
i,l
∼ N(0, σ2

M

∫
S ψl(s)

2λ(ds)). Note that we view ηi(s) as inde-

pendent copies of Gaussian processes, and by Assumption 7(b),
(
Θ̃η

)
i,l
∼ N(0, λlσ

2
η).

The remainder term Rp is the approximation error between the continuous integrals

and their fixed grid approximation. Denote the fixed grid approximations as
(
Θ∗

η

)
i,l

=

1
p

∑p
j=1 ηi(sj)ψl(sj), (Θ

∗
E)i,l ∼ N(0, 1

p

∑p
j=1 ψ

2
l (sj)), and Rp =

{
Θ∗

η − Θ̃η

}
+
{
Θ∗

E − Θ̃E

}
,

and | (Rp)i,l | ≤ Kp−2/d almost surely for all i, l,

We need to show

(i) σmin

(
Θ̃E

)
has a lower bound c

√
n with probability 1− e−c̃n.

(ii) σmin

(
Θ̃E + Θ̃η

)
has a lower bound c

√
n with probability 1− e−c̃n.

(iii) Adding the error term Rp does not change this lower bound.

To show (i), let Z be an Ln × n dimensional random matrix where the entries are i.i.d

standard normal variables. Then by Theorem 1 in [73],

P
{
σmin (Z) < ϵ

(√
n−

√
Ln − 1

)}
≤ (Cϵ)n−Ln+1 + e−cn

Because we have Ln = o(n) (Assumption 7.3), hence we use a relaxed lower bound, for some

c0, c
′
0 > 0,

P
(
σmin (Z) < c0

√
n
)
≤ e−c′0n.

Because ψl forms an orthonormal basis,
∫
S ψ

2
l (s)λ(ds) = 1, Θ̃E = σMZ.

To show (ii), note Θ̃η = σηΛZ. Λ is the diagonal matrix with element λl. Θ̃η+Θ̃E = DEZ

where DE is a diagonal matrix with lth element
√
σ2
ηλl + σ2

M . For any x ∈ RLn ,

σmin (DEZ) = min
∥x∥2=1

∥ZTDT
Ex∥2 = min

∥x∥2=1

∥ZTDT
Ex∥2

∥DT
Ex∥2

∥DT
Ex∥2 ≥ min

∥y∥2=1
∥ZTy∥2 min

∥x∥2=1
∥DT

Ex∥2

= σmin (Z)σmin (DE)

Hence σmin

(
Θ̃η + Θ̃E

)
= σmin (DEZ) ≥ σmin (Z)σmin (DE) ≥

√
σ2
ηλLn + σ2

Mσmin,n (Z).

Since λLn → 0 as n→∞, σ2
M is the leading term.
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To show (iii), by Weyl’s inequality, σmin

(
Θ̃η + Θ̃E +Rp

)
≥ σmin

(
Θ̃η + Θ̃E

)
−

σmax (Rp). Since we have maxi,l | (Rp) | ≤ Kp−2/d, by Assumption 1 and 7, σmax (Rp) ≤
K
√
n× Lnp

−2/d ≤ n
ν1+1

2
−2τ → 0 as n→∞ (Assumption 1).

A.3 Sensitivity Analysis in Data Application

In this section, we provide details on data preprocessing and selecting the kernel parameters

and the prior parameter λ in both models (2.1) and (2.2).

To get an appropriate kernel for the real data, we choose the Matérn kernel parameters

based on the smoothness of the image mediators. The input images are standardized across

subject. To get parameters in the Matérn kernel function as defined in (2.9), we tune (ρ, u) on

a grid in the following way: First, the empirical sample correlations of the image predictors

are computed, then the parameters (ρ, u) are obtained using grid search so that the estimated

correlation from the kernel function can best align with the empirical correlation computed

from the image mediators. The kernel parameters are chosen region-by-region. We refer to

this set of kernel parameters as the optimal kernel.

Table A.1: Predictive MSE for different kernels

Optimal Kernel 90% of ρ u = 1, ρ = 15 u = 0.2, ρ = 80 110% of ρ

Test MSE 0.515 0.516 0.547 0.539 0.507

To test and compare the performances of different kernels, we split the data into 50%

as training data and 50% as testing data. Because the performance of different kernels can

be directly compared through testing MSE using the outcome model (2.1) , we conduct a

sensitivity analysis using model (2.1) to select an appropriate set of kernel parameters. The

optimal kernel is obtained in the aforementioned way. To test the sensitivity of the kernel,

we fix u to be the same as the optimal u, but change ρ to be 90% and 110% of the optimal

ρ. Another 2 kernels where u, ρ are constant across different regions are also included in the

comparison. The comparison result is in Table A.1. Based on Table A.1, the case 110% of

the optimal ρ seems to give a slightly better prediction performance, hence we choose this

kernel for model (2.1). The kernel in model (2.2) remains to be the optimal kernel we choose.

We use the same 2-fold cross validation method to select an appropriate value of ν in

the prior of β(s). Based on Table A.2, if we select a very small ν = 0.01, there is severe

overfitting issue; if ν gets too large, the testing accuracy also decreases. Hence based on this

2-fold testing result, ν = 0.05 appears to be the most appropriate thresholding parameter.
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ν 0.01 0.05 0.07 0.1

Training MSE 0.0003 0.3621 0.4043 0.4693
Test MSE 1.8444 0.5079 0.5120 0.5254

Table A.2: Training and test MSE for model (2.1) under different prior thresholding param-
eter ν for the coefficient β(s).

The running time for fitting model (2.1) based on 50% of the data is only within 1 hour, so

this testing procedure under the current data scale is not very computationally expansive.

Value of ν 0.05 0.08 0.1 0.5

Averaged test MSE 1.008132 1.008075 1.007796 1.007751

Value of ν 1 1.5 1.7 2.0

Averaged test MSE 1.007740 1.007611 1.007532 1.007711

Table A.3: Averaged testing MSE over all voxels under different value of ν for model (2.2).

A similar sensitivity analysis is conducted for model (2.2) to select ν in the prior of α(s).

Estimating the individual effect {ηi(s)}Ni=1 can be very time-consuming, hence the individual

effects are set to 0 only for the sensitivity analysis. From table A.3, the difference in the

testing MSE among different values of ν is very small. Hence we choose ν = 0.1 conservatively

to be able to include more activation voxels without compromising the predictive ability.

A.4 Discussion on MALA initial values

As discussed in section 4.3 in the main text, we can use Gibbs sampler to fit the outcome

and mediator model first, and then use the posterior mean of β and α as the initial value for

MALA algorithm. In the real data analysis, for the mediator model (2.2), we directly use

the posterior mean of θα as the initial value for θα in the MALA algorithm. For the outcome

model (2.1), we use the Lasso regression to estimate β first, then add ν to locations where

β(s) > 0, and subtract ν from β(s) when β(s) < 0, to get a hard-threholded version of the

latent GP β̃. The last step is to use basis on β̃ to get the initial values for θβ in MALA.
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APPENDIX B

Chapter 3: Appendix

B.1 Posterior Derivation

For the fully conjugate posterior derivations, the hierarchical model of applying the sparse-

mean prior on the scalar-on-image regression can be written as

Yi =

p∑
j=1

β(sj)Mi(sj) + γTXi + ϵi ϵi
iid∼ N(0, σ2

Y ), σY ∼ C+(1)

β(sj)
ind∼ N(Tν(µj), σ

2
β), σβ ∼ C+(1)

µj | µ[−j] ∼ N(µ̄N (j), τ
2
j ), τ 2µ,j = σ2

µ/wj+, σ2
µ ∼ C+(1)

γ ∼ N(0, σ2
γIq), σγ ∼ C+(1)

Based on this hierarchical model, we can derive the posterior distributions of each parameter.

Note that the posterior for most the parameters are straight forward, except for µj, which

involves the soft-thresholding operator Tν . The posterior of µj can be expressed in terms of

mixture of truncated normal distributions with 3 component.

B.1.1 Proof of Proposition 2

Proof. The posterior of µj can be expressed as

log π(µj | β, µ[−j], σµ, σβ) ∝ −
1

2σ2
β

(β(sj)− Tν(µj))
2 − wj+

2σ2
µ

(
µj − µ̄N (j)

)2
(B.1)

π(µj | . . . ) = P+
j · N[ν,+∞)(µ

+
j , Vj) + P 0

j · N[−ν,ν](µ̄N (j), V0) + P−
j · N(−∞,−ν](µ

−
j , Vj)

where N[a,b](µ, σ
2) is notation for the truncated normal distribution supported on [a, b] with

mean µ and variance σ2. The middle component is just the truncated normal on [−ν, ν] with
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the prior mean µ̄N (j) and variance V0 =
wj+

σ2
µ
. For the other two component,

Vj =

(
1

σ2
β

+
wj+

σ2
µ

)−1

, µ+
j = Vj

{
1

σ2
β

(β(sj) + ν) +
wj+

σ2
µ

µ̄N (j)

}
,

µ−
j = Vj

{
1

σ2
β

(β(sj)− ν) +
wj+

σ2
µ

µ̄N (j)

}

The density of this 3 component mixture can be expressed as

π(µj | . . . ) =
1

Zj

(Z+
j f

+
j + Z0

j f
0
j + Z−

j f
−
j )

where Z+
j , Z

0
j , Z

−
j , Zj represent different normalizing constant, and f+

j , f
0
j , f

−
j

represent the density functions of 3 truncated normal distributions

N[ν,+∞)(µ
+
j , Vj),N[−ν,ν](µ̄N (j), V0),N(−∞,−ν](µ

−
j , Vj) respectively. Hence the mixing probabili-

ties can be represented as

P+
j =

Z+
j

Zj

, , P 0
j =

Z0
j

Zj

, P−
j =

Z−
j

Zj

.

Now denote f̃∗, ∗ ∈ {−, 0,+} as the RHS in (B.1) supported on x ∈
(−∞,−ν), [−ν, ν], (ν,+∞) respectively.

log(Z+
j ) = log f̃+

j − log f+
j , x ∈ (ν,+∞)

= − 1

2σ2
β

(β(sj) + ν − µj)
2 − wj+

2σ2
µ

(
µj − µ̄N (j)

)2
−

{
log

1√
Vj
− 1

2Vj

(
µj − µ+

j

)2 − log

(
1− Φ

(
ν − µ+

j√
Vj

))}
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log(Z0
j ) = log f̃ 0

j − log f 0
j , x ∈ [−ν,+ν]

= − 1

2σ2
β

(β(sj))
2 − wj+

2σ2
µ

(
µj − µ̄N (j)

)2
−
{
log

1√
V0
− 1

2V0

(
µj − µ̄N (j)

)2 − log

(
1− Φ

(
ν − µ̄N (j)√

V0

))}
log(Z−

j ) = log f̃−
j − log f−

j , x ∈ (−∞,−ν)

= − 1

2σ2
β

(β(sj)− µj − ν)2 −
wj+

2σ2
µ

(
µj − µ̄N (j)

)2
−

{
log

1√
Vj
− 1

2Vj

(
µj − µ−

j

)2 − log

(
1− Φ

(
ν − µ−

j√
Vj

))}

Hence the entire density function is complete.

B.1.2 Variational inference: Q-densities for scalar-on-image re-

gression

In the following derivation, we denote the vector Y ∈ Rn , matrix M ∈ Rn×p, X ∈ Rn×q to

denote the outcome and design matrices.

B.1.2.1 Q-density for β using SVD

First, we use Singular Value Decomposition (SVD) onM and re-express the scalar-on-image

regression model as follows.

Let the compact SVD of M ∈ Rn×p be M = UDV T where U ∈ Rn×n, V T ∈ Rn×p, and

UTU = UUT = In, V
TV = In. Let β̃ = β − Tν(µ), Ỹ = Y −MTν(µ)−Xγ =Mβ̃ + ϵ.

Now apply the rotation matrix U on both sides, Ỹ ∗ = UT Ỹ = DV Tβ + ϵ. The q-density

for β̃ is now a normal density with mean and variance

Varq(β̃| ∼) =

(
Eq

(
1

σ2
β

)
Ip + Eq

(
1

σ2
Y

)
V DTDV T

)−1

,

Eq(β̃| ∼) = Varq(β̃| ∼)
(
Eq

(
1

σ2
Y

)
V DT Ỹ ∗

)
.
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Note that Eq(β̃| ∼) can be further simplified,

Eq(β̃| ∼) = V D

(
1

τ 2
In +D2

)−1

Ỹ ∗

where τ 2 =
Eq

(
1

σ2
Y

)
Eq

(
1

σ2
β

) . Then Eq(β| ∼) = Eq(β̃| ∼) + Tν(µ).

The q-density for σβ is as follows. Note that we use the hierarchical expression to sample

half-Cauchy prior σβ ∼ C+(1): σ2
β ∼ IG(1

2
, 1
aβ
), aβ ∼ IG(1

2
, 1).

log π(σ2
β| ∼) ∝ −

1

2σ2
β

p∑
j=1

(β(sj)− Tν(µj))
2 − p

2
log(σ2

β)−
(
1

2
+ 1

)
log σ2

β −
1

aβ

1

σ2
β

Hence the q-density for σ2
β follows IG

(
p+1
2
, 1
2

∑p
j=1 Eq (β(sj)− Tν(µj))

2 + 1
aβ

)
. Note that

Eq∥β − Tν(µ)∥22 = Tr(Var(β)) + ∥Eq(β)− Tν(µ)∥22, and the marginal variance Varq(β(sj)) =[
Eq

(
1
σ2
Y

)∑n
i=1Mi(sj)

2 + Eq

(
1
σ2
β

)]−1

.

The q-density for aβ is IG
(
1, 1 + E

{
1
σ2
β

})
.

B.1.2.2 Q-density for γ

The q-density of γ follows the multivariate normal distribution with mean and variance

Varq(γ| ∼) =
{
Eq

(
1

σ2
Y

)
XTX + Eq

(
1

σ2
γ

Iq

)}−1

E(γ| ∼) = Varq(γ| ∼)

{
Eq

(
1

σ2
Y

)∑
i

(
Yi −MT

i β
)
Xi

}

To speed up the computation, we use eigen-decompositionXTX = QΛXQ
T , and the variance

update can be written as

Varq(γ| ∼) = Qdiag

{
Eq

(
1

σ2
Y

)
ΛX + Eq

(
1

σ2
γ

)}−1

QT .

Similarly, the q-density for σ2
γ follows IG

(
q+1
2
, 1
2
Eq∥γ∥22 + Eq

(
1
aγ

))
.

The q-density for aγ is IG
(
1, 1 + E

{
1
σ2
γ

})
.
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B.1.2.3 Q-density for σY

σ2
Y

q∼ IG

(
n+ 1

2
,
1

2
Eq∥Y −Mβ −Xγ∥2 + Eq

(
1

aY

))
aY

q∼ IG

(
1, 1 + Eq

(
1

σ2
Y

))
B.1.2.4 ELBO derivation

ELBO =Eq

{
log π(Y |M,X, β, γ, σ2

β, σ
2
γ, σ

2
Y )
}

− Eq

{
log q(β) + log q(γ) + log q(σ2

β) + log q(σ2
γ) + log q(σ2

Y )
}

=Eq {log π(Y | ∼)}

+ Eq {log π(β| ∼)− log q(β)}+ Eq {log π(µ)| ∼)− log q(π(µ))}

+ Eq

{
log π(σ2

β| ∼)− log q(σ2
β)
}
+ Eq {log π(aβ| ∼)− log q(aβ)}

+ Eq {log π(γ| ∼)− log q(γ)}+ Eq

{
log π(σ2

γ| ∼)− log q(σ2
γ)
}

+ Eq {log π(aγ| ∼)− log q(aγ)}

+ Eq

{
log π(σ2

Y | ∼)− log q(σ2
Y )
}
+ Eq {log π(aY | ∼)− log q(aY )}

In the implementation, we separately compute each part of the ELBO and add them together.

ELBOlogL =Eq

{
log π(Y |M,X, β, γ, σ2

β, σ
2
γ, σ

2
Y )
}

=
n

2
Eq

(
1

σ2
Y

)
− 1

2
Eq

(
1

σ2
Y

)
Eq∥Y −Mβ −Xγ∥22

Here, denote EqSSE = Eq∥Y −Mβ −Xγ∥22,

EqSSE = ∥Y −MEqβ −XEqγ∥22 + tr
{
MTMVarq (β)

}
+ tr

{
XTXVarq (γ)

}
.

With the eigen decomposition on XTX,

tr
{
XTXVarq (γ)

}
= tr

{
ΛXdiag

{
Eq

(
1

σ2
Y

)
ΛX + Eq

(
1

σ2
γ

)}−1
}
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B.2 Additional Simulation Results

In the first simulation A1, we provide a low dimensional comparison on the SonI regression

between three different implementation of the ST-CAR model, the Gibbs sampler, the CAVI

algorithm, and the SSVI algorithm.

In the second simulation A2, we provide the additional to results to the simulation II

IonS with a further comparison between CAVI and SSVI in high-dimensional settings.

B.2.1 Simulation A1: Low dimensional comparison (SonI)

We compare the proposed Gibbs, CAVI, SSVI with ST-CAR prior to the classical penalized

regression method glmnet, and a Bayesian method where β is assigned a Soft-thresholded

Gaussian Process prior [43] implemented in the BIMA package.

The Frequentist penalized regression is implemented using R package glmnet[26] with

lasso penalty (α = 1), using 10-fold cross-validation.

The BIMA method requires a pre-specified kernel function, and the posterior sampling

algorithm is Metropolis-adjusted Langevin algorithm (MALA). In this simulation we sue the

exponential square kernel

κ(s, s′; a, b) = cor{β(s), β(s′)} = exp{−a(s2 + s′
2
)− b(s− s′)2}

where a = 0.01, b = 10, and used L = 66 basis functions.

For the four Bayesian methods (Gibbs, CAVI, SSVI, BIMA), we set the thresholding pa-

rameter ν = 0.1. To evaluate the variable selection accuracy, for the variational inference

ST-CAR methods (CAVI, SSVI), we use the mixing probabilities shown in 3.2 to define the

posterior inclusion probability(PIP)

PIP (β(sj)) = 1− P 0
j

where both CAVI and SSVI can trace the mixing probability P 0
j . We use the converged value

at the last iteration of P 0
j in CAVI to compute PIP. Since SSVI is a stochastic method, we use

the averaged P 0
j over the last 2000 iterations to compute its PIP. For the MCMC methods

(Gibbs,BIMA), we directly use the posterior sample of Tν(µj) (for Gibbs) or β(sj) (for BIMA)

being nonzero over the last 20% of iterations as the posterior inclusion probability. For the

final selection reported in Table B.1, we use the true generating image β, and set a threshold

t on PIP: if PIP (β(sj)) < t, β(sj) = 0, otherwise β(sj) equals the posterior sample mean or

the variational mean. By tuning t, we can control the FDR to be below 10%.
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(a) Case 1

(b) Case 2

Figure B.1: Illustration of estimated β under 2 different cases.

Simulation I provides a relatively low-dimensional small-scale example, where n =

200, p = 400. We simulate two testing image cases for β in (3.3), as shown in Fig B.1a-

B.1b. In case 1, the true image intensity has a smooth transition from 1 to 0, and the voxels

around the edge of the signal tend to have low signal-to-noise ratio, but the signal region is

a smooth round shape that can be easily estimated by smooth Gaussian process. In case 2,

the true image of β is a sharp triangular shape, but the edge voxels of the signal has a sharp

contrast to 0, with higher signal to noise ratio compared to case 1.

Table B.1 provides the simulation results of the posterior mean estimates of β, with mean

and standard deviation computed across 100 replications. SSVI has the best time efficiency

across 4 Bayesian methods.

B.2.2 Simulation A2: High-dimensional Comparison between

CAVI and SSVI (IonS)

In the second simulation A2, we provide the additional to results to the simulation II IonS

with a further comparison between CAVI and SSVI in high-dimensional settings. Table B.2

provides the additional result on the performance of CAVI compared to SSVI.
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Table B.1: Simulation results based on 100 replications, with standard deviation in the
bracket. All values are timed by 100 except for time (in seconds). FDR (false discovery rate)
is the proportion of times that zero coefficients are identified as nonzero among all identified
nonzero coefficients. Power is the proportion of times that nonzero coefficients are identified
as nonzero among all nonzero coefficients. Accuracy is the proportion of times the prediction
is correct. RMSE is the root mean square error over all voxels.

Case1 Gibbs CAVI SSVI BIMA glmnet

FDR 5.4 (3) 7.8 (2) 7.8 (2) 13.5 (1) 3.0 (3)
Power 80.0 (7) 94.4 (3) 84.9 (4) 100.0 (0) 24.1 (7)
Accuracy 92.6 (2) 95.9 (1) 93.3 (1) 95.3 (0) 77.0 (2)
RMSE 9.1 (2) 5.4 (1) 11.0 (1) 0.5 (0) 19.7 (3)
time 97.7 (5) 43.2 (10) 12.7 (0) 29.4 (1) 1.2 (0)

(a) Case 1

Case2 Gibbs CAVI SSVI BIMA glmnet

FDR 8.0 (3) 3.7 (0) 2.0 (2) 16.6 (3) 0.0 (0)
Power 100.0 (0) 100.0 (0) 97.0 (2) 100.0 (0) 94.7 (4)
Accuracy 98.8 (0) 99.5 (0) 99.3 (0) 97.4 (1) 99.3 (1)
RMSE 4.2 (1) 1.9 (0) 7.3 (1) 2.2 (0) 1.8 (1)
time 101.4 (11) 15.9 (5) 12.9 (1) 21.7 (1) 1.2 (0)

(b) Case 2

B.3 Additional Real Data result

Table B.3 provides additional sensitivity analysis results on SonI when the bandwidth is 26.

Table B.4 provides additional sensitivity analysis results on IonS when the bandwidth is 9

and the decay rate parameter γ is 0.35.
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Table B.2: Additional Simulation results to Simulation II. Comparison between CAVI and
SSVI for ST-CAR prior, based on 100 replications.

FDR TPR ACC
Case SSVI CAVI SSVI CAVI SSVI CAVI
Case 1. n = 600, p = 1600, σ2

M = 5 5.8 6.89 95.41 95.15 97.86 96.94
Case 2. n = 600,p = 900, σ2

M = 5 4.95 6.23 84.34 84.05 96.27 95.32
Case 3. n = 1000, p = 1600, σ2

M = 5 7.1 7.91 98.38 98.31 98.13 97.32
Case 4. n = 600, p = 1600,σ2

M = 10 5.07 5.64 85.31 84.79 96.06 95.85
Case 5. n = 600, p = 6400,σ2

M = 5 5.97 11.72 93.64 94.18 97.35 91.3
Case 6. n = 600, p = 6400,σ2

M = 20 5.93 8.57 81.83 83.58 95.06 91.73

RMSE
Total time
(seconds)

Number of iteratios
per second

Case SSVI CAVI SSVI CAVI SSVI CAVI
Case 1. n = 600, p = 1600, σ2

M = 5 7.86 9.13 73.7 239.3 137.5 41.3
Case 2. n = 600,p = 900, σ2

M = 5 7.88 9.17 55 155.8 186 63.8
Case 3. n = 1000, p = 1600, σ2

M = 5 6.44 7.11 117.3 429.8 88.9 23.1
Case 4. n = 600, p = 1600,σ2

M = 10 10.32 12.7 82.9 255.4 122.7 39.2
Case 5. n = 600, p = 6400,σ2

M = 5 8.52 8.99 409.2 1282.8 24.7 6.7
Case 6. n = 600, p = 6400,σ2

M = 20 13.84 13.72 596.7 2641.5 17 3.4

Table B.3: Additional sensitivity analysis for SonI when the bandwidth is 26, on three
parameters: (i) the initial value of σ2

β, (ii) the thresholding parameter ν in ST-CAR prior,

(iii) the decay rate γ in the decay rate function for σ2
β where (σ2

β)
(t) = a(b+ t)−γ.

σ2
β 5× 10−6 1× 10−5 5× 10−5 1× 10−4 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

ν 0.007 0.007 0.007 0.007 0.005 0.01 0.012 0.007 0.007
γ 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.25 0.45
test pMSE 0.54 0.51 0.56 0.64 0.52 0.52 0.51 0.52 0.51
train pMSE 0.29 0.37 0.31 0.22 0.33 0.4 0.41 0.36 0.37

Table B.4: Additional sensitivity analysis for IonS when the bandwidth is 9, γ = 0.35 in
the decay rate function, on two parameters: (i) the initial value of σ2

β, (ii) the thresholding
parameter ν in ST-CAR prior

σ2
α 1 0.1 0.01 0.1 0.1
λ 0.01 0.01 0.01 0.005 0.05
total test pMSE 47362.8 47351.85 47356.9 47354.97 47353.58
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APPENDIX C

Chapter 4: Appendix

C.1 Proof of Proposition 3

Proof. Denote θ = (α, β, ξ, ζ, η, ν, σM , σY ) as the collection of all parameters. First of all,

based on model (4.1) and the fact that for the intensity measure of Mi(∆sj) over a small

voxel partition ∆sj follows Gaussian distribution Mi(∆sj) = E {Mi(sj)}λ(∆sj)+ ϵM,i(∆sj),

the mean and variance function of Mi(∆sj) can be uniquely identified, hence σM and the

mean function E {Mi(sj) | θ,Xi, Ci} are both uniquely identifiable. We denote the mean

function E {Mi(sj) | θ,Xi, Ci} as

Ai,j(α, ξ, ηi) = Xiα(sj) +

q∑
k=1

Ci,kξk(sj) + ηi(sj)

Similarly, σY is also uniquely identifiable. In the derivation below, for simplicity we denote

Bi(γ, ζ, ν, ηi) = Xiγ +

q∑
k=1

Ci,kζk +

p∑
j=1

ν(sj)ηi(sj)λ(∆sj)

Let Mi = {Mi(∆sj)}pj=1. Conditional on the covariates Xi, Ci,k, the joint distribution of

Yi,Mi can be expressed as

π (Yi,Mi | Xi, {Ci}mk=1 , θ) = π (Yi |Mi, Xi, {Ci}mk=1 , θ)

p∏
j=1

π (Mi(∆sj) | Xi, {Ci}mk=1 , θ)

=
1√
2πσ2

Y

exp

− 1

2σ2
Y

(
Yi −

p∑
j=1

Mi(∆sj)β(sj)−Bi(γ, ζ, ν, ηi)

)2


×
p∏

j=1

(
1√

2πσ2
Mλ(∆sj)

)
× exp

{
− 1

2σ2
M

p∑
j=1

1

λ(∆sj)
(Mi(∆sj)− Ai,j(α, ξ, ηi))

2

}
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Suppose that Yi takes value yi and Mi(∆sj) takes value mi,j in the joint density function,

note that yi and mi,j can be any real values. We can write the log joint density function

over the i-th individual i = 1, . . . , n as

n∑
i=1

{
log π(yi, {mi,j}pj=1 | Xi, {Ci,k}qk=1 , θ)

}
∝

n∑
i=1

{
− 1

2σ2
Y

y2i −
1

2σ2
Y

(
p∑

j=1

mi,jβ(sj)

)2

− 1

2σ2
Y

B2
i (γ, ζ, ν, ηi)

+
1

σ2
Y

yi

(
p∑

j=1

mi,jβ(sj)

)
+

1

σ2
Y

Bi(γ, ζ, ν, ηi)yi +
1

σ2
Y

(
p∑

j=1

mi,jβ(sj)

)
Bi(γ, ζ, ν, ηi)

− p

2σ2
M

p∑
j=1

(mi,j)
2 − p

2σ2
M

A2
i,j(α, ξ, η) +

p

2σ2
M

p∑
j=1

mi,jAi,j(α, ξ, ηi)

}

This is a polynomial of yi,mi,1, . . . ,mi,p, and we only need to match the coefficients of the

first-order, second-order, and interaction terms to identify the unique coefficients. Hence σ2
Y

can be uniquely determined by the quadratic term
∑n

i=1 y
2
i , similarly {β(sj)}pj=1 uniquely

determined by the interaction terms {
∑n

i=1 yimi,j}pj=1, and Bi(γ, ζ, ν, ηi) uniquely determined

by the first-order term yi. Given that {β(sj)}pj=1 and σ2
Y are uniquely identifiable, we can

also uniquely determine σ2
M from the coefficient of

∑n
i=1

∑p
j=1m

2
i,j. Given the identified

{β(sj)}pj=1, σ
2
Y and σ2

M , Ai,j(α, ξ, ηi) is also identified from the coefficient of the first-order

mi,j.

Now we have shown the identifiability of σ2
Y , σ

2
M , {β(sj)}

p
j=1, Ai,j(α, ξ, ηi) and

Bi(γ, ζ, ν, ηi).

Next, we need to show that the rest of the parameters (α, ξ, ζ, η, ν) can also be uniquely

identified from Ai,j(α, ξ, ηi) and Bi(γ, ζ, ν, ηi). Given Assumption 4.1-2, the identifiability of

α, ξ, η in Ai,j(α, ξ, ηi) directly follows from Proposition 1 in [97].

To show the identifiability of γ, ζ, ν in Bi(γ, ζ, ν, ηi), note that given Bi(γ, ζ, ν, ηi) and

ηi are identifiable for i = 1, . . . , n, comparing Bi(γ
′, ζ ′, ν ′, ηi) = Bi(γ, ζ, ν, ηi), i = 1, . . . , n

to reach the identifiability of γ, ζ, ν is equivalent to solving a linear system (given that the

design matrix is full rank, Assumption 4.3 ) with n equations and p+1+ q variables. Hence

under assumption (ii) where nu is sparse, ν ∈ ΘSP, when n is large enough, the number of

nonzero elements in ν will be smaller than n− q − 1, hence γ, ζ, ν are all identifiable.

Under assumption (i), ν is spatially-correlated and can be decomposed using L number
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of basis. Let ν(s) =
∑L

l=1 θν,lψl(s), and

∫
S
ν(s)ηi(s)λ(ds) =

∫
S

L∑
l=1

θν,lψl(s)ηi(s)λ(ds) =
L∑
l=1

θν,lθηi,l

Hence

Bi(γ, ζ, ν, ηi) = Xiγ +

q∑
k=1

Ci,kζk +
L∑
l=1

θν,lθηi,l

Based on Assumption 4.3, with the design matrix B = (X,C1, . . . ,Cq,θη,1, . . . ,θη,L) ∈
Rn×(1+L+q). And Bi(γ, ζ, ν, ηi)−Bi(γ

′, ζ ′, ν ′, ηi) = 0 for i = 1, . . . , n can be written as

B ·
{
(γ, ζ, θν,1, . . . , θν,L)

T −
(
γ′, ζ ′, θ′ν,1, . . . , θ

′
ν,L

)T}
= 0

By Assumption 4.3, det(B) > 0, hence (γ, ζ, θν,1, . . . , θν,L) =
(
γ′, ζ ′, θ′ν,1, . . . , θ

′
ν,L

)
, there-

fore γ, ζ, ν are also identifiable. Similarly, if ν ∈ ΘSP, the design matrix becomes{
X,C1, . . . ,Cq, {η(sk)}sk∈Sm

}
∈ Rn×(m+1+q) where Sm = {s : ν(s) ̸= 0}, and is also full

rank by Assumption 4.

C.2 Proof of Proposition 4

Proof. Throughout this proof, we use the notation op(1) as follows: if Xn = op(1), Xn
p→ 0

as n→∞.

Using the decomposition on β(s) =
∑L

l=1 θθβ ,lψl(s), M̃i,l =
∫
S
Mi(s)ψl(s)λ(ds), the full

outcome model can be decomposed as

Yi =
L∑
l=1

θβ,lM̃i,l + γXi +

q∑
k=1

ζkCi,k +

p∑
j=1

ηi(sj)ν(sj) + ϵY,i

where ϵY,i
iid∼ N(0, σ2

Y ).

With the prior specification θβ,l
ind∼ N(0, σ2

βλl), denote diagonal matrix D ∈ RL×L, where

(D)l,l′ = λlI(l = l′). Denote M̃i =
(
M̃i,l, . . . , M̃i,L

)T
∈ RL. The posterior mean of θβ is

Var {θβ| ∼} =

(
1

σ2
β

D−1 +
1

σ2
Y

n∑
i=1

M̃iM̃
T
i

)−1

E {θβ| ∼} = Var {θβ| ∼}

{
1

σ2
Y

n∑
i=1

(
Yi − γXi −

q∑
k=1

ζkCi,k −
p∑

j=1

ηi(sj)ν(sj)

)
M̃i

}
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To simplify these two bias expressions, we denote M̃ ∈ Rn×L with each row being M̃T
i .

Let A := M̃TM̃ ∈ RL×L.

Denote the point estimator θ̂Fβ = E {θβ| ∼} for the posterior mean under full model (4.4).

Denote θ0 as the true parameters. Conditional on the estimator η̂ and ν̂, the bias of θ̂Fβ can

be written as

bias(θ̂Fβ ) = E
(
θ̂Fβ − θ0β

)
= EY |{X,C,M}

(
θ̂Fβ

)
− θ0β

= Var {θβ| ∼}
1

σ2
Y

n∑
i=1

{(
θ0β
)T
M̃i +

(
ν0
)T
η0i − (ν̂)T η̂i

}
M̃i − θ0β

Similarly, if we denote the point estimator using BIMA model as θ̂Bβ ,

bias(θ̂Bβ ) = Var {θβ| ∼}
1

σ2
Y

n∑
i=1

{(
θ0β
)T
M̃i +

(
ν0
)T
η0i

}
M̃i − θ0β

Recall the notation M̃ ∈ Rn×L and A := M̃TM̃ ∈ RL×L, we can simplify bias(θ̂Fβ ). By

the singular value assumption of A in Proposition 4, with probability 1 − exp {−c0n}, A is

full rank. Conditioning on the event that A is full rank hence invertible, denote η0 ∈ Rn×p

with the i-th row being ηTi .

bias(θ̂Bβ ) =

[
σ2
Y

σ2
β

D−1 + A

]−1 [
Aθ0β +

(
M̃
)T (

η0
)T
ν0
]
− θ0β

=

[
σ2
Y

σ2
β

D−1A−1 + IL

]−1 [
θ0β + A−1

(
M̃
)T (

η0
)T
ν0
]
− θ0β

(∗)
=
[
IL −

(
τ 2DA+ IL

)−1
] [
θ0β + A−1

(
M̃
)T (

η0
)T
ν0
]
− θ0β

= A−1
(
M̃
)T (

η0
)T
ν0 −

(
τ 2DA+ IL

)−1
[
θ0β − A−1

(
M̃
)T (

η0
)T
ν0
]

Note that (∗) uses the Identity (I + A)−1 = I − A(I + A)−1 = I − (A−1 + I)−1, and the

notation τ−2 =
σ2
Y

σ2
β
.

Proof of Part (i)

Now we can see that if (η0)
T
ν0 = 0, i.e. when the unmeasured confounder effect does
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not exist, the bias of θ̂Fβ becomes

bias(θ̂Bβ ) = −
(
τ 2DA+ IL

)−1
θ0β

The range of bias(θ̂Bβ ) is controlled by the smallest and largest eigen-values of (τ 2DA+IL)
−1,

scaled up to a rotation of θ0β. Note that σmin(D)σmin(A) ≤ σmin(DA) ≤ σmax(DA) ≤
σmax(D)σmax(A). With the assumption λL > cλn

−1+aλ , use h ≳ g to denote the inequality

h > cgg up to a positive constant cg that does not contain any rate of n. We can see that

σmin(D)σmin(A) ≳ naλ →∞ as n→∞, and σmax(D)σmax(A) ≲ n→∞, hence bias(θ̂Bβ )→ 0

as n→∞.

Proof of Part (ii)

Similarly, when (η0)
T
ν0 ̸= 0,

bias(θ̂Bβ ) =
[
τ−2D−1 + A

]−1
(
M̃
)T (

η0
)T
ν0 −

(
τ 2DA+ IL

)−1
θ0β

bias(θ̂Fβ ) =
[
τ−2D−1 + A

]−1
(
M̃
)T {(

η0
)T
ν0 − (η̂)T ν̂

}
−
(
τ 2DA+ IL

)−1
θ0β

As we’ve shown that (τ 2DA+ IL)
−1
θ0β = op(1), we focus on the first term in both bias

expressions.

For the image mediatorMi, the mediator model (4.1) assumes thatMi(sj) = E {Mi(sj)}+
σMZi,j, where Zi,j are the independent standard normal variables. Under the orthonormal

decomposition, M̃i,l = µi,l + σMZi,l where the Zi,l are still independent standard normal

under orthonormal transformation, and µi,l is a constant mean term that determines mean

structure of M̃i,l. Hence we can write M̃ = µ+ σMZ ∈ Rn×L.

[
τ−2D−1 + A

]−1
(
M̃
)T (

η0
)T
ν0 ={

1

n

[
τ−2D−1 + (µ+ σMZ)T (µ+ σMZ)

]}−1{
1

n
(µ+ σMZ)T

(
η0
)T
ν0
}

The denominator can be broken down into 4 parts,

1

n

[
τ−2D−1 + (µ+ σMZ)T (µ+ σMZ)

]
=
1

n
τ−2D−1 +

1

n

n∑
i=1

µiµ
T
i +

σ2
M

n

n∑
i=1

ZiZ
T
i +

σM
n

n∑
i=1

(
µiZ

T
i + Ziµ

T
i

)
The first term 1

n
τ−2D−1 = op(1) since 1/n/λL ≲ n−aλ → 0.

By Assumption 5, the second term has a constant limit, where µi,l =
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∫
S {Ei(s)ψl(s)}λ(ds). We denote H = limn→∞

1
n

∑n
i=1 µiµ

T
i ∈ RL×L, where the (l, l′)-th

element in H is Hl,l′ , a finite constant introduced in Assumption 5.

The third term has the limit
σ2
M

n

∑n
i=1 ZiZ

T
i

p→ σ2
MIL due to the i.i.d. normality of Z.

The last term is also op(1), because the (l, l′)-th term is a normal variable with mean 0

and variance 1
n2

∑n
i=1

(
µ2
i,l + µ2

i,l′

)
for l ̸= l′, and 4

n2

∑n
i=1 µ

2
i,l for l = l′. Because (H)l,l =

limn→∞
1
n

∑n
i=1

(
µ2
i,l

)
is a constant, (H)l,l/n→ 0.

Hence the denominator is equivalent to op(1) +H + σ2
MIL.

To analyze the numerator and simplify the notations, we use U0 := (η0)
T
ν0 ∈ Rn,

similarly, Û := (η̂)T ν̂ to denote the unmeasured confounder term. The numerator can be

expressed as

1

n
(µ+ σMZ)T

(
η0
)T
ν0 =

(
1

n

n∑
i=1

{µi,l + σMZi,l}U0
i

)L

l=1

Note that σM

n

∑n
i=1 Zi,lU

0
i

p→ 0 for all l since
∑n

i=1 (U
0
i )

2
/n is finite (assumption made in

part (ii) of Proposition 4).

With the Assumption 5 that h0 = limn→∞
∑n

i=1 µiU
0
i is a finite vector in RL, we can draw

the conclusion that bias(θ̂Bβ )
p→ (H + σ2

MIL)
−1h0.

Similarly, if we define ĥ = limn→∞
∑n

i=1 µiÛi, the bias of θβ under the joint model (4.4)

becomes bias(θ̂Fβ )
p→ (H + σ2

MIL)
−1
(
h0 − ĥ

)
.

C.3 Two-stage Algorithm: update of ν in the outcome

model

Let η̂ ∈ Rp×n be the estimator of η obtained using the mediator model. We present details

for updating ν and δν in Algorithm 1. Updating ν requires fast linear regression using SVD

on η, which can be split into two cases, one with the nonzero element in ν greater than n,

and the other smaller than n.

C.4 Additional Simulation and Real Data Analysis Re-

sults

Below is a visualization of the MSE and bias of β(s) over 100 replications, under all six

simulation cases.
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Algorithm 1. Two-stage Algorithm

1: for Iterations t = 1, 2, ... do
2: update θβ according to the posterior derivations.
3: Section 1: Update ν using SVD on the design matrix.
4: Let δ1 = {sj : ν(sj) ̸= 0} and δ0 = {sj : ν(sj) = 0}. Let |δ1| be the length of δ1, and
|δ0| be the length of δ0.

5: Denote η̂T
1 =

(
η̂T
)
[:,j],j∈δ1

∈ Rn×|δ1|, and do an SVD on η̂T
1 = UDV T.

6: Let Yν = Y − γX −CTζ −MTβ ∈ Rn be the residual without the ηTν term, and
let Y∗

ν = UTYν .
7: if |δ1| > n then
8: Let τ 2 = σ2

ν/σ
2
Y .

9: Sample α1 ∼ N|δ1|(0, σ
2
νI|δ1|), and sample α2 ∼ Nn(0, σ

2
Y In).

10: Set ν∗ = α1 + τ 2V D(1 + τ 2D2)−1(Y∗
ν −DV Tα1 − α2).

11: Set ν[j],j∈δ1 = ν∗.
12: else
13: Sample ν∗ ∼ N|δ1|(E1, V1), where

V1 =
(
σ−2
Y D2 + σ−2

ν I|δ1|
)−1

, E1 = V1
(
σ−2
Y DY∗

ν

)
.

14: Set ν[j],j∈δ1 = V ν∗.
15: end if
16: Sample ν0 ∼ N|δ0|(0, σ

2
νI|δ0|), and let ν[j],j∈δ0 = ν0.

17: Save ν as the t-th sample ν(t).
18: Section 2: Update δν sequentially.
19: Let pδ be the hyper-parameter for the Bernoulli prior on δν . Here we set pδ = 0.5.

Compute the residual vector as R = Yν − η̂T(ν ∗ δν) ∈ Rn.
20: for location j = 1, . . . , p do
21: if δν,j = 1 then
22: R1 = R,
23: R0 = R +

(
η̂T
)
j
∗ νj;

24: else
25: R1 = R−

(
η̂T
)
j
∗ νj,

26: R0 = R;
27: end if
28: log l1 = −0.5/σ2

Y ∗ ∥R1∥22, log l0 = −0.5/σ2
Y ∗ ∥R0∥22.

29: p1 = explog l1−log l0 ,
30: p1 = p1 ∗ pδ/(1− pδ),
31: p0 = 1/(p1 + 1), p1 = 1− p0.
32: Sample Uj ∼ Unif[0, 1], δν = 1 if Uj < p1 and set R = R1, otherwise δν = 0, R =

R0.
33: end for
34: Save δν as the t-th sample δ

(t)
ν .

35: Update the rest of parameters γ, ζ, σ2
Y , σ

2
γ, σ

2
ζ , σ

2
ν using standard Gibbs Sampler.

36: end for
37: return the MCMC chains of θβ, ν, δν , γ, ζ, σ

2
Y , σ

2
γ, σ

2
ζ , σ

2
ν .
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Figure C.1: True signal for α(s), β(s), and spatially-varying NIE E(s).

Table C.1: Simulation result of the scalar Natural Direct Effect, averaged over 100 replica-
tions. Each column represent one method. The smallest MSE of E is bolded in each case.

BIMA BASMU BIMA BASMU
Case 1 dense ν Case 4 sparse ν, n = 600
Bias -0.44 -1.71 Bias -8.16 -2.42
Var 0.04 0.01 Var 0.07 0.03
MSE 0.23 2.94 MSE 66.71 5.88
Case 2 sparse ν Case 5 dense ν, ση = 1
Bias -5.14 -2.24 Bias -5.90 -2.29
Var 0.06 0.02 Var 0.04 0.02
MSE 26.53 5.05 MSE 34.85 5.25
Case 3 all 0 ν Case 6 dense ν, σM = 4
Bias 0.00 -0.26 Bias -0.51 -1.70
Var 0.00 2.23 Var 0.03 0.01
MSE 0.00 2.28 MSE 0.30 2.91
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Figure C.2: MSE based on 100 replications for β(s) over different spatial locations s, under
all simulation cases. The color bar ranges from 0 to 0.48, from white to red.
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Figure C.3: Bias based on 100 replications for β(s) over different spatial locations s, under
all simulation cases. The color bar ranges from -0.7 to 0.65, from blue (negative) to white
(0) to red (positive).
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(a) The true signal pattern for ν, from left to right: sparse ν, dense ν, all 0 ν.
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(b) Scatter plot of TIE E(sj) comparison of BIMA and BASMU result. Each point is one voxel
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Figure C.4: Additional simulation and real data plots.
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