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Abstract 

In a multidatabase system (MDBS), some query op- 
timization information related to local database sys- 
tems may not be available at the global level because 
of local autonomy. To perform global query optimiza- 
tion, a method is required to derive the necessary local 
information. This paper presents a new method that 
employs a query sampling technique to estimate the 
cost parameters of an autonomous local database sys- 
tem. We introduce a classification for grouping local 
queries and suggest a cost estimation formula for the 
queries in each class. We present a procedure to draw 
a sample of queries from each class and use the ob- 
served costs of sample queries to determine the cost 
parameters by multiple regression. Ezperimental re- 
sults indicate that the method is quite promising for 
estimating the cost of local queries in an MDBS. 

1 Introduction 

A multidatabase system (MDBS) integrates data 
from pre-existing autonomous local databases man- 
aged by heterogeneous database management systems 
(DBMS) in a distributed environment. It acts as 
a front end to multiple local DBMSs providing full 
database functionality to global users and interacts 
with the local DBMSs at their external user inter- 
faces. A key feature of an MDBS is the local autonomy 
that individual databases retain to serve existing ap- 
plications. Most differences between a conventional 
distributed database system (DDBS) and an MDBS 
are caused by local autonomy. These differences in- 
troduce new challenges for query optimization in an 
MDBS[58 10, 121. 
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Among the challenges, a crucial one is that some 
local query optimization information, e.g., local cost 
functions, may not be available to the global query op- 
timizer. It is, therefore, difficult for the global query 
optimizer to determine a good execution plan for a 
given (global) query. This problem does not exist in 
a conventional DDBS because all sites run the same 
distributed database management system. Its query 
optimizer can make use of both global and local infor- 
mation to produce a good execution plan for a given 
query. In an MDBS, methods to derive or estimate 
local query optimization information are required. 

In [2], Du et al. proposed a calibration method to 
deduce necessary local information. The idea is to  con- 
struct a local synthetic calibrating database with spe- 
cial properties and to run a set of queries against this 
database. Cost metrics for the queries are recorded 
and used to deduce the coefficients in a cost formula 
for the underlying local database system by using the 
properties of the calibrating database. This method 
demonstrates the possibility of obtaining necessary in- 
formation from an autonomous local database system. 
However, this method has several shortcomings: 

0 The deduced cost formulas cannot be applied if 
the local access method for a query is not known, 
which is frequently the case in an MDBS. 

0 It may not be possible (or allowed) to create a 
calibrating database at the local site in an MDBS. 

0 Cost parameters deduced by using a synthetic 
calibrating database may not be valid for real 
databases because of different data distributions, 
database sizes, file structures, adjustable local 
system parameters and so on. 

0 The method does not take into consideration a 
dynamically changing environment. 

In order to overcome these shortcomings, we pro- 
pose a new method based on statistical sampling to 
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establish cost (estimation) formulas for local database 
systems in this paper. The idea is to group all possible 
queries on a local database into classes according to 
available information so that the costs of the queries 
in each class can be estimated by the same formula. 
A sample of queries are drawn from each class and 
run against the underlying real database. The costs 
of the sample queries are recorded and used to  derive 
a cost formula for the queries in the class by multi- 
ple regression. The coefficients of the cost formulas 
for local database systems are kept in a global cata- 
log and retrieved during query optimization. The co- 
efficients can also be dynamically adjusted according 
to real costs observed from execution of user queries. 
Since the cost formulas are derived by using real lo- 
cal databases and are dynamically adjustable, this 
method solves the problems mentioned above. 

A number of sampling techniques have been used 
in query optimization in the literature, but all of them 
perform data sampIing (i.e., sample data from un- 
derlying databases) instead of query sampling (i.e., 
sample queries from a query class). Muralikrishna 
and Piatetsky-Shapiro et U Z . [ ~ ~  91 discussed using data  
sampling to build approximate selectivity histograms. 
Hou and Lipton et al.[3* 41 investigated several differ- 
ent data sampling techniques, e.g., simple sampling, 
adaptive sampling and double sampling, to estimate 
the size of a query result. Olken et u Z . [ ~ ]  considered the 
problem of constructing a random subset of a query re- 
sult without computing the full result. All their work 
is about performing a given query against a sample of 
data and deriving properties for the underlying data  
(e.g., selectivities). This paper considers performing a 
sample of queries against (whole) underlying data  and 
deriving a property about a query on its supporting 
DBMS (i.e., performance of the query on the DBMS). 

The rest of this paper is organized as follows. Sec- 
tion 2 discusses how to  classify queries on a local 
database system according to available information. 
Section 3 describes a regression cost formula for each 
query class. Section 4 investigates how to draw sample 
queries from each query class so that their costs can 
be used to derive the cost parameters. Section 5 gives 
some experimental results. Section 6 discusses a num- 
ber of other related issues about using the presented 
method in an MDBS. 

2 Classification of Queries 

Different local DBMSs may adopt different local 
data models. At the global level of an MDBS, there 

usually is a common global data  model. In our MDBS 
project, the global data model is assumed to be rela- 
tional. Each local DBMS is associated with an  MDBS 
agent which provides a relational interface if the lo- 
cal DBMS is non-relational. Hence, the global query 
optimizer in the MDBS may view all participating lo- 
cal DBMSs as relational ones. For simplicity, we also 
assume that all data are schematically and represen- 
tationally compatible. 

Given a query, the global query optimizer generates 
an execution plan that specifies how the query is de- 
composed into local queries and how the local results 
are integrated to  produce the final result for the user. 
The way to  decompose a query into local queries is not 
unique. If the global query optimizer knows the costs 
of local queries, it can choose a good (low cost) execu- 
tion plan among a number of alternatives. However, 
unlike a traditional DDBS, the local cost functions are 
usually not known by the global query optimizer in an 
MDBS. In order to estimate the costs of local queries, 
we need to find a way to derive cost formulas for local 
database systems. 

Many possible queries can be issued against a local 
database. It is not possible to estimate the costs of all 
queries by a single formula. Usually, the costs of the 
queries executed by using the same access method, 
e.g., sequential scan, can be estimated by the same 
formula. However, which access method is used for a 
local query may not be known at the global level in 
an MDBS. It depends on the local DBMS. 

Fortunately, there are some common principles 
for choosing an  access method for a query in most 
DBMSs. Based on available information and these 
common principles, we can group queries into more 
homogeneous classes. The costs of all queries in a 
class are estimated by the same formula. If sufficient 
information is available, we can classify queries such 
that each class corresponds to one access method. The 
estimated costs are expected to be more accurate in 
this case. If the available information is not sufficient, 
it is possible that queries executed by different access 
methods are put in the same class. Since the practical 
goal of query optimization in an  MDBS is the same 
as those of many traditional query optimizers, that is, 
avoiding bad execution plans instead of achieving a 
truly optimal one, estimation errors can be tolerated 
t o  a certain degree. 

Unlike a query optimizer in a traditional DDBS, 
the global query optimizer in an MDBS has limited 
information available. To classify queries, the follow- 
ing types of information can be made use of: 

characteristics of queries: such as unary queries, 
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2-way join queries and so on. This information 
can be obtained by analyzing a given query. 

characteristics of operand tables: such as the 
number of columns, the number of tuples, indexed 
columns and so on. This information can usually 
be obtained from the local catalog. 

characteristics of underlying local DBMss: such 
as types of access methods supported. This infor- 
mation can be obtained from the documentation 
of a local DBMS. 

Since most common queries can be expressed by a 
sequence of select (U), project ( T )  and join (W),  we 
consider only these three types of operations in this 
paper. The cost of a query composed from these oper- 
ations can be estimated by composing the costs of the 
operations. In real systems a project is usually com- 
puted together with the select or join that it follows, 
so we will not consider it separately. In this paper, a 
select that may or may not be followed by a project is 
called a unary query. A join that may or may not be 
followed by a project is called a join query. 

Let G be the set of all (unary and join) queries on 
a local D E  i managed by a D B M S  j .  Let R and S be 
two tables in D B  i ,  a be a list of columns in R and/or 
S, F be a qualification of a query on R and/or S, and 
C be a constant in the domain of a relevant column. 
Without loss of generality, qualifications of queries are 
assumed to be in the conjunctive normal form. The 
basic predicates allowed are of the forms R.a 8 C and 
R.a 8 SA, where 8 E {=, #, >, <, 2,s). 

Since a unary query and a join query have different 
numbers of operands and are evaluated by totally dif- 
ferent access methods, their costs cannot be estimated 
by the same formula. Hence they must be in different 
classes: 

G = G1 U Gz 

where G1 = {unary queries}, Gz = {join queries}. 
In G I ,  the queries evaluated by a sequential scan 

method, an index-based scan method or a clustered- 
index-based scan method may have different perfor- 
mance, i.e., their cost formulas may not be the same. 
As mentioned above, although it is sometimes difficult 
to tell, from available information in an MDBS, which 
access method is to be used by a local DBMS for a 
given query, there is a common policy in most DBMSs, 
that is, if the qualification of a unary query has a con- 
junct R.a = C in its qualification, where R.a is an 
indexed (clustered-indexed) column, an index-based 
(clustered-index-based) scan method is employed to 

evaluate the query. The first class G1 can, then, be 
further divided into three smaller classes: 

where 

G11 = { ra (uF(R) )  I F has at least one 
conjunct R.a = C, where R.a is a 
clustered - indexed column }, (2) 

Gi2 = { ra (uF(R) )  I ra (uF(R) )  n d  i n  Gii  

where R.a as an indexed column }, 
and F has at least one conjunct R.a = C, 

(3) 
(4) GI3 = GI - ( G11 U GIZ ) *  

Similarly, the class Gz can be further divided into 
three smaller classes: 

where 

Gal = { r a ( R  W F  S )  I F has at least one 
conjunct R.a = S.b, where R.a or R.b (OT 

both) is  a clustered - indexed column }, (6) 
G22 = { na(R WF S)  I Ta(R WF S) not in 

Gal and F has at least one conjunct 
R.a = S.b, where R.a OT S.b (OT both) is 

an indexed column }, (7) 
(8) GZ3 = Gz - ( G21 U G2z ) a  

Gal, G22 and G23 correspond to the clustered-index- 
based join method, index-based join method, and 
other join method(s) (e.g., merge join and sequential 
nested loop join), respectively. 

In principle, any of the classes G11 N G23 can be 
further divided into smaller classes if more information 
is available. For example, in some DBMSs (such as 
RDB/VMS) a sorted-indexed column R.a may be s u p  
ported to make the execution of a range query more 
efficient than using a sequential scan method. Thus, 
the class GI3 can be further divided into two smaller 
classes - one for range queries, the other for other 
queries. As another example, any of the above classes 
can be divided into smaller classes according to the 
(estimated) sizes of results (or operands) of queries 
because a DBMS may adopt different processing and 
buffering strategies for different sizes of query results. 
The classification of queries may vary from one DBMS 
or application to another. In general, a refined classi- 
fication is expected to yield better estimates because 
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each query class is usually more homogeneous in per- 
formance. However, the overhead of maintaining the 
cost parameters grows as the number of query classes 
increases. A trade-off is required between estimation 
accuracy and overhead. For simplicity, we only dis- 
cuss the classification at the level of ( 1 )  - (8) in this 
paper. The ideas of the following discussion can be 
applied to a further refined classification. 

The classification ( 1 )  - (8) is suitable for many 
DBMSs. It is based on not only the characteris- 
tics of queries but also the characteristics of the local 
database and DBMS. On one hand, more classes may 
result from a refined classification if more information 
is available. On the other hand, some of the classes 
G 1 1  - Gas may be empty on a local database because 
some access methods may not be supported in the un- 
derlying DBMS. For example, G 1 1  and Gal are empty 
for a local database managed by Empress because a 
clustered-index is not supported. 

3 Cost Estimation Formulas 

For each query class resulting from a classification, 
a formula is needed to estimate the cost of queries in 
the class. Since the implementation details of access 
methods in a DBMS, e.g., 1 /0  numbers and buffer 
sizes, are not known, an exact analytical cost formula 
can not be obtained. Furthermore, we sometimes do 
not even know what access method(s) is (are) used for 
the queries in a class. Fortunately, regression methods 
in statistics can be used to estimate the value of one 
quantitative variable (dependent variable) by consid- 
ering its relationship with one or more other quanti- 
tative variables (independent variables). 

In our case, the dependent variable is the costs of 
the queries in a class. Clearly, the cost of a query is 
proportional to  the numbers of tuples in the operand 
table(s) and the result table. Although tuple lengths 
of the operand table(s) and the result table may also 
affect the cost of a query, the effect is usually very 
small. Hence, tuple lengths are neglected in our cost 
formulas. 

Let us consider the class G l k ( k  = 1 , 2 , 3 ) .  Let N 1 k  

be the number of tuples in the operand table of a query 
in G l k ,  S 1 k  be the selectivity of the query. Then S l k  * 
N 1 k  is the number of tuples in the result table of the 
query. In general, a cost estimation formula for G l k  

yields an estimated cost Y l k  for the query. F 1 k  varies 
from one database system to another. However, most 
database systems follow a similar pattern. Observing 

is y l k  = F i k ( N l k ,  S 1 k  * N i k ) ,  where the function F 1 k  
h 

existing cost models, we find that the formula used to 
estimate the cost of a query in G l k  in most systems is 
of the following form: 

p l k  = P o l k  -k P l l k  * N l k  -k P 2 l k  * S l k  * N I L  1 

(k = 1 , 2 , 3 )  (9) 

where the parameters P o l k ,  P l l k  and P 2 1 k  reflect the 
initialization cost, the cost of retrieving a tuple from 
the operand table and the cost of processing a result 
tuple, respectively. In a traditional cost model, a pa- 
rameter may be split up into several parts (e.g., 
may consist of 1/0 cost and CPU cost) and can be 
given by analyzing the implementation details of the 
employed access method. The formula can also be a p  
plied to an MDBS. However, the parameters cannot 
be analytically derived. To estimate the parameters, 
we view (9) as a regression equation and estimate the 
parameters (regression coefficients) by using the costs 
measured for sample queries drawn from the class. 
Since more than one independent variables ( N l k ,  & k )  

are involved in (9), it is a multiple regression problem. 
Let {ai:’ I m = 1 , .  . -, h f l k }  be a set of sample 

queries drawn from G l k ,  N , ( r )  be the number of tuples 
in the operand table of Qf’;’, Si:) be the selectivity of 
Q!:), Y$) be the cost measured by executing Qi:). 
Applying the method of least squares[*], we can derive 
a system of normal equations (omitted) for (9) that 
takes Y$), N i r ) ,  Si r )  as inputs and produces the 
estimates of the coefficients P o l k ,  P l l k  and P 2 1 k .  

For G z k ( k  = 1 , 2 , 3 ) ,  let N l 2 k  and N 2 2 k  be the 
numbers of tuples in the operand tables of a query in 
the class Gal, s 2 k  be the selectivity of the query. Then 
S 2 k  * N l z k  * N 2 2 k  is the number of tuples in the result 
table of the queLy. A general cost estimation formula 

N 2 2 k ) ,  where Y 2 k  is the estimated cost, depends 
on the database system. For many database systems, 
the following formula is applicable: 

iS of the form: Y a k  = F z k ( N l Z k ,  N 2 2 k ,  s 2 k  * N 1 2 k  * 
h 

p 2 k  = P O 2 k  -k P l 2 k  * N l z k  -k P 2 2 k  * N 2 2 k  

S P 3 2 k  * SZk  * N l a k  * N 2 2 k ,  (k = 1 , 2 , 3 )  ( 1 0 )  

where the parameters P O Z k ,  P 1 2 k l  P 2 2 k  and P 3 a k  re- 
flect the initialization cost, the cost of retrieving a tu- 
ple from the first operand table, the cost of retrieving 
a tuple from the second operand table, and the cost of 
processing a result tuple, respectively. Similar to (9), 
we view (10 )  as a regression equation, and estimate 
the parameters by using the regression method. 

Let {Qi:) 1 m = 1 , - . . ,  h f z k }  be a set of sample 
queries drawn from G z k ,  Nl i : )  and N21:) be the 
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numbers of tuples in the first and second operand ta- 
bles of Qiy) respectively, Si:) be the selectivity of 
Qiy), Y,’,”’ be the cost measured by executing QiY’. 
Applying the method of least squares again, we can de- 
rive a system of normal equations (omitted) for (10) 
that takes Y2(km), Nliy), N2$Y), Si:’ as inputs and 
produces the estimates of the parameters ,&k, plak, 

Let yt(km) be the estimated cost of @’(t = 
1,2; k = 1 ,2 ,3 ;  m =  l , - - . ,A! f tk )  by using (9) or (10) 
with the estimated parameters. The standard error of 
estimation is given 

P22k and, P32k. 

It is an indication of the accuracy of estimation. The 
smaller $tk is, the better the estimation is. The coef- 
ficient of multiple determination is defined ad8]: 

m = l  m = l  

where Y t k  = [Czzhl  Y:T)]/Mtk. .,”I, (5  1) is the pro- 
portion of variability in the query costs explained by 
the independent variables in (9) or (10). The larger 
~ t “ l ,  is, the better the estimation is. 

Since (9) and (10) are based on analytic formulas 
in traditional cost models, they are expected to  be 
good as cost estimation formulas for most database 
systems. If some of the formulas are not good for a 
database system, they could be improved via a trans- 
formation. For example, N1k * S 1 k  could be replaced 
by (N1k * &k)’ in (g), where the parameter p can be 
adjusted to a value such that T : ~  is high and S1k is 
low. Furthermore, a transformation can be based on 
observations on the costs recorded for sample queries. 

In addition to T : ~  and Stk ,  the significance of a 
chosen formula can be tested by statistical hypothesis 
testing, like the F-test and 

4 Sample Queries 

Let us consider how to draw a sample of queries 
from each query class Gtk (population). There usu- 
ally is a large number of queries in each class. It is 
too expensive or even impossible to perform all the 
queries to obtain cost information. We expect that 
a small number of sample queries can represent the 
whole population so that the estimation formulas de- 
rived from the costs of the sample queries can be used 

to give a good estimate for the cost of any query in the 
population. By having too small a sample, however, 
poor estimates of the regression parameters may re- 
sult - leading to poor estimates of query costs. Thus, 
there is a minimum sample size requirement. A com- 
monly used rule[8] is to sample a t  least 10 * (n + 1) ob- 
servations for a regression formula with n parameters. 
Therefore, we need at least 40 and 50 sample queries 
for the regression formulas (9) and (10) respectively. 
Let Utk(Ulk 2 40; U2k 2 50) denote the minimum 
sample size we choose for the query class Gtk. 

There are various ways for a sample to be drawn 
from a population: probability sampling (simple ran- 
dom sampling, stratified sampling, cluster sampling, 
and systematic sampling) , judgment sampling, and 
convenience sampling. We will use a method of mixed 
judgment sampling and simple random sampling to  
draw a sample of queries from a given query class, 
that is, use our knowledge about queries to restrict 
the class to a representative subset and then apply 
simple random sampling to draw a sample from the 
subset if the subset is still too large. 

Assume there are K ( 2  1) tables, R I ,  . . e ,  RK, in 
D B  i. Let CL;, CC;, CIi and CN; (1 5 i 5 K) be 
the sets of all columns, the clustered-indexed columns, 
indexed columns and non-indexed columns in the ta- 
ble &, respectively. For a composite indexed column, 
CIi contains only its (simple) component columns. 
Similarly, CC; contains only simple columns. Thus 
CL; = CI;uCC,uCN;. Let Oi.”) and C(i.a) be a given 
value and a randomly-chosen value in the domain of 
the column &.a, respectively. Let a(’) be a given non- 
empty subset of CL,, and &(i)  and &(’’) be non-empty 
randomly-chosen subsets of CL, and CL, U CL,, re- 
spectively. A denotes the logical connective AND, 
and 1x1 denotes the cardinality of the set X. 8 is a 
comparison randomly chosen from {<, >, f, =}. 

Consider the class Gl1. For each column &.a E 
CC,, there is an associated set SRi.- of queries in 
G l l ,  i.e., the set of queries that have a conjunct 
&.a = C(i..) in their qualifications. Clearly, G11 = 

K 
$1 [ URi.a€CCi S R i . a  3. Let dl l  = ci=l Iccil- 
(i) If dl l  = U11, i.e., the total number of clustered- 

indexed columns equals to the required minimum 
sample size, we choose a query from each SRi.- 
as a sample query, which is used to  estimate the 
performance of using the clustered-index on &.a. 
The whole sample takes into consideration all the 
clustered-indexes. The query chosen to represent 
the queries in SRi.. is r&(i)(cRi.a=c(i..) (&)). The 
choice is based on the fact that the key part of 
the qualification of a query in SRI. .  that affects 

148 



the performance of the query is most likely the 
conjunct &.a = C(i.p).  

(ii) If dll > U11, we only select to consider a certain 
percent m1% of the clustered-indexed columns for 
each table, where 711 is determined in Propo- 
sition 1 below. In other words, we consider 
[iCC;l * 711%] ([.I denotes the ceiling function) 
number of clustered-indexed columns for each 
&. Let CC~"") be a selected random sub- 
set of CC, with the size [lCC;l * qll%o]. For 
each &.a E CC:'ll%), we draw a sample query 
~ ~ ( ; ) ( Q ~ ; , ~ = c ( ; . ~ ) ( ~ ) ) .  In fact, 711% = 100% for 
the case (i). 

(3;) If dll  < U11, we consider all the clustered- 
indexed columns for each table (i.e., 711% = 
100%) and choose w11 (> 1) number of queries 
from SRI.- for each &.a E CC;, where w11 is 
determined in Proposition 1 below. We take 
r & ( ~ ) ( ~ ~ ; . ~ = C ~ ; . a ) ( & ) )  J ( 1  5 i I ~ 1 1 )  as sample 
queries from SRi.,. In fact, w11 = 1 for the cases 
(i) and (ii). 

Therefore, the sample of queries drawn from G11 is: 

SP11 = $1 I UR;.a E CC(V11W 

[ q21 { ~~j')(QRi.a=ej'.o)(&)) 11 1 1 

where 711 and w11 are determined by the following 
proposition (proof omitted) to guarantee that the sam- 
ple size is greater than or equal to the required mini- 
mum size U11: 

Proposition 1 For dll  2 U11, if qll = 100 * Ull/dll 
and w11 = 1, then ISP11l 2 U11. For dll  < U11, if 
%I = 100 and w11 = [Ull/dll], then lSP1ll 2 UII. 

Similarly, for the class Glz, let dl2 = cEl ICIil, 
we draw the following sample of queries: 

~ ~ 1 2  = uZ1 [ u R ~ . ~  E C l i V i a R )  

[ q21 ~&li)(QR;.a=C!i..)(&)) 11 1 1 

where CIjn12x) is a random subset of CI, with the 
size [ICI;l * 712%1, 712 and w12 are determined by a 
proposition similar to Proposition 1 to guarantee a 
sufficient sample size. 

For the class G13, like G11 and G12, we choose 
a query with a single predicate as a sample query. 
However, we need to consider not only a query 
with an equality predicate but also a query with a 

non-equality predicate. Since the costs of process- 

ra(;)(&) are usually close to the costs of process- 

rat;) (cRi.+C(;) (a)) respectively, we use the later 
three types of queries to represent the former three 
types of queries. In other words, we consider only 
<, >, # and = for the predicates in the sample 
queries. For each &, we randomly select a number 
of columns to generate the sample queries. 

If a selected column &.a E CN;, we generate 
four sample queries (with non-empty random sub- 
sets of CL, as the target project lists) with qualifi- 
cations &.a < (?!'a), &.a > (?f.*), &.a # Ct."' and 

If &.a E CC; U CI;, we generate three sample 
queries with qualifications &.a < (?!i'o), &.a > Cf'-) 
and &.a # (?l'o), respectively. 

If mi columns are selected fiom the table &, at 
least 3 * mi sample queries will be generated by 
the above procedure. Let d13 = Ci=13 * 1CL;l. If 
d13 2 U13, we consider only a certain percent ~ 3 %  

of all columns of each table, where 713 is determined 
in Proposition 2 below. If d13 < U13, we select all 
columns for each table and use multiple random values 
for each column to generate sufficient sample queries. 
Let CLP"%) = CC?" U Cc" U CN,?" be a random 
subset of CL; with the size of [lCL; I * 713%'0], where 
CC?" CC,, CT" CI;,and CN?" E CN; (some 
subsets may be empty). Then the sample of queries 
drawn from G13 is 

ing ?Ta(;)(QR;.alC(i)(&)), ra(i)(QR;.a>C(;)(&))  and 

ing ma(<) (QRi.a<c(i) (&)), ra(i)  (~~; .a>c( i )  (%)) and 

= (y.4 , respectively. 

K 

Sp13 = ui=l K [ uj=l W I S  [ [ UR;.aE(CC?lS"CI:'S) 

{ "#) I J  (QRi.a<e!;..) ( & ) ) I  "&",I a J  (uR;.a>e;;=) (&)Il 
r&(i) Si ('~i.a#&(i:a) S J  (a)) 11 [UR;.bECN:'3 

where 713 and ~ 1 3  are determined in the following 
proposition (proof omitted) t o  guarantee a sufficient 
sample size: 

Drawing sample queries from a join query class is 
more complicated than drawing sample queries fiom 
a unary query class. One rule used in the above sam- 
pling procedure for a unary query class is that there 
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is at least one sample query on each operand (table). 
However, the rule may not be good for the sampling 
procedure for a join query class because the number of 
possible operands (table pairs) is usually large. Even 
if we draw only one sample query for each pair of join- 
ing tables, the sample size may be much larger than 
the required minimum sample size, which may not be 
good because performing a sample join query is usu- 
ally expensive. Another problem is that not every pair 
of columns can be referred in a join predicate. A join- 
ing column pair must be comparable by comparison 
operators. 

Let us first consider the class Gal. Let 

A1 = { {&.a, Rj.b} I &.a OT Rj.b (OT both) is 
a chstered - indexed column, and &.a and 
R,.b are comparable, and 1 5 i, j 5 K } 

contain all valid joining column pairs for Gal. It is not 
difficult to show (proof omitted) 

Proposition s Let u = xEl I C L ; ~ ,  61 = 
Czl ICC;l, then 1A11 = b1 * (2 * U  - 61 + 1)/2. 

Each {&.a,  Rj.b} E A1 is associated with a set 
S(Ri.,. Rj  of queries in G21, i.e., the queries that 
have &.a = Rj.b as a conjunct in their qualifications. 

If 1A11 2 Uzl, we randomly select U21 joining col- 
umn pairs in Al.  Let A: be the set of selected 
joining column pairs. For each {&.a,  R,.b} E Ai,  
we choose ra(ij)(l& WF(ij) R,)  as a sample query to 
represent the queries in S(R,.o, R j . b ) ,  where F('j) is 
[&.de1 A &.a = Rj.b A R,.e t12 & ) I .  Thus 
the sample drawn from G21 in this case is 

Clearly, GZl = U{R,.a,Rj.b}EA1 S{R,.O. ~ j . b ) -  

S ~ Z I  = U { R ; . ~ , R ~ . L ) E A ; {  na(;j)(& W F ( i i )  R j )  }. (11) 

If 1A11 < Uzl, we choose more than one sample 
query from S ( R , . p ,  R j . b )  for some {%.a, Rj-b} E Ai .  
Since the execution of a sample join query is often ex- 
pensive, we choose the exact required minimum num- 
ber of sample queries. To do so, we select a ran- 
dom subset AY of A1 such that (w21 + 1) * + 
w21 * (lA1l - IAYI) = U21 (w21 2 1 integer). It can 
be easily shown that the condition can be satisfied if 
war = [U2l/lAllJ (1.J denotes the floor function) and 

= Uzl - w21 * [All .  If we choose w21 + 1 sam- 
ple queries from S, for each I E AY and w21 sample 
queries from S, for each v E A1 - AY, we get a sam- 
ple of queries with the size U21. The following is the 
sample of queries drawn from G21 in this case: 

Spa1 = U{R;.a,Rj.b}EAy[Un=l w21+1 { r a p ) ( &  W F ~ )  R j ) } ]  

U{R..a,Rt.b}E(AI -A;) [U:;, {r&c) (Ra WF;*) &)}I 

(12) 

where F F )  is [&.d Bln e$.') A &.a = Rj.b A 
Rj.e Ban CZ.")], F$*) is [Ra.d tlBm t?g.d) A R..a = 
Rt.b A Rt.e t14m 6241. 

.. 

Similarly, for the query class Gz2, let 

A2 = { {&.a, R,.b} I &.a OT R,.b (or both) is 
an indexed column, and &.a and Rj.b 
are comparable, and 1 5 i ,  j 5 K } - A1 . 

Proposition 4 Let u = I C L ; ~ ,  61 = 
xEl ICC,~, 
(0 - 61) - 6 2  + 1]/2. 

= xEl ICI ,~ ,  then I A ~ I  = 62 [2 * 

If 2 U 2 2 ,  a random subset Ai ofA2 with the 
size U 2 2  is selected. Replacing A: by Ai in (ll), we 
get the sample SPzz drawn from G22 in this case. 

< 1 7 2 2 ,  a random subset A: of A2 with 
the size of U 2 2  - w22 * IAZl is selected, where w22 = 
LU22/lAzlJ. Replacing AI, AY and w21 by Az, Aa) 
and w22 in (12) respectively, we get the sample SP22 
drawn from G22 in this case. 

If 

For the query class G29, let 

A3 = { {&.a, Rj.b} I neither &.a nor Rj.b has 
an (clustered OT not) index on i t ,  and &.a 
and R,.b are comparable, and 1 5 i ,  j 5 K } . 

= 63 * (63 + 1)/2, where 

If 1A31 2 U23, a random subset Ab of A3 with the 
size U23 is selected. To get the sample SP23 drawn 
from G22 in this case, we replace Al, by A; in (11) 
and replace &.a = R,.b in F('J) by &.a 03 Rj.b. 

< U23, a random subset A t  of A3 with 
the size of U23 - U23 * is selected, where wag = 
[U23/1A311. The sample spa3 drawn from G23 in this 
case is obtained by (1) replacing AI, AY and w21 

by As, A: and in (12) respectively; (2) replac- 
ing &.a = R,.b in F F )  and R,.a = Rt.b in F i e )  by 
&.a OSn R,.b and R,.a dem Rt.b respectively. 

Following the procedure in this section, a sample 
of queries can be drawn for each query class. How- 
ever, a sample may include a few extreme queries. 
such as those whose result tables are extremely large 
(e.g., millions of tuples). An extreme query is rarely 
used in practice. Hence, we can remove them from a 
sample because our purpose is to give good cost es- 
timates for common queries in practice, not the ex- 
treme queries. The value Utk should be properly cho- 
sen so that the real sample size after removing extreme 

It can be shown that 
K 63 = ca=1 ICNl. 

If 
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queries is greater than or equal to 40 for a unary query 
class or 50 for a join query class. 

If the sample queries for a class on a local database 
system do not follow the performance pattern de- 
scribed by the relevant cost formula, an improved cost 
formula or a refined classification is required. 

5 Experimental Results 

In our experiments, the method described in the 
last three sections was used to estimate the cost pa- 
rameters of two local database systems (DBS). Each 
local DBS contains a database, a DBMS and an MDBS 
agent that provides the global MDBS server with a 
uniform relational ODBC (Open Database Connectiv- 
ity) interface. The DBMSs used are Oracle 6.0 and 
Empress 4.6. They run on IBM RISC System/6000 
model 550 and model 220, respectively. All local re- 
quests from the global MDBS server are passed to the 
relevant MDBS agent in a local DBS. 

In an MDBS, sometimes, not all local data  and 
functionalities (operations) are exported to the global 
users because of local autonomy. Two exported local 
databases and their information are given in Table 1. 
Queries against DB 1 and DB 2 are classified accord- 
ing to Section 2. There are six classes of queries on D B  
1, i.e., GI = G:,  U G:2 U G:,U Gil U Gi2 U Gi3. There 
are, however, only two classes of queries on DB 2, i.e., 
GI' = GY2 U GY3. For each class, a sample of queries 
are drawn by the sampling procedure described in Sec- 
tion 4 and executed on the corresponding local DBS. 
Observed costs are used to derive the parameters for 
the cost formula for each class by multiple regression. 

Table 2 shows all cost estimation formulas derived 
for the query classes on DB 1 and D B  2. The coeffi- 
cients of multiple determination in Table 2 tell us that 
most estimation formulas account for over 90% of the 
variability in the query costs. Even for the worst case 
GY2, the estimation formula explains about 78% of the 
variability in the query costs. The standard errors are 
also acceptable, compared with the magnitudes of the 
average values of the observed costs. Figure 1 N 4 
show the comparisons of the estimated costs with the 
observed costs of some test queries using the cost es- 
timation formulas in Table 2. The estimated costs for 
majority of the test queries have relative errors below 
30%. 

The experimental results could be further improved 
by changing the estimation formulas for some query 
classes (e.g., GY2) or refining the classification. We 
also find that (1) the relative errors for small costs 

may be large if the cost formula is derived by using 
some large costs; (2) system contention may affect the 
experimental results significantly. The reason for (1) 
is that the cost formula is usually dominated by large 
costs used to derive it, while the small costs may not 
follow the same the formula because of different buffer- 
ing and processing strategies used for the queries with 
small costs. This problem could be resolved by refin- 
ing the classification according to the sizes of query 
results, as suggested in Section 2. A simple way to 
mitigate problem (2) is to perform a sample query 
multiple times and use the average of the observed 
costs to derive a cost formula. 

The experimental results show that the presented 
method is quite promising for estimating query costs 
in an MDBS environment where only limited informa- 
tion is available. Besides, the method is also robust 
because it could give reasonable cost estimates even if 
the classification were not ideal. 

6 Other Issues 

Global query optimization: Section 2 - 5 discuss 
how to derive cost formulas for autonomous local 
DBSs in an MDBS. A utility in the MDBS can be 
developed according to the presented method to de- 
rive necessary local cost parameters. The utility is 
invoked when a local database is established and re- 
invoked when necessary to  reflect changes made on the 
database. Unlike a conventional DDBS, the derived 
cost parameters are not built into the global query 
optimizer. They are stored in the global catalog of 
the MDBS as part of the information about the lo- 
cal database and retrieved during query optimization. 
One advantage of this approach is that new local DBSs 
can be easily added into the MDBS. Using the local 
estimated costs and some other costs (e.g., communi- 
cation costs), the global query optimizer chooses an 
execution plan for a query with a cost as low as pos- 
sible. 

Adaptive cost estimation formulas: Since sample 
queries are usually performed while a local DBS in use, 
the derived cost parameters contain the contention 
factor in the system. The contention factor changes 
over time, which implies that the cost parameters de- 
rived long time ago may not reflect the current status. 
Thus, an estimated cost may be far from a real cost. 
However, the utility mentioned above can not be in- 
voked very often because performing sample queries on 
a local DBS may increase the system load. To over- 
come this problem, the costs of user queries can be 
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D B ~  

DB2 

h-lall 

TABLE 2 Denved Cost Estimation h u l a s  

Cost Estunation Formula 
( N, N1. N2 -_ Nplc W. S -- selectivity ) 

Tables m Exporw Loa1 Dallbsu Expaisd 

0Pr.w ( h -_ able. IIW -- tupk #, KlLd - columnC Ylld -- &x #. ICCd -- clustered-mdcr # ) 

h 1 2 3 4 5 6 7 8 9 10 11 12 13 both 
Ihl 500 25600 3150 1670 9870 15090 5000 11200 21500 1100 8900 12000 900 m q  
I C U 4  3 6 3 4 5 9 6 3 1 3 7  3 2 

O R c k l C I i l I  0 2 0 1 1  3 0 I O  3 I O  
l C C l l 0  I O  0 1 1  0 1 0  1 I 1  1 q- 

IhI 5000 12000 28000 4500 30200 7500 8000 lwoo 22lOO 

K X d O  0 0 0 0 0 0 0 0 d Y  

R I 2 3 4 5 6 7 8 9  

m I C L i I 5  4 3 6 5 1 0 3  2 7 
1 1 1 2 1 4 1 0 3 

w 
F= 

0.17480~-1 - 0.43017e-6*N +0.1611&2*S*N 
0.47064~-1 - 0.2528Oe-5*N + 0.22295e2*S.N 
0.10991e+O + 0.23455~4*N + 0.14553ePS.N 
O.l2026e+l+ 0.1 139&-3*N1+ 0.5723&-4*N2 + 0.1710%2*S*Nl*NZ 
0.10800e+l+ 0.25083e-3.N1+ 0.17094e-3*N2+ 0.17254e2*S*Nl*N2 

cocfhcient standard 
ofmdtlple m m  

dCta"hOn (SCC.md.5) 

0.912680 0.2536oGl 
0.874070 0.555-1 
0.988098 0.94005ocO 
0.997065 0.1258h2 
0,999622 0.69946c+1 
0.996773 0.3488W 
0.775814 0.50926al 
0.876967 0.1357b2 

0.35339e+l+ 0.31707e-I*Nl+ 0.1548le+O*N2 + 0.14705~-2*S*Nl*N2 
0.31663c+O + 0.22439ed*N + 0.38784e2*S*N 

""3 
(SeCOndS) 

0.99492e-1 
O.lWO&+O 
0.73053e+l 
0.59243~2 
0.5950&+2 
0.13555c+6 

0.46606e+O 
0.5208%+2 -0.17823e+l + 0.33742e2.N + 0.71374d*S*N 

o,35 - d i d  lur: calimskd co~b 
danhcdlar: obrlvodcuu 

rdidlur: catunatcdcdm 
ddcdlin:  obuvedcutr 
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observed and made use of. The parameters of the rel- 
evant cost estimation formula can be adaptively mod- 
ified by using the costs of user queries as new sample 
queries. 

Estimation of selectivities: To use the derived cost 
formulas, we need to  know the number(s) of tuples in 
the operand table(s) and the selectivity of the quali- 
fication of a given query. The number of tuples usu- 
ally can be found in the catalog of a local database 
system. Selectivities can be estimated by a para- 
metric method['], a table-based method['' '1 or data- 
sampling-based methodsi41. However, new issues need 
to be solved in an MDBS environment, for example, 
how to draw sample data  from local tables efficiently 
under the restriction that only local external user in- 
terfaces can be used if a data-sampling-based method 
is adopted. These issues are addressed in a separate 
paper[ll], and an integrated method for estimating 
selectivities in an MDBS is presented in the paper. 

7 Conclusion 

In this paper we have proposed a method that em- 
ploys a query sampling technique and multiple regres- 
sion to  estimate the cost parameters of an autonomous 
local database system in an MDBS. Experimental re- 
sults show that the presented method is quite promis- 
ing. Most derived cost formulas account for over 90% 
of the variability in the query costs. The estimated 
costs for the majority of the test queries are within 
30% error of the real costs. 

The advantages of this method are: (1) it only uses 
information available at the global level in an MDBS 
- no special privilege is required from a local database 
system, so local autonomy is preserved; (2) it uses 
real local databases to derive cost parameters, so the 
cost formulas are expected to reflect the real situation 
in practice; (3) the derived local cost parameters are 
stored in the global catalog instead of built into the 
global query optimizer, so a new local DBS can easily 
be added into the MDBS; (4) a cost parameter can be 
adaptively improved by using observed costs of user 
queries or new sample queries, so the cost formulas 
can reflect a dynamically changing environment; ( 5 )  
the method is robust. 

This work is only the beginning of more research 
that needs to be done to solve the problem of estimat- 
ing costs in an MDBS. In future work we intend to 
investigate (1) how to refine a classification by analyz- 
ing observed costs; (2) how to dynamically transform a 
cost estimation formula to reflect a changing environ- 

ment; (3) how to  draw sample queries that represent 
most practically-used queries by making use of the in- 
formation, such as foreign keys and knowledge about 
applications; (4) how to  estimate the costs of other op- 
erations in real queries, e.g., GROUP-BY, aggregate 
functions; (5) how to determine the order in which a 
local DBS executes a sequence of operations. 
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