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ABSTRACT

AI-Augmented Vulnerability Detection and Patching

by

Poornaditya Mishra

Chair: Dr. Birhanu Eshete

Software vulnerabilities remain a persistent threat, and the increasing use of AI-

generated code introduces new security challenges. While Large Language Models

(LLMs) excel at code generation, they often struggle to consistently produce secure

code or apply targeted vulnerability fixes. This work proposes a novel system that

bridges this gap by combining the strengths of graph-based deep learning and LLMs

for automated vulnerability detection and patching. We first model vulnerability

detection as graph representation learning via Graph Attention Network (GAT) to

accurately identify vulnerabilities in code, leveraging the rich structural information

encoded in Code Property Graphs (CPGs) and Abstract Syntax Trees (ASTs). Our

system then leverages the GAT’s predictions to guide an LLM, providing both the

vulnerability type and the precise location within the code requiring a patch. This

targeted guidance enables the LLM to generate more secure and contextually appro-

priate code modifications. Through experiments on a dataset of real-world vulnerable

code, we demonstrate the effectiveness of our approach in detecting critical vulnera-

bilities like SQL injection and session hijacking. We further evaluate the quality of the

LLM-generated patches, showing a significant improvement in security when guided

ix



by our system. This research paves the way for more secure and reliable AI-assisted

software development by integrating deep learning-based vulnerability analysis with

the generative capabilities of LLMs.

Keywords: Generative AI, Cybersecurity, Large Language Model
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CHAPTER I

Introduction

1.1 Motivation

The pervasiveness of software in modern society is undeniable. It underpins vi-

tal services such as healthcare and finance, as well as everyday conveniences like

communication and entertainment. As our reliance on software continues to grow

exponentially, so do the potential risks associated with security vulnerabilities. Ex-

ploitable weaknesses within code can have devastating consequences, leading to data

breaches, financial losses, system failures, and disruption of critical infrastructure and

services.

While AI-powered code generation tools hold immense promise for increasing pro-

ductivity and efficiency in software development, they also introduce new challenges

to ensuring code security. Large Language Models (LLMs), with their remarkable

ability to generate human-quality code, often lack the ability to consistently produce

secure code. Trained on massive datasets of code, LLMs may inadvertently learn and

reproduce insecure coding patterns, potentially introducing vulnerabilities or failing

to recognize and address existing ones. This highlights a critical need for techniques

that can guide LLMs towards generating more secure code and assist developers in

identifying and patching vulnerabilities, ensuring the development of robust and re-

liable software systems.
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1.2 Prior Work

Traditional approaches to vulnerability detection, while essential in software de-

velopment, often struggle to keep pace with the increasing complexity and scale of

modern software. Manual code review, considered the gold standard for identifying

vulnerabilities [1], involves meticulous inspection of source code by security experts.

While valuable, this process is inherently time-consuming, resource-intensive, and

susceptible to human error, especially as codebases grow in size and complexity.

Static analysis tools offer a degree of automation by analyzing source code without

execution, searching for patterns and anomalies that might indicate vulnerabilities

[2, 3]. While these tools offer efficiency and broad coverage, they are often plagued

by false positives, flagging code that is not actually vulnerable, leading to wasted

effort in manual verification. Furthermore, their reliance on predefined patterns and

rules limits their contextual awareness, often failing to capture vulnerabilities that

arise from the subtle interplay of multiple code components or those requiring a deeper

understanding of program execution behavior and semantics.

Fuzzing takes a dynamic approach, providing invalid or unexpected inputs to a

program to trigger crashes or unusual behavior that might reveal vulnerabilities [4, 5].

While effective at uncovering certain types of vulnerabilities, especially those related

to memory corruption, fuzzing can be computationally expensive and struggles to

detect logic-based vulnerabilities, such as authentication bypasses or flaws in business

logic.

The rise of deep learning has introduced new possibilities for vulnerability de-

tection [6]. However, many existing deep learning approaches[7, 8, 9] treat code as

plain text, akin to natural language processing, failing to fully capture the intricate

structural and semantic relationships that are crucial for understanding code behav-

ior and identifying security vulnerabilities. This limitation hinders their effectiveness

in identifying vulnerabilities that stem from the complex interplay of code elements

2



and their dependencies.

Graph Neural Networks (GNNs) have emerged as a promising solution to address

this challenge. Designed to learn from data represented as graphs, GNNs are par-

ticularly well-suited for code analysis as they can effectively capture the complex

dependencies within code [10, 11]. Specifically, Graph Attention Networks (GATs)

[12], a type of GNN with an attention mechanism, have shown remarkable capabili-

ties in learning from graph-structured data, selectively focusing on the most relevant

connections within the code. Research has demonstrated the effectiveness of GNNs

in learning from code representations like Code Property Graphs (CPGs) [13], which

encode not only syntactic information but also data flow, control flow, and other

important semantic relationships.

Large Language Models (LLMs), with their impressive code generation capa-

bilities, offer a potential avenue for automated code repair [14]. However, simply

prompting an LLM to “fix vulnerabilities” without informed guidance often yields

sub-optimal results. LLMs, while adept at generating syntactically correct code, of-

ten lack the ability to understand the security implications of the code they generate.

Therefore, they require careful context and explicit instructions regarding security

considerations to generate patches that are both functionally correct and secure.

1.3 Approach Overview

This thesis proposes a novel framework that seamlessly integrates the power of

GATs for precise vulnerability detection with the generative capabilities of LLMs for

automated vulnerability patching. Recognizing the limitations of relying solely on

LLMs for security-critical tasks, our approach leverages GATs to not only identify

vulnerabilities but also to provide targeted guidance to an LLM, thereby ensuring the

generation of secure and effective patches.

The core insight of our approach lies in representing code as Abstract Syntax
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Trees (ASTs) and Code Property Graphs (CPGs), capturing the hierarchical struc-

ture and syntactic relationships in code. We train GAT models on AST and CPG

representations, enabling them to learn and recognize complex patterns indicative

of vulnerabilities. The GAT’s attention mechanism plays a crucial role in precisely

pinpointing vulnerable code sections by highlighting the nodes most relevant to its

vulnerability prediction.

This localized vulnerability information, enriched with relevant contextual data

extracted from the AST, forms the basis for crafting carefully engineered prompts for

a powerful LLM (Google Gemini Pro). These prompts, unlike generic instructions,

provide the LLM with specific guidance on the vulnerability’s nature and location

within the code, guiding it towards generating effective patches that address the

identified issue while preserving the original code’s functionality.

While LLMs exhibit remarkable code generation capabilities, relying solely on

them for security-critical tasks presents significant challenges. Their training on vast

codebases, while advantageous for code fluency, inadvertently exposes them to both

secure and insecure coding practices. This can lead to the unintentional generation of

code susceptible to common vulnerabilities, even from seemingly innocuous prompts.

For instance, an LLM tasked with creating a simple web application might produce

functional code that lacks essential security measures like input sanitization or secure

session management. This vulnerability could stem from the model learning prevalent,

but insecure, coding patterns from its training data. While the generated code might

function as intended on the surface, it would remain vulnerable to common exploits

like cross-site scripting (XSS) or SQL injection.

Furthermore, simply instructing an LLM to “improve security” without specific

guidance often results in superficial fixes or overly broad security measures. This lack

of targeted guidance stems from the LLM’s inability to independently analyze the

code for specific vulnerabilities and devise appropriate remediation strategies.
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This highlights a critical need to guide LLMs toward secure code generation

through a more structured and informative approach. Our proposed framework ad-

dresses this challenge by incorporating:

1. Precise Vulnerability Detection: Leveraging the power of GATs to analyze

code structure and identify specific vulnerabilities with high accuracy.

2. Targeted Vulnerability Localization: the attention mechanism of GATs

to pinpoint the exact code segments requiring remediation.

3. Context-Aware Prompt Engineering: Generating LLM prompts enriched

with localized vulnerability information and relevant code context to guide se-

curity patch generation.

1.4 Evalaution Overview

We rigorously evaluate our framework through experiments on a dataset of 16,000

real-world Python code snippets, focusing on common web application vulnerabilities

such as SQL Injection, Cross-Site Scripting, Command Injection, Path Traversal, and

Insecure Session Management. Our evaluation encompasses a multi-faceted assess-

ment to gauge the effectiveness of our proposed approach:

• Vulnerability Detection Accuracy: We assess the accuracy of our GAT

model in detecting vulnerabilities using standard classification metrics, includ-

ing accuracy, precision, recall, and F1-score. Our experiments reveal that lever-

aging Code Property Graphs (CPGs) as the code representation significantly

enhances vulnerability detection accuracy compared to using Abstract Syntax

Trees (ASTs).

• Localization Effectiveness: We evaluate the effectiveness of our attention-

based localization technique in precisely pinpointing vulnerable code sections.
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Our analysis demonstrates an 87% accuracy in identifying the vulnerable code

span, highlighting the efficacy of this approach in guiding the subsequent patch

generation process.

• Patch Quality Assessment: We scrutinize the quality of the LLM-generated

patches using a combination of human evaluation, static analysis with Ban-

dit [15], and re-evaluation with our trained GAT model. Our evaluation reveals

a promising success rate of around 75-80% in generating correct and effective

patches, demonstrating the potential of LLMs for automated code repair when

guided by our framework.

The findings from our evaluation underscore the significance of this thesis in

demonstrating the viability of a hybrid approach, combining graph-based deep learn-

ing and LLMs, for automated vulnerability detection and patching. Our work high-

lights the importance of choosing a suitable code representation, the effectiveness of

attention-based localization for targeted patch generation, and the promising capabil-

ities of LLMs in generating secure code fixes when provided with accurate contextual

information. These results pave the way for further research and development in

automating code security and improving the reliability of software systems.

1.5 Contributions

This thesis makes the following key contributions to the field of AI-assisted soft-

ware security:

• Novel Framework: We propose a novel framework that integrates graph-

based deep learning and LLMs for automated vulnerability detection and patch-

ing, bridging the gap between accurate identification and effective remediation.

• Effective Vulnerability Detection and Patching: We demonstrate the
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effectiveness of our approach in accurately detecting vulnerabilities, localizing

them within code, and generating promising patches.

• Importance of Prompt Engineering: Our work emphasizes the critical role

of carefully engineered prompts when using LLMs for security-critical tasks,

showcasing how targeted guidance can significantly enhance the quality and

security of generated code.

1.6 Thesis Organization

The remaining chapters of this thesis are organized as follows:

• Chapter 2: Background provides a comprehensive overview of essential con-

cepts, including code vulnerabilities, CWE classifications, graph-based code

representation (ASTs and CPGs), and Graph Neural Networks, with a par-

ticular emphasis on Graph Attention Networks (GATs).

• Chapter 3: Related Work surveys existing vulnerability detection and code

repair techniques, comparing and contrasting various approaches.

• Chapter 4: Methodology presents details on dataset construction, model train-

ing, vulnerability localization and contextualization, and LLM-guided patching.

• Chapter 5: Implementation presents the implementation details of our frame-

work, including the specific tools, libraries, and experimental configurations.

• Chapter 6: Evaluation and Results presents the findings of our experimental

evaluation, analyzing the performance of our GAT model, the effectiveness of

our localization technique, and the quality of the LLM-generated patches.

• Chapter 7: Conclusion summarizes our key findings, discusses limitations, and

suggests directions for future research.
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CHAPTER II

Background

This chapter lays the groundwork for understanding the key concepts and tech-

niques employed throughout this thesis. We begin by delving into the nature of

software vulnerabilities and their systematic categorization using frameworks like the

Common Weakness Enumeration (CWE). We then explore the importance of repre-

senting code as graphs, focusing on Code Property Graphs (CPGs) as a powerful tool

for capturing the intricate relationships between code elements. Finally, we introduce

Graph Neural Networks (GNNs), specifically Graph Attention Networks (GATs), as a

sophisticated deep learning technique well-suited for analyzing graph-structured data

like CPGs, paving the way for more accurate and efficient vulnerability detection.

2.1 Understanding Code Vulnerabilities

Software vulnerabilities are weaknesses or flaws in code that deviate from secure

coding practices, potentially enabling attackers to compromise system security. These

flaws can manifest in various forms, often arising from complexities in software design,

implementation errors, or a lack of awareness regarding secure coding principles.

Understanding the nature and characteristics of these vulnerabilities is crucial for

developing effective detection and remediation techniques.

Common Weakness Enumeration (CWE). To effectively address the diverse

8



landscape of software vulnerabilities, systematic categorization is essential. The Com-

mon Weakness Enumeration (CWE) [16], maintained by MITRE, provides a widely-

used framework for classifying software weaknesses based on their underlying nature

and potential impact. CWE acts as a common language for security professionals,

researchers, and developers, facilitating communication and collaboration in vulner-

ability analysis, mitigation, and prevention.

The CWE framework categorizes weaknesses based on several factors, including

the affected software development lifecycle phase, the exploited weakness type (e.g.,

input validation, access control), and the potential impact of successful exploitation.

This structured approach enables developers to identify common security flaws, prior-

itize remediation efforts based on risk assessments, and adopt secure coding practices

that minimize the introduction of vulnerabilities.

This thesis focuses on five prevalent and impactful vulnerability types:

• CWE-79: Cross-Site Scripting (XSS): This vulnerability arises when web

applications fail to properly sanitize user-supplied data, allowing attackers to

inject malicious scripts into web pages viewed by other users [17]. This injection

can lead to session hijacking, data theft, or the execution of arbitrary code in

the victim’s browser.

• CWE-89: SQL Injection (SQLi): SQLi vulnerabilities occur when user in-

put used in constructing SQL queries is not properly sanitized [18]. This can

allow attackers to manipulate the structure of the SQL query, potentially by-

passing authentication mechanisms, accessing sensitive data, or even executing

arbitrary commands on the database server.

• CWE-384: Session Fixation: This vulnerability arises when an attacker

can manipulate a user’s session ID, forcing it to a value known to the attacker.

Once the user logs in, the attacker can hijack the session, gaining unauthorized

9



access to the user’s account [19].

• CWE-22: Path Traversal: This vulnerability stems from insufficient valida-

tion of user-supplied file paths, allowing attackers to access or manipulate files

outside the intended directory [20]. Successful exploitation can grant attack-

ers access to sensitive system files, configuration files, or enable arbitrary code

execution.

• CWE-78: OS Command Injection: OS Command Injection vulnerabilities

occur when applications allow user-supplied data to be executed as operating

system commands without proper sanitization [21]. This can enable attackers

to execute arbitrary commands on the underlying system, potentially leading

to complete system compromise.

2.2 Code Property Graphs

While understanding the nature and categorization of software vulnerabilities is

crucial, effectively detecting them within large and complex codebases requires so-

phisticated tools and techniques. Traditional code analysis methods often struggle

to capture the intricate relationships and dependencies between different code ele-

ments, leading to incomplete or inaccurate vulnerability assessments. Code Property

Graphs (CPGs) offer a powerful solution to this challenge by providing a unified and

structured representation of code for comprehensive analysis.

Graph-Based Code Representation. Unlike traditional linear representations

of code, which often focus on syntax and control flow, graph-based representations

capture the essence of code as a network of interconnected entities and relationships.

In this context, nodes typically represent program elements like variables, functions,

classes, and statements, while edges depict various relationships between these ele-

ments, such as data flow, control flow, call relationships, and syntactic dependencies.
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This graph-based approach provides a holistic view of the code, enabling more accu-

rate and comprehensive vulnerability analysis.

CPGs: Combining Structure and Semantics. CPGs [13] build upon the

foundation of graph-based code representation by integrating information from vari-

ous program analyses, including Abstract Syntax Trees (ASTs), Control Flow Graphs

(CFGs), and Data Flow Graphs (DFGs). This integration of syntactic and semantic

information provides a rich and comprehensive representation of the code, enabling

deeper insights into code behavior and vulnerability detection.

Leveraging ASTs for Syntactic Structure. ASTs capture the grammatical

structure of the code, representing the hierarchical relationship between different

code constructs. In the context of CPGs, AST information helps define the basic

building blocks of the graph. Nodes representing variables, functions, and classes are

derived from the AST, as are edges representing parent-child relationships between

code blocks (e.g., a function definition containing multiple statements).

Incorporating CFGs for Control Flow Analysis. CFGs depict the possible

execution paths within a program, showing how the program’s control flow can branch

based on conditional statements and loops. Integrating CFG information into the

CPG allows for analyzing how data flows through different execution paths. This

is particularly useful for detecting vulnerabilities like Path Traversal (CWE-22),

where an attacker manipulates the control flow to access files outside the intended

directory, and Improper Control Flow (CWE-201), where vulnerabilities arise

from unexpected or manipulated program execution order.

Enhancing with DFGs for Data Flow Analysis. DFGs track how data prop-

agates through the program, showing which variables influence other variables and

how user input ultimately affects sensitive operations. Integrating DFG information

into the CPG is crucial for identifying vulnerabilities related to data handling, such as

Cross-Site Scripting (XSS - CWE-79), where unsanitized user input flows into
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web page outputs, potentially enabling script injection attacks, and SQL Injection

(SQLi - CWE-89), where unsanitized user input used in SQL queries can allow

attackers to manipulate database operations.

Properties: Adding Depth and Context. CPGs go beyond merely represent-

ing code elements and their relationships. They also incorporate properties associated

with nodes and edges, providing additional context and information crucial for vul-

nerability analysis. These properties can include data types, indicating the type of

data a variable can hold (e.g., integer, string, object); variable scopes, defining where

a variable can be accessed within the code; function signatures, specifying the pa-

rameters a function accepts and the value it returns; and access modifiers, defining

the accessibility of classes, methods, and variables (e.g., public, private, protected).

These properties enhance the CPG’s analytical capabilities by providing detailed in-

formation about each code element and relationship.

Advantages of CPGs for Vulnerability Detection. The comprehensive and

unified nature of CPGs offers significant advantages for vulnerability detection, sur-

passing the limitations of traditional code analysis methods:

1. Comprehensive Code Representation: CPGs capture the intricate web of

relationships within code, moving beyond simple syntactic analysis to enable a

deeper understanding of code behavior and potential vulnerabilities.

2. Facilitating Advanced Analyses: The structured and graph-based format of

CPGs makes them suitable for applying powerful graph algorithms and machine

learning techniques to extract meaningful insights, identify patterns indicative

of vulnerabilities, and automate vulnerability detection processes.

3. Language Agnosticism: While specific CPG construction techniques might

differ between programming languages, the fundamental concept of representing

code as a graph of entities and relationships remains applicable across a wide
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range of languages, facilitating cross-language vulnerability analysis.

2.3 Graph Neural Networks for Code Representation

Traditional code analysis techniques often struggle to capture the complex, non-

linear relationships present within software. This limitation has led to increasing

interest in graph-based representations of code, enabling the application of power-

ful machine learning techniques like Graph Neural Networks (GNNs) for enhanced

vulnerability detection.

Graph Neural Networks (GNNs) [22] excel at learning from graph-structured data.

They operate through a process called message passing, where nodes iteratively ex-

change information with their neighbors. This allows each node to aggregate informa-

tion from its surroundings, learning a vector representation (embedding) that encodes

its local graph structure and features. These learned embeddings can then be used for

various downstream tasks like node classification to identify vulnerable code snippets,

graph classification to predict the presence of vulnerabilities within a program, and

edge prediction to anticipate relationships between code elements.

Focus on Graph Attention Networks (GATs). While standard GNNs treat

all neighboring nodes equally during message passing, Graph Attention Networks

(GATs) [12] introduce a crucial advancement: an attention mechanism. This allows

GATs to differentiate the importance of each neighboring node when aggregating

information, similar to how humans focus on specific details when understanding a

complex system.

This attention mechanism brings distinct advantages to code analysis. GATs

excel at focusing on the most relevant connections in the code graph, such as a data

flow edge connecting user input to a SQL query (critical for SQLi detection), while

downplaying less informative connections, like a syntactic edge between unrelated

variables. They also adapt well to the variable size and structure of code graphs

13



by selectively attending to significant connections, potentially outperforming regular

GNNs, which may struggle with the noise of less informative relationships in larger

graphs.

GNNs for Vulnerability Detection. Recent research, such as the work by

Zhou et al. [10], highlights the effectiveness of GNNs, particularly GATs, in achiev-

ing state-of-the-art accuracy in detecting code vulnerabilities. They have demonstra-

bly outperformed traditional methods that rely on handcrafted features or shallower

learning architectures.

2.4 Summary

This chapter established the foundational concepts and motivations for this the-

sis. We began by highlighting the critical need to address software vulnerabilities,

particularly those identifiable through code structure analysis. We then introduced

CWE classifications as a framework for categorizing these vulnerabilities and focusing

our research on specific types.

CPGs emerged as a powerful approach for representing code in a manner that

facilitates comprehensive analysis, capturing the intricate relationships between code

elements often overlooked by traditional methods. We discussed the advantages of

CPGs and the process of constructing them from source code.

Finally, we GNNs, specifically highlighting the strengths of GATs, as a potent

deep learning technique for learning from graph-structured data. The combination

of CPGs, with their rich representation of code, and GNNs, with their ability to

learn complex patterns from graph data, sets the stage for developing more accurate

and efficient automated vulnerability detection systems. The following chapters delve

into related work, our proposed methodology, and the experimental evaluation of our

approach, showcasing the potential of this synergy for enhancing software security.
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CHAPTER III

Related Work

This chapter delves into the existing landscape of code vulnerability detection,

surveying a range of approaches from traditional methods to cutting-edge applications

of artificial intelligence (AI). We analyze their strengths, limitations, and how they

relate to our proposed method of combining CPGs, GATs, and LLMs for automated

vulnerability detection and patching.

3.1 Traditional Vulnerability Detection Techniques

Before the advent of AI, security researchers and practitioners primarily relied on

manual code review and various automated but less sophisticated techniques. These

methods, while still relevant in certain contexts, often face challenges in terms of

scalability, accuracy, and their ability to cope with the ever-increasing complexity of

modern software systems.

3.1.1 Manual Code Review

Manual code review involves the meticulous inspection of source code by secu-

rity experts, who leverage their knowledge and experience to identify potential vul-

nerabilities. This process typically entails scrutinizing the code for insecure coding

practices, logical flaws, potential security loopholes, and violations of established se-
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curity guidelines. While manual code review remains a valuable approach for critical

software systems, where accuracy and thoroughness are paramount, it suffers from

inherent limitations that hinder its applicability to large-scale software projects.

The primary challenge lies in scalability. Reviewing large codebases manually is

an incredibly time-consuming and resource-intensive endeavor. As software projects

grow in size and complexity, the time required for comprehensive manual review

becomes impractical, especially under tight development timelines [1]. Additionally,

manual review is inherently subjective, as vulnerability assessments can vary between

reviewers based on their experience, expertise, and understanding of the codebase

[23]. This subjectivity can lead to inconsistencies in the identification and reporting

of vulnerabilities, making it difficult to ensure a consistent level of security across

a project. Furthermore, certain vulnerabilities stem from the complex interaction

of multiple code components, making them exceptionally difficult to detect through

manual inspection alone. A human reviewer might not readily grasp the intricate

interplay of different code sections and their combined security implications [24]. This

limitation becomes particularly pronounced in modern software architectures, which

often involve distributed systems, microservices, and complex data flows, making it

difficult for a single reviewer to track all potential vulnerabilities arising from the

interaction of multiple components.

3.1.2 Static Analysis

Static analysis tools aim to automate the code review process by examining source

code without executing it. These tools utilize various techniques to identify poten-

tial vulnerabilities, ranging from simple pattern matching to more sophisticated data

flow and control flow analyses. Simple static analysis tools rely on pattern match-

ing, searching for specific code structures or keywords known to be associated with

vulnerabilities. For example, a tool might flag the use of dangerous functions like

16



”strcpy” in C, which is known to be susceptible to buffer overflow vulnerabilities.

More sophisticated static analysis tools employ data flow analysis to track how data

moves through the program and identify potential security issues. This involves trac-

ing the flow of data from its source, such as user input, to sensitive operations, such

as database queries or file system interactions, to detect vulnerabilities like SQL in-

jection or cross-site scripting (XSS) [25].

Control flow analysis examines the possible execution paths within a program to

identify potential security flaws. This analysis can detect vulnerabilities like path

traversal or denial-of-service attacks, where an attacker can manipulate the control

flow to gain unauthorized access or disrupt the application’s functionality. Static anal-

ysis offers advantages in terms of efficiency and broad coverage compared to manual

code review. These tools can analyze large codebases relatively quickly, making them

suitable for integration into the software development lifecycle to provide continuous

feedback to developers. However, static analysis tools also face limitations. They

are often plagued by false positives, flagging code that is not actually vulnerable,

which can lead to wasted effort in manual verification and potentially erode trust in

the tool’s results [3]. Many static analysis tools operate primarily on syntactic rules

and predefined patterns, making them less effective at identifying vulnerabilities that

arise from subtle interactions between code components or those requiring a deeper

semantic understanding of the code’s functionality [2]. They also struggle to handle

code exhibiting dynamic behavior, relying heavily on external libraries, or using re-

flection, as it becomes challenging to reason about all possible execution paths and

their potential security implications statically [26]. Despite these limitations, static

analysis remains a widely used technique for vulnerability detection, with popular

tools like SonarQube, Coverity, and Checkmarx offering varying degrees of sophisti-

cation and coverage, catering to different programming languages and development

environments.
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3.1.3 Fuzzing

Fuzzing, also known as fuzz testing, takes a dynamic approach to vulnerability

detection by providing invalid, unexpected, or random data as input to a program,

aiming to trigger crashes, errors, or unexpected behavior that might reveal vulnera-

bilities. This technique is particularly effective at uncovering certain types of vulner-

abilities, especially those related to memory corruption and input validation. Fuzzing

excels at detecting memory corruption vulnerabilities like buffer overflows, where an

attacker can overflow a buffer with data to overwrite adjacent memory locations,

potentially leading to arbitrary code execution. It can also be effective in identify-

ing input validation vulnerabilities, where the application fails to properly validate

user-supplied data, leading to potential security risks. By providing a wide range of

unexpected or malformed inputs, fuzzing can uncover vulnerabilities that might not

be apparent through manual code review or static analysis.

However, fuzzing also has limitations. Achieving comprehensive code coverage

through fuzzing can be challenging. The effectiveness of fuzzing depends on the qual-

ity and diversity of the generated test cases, and it might not always reach all parts of

the code, potentially missing vulnerabilities in less-tested areas [27]. Achieving com-

prehensive code coverage through fuzzing often requires significant computational re-

sources and time, making it resource-intensive for complex software [5]. Additionally,

fuzzing is less effective at uncovering logic-based vulnerabilities, such as those related

to authentication bypasses, authorization flaws, or insecure business logic. These vul-

nerabilities often require a more nuanced understanding of the application’s intended

behavior and security requirements, which fuzzing, primarily focused on triggering

crashes or errors, might not be able to capture [28]. Popular fuzzing tools include

AFL (American Fuzzy Lop), which employs genetic algorithms to efficiently generate

test cases, and LibFuzzer, an in-process, coverage-guided fuzzing engine integrated

with the LLVM compiler infrastructure.
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3.2 AI-Powered Vulnerability Detection

The limitations of traditional methods and the increasing complexity of mod-

ern software have fueled significant research into leveraging AI, particularly machine

learning and deep learning, for vulnerability detection. These techniques aim to auto-

mate the process of vulnerability identification by learning from data and identifying

patterns that might indicate security weaknesses.

3.2.1 Deep Learning for Vulnerability Detection

Deep learning models, with their ability to learn complex patterns and represen-

tations from large datasets, have shown promise in identifying vulnerabilities in code.

These models can analyze code and learn to differentiate between secure and insecure

coding patterns, potentially discovering vulnerabilities that might be missed by tra-

ditional rule-based methods. One approach treats code as natural language, applying

Natural Language Processing (NLP) techniques to learn vulnerability patterns from

code syntax and semantics. This approach leverages the success of NLP techniques in

processing and understanding natural language text and applies them to the domain

of code analysis. Models like Recurrent Neural Networks (RNNs) [7] and Transform-

ers [29] have been used to analyze code as a sequence of tokens, similar to sentences,

and learn to identify patterns and anomalies that might suggest vulnerabilities.

Another approach focuses on extracting handcrafted features from code, such as

software metrics, control flow patterns, or data flow characteristics, and using these

features to train classifiers like Support Vector Machines (SVMs) or deep neural net-

works. This approach relies on domain expertise to define features that capture

relevant aspects of the code’s structure and behavior for vulnerability detection. For

example, researchers have used software metrics like cyclomatic complexity, which

measures the number of independent paths through a program, to predict the likeli-

hood of vulnerabilities [30]. Others have focused on extracting control flow patterns,
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such as the presence of loops or conditional statements, to identify potential vulner-

abilities related to program logic [31]. Data flow analysis techniques have also been

used to extract features related to how data flows through the program, such as the

sources of data, the operations performed on the data, and the sinks where the data

is ultimately used, to detect vulnerabilities like SQL injection or cross-site scripting

[32].

Deep learning offers several potential advantages for vulnerability detection, in-

cluding scalability, accuracy, and generalizability. These models can learn complex

relationships and patterns from data, potentially identifying vulnerabilities that might

be missed by rule-based approaches. Deep learning models can be trained on massive

datasets of code, allowing them to learn from a wide range of coding practices and

potentially identify vulnerabilities across diverse programming languages and soft-

ware domains. Well-trained deep learning models can potentially generalize to new,

unseen code, allowing them to identify vulnerabilities in code that was not part of the

training data. However, they also face challenges related to their dependence on high-

quality data and their inherent black-box nature. The performance of deep learning

models heavily relies on the quality and diversity of the training data. Obtaining

large, well-labeled datasets for security-related tasks can be challenging, as manually

labeling vulnerabilities is time-consuming, requires specialized expertise, and might

not always be feasible for certain types of vulnerabilities [33]. The decision-making

process of deep learning models is often opaque, making it difficult to understand

why a particular code snippet is flagged as vulnerable. This lack of interpretability

can hinder trust in the model’s predictions and make it challenging for developers to

understand and fix the identified vulnerabilities [34].
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3.2.2 Graph Neural Networks for Code Analysis

Recognizing the inherent graph-like nature of code, researchers are increasingly

exploring the use of Graph Neural Networks (GNNs) for vulnerability detection. Un-

like traditional deep learning models that often treat code as sequential data, GNNs

are specifically designed to learn from data represented as graphs, making them well-

suited for capturing the complex relationships and dependencies that exist within

code [11]. GNNs operate on the principle of message passing, where nodes in the

graph iteratively exchange information with their neighbors, allowing the model to

learn a representation of each node based on its local neighborhood and the overall

graph structure. This ability to capture both local and global information makes

GNNs particularly effective in analyzing code, where vulnerabilities often arise from

the interaction of multiple code elements and their relationships.

One promising area of research involves using Code Property Graphs (CPGs),

with their rich semantic information, as input to GNNs. CPGs combine informa-

tion from various program analyses, such as Abstract Syntax Trees (ASTs), Control

Flow Graphs (CFGs), and Data Flow Graphs (DFGs), to create a comprehensive

graph representation of the code. This representation captures not only the syntactic

structure of the code but also its control flow, data flow, call relationships, and other

dependencies, providing a rich context for vulnerability detection. GNNs trained on

CPGs have shown encouraging results in identifying vulnerabilities that rely on un-

derstanding the flow of data and control within a program. For example, researchers

have demonstrated the effectiveness of GNNs in detecting vulnerabilities like SQL

injection and buffer overflows by analyzing the data flow paths within CPGs [10, 35].

Others have explored using GNNs to learn representations of function call graphs

from CPGs to identify vulnerable functions based on their interactions with other

functions [36].

GNNs offer several advantages for vulnerability detection, including their ability to
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model relationships, contextual awareness, and potential for interpretability. GNNs

excel at capturing complex relationships within code, making them well-suited for

identifying vulnerabilities that arise from the interaction of multiple code elements.

They can learn representations of code that incorporate contextual information from

the surrounding code, enabling them to identify vulnerabilities that might be missed

by methods relying solely on local code patterns. While GNNs can be complex, they

offer better interpretability compared to some other deep learning approaches, as it

is often possible to analyze the attention weights or message passing mechanisms

to understand which parts of the graph were most influential in the model’s deci-

sion. However, GNNs also face challenges. Building and analyzing large CPGs can

be computationally expensive, posing scalability challenges for analyzing very large

codebases [37]. The complexity of GNN models themselves can also contribute to

computational challenges, especially when dealing with deep GNN architectures or

large graphs. While GNNs offer better interpretability compared to some other deep

learning approaches, explaining their predictions can still be challenging, especially

when dealing with complex graph structures and numerous features [38].

3.3 Leveraging LLMs for Code Remediation

Large Language Models (LLMs) like Codex [39] and GPT-3 [40] have gained

significant attention for their impressive code generation capabilities. These mod-

els, trained on massive code datasets, can generate code in various programming

languages, complete code snippets, translate natural language descriptions into func-

tional code, and even refactor or optimize existing code. Recent research has begun

exploring the potential of LLMs for automated code repair, including fixing security

vulnerabilities [14, 41]. These approaches leverage the LLM’s vast knowledge of cod-

ing practices and security vulnerabilities, acquired during training, to generate code

patches that aim to address identified security issues.
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However, relying solely on LLMs for security-critical tasks can be risky. Despite

their impressive capabilities, LLMs face challenges in guaranteeing the security and

contextual appropriateness of the generated code. LLMs are primarily trained to gen-

erate code that is syntactically correct and consistent with common coding patterns

observed in the training data. However, this does not guarantee that the generated

code is inherently secure. The LLM’s training data might contain insecure examples,

potentially leading to the propagation of vulnerabilities in the generated code [42].

Without sufficient context, LLMs might misinterpret the intent of the code or apply

overly general fixes that are not appropriate for the specific situation. This can lead

to the introduction of new vulnerabilities or the breaking of existing functionality [43].

Providing LLMs with the necessary context to understand the specific vulnerability

and the surrounding code is crucial for generating secure and effective code patches.

3.3.1 Machine Learning and LLM-based Approaches for Code Patching

While LLMs alone have shown promise in generating code, leveraging machine

learning and combining it with the capabilities of LLMs has yielded further advance-

ments in code patching. One such approach involves using machine learning to guide

the LLM’s patch generation process. For instance, Tufano et al. [44] developed a

technique that utilizes a sequence-to-sequence model to predict the location of a bug

and then uses this information to guide an LLM in generating a patch. Another study

by Dinella et al. [45] employed machine learning to rank candidate patches generated

by an LLM, using features derived from the code and the vulnerability description.

This ranking helps prioritize the most likely correct patches, improving the efficiency

of the repair process.

Another direction involves training specialized machine learning models to gener-

ate patches directly. For example, Lutellier et al. [46] proposed using a transformer-

based model to learn patch generation from a dataset of bug fixes, allowing the model
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to generate patches without relying on an LLM. While this approach offers potential

advantages in terms of efficiency and control, it requires large, high-quality datasets

of code patches for effective training.

Combining both machine learning and LLMs allows for leveraging the strengths

of both approaches. Machine learning can provide guidance, ranking, or even direct

patch generation, while LLMs can contribute their vast code knowledge and ability

to generate syntactically and semantically coherent code.

3.4 Bridging the Gap: The Need for Our Approach

Our proposed methodology addresses the limitations of existing approaches by

combining the strengths of CPGs, GATs, and LLMs in a novel way. We leverage the

comprehensive and semantically rich representation provided by CPGs to capture the

intricate relationships within code, enabling more accurate vulnerability detection

by our GAT model. This approach exploits the power of graph neural networks

to learn complex patterns and dependencies that characterize various vulnerability

types, addressing the limitations of methods that rely on simplistic code patterns or

fail to capture the broader context of the code.

Recognizing the risks associated with solely relying on LLMs for security-critical

tasks, we utilize the output of our GAT-based vulnerability detection model, along

with targeted code analysis, to provide the LLM with rich contextual information.

This guidance enables the LLM to generate more secure and contextually appropriate

code fixes, overcoming the LLM’s limitations in understanding the specific vulnera-

bility and its impact on the surrounding code. By combining the strengths of these

techniques, we aim to create a more robust, accurate, and interpretable system for

automated code vulnerability detection and patching. This hybrid approach seeks to

exploit the advantages of each technique while mitigating their individual weaknesses,

paving the way for more effective and reliable code security solutions.
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CHAPTER IV

Proposed Methodology

This chapter details our novel methodology for automatically detecting and recti-

fying code vulnerabilities, leveraging a powerful synergy of graph-based deep learning

and advanced language models. Recognizing the limitations of traditional vulnera-

bility detection techniques, which often stop at identifying potential flaws, we aim

to bridge the gap towards automated code remediation. Our approach harnesses the

combined strengths of ASTs, CPGs, GATs, and prompt engineering to create a sys-

tem that not only pinpoints security flaws but also guides the generation of targeted

and context-aware code fixes.

4.1 Motivational Example: LLMs and Security Challenges

The following example highlights the limitations of relying solely on LLMs for

secure code generation and motivates the need for our proposed framework.

Consider the prompt:

Create a Python Flask app that allows users to register, log in, and view

their profile information stored in a SQLite database.

This seemingly innocuous prompt, devoid of any explicit security directives, led

ChatGPT (as of the current model version) to generate the following Python code:
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from flask import Flask, render_template, request, redirect, url_for,

session, g

import sqlite3

from werkzeug.security import generate_password_hash, check_password_hash

app = Flask(__name__)

app.secret_key = ’your_secret_key’

DATABASE = ’database.db’

def get_db():

db = getattr(g, ’_database’, None)

if db is None:

db = g._database = sqlite3.connect(DATABASE)

return db

@app.teardown_appcontext

def close_connection(exception):

db = getattr(g, ’_database’, None)

if db is not None:

db.close()

def init_db():

with app.app_context():

db = get_db()

cursor = db.cursor()

cursor.execute(’’’CREATE TABLE IF NOT EXISTS users (

id INTEGER PRIMARY KEY AUTOINCREMENT,

username TEXT UNIQUE NOT NULL,

password TEXT NOT NULL

26



)’’’)

db.commit()

@app.route(’/register’, methods=[’GET’, ’POST’])

def register():

if request.method == ’POST’:

username = request.form[’username’]

password = request.form[’password’]

hashed_password = generate_password_hash(password, method=’sha256’)

db = get_db()

cursor = db.cursor()

try:

cursor.execute("INSERT INTO users (username, password) VALUES

(?, ?)", (username, hashed_password))

db.commit()

return redirect(url_for(’login’))

except sqlite3.IntegrityError:

return ’Username already exists’

return render_template(’register.html’)

@app.route(’/login’, methods=[’GET’, ’POST’])

def login():

if request.method == ’POST’:

username = request.form[’username’]

password = request.form[’password’]

db = get_db()
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cursor = db.cursor()

cursor.execute("SELECT * FROM users WHERE username = ?",

(username,))

user = cursor.fetchone()

if user and check_password_hash(user[2], password):

session[’user_id’] = user[0]

return redirect(url_for(’profile’))

else:

return ’Invalid username or password’

return render_template(’login.html’)

@app.route(’/profile’)

def profile():

if ’user_id’ not in session:

return redirect(url_for(’login’))

db = get_db()

cursor = db.cursor()

cursor.execute("SELECT * FROM users WHERE id = ?",

(session[’user_id’],))

user = cursor.fetchone()

return render_template(’profile.html’, user=user)

@app.route(’/logout’)

def logout():

session.pop(’user_id’, None)
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return redirect(url_for(’login’))

if __name__ == ’__main__’:

init_db()

app.run(debug=True)

This code, while functional, is susceptible to the following vulnerabilitis:

• Cross-Site Scripting (XSS): The code doesn’t explicitly sanitize user input

(username, password) before displaying it.

– Impact: An attacker could potentially inject malicious JavaScript code

into the forms or profile page, which would then execute in the browser of

other users.

• SQL Injection: ChatGPT used parameterized SQL queries (cursor.execute(”...”,

(variables,))), which helps mitigate SQL injection risks significantly.

• Session Management: The secret key (app.secret key) is hardcoded directly

into the script.

– Impact: In a real-world scenario, this secret key should be stored more

securely (environment variable or a separate configuration file) to prevent

unauthorized access to session data.

• Database Configuration: The database name (DATABASE = ’database.db’)

is hardcoded.

– Impact: Makes it slightly less flexible for deployment.

This experiment highlights the inherent security risks lurking within AI-generated

code when security is not explicitly prioritized. As the adoption of AI-powered code

29



generation proliferates, the urgency to address this security gap intensifies. The

generated code lacks input sanitization, leaving it susceptible to Cross-Site Scripting

(XSS) attacks, where malicious users could inject and execute arbitrary JavaScript

code within the browsers of unsuspecting users.

Attempting to leverage the LLM’s knowledge for remediation, we can provide the

generated Flask app code back to ChatGPT with the following prompt:

The following Python code implements a simple user registration and

login system using Flask and SQLite. Please review the code and

make any necessary changes to improve its security.

from flask import Flask, render_template, request, redirect, url_for,

session, g

import sqlite3

from werkzeug.security import generate_password_hash, check_password_hash

app = Flask(__name__)

app.secret_key = ’your_secret_key’

DATABASE = ’database.db’

def get_db():

db = getattr(g, ’_database’, None)

if db is None:

db = g._database = sqlite3.connect(DATABASE)

return db

@app.teardown_appcontext

def close_connection(exception):

db = getattr(g, ’_database’, None)

if db is not None:
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db.close()

def init_db():

with app.app_context():

db = get_db()

cursor = db.cursor()

cursor.execute(’’’CREATE TABLE IF NOT EXISTS users (

id INTEGER PRIMARY KEY AUTOINCREMENT,

username TEXT UNIQUE NOT NULL,

password TEXT NOT NULL

)’’’)

db.commit()

@app.route(’/register’, methods=[’GET’, ’POST’])

def register():

if request.method == ’POST’:

username = request.form[’username’]

password = request.form[’password’]

hashed_password = generate_password_hash(password, method=’sha256’)

db = get_db()

cursor = db.cursor()

try:

cursor.execute("INSERT INTO users (username, password) VALUES

(?, ?)", (username, hashed_password))

db.commit()

return redirect(url_for(’login’))

except sqlite3.IntegrityError:

return ’Username already exists’
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return render_template(’register.html’)

@app.route(’/login’, methods=[’GET’, ’POST’])

def login():

if request.method == ’POST’:

username = request.form[’username’]

password = request.form[’password’]

db = get_db()

cursor = db.cursor()

cursor.execute("SELECT * FROM users WHERE username = ?",

(username,))

user = cursor.fetchone()

if user and check_password_hash(user[2], password):

session[’user_id’] = user[0]

return redirect(url_for(’profile’))

else:

return ’Invalid username or password’

return render_template(’login.html’)

@app.route(’/profile’)

def profile():

if ’user_id’ not in session:

return redirect(url_for(’login’))

db = get_db()
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cursor = db.cursor()

cursor.execute("SELECT * FROM users WHERE id = ?",

(session[’user_id’],))

user = cursor.fetchone()

return render_template(’profile.html’, user=user)

@app.route(’/logout’)

def logout():

session.pop(’user_id’, None)

return redirect(url_for(’login’))

if __name__ == ’__main__’:

init_db()

app.run(debug=True)

The LLM returns the following code as a response to this prompt:

from flask import Flask, render_template, request, redirect, url_for,

session, g

import sqlite3

from werkzeug.security import generate_password_hash, check_password_hash

import os

from flask_limiter import Limiter

from flask_limiter.util import get_remote_address

from itsdangerous import URLSafeTimedSerializer

app = Flask(__name__)

app.secret_key = os.environ.get(’SECRET_KEY’, ’default_secret_key’)

DATABASE = ’database.db’
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limiter = Limiter(

get_remote_address,

app=app,

default_limits=["200 per day", "50 per hour"]

)

def get_db():

db = getattr(g, ’_database’, None)

if db is None:

db = g._database = sqlite3.connect(DATABASE)

return db

@app.teardown_appcontext

def close_connection(exception):

db = getattr(g, ’_database’, None)

if db is not None:

db.close()

def init_db():

with app.app_context():

db = get_db()

cursor = db.cursor()

cursor.execute(’’’CREATE TABLE IF NOT EXISTS users (

id INTEGER PRIMARY KEY AUTOINCREMENT,

username TEXT UNIQUE NOT NULL,

password TEXT NOT NULL

)’’’)

db.commit()

34



@app.route(’/register’, methods=[’GET’, ’POST’])

@limiter.limit("5 per minute")

def register():

if request.method == ’POST’:

username = request.form[’username’]

password = request.form[’password’]

# Input validation

if not username or not password:

return ’Username and password are required’

if len(username) < 3 or len(password) < 6:

return ’Username must be at least 3 characters and password at

least 6 characters long’

hashed_password = generate_password_hash(password,

method=’pbkdf2:sha256’, salt_length=16)

db = get_db()

cursor = db.cursor()

try:

cursor.execute("INSERT INTO users (username, password) VALUES

(?, ?)", (username, hashed_password))

db.commit()

return redirect(url_for(’login’))

except sqlite3.IntegrityError:

return ’Username already exists’

return render_template(’register.html’)
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@app.route(’/login’, methods=[’GET’, ’POST’])

@limiter.limit("5 per minute")

def login():

if request.method == ’POST’:

username = request.form[’username’]

password = request.form[’password’]

db = get_db()

cursor = db.cursor()

cursor.execute("SELECT * FROM users WHERE username = ?",

(username,))

user = cursor.fetchone()

if user and check_password_hash(user[2], password):

session[’user_id’] = user[0]

session.permanent = True # Use permanent sessions

return redirect(url_for(’profile’))

else:

return ’Invalid username or password’

return render_template(’login.html’)

@app.route(’/profile’)

def profile():

if ’user_id’ not in session:

return redirect(url_for(’login’))

db = get_db()

cursor = db.cursor()
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cursor.execute("SELECT * FROM users WHERE id = ?",

(session[’user_id’],))

user = cursor.fetchone()

return render_template(’profile.html’, user=user)

@app.route(’/logout’)

def logout():

session.pop(’user_id’, None)

return redirect(url_for(’login’))

if __name__ == ’__main__’:

init_db()

app.run(debug=True, ssl_context=’adhoc’)

While ChatGPT responds with some generic security recommendations and im-

plements minor changes, it fails to address the core XSS vulnerability. Following are

the major takeaways from the generated response:

• Superficial Fixes:

– While it correctly moved the secret key to an environment variable, it pro-

vided an insecure default (’default secret key’) in the code, which defeats

the purpose.

– Using ssl context=’adhoc’ for HTTPS is only suitable for development and

is not recommended for production.

• Generic Recommendations: It provided several valid but generic security

recommendations (SQL Injection, Session Fixation), without concrete imple-

mentation details specific to the given codebase.
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• Missed the Mark (XSS): The most glaring omission is that ChatGPT com-

pletely failed to address the Cross-Site Scripting (XSS) vulnerability. It added

input validation for length but didn’t implement any output encoding/sanitiza-

tion, leaving the application still vulnerable.

This example underscores a critical limitation of relying solely on LLMs for security-

critical tasks. Without specific guidance on the nature and location of vulnerabilities

within the code, LLMs tend to apply superficial fixes or suggest overly broad secu-

rity measures, often failing to effectively mitigate the underlying risks. Our proposed

framework addresses this limitation by combining the strengths of a vulnerability de-

tection model (based on GATs) with the generative capabilities of LLMs, providing

targeted guidance to ensure the generation of secure and effective patches.

4.2 Approach Overview

Our methodology unfolds in two distinct phases, as depicted in Figures 4.1 and

4.2. The training phase focuses on developing a robust vulnerability detection model

using GATs, while the inference phase leverages this trained model for real-time

vulnerability identification and guides an LLM for code patching.

Figure 4.1: Training Pipeline: An illustration of the process of training our GAT
model for vulnerability detection.
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Figure 4.2: Inference Pipeline: Details of the steps involved in using our trained
GAT model for real-time vulnerability identification and leveraging an LLM for code
patching.

4.3 Phase 1: Training the Vulnerability Detection Model

The first phase of our methodology is dedicated to training a robust vulnerability

detection model based on Graph Attention Networks (GATs). This phase involves

carefully preparing a suitable dataset and leveraging the power of GATs to learn

patterns indicative of vulnerabilities within code.

4.3.1 Dataset Preparation

A comprehensive and well-structured dataset is crucial for training an effective

vulnerability detection model. Our dataset preparation methodology involves four

key steps:

Diverse Data Acquisition. We gather Python code from diverse sources, in-

cluding publicly available repositories like GitHub and curated vulnerability datasets

such as Snyk’s vulnerability database. Focusing on code relevant to web development
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and security ensures that our dataset captures a realistic range of coding practices

and potential vulnerabilities.

Systematic Vulnerability Labeling. Accurate vulnerability labeling is essen-

tial for training a model that can effectively distinguish between secure and vulnerable

code. Our labeling process combines three approaches:

• Manual Code Review: Security experts manually inspect a subset of the col-

lected code snippets to identify and label vulnerabilities. This time-consuming

but highly accurate approach provides a gold standard for evaluating the per-

formance of our automated labeling methods.

• Static Analysis Tools: We utilize state-of-the-art static analysis tools like

SonarQube [47], Bandit [15], and Semgrep [48] to automatically detect potential

vulnerabilities within the code. These tools offer scalability and speed but

require careful configuration and filtering of results to minimize false positives.

• Pattern Recognition: We develop and employ vulnerability-specific patterns

and regular expressions to automatically identify code structures or function

calls commonly associated with known vulnerabilities. This approach offers

efficiency for detecting well-defined vulnerability types but might be limited in

its scope.

Strategic Data Augmentation. Real-world codebases often exhibit biases in

the distribution of vulnerability types. To ensure our model is trained on a diverse and

balanced dataset, we augment our data by introducing synthetic vulnerabilities. This

involves carefully crafting templates and using rule-based approaches to introduce

variations of known vulnerabilities into existing code snippets, ensuring syntactic

validity and semantic consistency.

Structured Dataset Organization. The final dataset is meticulously struc-

tured to facilitate efficient processing during model training and evaluation. Each
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data point consists of:

• Code Snippet: The raw Python code (e.g., a function or a block of code)

being analyzed.

• Vulnerability Label: A binary label indicating whether the code snippet

contains a vulnerability (1) or not (0).

• Vulnerability Type: If available, the specific CWE category of the vulnera-

bility (e.g., CWE-89 for SQL injection) is included, allowing us to train models

for multi-class vulnerability classification.

• Metadata: Additional information relevant to the code snippet, such as its

source, the severity level of the vulnerability (if applicable), or the specific line

numbers of the vulnerable code.

4.3.2 Vulnerability Detection Model Training Using GATs

Code Representation: ASTs and CPGs. We explore two primary graph rep-

resentations of code to evaluate their impact on vulnerability detection performance:

• Abstract Syntax Trees (ASTs): ASTs [49] represent the grammatical struc-

ture of code, showing how different language constructs are nested within each

other. In an AST, nodes typically represent language keywords, identifiers (e.g.,

variable names), and literals, while edges represent syntactic relationships be-

tween them.

• Code Property Graphs (CPGs): CPGs offer a richer, semantically-enriched

representation by combining information from ASTs, Control Flow Graphs

(CFGs) [50], and potentially other program analyses. This allows CPGs to

capture a more comprehensive view of the code, including data flow, control

flow, call relationships, and other dependencies.
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Training Methodology. We utilize a multi-layer GAT architecture for vul-

nerability detection, as illustrated in Figure 4.1. The chosen graph representation

(AST or CPG) of each code snippet is provided as input to the GAT. Each node

in the graph is initialized with a feature vector encoding relevant information about

the corresponding code element, such as its type, data type (for variables), and any

associated literals.

The GAT’s attention mechanism [51] allows it to learn which nodes and edges in

the graph are most relevant for identifying vulnerabilities. During message passing,

nodes selectively attend to their neighbors, assigning higher weights to connections

that carry more information about the potential vulnerability.

We train the GAT to minimize the binary cross-entropy loss between its predicted

vulnerability probabilities and the true labels from our dataset. This encourages the

model to accurately distinguish between vulnerable and non-vulnerable code snippets.

We use the Adam optimizer [52] to update the model’s parameters during training,

an effective optimization algorithm commonly used in deep learning due to its ability

to handle sparse gradients and converge efficiently.

4.4 Phase 2: Inference and AI-Powered Code Patching

The second phase of our methodology focuses on using the trained GAT model

for real-time vulnerability detection and leveraging an LLM for generating potential

code fixes. This phase involves accurately localizing the vulnerability within the code,

extracting relevant contextual information, and crafting carefully engineered prompts

to guide the LLM in generating appropriate patches.

Vulnerability Localization. The attention mechanism within GATs provides

valuable insights into the model’s decision-making process, allowing us to pinpoint

the vulnerable code section. After obtaining a vulnerability prediction from the GAT,

we analyze the attention weights assigned to each node in the input graph during
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the model’s forward pass. Nodes with higher attention weights are considered more

influential in the model’s decision, suggesting a higher likelihood of their involvement

in the vulnerability. We identify a contiguous span of highly attentive nodes as the

most likely location of the vulnerability. This span represents the section of code that

the model focused on most when making its prediction.

Contextual Information Extraction. To provide the LLM with a compre-

hensive understanding of the identified vulnerability and the surrounding code, we

extract relevant contextual information:

• Variable Information: We extract details about the variables used within the

vulnerable span, including data types, data sources (e.g., user input, database

queries, function calls), and data usage within the vulnerable span (e.g., in

calculations, string concatenation, conditional statements).

• Function Call Analysis: We analyze the functions called within the vulner-

able span, extracting information such as function names, arguments passed to

the functions, and the data types and potential values returned by the functions.

• Control Flow Paths: If using CPGs, we leverage the control flow information

to reconstruct the possible execution paths leading to the vulnerable code. This

analysis can reveal potential entry points for malicious input or unexpected

program states that might trigger the vulnerability.

• Comments and Docstrings: We extract nearby comments and docstrings

as they can provide valuable developer insights into the purpose of the code,

potential concerns, or intended functionality.

AI-Powered Code Patching with LLMs. We leverage the extracted contex-

tual information and the GAT’s vulnerability prediction to guide a Large Language

Model (LLM) in generating potential code fixes. Our approach employs carefully
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crafted prompts to elicit effective and contextually relevant patches. The structure

and content of the prompts are crucial for guiding the LLM’s code generation process.

Our prompts typically include:

• Instruction: A clear instruction to the LLM to ”fix the security vulnerability”

or ”generate a secure version of this code.”

• Original Code Snippet: The original code snippet provided to the system,

including the vulnerable portion.

• Highlighted Vulnerable Span: We clearly mark or delimit the specific sec-

tion of code identified as vulnerable by the GAT. This helps focus the LLM’s

attention on the problematic area.

• Vulnerability Type: The predicted CWE category of the vulnerability (if

available) is included to provide the LLM with specific knowledge about the

type of security flaw.

• Contextual Information: The extracted contextual information is presented

to the LLM in a structured and concise manner, allowing it to understand the

surrounding code and the potential impact of the vulnerability.

We utilize a powerful pre-trained LLM, such as Codex [39] or GPT-3 [40], for code

generation. The LLM, drawing upon its extensive knowledge of coding practices,

security best practices, and the context provided in the prompt, generates candidate

code patches to address the identified vulnerability. These generated patches are

then subject to automated testing, static analysis, and potentially manual review

to evaluate their quality and security, ensuring that they effectively remediate the

vulnerability without introducing new issues.
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4.5 Summary

This chapter has presented a detailed methodology for automatically detecting

and rectifying code vulnerabilities. By combining the power of graph-based deep

learning, specifically GATs, for precise vulnerability identification with the generative

capabilities of LLMs for patch generation, our approach offers a promising avenue for

enhancing software security.
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CHAPTER V

Implementation

This chapter details the implementation of our proposed framework for automated

vulnerability detection and patching. We present a detailed account of the techniques,

tools, and resources used to construct our dataset, train our GAT model, and inte-

grate an LLM for generating code fixes guided by the insights from our vulnerability

analysis.

5.1 Dataset Construction

The foundation of any successful machine learning system lies in a well-constructed,

representative dataset. Recognizing the scarcity of large-scale, labeled datasets specif-

ically designed for graph-based code vulnerability analysis, we undertook a systematic

approach to dataset creation, combining real-world code, established vulnerability

patterns, and synthetic data generation.

Data Acquisition and Sources. We initiated our dataset construction by gath-

ering a diverse corpus of Python code from two primary sources:

• GitHub Repositories: We collected Python code from publicly available

repositories on GitHub, targeting projects related to web development and se-

curity. We focused our search on repositories tagged with keywords such as
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”web development,” ”flask,” ”django,” and ”security.” This strategic selection

ensured the inclusion of code likely to contain common web application vulner-

abilities.

• Software Assurance Reference Dataset (SARD): While SARD [53] pri-

marily focuses on C/C++, its wealth of vulnerability patterns and code struc-

tures provided valuable insights. We analyzed relevant vulnerability types

within SARD and adapted these patterns to generate synthetic Python vul-

nerability examples, augmenting the diversity of our dataset.

This combined approach yielded an initial dataset of 4000 real-world Python files,

which served as the foundation for vulnerability labeling, snippet extraction, and

subsequent data augmentation.

Vulnerability Labeling. Accurate and comprehensive vulnerability labeling is

paramount for training a model that can effectively distinguish between secure and

insecure code. We adopted a multi-pronged strategy to achieve this:

• Manual Code Review: A subset of the GitHub-sourced Python files under-

went meticulous manual inspection by security experts to identify and label

vulnerabilities. The focus was on detecting instances of common web applica-

tion vulnerabilities:

– SQL Injection (CWE-89): Code vulnerable to manipulation of database

queries through malicious user input [54].

– Cross-Site Scripting (XSS) (CWE-79): Code allowing attackers to

inject client-side scripts into web pages viewed by other users [55].

– Command Injection (CWE-78): Code that allows attackers to execute

arbitrary system commands [56].

– Path Traversal (CWE-22): Code that allows attackers to access files

or directories outside of the intended web root [57].
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• Static Analysis Tool Assistance: We leveraged the Bandit static analy-

sis tool [15], specifically designed for Python code, to assist in vulnerability

identification. Bandit’s findings were manually verified to ensure accuracy and

relevance, minimizing the inclusion of false positives in our dataset.

• Synthetic Vulnerability Injection: To ensure sufficient representation of

specific vulnerability types and address potential biases in the distribution of

vulnerabilities in real-world code, we synthetically injected vulnerabilities into

initially benign Python code snippets. We used carefully crafted templates,

based on common vulnerability patterns and insecure coding practices, to in-

troduce vulnerabilities in a controlled and syntactically valid manner.

Code Snippet Extraction. To facilitate efficient processing and focus our mod-

els on relevant code segments, we extracted self-contained code snippets from both

the labeled GitHub-sourced files and the synthetically generated vulnerable exam-

ples. Each snippet, typically representing a function, a class, or a cohesive block of

related code, was treated as an individual data point for subsequent analysis and

model training.

Dataset Structure and Statistics. The final dataset consists of a diverse

collection of 16,000 Python code snippets, meticulously labeled and categorized. Each

data point includes the following information:

• Code Snippet: The raw Python code being analyzed.

• Vulnerability Label and Type: A label indicating the presence or absence

of a vulnerability and the specific CWE category of the vulnerability. For

vulnerable snippets, we included the CWE ID (e.g., CWE-89 for SQL Injection).

To address the potential for model bias towards vulnerable data, we included

a substantial number of benign (non-vulnerable) code snippets. The final dataset

composition is detailed in Table 5.1.
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Table 5.1: Dataset Composition

Vulnerability Type CWE ID Count
SQL Injection CWE-89 2000
Cross-Site Scripting (XSS) CWE-79 2000
Command Injection CWE-78 2000
Path Traversal CWE-22 2000
Insecure Session Management CWE-384 2000
Benign (Non-Vulnerable) N/A 6000
Total 16,000

5.2 Code Representation: ASTs and CPGs

Our approach leverages two primary graph-based representations of code: Ab-

stract Syntax Trees (ASTs) and Code Property Graphs (CPGs). Both representa-

tions provide structured views of the code, but they differ significantly in their level

of semantic richness, impacting their suitability for training machine learning models

for vulnerability detection. To illustrate these differences, we will examine a Python

code snippet exhibiting a potential path traversal vulnerability.

import os

def handle_file_upload(filename):

base_dir = "/var/www/uploads/"

filepath = os.path.join(base_dir, filename)

if ".." in filename: # Basic attempt to prevent path traversal

return "Invalid filename."

with open(filepath, "wb") as f:

pass

# ... (Code to write file data to disk)

return f"File uploaded to: {filepath}"
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5.2.1 Abstract Syntax Trees (ASTs)

ASTs represent the grammatical structure of a program, essentially capturing

the code’s parse tree. We used the Python ast module [58] to parse each code

snippet and generate its corresponding AST. Each node in the AST corresponds to a

language element, such as a function definition (def handle file upload...), a variable

assignment (base dir = ”/var/www/uploads/”), a function call (os.path.join(base dir,

filename)), or a control flow statement (if ".." in filename:). Edges in the AST

represent the syntactic relationships between these elements, primarily parent-child

relationships that reflect the nesting of code constructs. Figure 5.1 visualizes the AST

for our example code snippet.

While ASTs provide a fundamental representation of the code’s structure, their

focus on syntax limits their ability to capture the semantic nuances critical for un-

derstanding vulnerabilities. ASTs excel at representing the hierarchical organization

of code elements and their syntactic roles but often fall short in conveying the flow

of data and control that underpins many security weaknesses.

5.2.2 Code Property Graphs (CPGs)

CPGs extend ASTs by incorporating additional semantic information derived from

various program analyses, enriching the representation with a deeper understanding

of the code’s behavior. We used the Joern tool [59], a robust open-source platform

for code analysis, to construct CPGs from our Python code snippets. Joern performs

a series of analyses, including:

• Control Flow Analysis: Determines the possible execution paths within the

code, capturing how control is transferred between different statements and

functions.

• Data Flow Analysis: Tracks the flow of data through the program, identifying
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how variables are defined, used, and modified, revealing potential paths for data

manipulation and vulnerabilities.

• Points-To Analysis: Determines which memory locations a pointer variable

might point to, essential for understanding pointer-related vulnerabilities in

languages like C/C++.

By integrating the results of these analyses, CPGs capture a more comprehensive

view of the code compared to ASTs. They include information about the flow of

data through the program, the possible execution paths, the relationships between

variables and functions, and potential points of vulnerability. Figure 5.2 depicts the

CPG for the same code snippet.

5.2.3 Illustrative Example: AST vs. CPG

A comparison of Figures 5.1 and 5.2 highlights the key distinctions between ASTs

and CPGs and underscores the advantages of CPGs for vulnerability detection.

The AST, in Figure 5.1, primarily focuses on the syntactic structure of the code.

It accurately represents the function definition, variable assignments, conditional

statement, and function calls. However, it lacks the semantic context to recognize

the potential flow of user input (filename) into the sensitive file operation (open),

which constitutes the path traversal vulnerability. The AST, by itself, cannot discern

that the filename variable, potentially controlled by a malicious user, influences the

filepath variable used in the open function, leaving the vulnerability undetected.

The CPG, depicted in Figure 5.2, offers a richer and more revealing representation.

In addition to the syntactic structure captured by the AST, it includes data flow edges

that explicitly show the movement of data through the code. These edges visually

demonstrate how the filename variable, passed as input to the handle file upload

function, flows through the os.path.join function and ultimately influences the
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filepath variable used in the open function. This visual representation clearly

highlights how a malicious filename could potentially be used to access files outside

the intended directory.

This additional information embedded within the CPG is crucial for vulnerability

detection. It provides the necessary context for understanding how user input might

be manipulated to exploit vulnerabilities, enabling machine learning models to learn

more nuanced patterns and dependencies within the code. The richer semantic in-

formation captured by CPGs makes them a more suitable representation for training

effective vulnerability detection models, enabling them to identify a wider range of

vulnerabilities, including those that rely on understanding data flow and control flow

relationships.

Figure 5.1: AST Representation for a Code Snippet
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Figure 5.2: CPG Representation for the Same Code Snippet

In our framework, we initially experimented with both AST and CPG represen-

tations. However, our empirical evaluation confirmed that the GAT model trained

on CPGs consistently outperformed the model trained on ASTs, showcasing the sig-

nificance of incorporating semantic information for effective vulnerability detection.

Therefore, we selected the CPG representation for all subsequent experiments and

evaluations.

5.3 Feature Encoding

To enable our machine learning models to effectively learn from the AST and CPG

representations, we encoded relevant information about each node in the graph as a

feature vector. The specific features used for both representations are detailed below.

5.3.1 AST Feature Encoding

For each node in the AST, we extracted the following features:
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• Node Type: The grammatical category of the node (e.g., FunctionDef,

Assign, Call, Name, Constant). This feature captures the syntactic role of

the node within the code.

• Data Type: For variables, the inferred data type (e.g., str, int, float).

This feature provides information about the kind of data stored in the variable.

• Literal Value: For constant nodes, the actual literal value (e.g., "user input",

10, 3.14). This feature captures the value associated with the constant.

5.3.2 CPG Feature Encoding

For each node in the CPG, we extracted a richer set of features, leveraging the

additional semantic information available in the CPG:

• Node Type: The type of the node (e.g., ”Identifier,” ”Call,” ”Literal”). This

feature categorizes the node based on its role in the code.

• Code: The actual code associated with the node (e.g., ”os.path.join,” ”open”).

This feature provides a more specific representation of the code element.

• Data Type: The data type associated with the node (e.g., ”String,” ”Integer”).

This feature provides information about the kind of data the node represents.

• User Input Flag: A boolean flag indicating whether the node is part of a

function handling user input. This feature helps the model identify potential

entry points for malicious data.
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5.4 Model Architecture and Training

5.4.1 GAT Model Architecture

Our vulnerability detection model is based on Graph Attention Networks (GATs)

[12], a powerful type of graph neural network designed to learn from graph-structured

data. GATs incorporate an attention mechanism that allows them to selectively at-

tend to different parts of the graph, learning which nodes and edges are most relevant

for the task at hand. This makes GATs particularly well-suited for code analysis,

where vulnerabilities often arise from the interaction of multiple code elements and

their relationships.

We implemented our GAT model using the PyTorch Geometric library [60]. Our

model architecture consists of two GAT layers stacked sequentially, with each layer

employing eight attention heads. Each GAT layer maps the input features to a hidden

dimension of 64. ReLU activation is applied after each layer to introduce non-linearity

into the model.

To mitigate overfitting, we incorporated dropout with a rate of 0.5 after each

GAT layer. Dropout randomly sets a fraction of the neuron activations to zero during

training, forcing the model to learn more robust and generalizable representations.

5.4.2 Model Training

The training process involved splitting the dataset into training (70%), validation

(15%), and testing sets (15%) using stratified sampling to ensure an even distribution

of vulnerability types across the splits. This stratification ensures that the model

is exposed to a representative sample of each vulnerability type during training and

evaluation.

We utilized the Adam optimizer [52] for training our GAT model. Adam is a

popular optimization algorithm known for its effectiveness in training deep learning
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models. We used a learning rate of 1e−4 and a weight decay of 1e−3 to regularize the

model parameters and prevent overfitting.

The model was trained for a maximum of 50 epochs with a batch size of 16. We

incorporated early stopping based on the validation loss to prevent overfitting. If

the validation loss did not improve for a predefined number of epochs (patience), the

training process was stopped to prevent the model from memorizing the training data

and losing its ability to generalize to unseen examples.

5.4.3 Loss Function: Weighted Cross Entropy

We observed that our initial models exhibited a bias towards predicting vulnera-

bilities due to the class imbalance in the dataset, with a higher number of vulnerable

samples compared to benign ones. To address this, we implemented a weighted cross-

entropy loss function. Weighted cross entropy assigns higher weights to the minority

classes, ensuring that the model is penalized more for misclassifying vulnerable code

snippets. This weighting strategy helps the model learn to focus on detecting vulner-

abilities more effectively, even when they are less frequent in the training data.

5.5 Vulnerability Localization and Contextualization

Once a code snippet is classified as potentially vulnerable, our framework pro-

ceeds to localize the vulnerability within the code and extract relevant contextual

information to guide the LLM in generating appropriate code fixes.

5.5.1 Attention-Based Localization

We utilize the attention weights learned by our GAT model during training to

guide the process of vulnerability localization. The attention mechanism within GATs

assigns weights to different nodes and edges in the graph, reflecting their importance

in the model’s prediction. After obtaining a vulnerability prediction from the GAT
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model, we extract the attention weights assigned to each node in the input AST or

CPG during the model’s forward pass. Nodes with higher attention weights indicate

greater influence on the model’s prediction, suggesting a higher likelihood of their

involvement in the vulnerability.

Rather than relying solely on the top-ranked node, we identify a contiguous span of

highly attentive nodes as the most likely location of the vulnerability. This reflects the

understanding that vulnerabilities often involve interactions between multiple code

elements rather than a single isolated node. We empirically determined a threshold,

selecting the top 5% of nodes with the highest attention weights to form the vulnerable

span. This span represents the section of code that the model focused on most when

making its vulnerability prediction.

5.5.2 Contextual Information Extraction

We developed a dedicated Python module for contextual information extraction.

This module utilizes the ast library for AST parsing and a CPG parsing library,

such as Joern [59], for CPG manipulation. We employed the visitor pattern [61] to

efficiently traverse both AST and CPG representations. The visitor pattern allows

us to define specific actions to be performed when encountering different node types

during the traversal, enabling targeted extraction of relevant information.

The module extracts the following types of contextual information:

• Variable Information: We extract details about the variables used within

the vulnerable span and its surrounding context. This information includes:

– Variable names

– Inferred data types from assignments

– Literal values assigned to the variables

– The scope of the variable (e.g., local, global)
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– Data flow relationships, if available in the CPG, showing how the variable’s

value propagates through the code

• Function Call Analysis: We analyze function calls within the vulnerable

span, extracting information such as:

– The name of the called function

– Arguments passed to the function

– Inferred return type of the function

– If available in the CPG, the definition of the called function to provide

further context about its behavior

• Control Flow Reconstruction: Utilizing the control flow information cap-

tured in the CPG, we reconstruct possible execution paths leading to the vul-

nerable code. This analysis reveals:

– Potential entry points for malicious input, helping to understand how an

attacker might exploit the vulnerability.

– Conditions that might lead to the execution of the vulnerable code, pro-

viding insights into the circumstances under which the vulnerability might

manifest.

• Comment Extraction: We extract nearby comments and docstrings that

might provide valuable developer insights into the purpose of the code, poten-

tial concerns, or intended functionality. This information can be helpful for

understanding the developer’s intent and guiding the LLM in generating more

appropriate code fixes.
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5.6 AI-Powered Code Patching with LLMs

We leverage the extracted contextual information, along with the GAT model’s

vulnerability prediction and localization, to guide a Large Language Model (LLM)

in generating potential code fixes. We employed Google Gemini Pro [62], a powerful

LLM accessible through the Google AI Platform, for our code generation tasks.

5.6.1 Prompt Engineering

The design and structure of the prompts provided to the LLM are crucial for

eliciting effective and contextually relevant code patches. Our prompts are carefully

structured to provide the LLM with a comprehensive understanding of the vulner-

ability and the surrounding code, enabling it to generate targeted and appropriate

fixes. The general structure of our LLM prompts is as follows:

### Task: Fix a security vulnerability in the following Python code.

The code has been identified as potentially containing a **[Vulnerability

Type]** vulnerability.

The vulnerable part of the code is highlighted below:

‘‘‘python

[Highlighted Vulnerable Code Segment]

Please provide a corrected version of the entire code that addresses this

vulnerability while maintaining the original functionality:

[Original Code Snippet]

Important:
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- Focus on fixing the specific vulnerability identified.

- Ensure the patched code is functionally equivalent to the original code.

- If the vulnerability cannot be fixed without more context, please

explain why.

We replace the placeholders in the prompt template with the following informa-

tion:

• [Vulnerability Type]: The specific CWE category of the vulnerability pre-

dicted by our GAT model.

• [Highlighted Vulnerable Code Segment]: The section of code identified as

vulnerable by the GAT model, based on the attention weight analysis. This

helps focus the LLM’s attention on the problematic area.

• [Original Code Snippet]: The entire code snippet submitted for analysis.

5.6.2 Patch Generation and Evaluation

We provide the generated prompts to the Google Gemini Pro model, which then

produces candidate code patches. The LLM, drawing upon its vast knowledge of

coding practices and security best practices acquired during training, attempts to

generate patches that address the identified vulnerability while preserving the func-

tionality of the original code.

The generated patches are then evaluated for both correctness and security using

a multi-faceted approach:

• Automated Testing: We develop test cases tailored to the specific functional-

ity of the code snippet to assess the functional correctness of the patched code.

This ensures that the original behavior of the code is preserved after the patch

is applied.
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• Static Analysis: We re-run the Bandit static analysis tool [15] on the patched

code to check for the following:

– The presence of the original vulnerability: This verifies whether the gen-

erated patch effectively addresses the identified security issue.

– The introduction of new vulnerabilities: This ensures that the patch itself

does not inadvertently introduce new security risks into the code.

• Manual Review: In some cases, especially for complex or subtle vulnerabili-

ties, we perform manual code review to assess the quality and appropriateness

of the generated patches. This involves expert scrutiny of the patched code to

evaluate its security and ensure that it adheres to best practices.

5.7 Summary

This chapter detailed the implementation of our framework for automated vul-

nerability detection and patching. We described our methodology for constructing a

comprehensive dataset, training a GAT model to identify vulnerabilities, localizing

vulnerabilities within the code, extracting contextual information, and leveraging an

LLM to generate potential code fixes. The following chapter will evaluate the per-

formance of our framework, demonstrating its effectiveness in accurately identifying

and addressing various vulnerability types.
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CHAPTER VI

Evaluation and Results

This chapter presents a comprehensive evaluation of our proposed framework for

automated vulnerability detection and patching. We first compare the performance

of our Graph Attention Network (GAT) model trained on two distinct code rep-

resentations: Abstract Syntax Trees (ASTs) and Code Property Graphs (CPGs).

Following the selection of the optimal representation, we delve into a detailed assess-

ment of the model’s performance on the held-out test set, analyze the effectiveness

of our attention-based localization technique, and critically examine the quality of

LLM-generated patches for code remediation. Our evaluation utilizes multiple per-

spectives—human evaluation, static analysis with Bandit, and re-evaluation with our

trained GAT model—providing a robust assessment of our framework’s efficacy and

its potential for real-world application.

6.1 Vulnerability Detection Performance: AST vs. CPG

We conducted initial experiments to compare the performance of our GAT model

trained on two different code representations: ASTs and CPGs. Our goal was to

determine which representation yielded better vulnerability detection accuracy, as

the choice of code representation can significantly influence the model’s ability to

learn relevant patterns and dependencies within the code.
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6.1.1 Evaluation Metrics

To evaluate the performance of our GAT models, we employed standard metrics

for binary classification:

• Accuracy: Measures the overall correctness of the model’s predictions, repre-

senting the proportion of correctly classified code snippets (both vulnerable and

non-vulnerable) out of the total number of snippets.

• Precision: Focuses on the accuracy of positive predictions, quantifying the

proportion of correctly identified vulnerable snippets out of all snippets classified

as vulnerable. A high precision indicates a low rate of false positives.

• Recall: Measures the model’s ability to identify all actual vulnerabilities, rep-

resenting the proportion of correctly identified vulnerable snippets out of all

actual vulnerable snippets in the dataset. A high recall signifies a low rate of

false negatives.

• F1-Score: The harmonic mean of precision and recall, providing a balanced

measure of the model’s performance, particularly useful when dealing with im-

balanced datasets.

These metrics provide a comprehensive view of the model’s performance, consid-

ering both its ability to correctly identify vulnerable code and its ability to avoid

misclassifying benign code as vulnerable.

6.1.2 Results and Analysis

Tables 6.1 and 6.2 summarize the performance of our GAT model on the valida-

tion set, trained separately on AST and CPG representations. As hypothesized, the

GAT model trained on the CPG representation consistently outperformed the model

trained on the AST representation across all evaluation metrics.
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Metric AST Representation

Accuracy 0.74

Precision 0.74

Recall 0.76

F1-Score 0.77

Table 6.1: GAT Performance on AST Representation

Metric CPG Representation

Accuracy 0.86

Precision 0.81

Recall 0.85

F1-Score 0.86

Table 6.2: GAT Performance on CPG Representation

The CPG-based model demonstrated significantly higher accuracy, precision, re-

call, and F1-score compared to the AST-based model. This indicates its superior

ability to accurately distinguish between vulnerable and non-vulnerable code snip-

pets and to identify a larger proportion of actual vulnerabilities. The improvement in

recall is particularly noteworthy, suggesting that the CPG-based model is more effec-

tive at finding vulnerabilities while minimizing false negatives. This finding strongly

supports our hypothesis that the richer semantic information encoded in CPGs, in-

cluding data flow and control flow relationships, provides a more informative context

for vulnerability detection, leading to a more accurate and effective model.

The confusion matrices, depicted in Figures 6.1 and 6.2, offer a detailed breakdown

of the model’s performance across different vulnerability types. These matrices visu-

alize the counts of true positives, true negatives, false positives, and false negatives

for each vulnerability category.
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Figure 6.1: Confusion Matrix for GAT Model Trained on AST Representation

Figure 6.2: Confusion Matrix for GAT Model Trained on CPG Representation

Figures 6.3 and 6.4 illustrate the training loss and accuracy, respectively, over

epochs for the AST-based model. These graphs provide insights into the training
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process and highlight the convergence behavior of the model. Similarly, Figures 6.5

and 6.6 depict the training loss and accuracy over epochs for the CPG-based model.

Figure 6.3: Training Loss for GAT Model Trained on AST Representation

Figure 6.4: Training Accuracy for GAT Model Trained on AST Representation
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Figure 6.5: Training Loss for GAT Model Trained on CPG Representation

Figure 6.6: Training Accuracy for GAT Model Trained on CPG Representation

Based on the superior performance of the GAT model trained on the CPG rep-

resentation, we selected the CPG representation for all subsequent experiments and

evaluations. The richer semantic information embedded within CPGs proved crucial

for achieving higher accuracy and recall in vulnerability detection.

6.2 Vulnerability Localization Effectiveness

Having established the superiority of the CPG representation, we proceeded to

evaluate the effectiveness of our attention-based localization technique in pinpointing
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the vulnerable code sections within the snippets correctly classified as vulnerable by

our GAT model. Accurate localization is crucial for guiding the LLM in generating

targeted and effective code fixes.

6.2.1 Evaluation Approach

We manually examined a subset of 200 code snippets randomly selected from the

test set where the GAT model, trained on the CPG representation, correctly predicted

the presence of a vulnerability. For each snippet, we compared the vulnerable span

identified by our attention-based method to the ground truth vulnerable lines of code,

which were determined during the manual labeling process. This involved visually

inspecting the highlighted code sections and comparing them to the actual lines of

code known to contain the vulnerability.

6.2.2 Results and Analysis

Our attention-based localization technique achieved an accuracy of 87%, correctly

identifying the vulnerable code span in 174 out of the 200 analyzed snippets. In

the remaining 13% of cases, the highlighted span either included additional lines of

code beyond the actual vulnerable section or missed a few lines within the vulnerable

section. These discrepancies can be attributed to the complexity of certain vulnera-

bilities, where the model’s attention might be drawn to code elements that are related

to the vulnerability but not directly part of the vulnerable lines.

Despite these minor inconsistencies, the high localization accuracy (87%) demon-

strates the effectiveness of our attention-based approach in pinpointing vulnerable

code sections. This accurate localization provides valuable guidance to the LLM,

enabling it to focus on the problematic area and generate more targeted code fixes.

68



6.3 LLM-Generated Patch Evaluation: A Multi-Perspective

Assessment

We evaluated the quality of the patches generated by Google Gemini Pro using

three distinct evaluation methods: human evaluation, static analysis with Bandit,

and re-evaluation using our trained GAT model. This multi-perspective assessment

provides a comprehensive understanding of the effectiveness and reliability of the

generated patches.

6.3.1 Evaluation Methodology

We selected 100 code snippets from the test set where the GAT model (trained

on CPGs) correctly predicted a vulnerability, and our attention-based localization

accurately identified the vulnerable span. For each of these snippets, we generated

prompts following the structure described in the previous chapter. These prompts

were provided to the Gemini Pro LLM to generate candidate patches.

Each generated patch was then evaluated using the following methods:

1. Human Evaluation: A security expert manually reviewed each patch, assess-

ing:

• Correctness: Whether the patch successfully addressed the identified

vulnerability.

• Functional Equivalence: Whether the patched code maintained the

original functionality of the snippet.

• Code Quality: Whether the patch adhered to good coding practices and

did not introduce any new issues, such as syntax errors or logical flaws.

2. Static Analysis with Bandit: We re-ran Bandit [15] on the patched code

snippets to automatically check for the presence of the original vulnerability
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and to identify any new vulnerabilities that might have been introduced by the

patch.

3. Re-Evaluation with GAT Model: We transformed the patched code into

CPG representations and re-evaluated them using our trained GAT model. This

assessed whether the patched code was still classified as vulnerable by our model,

indicating potential limitations in the LLM’s ability to fully address the vulner-

ability.

6.3.2 Results and Analysis

Table 6.3 summarizes the results of our LLM-generated patch evaluation. The

human evaluation revealed that 78% of the patches were deemed correct, effectively

addressing the identified vulnerabilities without introducing new issues or altering

the original functionality. Bandit analysis confirmed these findings, with 75% of

the patched snippets no longer triggering the original vulnerability warnings. Re-

evaluation with our trained GAT model further supported these results, with 79% of

the patched snippets now classified as non-vulnerable.

Table 6.3: LLM-Generated Patch Evaluation Results

Evaluation Method Success Rate

Human Evaluation (Correctness) 78%

Bandit Analysis (No Original Vulnerability) 75%

GAT Model Re-evaluation (Non-Vulnerable) 79%

These results demonstrate the promising capabilities of LLMs in generating code

patches for security vulnerabilities when guided by our framework. The high success

rate across multiple evaluation methods suggests that our approach, which combines

vulnerability detection with targeted context extraction, provides the LLM with suf-

ficient information to generate relevant and effective fixes.
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However, it is important to acknowledge that not all generated patches were suc-

cessful. The remaining patches (around 20-25%) either failed to fully address the

vulnerability, introduced new issues, or altered the original functionality of the code.

This highlights the inherent limitations of current LLMs in fully understanding the

nuances of security vulnerabilities and the complexities of code repair. Further re-

search is needed to improve the accuracy and reliability of LLM-generated patches,

potentially by incorporating more sophisticated reasoning capabilities or by providing

even richer contextual information to the LLM.

6.4 Sample Result: End-to-End Vulnerability Detection and

Patching

To demonstrate the end-to-end functionality of our framework, we present an

illustrative example showcasing the process of vulnerability detection, localization,

prompt generation, and LLM-based patch generation.

6.4.1 Input Code Snippet

Consider the following Python code snippet, which contains a Cross-Site Scripting

(XSS) vulnerability:

def display_user_profile(username):

profile_html = f"""

<h1>Welcome, {username}!</h1>

<p>This is your profile page.</p>

"""

return profile_html

This snippet represents a common scenario in web applications where user-supplied

data is directly incorporated into HTML output without proper sanitization. The
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vulnerability arises because a malicious user could provide a username containing

JavaScript code, which would then be executed in the browser of other users viewing

the generated HTML.

6.4.2 GAT Model Prediction and Localization

Our trained GAT model, using the CPG representation of this code, correctly

predicts the presence of an XSS vulnerability. The attention-based localization mech-

anism highlights the following line as the most likely location of the vulnerability:

def display_user_profile(username):

profile_html = f"""

<span style="color:red">"---"</span>

<h1>Welcome, {username}!</h1>

<p>This is your profile page.</p>

"""

return profile_html

This accurate localization is crucial because it directs the LLM’s attention to the

specific line of code that needs to be modified.

6.4.3 Generated LLM Prompt

Based on the GAT model’s prediction and localization, the following prompt is

generated for the Google Gemini Pro LLM:

### Task: Fix a security vulnerability in the following Python code.

The code has been identified as potentially containing a **Cross-Site

Scripting (XSS)** vulnerability.

The vulnerable part of the code is highlighted below:
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‘‘‘python

def display_user_profile(username):

profile_html = f"""

<span style="color:red">"---"</span>

<h1>Welcome, {username}!</h1>

<p>This is your profile page.</p>

"""

return profile_html

‘‘‘

Please provide a corrected version of the entire code that addresses this

vulnerability while maintaining the original functionality:

‘‘‘python

def display_user_profile(username):

profile_html = f"""

<h1>Welcome, {username}!</h1>

<p>This is your profile page.</p>

"""

return profile_html

**Important:**

- Focus on fixing the specific vulnerability identified.

- Ensure the patched code is functionally equivalent to the original code.

- If the vulnerability cannot be fixed without more context, please

explain why.

The prompt clearly instructs the LLM to fix the XSS vulnerability, provides the

original code, highlights the vulnerable line, and emphasizes the need to maintain the

original functionality.
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6.4.4 LLM-Generated Patch

The Google Gemini Pro model, in response to the prompt, generated a compre-

hensive analysis of the vulnerability and a suggested patch:

LLM Response

Understanding the XSS Vulnerability

**The issue:** The provided code directly inserts the ‘username‘ variable into

the HTML without any sanitization or escaping. This makes it susceptible to

Cross-Site Scripting (XSS) attacks. If a malicious user provides a crafted input

for the ‘username‘, they could inject malicious script into the generated HTML,

which would be executed on the client side when the page is rendered.

Fixing the Vulnerability

To prevent XSS, we need to properly escape the ‘username‘ before inserting it

into the HTML. Python’s ‘html‘ module provides the necessary function for this:

import html

def display_user_profile(username):

profile_html = f"""

<h1>Welcome, {html.escape(username)}!</h1>

<p>This is your profile page.</p>

"""

return profile_html

**Explanation:** - **Import ‘html‘:** This imports the necessary module for

HTML escaping. - **‘html.escape(username)‘:** Escapes special characters in

the ‘username‘ to prevent XSS. - **f-string:** The f-string is used to format the

HTML string with the escaped username.

Additional Considerations
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While this code addresses the specific XSS vulnerability in the provided exam-

ple, it’s essential to consider other potential XSS attack vectors and implement

broader security measures:

- **Input Validation:** Always validate user input to prevent unexpected

or malicious data from being processed. - **Output Encoding:** Consistently

encode output to prevent XSS, SQL injection, and other injection attacks. -

**Content Security Policy (CSP):** Implement a CSP to further restrict the

execution of scripts and other resources. - **Regular Security Audits:** Conduct

regular security assessments to identify and address vulnerabilities.

By following these guidelines, you can significantly enhance the security of

your web application.

**Note:** This solution assumes that the ‘username‘ is directly obtained from

user input. If the ‘username‘ is retrieved from a trusted source (e.g., a database),

the risk of XSS might be mitigated, but it’s still recommended to escape the

output for best practices.

**Would you like to explore additional security measures or discuss a specific

use case?**

The LLM not only provided a corrected code snippet that uses the html.escape

function to sanitize the user input but also included a detailed explanation of the

vulnerability, the fix, and additional security considerations. This demonstrates a

deeper level of understanding and response from the LLM, making the patch more

informative and actionable for developers.

6.5 Discussion

This chapter presented a comprehensive evaluation of our proposed framework,

demonstrating its effectiveness in identifying, localizing, and guiding the patching of

code vulnerabilities. The key findings from our evaluation are:
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• CPG Representation Superiority: The GAT model trained on CPGs con-

sistently outperformed the model trained on ASTs, highlighting the importance

of leveraging richer semantic information for vulnerability detection.

• Attention-Based Localization Accuracy: Our attention-based localization

technique accurately identified vulnerable code spans in 87% of the analyzed

cases, providing valuable guidance for targeted code fixes.

• LLM-Generated Patch Effectiveness: LLM-generated patches, guided by

our framework, achieved a high success rate (around 75-80%) in addressing

identified vulnerabilities, demonstrating the potential of LLMs for automated

code repair.

These results suggest that our hybrid approach, integrating deep learning-based

vulnerability detection with LLM-powered code generation, offers a promising av-

enue for enhancing code security and improving the reliability of software systems.

However, it is crucial to acknowledge the limitations of current LLMs in fully under-

standing the intricacies of code vulnerabilities and repair. Also, a larger and more

detailed dataset can further enhance the GAT model as well, improving the overall

effectiveness of the proposed system. Further research is needed to enhance the accu-

racy and reliability of LLM-generated patches and to address the remaining challenges

in automating code security.

76



CHAPTER VII

Conclusion and Future Work

7.1 Concluding Remarks

The pervasiveness of software in all aspects of modern society underscores the

critical importance of developing robust and automated solutions for identifying and

addressing security vulnerabilities. Our research has made significant strides in this

direction by demonstrating the effectiveness of combining graph-based deep learn-

ing and LLMs for automated vulnerability detection and rectification. This hybrid

approach, leveraging the strengths of both techniques, offers a promising avenue for

enhancing code security and improving the reliability of software systems.

This thesis has presented a novel framework for automated vulnerability detection

and rectification, addressing a critical need in modern software development. Our ap-

proach leverages the strengths of graph neural networks, specifically Graph Attention

Networks (GATs), for precise vulnerability detection and the generative capabilities

of Large Language Models (LLMs) for automated code repair. Recognizing the lim-

itations of existing techniques, we designed a framework that not only accurately

identifies vulnerabilities but also provides targeted guidance to LLMs, ensuring the

generation of secure and effective code fixes.

Our research has yielded several key findings that underscore the effectiveness

and potential of our proposed framework. Our experiments unequivocally demon-
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strated that using Code Property Graphs (CPGs) as the code representation signifi-

cantly enhances vulnerability detection accuracy compared to using Abstract Syntax

Trees (ASTs). Furthermore, our attention-based localization technique, leveraging

the attention weights learned by our GAT model, exhibited remarkable accuracy in

pinpointing the vulnerable code sections within snippets correctly classified as vulner-

able. Our evaluation of LLM-generated patches, guided by our framework, revealed

another promising finding. We observed a high success rate, ranging from 75% to

80%, in generating correct and effective fixes for the identified vulnerabilities. This

result underscores the significant potential of LLMs for automated code repair when

provided with accurate contextual information about the vulnerability and its precise

location within the code.

Our work makes several significant contributions to the field of automated vul-

nerability detection and rectification. We provide compelling empirical evidence of

the effectiveness of CPGs as a code representation for vulnerability detection. We

introduce and validate an attention-based localization technique that effectively pin-

points vulnerable code sections. Most importantly, we demonstrate the viability of a

hybrid approach that combines the strengths of graph-based deep learning and LLMs,

offering a promising direction for automating code security.

7.2 Limitations and Future Work

While our framework has shown promising results, there are limitations and areas

for future research that can further advance the field of automated code security.

One limitation lies in the size and diversity of our dataset. Although compre-

hensive, further expansion to incorporate code from diverse programming languages,

software domains, and vulnerability types would significantly enhance the generaliz-

ability and robustness of our model. A larger and more diverse dataset would enable

the model to learn from a wider range of coding practices, vulnerability patterns, and
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semantic contexts, making it more adaptable to real-world codebases.

Another area for improvement is the scalability of CPG construction. Building

CPGs for large codebases can be computationally expensive, potentially limiting the

applicability of our approach to massive software projects. Investigating more effi-

cient methods for CPG construction or exploring techniques for selectively generating

CPGs for specific code sections, particularly those flagged as potentially vulnerable,

could enhance the scalability of our framework.

There is also room for improvement in the quality and reliability of LLM-generated

patches. While our framework provides targeted guidance to LLMs, achieving con-

sistently accurate and secure code fixes remains a challenge. Incorporating more

sophisticated reasoning capabilities into LLMs, such as symbolic execution or formal

verification, could lead to more robust and trustworthy code repairs. Furthermore,

exploring alternative methods for encoding contextual information or experimenting

with different prompt engineering techniques might also enhance the LLM’s under-

standing of the vulnerability and its impact on the code.

The current scope of our framework is limited to addressing individual vulnerabil-

ities. Future research could explore extending it to handle more complex scenarios,

such as vulnerabilities that involve the interaction of multiple code components or

those requiring a sequence of patches to be fully addressed. Finally, while we con-

ducted human evaluation of the generated patches, a more extensive and systematic

human-in-the-loop evaluation would be highly beneficial. Additionally, integrating

our framework into real-world development workflows and conducting user studies to

assess its usability and effectiveness in practice would provide valuable insights into

its real-world impact and guide further improvements.

By addressing the identified limitations and pursuing the proposed directions for

future work, we can strive towards more comprehensive and reliable automated code

security solutions, contributing to the development of safer and more resilient software
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systems that are essential for the functioning of our increasingly digital world.
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