

Sleep Classification with Artificial Synthetic Imaging Data from Empatica E4 Wristband by Convolutional Neural Networks

L. Shi, M. Wank, Y. Chen, Y. Wang, Y. Liu, EC Hector and **Peter X.K Song** (pxsong@umich.edu) Department of Biostatistics, School of Public Health, University of Michigan

	Introduction				
•	Sleep health is fundamental to human well-being.				
•	Laboratory polysomnography (PSG) is currently regarded as the gold standard in high-resolution sleep monitoring, but expensive.				
•	Wearable sensors are proposed as an alternative method to track sleep due to their convenience for both product users and practitioners.				
	Objectives: propose a new analytic framework, "Artificial Synthetic Imaging Data (ASID) Workflow," for sleep classification from a wearable device comprising: 1) the creation of ASID from data collected by a non-invasive wearable device that permits real-time multi-modal physiological monitoring on heart rate, 3-axis accelerometer, electrodermal activity, and skin temperature, and 2) the use of an image classification algorithm, convolutional neural network (CNN), to classify periods of sleep by using both within-mode and cross-mode temporal features.				

Shi, L, Wank, M, Chen, Y, Wang, Y, Hector, EC and Song, PXK (2022). Sleep classification with artificial synthetic imaging data using convolutional neural networks. IEEE Journal of Biomedical and Health Informatics 27, 421-432.

Methods

A cohort of 24 users aged 22-to-35 years old wore Empatica E4 device on the wrist of their non-dominant hand for 48 hours. E4 device has 4 sensors.

ASID Workflow

- A. Artificial Synthetic Imaging Data
 - Selection of Physiological Variables
 - Alignment of Modalities and Variables
 - Reshaping 3)
- B. Convolutional Neural Network as sleep classifier
 - Tune the number of convolution layers and other CNN systematic hyperparameters.

6 different HR scenarios and data resolution settings

- A. 2 HR scenarios (with and without the heart rate modality - "w/ HR" and "w/o HR")
- 3 data resolutions: 30 sec, 1 min, and 5 min. B.

Comparison with competing ML algorithms

• logistic regression, random forest, SVM with linear and radial kernel, k-nearest neighbors, and Long Short-Term Memory.

Results

Performance of ASID Workflow Across Settings

- The mean test weighted accuracy (wACC) among 6 settings reaches 94.7%;
- The inclusion of HR enhances the performance of the ASID Workflow by only 0.11% among data resolutions.

ASID WORKFLOW: FULL-PERIOD POST-MV TEST WACC (%)

HR	Data Resolution			Overall
Scenario	30s	1min	5min	Overall
w/ HR	95.3 (1.43)	94.0 (2.43)	95.0 (2.65)	94.8 (2.17)
w/o HR	95.0 (1.81)	93.6 (1.66)	95.4 (1.16)	94.7 (1.54)
Overall	95.2 (2.05)	93.8 (1.62)	95.2 (1.90)	94.7 (1.86)

Performances Compared Across Models

- There are 4 settings where the ASID Workflow reaches the highest wACC.

- The superiority of ASID Workflow over other methods is maximized in fullperiod D-5minw.o.HR.

Conclusion

Applying CNN to ASID captures both temporal and spatial dependency among physiological variables and modalities by using 2D images' topological structure that competing algorithms fail to utilize.