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ABSTRACT

Machine Learning (ML) has seen a widespread success in various domains, ranging from object
recognition to forecasting. Its use in critical applications like self-driving cars and malware de-
tection has raised concerns about its security and privacy, particularly regarding susceptibility to
evasion attacks. These attacks exploit input feature perturbations to mislead ML models. Prior
studies have highlighted both attack methods and defenses, illustrating an ongoing arms race.

To address ML robustness, we use ML explainers to analyze how feature perturbations impact
model predictions, revealing that not all changes are effective in evading models. Based on this
insight, we developed the ”Explanation-Guided Booster” (EG-Booster), which enhances the effec-
tiveness of evasion attacks, making them more useful for security risk assessments. On the defense
side, we introduced ”Morphence,” a moving target defense strategy that significantly improves ML
robustness and outperforms existing approaches.

We also investigate the relationship between Out-of-Distribution (OOD) generalization issues
and adversarial vulnerabilities. Using Image-to-Image translation through generative adversar-
ial networks (GANs), we propose an OOD generalization approach that also counters adversarial
examples. Additionally, we leverage the graph structure of Deep Neural Networks (DNNs) to ana-
lyze runtime behavior, distinguishing between different patterns in benign and adversarial settings
to guide repair actions for improved robustness.

Moreover, we explore novel uses for adversarial examples beyond attacks. Specifically, we
propose ”DeResistor,” a system that utilizes adversarial techniques to help evade internet censor-
ship detection. Finally, we outline directions for future research to further enhance ML security
and robustness.

ix
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CHAPTER 1

Introduction

The widespread usage of machine learning (ML) in a myriad of application domains has brought
adversarial threats to ML models to the forefront of research aimed at making deployed ML models
robust in adversarial environments. From image classification [75] to voice recognition [41], from
precision medicine [51] to malware/intrusion detection [99] and autonomous vehicles [105], ML
models have been shown to be vulnerable not only to (training-time) poisoning and (test-time)
evasion attacks, but also to model extraction [127] and membership inference attacks [28]. These
vulnerabilities raised security-relevant concerns about the readiness of ML to be used in sensitive
real-world deployments such as self-driving cars, predictive diagnostics, and malware/intrusion
detection.

One of the notable vulnerabilities of ML models is test-time input perturbations as it can cause
the evasion of the target model. Typically, an adversary perturbs a legitimate input to craft an
adversarial sample that tricks a victim model into making an incorrect prediction. Several feature-
perturbation-based evasion attacks have been proposed in the image classification domain [55, 35,
89, 79] and in the malware classification domain [104, 139, 45, 26, 32], which raised questions
around the robustness of ML models when they are deployed in adversarial environments. A
handful of defense methods have been proposed as well [94, 79, 137, 66], where some of them
succeeded to reduce the vulnerability of ML models to input perturbations.

Training and deploying ML models in security, privacy, and safety-critical environments still
remains a challenge because of lack of methods and metrics for deeper characterization and mod-
eling of adversarial manipulations and defense strategies. In particular, the question on the causes
of evasion attacks and their cross-model transferability remains intriguing. On the defense front,
the lack of robust-by-design defense methods are yet to be realized. This work presents a system-
atic body of work that aims to, (1) lay foundations for tackling these challenges and (2) formulates
methods to address them.

After a deep dive in the background of this research area, in Chapter 3, we introduce our first
work that addresses the lack of methods and metrics for an in-depth diagnosis of connections
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between adversarial perturbations and evasion success. Particularly, we leverage ML explanation
methods to diagnose ML evasion attacks at the granularity of feature perturbations. This work was
published in the 17th EAI International Conference on Security and Privacy in Communication
Networks (SecureComm 2021) [11].

In Chapter 4, we expand on the findings of Chapter 3 to propose an explanation-guided evasion
attack against ML model that advances prior methods to evaluate the robustness of ML models.
This work has been published in the 12th ACM Conference on Data and Application Security and
Privacy (CODASPY 2022) [14].

In Chapter 5, we propose a defense approach that stands against ML evasion attacks. Particu-
larly, we present a moving target deployment of ML as a service that can escape evasion attempts
from malicious users. This work has been published in the 37th Annual Computer Security Appli-
cations Conference (ACSAC 2021) [13].

In Chapter 6, we take a step back and explore the major reasons that make ML models vul-
nerable to adversarial input perturbations. In particular, we study the cause-effect link between
the Out-of-Distribution (OOD) Generalization problem and adversarial examples problem, then
we propose a unified approach that can address them both. Inline with the same motivation, in
Chapter 7, we explore the utility a model’s underlying runtime activation graph to characterize and
analyze ML models’ inference in adversarial and benign settings.

Finally, in Chapter 8 we discuss our current and future research directions. Particularly, we
discuss whether ML models can actually be completely robust against evasion attacks. Otherwise,
given the many applications of ML and its impact on modern life, is there a way to manage its
security vulnerabilities? Furthermore, we address the question: can we use adversarial tactics such
as evasion to solve other security problems? Focusing on Internet censorship evasion strategies and
the ML-based censor-side detection threat that they can face, we show that adversarial input tactics
can inspire internet freedom technologists to evade censor-side detection (USENIX Security 2023
[16]).
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CHAPTER 2

Background and Preliminaries

2.1 ML Fundamentals

Typical ML Training. Given a set of training samples Xtrain ⊂ (X, Y ), the objective of training a
ML model fθ is to minimize the expected loss over all (x, y) : JXtrain

(fθ) =
∑

(x,y)∈Xtrain
J(fθ(x), y).

In most ML models (e.g., DNNs), the loss minimization problem is typically solved using Stochas-
tic Gradient Descent (SGD) that iteratively updates θ as: θ ← θ−α·∇θ(

∑
(x,y)∈Xtrain

J(fθ(x), y)),
where ∇θ is the gradient of the loss with respect θ; Xtrain ⊂ (X, Y ) is a randomly selected set
(e.g., mini-batch in DNNs) drawn from X; and α is the learning rate which controls by how much
θ changes.

Typical ML Testing: Let X be a d-dimensional feature space and Y be a k-dimensional output
space, with underlying probability distribution Pr(X, Y ), where X and Y are random variables
for the feature vectors and the classes (labels) of data, respectively. The objective of testing a ML
model is to perform the mapping fθ : X → Y . The output of fθ is a k-dimensional vector and
each dimension represents the probability of input belonging to the corresponding class.

2.2 Adversarial Examples

Given a deployed ML model (e.g., malware classifier, image classifier) with a decision function
f : X → Y that maps an input sample x ∈ X to a true class label ytrue ∈ Y , then x′ = x+δ is called
an adversarial sample with an adversarial perturbation δ if: f(x′) = y′ ̸= ytrue, ||δ|| < ϵ, where
||.|| is a distance metric (e.g., one of the Lp norms) and ϵ is the maximum allowable perturbation
that results in misclassification while preserving semantic integrity of x. Semantic integrity is
domain and/or task specific. For instance, in image classification, visual imperceptibility of x′

from x is desired while in malware detection x and x′ need to satisfy certain functional equivalence
(e.g., if x was a malware pre-perturbation, x′ is expected to exhibit maliciousness post-perturbation
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as well). Adversarial example generation is typically formulated as an optimization problem:

δ⋆ = argmin
δ∈Rd

f(x+ δ)

s.t. ||δ⋆|| < ϵ
(2.1)

The attack is successful if f(x + δ⋆) ̸= ytrue. When the adversarial goal is for the model f to
classify an adversarial sample as a target label ytarget ̸= ytrue selected by the adversary, the attack
is called targeted. Otherwise, if f(x+ δ∗) = y ̸= ytrue, the attack is termed as untargeted.

2.3 Adversarial Knowledge and Capabilities

The success of ML evasion strategies is determined by the adversary’s knowledge and capabilities.
In the most realistic setting (e.g. MLaaS), the adversary is an external party that can only interact
with the target model by querying it to classify an input sample. Such a threat model assumes that
the adversary has no access to the ML model (e.g., architecture, parameters) or the training data
(e.g., training samples, feature types). In this case the target model is called a black-box model.
When the adversary has access to the target model (e.g., decision weights), the ML model is called
a white-box model.

2.4 ML Evasion Attacks

ML vulnerability to adversarial examples has been extensively studied in the image domain (e.g.,
[55, 79, 35, 96]). Researchers mainly focused on neural networks as target models given the
recent advances in impressive accuracy of DNNs on benchmark image classification tasks. Several
evasion methods have been proposed in this domain [32]. In recent years, researchers have been
interested to study ML vulnerability to adversarial examples in naturally adversarial domains such
as malware detection [63, 72].

2.4.1 Image Domain

As shown in Table 2.1, a wide range of attacks were proposed in this area. Some of the most
notable works are: Fast Gradient Sign Method (FGSM) [55], Basic Iterative Method (BIM) [79]
and Projected Gradient Descent (PGD) method [89], and Carlini & Wagner (CW) method [35].
Gradient-based strategies assume that the adversary has access to the gradient function of the model
(i.e., white-box access). The core idea is to find the perturbation vector δ⋆ ∈ Rd that maximizes
the loss function J(θ, x, ytarget) of the model f , where θ are the parameters (i.e., weights) of the
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model f . In the following, we succinctly highlight some of the well-known evasion methods in the
image domain.

Fast-Gradient Sign Method (FGSM) [55] is a fast one-step method that crafts an adversarial
example. Considering the dot product of the weight vector θ and an adversarial example (i.e.,
x′ = x+ δ), θ⊤x′ = θ⊤x+ θ⊤δ, the adversarial perturbation causes the activation to grow by θ⊤δ.
Goodfellow et al. [55] suggested to maximize this increase subject to the maximum perturbation
constraint ||δ|| < ϵ by assigning δ = sign(θ). Given a sample x, the optimal perturbation is given
as follows:

δ⋆ = ϵ.sign(∇xJ(θ, x, ytarget)) (2.2)

Basic Iterative Method (BIM) [79] was introduced as an improvement of FGSM. In BIM, the
authors suggest applying the same step as FGSM multiple times with a small step size and clip the
pixel values of intermediate results after each step to ensure that they are in an ξ-neighbourhood
of the original image. Formally, the generated adversarial sample after n+ 1 iterations is given as
follows:

x′
n+1 = Clipx,ξ{x′

n + ϵ.sign(∇xJ(θ, x
′
n, ytarget)}

s.t. x′
0 = x

(2.3)

Projected Gradient Descent (PGD) [89] is basically the same as BIM attack. The only differ-
ence is that PGD initializes the example to a random point in the ball of interest 1 (i.e., allowable
perturbations decided by the ||.||∞ norm) and does random restarts, while BIM initializes to the
original point x.

Carlini-Wagner (CW) [35] is one of the most powerful attacks, where the adversarial example
generation problem is formulated as the following optimization problem:

minimize D(x, x+ δ)

s.t. f(x+ δ) = ytarget

x+ δ ∈ [0, 1]n
(2.4)

The goal is to find a small change δ such that when added to an image x, the image is misclassified
(to a targeted class ytarget) by the model but the image is still a valid image. D is some distance
metric (e.g ||.||0, ||.||2 or ||.||∞). Due to the non-linear nature of the classification function f ,
authors defined a simpler objective function g such that f(x + δ) = ytarget if and only if g(x +

δ) < 0. Multiple options of the explicit definition of g are discussed in the paper [35] (e.g.,
g(x′) = −J(θ, x′, ytarget) + 1). Considering the pth norm as the distance D, the optimization

1A ball is the volume space bounded by a sphere; it is also called a solid sphere
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Table 2.1: Systematization of test-time evasion attacks.

Domain Work Adv. Knowledge Evasion Space Evasion Strategy

Image

Ian J et al.(FGSM) [55] white-box pixels gradient-based
Kurakin et al.(BIM) [79] white-box pixels gradient-based
Carlini et al.(CW) [35] white-box pixels gradient-based
Madry et al.(PGS) [89] white-box pixels gradient-based
Papernot et al. [96] black-box pixels model extraction+gradient

Windows PE

Hu and Tan [63] black-box feature space GAN-based
Kolosnjaji et al. [72] black-box problem space gradient-based
Anderson et al. [18] black-box feature space reinforcement learning
Rosenberg et al. [104] black-box feature space gradient-based
Hu and Tan [64] black-box feature space GAN-based
Suciu et al. [122] white-box problem space gradient-based
Demetrio et al. [43] black-box problem space attribution+manipulation
Al-Dujaili et al. [9] white-box feature space gradient-based
Demetrio et al. [44] black-box feature space optimization

Android
Pierazzi et al. [97] White-box problem space gradient-based
Demontis et al. [45] white-box feature space gradient-based
Grosse et al. [56] black-box feature space optimization

PCAP Rigaki et al. [102] white-box problem space GAN-based

PDF Srndic et al. [121] gray-box problem space constrained manipulation
Xu et al. [138] black-box problem space genetic programming

problem is simplified as follows:

minimize ||δ||p + c.g(x+ δ)

s.t. x+ δ ∈ [0, 1]n
(2.5)

where c > 0 is a suitably chosen constant.

Model approximation. When the adversary operates in a black-box setting, evasion attacks
need a workaround to infer some knowledge about the target model. To this end, Papernot et
al. [96] proposed model approximation as a workaround to gather more knowledge about the target
model, which is basically fitting a neural networks to the predictions of the target model on a
custom dataset. Afterwards, any of the white-box attacks described earlier can be performed on
the trained substitute model. In recent years, additional learning-based model extraction methods
have been proposed [93, 10]. However, they are sensitive to random initialization which can affect
the fidelity of the approximated model. Recently, alternative methods that directly extract the
simplest neural network model (e.g., one layer + ReLu) have been proposed to address limitations
of learning-based model extraction methods [68].
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2.4.2 Malware Domain

As a naturally adversarial domain, ML malware detectors have been explored as victim models.
As shown in Table 2.1, gradient-based perturbation strategies that are proven to be effective on
images have been also applied in the malware domain (e.g., Windows PEs, PDF, Android APKs)
[72, 104, 9, 45].

Evasion space. Unlike the image classification domain where the problem space (i.e., images)
is similar to the feature space (i.e., pixel intensities), the problem space for malware (e.g., raw
bytes, code) is considerably different from the feature space (i.e., feature vector). Typically, ML
models are trained on the feature space. The mapping function (i.e., ϕ : Z → X) between the
problem space (i.e., Z : set of files) and the feature space X (i.e., the corresponding set of vectors)
is neither inversible nor differentiable. Therefore, given an attack in the feature space X , the
existence of a corresponding attack in the problem space Z is not guaranteed [97]. In this regard,
we use evasion space as one of the important criteria in our taxonomy of test-time evasion attacks
summarized in Table 2.1.

In addition to the different white-box gradient-based attacks described earlier, one of the im-
portant black-box evasion attacks was proposed by Hu and Tan [63] using Generative Adversarial

Networks (GANs). The adversary flips binary feature representations Windows API calls of ma-
licious PEs of benign files, by flipping some feature values from 0 to 1. The attacker trains a
generator and a discriminator using their own training dataset, which is different from the target
model’s training data. The discriminator is a surrogate detector learned from feature vectors cor-
responding to the attacker’s benign files and those produced by the generator, along with labels
predicted by the target malware detector. Hu and Tan also proposed another GAN-based evasion
approach [64] against RNN-based malware detectors as a target model.

Another notable recent work examined the malware semantic preservation issue raised by eva-
sion attacks performed on the feature space [97]. Authors address the question of how to generate
a functioning adversarial android application based on feature space calculation. They proposed
a problem space formalization that covers sufficient constraints to be satisfied by a feature space
evasion attack (e.g., problem space constraints, feature feasibility and side-effect features).
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CHAPTER 3

Explanation-Guided Diagnosis of
Machine Learning Evasion Attacks

3.1 Introduction

A thread of prior work has demonstrated adversarial sample-based evasion of ML models across
diverse domains such as image classifiers [55, 79, 35, 89, 96], malware classifiers [99, 63, 9, 10,
27, 138, 45, 56], and other domains such as speech and text processing [32]. Evasion attacks have
been explored across varying threat models (e.g., black-box [72, 63, 18, 56, 104, 64, 122, 138],
white-box [45, 122, 102, 9]). In the current state-of-the-art, the effectiveness of evasion is typi-
cally assessed through aggregate evasion rate by computing the percentage of crafted adversarial
samples that lead a model to make evasive predictions.

As explained in Chapter 9, for a deployed ML model f that accepts a d-dimensional input x =

[x1, ..., xd] to predict f(x) = ytrue, the adversary perturbs x to obtain x′ = [x1 + δ1, ..., xd + δd],
where δ = [δ1, ..., δd] represents pre-evasion perturbations applied to each feature. When f is
queried with x′, it produces an evasive prediction f(x′) = y′ ̸= ytrue. The natural question then is
whether there exists correlation between pre-evasion perturbations and the evasive prediction. Un-
fortunately, aggregate evasion rate is, by design, inadequate to offer fine-grained insights to answer
the question. In particular, it does not show how much the evasion strategy, through adversarial
perturbations, influences individual samples to result in an evasive prediction. We consequently
argue that unless one “unpacks” aggregate evasion rate at the resolution of an adversarial sample, it
could give false sense of evasion success for it lacks the fidelity at the level of individual features.
Such a limitation can potentially misguide the design of secure and dependable ML systems in the
face of adversarial manipulations due to the coarse-grained nature of the metric.

In this work, we harness techniques from explainable ML to propose explanation-guided cor-
relation analysis framework for evasion attacks on ML models. Explainable ML techniques [87,
101, 59, 114] interpret predictions returned by a ML model and attribute model’s decision (e.g.,
predicted class label) to feature importance weights. In particular, we employ these methods after
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perturbations. Used after adversarial perturbations, for each evasive prediction f(x′) = y′ ̸= ytrue,
explanation methods such as LIME [101] and SHAP [87] produce post-evasion explanations of
the form [x1 : w1, ..., xd : wd], where wi is the weight of contribution of feature xi to the evasive
prediction y′. To address the lack of detailed insights from aggregate evasion rate, we leverage
post-evasion explanations and empirically explore their feature-level correlations with pre-evasion
perturbations performed by the adversary. Our key insight is that, since the perturbations are the
only manipulations done on the feature-space of an input sample, when the model makes an evasive
prediction on a perturbed variant of the input sample, there should exist some correlation between
pre-evasion perturbations and post-evasion explanations. Towards a systematic assessment of the
link between adversarial perturbations and evasive predictions, we propose and evaluate a novel
suite of metrics that allow (adversarial)sample-level and (evasion)dataset-level diagnosis of eva-
sion attacks. Our suite of metrics is applicable to any ML model that predicts a class label given an
input because, in the design of the metrics, we make no assumptions about the ML task and model
architecture. The benefit of our fine-grained diagnosis of ML evasion attacks is twofold:
• First, it enables systematic measurement of the strength of correlation between an evasive

prediction and feature-level perturbations across diverse classification tasks, model architectures,
and feature representations.
• Second, it allows zooming-in on limitations of feature perturbation strategies which could

inform research efforts towards adversarial robustness and dependability of ML models.
We evaluate our framework across different classification tasks (image, malware), diverse

model architectures (e.g., neural networks, multiple tree-based classifiers, logistic regression), and
complementary feature representations (pixels for images, static and dynamic analysis-based fea-
tures for malware). Our explanation-guided correlation analysis reveals an average of 45% per-
model adversarial samples that have low correlation links with perturbations performed on them
–indicating the inadequacy of aggregate evasion rate, but the utility of fine-grained correlation
analysis, for reliable diagnosis of evasion accuracy. Our results additionally suggest that, although
a perturbation strategy evades a target model, at the granularity of each feature perturbation, it
can lead to a per-model average of 36% negative feature perturbations (i.e perturbations that con-
tribute to maintain the original true prediction fb(x

′) = ytrue). We further evaluate the utility
of our framework in two case studies: a) explanation-guided adversarial sample crafting and b)
correlation analysis of cross-model adversarial sample tranferability.

In summary, this work makes the following major contributions.

• Explanation-guided diagnosis of evasion attacks. To improve the sole reliance of evasion
assessment on aggregate evasion rate, we propose an explanation-guided correlation analy-

sis framework at the resolution of individual features. To that end, we introduce a novel suite

of correlation analysis metrics and demonstrate their effectiveness at pinpointing adversarial
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examples that indeed evade a model, but exhibit loose correlation with perturbations per-
formed to craft them.

• Comprehensive evaluations. In a naturally adversarial domain (i.e., malware classification)
and another well-explored domain in computer vision (i.e., image classification), we con-
duct extensive evaluations across diverse models architectures and feature representations,
and synthesize interesting experimental insights that demonstrate the utility of explanation-
guided correlation analysis.

• Further case studies. In addition, we conduct two case studies to demonstrate additional
use-cases of our framework: (i) pre-perturbation feature direction analysis to guide eva-
sion strategies towards crafting more accurate adversarial samples correlated with their eva-
sive predictions and (ii) for cross-model evasion transferability analysis, in which we show
feature-level perturbation overlaps as one reason for transferable adversarial samples.

3.2 Background: ML Explanation Methods

Humans typically justify their decision by explaining underlying causes used to reach a decision.
For instance, in an image classification task (e.g., cats vs. dogs), humans attribute their classifica-
tion decision (e.g., cat) to certain parts/features (e.g., pointy ears, longer tails) of the image they see,
and not all features have the same importance/weight in the decision process. ML models have long
been perceived as black-box in their predictions until the advent of explainable ML [101, 114, 87],
which attribute a decision of a model to features that contributed to the decision. This notion of
attribution is based on the quantifiable contribution of each feature to a model’s decision.

ML explanation is usually accomplished by training a substitute model based on the input
feature vectors and output predictions of the model, and then use the coefficients of that model to
approximate the importance and direction (class label it leans to) of the feature. A typical substitute
model for explanation is of the form: s(x) = w0 +

∑d
i=1wixi, where d is the number of features,

x is the sample, xi is the ith feature for sample x, and wi is the contribution/weight of feature xi

to the model’s decision. While ML explanation methods exist for white-box [115, 120] or black-
box [101, 59, 87] access to the model, in this work we consider ML explanation methods that have
black-box access to the ML model, among which the notable ones are LIME [101], SHAP [87]
and LEMNA [59]. Next, we briefly introduce these explanation methods.

LIME and SHAP. Ribeiro et al. [101] introduce LIME as one of the first model-agnostic
black-box methods for locally explaining model output. Lundberg and Lee further extended LIME
by proposing SHAP [87]. Both methods approximate the decision function fb by creating a series
of l perturbations of a sample x, denoted as x′

1, ..., x
′
l by randomly setting feature values in the
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vector x to 0. The methods then proceed by predicting a label fb(x′
i) = yi for each x′

i of the l

perturbations. This sampling strategy enables the methods to approximate the local neighborhood
of fb at the point fb(x). LIME approximates the decision boundary by a weighted linear regression
model using Equation 3.1.

argmin
g∈G

l∑
i=1

πx(x
′
i)(fb(x

′
i)− g(x′

i))
2 (3.1)

In Equation 3.1, G is the set of all linear functions and πx is a function indicating the difference
between the input x and a perturbation x′. SHAP follows a similar approach but employs the
SHAP kernel as weighting function πx, which is computed using the Shapley Values [87] when
solving the regression. Shapley Values are a concept from game theory where the features act as
players under the objective of finding a fair contribution of the features to the payout –in this case
the prediction of the model.

LEMNA. Another black-box explanation method specifically designed to be a better fit for
non-linear models is LEMNA [59]. As shown in Equation 3.2, it uses a mixture regression model
for approximation, that is, a weighted sum of K linear models.

f(x) =
K∑
j=1

πj(βj.x+ ϵj) (3.2)

In Equation 3.2, the parameter K specifies the number of models, the random variables ϵ =

(ϵ1, ..., ϵK) originate from a normal distribution ϵi ∼ N(0, σ) and π = (π1, ..., πK) holds the
weights for each model. The variables β1, ..., βK are the regression coefficients and can be inter-
preted as K linear approximations of the decision boundary near fb(x).

3.3 Explanation-Guided Evasion Diagnosis

In this section, we present the details of our explanation-guided correlation analysis methodology.
Table 3.1 describes notations we use here and in the rest of the chapter.

3.3.1 Overview

As described in Section 7.1, the effectiveness of an evasion method is typically assessed using
aggregate evasion accuracy. While aggregate evasion quantifies the overall success of an eva-
sion strategy, it fails to offer sufficient insights. In particular, it does not show how the evasion
mechanism influences individual samples to result in evasive predictions. We argue that, unless
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Figure 3.1: Explanation-guided correlation analysis framework.

Table 3.1: Notations.

Notation Brief Description

Xb training set of black-box model fb.
Xe evasion set disjoint with Xb.
X ′

e adversarial counterpart of Xe.
Xs training set of explanation model fs.

x ∈ Xe sample in evasion set.
x′ ∈ X ′

e adversarial variant of x.
Y = {y1, ..., yk} set of classes (labels)
x = [x1, ..., xd] d-dimensional feature vector of sample x.

Wx,yi = {w1, ..., wd} feature weights (explanations) of a sample x toward the class yi.
pos(x, yi) number of features in x positive to the prediction fb(x) = yi
neg(x, yi) number of features in x negative to the prediction fb(x) = yi
neut(x, yi) number of features in x neutral to the prediction fb(x) = yi

P (x′) number of perturbed features in x′

τ threshold to decide high-correlated adversarial samples.

one examines evasion success at the resolution of each adversarial sample, aggregate evasion rate
could give false sense of adversarial success for it lacks feature-level fidelity of perturbations that
result in an adversarial sample. To address the stated lack of fidelity in aggregate evasion accu-
racy, we systematically explore how ML explanation methods are harnessed to assess feature-level
correlations between pre-evasion adversarial perturbations and post-evasion explanations.

Figure 3.1 shows an overview of our explanation-guided correlation analysis framework. Given
an evasion set X ′

e of adversarial samples, our framework enables correlation analysis both at the
sample-level (for each x′ ∈ X ′

e at the granularity of each perturbed feature) and at the evasion
dataset-level (∀x′ ∈ X ′

e). Intuitively, given a decisive feature (obtained via ML explanations) of
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an evasive sample (fb(x′) ̸= ytrue), for such a feature to be considered the cause of (correlated to)
the evasion, there needs to be a corresponding feature that was perturbed in the original sample
x. By repeating this process of correlating each decisive feature with its perturbed counterpart,
our sample-level correlation analysis seeks to establish empirical evidence that links an evasive
prediction with the cause.

More precisely, our correlation analysis is performed by harnessing the Post-Evasion Features

Directions (“2. Explanation” in Figure 3.1) of adversarial samples (“1. Evasion” in Figure 3.1).
First, we explore the feature directions of the Pre-evasion Perturbations in order to obtain an
assessment of the contribution of each feature perturbation to the attack (i.e., feature-level assess-

ment). Second, we use those results in order to zoom-out to a Sample-Level Assessment (3.3.3).
Finally, we move to the higher level of the whole evasion dataset in order to obtain an overall
assessment of the evasion attack (3.3.4).

Conducting such fine-grained correlation analysis has two key benefits. Firstly, it verifies
whether evasion can be attributed to the adversarial perturbations employed on the sample, and,
in effect, performs diagnosis on aggregate evasion accuracy. Secondly, it provides visibility into
how sensitive certain samples and/or features are to adversarial perturbations, which could inform
efforts that aim to build ML models robust and dependable in the face of evasion attacks.

3.3.2 Post-Evasion Feature Direction

In a typical classification task, for an input sample x, fb(x) = yi ∈ Y = {y1, ..., yk}, where Y is
the set of k possible labels. For example, in the multi-class handwritten digit recognition model of
the MNIST [80] dataset, the input is an image of a handwritten digit and the label is one of the 10
digits (i.e., Y = {0, .., 9} where k = 10). In the malware detection domain, the typical model is a
binary classifier (i.e., Y = {Benign, Malware} where k = 2). In the following, we use MNIST as
an illustrative example to describe post-evasion feature direction.

Explanations returned from ML explanation methods reveal the direction of each feature. For
each class yi ∈ Y and an adversarial sample x′, a ML explanation method returns a set of feature

weights Wx′,yi = {w1, .., wd} where wj reflects the importance (as the magnitude of wj) and the
direction (as the sign of wj) of the feature x′

j towards the prediction fb(x
′) = yi. Depending

on the sign of wj , feature x′
j can be positive, negative, or neutral with respect to the prediction

fb(x
′) = yi. When wj > 0, we say x′

j is positive to (directed towards) yi. Conversely, when
wj < 0, x′

j is negative to (directed away from) y′i. When wj = 0, we say x′
j is neutral to yi (does

not have any impact on the prediction decision). In case of binary classification (k = 2), if x′
j is

not directed to the label y1 (Benign for malware detection) and is not neutral, then x′
j can only

be directed to the other label y2 (Malware) and vice versa. To illustrate how we leverage feature
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Original 

Sample (x)

Figure 3.2: A comparative illustration of pre-perturbation and post-perturbation explanations using
the SHAP [87] ML explanation framework on a test sample from the MNIST [80] dataset.

direction in our analysis, next we describe a concrete example from the MNIST [80] handwritten
digit recognition model.

In Figure 3.2, the upper box shows SHAP [87] pre-evasion feature explanations of a correct
prediction on an image of number “9” such that fb(x) = 9. The lower box shows post-evasion
feature explanations of the misclassification fb(x

′) ̸= 9 using an adversarial variant x′ ← x +

δ (perturbation = δ). Each column (i.e., “Label = yi”; yi ∈ {0, ..., 9}) represents the feature
directions for the possibility of a prediction fb(x) = yi (upper box) and fb(x

′) = yi (lower box).
The color codes are interpreted as follows: given an explanation, pink corresponds to positive
features while blue corresponds to negative features. The intensity of either color (pink or blue)
is directly proportional to the importance of the feature weight towards the prediction. Neutral
features are represented with white. For instance, focusing on the correct prediction label ytrue = 9

in the upper-box, we notice a large concentration of pink features which positively contribute to
the predicted label (9).

Our approach primarily relies on post-evasion explanations (lower box in Figure 3.2) and
we observe that feature importance weights vary for each studied label as a potential prediction
fb(x

′) = yi ∈ {0, ..., 9}. When the prediction fb(x
′) = 8 (image below ’Label = 8’ in lower

box), the explanations show that most features are positive (directed to label 8), which explains
the change of the prediction label from 9 to 8. Examining the colors, we realize that most features
that were directed to label 9 in the pre-perturbation explanations have become either neutral to the
prediction fb(x

′) = 9 or are positive towards fb(x′) = 8. It is noteworthy that some perturbed fea-
tures are oriented to the original label 9 (notice pink pixels in the image below ’Label = 9’ in lower
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box). Such observations suggest that even though the attack is successful (i.e., fb(x′) = 8 ̸= 9),
the effectiveness of each single feature perturbation is not guaranteed to result in an evasive pre-
diction. Thus, the evasion success may not always be correlated with each feature perturbation the
adversary performs on the original sample. We, therefore, argue that a perturbation strategy that
produces many features that are uncorrelated with the misclassification might perform poorly on
other feature representations (e.g., colored or not centered images in image classification) or other
feature types (e.g., static vs. dynamic features in malware detection) which reflects a potential
limitation of the stability of a perturbation method. Next, we introduce novel sample-level metrics
that capture the fine-grained assessment that leverages post-evasion explanations. We refer to Table
3.1 for the feature direction-related notations. Our focus will be on the post-perturbation feature

directions of an evasive sample x′ and we suppose that its original prediction (pre-perturbation) is
fb(x) = ytrue.

3.3.3 Sample-Level Analysis

Post-evasion explanations reveal the direction (positive, negative, or neutral) of each perturbed fea-
ture in an adversarial sample x′. Sample-level analysis is performed in order to empirically assess
feature perturbations that positively contribute towards misclassification (positive perturbations)
against the ones that contribute to maintain the true label as a prediction (negative perturbations).
Next, we introduce two sample-level metrics which will later serve as foundations to conduct over-
all correlation analysis over the evasion dataset.

Definition 1: Per-Sample Perturbation Precision (PSPP). Out of all feature perturbations
(P (x′)) performed to produce an adversarial sample x′, PSPP enables us compute the rate of
perturbations that contribute to change the original prediction ytrue to another label yi ∈ Y −
{ytrue}. In other words, it measures the rate of perturbed features that are ”negative” to the original
prediction (ytrue) and ”positive” to other predictions yi ̸= ytrue. We call such perturbations positive

perturbations because they positively advance the evasion goal. More formally, the Per-Sample
Perturbation Precision for an adversarial sample x′ is computed as follows:

PSPP (x′) =
1

2
(

1

k − 1
(

∑
yi∈Y

yi ̸=ytrue

pos(x′, yi)

P (x′)
) +

neg(x′, ytrue)

P (x′)
) (3.3)

Equation 3.3 is the average of two ratios:
• ( 1

k−1
(
∑

yi∈Y
yi ̸=ytrue

pos(x′,yi)
P (x′)

): The average rate of perturbed features that are directed to a class yi ̸=

ytrue, over all k − 1 possible false classes yi ∈ Y − {ytrue}.
• (neg(x

′,ytrue)
P (x′)

): The rate of perturbed features that are not directed to the original label ytrue and
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not neutral.
Both ratios that are considered in Equation 3.3 measure Positive Perturbations that contribute

to a misclasssification. We note that PSPP (x′) falls in the range [0, 1]. The closer PSPP (x′)

is to 1, the more the overall perturbations performed on the features of x′ are precise (effective at
feature level). More importantly, when x′ evades the model, i.e., fb(x′) ̸= fb(x), then the closer
PSPP (x′) is to 1 the stronger the correlation between the evasion success and each performed
feature perturbation that produced adversarial sample x′.

Definition 2: Per-Sample Perturbation Error (PSPE). Another per-sample measurement for
our correlation analysis is the Per-Sample Perturbation Error, PSPE(x′), that computes the rate
of perturbed features that are directed to the original class ytrue (positive to the original prediction
ytrue). These features stand against the adversary’s goal of misclassifying x′. Such features are
considered negative perturbations with respect to the original class. More formally, PSPE(x′) is
defined as follows.

PSPE(x′) =
pos(x′, ytrue)

P (x′)
(3.4)

Given an adversarial sample x′, PSPE(x′) returns the rate of perturbation errors over all per-
turbed features. We note that a perturbed feature that is neutral (wj = 0) to the original prediction
(fb(x′) = ytrue) is considered neither as perturbation error nor an effective manipulation to ad-
vance the evasion goal. Thus, PSPE(x′) may not be directly computed from PSPP (x′) and vice
versa. Moreover, in the case of a slightly different threat model in-which the evasion is targeted to
change the original prediction ytrue to a new target label ytarget ∈ Y − {ytrue}, then only the term
pos(x′,ytarget)

P (x′)
would be considered to compute the perturbation precision PSPP (x′), and only the

term neg(x′,ytarget)
P (x′)

suffices to compute the rate of committed perturbation errors, PSPE(x′).

3.3.4 Evasion Dataset-Level Analysis

Using PSPP (x′) and PSPE(x′) defined in Equations 3.3 and 3.4 as foundations, we now in-
troduce novel correlation analysis metrics that operate at the level of the evasion dataset X ′

e to
empirically analyze correlation between perturbations and post-evasion explanations.

Definition 3: High-Correlation Rate (HCR). As explained in Section 3.3.3, PSPP (x′) quan-
tifies the correlation of each single feature perturbation with the evasion fb(x

′) ̸= ytrue. The closer
PSPP (x′) is to 1, the higher is the correlation and vice-versa. We consider a threshold τ that in-
dicates the “strength” of the correlation between positive perturbations on x that resulted in x′ and
the important features that “explain” fb(x

′) ̸= ytrue. Based on an empirically estimated τ , we call
an adversarial sample x′ a High-Correlated Sample if PSPP (x′) falls in [τ, 1]. In our evaluation,
based on empirical observations, we use τ = 0.5.

Based on the above definition, we compute High-Correlation Rate (HCR) as the percentage of
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High-Correlated Samples in the evasion set X ′
e as follows:

HCR =
|X ′

e(PSPP > τ)|
|X ′

e|
(3.5)

where X ′
e(PSPP > τ) = {x′ ∈ X ′

e : PSPP (x′) > τ} ∩ {fb(x′) ̸= ytrue}

We note that HCR quantifies the degree to which adversarial samples are both evasive and
correlated to most feature perturbations performed on original samples.

Definition 4: Average Perturbation Error (APE). As shown in Equation 3.4, PSPE(x′)

computes the number of errors committed during the perturbation of each feature in x to produce
the manipulated sample x′ (which is the same as computing the number of negative perturbations).
We leverage PSPE(x′) to compute the average of negative perturbations (APE) over all samples
in X ′

e. Formally, APE is given as follows:

APE =
∑
x′∈X′

e

PSPE(x′)

|X ′
e|

(3.6)

As opposed to aggregate evasion rate that computes the percentage of evasive samples versus
non-evasive samples without deeper insights about the effectiveness of each single feature per-
turbation, APE computes the rate of ”evasive features” versus ”non-evasive features” of each
evasive sample, over all perturbed samples. Such in-depth investigations into evasion attacks pro-
vide a fine-grained assessment of any evasion strategy on ML models.

3.4 Evaluation

We now evaluate the utility of our suite of metrics for high-fidelity correlation analysis of ML
evasion attacks. We first validate our methodology in Section 3.4.3, and extend our evaluation
with two case studies in Section 3.5.1 and 3.5.2.

3.4.1 Datasets

We use three datasets from two domains. From the malware classification domain, we use two
complementary datasets, one based on static analysis, and the other on execution behavioral anal-
ysis. From image classification, we use a benchmark handwritten digits recognition dataset. We
selected these two as representative domains because (a) malware detection is a naturally adversar-
ial domain where adversarial robustness to evasion attacks is expected and (b) image recognition
has been heavily explored for evasion attacks in recent adversarial ML literature [32]. We describe
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these datasets next.
Dataset-1 (PE Malware). To validate our framework on dynamic analysis based malware

classifiers, we collected 40K Windows PE files with 50% malware (collected from VirusShare [2])
and the other 50% benign PEs (collected from a public goodware site [1]). We use 60% of the
dataset as a training set for the target black-box model, 25% as a training for explanation substitute
model, and the remaining 15% as evasion test. Each sample is represented as a binary feature
vector. Each feature indicates the presence/absence of behavioral features captured up on execution
of each PE in the Cuckoo Sandbox [5]. Behavioral analysis of 40K PEs resulted in 1549 features,
of which 80 are API calls, 559 are I/O system files, and 910 are loaded DLLs.

EMBER (PE Malware). To assess our framework on complementary (static analysis-based)
malware dataset, we use EMBER [17], a benchmark dataset of malware and benign PEs released
with a trained LightGBM with 97.3% test accuracy. EMBER consists of 2351 features extracted
from 1M PEs using a static binary analysis tool LIEF [6]. The training set contains 800K samples
composed of 600K labeled samples with 50% split between benign and malicious PEs and 200K
unlabeled samples, while the test set consists of 200K samples, again with the same ratio of label
split. VirusTotal [3] was used to label all the samples. The feature groups include: PE metadata,
header information, byte histogram, byte-entropy histogram, string information, section informa-
tion, and imported/exported functions. We use 100K of the test set for substitute model training,
and the remaining 100K as our evasion set against the LightGBM pre-trained model and a DNN
which we trained. We use version 2 of EMBER.

MNIST (Image). To further evaluate our framework on image classifiers, we use the MNIST
[80] dataset, which comprises 60K training and 10K test images of handwritten digits. The classi-
fication task is to identify the digit corresponding to each image. Each 28x28 gray-scale sample is
encoded as a vector of pixel intensities in the interval [0 : 1].

3.4.2 Models and Setup

Next, we describe models trained, evasion attacks we employed, and explanation methods used for
our experiments.

Studied ML Models. Overall, across Dataset-1, EMBER and MNIST, we train 8 models:
Multi-Layer Perceptron (MLP), Logistic Regression (LR), Random Forest (RF), Extra Trees (ET),
Decision Trees (DT), Light Gradient Boosting decision tree Model (LGBM), a feed-forward Deep
Neural Network (DNN), and a 2D Convolutional Neural Network (CNN). Following prior work
[95, 96], we choose these models because they are representative of applications of ML across
domains including image classification, malware/intrusion detection, and they also complement
each other in terms of their architecture and susceptibility to evasion.
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Employed Evasion Attacks. Using the evasion set of each dataset, we craft adversarial sam-
ples. For the evasion attack, we consider a threat model where the adversary has no knowledge
about the target model, but knows features used to train the model (e.g., API calls for malware clas-
sifiers, pixels for image classifiers). More precisely, for Dataset-1 and EMBER we incrementally
perturb features of a Malware sample until the model flips its label to Benign. Following pre-
vious adversarial sample crafting methods [63, 122], we adopt only additive manipulations. For
instance, for binary features of Dataset-1 (where 1 indicates presence and 0 indicates absence of an
API call), we flip only a 0 to 1. Similar to prior work [44], we also respect the allowable range of
perturbations for each static feature in EMBER (e.g., file size is always positive). For MNIST, we
add a random noise to the background of the image to change the original gray-scale of each pixel
without perturbing white pixels that characterize the handwritten digit. The outcome is an adver-
sarial image that is still recognizable by humans, but misclassified by the model. Table II shows the
comparison between pre-evasion accuracy and post-evasion accuracy. All models exhibit signifi-
cant drop in the test accuracy after the feature perturbations. We recall that the main purpose of our
analysis is to explore the correlation between a perturbed feature and the misclassification result,
regardless of the complexity of the evasion strategy. Thus, our choice of perturbation methods is
governed by convenience (e.g., execution time) and effectiveness (i.e., results in evasion).

Employed ML Explanation Methods. Informed by recent studies [132, 50] that compare
the utility of ML explanation methods, we use LIME [101] on Dataset-1 and EMBER, and SHAP
[87] on MNIST. More specifically, these studies perform comparative evaluations of black-box ML
explanation methods (e.g., LIME [101], SHAP [87], and LEMNA [59]) in terms of effectiveness
(e.g., accuracy), stability (i.e., similarity among results of different runs), efficiency (e.g., execution
time), and robustness against small feature perturbations. On the one hand, these studies show
that LIME performs best on security systems (e.g., Drebin+ [21], Mimicus+ [59]). Thus, we
employ LIME on the two malware detection systems (i.e., Dataset-1 and EMBER). On the other
hand, SHAP authors proposed a ML explainer called “Deep Explainer”, designed for deep learning
models, specifically for image classification. Thus, we use SHAP to explain predictions of a CNN
on MNIST. We note that two independent recent studies [132, 50] have also noted that both LIME
and SHAP outperform LEMNA [59] (hence, not included in our evaluations).

3.4.3 Correlation Analysis Results

We use the suite of correlation analysis metrics introduced in Section 7.2 (Equations 3.3-3.6). In
Table 3.3, column 3 is HCR (Equation 3.5) and column 4 is APE (Equation 3.6).

Results Overview. Across all models and the three datasets, the evasion attack scores an
average HCR = 55% and APE = 36%. Linking back to what these metrics mean, an average
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Table 3.2: Pre-evasion accuracy and post-evasion accuracy across studied models.

Dataset Model Pre-Evasion Post-Evasion Aggregate
Accuracy Accuracy Evasion Accuracy.

Dataset-1 MLP 96% 6.05% 89.95%
Dataset-1 LR 95% 21.75% 73.25%
Dataset-1 RF 96% 18.61% 77.39%
Dataset-1 DT 96% 7.8% 88.20%
Dataset-1 ET 96% 16.27% 79.73%

EMBER LGBM 97.3% 56.06% 40.94%
EMBER DNN 93% 12.08% 80.92%

MNIST CNN 99.4% 33.1% 66.30%

Table 3.3: High-Correlation Rate (HCR) and Average Perturbation Error (APE) values across
studied models.

Dataset Model High-Correlation Rate Average Perturbation Error

Dataset-1 MLP 34.56% 32.96%
Dataset-1 LR 34.96% 38.92%
Dataset-1 RF 36.09% 60.73%
Dataset-1 DT 66.85% 37.86%
Dataset-1 ET 33.41% 54.62%

EMBER LGBM 95.03% 7.47%
EMBER DNN 96.72% 4.89%

MNIST CNN 44.31% 49.40%

HCR = 55% shows that for each model an average of only 55% of the adversarial samples have
strong feature-level correlation with their respective perturbations. That entails an average of 45%
adversarial samples per-model are loosely correlated with their perturbations). APE assesses the
per-model average number of negative perturbations per sample. Results in Table 3.3 suggest a
significant rate of negative perturbations are produced by the evasion attack. More precisely, on
average across all models around 36% of the perturbations are negative (i.e., they lead the evasion
strategy in the wrong direction, by increasing the likelihood of predicting the original label). Next,
we expand on these highlights of our findings.

Does evasion imply consequential perturbations for all features? Although an evasion attack
can achieve a seemingly high aggregate evasion rate (e.g., as high as 94% accuracy drop on MLP
on Dataset-1), we notice that, the correlation between each single feature perturbation and a mis-
classification is not guaranteed. In fact, averaged across models, 45% of the crafted adversarial
samples have low-correlated perturbations more than high-correlated ones (PSPP (x′) < 0.5),
suggesting that almost 1 in 2 adversarial samples suffers from weak correlation between post-
evasion explanations and pre-evasion perturbations. As a result, counting in such samples in the
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aggregate evasion rate would essentially give false sense of the effectiveness of an attack strategy at
the granularity of each feature perturbation. We underscore that such insights wouldn’t have been
possible to infer without the high-fidelity correlation analysis. In summary, these results confirm
that not all evasive predictions of an adversarial sample are correlated with the performed feature

manipulations.
Visualizing the Per-Sample Perturbation Precision. Figure 3.3 shows visual interpretation of

the distribution of the Per-Sample Perturbation Precision (PSPP ) values of all crafted malware
samples of Dataset-1 across the 5 models. In the figure, we use the shorthand PP instead of
PSPP in the y-axis and we refer to the index of each sample in x-axis. The true prediction of
each malware sample is fb(x

′) = 1, while the evasive prediction is fb(x
′) = 0 (i.e., adversarial

malware sample is misclassified as benign). The red line in the middle represents the threshold
τ that decides whether the adversarial sample has more positive perturbations or more negative
ones. In almost all the plots, we notice the occurrence of a significant number of low-correlation
adversarial malware samples (PP (x′) < τ ) that evaded the classifier (purple circles below the
red line). Once again, these findings suggest that the evasion attack results in a high number
of negative perturbations. However, despite the low number of positive perturbations for these
samples, the evasion is still successful. This result goes along with our previous finding that high
evasion aggregate accuracy can be totally uncorrelated with the performed perturbations. Thus,
even for a successful evasion the perturbations at the feature-level can apparently be ineffective.
These insights can only be confirmed by examining the high-fidelity correlation analysis results.

It is noteworthy that Figure 3.3 exhibits an unusual behavior. In particular, some crafted sam-
ples with a true prediction fb(x

′) = 1 (yellow circles) appear to have high Perturbation Precision,
PP (x′) > τ , despite the failure to flip the model’s prediction from 1 to 0. This is especially true
for models: LR, DT, ET and RF. On one hand, this observation suggests that even a small number
of negative perturbations (PP (x′) < τ ) may affect the final outcome of the evasion. On the other
hand, it suggests potential limitations of Black-Box ML explanation methods in terms of accuracy
and stability between different runs. More discussion is provided about this in Section 3.6.

What do correlation analysis results suggest across different classification tasks and model
architectures? While our results so far strongly suggest the importance of post-evasion correla-
tion analysis for an in-depth assessment of an evasion attack strategy, we also observe that HCR

and APE values vary across studied domains (malware, image), model architectures, and feature
representations (static, dynamic). This variation speaks to the sensitivity of different domains,
models, and feature values to adversarial feature perturbations with implications on robustness and
dependability in the face of individual feature perturbation. In fact, ML models trained on EM-
BER (LGBM and DNN) showed acceptably low rate of negative perturbations (i.e., APE = 6%

on average) and a high rate of samples with highly-correlated perturbations (i.e., HCR = 96%
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Figure 3.3: Distribution of Perturbation Precision (PSPP) values of each adversarial sample across
models on Dataset-1.

on average). This suggests that static features of Windows PE malware are more sensitive to a
feature perturbation considering the higher rate of negative perturbations on dynamic features in
Dataset-1. In terms of comparison between different domains and different ML models, despite
the high evasion rate at sample-level, almost all ML models showed some robustness at the level
of a single feature perturbation. Most importantly, RF on Dataset-1 showed the highest robustness
since more than 60% of the overall feature perturbations are negative which suggest that they did
not contribute in the misclassification decision. ET on Dataset-1 (APE = 54%) and CNN on
MNIST (APE = 49%) showed lower robustness than RF, but higher than the other models.

⋆ Summary. Our results suggest that the aggregate evasion accuracy measured over all the
8 models is not enough to assess the efficacy of perturbation attack strategy. Our findings also
validate that explanation-guided correlation analysis plays a crucial role in diagnosing aggregate
evasion rates to winnow high-correlation adversarial samples from low-correlation ones for pre-
cise feature-level assessment of evasion accuracy. Furthermore, using our correlation analysis we
succeeded at pinpointing the sensitivity of different malware feature types to perturbations.
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3.5 Case Studies

We now present two case studies that demonstrate the application of our correlation analysis frame-
work on (a) explanation-guided evasion strategy and (b) cross-model adversarial sample transfer-
ability analysis.

3.5.1 Case Study 1: Explanation-Guided Evasion Strategy

The correlation analysis results showed that, while an evasion strategy may result in an evasive ad-
versarial sample, at the granularity of a single feature perturbation it may produce a considerable
number of negative perturbations. In other words, from the adversary’s standpoint, the correlation
analysis can be leveraged towards more accurate evasion strategy that significantly minimizes neg-
ative perturbations. In the following, we explore the potential of explanation methods to guide a
more effective evasion strategy.

Explanation-guided pre-perturbation feature selection. In this case study, we demonstrate
how an adversary leverages ML explanation methods to examine pre-perturbation predictions be-
fore making feature manipulations. In particular, the pre-perturbation feature directions reveal
positive features that significantly contribute to the true prediction (pink pixels in Figure 3.4). In-
tuitively, positive features are strong candidates for perturbations, while negative features (blue
pixels in Figure 3.4) should be intact and need not be perturbed since they are already directed
away from the true label, which is in favor of the adversary’s goal. Neutral features (white pixels
in Figure 3.4) are also not candidates for perturbations since they have no effect on the original
label decision. We note that in this case study we consider all positive features (i.e., pink pix-
els) as candidates for perturbation regardless of the color intensity that represents its explanation
weight. In Figure 3.4, some positive pixels (wi > 0) with a low explanation weight (wi ∼ 0)
are almost neutral (i.e., closer to the white color) but still perturbed since they are directed to the
true label. Using the same experimental setup, we enhance the evasion strategies used on the three
datasets with explanation-guided pre-perturbation feature selection. Then, we measure changes to
post-evasion accuracy, HCR, and APE for all studied models.

Impact of explanation-guided pre-perturbation feature selection. Results in Table 3.4
suggest overall improvement not only in aggregate evasion accuracy, but also in the correlation
strength between evasion explanations and individual feature perturbations. Comparing the “Post-
Evasion Accuracy” columns of Tables 3.2 and 3.4, using explanation-guided evasion strategy post-
evasion accuracy drops for all studied models, with an average per-model drop of 13.4% (which
translates to the same percentage of improvement in aggregate evasion accuracy). Interestingly, in
4 out of the 5 models in Dataset-1, post-evasion accuracy drops to zero, with up to 21% drop in
post-evasion accuracy for models such as LR. We note that the eventual complete evasion in al-

24



Directed to 9
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Figure 3.4: An example of explanation-guided feature perturbations on an input sample from
MNIST.

most all models in Dataset-1 is most likely attributed to the binary nature of the features, where the
explanation-guided feature selection filters out negative features and leaves only positive features
that are flipped with just one perturbation. Comparing the HCR columns of Tables 3.4 and 3.3,
we notice an increase in HCR for all studied models. On average, HCR increased by 27% per-
model, which shows the positive utility of the pre-perturbation explanations that guided the evasion
strategy to perturb positive features instead of negative ones. Again, comparing the APE columns
of Tables 3.4 and 3.3, we notice a significant drop in APE, with an average per-model decrease of
20%, which indicates a decrease in the number of negative perturbations. Better performance in
terms of post-evasion accuracy is also observed for all studied target models.

It is noteworthy that, although we perturb only positive features, in the APE column of Table
3.4 all values are still above zero. Ideally, the explanation method would guide the perturbation
strategy to perform only positive perturbations and make no mistaken perturbations. Nevertheless,
we still observe a minimal percentage of negative perturbations due to the inherent limitations
of the accuracy and stability of explanations by LIME and SHAP, which is also substantiated by
recent studies [132, 50] that evaluated LIME and SHAP among other ML explanation methods.
We will expand on limitations of ML explanation methods in Section 3.6.

⋆ Summary. This case study suggests that when used on top of existing feature perturbation
methods, an explanation-guided feature selection strategy leads to more effective evasion results
both in terms of aggregate evasion accuracy and effectiveness at the level of each feature manipu-
lation.
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Table 3.4: Post-Evasion Accuracy, HCR, and APE values across studied models using explanation-
guided evasion.

Dataset Model Post-Evasion Accuracy HCR APE

Dataset-1 MLP 0% 92.03% 14.22%
Dataset-1 LR 0% 96.25% 6%
Dataset-1 RF 0% 48.53% 51.31%
Dataset-1 DT 1.41% 98.84% 3.41%
Dataset-1 ET 0% 48.11% 1.21%

EMBER LGBM 27.16% 99.58% 2.69%
EMBER DNN 11.7% 97.8% 2.71%

MNIST CNN 24.67% 64.5% 43.4%

3.5.2 Case Study 2: Explanation-Guided Transferability Analysis

One of the intriguing observations in evasion attacks against ML models is the transferability of
samples crafted for one model to another, even architecturally dissimilar model [55, 95]. Simi-
lar to evasion accuracy, cross-model adversarial sample transferability is usually reported as the
aggregate number of overlapping adversarial samples between a pair of models. One of the open
questions around transferability is “what causes adversarial samples to transfer?”. Previous work
has pointed to causes such as limitations of the training process [95], scarcity of training data [95],
inherent model vulnerability [46], and similarity (e.g., piecewise linearity) among different model
architectures [55, 95]. However, the question is still under active investigation. Towards contribut-
ing a piece of clarity to address this question, we explore the utility of our metrics on cross-model
adversarial sample transferability using Dataset-1 as a case study.

Aggregate transferability. Table 3.5 shows the percentage of adversarial samples that evade
modeli (row) that also evade modelj (column). Overall, our transferability results are consistent
with prior work that demonstrate the transferability phenomenon on malware (e.g., [46, 123]) and
images (e.g., [55, 95, 46]. However, the aggregate transferability rates in Table 3.5 do not offer
detailed insights as to the correlation between perturbations of transferable adversarial samples.
Next, we use our metrics to dig deeper into the aggregate transferability rate at the level of per-
turbed features.

High-fidelity transferability analysis. Table 3.6 shows high-fidelity view of the transfer-
ability rates in Table 3.5, where each cell (i, j) is the average number of overlapping positive
perturbations for a sample pair (x′

i, x
′
j) from modeli (row) and modelj (column). We recall that a

high-correlation adversarial sample x′ has a high rate of positive perturbations (PSPP (x′) > τ ).
Overall, the percentage of overlapping positive perturbations in Table 3.6 show that one of the
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Table 3.5: Aggregate adversarial sample transferability on Dataset-1. Cell (i, j) is the percentage
of adversarial samples that evaded modeli (row) that also evade modelj (column).

MLP LR RF ET DT

MLP − 7% 4% 3% 18%
LR 86% − 12% 5% 57%
RF 95% 68% − 59% 83%
ET 97% 71% 53% − 84%
DT 48% 30% 15% 16% −

Table 3.6: Average overlap of positive perturbations on features detected among high-correlation
adversarial samples transferable from modeli (row) to modelj (column).

MLP LR RF ET DT

MLP - 63.78% 53.68% 53.42% 60.66%
LR 55.54% - 49.01% 50.50% 60.10%
RF 60.02% 62.14% - 74.41% 61.28%
ET 60.14% 64.33% 75.34% - 60.96%
DT 47.10% 53.83% 43.59% 43.53% -

reasons for transferability is the empirically evident correlation between perturbations performed
on a transferable adversarial sample pair (x′

i, x
′
j) in model pair (modeli, modelj). For instance,

looking at cell (ET, MLP) in Table 3.6 with 60.14% overlap in underlying positive perturbations,
it can be seen from Table 3.5 that its counterpart cell has the highest aggregate transferability rate
(97% to be exact). Among aggregate transferability rates reported in Table 3.5, cell (MLP, RF)
and cell (MLP, ET) are the lowest transferability rates (MLP→RF: 4%, MLP→ET: 3%). Further
examination of the corresponding cells in Table 3.6 suggests that within the 4% transferable sam-
ples for MLP→RF, we observe 53.68% average overlap of positive perturbations. Similarly for
MLP→ET, within the 3% transferable samples, there exists 53.42% average overlap of positive
perturbations among transferable sample pairs. Such deeper insights into feature-level correlation
among transferable sample pairs once again demonstrate a practical use case for our methodology.

⋆ Summary. Our results suggest that shared positive perturbations among transferable sample
pairs as one of the causes for adversarial sample transferability.
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3.6 Discussion

Recent studies [132, 50] have systematically compared the performance of ML explanation meth-
ods especially on security systems. In addition to general evaluation criteria (e.g., explanation
accuracy and sparsity), Warnecke et al. [132] focused on other security-relevant evaluation met-
rics (e.g., stability, efficiency, and robustness). Fan et al. [50] also proposed a similar framework
that led to the same evaluation results. To discuss the limitations of the ML methods employed in
our work (LIME [101] and SHAP [87]), in what follows we focus on accuracy (degree to which
relevant features are captured in an explanation), stability (how much explanations vary between
runs), and robustness (the extent to which explanations and prediction are coupled).

Limitations of Explanation Methods. While LIME and SHAP produce more accurate results
compared with other black-box explanation methods such as DeepLIFT [114] and LEMNA [59])
the accuracy of the explanation may vary across different ML model architectures (e.g., MLP,
RF, DT, etc), and across different ML tasks/datasets (e.g., Dataset-1, EMBER, and MNIST). For
instance, the inherent linearity LIME’s approximator could negatively influence its accuracy and
stability in explaining predictions of complex models such as RF and ET. More importantly, like
all learning-based methods, LIME and SHAP are sensitive to non-determinism (e.g., random ini-
tialization, stochastic optimization) which affect their stability between different runs. In other
words, it is likely to observe a slight variation in the output of multiple runs performed by the same
explanation method using the same input data. In fact, we observed that the average difference
between Shapley values (i.e., feature importance weights) returned by SHAP is around 1% over
100 runs on the same MNIST sample. Such variation in ML explanation methods outputs might
partly explain some of the unexpected results of our explanation-guided analysis that we noted in
Sections 3.4.3, 3.5.1, and 3.5.2.

Vulnerability of Explanation Methods. Another issue worth considering is robustness of
ML explanation methods against adversarial attacks. Recent studies [52, 62] have demonstrated
that the explanation results are sensitive to small systematic feature perturbations that preserve the
predicted label. Such attacks can potentially alter the explanation results, which might in effect
influence our explanation-guided analysis. Consequently, our analysis may produce potentially
misleading results for correlation metrics such as HCR and APE.

Future Outlook. In light of the utility of ML explanations we demonstrated in this chapter,
we believe that the currently active research in explanation methods will lead to more reliable and
robust ML explanation methods. We also note that vulnerability to adversarial attacks is a broader
problem for any ML model, and progress in defense against attacks such as adversarial examples
will potentially inspire and inform stronger robustness properties for ML explanation methods.
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3.7 Conclusion

In this chapter, we introduced the first explanation-guided methodology for the diagnosis of ML
evasion attacks. The core insight of the methodology is the use of feature importance-based ML
explanation methods to perform high-fidelity correlation analysis between feature perturbations
and post-evasion prediction explanations. To systematize the analysis in a model-agnostic manner,
we proposed and evaluated a novel suite of metrics. Using image classification and malware detec-
tion as representative ML tasks, we demonstrated the utility of the methodology across diverse ML
model architectures and feature representations. Through two case studies we additionally confirm
that our methodology enables evasion attack improvement via pre-evasion feature direction analy-
sis and feature-level correlation analysis of transferable adversarial samples. We believe this work
serves as the first step towards fine-grained sanity check of evasion attacks to build dependable and
secure ML systems.
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CHAPTER 4

EG-Booster: Explanation-Guided Booster of ML
Evasion Attacks

4.1 Introduction

Machine Learning (ML) models are vulnerable to test-time evasion attacks called adversarial ex-

amples –adversarially-perturbed inputs aimed to mislead a deployed ML model [55]. Evasion
attacks have been the subject of recent research [55, 79, 89, 47, 35, 36, 128] that led to understand-
ing the potential threats posed by these attacks when ML models are deployed in security-critical
settings such as autonomous vehicles [105], malware classification [72], speech recognition [41],
and natural language processing [19].

Given a ML model f and an input x with a true label ytrue, the goal of a typical evasion attack is
to perform minimal perturbations to x and obtain x′ similar to x such that f is fooled to misclassify
x′ as y′ ̸= ytrue. For a defender whose goal is to conduct pre-deployment robustness assessment
of a model to adversarial examples, one needs to adopt a reliable input crafting strategy that can
reveal the potential security limitations of the ML model. In this regard, a systematic examination
of the suitability of each feature as a potential candidate for adversarial perturbations can be guided
by the contribution of each feature in the classification result [11]. In this context, recent progress
in feature-based ML explanation techniques [101, 87, 59] is interestingly positioned inline with
the robustness evaluation goal. In fact, ML explanation methods have been recently utilized to
guide robustness evaluation of models against backdoor poisoning of ML models [111], model
extraction attacks [92, 23], and membership inference attacks [113], which highlights the utility
of ML explanation methods beyond ensuring the transparency of model predictions.

In this chapter, we present EG-Booster , an explanation-guided evasion booster that leverages
techniques from explainable ML [101, 87, 59] to guide adversarial example crafting for improved
robustness evaluation of ML models. Inspired by a case study in [11], our work is the first to
leverage black-box model explanations as a guide for systematic robustness evaluation of ML
models against adversarial examples. The key insight in EG-Booster is the use of feature-based
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explanations of model predictions to guide adversarial example crafting. Given a model f , a
d-dimensional input sample x, and a true prediction label ytrue such that f(x) = ytrue, a ML
explanation method returns a weight vector Wx,ytrue = [w1, ..., wd] where each wi quantifies the
contribution of feature xi to the prediction ytrue. The sign of wi represents the direction of feature
xi with respect to ytrue. If wi > 0, xi is directed towards ytrue (in this case we call xi a positive

feature). In the opposite case, i.e., wi < 0, xi is directed away from ytrue (in this case we call xi a
negative feature). EG-Booster leverages sign of individual feature weights in two complementary
ways:

• First, it uses positive weights to identify positive features that are worth perturbing and in-

troduces consequential perturbations likely to result in the misclassification of x′.

• Second, it uses negative weights to identify negative features that need not be perturbed and
eliminates non-consequential perturbations unlikely to result in the misclassification of x′.

is agnostic to model architecture, adversarial knowledge and capabilities (e.g., black-box,
white-box), and supports diverse distance metrics (e.g., common ||.||p norms) used previously in
the adversarial examples literature.

In an orthogonal line of study on explanation stability and adversarial robustness of model ex-
planations, some limitations of explanation methods have been documented [50, 132]. Recogniz-
ing these potential limitations which entail systematic vetting of the reliability of ML explanation
methods before using them for robustness assessment of ML models, we introduce an explanation
assessment metric called k-Stability, which measures the average stability of evasion results based
on the similarities of the target model’s predictions returned by multiple runs of EG-Booster .

We evaluate EG-Booster through comprehensive experiments on two benchmark datasets (MNIST
and CIFAR10), across white-box and black-box attacks, on state-of-the-art undefended and de-
fended models, covering commonly used ||.||p norms. From white-box attacks we use the Fast
Gradient Sign Method (FGS) [55], the Basic Iterative Method (BIM) [79], the Projected Gradient
Descent method (PGD) [89], and the Carlini and Wagner attack (C&W) [35]. From black-box at-
tacks, we use the Momentum Iterative Method (MIM) [47], the HopSkipJump Attack (HSJA) [36],
and the Simultaneous Perturbation Stochastic Approximation (SPSA) attack [128].

Across all studied models, we observe a significant increase in the evasion rate of baseline
attacks when combined with EG-Booster . Specifically, our results suggest an average increase
of 28.78% in evasion rate across all attacks on undefended MNIST-CNN model. Similar findings
are observed on undefended CIFAR10-CNN models and a defended CIFAR10-ResNet model with
average evasion evasion rate increase, respectively, of 6.23% and 5.41%. In addition to the reduc-
tion of the total number of perturbations compared to the baseline attacks, these findings prove
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that ML explanation methods can be harnessed to guide ML evasion attacks towards more conse-
quential perturbations. Furthermore, the stability analysis results show that, EG-Booster ’s outputs
are stable across multiple runs. Such findings highlight reliability of explanation methods to boost
evasion attacks, despite their stability concerns highlighted in prior work. More detailed results
are discussed in section 8.2.1.3.

In summary, this work makes the following contributions:

• Explanation-Guided Evasion Booster: We introduce the first approach that leverages ML
explanation methods towards evaluating robustness of ML models to adversarial examples.

• Stability Analysis: We introduce a novel stability metric that enables vetting the reliability
of ML explanation methods before they are used to guide ML robustness evaluation.

• Comprehensive Evaluation: We conduct comprehensive evaluations on two benchmark
datasets, four white-box attacks, three black-box attacks, different ||.||p distance metrics, on
undefended and defended state-of-the-art target models.

• Artifact Availability: To foster reproducability, we have made available EG-Booster source
code with directions to repeat our experiments at: https://github.com/um-dsp/

EG-Booster.

4.2 EG-Booster Approach

In Section 4.2.1, we first describe an overview of EG-Booster . Next, in Sections 4.2.2, 4.2.3, and
4.2.4, we present details of EG-Booster .

4.2.1 Overview

In the reference attacks we introduced in Section 2.4, without loss of generality, the problem of
crafting an adversarial example is stated as follows: given an input x ∈ Rd such that f(x) = ytrue,
the goal of the attack is to find the optimal perturbation δ⋆ such that the adversarial example x′ =

x+ δ⋆ is misclassified as f(x′) = y ̸= ytrue. This problem is formulated as:

δ⋆ = argmin δ ∈ Rd f(x+ δ)

s.t. ||δ⋆|| < ϵ
(4.1)

The only constraint of Equation 4.1 is that the perturbation size of the vector δ is bounded by a
maximum allowable perturbation size ϵ (i.e., ||δ||p < ϵ), which ensures that adversarial manipu-
lations preserve the semantics of the original input. However, it does not guarantee that all single
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Figure 4.1: Explanation-Guided Booster Attack.
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feature perturbations (i.e., x′
i = xi + δi) are consequential to result in evasion. Our Explanation-

Guided Booster (EG-Booster ) approach improves Equation 4.1 to guide any Lp norm-based attack
to perform only necessary perturbations that result in evasion. In addition to the upper bound con-
straint ϵ, EG-Booster satisfies an additional constraint that guarantees the perturbation of only the
features that initially contribute to a correct prediction (positive features). In other words, EG-
Booster guides the state-of-the-art attacks to selectively perturb features which have positive ex-
planation weights towards the true label ytrue (i.e., wi > 0 such that wi ∈ Wx,ytrue = {w1, ..., wd}).
Formally, the EG-Booster adversarial example crafting problem is stated as:

δ⋆ = argmin δ ∈ Rd f(x+ δ)

s.t. ||δ⋆|| < ϵ

Wx,ytrue(δ
⋆) > 0

(4.2)

The second constraint Wx,ytrue(δ
⋆) > 0 ensures that only features with positive explanation weights

are selected for perturbation.
As shown in Algorithm 4.1 (line 10), first, EG-Booster performs ML explanation on the input

x to capture the original direction of each feature xi with respect to the true label ytrue. Next,
using explanation results (Wx,ytrue), EG-Booster reviews initial perturbations performed by a base-
line attack by eliminating features that have negative explanation weight (lines 16–25) and adding
more perturbations on features that have positive explanation weight (lines 26–40). We ensure that
EG-Booster ’s intervention is pre-conditioned on maintaining at least the same evasion success of
an evasion attack, if not improving it. Specifically, in case the initial adversarial sample x′

baseline

generated by a baseline attack succeeds to evade the model, EG-Booster eliminates only pertur-
bations that do not affect the initial evasion result. In this case, even if there exist unperturbed
positive features when x′

baseline was crafted, EG-Booster does not perform any additional pertur-
bations since the evasion goal has been already achieved. Next, we use Algorithm 4.1 to further
explain the details of EG-Booster .

4.2.2 Eliminating Non-Consequential Perturbations

As shown in Algorithm 4.1 (lines 16–25), EG-Booster starts by eliminating unnecessary pertur-
bations that are non-consequential to the evasion result (if any). If the adversarial input x′

baseline

produced by the baseline attack is already leading to a successful evasion, EG-Booster ensures that
the perturbation elimination step does not affect the initial evasion success (lines 19–20). Accord-
ingly, EG-Booster intervenes to eliminate the perturbations that have no effect on the final evasive
prediction. More precisely, it searches for perturbed features that are originally not directed to the
true label ytrue (line 17), and then it restores the original values of those features (i.e., eliminates

34



 

FGS 9 (8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Perturbation Rate = 34% Perturbation Rate = 27% 

 
EG-FGS 9 (8) 

Figure 4.2: An example of the impact of eliminating non-consequential perturbations from a per-
turbed MNIST input that evades a CNN model using FGS. The new prediction of each version of
the input image is in parentheses (.).

the perturbation) (line 18) while ensuring the validity of the initial evasion if it exists (it does so
by skipping any elimination of feature perturbations that do not preserve the model evasion). As
we will show in our experiments (Section 4.3.3), this step leads to a significant drop in the total
number of perturbed features which results in a smaller perturbation size ||δ⋆||p.

Figure 4.2 shows an MNIST-CNN example of the impact of enhancing the FGS [55] attack
with EG-Booster when the baseline perturbations are already evasive. In this example, FGS per-
turbations fool the CNN model to mis-predict ‘9’ as ‘8’. The red circles on the left-hand side
image show the detection of non-consequential perturbations signaled by EG-Booster using the
pre-perturbation model explanation results. The new version of the input image shown on the right
illustrates the impact of eliminating those non-consequential feature perturbations. The number of
feature perturbations is reduced by 7% while preserving the evasion success.

Alternatively, when the baseline attack initially fails to evade the model, it is crucial to perform
this perturbation elimination step on all non-consequential features before making any additional
perturbations. Doing so reduces the perturbation size ||δ|| which provides a larger gap (ϵ − ||δ||)
for performing additional consequential perturbations more likely to result in misclassification.
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Clean 7 
 

FGS 7 (7) EG-FGS 7 (9) 

Figure 4.3: An example of the impact of adding consequential perturbations to a perturbed MNIST
input that failed to evade a CNN model using FGS. We put the new prediction of each version of
the input image in parentheses (.).

4.2.3 Adding Consequential Perturbations

This second step is only needed in case the adversarial sample has still failed to evade the model
after eliminating non-consequential perturbations. In this case, EG-Booster starts searching for
unperturbed features that are directed towards the true label ytrue. When it finds such features,
it then incrementally adds small perturbations δi to these features since they are signaled by the
ML explainer as crucial features directed to a correct classification (lines 27–29). The function
get delta(x) chooses a random feature perturbation δi that satisfies the feature constraint(s) of the
dataset at hand (line 28). For instance, in image classification, if the feature representation of the
samples is in gray-scale, pixel perturbation should be in the allowable range of feature values (e.g.,
[0, 1] for normalized MNIST pixel values in [0,255]). In case a feature perturbation xi+ δi crosses
the upper bound constraint ||δ||p > ϵ, EG-Booster iteratively keeps reducing the perturbation δi

until the bound constraint is reached or the number of iterations hits its upper bound (lines 30–37).
In case all features directed to the correct label are already perturbed, EG-Booster proceeds

by attempting to increase the perturbations initially performed by the baseline attack on positive
features. It does so while respecting the upper bound constraint (||δ|| < ϵ). This process terminates
when evasion succeeds.

Figure 4.3 shows an MNIST-CNN example of the impact of enhancing the FGS attack [55]
with EG-Booster . In this example, FGS perturbations originally failed to fool the model to predict
an incorrect label (i.e., y ̸= ‘7’). The image on the right shows the perturbations (circled in green)
added by EG-Booster that are consequential enough to fool the model into predicting the input
image as ‘9’ instead of ‘7’.
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4.2.4 Stability Analysis

When evaluated on security-sensitive learning tasks (e.g., malware classifiers), ML explanation
methods have been found to exhibit output instability whereby explanation weights of the same
input sample x vary from one run to another [132, 50]. To ensure that EG-Booster does not inherit
the instability limitation of the ML explainer, we perform stability analysis where we compare the
similarity of the prediction results returned by the target model f after performing an explanation-
guided attack over multiple runs. To do so, we define the k-stability metric that quantifies the
stability of EG-Booster across k distinct runs. It measures the average run-wise (e.g., each pair of
runs) similarity between the returned predictions of the same adversarial sample after EG-Booster
attack. The similarity between two runs i and j, similarity(i, j), is the intersection size of the
predictions returned by the two runs over all samples in the test set (i.e., the number of matching
predictions), and is computed as:

k-stability =
1

k(k − 1)

k∑
i=1

k∑
j=1
j ̸=i

similarity(i, j) (4.3)

The instability of explanation methods is mainly observed in the minor differences between the
magnitude of the returned explanation weights of each feature ||wi|| which might sometimes lead
to different feature ranking. However, the direction of a feature xi is less likely to change from
one run to another as it is uniquely decided by the sign of its explanation weight sign(wi). This
is mainly visible on images as it is possible to plot feature directions with different colors on top
of the original image. EG-Booster relies only on the sign of the explanation weights wi ∈ Wx,ytrue

to detect non-consequential perturbations and candidates for consequential perturbations. As
a result, the output of EG-Booster is expected to be more stable than output of the underlying
explanation method.

To validate our intuition, we compare the stability of EG-Booster with the stability of the
employed explanation method. Thus, we compute the (k,l)-Stability metric proposed by a prior
work [50] that evaluates the stability of ML explanation methods for malware classification models.
The (k,l)-Stability measure computes the average explanation similarity based on intersection of
features that are ranked in the top-l, returned by separate k runs of an explanation method. More
precisely, given two explanation results, Wx,ytrue(l, i) and Wx,ytrue(l, j) returned by two different
runs i and j, and a parameter l, their similarity is obtained based on the Dice coefficient as:

sim(Wx,ytrue(l, i),Wx,ytrue(l, j)) = 2 ∗ Wx,ytrue(l, i) ∩Wx,ytrue(l, j)

|Wx,ytrue(l, i)|+ |Wx,ytrue(l, j)|
, (4.4)

where Wx,ytrue(l, i) denotes the top-l features of sample x with respect to the prediction ytrue
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returned by run i. Over a total of k-runs, the average (k,l)-Stability on a sample x is defined as:

(k,l)-stability =
1

k(k − 1)

k∑
i=1

k∑
j=1
j ̸=i

sim(Wx,ytrue(l, i),Wx,ytrue(l, j)) (4.5)

More empirical discussions about the stability results over all samples in a test set Xt are
presented in Section 4.3.4.

4.3 Evaluation

We now present the evaluation of EG-Booster . We first describe our experimental setup in Sec-
tion 5.3.1. In Section 4.3.2, we present details of EG-Booster evasion accuracy effectiveness. In
Sections 4.3.3, 4.3.4, and 4.3.5, we present our findings on perturbation change, stability analysis,
and execution time of EG-Booster , respectively.

4.3.1 Experimental Setup

Datasets. We evaluate EG-Booster on two benchmark datasets used for adversarial robustness
evaluation of deep neural networks: MNIST [80] —a handwritten digit recognition task with ten
class labels (0 − 9) and CIFAR10[73] —an image classification task with ten classes. We use
the 10K test samples of both datasets to evaluate the performance of EG-Booster on undefended
models (described next). To evaluate EG-Booster against a defended model, we use 5K samples
of the CIFAR10 test set.

Models. For MNIST, we train a state of the art 7-layer CNN model from “Model Zoo”1,
provided by the SecML library [91]. It is composed of 3-conv layers+ReLU, 1-Flatten layer, 1-
fully-connected layer+ReLU, a dropout-layer (p=0.5), and finally a Flatten-layer. We call this
model MNIST-CNN. It reaches a test accuracy of 98.32% over all 10K test samples.

For CIFAR10, we consider two different models: a CNN model [4] with 4-conv2D and a bench-
mark adversarially-trained ResNet50 model. In our experimental results, we call the undefended
model CIFAR10-CNN and the defended model CIFAR10-ResNet. More precisely, the structure
of CIFAR10-CNN is: 2-conv2D+ ReLU, 1-MaxPool2D, 1-dropout(p=0.25), 2-conv2D+ReLU, 1-
MaxPool2D, 1-dropout(p=0.25), 2-fully-connected+ReLU, 1-dropout(p=0.25), and 1-fully-connected.
To avoid the reduction of height and width of the images, padding is used in every convolutional
layer. This model reaches a test accuracy of 86.41% after 50 epochs. It outperforms the benchmark
model adopted by Carlini & Wagner (2017)[35] and Papernot et al. (2016) [94].

1https://gitlab.com/secml/secml/-/tree/master/src/secml/model zoo
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CIFAR10-ResNet is a state-of-the-art adversarially-trained model from the “robustnes” library
[48] proposed by MadryLab2. It is trained on images generated with PGD attack using L2 norm
and ϵ = 0.5 as perturbation bound. It reaches a test accuracy of 92.36% over all 10K test set of
CIFAR10.

Baseline Attacks. We evaluate EG-Booster on 4 white-box baseline attacks (FGS [55], BIM [79],
PGD [89], and C&W [35]) and 3 black-box attacks (MIM [47], HSJA [36], and SPSA [128]). De-
tailed explanations of all the 7 baseline attacks are provided in Chapter 2.

ML Explainer. The performance of EG-Booster is influenced by the effectiveness of the em-
ployed ML explanation method in detecting the direction of each feature xi in a sample x. It
is, therefore, crucial to suitably choose the ML explainer according to the studied systems and
the deployed models. In our experiments, we focus on image datasets and neural network models,
therefore, we pick SHAP [87], as it is proved to be effective in explaining deep neural networks, es-
pecially in the image classification domain. Furthermore, SHAP authors proposed a ML explainer
called “Deep Explainer”, designed for deep learning models, specifically for image classification.
SHAP has no access to the target model, which makes EG-Booster suitable for either black-box or
white-box threat model. We note that independent recent studies [132, 50] evaluated ML explana-
tion methods for malware classifiers. They revealed that LIME [101] outperforms other approaches
in security systems in terms of accuracy and stability. Thus, we recommend using LIME for future
deployment of EG-Booster for robustness evaluation of ML malware detectors.

Evaluation metrics. We use the following four metrics to evaluate EG-Booster :
Evasion Rate: First, we quantify the effectiveness of EG-Booster by monitoring changes to

the percentage of successful evasions with respect to the total test set, from the baseline attacks to
EG-Booster attacks.

Average Perturbation Change: Second, we keep track of the average changes to the number of
perturbed features for baseline attack versus EG-Booster attacks to show the impact of the addition
or elimination of perturbations performed by EG-Booster . Referring to Algorithm 4.1 (lines 23
and 42), EG-Booster keeps track of the number of added perturbations (Nc) and the number of
eliminated perturbations (Nnc) per-image. Thus, the total of perturbation changes per-image is
Nc −Nnc, and the average perturbation change across all images of the test set (Xt) is:

Average Perturbation Change =
1

|Xt|
∑
x∈Xt

Nc(x)−Nnc(x)

Nbaseline(x)
, (4.6)

where Nbaseline(x) is the total number of perturbations initially performed by the baseline attack on
sample x. When Average Perturbation Change> 0, on average, EG-Booster is performing more
perturbation additions than eliminations (Nc > Nnc). Otherwise, it is performing more elimination

2https://github.com/MadryLab/robustness/blob/master/robustness/cifar models/ResNet.py
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Undefended MNIST-CNN

Baseline Attacks White-Box Black-Box
FGS (Xt = 10K) BIM (Xt = 10K) PGD (Xt = 10K) C&W (Xt = 5K) MIM (Xt = 10K)

||.||p Norms L∞ L∞ L2 L∞ L2 L∞

Initial Evasion Rate 28.20% 49.92% 99.80 % 55.09% 99.14% 41.34%
EG-Booster Evasion Rate 89.71% 89.08% 99.89% 88.69% 99.72% 79.08%
Average Perturbation Change +14.44% +14.47% -5.46% -4.39% -15.36% -5.49%

Table 4.1: Summary of EG-Booster results on undefended MNIST-CNN Model (ϵ = 0.3).

Undefended CIFAR10-CNN

Baseline Attacks White-Box Black-Box
FGS (Xt = 10K) PGD (Xt = 10K) C&W(Xt = 5K) HSJA (Xt = 10K)

||.||p Norms L2 L∞ L2 L∞ L2 L∞

Initial Evasion Rate 22.36% 83.04% 22.46% 91.07% 99.22% 14.04%
EG-Booster Evasion Rate 30.14% 87.45% 31.12% 92.34% 99.22% 28.87%
Average Perturbation Change -48.52% -49.62% -48.25% -51.15% -52.16% -36.18%

Table 4.2: Summary of EG-Booster results on undefended CIFAR10-CNN Model (ϵ = 0.3).

of non-consequential perturbations (Nc < Nnc). The average becomes zero when there are equal
number of added and eliminated perturbations.

k-Stability and (k,l)-Stability: To evaluate the reliability of EG-Booster , we use the k −
Stability (Equation 4.3) and (k, l) − Stability (Equation 4.5) measures we introduced in Sec-
tion 4.2.4. We compute the k-Stability of EG-Booster for different k values and we compare it to
the value of the (k,l)-Stability of the employed explanation method (i.e., SHAP), using the top-10
features (l = 10) and different values of k. Both metrics are calculated in average over 1000

samples.
Execution Time: Across both datasets and all models, we measure the per-image execution

time (in seconds) taken by EG-Booster for different baseline attacks.

4.3.2 EG-Booster Evasion Effectiveness

Tables 4.1, 4.2, and 4.3 report results of EG-Booster on different models: undefended MNIST-
CNN, undefended CIFAR10-CNN, and defended (adversarially-trained) CIFAR10-ResNet, re-
spectively.
Evasion rate in a nutshell: Across the three tables, we observe a significant increase in the eva-
sion rate of studied baseline attacks after combining them with EG-Booster . For instance, Table
4.1 shows an average increase of 28.78% of the evasion rate across all attacks performed on the un-
defended MNIST-CNN model. Similarly, the evasion rate results in Table 4.2 convey that, across
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Defended CIFAR10-ResNet

Baseline Attacks White-Box Black-Box
FGS (Xt = 5K) PGD (Xt = 5K) C&W (Xt = 1K) SPSA (Xt = 1K)

||.||p Norms L2 L∞ L2 L∞ L2 L∞

Initial Evasion Rate 9.75% 73.27% 9.66% 86.25% 99.00% 10.80%
EG-Booster Evasion Rate 18.05% 74.73% 18.37% 86.76% 99.75% 23.46%
Average Perturbation Change -41.23% -45.04% -41.16% -46.51% -51.20% -42.11%

Table 4.3: Summary of EG-Booster results on defended (adversarially-trained) CIFAR10-
ResNet50 Model (ϵ = 0.3).
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Figure 4.4: The evasion rate curve of baseline attacks against EG-Booster attacks across different
perturbation bounds ϵ, using ||.||∞ for MNIST and ||.||2 for CIFAR10 as distance metrics.

all studied baseline attacks, an average of 6.23% more adversarial images are produced by EG-
Booster to evade the undefended CIFAR10-CNN model. Same observations can be drawn from
Table 4.3. More precisely, overall baseline attacks performed on the adversarially-trained CIFAR-
ResNet model, we observe an average of 5.41% increase in the evasion rate, when combined with
EG-Booster . In a nutshell, our findings consistently suggest that explanation methods can be
employed to effectively guide evasion attacks towards higher evasion accuracy.

EG-Booster is consistently effective across model architectures, threat models, and dis-
tance metrics: Our results consistently suggest that EG-Booster is agnostic to model architecture,
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threat model, and supports diverse distance metrics. For instance, the increase in evasion rate is
observed on white-box baseline attacks (i.e., FGS, BIM, PGD, and C&W) as well as for black-box
attacks (i.e., MIM, HSJA, and SPSA). Additionally, the improvement in baseline attacks perfor-
mance is observed for different ||.||p norms. For the same perturbation bound value ϵ = 0.3 and
the same attack strategy (e.g., FGS, PGD), we notice an increase in the evasion rate regardless of
the employed ||.||p distance metric.

EG-Booster is consistently effective over a range of perturbation bounds: We additionally
assess EG-Booster for different ϵ values. Figure 4.4 reports the evasion rate curve of the state-
of-the-art attacks before and after being guided with EG-Booster (see EG-PGD, EG-MIM, etc in
Figure 4.4), using different perturbation bounds ϵ = 0.1 → 0.7. For all target models trained on
MNIST and CIFAR10, we observe a significant improvement in the evasion rate of all baseline
attacks regardless of ϵ. However, for most attacks, we observe that, a higher perturbation bound ϵ

which allows a greater perturbation size can lead to a higher evasion rate.
It is noteworthy that the increase in rate of evasion results is considerably higher for baseline

attacks that initially have a low evasion rate. For instance, FGSL∞ and BIML∞ that initially pro-
duced, respectively, 28.20% and 49.92% evasive adversarial samples from the total of 10K MNIST
samples, have improved at least twofold after employing EG-Booster . Similar observations are
drawn from CIFAR10-CNN and CIFAR10-ResNet. Particularly, for CIFAR10-CNN, the increase
rate of evasion results on FGSL2(22.36% → 30.14%) is higher than the increase rate of FGSL∞

(83.04%→ 87.45%). However, even though EG-Booster results in higher increase rate in evasive
samples for less performing attacks, we note that, the total evasion rate of EG-Booster combined
with stronger attacks is more important. This is expected, as EG-Booster builds on the initial results
of baseline attacks which result in a correlation between the initial evasion rate of a baseline attack
and the post-EG-Booster evasion rate. This is mainly observed for the C&W attack, as across all
models, combined with C&W, EG-Booster exhibits the highest evasion rates (i.e., > 99%). Such
correlation is also evident in the evasion rate curves from Figure 4.4.

EG-Booster maintains its effectiveness against defended models: Table 4.3 shows effec-
tiveness of EG-Booster against a defended model, compared to adversarial training defense. Since
PGDL2 is used for adversarial training, CIFAR10-ResNet is expected to be specifically robust
against gradient-based attacks performed using L2 norm. Incontrovertibly, FGSL2 and PGDL2

achieve considerably lower initial evasion rates on CIFAR10-ResNet (∼ 9%), compared to unde-
fended models (∼ 20%). Nevertheless, combined with EG-Booster , FGSL2 and PGDL2 result
in more evasive samples (∼ 18%), even against a defended model. Same findings are observed
for other baseline attacks (e.g., FGSL∞ , SPSAL∞). From these observations, we conclude that
EG-Booster is still effective in the face of defended models.
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4.3.3 Perturbation Change

In addition to Evasion Rate, for each experiment, we keep track of Average Perturbation Change

introduced by EG-Booster (using Equation 4.6). Results from the last rows of Tables 4.1, 4.2, and
4.3 show that for most baseline attacks, EG-Booster performs less perturbations while improving
the evasion rate. This is explained by the negative sign of the average perturbation change for most
of the studied baseline attacks across the three tables. These findings prove that, without consider-
ing the pre-perturbation feature direction explanations, baseline attacks are initially performing a
considerable number of non-consequential (unnecessary) perturbations. Consequently, in addition
to the improvement of the evasion rate, these results demonstrate the importance of taking into
account feature explanation weights in the formulation of evasion attacks (as shown in Equation
4.2).

It is noteworthy that the magnitude of the negative average perturbation change values is specif-
ically more important for baseline attacks that initially have a high evasion rate. This is mainly true
for the C&W attack across the 3 tables and PGDL∞ in Table 4.2. We explain this observation by
the fact that, EG-Booster performs additional perturbations only when the baseline adversarial
sample originally fails to evade the model (Algorithm 4.1: line 27). Otherwise, it only eliminates
non-consequential perturbations while maintaining the original evasion result.

In some of the experiments, we notice a positive value of the average perturbation change.
This is particularly the case for FGSL∞ and BIML∞ in Table 4.1. In this cases, EG-Booster
performs more additional perturbations than eliminations which reflects the drastic improvement
of the evasion rate for these two attacks. These findings particularly demonstrate the direct impact
of perturbing positive features.

Focusing on Tables 4.1 and 4.2, we notice that, on average, the increase rate in evasion results
for MNIST (28.78%) is higher than CIFAR-10 (6.23%) using a CNN model for both datasets.
Additionally, the average perturbation change for all experiments in Table 4.2 (i.e., CIFAR10-
CNN) is negative and have a higher magnitude than their counterparts in Table 4.1 (MNIST-CNN).
Further investigations have shown that these two observations are related. We found that baseline
attacks performed on CIFAR10-CNN are already perturbing a considerable number of features
that are directed to the true label which makes the rate of added perturbations by EG-Booster
in CIFAR10-CNN lower than the ones added in MNIST-CNN. This observation might explain
the difference in evasion increase between both datasets. However, as discussed in Section 7.2,
EG-Booster specifically examines this case i.e., the case where an important number of detected
consequential features turn out to be already perturbed. More precisely, in case of initial evasion
failure, EG-Booster proceeds by additionally perturbing features that are already perturbed by the
baseline attack while ensuring that the perturbation size δ is still within the bound (||δ||p < ϵ).
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Figure 4.5: Comparison between the stability of EG-Booster and the employed explanation
method, SHAP, across models and datasets, for different k values. (k, l) − Stability of SHAP
is computed on the top-10 features (l = 10). EG-Booster is performed using different baseline
attacks subject to ||δ||∞ < 0.3. k−runs are performed on 1000 test samples for each attack.

4.3.4 Stability Analysis

As highlighted by prior works [132, 50] and discussed in this chapter, due to their stability con-
cern, ML explanation methods should be carefully adopted in security-critical settings. Thus, we
evaluate the reliability of explanation methods to be employed for the robustness assessment of
ML systems via a comparative analysis between the stability of the employed ML explainer (i.e.,
SHAP) and the stability of our explanation-based method. We use the (k-l)-Stability and k-Stability

metrics defined in Section 4.2.4, to respectively compute the output’s stability of SHAP, and EG-
Booster combined with baseline attacks, across different studied models.

EG-Booster doesn’t inherit instabilities of SHAP: In Figure 4.5, we plot stability analysis
results. Focusing on the stability curves of EG-Booster , we deduce that, it is almost 100% stable
for all studied models and across different baseline attacks. Consequently, the classification results
returned by the target ML model are the same across different runs of EG-Booster . Such findings
prove the reliability of EG-Booster to adopt it for improved robustness assessment of ML models
against baseline attacks. Compared to the stability curves of SHAP, EG-Booster does not inherit
the instability concern indicated by ML explainer’s output. As discussed in Section 4.2.4, these
findings are explained by the reliance only on the sign of explanation weights to decide the feature
directions (i.e., positive and negative features). Since the distortions across different runs of the
feature directions results returned by an accurate ML explainer are minor, the feature selection
for perturbation performed by EG-Booster returns the same feature set across different runs which
overall leads to the same evasion result.

Although EG-Booster is not deeply influenced by the stability of the employed ML explainer,
its success is, however, relying on their accuracy to produce precise explanations, specifically
precise feature directions in our case. Given the promising results, that our approach showed when
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relying on SHAP, we hope that future improvements in ML explanation methods would lead to an
even better performance of EG-Booster .

4.3.5 Execution Time

Our measurements are based on a hardware environment with 6 vCPUs, 18.5GB memory, and 1
GPU-NVIDIA Tesla K80.

We recall that EG-Booster is performed on top of the baseline attack. Therefore, the execution
time of EG-Booster is the sum of the time taken to craft the baseline attack and EG-Booster to
improve the baseline attack. Consequently, the execution time of the baseline attack (e.g., FGSM,
C&W) has a direct influence on the execution time of EG-Booster . In Figure 4.6, we plot the
range of execution times of EG-Booster recorded by different experiments (i.e., on top of differ-
ent baseline attacks). Over all studied attacks, baseline + EG-Booster take, on average, 0.55s
for MNIST-CNN, 27.0s for CIFAR10-CNN, and 82.0s for CIFAR10-ResNet per-sample (orange
line). Overall, these observations reflect the efficiency of EG-Booster . However, they also reveal
the impact of the input dimension and the model architecture on the running time of EG-Booster
. For instance, it takes more time on CIFAR10, compared to MNIST, which is due to the dif-
ference in input dimension between the datasets i.e., (28x28x1) for MNIST and (32x32x3) for
CIFAR10. Additionally, for CIFAR10, we observe a considerable difference in execution time of
EG-Booster between CNN and ResNet50 (i.e., 27.0s → 82.0s) which is due to the higher dimen-
sion of ResNet50 compared to CNN. From the performance overhead, EG-Booster is specifically
useful when used on top of fast and weak baseline attacks (e.g., FGSM). However, using EG-
Booster on strong attacks that usually take long time to converge and reach high evasion rate (e.g.,
C&W) may result in higher overhead although our experiments (Tables 4.1, 4.2 and 4.3) showed
that EG-Booster improves even strong attacks such as C&W.

4.4 Conclusion

In this chapter, we introduce EG-Booster , the first explanation-guided booster for ML evasion
attacks. Guided by feature-based explanations of model predictions, EG-Booster significantly im-
proves evasion accuracy of state-of-the-art adversarial example crafting via introduction of con-
sequential perturbations and elimination of non-consequential ones. Extensive evaluation of EG-
Booster on MNIST and CIFAR10, across white-box and black-box attacks against undefended
and defended models shows that EG-Booster significantly improves evasion accuracy of reference
evasion attacks on undefended and adversarially-trained models. We also empirically show the
reliability of explanation methods to be adopted for robustness assessment of ML models. We
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Figure 4.6: EG-Booster performance overhead. Execution time(s) =Time of baseline attack + time
of Morphence-2.0 perturbation check), per-sample, across the studied models.

hope that EG-Booster will be used by future work as a benchmark for robustness evaluation of ML
models against adversarial examples.
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CHAPTER 5

Morphence: Moving Target Defense against
Adversarial Examples

5.1 Introduction

Machine learning (ML) continues to propel a broad range of applications in image classifica-
tion [75], voice recognition [41], precision medicine [51], malware/intrusion detection [99], au-
tonomous vehicles [105], and so much more. ML models are, however, vulnerable to adversar-

ial examples —minimally perturbed legitimate inputs that fool models to make incorrect predic-
tions [55, 27]. Given an input x (e.g., an image) correctly classified by a model f , an adversary
performs a small perturbation δ and obtains x′ = x+ δ that is indistinguishable from x to a human
analyst, yet the model misclassifies x′. Adversarial examples pose realistic threats on domains
such as self-driving cars, healthcare, and malware detection for the consequences of incorrect pre-
dictions are highly likely to cause real harm [49, 72, 63].

To defend against adversarial examples, previous work took multiple directions each with its
pros and cons. Early attempts [57, 65] to harden ML models provided only marginal robustness
improvements. Heuristic defenses based on defensive distillation [94], data transformation [42,
25, 141, 135, 88, 58], and gradient masking [31, 119] were subsequently broken [34, 61, 22, 35].

While adversarial training [55, 126] defends against known attacks, robustness comes at the
expense of accuracy loss on clean data. Similarly, data transformation-based defenses also degrade
accuracy on benign inputs. Certified defenses [81, 37, 82] provide formal robustness guarantee,
but are limited to a class of attacks constrained to LP-norms [81, 134].

As pointed out by [53], a shared limitation of prior defenses is the static and fixed target nature
of the deployed ML model. We argue that, although defended by methods such as adversarial
training, the fact that a ML model is a fixed target that continuously responds to prediction queries
makes it a prime target for repeated/correlated adversarial attacks. As a result, given enough time,
an adversary can repeatedly query the prediction API and build enough knowledge about the ML
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model and eventually fool it. Once the adversary launches a successful attack, it will be always
effective since the model is not moving from its compromised “location”.

In this article, we introduce two releases of a moving target defense called Morphence. Morphence-
2.0 builds on the MTD of Morphence-1.0 [13] in three ways: enhanced approach, more compre-
hensive experimental evaluations, and new insights. To differentiate advances in Morphence-2.0 ,
next we first briefly summarize Morphence-1.0 and then describe values added by Morphence-2.0
.

Morphence-1.0 [13]. By regularly moving the decision function of a model, Morphence-1.0
makes it challenging for an adversary to fool the model through adversarial examples. Morphence-
1.0 thwarts once successful and repeated attacks and attacks that succeed after iterative probing
of a fixed target model through correlated sequence of attack queries. To do so, Morphence-1.0
deploys a pool of n models generated from a base model in a manner that introduces sufficient
randomness when it selects the most suitable model to respond to prediction queries. The selec-
tion of the most suitable model is governed by a scheduling strategy that relies on the prediction
confidence of each model on a given query input. To ensure repeated or correlated attacks fail, the
deployed pool of n models automatically expires after a query budget is reached. The model pool is
then seamlessly replaced by a new pool of n models generated and queued in advance. To be prac-
tical, Morphence-1.0 aims to improve robustness to adversarial examples across white-box and
black-box attacks (Challenge-1); maintain accuracy on benign samples as close to that of the base
model as possible (Challenge-2); and increase diversity among models in the pool to reduce adver-
sarial example transferability among them (Challenge-3). It addresses Challenge-1 by enhancing
the MTD aspect through larger model pool size, a model selection scheduler, and dynamic pool re-
newal (Sections 5.2.2 and 5.2.4). Challenge-2 is addressed by re-training each generated model to
regain accuracy loss caused by perturbations (Section 5.2.2: step-2). It addresses Challenge-3 by
making the individual models distant enough via distinct transformed training data used to re-train
each model (Section 5.2.2: step-2). Training a subset of the generated models on distinct adver-
sarial data is an additional robustness boost to address Challenges 1 and 3 (Section 5.2.2: step-3).
While Morphence-1.0 made significant advances on MTD-based prior work [118, 110, 98] (see
Chapter 9), in this work we significantly enhance its scheduling strategy, extend experimental eval-
uations, and draw novel insights in the context of MTD against adversarial examples.

Morphence-2.0 . We significantly overhaul the scheduling strategy in Morphence-1.0 by
introducing a layer of OOD detection that further guides the model selection strategy with respect
to the nature of the received query (i.e., adversarial vs. benign). To this end, we draw insights
from [15] that makes empirical observations that suggest most adversarial examples are OOD
samples. In particular, adversarial perturbations usually shift the distribution of the perturbed
sample x′ = x + δ away from its initial distribution Ptrain used in training the target model.
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Consequently, we leverage and adapt OOD detection [109] for the sake of adversarial examples
detection (details in Section 5.2.3).

We evaluate Morphence-2.0 on two benchmark image classification datasets (MNIST and CI-
FAR10) against four attacks: three white-box attacks (FGSM [55], PGD [89], and C&W [35])
and one iterative black-box attack (SPSA [128]). We compare Morphence-2.0 ’s robustness with
Morphence-1.0 and adversarial training defense of a fixed model. We then conduct detailed eval-
uations on the impact of the MTD strategy in defending previously successful repeated attacks and
the effectiveness of OOD detection to boost the scheduling strategy. Additionally, through exten-
sive experiments, we shed light on each component of Morphence-2.0 and its impact on improving
the robustness results and reducing the transferability rate across models. Overall, our evaluations
suggest that Morphence-2.0 advances the state-of-the-art in robustness against adversarial exam-
ples, even in the face of strong white-box attacks such as C&W [35], while maintaining accuracy
on clean data and reducing attack transferability. In summary, this work builds on Morphence-1.0
and makes the following contributions:

• Powered by OOD detection, Morphence-2.0 is able to precisely select the most accurate
decision function for each query.

• Morphence-2.0 thwarts repeated attacks that leverage previously successful attacks and cor-
related attacks performed through dependent consecutive queries.

• Morphence-2.0 outperforms adversarial training and Morphence-1.0 while preserving ac-
curacy on clean data and reducing attack transferability within a model pool.

• Morphence-2.0 improves the state-of-the-art defenses on both white-box and black-box
attacks.

• Morphence-2.0 code is available as free and open-source software at: https://github.com/
um-dsp/Morphence.

5.1.1 Background -SSD: Out-of-Distribution Detector

SSD [109] is proposed to detect OOD data that lies far away from the training distribution Ptrain of
a ML model f . Its appealing side is that it is a self-supervised method that can reach good perfor-
mance using only unlabeled data instead of fine-grained labeled data that can be hard to produce.
Given unlabeled training data, SSD leverages Contrastive self-supervised representation learning,
which aims to train a feature extractor of the in-distribution data, by discriminating between indi-
vidual samples, to learn a good set of representation without the need to data labels [109]. Next, the
OOD detection is performed through a cluster-conditioned detection. Using k-means clustering,
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Figure 5.1: Morphence-2.0 system overview illustrated with model pool generation (1-3) and
scheduling and model pool renewal (4).

extracted features of in-distribution data are partitioned into m clusters. Features of each cluster
are modeled independently to calculate an outlier score of an input x, using the Mahalanobis dis-
tance M(x,Ptrain). It is equivalent to the euclidean distance, but scaled with eigenvalues in the
eigenspace. SSD discriminates between in-distribution (e.g CIFAR-10) and OOD (e.g CIFAR-100)
data along each principal eigenvector. With euclidean distance (i.e. in absence of scaling), com-
ponents with higher eigenvalues have more weights but provide least discrimination. Scaling with
eigenvalues removes the bias. In other words, M(x,Ptrain) is more effective for outlier detection
in the feature space. More details about the choice of the distance metric and the background of the
Contrastive self-supervised learning can be retrieved in the cited paper [109]. More importantly,
we choose SSD for our approach, given that it outperforms all other OOD detection tools, at the
time of the submission of this article.

5.2 Approach

We first describe Morphence-2.0 at a high level in Section 5.2.1 and then dive deeper into details
in Sections 5.2.2 - 5.2.4.

5.2.1 Overview

Figure 5.1 illustrates Morphence-2.0 . The key intuition in Morphence-2.0 is making a model a
moving target in the face of adversarial example attacks. To do so, Morphence-2.0 deploys a pool
of n models instead of a single target model. We call each model in pool a student model. The
model pool is generated from a base model fb in a manner that introduces sufficient randomness
when Morphence-2.0 responds to prediction queries, without sacrificing accuracy of fb on clean
inputs. In response to each prediction query, Morphence-2.0 selects the most suitable model to
predict the label for the input. The selection of the most suitable model is governed by a scheduling
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strategy that relies on the prediction confidence of each model on a given input. The deployed pool
of n models automatically expires after a query budget Qmax is exhausted. An expired model pool
is seamlessly replaced by a new pool of n models generated and queued in advance. As a result,
repeated/correlated attacks fail due to the moving target nature of the model. In the following,
we use Figure 5.1 to highlight the core components of Morphence-2.0 focusing on model pool

generation, scheduling, and model pool renewal.
Model Pool Generation. The model pool generation method is composed of three main steps

(1-3 in Figure 5.1). Each step aims to tackle one or more of challenges 1–3. As shown in Figure
5.1, a highly accurate fb initially trained on a training set Xtrain is the foundation from which n

models that make up the Morphence-2.0 student model pool are generated. Each student model
is initially obtained by slightly perturbing the parameters of fb (Step-1, weights perturbation, in
Figure 5.1). By introducing different and random perturbations to model parameters, we move fb’s
decision function into n different locations in the prediction space.

Given the randomness of the weights perturbation, Step-1 is likely to result in inaccurate stu-
dent models compared to fb. Simply using such inaccurate models as part of the pool penalizes
prediction accuracy on clean inputs. As a result, we introduce Step-2 to address Challenge-2 by re-

training the student models so as to boost their accuracy and bring it close enough to fb’s accuracy.
However, since the n models are generated from the same fb, their transferability rate of adversarial
examples is usually high. To reduce evasion transferability among student models, we use distinct
training sets for each student model (Step-2: retraining in Figure 5.1). For this purpose, we harness
data transformation techniques (i.e., image transformations) to produce n distinct training sets. In
Section 5.3.5, we empirically explore to what extent this measure reduces the transferability rate
and addresses Challenge-3. Finally, a subset of p student models (p < n) is adversarially trained
(Step-3: Adversarial training in Figure 5.1) as a reinforcement to the MTD core of Morphence-2.0
, which addresses Challenge-1. In Section 5.2.2, we explain the motivations and details of each
step.

Scheduling and Pool Renewal. Instead of randomly selecting a model from the model pool
or taking the majority vote of the n models (as in [118]), for a given input query Morphence-2.0
returns the prediction of the most confident model. The motivation to pick the most confident
model is twofold. First, the sufficient diversity among the n models, where a subset of the models
is pre-hardened with adversarial training (hence perform much better on adversarial inputs) and the
remaining models are trained to perform more confidently on legitimate inputs. Second, the routing
of an input to either adversarially trained p models or the remaining n − p models is powered by
an OOD detection component (Step 4 in Figure 5.1).
The model pool is automatically renewed after a defender-set query upper-bound Qmax is reached.
The choice of Qmax requires careful consideration of the model pool size (n) and the time it takes
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to generate a new model pool while Morphence-2.0 is serving prediction queries on an active
model pool. In Section 5.2.4, we describe the details of the model pool renewal with respect to
Qmax.

5.2.2 Student Model Pool Generation

Using Algorithms 1 and 2, we now describe the details of steps 1–3 with respect to challenges 1–3.
Step-1: Model Weights Perturbation. Shown in Step-1 of Figure 5.1, the first step to trans-

form the fixed model fb into a moving target is the generation of multiple instances of fb. To
effectively serve the MTD purpose, the generated instances of fb need to fulfill two conditions.
First, they need to be sufficiently diverse to reduce attack transferability among themselves. Sec-
ond, they need to preserve the accuracy of fb.

By applying n different small perturbations on the model weights θb of fb, we generate n

variations of fb as fs = {f (1)
s , f

(2)
s , ..., f

(n)
s }, and we call each f

(i)
s a student model. The n pertur-

bations should be sufficient to produce n diverse models that are different from fb. More precisely,
higher perturbations lead to a larger distance between the initial fb and a student model f (i)

s , which
additionally contribute to greater movement of the decision function of fb. However, the n pertur-
bations are constrained by the need to preserve the prediction accuracy of fb for each student model
f
(i)
s . As shown in Algorithm 1 (line 2), we perturb the parameters θb by adding noise sampled from

the Laplace distribution.
Laplace distribution is defined as 1

2λ
exp(− |θb−µ|

λ
) [107]. The center of the post-perturbation

weights distribution is the original weights θb. We fix the mean value of the added Laplace noise
as µ = 0 (line 2). The perturbation bound defined by the Laplace distribution is exp(λ), which is a
function of the noise scale λ, also called the exponential decay. Our choice of the Laplace mecha-
nism is motivated by the way the exponential function scales multiplicatively, which simplifies the
computation of the multiplicative bound exp(λ).

However, there is no exact method to find the maximum noise scale λmax > 0 that guarantees
acceptable accuracy of a generated student model. Thus, we approximate λmax empirically with re-
spect to the candidate student model by incrementally using higher values of λ > 0 until we obtain
a maximum value λmax that results in a student model with unacceptable accuracy. Additionally,
we explore the impact of increasing λ on the overall performance of the prediction framework and
the transferability rate of evasion attacks across the n models (Section 5.3.5). We note that the
randomness of Laplace noise allows the generation of n different student models using the same
noise scale λ. Furthermore, even in case of a complete disclosure of the fabric of our approach,
it is still difficult for an adversary to reproduce the exact pool of n models to use for adversarial
example generation, due to the random aspect of the model pool generation approach.

Step-2: Retraining on Transformed Data. Minor distortions of the parameters of fb have the
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Algorithm 1: Student model generation.
Result: fs : student model

1 Input:
fb: base model;
Xtrain : training set;
Xtest : testing set;
accb ← Accuracy(fb, Xtest);
Ti : data transformation function;
λ > 0 : noise scale;
ϵ > 0 : used to detect the convergence of model training;
max acc loss : allowed margin of accuracy loss between fb and fs;
adv train : boolean variable that indicates whether to train student model on adversarial data;
Λ : mixture of evasion attacks to use for adversarial training when adv train = TRUE;
Step-1:// model weights perturbation.

2 fs ← fb + Lap(0, λ);
// Lap(µ, λ) returns an array of noise samples drawn from Laplace

distribution 1
2λ exp(− |θb−µ|

λ )
3 Step-2:// retraining on transformed data.
4 fs ← retrain(fs, Ti(Xtrain), Xtest, ϵ, Adv = FALSE);

accs ←Accuracy(fs, Xtest);
while accb − accs > max acc loss do

5 repeat Step-1 and Step-2 with smaller λ;
6 end
7 Step-3:// retraining on adversarial data.
8 if adv train then
9 fs ←retrain(fs, Λ(Ti(Xtrain)), Xtest, ϵ, Adv = TRUE);

// check accuracy loss on clean test set.
10 accs ← Accuracy(fs, Xtest);

while accb − accs > max acc loss do
11 fs ← retrain(fs, Ti(Xtrain), Xtest, ϵ, Adv = FALSE);

12 end
13 end

potential to reduce the prediction accuracy of the resultant student model. Consequently, Step-1 is
likely to produce student models that are less accurate than fb. An accuracy recovery measure is
necessary to ensure that each student model has acceptable accuracy close enough to fb. To that
end, we retrain the n newly created student models (line 3).

Diversity of the model pool is crucial for Morphence-2.0 ’s MTD core such that adversarial
examples are less transferable across models (Challenge-3). In this regard, retraining all student
models on Xtrain used for fb results in models that are too similar to the decision function of fb. It
is, therefore, reasonable to use a distinct training set for each student model. To tackle data scarcity,
we harness data augmentation techniques to perform n distinct transformations {T1, ..., Tn} on the
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Algorithm 2: Student model retraining.

Result: f (i)
s : student model

1 Def Retrain(f (i)
s , Xretrain, Xtest, ϵ, Adv):

// For adversarial training we use adversarial test examples
for validation.

2 if Adv = TRUE then
3 Xtest ← Λ(Xtest)
4 end
5 acctmp ← Accuracy(f (i)

s , Xtest);
epochs← 0;
while TRUE do

6 f
(i)
s .train(Xretrain, epoch = 1);

acc← Accuracy(f (i)
s , Xtest);

// check training convergence.
7 if epochs mod(5) = 0 then
8 if |acc− acctmp| < ϵ then
9 break;

10 else
11 acctmp ← acc;
12 end
13 end
14 epochs← epochs+ 1;

15 end

original training set Xtrain (e.g., translation, rotation, etc). The translation distance or the rotation
degree are randomly chosen with respect to the validity constraint of the transformed set Ti(Xtrain).
A transformed sample is valid only if it is still recognized by its original label. In our case, for each
dataset, we use benchmark transformations proposed and validated by previous work [125]. We
additionally double-check the validity of the transformed data by verifying whether each sample is
correctly predicted by fb.

Algorithm 2 illustrates Retrain(fs,Xretrain,Xtest,ϵ,Adv) the student model retraining
function. It takes as inputs: a student model fs, a retraining set Xretrain = Ti(Xtrain), a testing set
Xtest, a small positive infinitesimal quantity ϵ → 0 used for training convergence detection, and a
boolean flag Adv. As indicated on line 15 of Algorithm 1, Adv is FALSE since the retraining data
does not include adversarial examples. The algorithm regularly checks for training convergence
after a number of (e.g., 5) epochs. The retraining convergence is met when the current accuracy
improvement is lower than ϵ (lines 7–13 in Algorithm 1).

The validity of the selected value of the noise scale λ used in Step-1 is decided by the outcome
of Step-2 in regaining the prediction accuracy of a student model. More precisely, if retraining the
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student model (i.e., Step-2) does not improve the accuracy, then the optimisation algorithm that
minimizes the model’s loss function is stuck in a local minimum due to the significant distortion
brought by weight perturbations performed in Step-1. In this case, we repeat Step-1 using a lower
λ, followed by Step-2. The loop breaks when the retraining succeeds to regain the student model’s
accuracy, which indicates that the selected λ is within the maximum bound λ < λmax (Algorithm
1, lines 4-6). For more control over the accuracy of deployed models, we define a hyperparameter
max acc loss, that is configurable by the defender. It represents the maximum prediction accuracy
loss tolerated by the defender.

Step-3: Adversarial Training a Subset of p Student Models.
To motivate the need for Step-3, let us assess our design using just Step-1 and Step-2 with

respect to challenges 1–3. Suppose Morphence-2.0 is deployed based only on Step-1 and Step-2,
and for each input it picks the most confident student model and returns its prediction. On clean
inputs, the MTD strategies introduced in Step-1 (via model weights perturbation) and Step-2 (via
retraining on transformed training data) make Morphence-2.0 a moving target with nearly no loss
on prediction accuracy. On adversarial inputs, an input that evades student model f (i)

s is less likely
to also evade another student model f (j)

s because of the significant reduction of transferability
between student model predictions because of Step-2. However, due to the exclusive usage of
clean inputs in Step-1 and Step-2, an adversarial example may still fool a student model on first
attempt. We note that the success rate of a repeated evasion attack is low because the randomness
introduced in Step-1 disarms the adversary of a stable fixed target model that returns the same
prediction for repeated queries on a given adversarial input. To significantly reduce the success
of one-step attacks, we introduce selective adversarial training to reinforce the MTD strategy built
through Step-1 and Step-2. More precisely, we perform adversarial training on a subset p < n

models from the n student models obtained after Step-2 (lines 7–13 in Algorithm 1). We note
our choice of adversarial training is based on the current state-of-the-art defense. In principle, a
defender is free to use a different (possibly better) method than adversarial training.

Why adversarial training on p < n student models? There are three intuitive alternatives
to integrate adversarial training to the MTD strategy: (a) adversarial training of fb before Step-1;
(b) adversarial training of all n student models after Step-2; or (c) adversarial training of a subset
of student models after Step-2. As noted by prior work [98], (a) is bound to result in an inherited
robustness for each student model, which costs less execution time compared to adversarial training
of n student models. However, in this case, the inherent limitation of adversarial training, i.e.,
accuracy reduction on clean inputs, is also inherited by the n student models. Alternative (b) suffers
from similar drawbacks. By adversarially training all n models, while making individual student
models resilient against adversarial examples, we risk accuracy loss on clean data. Considering
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the drawbacks of (a) and (b), we pursue (c). In particular, we select p < n student models for
adversarial training (lines 7–13 in Algorithm 1). Consequently, the remaining n−p models remain
as accurate as fb on clean data in addition to being diverse enough to reduce attack transferability
among them.

Adversarial training approach. We now explain the details of adversarially training a student
model with respect to Algorithm 1. Once again, the Retrain function illustrated in Algorithm 2
is invoked using different inputs (line 11). For instance, Xretrain = Λ(Ti(Xtrain), which indicates
that fs is trained on adversarial examples, is generated by performing a mixture of evasion attacks
Λ on the transformed training set Ti(Xtrain) specified for student model f (i)

s . To reduce accuracy
decline on clean data, we shuffle the training set with additional clean samples from Ti(Xtrain).
Furthermore, we use more than one evasion attack with different perturbation bounds ||δ|| < ξ

for adversarial samples generation to boost the robustness of the student model against different
attacks (e.g., C&W [35], gradient-based [55], etc). Like Step-2, the training convergence is reached
if the improvement of the model’s accuracy on adversarial examples (i.e., the robustness) recorded
periodically, i.e., after a number (e.g., 5) of epochs, becomes infinitesimal (lines 7–13 in Algorithm
2).

How to choose the values of p and n? The values p and n are defender-chosen hyper-
parameters. Ideally, larger n favors the defender by creating a wider space of movement for
a model’s decision function (thus creating more uncertainty for repeated or correlated attacks).
However, in practice n is conditioned by the computational resources available to the defender.
Therefore, here we choose not to impose any specific values of n. We, however, recall that Qmax is
proportional with the time needed to generate a pool of n models. Therefore, it is plausible that n
need not be too large to lead to a long extension of the expiration time of the pool of n models due
to a longer period Tn needed to generate n models that causes a large value of Qmax. Regarding
the number of adversarially-trained models (p), there is no exact method to select an optimal value.
Thus, we empirically examine all possible values of p between 0 and n to explore the performance
change of Morphence-2.0 on clean inputs and adversarial examples. Additionally, we explore the
impact of the value p on the transferability rate across the n student models (results are discussed
in Section 5.3.5).

5.2.3 Scheduling Strategy

In the following, what we mean by scheduling strategy is the act of selecting the model that returns
the label for a given input. There are multiple alternatives to reason about the scheduling strategy.
Randomly selecting a model or taking the majority vote of all student models are both intuitive
avenues. However, random selection does not guarantee effective model selection and majority
vote does not consider the potential inaccuracy of adversarially trained models on clean queries.
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Most Confident Model. We rather adopt a strategy that relies on the confidence of each student
model. More precisely, given an input x, Morphence-2.0 first queries each student model and
returns the prediction of the most confident model. Given a query x, the scheduling strategy is
formally defined as: argmax{f (1)

s (x), ..., f
(n)
s (x)}.

OOD-Powered Scheduling. On top of Morphence-1.0 , we extend our scheduling strategy
with a pre-cursor decision component that determines whether an input needs to be predicted by
the most confident model from the pool of p adversarially trained models or the most confident
model of the remaining n − p undefended models. Cognizant of the cost of robustness using ad-
versarial training (i.e., accuracy loss on benign data), we aim to guide the scheduling approach to
send benign queries to the n− p highly accurate undefended models, while any adversarial query
is sent to the remaining p models that are defended by adversarial training. To this end, as mo-
tivated in section 7.1, we leverage recent advances in OOD detection to separate between benign
in-distribution queries from potential adversarial examples that are most likely OOD. Specifically,
we adopt the current state-of-the-art method called SSD that trains a self-supervised outlier detec-

tor through learning a feature representation of the data distribution Ptrain used to train the target
model f . Given an input sample x, SSD computes how far x is distant from the training data dis-
tribution using the Mahalabolis distance metric (M(x,Ptrain)) [109] (Section 5.1.1). Although,
most adversarial examples are known to be OOD examples [13], in order to effectively use SSD as
an adversarial examples detector, a threshold definition (τ ) is necessary to separate between poten-
tial OOD adversarial examples and benign in-distribution queries that exhibit tolerable distribution
shifts (i.e., M(x,Ptrain) < τ ) from those that are far away from Ptrain due to potential adversarial
perturbations (i.e., M(x,Ptrain) ≥ τ ).

OOD Detection Threshold Determination. The OOD distance score of an adversarial exam-
ple M(x + δ,Ptrain) tends to be higher than the distance of benign inputs, i.e., M(x,Ptrain), due
to distribution shifts that can be caused by adversarial perturbations. In Figure 5.2, we compare
the OOD scores (y-axis) of FGSM samples on CIFAR10 (red points) to the OOD scores of benign
samples (green points). Figure 5.2 visually confirms that most of the adversarial samples (red)
have higher OOD scores compared to the benign samples (green). However, a threshold is needed
to define the maximum allowable distance M(x,Ptrain) that a sample x can record in order to be
considered benign. To this end, we refer to a subset of benign in-distribution training data that
we use for threshold selection. We call it tuning data Xτ ∼ Ptrain. Intuitively, we can select as
a threshold the maximum distance score recorded by samples in the tuning data Xτ . Formally,
τ = maxx∈Xτ M(x,Ptrain). With respect to Figure 5.2, such a threshold would fail in practice.
Particularly, we observe few green points (benign) that have OOD scores similar or higher than
most red points (adversarial). Such unexpected outliers in Xτ can make τ very high. Therefore,
it would classify most of adversarial examples as benign. Furthermore, the threshold should be
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agnostic to the studied attack (e.g., FGSM) and dataset (e.g., CIFAR10). Hence, a fixed threshold
is not a suitable choice. Moving forward, in Figure 5.2, we explore the kth percentile (black curve)
of Xτ as a threshold with respect to different values of k (x-axis). In other words, we select as
threshold τ the lowest OOD score in Xτ that is greater than a k% of all scores recorded by x ∈ Xτ .
Formally,

τ = kthPercentile{M(Xτ ),Ptrain)} (5.1)

k is a variable that can be changed with respect to the studied dataset and attacks. For instance,
in Figure 5.2, k in the range [85th, 95th] is above the mean of benign samples (Xτ ) and below
the mean of their adversarial counterparts (X ′

τ ). Consequently, one can separate between benign
and adversarial samples while ignoring outliers of benign samples that have an OOD score higher
than k% of all other samples in Xτ . By leveraging the kthpercentile selection strategy we find a
tradeoff between accurately detecting adversarial examples and avoiding false positives. In section
5.3.2, we investigate the effectiveness of the scheduling strategy compared to the most confident
model approach.

Figure 5.2: kth percentile threshold for OOD detection.
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5.2.4 Model Pool Renewal

Given that n finite, with enough time, an adversary can ultimately build knowledge about the
prediction framework through a series of queries. For instance, if the adversary correctly guesses
model pool size n, it is possible to map which model is being selected for each query by closely
monitoring the prediction patterns of multiple examples. Once compromised, the whole framework
becomes a sitting target since its movement is limited by the finite number n.

On way to avoid such exposure is abstaining from responding to a “suspicious” user [53]. How-
ever, given the difficulty of precisely deciding whether a user is suspect based solely on the track
of their queries, this approach has the potential to result in a high abstention rate, which unneces-
sarily leads to denial of service for legitimate users. We, therefore, propose a relatively expensive
yet effective method to ensure the continuous mobility of the target model without sacrificing the
quality of service. More precisely, we actively update the pool of n models when a query budget
upper bound Qmax is reached. To maintain the quality of service in terms of query response time,
the update needs to be seamless. To enable seamless model pool update, we ensure that a buffer
of batches of n student models is continuously generated and maintained on stand-by mode for
subsequent deployments.

The choice of Qmax determines how dynamic the target model under the condition: ”the buffer

of pools of models is never empty at a time of model batch renewal”.
Suppose at time t the buffer contains Kt pools of models. A new pool is removed from the buffer
after every period of Qmax queries and a clean-slate pool is activated. Thus, the buffer is exhausted
after Kt.Qmax number of queries. Supposing that the per-query response time is Tq and the gen-
eration of a pool of n models lasts a period of Tn, the above condition is formally expressed as:

Kt.Qmax.Tq > Tn, s.t. Kt > 0. The inequality implies that the time to exhaust the whole buffer
of pools must be always greater than the duration of creating a new pool of n models. Additionally,
it shows that Qmax is variable with respect to the time t and the number of models in one pool n.
Ideally, Qmax should be as low as possible to increase the mobility rate of target model. Thus, the
optimal solution is Tn

Kt.Tq
.

5.3 Evaluation

We now evaluate Morphence-2.0 . Section 5.3.1 presents experimental setup. Section 5.3.2 com-
pares Morphence-2.0 with the undefended base model, adversarially trained base model, and
Morphence-1.0 . Section 5.3.3 evaluates the effectiveness of the scheduling strategies. Section
5.3.4 examines the impact of dynamic scheduling and model pool renewal. Finally, Section 5.3.5
sheds light on the impact of individual Morphence-2.0 components on robustness and attack trans-
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ferability.

5.3.1 Experimental Setup

To enable a fair comparison with Morphence-1.0 , we evaluate Morphence-2.0 using the same ex-
perimental setup introduced in Morphence-1.0 ’s paper [13]. We also experiment both approaches
against additional attacks.

Datasets: We use two benchmark datasets: MNIST [80] and CIFAR10 [73]. We use 5K test
samples of each dataset to perform 5K queries for evaluation.

Attacks: We use three white-box attacks (FGSM [55], PGD [89], and C&W [35]) and one
black-box attack (SPSA [128]). Details of these attacks appear in Morphence-1.0 [13]. For C&W,
PGD, and FGSM, we assume the adversary has white-box access to fb. For SPSA, the adversary
has oracle access to Morphence-2.0 . We carefully chose each attack to assess our contribution
claims. For instance, C&W, one of the most effective white-box attacks, is suggested as a bench-
mark for ML robustness evaluation [33]. PGD is a widely used gradient-based attack that can
reach a higher evasion rate, while FGSM is fast and scalable on large datasets and generalizes
across models [78]. In addition, the relatively high transferability rate of FGSM attacks across
models makes it suitable to evaluate the effectiveness of Morphence-2.0 ’s different components
to reduce attack transferability across student models. To explore Morphence-2.0 ’s robustness
against query-based black-box attacks, we employ SPSA since it performs multiple correlated
queries to craft adversarial examples. For all attacks we use a perturbation bound ||ξ||∞ < 0.3.

Base Models: As base models we reuse the same models previously introduced in [13]. No-
tably, 6-layer CNN model that reaches a test accuracy of 99.72% (i.e.,“MNIST-CNN”) and a CNN
CIFAR10 model [40] that reaches an accuracy of 83.63% on a test set of 5K (i.e., “CIFAR10-
CNN”).

Baseline Defenses: In accordance with the baseline defenses adopted in [13], for both datasets,
we compare Morphence-2.0 with an undefended fixed model, an adversarially-trained fixed model,
and Morphence-1.0 .

Hyper-parameters: We refer to the same hyper-parameters in [13]. Notably, we use 5 pools
of models where each of size n = 10, Qmax = 1K.

In Table 5.1, for MNIST, we fix λ = 0.1, p = 5 and for CIFAR10, we use λ = 0.05 and p = 8

or p = 9. More details about hyper-parameters tuning is explained in [13].
Metrics: As adopted in [13], we use Accuracy and Average Transferability Rate (ATR) ([13]).

We compute ATR across all n models to evaluate the effectiveness of the data transformation mea-
sures at reducing attack transferability. To compute the transferability rate from model f (i)

s to
another model f (j)

s , we calculate the rate of adversarial examples that succeeded on f
(i)
s that also

succeed on f
(j)
s . Across all student models, ATR is computed as:
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MNIST-CNN Accuracy CIFAR10-CNN Accuracy

Attack Undefended Adv-Train Morphence-1.0 Morphence-2.0 Undefended Adv-Train Morphence-1.0 (p = 8, p = 9)
Morphence-2.0 (p = 9)

τ = 95th τ = 90th τ = 95th τ = 90th

No Attack 99.72% 97.17% 99.04% 99.58% 99.58% 83.63% 75.37% 84.64%, 82.65% 83.34% 79.44%
FGSM [55] 9.98% 42.38% 71.43% 86.48% 86.48% 19.98% 36.62% 36.44%, 38.78% 46.82% 46.82%
PGD [89] 0.3% 4.14% 58.02 94.08% 94.08% 10.13% 14.47% 10.14%, 10.28% 28.19% 52.04%
C&W [35] 0.0% 0.0% 97.75% 92.28% 96.41% 1.25% 1.34% 44.50%, 40.91% 45.08% 44.67%

SPSA [128] 29.04% 59.43% 97.77% 98.07 98.62% 38.96% 59.08% 60.85%, 62.83% 70.06% 75.13%

Table 5.1: Morphence-2.0 robustness compared to an undefended, adversarially trained fixed
model, and Morphence-1.0 .

ATR =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

Nadv(f
(i)
s → f

(j)
s )

Nadv(f
(i)
s )

,

where Nadv(f
(i)
s ) = {x′ ∈ X ′

test; f
(i)
s (x′) ̸= ytrue} is the number of adversarial examples

that fooled f
(i)
s and Nadv(f

(i)
s → f

(j)
s ) = {x′ ∈ Nadv(f

(i)
s ); f

(j)
s (x′) ̸= ytrue} is the number of

adversarial examples that fooled f
(i)
s that also fool f (j)

s .

5.3.2 Robustness Against Evasion Attacks

Based on results summarized in Table 5.1, we now evaluate the robustness of Morphence-2.0
compared with the undefended base model, adversarially trained base model, and Morphence-
1.0 across the 4 reference attacks. Note that we are particularly interested in the difference in
robustness between Morphence-1.0 (scheduling: based on most confident model) and Morphence-
2.0 (scheduling: powered by OOD detector).

Robustness in a nutshell: Across all attacks and threat models, both Morphence-1.0 and
Morphence-2.0 are more robust than adversarial training for both datasets. On MNIST, across all
four attacks, Morphence-1.0 and Morphence-2.0 significantly outperform adversarial training by
an average of ≈ 55% and ≈ 67%, respectively. On CIFAR10, Table 5.1 suggests similar results.
On CIFAR10, Morphence-1.0 improves robustness by ≈ 2% on FGSM and ≈ 4% on SPSA
when p = 9. With regards to C&W, it drastically improves robustness compared to the baseline
models (i.e., ≈ 41%) while we observe a small decrease against PGD (more explanation in 5.3.3).
Additionally, Morphence-2.0 , further improves our results. It outperforms adversarial training
across all attacks by an average of 22% for both OOD detection threshold configurations. These
findings show that Morphence-2.0 is more robust than Morphence-1.0 when powered by OOD
detection for input scheduling.

Accuracy loss on clean data: Table 5.1 indicates that, unlike adversarial training on a fixed
model, Morphence-2.0 does not sacrifice accuracy to improve robustness. For instance, while ad-
versarial training drops the accuracy of the undefended MNIST-CNN by ≈ 3%, both Morphence-
1.0 and Morphence-2.0 maintain it close to its original value (> 99%). Similar results are ob-
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served on CIFAR10. On one hand, even after using 9 adversarially-trained models (p = 9) of
n = 10 student models for each pool, the accuracy loss is ≤ 1% for Morphence-1.0 . As for
Morphence-2.0 , it becomes marginal when the threshold is set to the 95th percentile (τ = 95th).
On another hand, adversarial training sacrifices 8.26% of the original accuracy of CIFAR10-CNN.
These results are linked to the effectiveness of the adopted scheduling strategy to assign clean
queries mostly to student models that are not adversarially trained, thus, accurate on clean data
(more details in 5.3.3). Furthermore, Morphence-2.0 can improve the original accuracy for lower
values of p. For instance, Table 5.1 shows an improvement of 1% in the accuracy on CIFAR10
clean data when using Morphence-1.0 with p = 8, compared to the undefended baseline model.
In conclusion, our findings indicate that Morphence-2.0 is much more robust compared to adver-

sarial training on fixed model and Morphence-1.0 while preserving the original accuracy of the

undefended fb.
Robustness against C&W: Inline with the state-of-the-art, Table 5.1 shows that C&W is

highly effective on the baseline fixed models. For both datasets, even after adversarial training,
C&W attack can maintain its high attack accuracy for both datasets (100% on MNIST and ≈ 99%

on CIFAR10). However, it significantly fails to achieve the same attack accuracy on Morphence-
2.0 . For instance, Morphence-1.0 increases the robustness against C&W data by ≈ 97% for
MNIST and ≈ 40% for CIFAR10 compared to adversarial training on fixed model. This signifi-
cant improvement in robustness is brought by the moving target aspect included in Morphence-2.0 .
More precisely, given the low transferability rate of C&W examples across different models, C&W
queries that are easily effective on fb are not highly transferable to the student models, hence less
effective on Morphence-2.0 . More discussion that reinforces this insight is presented in Section
5.3.5.

Robustness against FGSM and PGD: Although known to be a less effective attack than
C&W on the fixed models, FGSM performs better on Morphence-2.0 . For instance, Morphence-
1.0 accuracy on FGSM data is 26.32% less for MNIST and ≈ 3% less for CIFAR10, compared
to C&W. These findings are explained by the high transferability rate of FGSM examples across
student models and fb. Similar behavior is observed for PGD. However, despite the transferability
issue, Morphence-1.0 still improves robustness on FGSM and PGD data. More discussion about
the transferability effect on Morphence-2.0 are provided in Section 5.3.5. It is noteworthy that,
once again, Morphence-2.0 further improves the robustness against FGSM and PGD by an average
margin of ≈ 25% on MNIST and ≈ 20% on CIFAR10 (averaged across FGSM and PGD). These
results confirm the importance of introducing the OOD detector to separate between benign queries
and potential adversarial queries.

Robustness against SPSA: We now turn to a case where the adversary has a black-box pre-
diction API access to Morphence-2.0 to issue multiple queries. The adversary performs iterative
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perturbations of an input to reach the evasion goal. Inline with the adversary’s goal here, SPSA
performs multiple queries using different variations of the same input to reduce the SPSA loss
function. Table 5.1 shows that Morphence-2.0 is more robust on SPSA than the two baseline fixed
models. Due to its dynamic characteristic, Morphence-2.0 is a moving target. Hence, it can derail
the iterative query-based optimization performed by SPSA. More analysis into the impact of the
dynamic aspect is discussed in Section 5.3.4. Consistent with results against white-box attacks,
Morphence-2.0 is also better than Morphence-1.0 against the studied black-box attack, SPSA.
In Section, 5.3.3, analyze scheduling history of Morphence-1.0 vs Morphence-2.0 over benign
queries and adversarial queries of different attacks to verify highlight the improved robustness by
Morphence-2.0 over Morphence-1.0 .

Robustness across datasets: Morphence-2.0 performs much better on MNIST than CIFAR10.
This observation is explained by various factors. First, CNN models are highly accurate on MNIST
(> 99%) than CIFAR10 (≈ 84%). Second, across all attacks, on average, adversarial training is
more effective on MNIST; it not only leads to higher robustness (i.e., ≈ +31% for MNIST com-
pared to≈ +19% for CIFAR10) it also sacrifices less accuracy on clean MNIST data (i.e.,−2.55%
for MNIST compared to −8.26% for CIFAR10). Consequently, the p adversarially-trained student
models on MNIST are more robust and accurate than the ones created for CIFAR10. Finally,
CIFAR10 adversarial examples are more transferable across student models than MNIST. More
results about the transferability factor are detailed in Section 5.3.5.
Observation 1: Compared to adversarial training, both Morphence-1.0 and Morphence-2.0 improve

robustness to adversarial examples on both benchmark datasets (MNIST, CIFAR10) for both white-box

and black-box attacks. This is achieved without sacrificing accuracy on clean data.

5.3.3 Effectiveness of Scheduling Strategy

As illustrated in Section 5.2.3, given an input query, a scheduling strategy selects the most suitable
model for the prediction task. We recall that in Morphence-1.0 the scheduler simply picks the
most confident model from the active batch of all the n models regardless of the nature of the
input, while in Morphence-2.0 we extend the scheduling approach with another decision layer
that separates OOD adversarial inputs from in-distribution benign ones. Our approach aims to
precisely assign adversarial examples to the most confident model from the p adversarially trained
models, while attributing benign queries to the remaining n− p undefended models that are more
accurate on benign data (explained in section 7.2). In Figure 5.3, we keep track of the scheduling
history of different Morphence-1.0 and Morphence-2.0 with respect to clean (benign) queries
and adversarial queries. In the following, as we interpret the scheduling history recorded by each
design on both datasets, we refer to Table 5.1 to explain the impact of the scheduling precision on
improving the robustness of our approach.
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Morphence-1.0
Morphence-2.0: 
95th Percentile

Morphence-2.0: 
90th Percentile

Figure 5.3: Scheduling results of Morphence-1.0 compared to Morphence-2.0 .

On CIFAR10, Morphence-1.0 successfully assigned 91% of the clean queries (blue bar) to
undefended models, which explains its high accuracy on benign data compared to adversarial
training that sacrifices ≈ 8% of the original accuracy (Table 5.1). However, it fails to correctly
handle adversarial queries. Almost all PGD queries (green bar) are falsely assigned to undefended
models which explain the very low accuracy of Morphence-1.0 against PGD attack recorded in
Table 5.1. As for the FGSM queries (orange bar), Morphence-1.0 exhibits a better scheduling
precision, however, it assigns only 42% of FGSM queries to the adversarially-trained models.
On the contrary, powered by the OOD detection, Morphence-2.0 succeeds to assign all FGSM
queries to the adversarially-trained models which reflects the improvement in robustness observed
in Table 5.1. Same results are observed for the PGD queries when k = 90th is used as threshold.
We recall that using a lower threshold τ favors more the detection of adversarial examples while it
tolerates some false positives on benign data. This tradeoff is observed on CIFAR10 results. More
precisely, while Morphence-2.0 with τ = 95th leads to better scheduling precision on benign data
(92%) it scores only 44% on PGD data. A reduction of the threshold to τ = 90th leads to 100%

precision on PGD queries while it scores worse on clean data. These findings explain why, in
Table 5.1, Morphence-2.0 with τ = 90th records better robustness but it sacrifices more accuracy
on CIFAR10 benign data.

On MNIST, Morphence-2.0 scores a perfect scheduling precision for both threshold configu-
rations. In other words, all adversarial queries are successfully fed to adversarially trained models,
while all clean queries are assigned to undefended models. Particularly, Figure 5.3 shows that,
for both threshold configurations, unlike Morphence-1.0 , Morphence-2.0 assigns 100% of clean
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Figure 5.4: Impact of model pool renewal on repeating previously successful SPSA queries: Pre-
diction accuracy of pools 2-5 of models on adversarial examples is generated through multiple
queries on pool-1.

(a) p vs. accuracy. (b) p vs. average transferability rate.

Figure 5.5: # adversarially trained models p with respect to accuracy (left) and transferability rate
(right).

queries only to undefended models, while it attributes 100% of FGSM and PGD queries to ad-
versarially trained models. Such high scheduling precision on MNIST explains the significant
improvement in robustness by Morphence-2.0 in Table 5.1.
Observation 2: The OOD-powered scheduling in Morphence-2.0 is more effective than the scheduling

strategy in Morphence-1.0 which relies on the most confident model.

Observation 3: In Morphence-2.0 , a careful configuration of the percentile order k is mandatory

to find the defender-desired trade-off between adversarial example detection (higher robustness) and

benign example detection (high accuracy on benign data).

5.3.4 Model Pool Renewal vs. Repeated Attacks

To diagnose the impact of the model pool renewal on the effectiveness of repeated adversarial
queries, we perform the SPSA attack by querying only pool-1 of Morphence-2.0 . Then we test
the generated adversarial examples on the ulterior pools of models (i.e., pools 2–5). For this
experiment, we adopt the notation Failed Repeated Queries (FRQ) that represents the number
of ineffective repeated adversarial queries (“a” in Figure 5.4) from the total number of repeated
previous adversarial queries (“b” in Figure 5.4). Results are shown in Figure 5.4. With respect
to the baseline evasion results (i.e., accuracy of pool-1 on SPSA), we observe for both datasets
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an increase of the accuracy (hence robustness) of ulterior pools (i.e., pools 2–5) on SPSA data
generated by querying pool-1. These findings indicate that some of the adversarial examples that
were successful on pool-1 are not successful on ulterior pools (i.e., FRQ> 0). More precisely,
on average across different pools, ≈ 87% of the previously effective adversarial examples failed
to fool ulterior pools on MNIST (FRQ = a

b
≈ 87%). As for CIFAR10, ≈ 21% of previously

effective adversarial examples are not successful on ulterior pools (FRQ = a
b
≈ 21%). These

results reveal the impact of the model pool renewal on defending against repeated adversarial
queries. However, we note that unlike MNIST, repeated CIFAR10 adversarial queries are more
likely to continue to be effective on ulterior pools (≈ 79% are still effective), which indicates the
high transferability rate of SPSA examples across different pools.
Observation 4: Morphence-2.0 significantly limits the success of repeating previously successful ad-

versarial examples due to the model pool renewal step that regularly and seamlessly updates the model

pool to invalidate patterns in adversary’s observations.

5.3.5 Impact of Model Pool Generation Components

We now focus on the impact of each component of the student model generation steps on Morphence-
2.0 ’s robustness and transferability rate across student models. To that end, we generate different
pools of n = 4 student models using 0 < λ < λmax and 0 ≤ p ≤ n. We monitor changes in
accuracy and ATR across the n student models for different values of λ until the maximum bound
λmax is reached. Additionally, we perform a similar experiment where we try all different possible
values of 0 ≤ p ≤ n. Finally, we evaluate the effectiveness of training each student model on a
distinct set and its impact on the reduction of the ATR compared to using the same Xtrain to train
all student models.

Retraining on adversarial data. For this experiment, we fix a λ value that offers acceptable
model accuracy and try all possible values of p (i.e., 0 ≤ p ≤ 4).

Impact on robustness against adversarial examples: Figure 5.5a shows accuracy of Morphence-
2.0 with respect to 0 ≤ p ≤ 4, for both datasets. For all attacks on MNIST, a 0 → n increase
in p leads to a higher robustness. Similar results are observed for SPSA and FGSM on CIFAR10.
However, the accuracy on C&W data is lower when p is higher which is consistent with CIFAR10
results of Morphence-1.0 in Table 5.1 (p = 8 vs. p = 9). As stated earlier (Section 5.3.2), ad-
versarial training on CIFAR10 leads to a comparatively higher accuracy loss on clean test data.
Consequently, the accuracy on clean data decreases when we increase p (“No attack” in Figure
5.5a). We conclude that, retraining student models on adversarial data is a crucial step to improve
the robustness of Morphence-2.0 . However, p needs to be carefully picked to reduce accuracy
distortion on clean data caused by adversarial training (especially for CIFAR10), while maximiz-
ing Morphence-2.0 ’s robustness. From Figure 5.5a, for both datasets, p = 3 serves as a practical
threshold for n = 4 (it balances the trade-off between reducing accuracy loss on clean data and

66



increasing accuracy on adversarial data).
For p = 0, although no student model is adversarially trained, we observe an increase in

Morphence-2.0 ’s robustness. For instance, compared to the robustness of the undefended model
on MNIST reported in Table 5.1, despite p = 0 (Figure 5.5a), the accuracy using a pool of 4

models is improved on FGSM data (9.98% →≈ 18%). Similar results are observed for C&W
on both datasets (MNIST: 0% →≈ 91%, CIFAR10: 0% →≈ 42%). These findings, once again,
indicate the impact of the MTD aspect on increasing Morphence-2.0 ’s robustness against evasion
attacks.

Impact on the evasion transferability across student models: Adversarially training a subset of
student models leads to more diverse student models compared to those trained on just clean data
– this might reduce ATR across models. Figure 5.5b shows ATR of SPSA and FGSM adversarial
examples across student models for 0 ≤ p ≤ 4. We choose SPSA and FGSM in view of their high
transferability across ML models. Figure 5.5b shows that, for both datasets, ATR of both attacks is
at its highest rate when p = 0. Then, it decreases for larger values of p (i.e., p = 1 → 3), until it
reaches a minimum (i.e., p = 2 for MNIST and p = 3 for CIFAR10). Finally, ATR of both attacks
increases again for p = n = 4. In this final case, all student models are adversarially trained,
therefore they are less diverse compared to p ∈ {1, 2, 3}. We conclude that the choice of p has an
impact, not only on the overall performance of Morphence-2.0 , but also on the ATR across student
models.

Noise Scale λ. We begin with p = 3 and incrementally try different configurations of λ > 0

until we reach a maximum bound λmax. In Figures 5.6a and 5.6b, with respect to different values
of 0 < λ < λmax, we investigate the impact of the weights perturbation step on accuracy and
on ATR across student models. For both datasets, λmax is presented as a vertical bound (i.e., red
vertical line).

Impact on ATR: Figure 5.6b indicates that an increase in the noise scale λ, generally, leads
to the decrease of the transferability rate of adversarial examples across student models, for both
datasets. This observation is consistent with our intuition (in Section 7.2) that higher distortions
on fb weights lead to the generation of more diverse student models.

Impact on the accuracy: For MNIST dataset, we observe that higher model weights distortion
(i.e., higher λ) leads to less performance on clean data and on all the studied adversarial data (e.g.,
C&W, FGSM and SPSA). As for CIFAR10, Figure 5.6a indicates different results on SPSA and
FGSM. For instance, unlike C&W examples, which are much less transferable, the accuracy on
FGSM data reaches its highest when λ = 0.05. Similarly, we observe an increase of the accuracy
on SPSA data for λ = 0.05. Next, we further discuss the difference in accuracy patterns on FGSM
and SPSA between MNIST and CIFAR10.

Best λ configuration: On MNIST, λ = 0.1 represents a tradeoff that balances the reduction
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(a) λ vs. accuracy.

MNIST (p=3) CIFAR10 (p=3)

(b) λ vs. average transferability rate.

Figure 5.6: Noise scale λ vs. accuracy (left) and average transferability rate (right).
MNIST-CNN CIFAR10-CNN

FGSM SPSA FGSM SPSA
Retraining on Xtrain 0.88 0.52 0.95 0.84
Retraining on Ti(Xtrain) 0.80 0.40 0.86 0.78

Table 5.2: Comparison of ATR of FGSM and SPSA when student models are retrained on Xtrain

vs. on Ti(Xtrain) (p = 0).

of the tansferability rate and the reduction of the accuracy loss, which are conflicting. As for
CIFAR10, we choose λ = 0.05 to balance between Morphence-2.0 performance against non-
transferable attacks (e.g., C&W) and transferable attacks (e.g., FGSM and SPSA).
Observation 5: Morphence-2.0 ’s performance is influenced by the values of its hyper-parameters (e.g.,

λ, n and p). Empirically estimating the optimal configuration of Morphence-2.0 contributes to the

reduction of the ATR across student models, which leads to an increased robustness against adversarial

examples.
Retraining on transformed data: We now evaluate to what extent using data transformation

reduces the transferability rate of adversarial examples. To that end, we compute the ATR of FGSM
and SPSA, and we compare it with the baseline case where all student models are retrained on the
same training set Xtrain. To precisely diagnose the impact of data transformations on transferabil-
ity, we exclude the effect of Step-3 by using p = 0, in addition to the same λ configuration adopted
before. Therefore, we note that the following results do not represent the actual transferability rates
of Morphence-2.0 student models (covered in previous discussions). Results reported in Table 5.2
show that performing different data transformations Ti on the training set Xtrain before retrain-
ing leads to more diverse student models. For instance, we observe ≈ −8, 5% less transferable
FGSM examples on average across both datasets and an average of≈ −9% less transferable SPSA
examples.
Observation 6: Training data transformation is effective at reducing average transferability rate.

Despite Morphence-2.0 advances to reduce ATR, the transferability challenge still has room
for improvement. Prior work examined the adversarial transferability phenomenon [95, 46]. Yet,
rigorous theoretical analysis or explanation for transferability phenomenon is a work in-progress
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in the literature.

5.4 Conclusion

While prior defenses against adversarial examples aim to defend a fixed target model, Morphence
takes a moving target defense strategy that sufficiently randomizes information an adversary needs
to succeed at fooling ML models with adversarial examples. In Morphence, model weights pertur-
bation, data transformation, adversarial training, and dynamic model pool scheduling, and seam-
less model pool renewal work in tandem to defend adversarial example attacks. Our extensive
evaluations across white-box and black-box attacks on benchmark datasets suggest Morphence
significantly outperforms adversarial training in improving robustness of ML models against ad-
versarial examples. It does so while maintaining (at times improving) accuracy on clean data and
reducing attack transferability among models in the Morphence pool. By tracking the success/-
failure of repeated attacks across batches of model pools, we further validate the effectiveness of
the core MTD strategy in Morphence in thwarting repeated/correlated adversarial example attacks.
Looking forward, we see great potential for moving target strategies as effective countermeasures
to thwart attacks against machine learning models.
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CHAPTER 6

Out2In: Towards Machine Learning Models
Resilient to Adversarial and Natural Distribution

Shifts

6.1 Introduction

Despite their compelling performance in experimental benchmarks, Machine learning (ML) mod-
els struggle to maintain their accuracy when deployed in practice, specifically, when facing inputs
that lie out of distribution of their train/test data. The main reason for the poor performance of
ML models in practice has to do with the fundamental assumptions that govern model training and
testing: the IID assumptions [53]. Under the IID assumptions, training and test examples are all
generated independently and from an identical probability distribution. Given a training data and
a test data, both of which are drawn IID from an identical distribution, the goal of the training is to
learn a model that generalizes well on test data, i.e., in-distribution generalization.

When a ML model is deployed in the wild, such as in a ML-as-a-Service (MLaaS) setting,
inputs to the model may no more respect the IID assumptions. Under such a situation, to remain
useful, the model needs to generalize on inputs that lie far away from the model’s natural distribu-
tion, i.e., out of distribution (OOD) generalization. Otherwise, the model’s accuracy degrades to
a level that makes it unreliable for real-life deployment. Relating to ML unreliability in practice,
prior works have revealed that ML models are vulnerable to adversarial examples (i.e., maliciously
perturbed inputs) that successfully deplete prediction accuracy [55, 89, 35].

Early defenses [29, 24] pointed out that adversarial examples can be detected (e.g., using es-
timators) as samples from “unknown class” that should be rejected. In this work, we investigate
the link between both problems (i.e., OOD generalization and adversarial examples) by, first, high-
lighting the observation that the adversarial examples problem is in fact a part of the wider OOD

generalization problem, following the intuition that adversarial inputs may not conform to the IID
setting due to adversarial perturbations. Hence, addressing primarily the OOD generalization
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problem as a major cause of the emergence of adversarial examples. Second, re-purposing OOD
detection approaches for adversarial example detection. Third, exploring different in-distribution
mapping strategies on OOD examples (particularly adversarial examples) instead of rejecting them.

Though not all OOD samples are adversarial, we observe that most adversarial examples are
OOD samples [53], which leads to the speculation that, the lack of OOD generalization is a poten-
tial major cause of the susceptibility to adversarial examples. Recognizing such cause-effect link,
we aim to rethink existing approaches to defend against adversarial examples (effect) by focusing
on the OOD generalization problem (cause) towards ML models robust to not only adversarial
examples but also to natural distribution shifts.

Early attempts [57, 65] to harden ML models against adversarial examples provided only
marginal robustness improvements. Heuristic defenses [94, 42, 25, 141, 135, 88, 58, 31, 119]
were subsequently broken [35, 34, 61, 22]. Although adversarial training [126] remains effective
against known attacks, robustness comes at a cost of accuracy penalty on clean data. Certified

defenses [81, 37, 82] are limited in the magnitude of robustness guarantee they offer and operate
on a restricted class of attacks constrained to LP-norms [81, 134]. Apart from adversarial training,
current defenses share the focus on answering the question “how to defend against adversarial ex-

amples?” instead of exploring the question “why are ML models vulnerable to adversarial exam-

ples?”. We argue that tackling the cause, i.e., lack of OOD generalization, is essential for building
ML models robust to OOD inputs, both adversarial and benign. In this context, adversarial training
techniques [126] can be perceived as attempts to generalize the ML model on adversarial exam-
ples distribution, which makes them share the same motivation as our approach. We, therefore,
compare our approach with adversarial training and ensemble adversarial training.

We propose Out2In to enable a model trained under the IID assumptions and generalizes well
on in-distribution test data to also generalize well on OOD data, both adversarial and benign.
Given an OOD input (x,Pood) and a model f trained with the IID assumptions on a training data
Xtrain sampled from distribution Ptrain, Out2In’s intuition is to detect and perform OOD to in-

distribution mapping of an OOD sample x drawn from Pood to the training distribution Ptrain of
the model. We denote the OOD to in-distribution mapping scheme asM and the act of mapping
an OOD sample x to its in-distribution equivalent as x̃ =M(x). Although OOD to in-distribution
mapping is adaptable to other settings, we focus on image classification. We note that, despite
the technical resemblance, the purpose of this work completely differs from input transformation

defenses that use variational autoencoders (VAEs) [140] to defend against adversarial examples.
More precisely, Out2In tackles the OOD generalization problem while it is particularly resilient
against adversarial examples.

To implement M, we leverage recent advances in Image-to-Image translation [142, 67] that
aim to transfer images from a source distribution to a target distribution while preserving con-
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tent representations. To this end, we explore alternative designs of M to map an OOD sample
to its in-distribution equivalent that is correctly classified by f (in effect f is robust to benign
or adversary-induced distributional shifts). In §7.2, we thoroughly describe the components of
Out2In, including the need for an OOD detector to put apart OOD and IID inputs. We note that
previous efforts in the OOD generalization literature (e.g., [76, 8]) may possibly be adapted to
also achieve generalization on adversarial examples. However, in this work, we choose to leverage
the impressive performance of Image-to-Image translation methods in a wide range of applica-
tions (e.g., generating photographs from sketches [108], from attribute and semantic layouts [70],
converting horses to zebras, etc) to perform in-distribution mapping of OOD samples, particularly
adversarial examples.

We extensively evaluate Out2In across multiple benchmark datasets (MNIST, CIFAR10, Im-
ageNet), multiple reference attacks (FGSM [55], PGD [89], C&W [35], SPSA [129]), and alter-
native designs ofM. When deployed as defense, Out2In outperforms prior related defenses by a
margin of ≈ 27.64% on MNIST, ≈ 40.25% on CIFAR10, and ≈ 40.23% on ImageNet, averaged
across all studied attacks. All this is achieved while preserving the exact original accuracy on
benign data. Furthermore, it generalizes well on non-adversarial OOD examples. Specifically, it
improves the accuracy of a CIFAR10 model on OOD darker images (Pood = Pdark) by a margin
of 35.64% and that of an ImageNet model on OOD sharper images (Pood = Psharp) by a margin of
34.16%.
In summary, we make the following main contributions:

1. We empirically verify that the adversarial examples problem is a special case of the OOD
generalization problem.

2. We propose Out2In, an OOD Generalization approach able to defend against adversarial
examples, while also generalizing on non-adversarial OOD inputs.

3. We propose the first defense that preserves the exact accuracy on benign data.

Our code is available at https://github.com/OOD2IID/Out2In, along with our pre-trained
models and detailed configurations of different experiments.

6.2 Background

6.2.1 Image-to-Image Translation

Overview: In Image-to-Image Translation the goal is to map an input image to an output im-
age that represents its translation to a different distribution [142]. The emergence of GANs [54]
inspired several GAN-based approaches to build accurate models that learn the Image-to-Image
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translation. The first class of approaches are supervised methods that require a paired training set
where each image from the source distribution (X) has a corresponding image in the target dis-
tribution (X̃) [86, 67]. One of the most notable works is pix2pix which uses a conditional GAN
(cGAN). The generation of target images (translated) is conditional on a given input image [67].
pix2pix is generic and can be applied to different tasks (e.g., generating photographs from sketches
[108], from attribute and semantic layouts [70]). However, obtaining paired training data can be
difficult and expensive for some applications where datasets are not largely available (e.g., seman-
tic segmentation [38]). Consequently, unpaired Image-to-Image translation ideas emerged (e.g.,
cycleGAN [142], CoGAN [85], Auto-Encoding Variational Bayes [84]), where the goal is to relate
two data domains: X and X̃ . CycleGAN [142] builds on pix2pix by proposing cycle consistency

loss as a way of using transitivity to supervise training.
Pix2Pix [67]: Pix2Pix is a fully supervised paired image-to-image translation approach and

it employs a conditional GAN (cGAN) architecture that requires specifying a generator model
G : X → X̃ , discriminator model D, and model optimization procedure. Unlike the traditional
GAN, the generator G does not take a point from the latent space as input. Instead, noise is
provided only in form of dropout applied on several layers of the generator at both training and
testing time. The generator model is a U-net that takes as an input an image from the source
domain X and is trained to return a translated image in the target domain X̃ . A U-net is similar to
an encoder-decoder model, it involves down-sampling to a bottleneck and up-sampling again to an
output image. U-net is a convolutional network for image segmentation [103], that is particularly
suitable for experiments like Cityscapes labels2photos, and Edges2photo. In Out2In, we consider
a 6-block ResNet generator instead, given that ResNet models have been particularly successful
on ImageNet and CIFAR10 [60]. The discriminator model takes an image from the source domain
and an image from the target domain and distinguishes whether the image from the target domain
is a real translation or a generated version (fake) of the source image.

CycleGAN [142]: CycleGAN is an unpaired image-to-image translation approach. It trains
two generators, G : X → X̃ and F : X̃ → X , using a forward cycle-consistency loss: F (G(x)) ≈
x and a backward cycle-consistency loss: G(F (x̃)) ≈ x̃. The cycle-consistency losses are used to
further reduce the space of possible mapping functions, by eliminating the ones that are not cycle-
consistent. As a result, for each image x from domain X , the image translation cycle should be able
to bring x back to the original image (i.e., forward cycle consistency). Similarly, G and F should
also satisfy backward cycle consistency. Additionally, two adversarial discriminators DX and DX̃

are introduced where DX distinguishes between images {x} and translated images {F (x̃)} and
DX̃ distinguishes between images {x̃} and translated images {G(x)}. The objective is the sum of
two types of terms: adversarial losses (LGAN) for matching the distribution of generated images
to the data distribution in the target domain; and cycle consistency losses (Lcyc) to prevent the
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learned mappings G and F from contradicting each other. Formally, the full objective is defined
as follows:

L(G,F,DX , DX̃) = LGAN(G,DX̃ , X, X̃)+

LGAN(F,DX , X̃,X) + λLcyc(G,F )
(6.1)

where,

• LGAN(G,Dx̃, X, X̃) = Ex̃∼Pdata(x̃)[logDX̃(x̃)]

+ Ex∼Pdata(x)[log(1−DX̃(G(x))]

• Lcyc(G,F ) = Ex∼Pdata(x)[||F (G(x))− x||1]
+ Ex̃∼Pdata(x̃)[||G(F (x̃))− x̃||1]

• λ controls the relative importance of the two objectives.

CycleGAN uses 9 blocks of ResNet models as generators G and F and a PatchGAN classifier
as discriminators (DG and DF ). It classifies whether 70×70 overlapping patches are real or fake.
Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator
and works well on arbitrarily sized images in a fully convolutional fashion [142].

6.3 Motivation and Threat Model

6.3.1 Motivation

Our goal is to make ML models resilient to adversarial inputs by addressing a more general prob-
lem: the OOD generalization problem. Hence, the main motivation of Out2In is that adversarial
examples include malicious feature perturbations that causes distribution shifts. By performing
FGSM and PGD attacks on CIFAR10 and MNIST inputs we verify that evasion attacks actually
produce OOD malicious samples. Particularly, we compute how distant FGSM, PGD and benign
samples are from the training data distribution, using a state-of-the-art OOD detector (SSD [109],
explained in 5.1.1). Figure 6.1 illustrates the different density ranges of OOD distance returned
by the SSD model for each data distribution (i.e., benign, FGSM and PGD). We observe that the
benign test data is very close to the training distribution, while the majority of adversarial data tend
to be much distant from training distribution due to adversarial perturbations. These findings con-
firm our intuition that our quest to make ML models generalize on adversarial examples is linked
to the wider problem of generalizing ML models on OOD data.
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Figure 6.1: OOD scores of adversarial and benign data on MNIST and CIFAR10. τ is the adversarial
threshold that we define in §7.2.

6.3.2 Threat Model

Our work is developed and tested with respect to a threat model that governs the target ML model
and the assumptions about the adversary’s goals and capabilities.

Target ML model: As a target ML model, we consider a supervised classification model f
trained under the IID assumption to accurately classify input images within a limited set of labels
Y . Thus, it does not deal with unrelated data with labels y /∈ Y . Out2In does not make any changes
on f , it rather ensures that a received input x is within the training distribution of f , independently
of what f is intended to do on x. Consequently, Out2In is applicable on any ML task in the image
domain (e.g., segmentation, object detection, etc).

Adversarial Goals and Capabilities: The main goal is to evade f and confuse it to make
wrong classification on a visibly legitimate image x. To that end, the adversary performs adversar-
ial manipulation on x by carefully adding noise x+ δ. The added perturbation has to preserve the
original visual human interpretation of the image x. For instance, if x is an image of a cat, x+δ has
to be visually interpretable as an image of the same cat. Consequently, the studied evasion attacks
are all subject to a perturbation limit ϵ > 0, that we choose to satisfy the condition ||δ||p < ϵ.
When deployed as a defense, Out2In is anticipated to face strong adversaries that have access to
the target model f and knowledge about its architecture and training data, and weaker but more
realistic attackers that have no access to the model and can only attack it as a black-box prediction
API.
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6.4 Out2In Design

6.4.1 Overview

We consider a model f trained under the IID assumption on a training data (Xtrain, Ptrain). Given
an OOD test sample (x,Pood), where Pood ̸= Ptrain (or Pood ̸= Ptest), f is likely to produce an
incorrect prediction on x, which makes it unsuitable for real-word and high-stakes tasks. We denote
the data distribution used to independently draw training and test samples by Pdata = Ptrain =

Ptest. Thus, an unknown test input (x,Punknown) can be either OOD (Punknown = Pood ̸= Pdata) or
IID (Punknown = Pdata).

As illustrated in Figure 6.2, Out2In involves two key steps: 1) detecting whether or not an input
(x,Punknown) is OOD and 2) mapping an OOD input (x,Pood) to its in-distribution equivalent. In
particular, a test input (x,Punknown) is first received by an OOD detector that decides whether or
not it is an OOD sample. If x is an OOD sample (x,Pood), thenM intervenes to convert x into
its in-distribution equivalent (x̃,Pdata) that can be correctly recognized by f with a confidence as
high as the model’s generalization power on samples from Ptest. Otherwise, if x turns out to be
already drawn from the same data distribution Pdata, f computes its prediction as in the IID case.

OOD Detection: To rule out in-distribution samples from the OOD to in-distribution mapping
goal, we leverage SSD [109], the current state-of-the-art OOD detection method (introduced in
§5.1.1). SSD trains a self-supervised outlier detector through learning a feature representation of
Pdata. SSD only uses the training data that f was trained on, it does not require training on OOD
data, including adversarial data. Given an input sample drawn from Punknown, SSD returns what
we call an OOD score (denoted Sood(x)): it is the distance of x from Pdata. In order to effectively
deploy SSD into our framework, a threshold definition (τ ) is necessary to separate between queries
that exhibit tolerable distribution shift (i.e., Sood(x) < τ ) from those that are far away from Pdata

(i.e., Sood(x) ≥ τ ). Although most of adversarial examples are OOD, when Out2In is deployed
to defend against adversarial examples the threshold is carefully selected to re-purpose the OOD
detector to be an adversarial input detector regardless of whether an input is OOD or not (red line
in Figure 6.1). Hence, in this case, the OOD score can be called adversarial score (i.e., Sadv).
This allows benign input (x,Pdata) to be directly classified by f , without considering any defense
measures that could sacrifice the model’s accuracy on benign data, while taking defensive measures
on adversarial examples. As a result, in adversarial settings, the OOD detector plays the role of
an adversarial examples detector that guides Out2In to maintain the exact accuracy on benign
data. SSD reaches a detection accuracy > 99% on benign OOD data and adversarial examples.
In Section 6.5.4, we empirically confirm that, due to the OOD detector, Out2In does not sacrifice
accuracy on benign data.

OOD to In-Distribution MappingM: Given an OOD sample (x,Pood), the design ofM is
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Figure 6.2: An overview of Out2In.

dictated by the data domain. As stated earlier, the purpose ofM is to translate an OOD sample
(x,Pood) to its in-distribution equivalent (x̃,Pdata), where x̃ = M(x). To this end, Image-to-

Image translation methods (Section 6.2.1) are naturally suitable for realizing M, because our
goal here is inline with that of translating an image from a source distribution to its equivalent
in a target distribution. In the following sections, we explore design alternatives of M. In the
remainder of this chapter, a translatorM will have the form [Src-Dist]2[Target-Dist], where Src-
Dist corresponds to source/input distribution and Target-Dist to target/output distribution. For
adversarial examples, Src-Dist represents the distribution of adversarial examples crafted using
attacks such as FGSM, PGD, C&W, or SPSA. On the other hand, Target-Dist is Pdata of the model
at hand. In the following, we examine two alternative approaches to realizeM: (i) a standalone
translator and (ii) ensemble of translators.

6.4.2 Standalone Translator

We first discuss the case where we consider only one translator:M =M1 = Src-Domain2Target-
Domain.

Source Domain = One Distribution: A standalone translator is trained to solely translate
inputs from a specific source distribution (e.g., PPGD) into Pdata. In practice, an input query
may be drawn from any unknown distribution Punknown. As a result, there is no direct approach
to selecting the source distribution to train M. For instance, if deployed as a defense against
adversarial examples, there is no guarantee that a standalone translator, trained to map FGSM
examples into in-distribution samples (i.e., FGSM2Benign), is able to additionally translate other
attack examples (e.g., PGD, C&W). This issue is similarly faced by adversarial training techniques
(e.g., [126]). For instance, a model trained on FGSM samples is not necessarily robust against
samples from other attacks (e.g., C&W). Hence, in addition to exhaustively examining different
attacks as a source domain (§6.5.2), in the following sections, we discuss other designs to mitigate
this issue.

Source Domain = Mixture of Distributions: Intuitively, one way to enhance the translation
capabilities of a standalone translator M : X → X̃ on different distributions is to train it on a
mixture of distributions as a source domain, i.e., source domain X = ∪i(Xi,Pi). For instance, in
adversarial settings, we consider as a source domain X = ∪i(Xi,PAttacki), composed of the union
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of distinct subsets Xi from different attack distributions PAttacki (i.e., Attacki ̸= Attackj if i ̸= j).
We note that depending on the defender’s preference and priorities (e.g., the strength of attacks),
the proportion of each attack distribution may vary. In particular, each attack distribution Attacki

is represented by a subset of adversarial examples in the source domain X .
Although this design is likely to result in a better generalization of the translation capabili-

ties, it might also decrease the performance compared to separate standalone translators trained
on each attack as one source distribution (e.g., FGSM2Benign, PGD2Benign, etc). Thus, we fur-
ther investigate another alternative design that is likely to maintain the performance of individual
translators while also generalizing the translation capabilities to any attack. We call it Ensemble of

Translators.

6.4.3 Ensemble of Translators

Multiple Standalone Translators: For this design, multiple standalone translators are deployed
together. In adversarial settings, each standalone translator is trained on a source domain of only
one attack distribution. Consequently, the overall in-distribution mapping model is defined as
M = (M1, ...,Mn), where each translatorMi is trained to translate test samples from PAttacki

into Pdata. As illustrated in Figure 6.3, given an adversarial query (x,Padv), each scheme Mi

generates a candidate translation x̃i. Hence, a selection approach is needed to pick the best input
translation and feed it to f for classification. Two selection approaches stand out:
Majority Vote: First, we consider the majority vote approach. Particularly, f predicts the la-
bels of all possible input translations {x̃i}i≤n. The label yi = f(x̃i) with the highest number of
occurrences across all predictions is returned as the final prediction.
Highest Confidence: Another method is to pick the predicted label that has the highest confidence
of the model f , i.e., prediction probability Pf (y). For each possible input x̃i, f attributes a predic-
tion probability to each label y ∈ Y . The selected label is the one that has the highest prediction
probability, in total across all inputs {x̃i}i≤n. Formally, y = maxy∈Y {

∑
{x̃i}i≤n

Pf |x̃i
(y)}.

We note that the ensemble translators design can be extended to, additionally, include other
translators trained to translate non-adversarial OOD samples (x,POOD) where POOD ̸= Padv (e.g.,
blur2clear, sharp2normal, etc). Hence, realizing the goal of OOD generalization, on adversarial
and non-adversarial inputs.

6.4.4 Translator Model Architecture

We leverage Image-to-Image translation methods as tools to implementM. We particularly study
CycleGAN [142] and pix2pix [67], that currently are Image-to-Image translation benchmarks.
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Figure 6.3: Out2In with ensemble of translators.
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Figure 6.4: An illustration of Image-to-Image translation of PGD-adversarial examples on normalized
samples, to POOD using CycleGAN and pix2pix on MNIST, CIFAR10, and ImageNet.

M = CycleGAN: As described in §6.2, Most Image-to-Image translation methods require a
dataset comprised of paired examples [86, 67]. For instance, a summer2winter landscape transla-
tor model needs a large dataset of many examples of summer landscapes and the same number of
their winter counterparts. Gathering paired datasets is challenging for several real-world applica-
tions. In CycleGAN [142], however, there is no need to have paired images, it can be trained using
source training images X that are unrelated to the target training images X̃ (i.e., unpaired dataset).

As a defense against adversarial examples, Out2In can be deployed with CycleGAN as in-
distribution mapping architecture by training a generator G: (Xadv,Pood) → (Xbenign,Pdata) that
generates a benign version of an adversarial input. With respect to the cycle-consistency losses
defined in §6.2.1, a reverse generator F : (Xbenign,Pdata)→ (Xadv,Pood) is additionally trained.
M = pix2pix: We additionally cover the implementation of a supervised translator. In case

paired datasets can be gathered, pix2pix could be more suitable than cycleGAN. Our adaptation to
the original implementation of pix2pix is provided along with its background in §6.2.

Figure 6.4 shows three examples of translating adversarial images from the PGD attack dis-
tribution (on normalized data) to benign images close to the training distribution in three datasets
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(MNIST, CIFAR10, and ImageNet) using M = CycleGAN = PGD2Benign, and M = pix2pix
= PGD2Benign. For all three datasets, PGD training samples are used as the source distribution
PPGD to train M : (X,PPGD) → (X̃,Pbenign). Thus, M can successfully map an OOD input
(PGD image in this case) to the distribution of benign data.

6.5 Evaluation

We evaluate Out2In on three image datasets across alternative designs ofM in two OOD problem
settings: adversarial and benign OOD examples.

6.5.1 Experimental Setup

Datasets: We use three benchmark image classification datasets of different scales (i.e., MNIST [80],
CIFAR10 [73], and ImageNet [75]). Details of these datasets are in Appendix A.

Models: On MNIST, we train a CNN model that reaches a test accuracy of 98.96% (on 10K
samples). For CIFAR10, we adopt a SimpleDLA network that reaches one of the best performances
compared to the state-of-the-art accuracy of 95.19% originally proposed in [77]. For ImageNet,
we use a pretrained ResNet50 model available via PyTorch [136]. On the first 100 classes of
the validation data (i.e., 5K samples), it reaches an accuracy of 83.58%. Details of each model’s
architecture appear in our publicly available code.

Translator Model Architectures: As described in §6.4.4, we leverage CycleGAN for unpaired
datasets and pix2pix for paired datasets. For MNIST, all models are trained on 500 images from the
source distribution and their equivalent in the target distribution. As for CIFAR10 and ImageNet,
1000 training images in each distribution (i.e., source and target distributions) were sufficient to
reach visually accurate image translation. In order to reduce the train/test time of translation mod-
els, we consider only the first 100 of the 1000 classes of ImageNet to train and test M, f and
adversarial training models.

Source Distributions: We test all the definitions ofM discussed in §6.4.2 and §6.4.3 which in-
clude a standalone translator with a single source distribution (PGD, FGSM or SPSA), a standalone
translator with a mixture of source distributions (FGSM, PGD, and C&W ), and an ensemble of
translatorsM = {M1 = PGD2Benign,M2 = FGSM2Benign,M3 = SPSA2Benign}. To
test Out2In against naturally OOD samples, we conduct two experiments with a standalone M
and one experiment with an ensemble of translators. To train different designs ofM, we consider
dark images and images with high sharpness as OOD source distributions. More details about each
experiment are provided in §6.5.2 and §6.5.5 as we discuss the results.

Target Distribution: Inline with the purpose of our approach, the target distribution is always
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Pdata used to train the model f . It is one of MNIST, CIFAR10, or ImageNet training distributions.
Hence, to trainM we use a subset of the training data Xtrain.

Evaluation Metrics: Our evaluation relies on two complementary metrics, prediction Accu-

racy and Relative Robustness.
Accuracy: it computes the rate of correct predictions out of the total number of test samples.

We use this metric to compare the model’s prediction accuracy on OOD data before and after using
Out2In (§6.5.5).

Relative Robustness (RR): The robustness of a ML model on adversarial data is relative to its
performance on benign data. For instance, the best neural network trained on CIFAR10 can only
reach a maximum of 95.19% accuracy on benign data [77]. In order to ensure a fair evaluation of
robustness, we evaluate the model’s performance under attack, relative to its performance before
the attack. In particular, we compute a metric that compares the number of correct predictions
made by f under attack with the number of correct predictions on benign data. We call this metric
the Relative Robustness (RR). Formally, it is defined as: RR(%) =

∑
x∈X{f(x+δ)=ytrue}∑
x∈X{f(x)=ytrue} ×100 ,where

x ∈ X is the test sample, ytrue is the true label of x, and δ is the attack’s perturbation.
On benign data (δ = 0), RR = 100%. On adversarial data, if RR is close to 100%, then

accuracy on adversarial data is close to accuracy on benign data which reflects high robustness.
Otherwise, the model is less robust.

Studied Attacks: We use three white-box attacks (i.e., FGSM [55], PGD [89], and C&W [35]),
where the adversary has knowledge of model f ’s architecture, and a black-box attack (i.e., SPSA [129])
to cover complementary threat models and diverse attack strengths. In a white-box setting, we use
FGSM, PGD, and C&W. In a black-box setting, we use SPSA as one of the representative attacks.

We select ϵ = 0.3 for MNIST and ϵ = 0.2 for CIFAR10. For ImageNet, Out2In maintains its
robustness for ϵ = 0.2. However, we choose to follow the state-of-the-art by using a maximum of
ϵ = 8/255 ≈ 0.031 so as to conduct a fair comparison with prior defenses [106]. For all attacks,
we use ||.||∞ norm except C&W which supports ||.||2.

Studied Defenses: So far, the closest the state-of-the-art got to OOD generalization for ad-
versarial robustness is through adversarial training. An adversarially-trained model is in fact an
improved model that generalizes to adversarial examples, which makes it more robust, albeit its
penalty on benign accuracy. As a result, we consider adversarial training techniques as benchmark
defenses to compare Out2In with the state-of-the-art.

Adversarial training: A training [106, 78] scheme of exposing the model f to adversarial
examples during the training phase in order to learn the correct labels of adversarial test samples.
It has been considered as one of the most effective and practical defenses against evasion attacks,
but with a caveat of sacrificing accuracy on clean data.

Ensemble Adversarial training: Another technique of adversarial training is to train the model
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Figure 6.5: PGD (left) and FGSM (right) against Out2In withM=PGD2MNIST and adversarial training
techniques.

Figure 6.6: PGD (left) and FGSM (right) against Out2In withM=PGD2CIFAR10 and adversarial training
techniques.

Figure 6.7: PGD (left) and FGSM (right) against Out2In withM=PGD2ImageNet and adversarial training
techniques.

on adversarial examples that are generated using a set of different models as target models. It is
more effective against multiple-step attacks, especially black-box attacks [126]. In all subsequent
figures, tables, and discussions we use “Adv-Train” for adversarial training and “Ens-Adv-Train”
for ensemble adversarial training.

Notations: In all the next figures and tables, we use the abbreviated notation “MIX” to refer
to the source distribution of a mixture of attacks, “Ens-M-MV” to denote ensemble translators
with majority vote, and “Ens-M-HC” to denote ensemble translators with highest prediction con-
fidence.
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Evaluation plan: First, we compare Out2In with adversarial training. For a fair comparison,
we perform adversarial training and Out2In using the same training attack distribution. To that
end, we select PGD as it has a fairly reasonable evasion success compared to FGSM and a lower
performance overhead compared to SPSA and C&W [89] (§6.5.2). Second, we compare between
different designs of Out2In (§6.5.3). Additionally, we highlight the utility of OOD detection in
Out2In robustness and we evaluate its performance (§6.5.5). Finally, in §6.5.4 we evaluate Out2In
when deployed to generalize on natural distribution shifts (e.g., darker or sharper images). In
Appendix B and C, we also discuss how to counter adaptive attack against Out2In and extend it to
other domains.

6.5.2 Comparison with Benchmark Defenses

For this experiment, we consider the case where the defender deploys a standalone translator
trained to translate PGD data into in-distribution (e.g., M=PGD2MNIST, M=PGD2CIFAR10,
orM=PGD2ImageNet). For each dataset, we use both CycleGAN and pix2pix. To ensure a fair
comparison with the benchmark adversarial training techniques, we similarly use PGD attack to
perform Adv-Train and ens-adv-train on the target model f . Figures 6.5, 6.6, and 6.7 show the RR

values using Out2In compared to adversarial training techniques against PGD (left) and FGSM
(right) attacks, respectively, for MNIST, CIFAR10, and ImageNet. We additionally refer to Table
6.1 to examine the RR values of different defenses against C&W and SPSA.

Robustness against PGD and FGSM: Figure 6.5 shows that, on average, unlike Adv-Train
(RR ≈ 95%) and Ens-Adv-Train (RR ≈ 93%), Out2In with M=PGD2MNIST maintains RR

> 98% on PGD and FGSM attacks, even for higher attack size (ϵ = 0.3). These results suggest
that using Out2In, the accuracy of f under attack is almost the same as its accuracy on benign data.
Comparable findings are observed on CIFAR10 and ImageNet (Figures 6.6 and 6.7). In partic-
ular, withM=PGD2CIFAR10 andM=PGD2ImageNet, Out2In outperforms adversarial training
techniques by a significant margin. More precisely, considering the worst-case scenario of both
attacks (i.e., CIFAR10: ϵ = 0.2, ImageNet: ϵ = 8/255 ≈ 0.031 ), Out2In outperforms Adv-Train
and Ens-Adv-Train, respectively by a margin of 25.72% and 49.19% on CIFAR10, averaged over
FGSM and PGD. It reaches RR ≈ 75% (Figure 6.6). Additionally, it beats Adv-Train on Im-
ageNet by a margin of 46.14% averaged over FGSM and PGD to reach RR = 77.96% against
PGD and RR = 75.44% against FGSM (Figure 6.7 and Table 6.1). We note that for ImageNet we
consider only Adv-Train as benchmark defense due to the high training time of adversarial training
techniques (especially Ens-Adv-Train).

Takeaway 1: Out2In generalizes to adversarial examples far better than previous adversarial
generalization methods, which suggests its suitability for real-world applications.
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No Attack FGSM PGD C&W SPSA
1

No Defense
MNIST 100% 84.79% 66.69% 0.07% 85.13%

2 CIFAR10 100% 56.48% 2.41% 0.01% 47.70%
3 ImageNet 100% 27.63% 24.06% 0.0% 65.79%
4 Ens-Adv-Train MNIST 99.32% 93.90% 94.19% 1.99% 94.14%
5 CIFAR10 95.87% 34.63% 6.35% 0.71% 41.11%
6

Adv-Train
MNIST 99.57% 95.55% 95.83% 0.86% 95.59%

7 CIFAR10 91.06% 53.13% 41.15% 0.52% 68.41%
8 ImageNet 96.33% 44.69% 16.39% 0.0% 82.01%
9

Out2In with CycleGAN
M = PGD2MNIST 100% 97.08% 97.94% 98.20% 97.44%

10 M = PGD2CIFAR10 100% 69.00% 70.05% 48.90% 64.67%
11 M = PGD2ImageNet 100% 74.06% 75.71% 46.03% 80.27%
12

Out2In with Pix2Pix

M = PGD2MNIST 100% 99.28% 99.48% 99.12% 99.27%
13 M = PGD2CIFAR10 100% 71.29% 74.43% 49.50% 67.58%
14 M = SPSA2CIFAR10 100% 71.26% 74.37% 45.58% 72.69%
15 M = FGSM2CIFAR10 100% 74.96% 78.95% 47.44% 72.70%
16 M = MIX2CIFAR10 100% 60.41% 60.51% 68.69% 56.54%
17 M = Ens-M-MV (CIFAR10) 100% 72.72% 76.48% 48.44% 70.10%
18 M = Ens-M-HC (CIFAR10) 100% 73.53% 77.33% 49.81% 70.38%
19 M = PGD2ImageNet 100% 75.40% 77.96% 25.40% 83.10%

Best result per attack on:
■ MNIST ■ CIFAR10 ■ ImageNet

Table 6.1: Relative Robustness (RR) of variations ofM and adversarial training (Adv-Train) and ensemble
adversarial training (Ens-Adv-Train) for MNIST, CIFAR10, and ImageNet. Attack size ϵ = 0.3 for MNIST,
0.2 for CIFAR10, and 8/255 ≈ 0.031 for ImageNet. All attacks are performed with ||.||∞ except C&W
(with ||.||2).

Accuracy preservation on benign data: On top of its convincing robustness over benchmark
defenses, Figures 6.5, 6.6, and 6.7 show that our defense does not sacrifice accuracy on benign
data (RR = 100% for ϵ = 0), unlike adversarial training techniques that sacrifice the accuracy
on benign data by an average margin (over Adv-Train and Ens-Adv-Train) of ≈ 1% on MNIST,
6.53% on CIFAR10, and 3.67% on ImageNet. This preservation of benign accuracy is attributed
to the adversarial input detector that successfully differentiates between adversarial and benign
test data, and feeds benign (in-distribution) data directly to f without involving M. Additional
experimental insights on the OOD detection performance are discussed later in §6.5.4.

Takeaway 2: Unlike prior methods, Out2In generalizes to adversarial examples without
penalizing accuracy on benign test data.

CycleGAN vs. pix2pix: Although both methods allow Out2In to stand against adversarial
examples and surpass the state-of-the-art results, we note that, on all three datasets, pix2pix is
more effective than CycleGAN in the translation of OOD examples to in-distribution equivalents. It
outperforms CycleGAN by an average margin of≈ 2%,≈ 5%, and≈ 3%, respectively, on MNIST,
CIFAR10, and ImageNet, over both attacks (i.e., FGSM and PGD). We recall that pix2pix is a
supervised learning approach, while CycleGAN is unsupervised (i.e., relies on cycle consistency)
which explains the observed advantage of pix2pix.
Takeaway 3: pix2pix offers better OOD to in-distribution translation success than CycleGAN
on all three datasets.

84



Robustness against unexpected attacks (C&W and SPSA): We recall that Adv-Train and
Ens-Adv-Train are performed using PGD-generated training samples. We further recall that, for a
fair comparison with Out2In, we, similarly, consider only translators trained on PGD samples for
this experiment. Using attacks that were not incorporated in the training ofM, we now evaluate
Out2In against C&W and SPSA as “unexpected” attacks.

From Table 6.1, we focus only on results for M = PGD2MNIST (rows 9 and 12), M =
PGD2CIFAR10 (rows 10 and 13), and M = PGD2ImageNet (rows 11 and 19). Compared to
Adv-Train and/or Ens-Adv-Train results (rows 4-8), for all datasets, we confirm our previous find-
ings on C&W and SPSA. More precisely, while adversarial training techniques are basically de-
feated by the C&W attack (i.e., RR ≈ 1%), Out2In delivers a robust model on MNIST (row 12:
RR = 99.12%) and a significant improvement on CIFAR10 (row 13: RR = 49.50%) and Im-
ageNet (row 11: RR = 46.03%) against C&W. Similar results are observed against a black-box
attack (SPSA), as our defense (MNIST: RR = 99.27% in row 12, CIFAR10: RR = 67.58% in row
13, and ImageNet: RR = 83.10% in row 19) outperforms Adv-Train (MNIST: RR = 95.59%, CI-
FAR10: RR = 68.41%, ImageNet: RR = 82.01%) and Ens-Adv-Train (MNIST: RR = 94.14%,
CIFAR10: RR = 41.11%). Finally, it is noteworthy that, althoughM is only trained to translate
adversarial images generated using PGD attack subject to ||.||∞, it can also translate FGSM and
SPSA images. Furthermore, it is able to maintain the same translation performance on C&W test
images even though they are generated subject to ||.||2 perturbations, especially on MNIST.

We attribute this observation to our design choices in Out2In compared to adversarial training.
In particular, adversarial training changes the model f to another model f ′ trained to recognize
the distribution of attack samples (e.g., PGD). In a white-box setting, just by re-performing the
attack against f ′ the adversary can drastically decrease the gained robustness of adversarial train-
ing. However, in Out2In we do not retrain f . Thus, f still only recognizes the true distribution
of the data. Consequently, performing attacks on f again will not lead to better evasion results
against Out2In. Furthermore, even though an Image-to-Image translator PGD2DATA is trained to
accurately translate PGD samples to the training distribution, it is still capable to also approximate
a translation of any other sample (e.g., from another distribution) close to the training distribution.
In effect, f can make a more accurate response on the approximated translation than f ′ can predict
the true label of an adversarial example that it has not been trained on, which explains our results
in Table 6.1.

Takeaway 4: On MNIST, a standalone translator trained with PGD attack distribution is
sufficient to successfully generalize to other attacks such as FGSM, SPSA and C&W.

We note, however, that these findings are not consistent across the three datasets. In particular,
from Table 6.1, using a standalone translator trained only on PGD (row 13), Out2In performs less
against other attacks, especially on CIFAR10 (i.e., SPSA: ≈ 6.85% less and C&W: ≈ 24.93%
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Figure 6.8: PGD (left) and FGSM (right) against alternative designs ofM.

less) compared to its performance against PGD. However, compared to adversarial training (C&W
≈ 41% less than their performances against PGD), Out2In generalizes much better on unseen
attacks. In §6.5.3, we evaluateM as an ensemble of translators.

Prediction Response Time: As Out2In is composed of two models (i.e., OOD detection and
M) in addition to the target model f , one might argue about its performance overhead and de-
ployability in practice as a prediction API. Thus, we compute its response time (in seconds) to
return a prediction of an input sample. Averaged on 10K samples, we observe that Out2In takes
0.0039 seconds to respond to an MNIST input, while it takes 0.1102 seconds to respond to CI-
FAR10 input. Compared to adversarial training techniques, Out2In adds, respectively, 0.0033 and
0.1076 seconds to make a more accurate and robust response on MNIST and CIFAR10. We note
that this small delay is caused by the OOD/adversarial detector. Particularly, without the OOD
detection layer, we noticed thatM+f together have similar response time to adversarial training
models. In §6.5.4, we experimentally validate the utility of the OOD detector to improve Out2In,
with respect to its added overhead. Our response time results are recorded using a GPU engine:
NVIDIA GeForce GTX 1060, 6GB.

6.5.3 Comparison Among Different Designs ofM

We now evaluate alternative designs of M with respect to the options discussed in §6.4.2 and
§6.4.3. We have already established that pix2pix leads to better results than CycleGAN. Hence,
for the next experiment, we focus only onM = pix2pix. Additionally, we exclude MNIST, since
M = PGD2MNIST is sufficient to reach more than 99% robustness on MNIST. Specifically, we
focus on CIFAR10.

Figure 6.8 shows the RR results ofM= PGD2CIFAR10, FGSM2CIFAR10, SPSA2CIFAR10,
and MIX2CIFAR10 as different combinations of the source distribution for a standalone translator,
and Ens-M-HC, Ens-M-MV as ensemble translators using, respectively, highest-confidence (HC)
or majority vote (MV) prediction. MIX2CIFAR10 is trained on the union of three distributions of
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attacks (i.e., FGSM, PGD, and C&W) such that each attack distribution represents ≈ 1
3

of the
training set ofM. For the ensemble translators method, we use an ensemble of PGD2CIFAR10,
FGSM2CIFAR10, and SPSA2CIFAR10.

Robustness against PGD and FGSM: From Figure 6.8, compared to PGD2CIFAR10 (green
line) most other translators, includingM = Ens-M, improve the robustness against both attacks
(i.e., PGD and FGS) by a margin of ≈ 4%, especially for higher attack size ϵ > 0.05. This result
is true except forM =MIX2CIFAR10 where RR drops to ≈ 61% compared to PGD2CIFAR10
(RR = 74.43% against PGD and RR = 71.29% against FGSM). We note that, using the highest
confidence (Ens-M-HC) prediction leads to slightly better results than using majority vote (Ens-
M-MV). The majority vote (MV) is not effective especially when the number of translators is
very high, since multiple translators are equally voting for the label of an input that is most likely
from an unseen distribution. However, if we consider a FGSM input, the translator that is trained to
translate FGSM examples is most likely to lead to the highest confidence prediction, which leads to
its selection when using HC. Additionally, it is noteworthy that using PFGSM as source distribution
to train a translatorM is the best design to defend against gradient-based attacks on CIFAR10.

Robustness against CW and SPSA (Table 6.1): Against C&W,M =MIX2CIFAR10 (row
16) reaches the best robustness RR = 68.69% (row 16) compared to an average RR ≈ 48% over
all other designs (PGD2CIFAR10: row 13, FGSM2CIFAR10: row 15, SPSA2CIFAR10: row 14,
and Ens-M translators: rows 17-18). This observation is explained by including C&W samples to
train MIX2CIFAR10 translator. Both designs of Ens-M do not improve robustness against C&W
compared to standalone translator designs, since only SPSA2CIFAR10, FGSM2CIFAR10, and
PGD2CIFAR10 translators are adopted for Ens-M designs (note: no C&W2CIFAR10 translator is
considered). Against SPSA, all designs similar results (≈ 71%) on average, except MIX2CIFAR10
which shows ≈ −15% drop in robustness.
Takeaway 5: Among alternative designs of M, ensemble-translators design is most likely
to lead to better robustness to OOD examples with enough number of translators and diverse
attack distributions, while FGSM2CIFAR10 is the best standalone design.

6.5.4 The Utility of the OOD Detector for Adversarial Detection

As previously reported in [109], SSD can detect OOD samples with high accuracy (≈ 99%).
However, in this section, we explore to what extent our adaptation of the SSD approach is effective
to filter out adversarial input from benign input. Thus we record its false positive rate (FPR) and
false negative rate (FNR) in adversarial detection on FGSM, PGD and Benign input.

FPR and FNR: Examining OOD distance scores of FGSM and PGD we noticed that Figure
6.1 might have ignored very few outliers with scores closer to the training data. By computing
FPR and FNR, we find that SSD makes negligible false negative rates and no false positives
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Benign FGSM PGD
1 OOD detection

+ Ens-Adv-Train
MNIST 100% 93.81% 94.32%

2 CIFAR10 100% 33.97% 6.92%
3

OOD detection
+ Adv-Train

MNIST 100% 95.89% 95.83%
4 CIFAR10 100% 53.13% 41.17%
5 Out2In w/o

OOD detection
(only pix2pix)

M =
pix PGD2MNIST

99.88% 99.26% 99.50%

6 M =
FGSM2CIFAR10

83.93% 75.96% 78.91%

Best result per attack on:
■ MNIST ■ CIFAR10

Table 6.2: Relative robustness of other designs: OOD detection + Adversarial training and Out2In w/o
OOD detection.

on MNIST and CIFAR10. More precisely, on MNIST, only 1% and 2% of FGSM and PGD
respective inputs were undetected as adversarial. On CIFAR10, only 2% and 3% of FGSM and
PGD respective inputs were undetected as adversarial. Furthermore, all benign inputs of both
datasets were effectively recognized as in-distribution and excluded from M translation. These
findings are the major reasons behind Out2In’s capability to preserve the exact performance of the
target ML model on benign data.

Out2In performance without OOD detection: To further accentuate on the utility of the
OOD detector in the effectiveness of Out2In, we exclude it from the prediction pipeline to explore
howM would perform without the guidance of the OOD detector. Our results reported in Table
6.2 (rows 9 and 10) suggest that Out2In no longer preserves the accuracy on benign data, since
all samples, whether they are “in” or “out” of the distribution are automatically translated byM.
However, Out2In keeps its previously reported high robustness against evasion attacks, since the
absence of OOD detector does not affect the prediction pipeline of adversarial examples within
Out2In.

Adversarial training guided by OOD detection: Another intriguing experiment is to guide
adversarial training by the OOD detector. We deploy a defense pipeline that alternates between the
target model f and the adversarially trained model f ′, according to whether an input is adversarial
(i.e., goes to f ′) or benign (i.e., goes to f ). Table 6.2 (rows 5-8) shows that deploying adversarial
training models within such pipeline can also preserve the accuracy on benign data while intro-
ducing the robustness of adversarial training. However, we note that, even in this setting, Out2In
without OOD detection is still more robust than adversarial training with OOD detection against
evasion attacks.

OOD detection overhead: The contribution of the OOD detector to Out2In comes with a
small additional overhead. We notice that Out2In is slightly slower to respond to test inputs when
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CIFAR10 ImageNet
Test Distribution Original Darker Sharper Original Sharper
Baseline model f 95.19% 50.33% 55.21% 83.58% 47.18%

Out2In
usingM=sharp2normal 95.19% - 87.09% 83.58% 81.34%

Out2In
usingM=Ens-M-HC 95.19% 85.12% 86.95% - -

Out2In
usingM =dark2clear 95.19% 85.97% - - -

Table 6.3: Accuracy on benign OOD test data on CIFAR10 (darker and sharper images) and ImageNet
(sharper images). “-” represents an unrelated experiment.

deployed with OOD detection module. More precisely, we observe, an additional 0.0029 seconds
is taken by the SSD detector to classify an MNIST sample and 0.1073 seconds for a CIFAR10
sample classification made by a more complex SSD model architecture.

Takeaway 6: While it incurs a tolerable delay on response time, OOD detection plays a
major role to preserve the accuracy on Benign data.

6.5.5 Generalization to OOD Benign Data

We now evaluate Out2In for generalization to benign OOD samples so as to account for a non-
adversarial setting. To that end, we perform three experiments, two on CIFAR10 and the other on
ImageNet. On CIFAR10, the distribution shift is caused by changes in brightness and sharpness

of test data, while on ImageNet changes in sharpness of test data is the factor. We use pix2pix
as image-to-image translator (i.e., for CIFAR10: dark2clear and sharp2normal, for ImageNet:
sharp2normal). Each translator is trained using 1000 images.

Experiment 1: OOD input due to lower brightness: Table 6.3 shows that the accuracy of
CIFAR10 model drops from 95.19% to 50.33% on OOD dark images while usingM =dark2clear,
Out2In can keep 85.97% accuracy despite the distribution shift of test data. Furthermore, once
again, Out2In does not sacrifice accuracy on original data (in-distribution) due to the use of an
OOD detector as an input filter. Figure 6.9 (top row) illustrates that M =dark2clear effectively
translates dark OOD images (Src-Dist) into its in-distribution equivalent (Target-Dist), which is
very similar to the original sample (i.e., deer), which explains its effectiveness to enable more
accurate classification on OOD dark data (+35.64%). In conclusion, despite being trained only on
clear CIFAR10 data, using Out2In, f can precisely classify OOD dark test input.

Experiment 2: OOD input due to higher sharpness: Table 6.3 shows that the accuracy
of the ImageNet and CIFAR10 models on the same test set, but with higher sharpness, decreases
respectively from 83.58% and 95.19% to 47.18% and 55.21%. However, usingM = sharp2normal
(illustrated in Figure 6.9: bottom row), Out2In enables an accuracy recovery to reach 81.34% and
87.09% respectively on sharper ImageNet and CIFAR10 data.

Experiment 3: OOD input includes both distributions: We consider the case where Out2In

89



dark2clear

sharp2normal

Input-Dst Original LabelOutput-Dst

deer 
(CIFAR10)

green snake 
(ImageNet)

Figure 6.9: Image-to-Image translation of benign OOD to in-distribution equivalents using pix2pix on
CIFAR10 (dark2clear) and ImageNet (sharp2normal).

receives OOD test data that covers different distributions (e.g., both sharp and dark). In this case,
we leverage the Ensemble translators deployment using the highest confidence as a selection ap-
proach between M1 = sharp2normal and M2 = dark2normal. Results show that Out2In can
effectively translate inputs from both distributions to add respectively +31.74% and +34.79%

more classification accuracy, which is very close to the rates recorded by the standalone translators
in Experiment 1 and Experiment 2 (Table 6.3).

Takeaway 7: Out2In not only generalizes on adversarial examples but also on OOD benign
inputs generated because of legitimate distribution shifts.

6.6 Conclusion

ML models struggle when they face adversarial or benign OOD inputs. This work presented a
framework to systematically study the cause-effect connection between the OOD problem and ad-
versarial examples. We leverage image-to-image translation methods to build an OOD generaliza-
tion framework for image classifiers. Through extensive evaluation on three benchmark datasets,
we show that our approach consistently outperforms state-of-the-art defenses (adversarial training
and ensemble adversarial training) in its generalization to both adversarial examples and OOD
benign inputs that result from natural distribution shifts. Contrary to adversarial training-based
defenses, our approach does not sacrifice accuracy on benign data. We also demonstrate the con-
sistent performance of our approach on alternative designs of the OOD-to-IID mapping approach
based on single, mixed, and ensemble of image-to-image translation-based OOD generalization
models. Finally, we show the resilience of our approach to an adaptive adversary that constrains
adversarial perturbations to produce IID adversarial inputs.
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CHAPTER 7

Behavioral Characterization of Neural Networks via
Activation Graphs

7.1 Introduction

The impressive performance of DNNs in multiple domains [124, 105, 112, 7, 99] is largely due
to their ability to learn complex patterns from vast amounts of data. However, despite their suc-
cess, DNNs often exhibit puzzling and unpredictable behaviors when deployed in real-world en-
vironments. These behaviors can undermine the safety and reliability of high-stakes DNN-based
systems, highlighting the need for fine-grained behavioral characterization and subsequent model
repair.

Previous work aimed at characterizing DNN inference through explanation frameworks (e.g.,
[101, 87, 59]) offers localized, sample-centric, and retrospective attribution of a DNN’s inference
to contributing features. However, the fast-paced adoption of DNNs in high-stakes applications
necessitates integrating capabilities into the ML pipeline that enable the capture, analysis, and
characterization of DNN inference. These capabilities would in turn enable systematic analysis
of inference provenance: quantitative (empirical) and qualitative (structural) artifacts that describe
how information flows within a DNN during inference on a given input. In this chapter we will
focus mainly on DNN characterization from security perspective under benign vs. adversarial
settings.

To achieve a deeper understanding of a DNN’s behavior, particularly under benign versus ad-
versarial conditions, it is crucial to characterize its runtime behavior over a distribution of inputs
using its underlying graph structure, typically a directed acyclic graph (DAG). Our hypothesis is
that systematically capturing inference provenance can enhance this understanding. We introduce
Inference Activation Graphs (IAGs), where nodes represent activation values and edges corre-
spond to model weights during inference. These IAGs are used for both empirical and structural
inference characterization: empirically, by measuring activations under benign and adversarial
conditions (§7.2.3); structurally, by employing a feature extraction model fIAG, such as graph

91



Process

XAdv   

XBen  

Model: f

IAGs(XBen)

IAGs(XAdv)

Inference Activation Graphs 
(IAGs)

Inference Activation 
Graph Extraction

Inference Activation 
Graph Characterization

Empirical Characterization 
(e.g., # activated nodes, always 

activated nodes, activation value, 
activation frequency, activation 

distribution, ...)

Structural Characterization 
(e.g., node-level attribution,  

edge-level attribution, subgraph 
representation learning, ...)

Settings:

Enhancement robustness 
Actions 

Generation and Evaluation

Enhancement robustness 
Actions Generation

(relevant nodes selection, 
action identifcation)

Enhancement Robustness 
Actions Evaluation & 

Enforcement 
(trade-off analysis, 
incremental action 

deployment) 

Characterizations Candidate 
Actions

Enhancement Robustness Actions (e.g., nodes to nullify, priority nodes, regular 
nodes, ....)

Text

Figure 7.1: Framework overview.

neural networks (fIAGs), to learn graph representations for adversarial and benign inputs. Node-
and edge-level attribution is performed to identify components of IAG that contribute to infer-
ence provenance. This IAG-driven characterization then guides the automated discovery of model
repair actions for robustness enhancement, evaluated through a systematic node-level action gen-
eration mechanism (§7.2.4).

Our findings indicate that the proposed DNN graph-based characterization effectively differ-
entiates the distinct runtime behaviors of DNNs in benign and adversarial settings. Using the
characterization-based action generation mechanism, we identified IAG-driven actions that sig-
nificantly enhance robustness (§8.2.1.3).

7.2 Approach

7.2.1 Overview

Figure 7.1 illustrates an overview of our approach. We consider a DNN f trained on a dataset
Xtrain and tested on aversarial and benign test sets (Xben, Xadv) to perform a classification task.
The DNN is represented as a directed acyclic graph (DAG). We first extracts inference prove-
nance graphs (IAGs) for each sample in each setting, resulting in 2 sets of IAGs : IAGs(Xben),
IAGs(Xadv). Each IAG is a subgraph of the DAG representation of f , capturing the activation
graph instances of f for inputs across both settings. These IAGs represent the runtime behavior
of f under different conditions.
Next, we characterize the runtime behavior of f using empirical and structural (§7.2.3) inference
provenance from the IAGs across both settings. By leveraging the complementary strengths of
empirical and structural inference provenance artifacts, we then identify robustness enhancement
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actions. These actions are then evaluated for their feasibility and effectiveness in enhancing f ’s
reliability for the repair goal at hand (§7.2.4).

7.2.2 Graph Extraction

IAGs capture the lineage of computations during inference by illustrating how input data propa-
gates through the layers of a DNN to produce output. In IAG, each node represents an intermediate
computation or transformation, while edges indicate the flow of data between these computations.
For instance, in convolutional neural networks (CNNs) used for image classification, IAG depicts
the journey of pixels through convolutional, pooling, and fully connected layers, culminating in
the final predicted class. Since the model itself is a directed acyclic graph (DAG), we leverage
this structure to abstract the model’s computational dynamics, analogous to a system’s runtime
behavior. When a model f computes an inference for input x, we extract activation values and
edge weights at each layer, where node activation is typically determined by the activation func-
tion, such as ReLU (activated if non-zero). By systematically capturing and analyzing these IAGs,
we reveal the computational dynamics of the DNN, providing crucial insights for effective model
robustness enhancement.

7.2.3 Characterization of Inference Provenance Graphs

Empirical Characterization: First, we adopt an empirical approach that is computed based on
metrics by aggregating activation values across different levels of the IAG: the entire network,
individual layers, or specific nodes. To achieve this, we investigate several IAG-based metrics,
including the number of activated nodes, consistently activated nodes, the average activation value
per node, the average activation frequency per node, and the differences in activation values across
different settings of f . These characterization metrics serve as empirical proxies to capture f ’s
inference provenance.

Number of Activated Nodes. This metric assesses whether the number of activated
nodes in IAG differs between benign and adversarial inputs. For an input x ∈ Xben/adv, we
calculate the number of activated nodes in its inference graph IAG(f(x)), and then average the
results for each setting.

Always Activated Nodes. This metric identifies nodes that are consistently activated
in all IAGs of one setting but never in another (e.g., benign). We also record the number of such
nodes across all samples of the same class to provide a detailed per-label analysis of IAGs for
each setting.

Average Node Activation Value. This metric quantifies the variation in node acti-
vation values across settings by computing the average activation value of each node. Comparing
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these averages allows for the identification of outlier IAGs within or between settings (e.g., benign
and adversarial).

Node Activation Frequency: This metric tracks how often each node is activated
across IAGs in each setting. It helps identify correlations between input transformations (e.g.,
adversarial perturbations) and changes in node activation frequency. For adversarial robustness,
these frequencies can highlight nodes that are more frequently activated in adversarial data but less
so in benign data, or vice versa.

Activation Distribution Metrics. To characterize inference across settings, we
capture distributional differences in node activations. One metric is the dispersion index (DI),
which measures how spread out or clustered node activations are across IAGs, calculated as DI =
σ2

µ
, where σ is the variance and µ the mean. Another metric, the entropy index, quantifies the level

of disorder in activation patterns, such as the variability in adversarial IAGs.
Structural Characterization: While the empirical IAG artifacts provide quantitative in-

sights into inference provenance, they are inherently oblivious to the underlying graph structure
of IAGs. This oversight can lead to gaps in inference characterization. Therefore, to achieve a
comprehensive characterization, we develop a complementary characterization scheme based on
the graph structure of IAGs. For this purpose, we use a feature extraction model fIAG to cap-
ture the structural characterization of IAG. The model is typically a graph neural network which
allow us to analyze IAGs locally through message passing functions and globally at the graph
level. fIAG is trained on {IAG(XBen)} ∪ {IAG(XAdv)} to predict the label of an IAG(x) as
fIAG(IAG(f(x))). Particularly, fIAG learns IAG subgraphs to identify correlations between
IAG substructures and their inference results (i.e., benign or adversarial).

Once we obtain fIAG(IAG(f(x))), next we leverage inference attribution techniques [71]
for fIAG model outputs. Across benign and adversarial settings, by extracting the structural attribu-
tions of the fIAG’s predictions on IAGs, we identify nodes and edges that are exclusively relevant
to a particular setting. Additionally, we examine the typical activation behavior (e.g., activation
value) of highly attributed nodes for IAGs in one setting (e.g., benign) compared to other settings
(e.g., adversarial) and how these differences among settings guide robustness enhancement.

Combining empirical and structural inference provenance characterization, we empower model
deployers to utilize comprehensive IAG-based inference provenance for targeted model security
enhancement.

7.2.4 Robustness Enhancement Actions Generation and Selection

Actions Generation: The proposed framework systematically enhances a model’s robustness to
adversarial attacks by focusing on node- and edge-level actions. First, relevant nodes are identified
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based on their activation frequency, activation values, and attribution scores across adversarial and
benign settings. Nodes that are only activated in adversarial scenarios are prioritized for repair
and categorized as adversarial nodes (Np), while those activated in both adversarial and benign
settings are classified as regular candidate nodes (Nr). Nodes that are only triggered in adversarial
settings are tagged for nullification (Nn). Once relevant nodes are selected, the next step involves
identifying suitable repair actions. The goal is to guide each selected node’s activation behavior
in adversarial conditions to mimic its behavior in a benign setting. A reference activation value is
computed for each node based on its behavior in benign conditions, and a sensitivity parameter α
is used to control how closely the node’s new activation value should align with this reference. For
nodes in Nn, nullification is performed regardless of their activation distribution in the benign set-
ting. This method ensures that adversarial influences are mitigated while maintaining the model’s
desirable behavior in benign settings.

Actions Selection: To systematically evaluate and enforce actions aimed at improving model
robustness, each action Ai generated by the algorithm is assessed for its effectiveness in enhancing
the model repair process. In the context of robustness-focused repairs, the action must improve the
model’s accuracy on adversarial data without sacrificing performance on benign data. To quantify
this trade-off, a metric called Tradeoff Score (TS) is introduced, which measures the difference
between the gain in accuracy on adversarial data and the loss of accuracy on benign data. The TS

for a candidate action Ai is formally defined as:

TS(Ai) = Ai(Ben)− A0(Ben) +
1

n

n∑
j=1

(Ai(Advj)− A0(Advj))

Here, Ai(Ben) is the model’s accuracy on benign data after applying Ai, and Ai(Advj) is the
accuracy on adversarial data crafted with attack j. The baseline accuracy, without any action, is
represented by A0. A positive TS(Ai) suggests that the action Ai enhances accuracy on adversarial
data more than it reduces accuracy on nominal data.
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Figure 7.2: Ember: cumulative actions analysis and filtering.
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Guided by TS scores, actions are sorted per layer, starting with the highest TS, and incremen-
tally applied to the model f , while tracking cumulative trade-off scores (Cum TS), as illustrated
in Figure 7.2. Actions with negative trade-offs (TS ≤ 0) are ignored, as they lead to a greater
degradation in nominal accuracy than improvements on adversarial data. The process continues
iteratively, filtering out actions that negatively affect performance, until either the cumulative TS

reaches its maximum or all candidate actions have been tested. This approach is illustrated in the
Ember dataset case study, where the Cum TS curve is analyzed to optimize the set of actions,
ensuring improved performance on adversarial data while maintaining benign accuracy.

7.3 Evaluation

To evaluate the effectiveness of our approach, we conduct comprehensive case studies on two ML
systems, one for image classification (CIFAR10 [74]) and one for malware detection (Ember [17]).
These case studies encompass a variety of attacks and DNN architectures, guided by the following
research questions:
•RQ1: How effective are the empirical and structural characterizations of IAGs in identifying
distinct runtime behaviors of a DNN on benign and adversarial settings across attacks?
•RQ2: How effective is our approach in identifying graph-specific robustness enhancing repair
actions with minimal impact on accuracy in benign setting?

To address RQ1, we visualize the empirical and structural characterizations introduced in
§7.2.3. Our findings, detailed in §7.3.2, highlight significant differences in the runtime behav-
ior of the studied models in adversarial and benign settings. For RQ2, we rely on the repair actions
selection and evaluation described in §7.2.4.

7.3.1 Setup

Dataset and Models: We run the proposed framework on two models covering image classifi-
cation (CIFAR10[74]) and Windows PE malware detection (Ember[17]). The models used are:
CIFAR10-Resnet18 (accuracy = 87.94 %) and Ember-DNN (accuracy = 94.56%). To reduce com-
putational overhead in model repair, we compressed each ResNet block into a single layer for
ResNet18 models. This simplified graph representation allows the signal to pass through each
block as if it were a single layer. While the internal behavior of the block isn’t analyzed, any un-
wanted activity within it is reflected in the final output, which can then be addressed by our repair
actions.

Attacks: For CIFAR10, we use three white-box attacks: FGSM[55], PGD [90], and APGD-
DLR [39] and two black-box attacks: SPSA [128] and Square [20]. For all attacks, we maintain
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a perturbation bound ϵ ≤ 0.3. For Ember, we assume the adversary lacks knowledge about the
target model but is aware of the features used to train it (e.g., API calls, DLL files). We call the
attack on Ember as Emb-Att. As in prior work [63, 122, 12], we incrementally perform additive
perturbations until the model flips its label to benign.

7.3.2 IAG-Based Characterization Results

Empirical Characterization: Figure 7.3 presents box plots of node Activation Values per layer,
averaged across all studied samples of benign IGPs (green) and adversarial IAGs (other colors).
It also shows node Activation Frequency per layer. We observe a clear distinction between be-
nign and adversarial settings. More precisely, activation value and activation frequency ranges on
adversarial data differ from their benign counterparts. These distinctions are more significant in
Ember model, as it serves the task of binary classification. For CIFAR10, it is noteworthy that such
distinction is sometimes observable across attacks, reflecting different activation patterns from one
attack to another. For instance, layer 3 of CIFAR10-Resnet18 has different ranges of activation
values on test samples generated with FGSM (red) and APGD-DLR (orange).
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Figure 7.3: Benign vs. adversarial characterization insights. From top-to-bottom, each row refers to a
studied model with plots for Average Activation per layer, Frequency of Activations per layer, and Average
Attribution Values per layer, respectively.

Structural Characterization: To assess the fIAG-based structural characterization at node
level, we analyze the average attributions per layer across attacks (Figure 7.3). The node-level
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Figure 7.4: Cumulative robustness enhancement actions per model. Vertical lines denote the end of a step
(iteration) in the evaluation methodology (described in §7.3.3). All plots showcase the post-filtering and
ordering cumulative actions of each step, for the most performing layer.

analysis, presented in the form of box plots, reveals distinct node attribution patterns between
benign and adversarial IAGs, highlighting the impact of evasion attacks on the contribution of
each node to activation patterns.

7.3.3 Robustness Enhancement Results

To address RQ2 we assess our framework’s effectiveness in identifying model repair actions for
robustness enhancement. We use the actions evaluation approach (§7.3.3) to determine the most
effective sequence of cumulative actions

Figure 7.4 shows the post-filtering and ordering cumulative actions (x-axis) and their impact
on the model’s accuracy (y-axis) after every iteration (vertical line). For the sake of simplified
visualization, we focus on the most performing layer (i.e., layer 0 for Ember-DNN and layer 3 for
CIFAR10-Resnet18). The charts indicate increasing curves of accuracy (red lines) on adversarial
data as we incrementally perform graph-specific cumulative actions, along with a slight decrease in
the accuracy on benign data. Inline with these results, the post-filtering cumulative trade-off curves
(orange lines) follow a similar increasing pattern as the accuracy on adversarial data, reflecting that,
by leveraging our repair action generation mechanism, the proposed characterization can lead to
identify effective actions for robustness enhancement.

Furthermore, we records in table 7.1 the overall accuracy results of each model before and
after performing robustness enhancement actions over all layers. The table highlights how the
applied robustness-enhancement actions significantly improve the model’s accuracy under various
adversarial attacks while maintaining a minimal decrease in accuracy in benign settings. Across all
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attacks, the ”With Actions” results consistently outperform the ”No Actions” results, demonstrat-
ing substantial gains in adversarial robustness. At the same time, the decrease in benign accuracy
is kept under 4%, indicating that these actions introduce only a small trade-off in everyday perfor-
mance.

Model CIFAR10-ResNet18 Ember
Test Attack FGSM PGD APGD-DLR SPSA Square Benign Emb-Att Benign
No Actions 11.08% 3.14% 4.14% 24.05% 4.14% 87.94% 0.05% 94.88%
With Actions 64.72% 65.92% 23.80% 42.29% 17.33% 84.46% 42.15% 91.03%

Table 7.1: Robustness Analysis Results (Accuracy). Accuracy of each model before vs. after performing
robustness enhacement actions

7.4 Conclusion

We introduced a customizable framework that empowers DNN deployers to capture the compu-
tational information flow of a DNN’s inference via inference provenance graphs (IAGs), (empir-
ically and structurally) characterizes IAGs across settings, and finally leverages the IAG-based
characterizations towards systematic model robustness enhancement. Our evaluation showed that
significant differences between benign and adversarial settings allow for identifying key nodes for
security repair. Our framework improves robustness with minimal accuracy loss on benign inputs.
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CHAPTER 8

Discussion and Future works

8.1 Introduction

Our multi-faceted approach to characterizing and addressing machine learning (ML) security par-
ticularly in relation to adversarial examples—has led to a deeper understanding of the problem and
significant progress in mitigating attacks. However, no one has yet succeeded in deploying an ML
system that is completely robust against evasion attacks. As discussed in Chapter 6, ML models
are inherently trained under the i.i.d. (independent and identically distributed) assumption, which
contributes to their lack of generalization when encountering out-of-distribution (OOD) test data.
This inherent vulnerability is a major factor in the success of evasion attacks.

Given these limitations, the current state of AI security prompts us to question whether AI secu-
rity threats are, in fact, unsolvable. Should we accept these vulnerabilities and focus on mitigating
them to the greatest extent possible?

An equally intriguing idea is whether adversarial examples could be seen not merely as threats,
but as potential features. Could adversarial examples, for instance, serve as a solution to another
ML-related problem? In Section 8.2, we explore a real-world scenario where this possibility be-
comes a reality.

8.2 Adversarial Examples: Are they a curse or a blessing?

Adversarial examples are by definition the result of malicious input crafting that aims to fool a
target ML model. As explained throughout most of our previous works, when the ML model is de-
ployed as a service (e.g., self-driving car, camera surveillance, etc), adversarial examples present a
serious security threat. However, we argue that in some cases it might be to our benefit to confuse a
malicious ML model. For instance, internet freedom technologists are constantly fighting to evade
censored regimes (e.g., India, China, Iran, etc) which have led to a heated arms race that catalyzed
the production of more sophisticated censoring techniques along with more improved censorship
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measurement tools (e.g., Geneva [30]). In our latest published work [16], we show that censors
can use ML to detect the most advanced censorship measurement tools with high confidence. In
this situation, it is to the benefit of Internet users within censored regimes to evade detection and
ironically adversarial examples can play a major role to achieve that. Furthermore, in [16], we
have proposed a tool called DeResistor that can extend any censor-probing based censorship eva-
sion tool to protect it from ML detection. The core idea of this approach is taking advantage to ML
vulnerability to adversarial examples.

8.2.1 DeResistor: Leveraging Adversarial Examples for Detection Evasion
Against Internet Censorship

First, we introduce a ML detection system of one of the latest automated tool for censorship-
evasion called Geneva [30]. It was developed to automate the creation of packet manipulation
strategies for censorship evasion, addressing the manual evade-detect cycle seen in prior systems
like INTANG [131], liberate [83], and brdgrd [133]. Using a genetic algorithm, Geneva derives
evasion strategies from four basic packet manipulation techniques: drop, tamper headers, dupli-
cate, and fragment. It has successfully re-derived many strategies from earlier manual efforts and
even discovered new strategies for bypassing censorship in countries such as China, India, Iran,
and Kazakhstan.

8.2.1.1 ML Detection Approach

To demonstrate how probing traffic of automated evasion tools can be easily detected, we introduce
a two-step approach to detect Geneva clients at the censor side with high confidence.

Flow-Level ML-Based Detection By running Geneva against the censor, middlebox operators
can collect Geneva traces and train a ML model that distinguishes Geneva traffic from normal
traffic. Figure 8.1 shows feature analysis of our ML-based Geneva detection model. From the
density plots, we notice that Geneva TCP packets have several corrupt data-offset fields and tend
to have smaller size compared to normal traffic. Furthermore, Geneva may tamper with other TCP
header fields like checksum or TTL, as part of its probing design to locate filtering middleboxes.
We also notice that overlapping TCP segments are more likely to occur in Geneva traffic due to
the tampering of packet payloads. Using these distinctive features, a fairly simple ML model
(e.g., Decision Trees, Random Forests) is able to accurately distinguish Geneva flows from normal
flows. Figure 8.2 shows that all four models (Decision Trees (DT), Random Forests (RF), Logistic
Regression (LR) and Support Vector Machines (SVM)) are able to detect almost all Geneva flows
in the test set, with negligible false positives (AUC > 0.99).

To enable a more reliable user IP-blocking decision, we adopt a multi-observation (multi-flow)
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Figure 8.1: Geneva training feature analysis. Scatter plots show data-points of Geneva vs. normal
traffic. Curves show data distribution density of each traffic type.

 

Figure 8.2: ML model performance for flow-level detection.

detection method that relies on a sequential hypothesis-testing approach based on the popular TRW
algorithm [69] used in port-scan detection.

IP-Level TRW-Based Detection: we use the Threshold Random Walk (TRW) algorithm (Fig-
ure 8.3) to identify whether a given source IP is running Geneva, a traffic obfuscation tool. For each
flow initiated by the source, a machine learning model f predicts the outcome as either Geneva
(Yi = 0) or benign (Yi = 1). The goal is to quickly and accurately classify the source IP based
on two hypotheses: H0, where the source is running Geneva, and H1, where it is benign. The
detection is based on Bernoulli-distributed random variables Yi under each hypothesis, with prob-
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Figure 8.3: Flow diagram of TRW for real-time Geneva detection. The blue box represents an extension to
the original TRW algorithm.

abilities θ0 and θ1 calculated from the model’s true positive (TP) and false positive (FP) rates. The
algorithm aims to minimize false positives (PF ≤ α) and maximize detection accuracy (PD ≥ β),
typically with α = 0.01 and β = 0.99. The likelihood ratio Λ is computed from observed flows,
and decisions are made based on thresholds η0 and η1. If Λ ≤ η0, the source is blocked as Geneva;
if Λ ≥ η1, it is considered benign, though history-aware resets are applied if there were previous
Geneva detections. If the likelihood ratio is between these thresholds, further observations are
made. The thresholds are set using TRW-specific formulas to ensure detection reliability.

Using the proposed ML-TRW-based detection approach we were able to detect Geneva probes
(training) after it tests only 2 strategies of the first generation. This result is consistent across
all simulated censors and China’s Great Firewall. Considering that Geneva can derive previous
manipulation strategies proposed in other censor probing-based tools (e.g. INTANG, liberate) [30],
we believe that our detection approach is adaptable to be performed against them. In particular,
the ML model used for flow-level detection can be trained on the network traces of any other
probing-based tool.

8.2.1.2 DeResistor

Revisiting Figure 8.1, we observe that Geneva traffic exhibits distinct features compared to normal
traffic, which contributes to the high flow-level detection accuracy by the studied machine learning
models. The DeResistor approach is motivated by the fact that Geneva can evade detection by
crafting adversarial flows through feature perturbation, making them resemble normal traffic. To
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Figure 8.4: An illustration of Geneva genetic evolution traces when trained with DeResistor design vs.
standalone training.

implement this strategy, we adopt two complementary methods. First, we modify Geneva’s fitness
function to guide its training towards detection-resistant strategies. Second, we introduce regular
pauses in Geneva’s training, allowing the user to engage in normal internet activity, thereby adding
noise to the detection system and further complicating its ability to identify Geneva traffic. Next,
we illustrate these two methods.

Two-Objective Fitness Function: Geneva initially employs a canary strategy that would be
detected by the ML model. To enhance detection resilience, DeResistor introduces a two-objective
fitness function, defined as:

fitness(s) = a.G(s)− b.P (s), (8.1)

where s is the manipulation strategy. The term G(s) measures the effectiveness of the evasion
strategy based on censor feedback, while P (s) calculates the probability of detection by the ML
model. Since the objectives conflict, the second term is subtracted, aiming to maximize effective-
ness and minimize detectability. The system optimizes the trade-off between these objectives using
parameters a and b, where a+ b = 1, reflecting the user’s preferences.

Background Traffic Generation: DeResistor uses a two-objective fitness function to learn
detection-resilient strategies over time. Early on, its strategies resemble Geneva’s and are easily
detected by the ML-based evasion detector. To counter this, DeResistor introduces benign back-
ground traffic between the client’s IP and uncensored websites, pausing censor probing if a strategy
is detected and resuming it once enough benign flows are observed (Figure 8.4). These delays de-
tection, giving more time for undetectable strategies to evolve. Adjusting the benign flow jump size
(J) helps confuse the ML detector but must be carefully managed to avoid triggering IP blocking.

8.2.1.3 Evaluation

Our evaluation of DeResistor is guided by these questions:
RQ1: Is DeResistor effective at making Geneva’s probing traffic more resilient to detection?
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RQ2: How effective is our approach in toning down the detectability of packet manipulation fea-
tures?

Experimental Setup: To ensure a fair comparison, we ran DeResistor and Geneva under iden-
tical experimental conditions, closely following the setup outlined in the Geneva paper [30]. We
focused on evaluating GFW’s HTTP censorship from three locations in China (Qingdao, Beijing,
and Shanghai). In each location, we ran both tools three times independently, collecting the fittest
strategies. Each training session started with 500 individuals and was capped at 20 generations.
Our results showed that this parameter tuning successfully trained both tools against the studied
censors. We also tested their detection-resilience against a real-time detection system.

In-Situ Validation: Following the validation approach used in the Geneva experi-
ments [30], we first performed a Dockerized evaluation of DeResistor against 11 mock censors
proposed by Geneva’s authors. Each strategy was tested in an isolated environment with four con-
tainers: a client, a mock censor, a forbidden server, and a legitimate server. The legitimate server
simulated normal background traffic via Harpoon [117], which DeResistor uses when pausing
training. Harpoon continuously sent TCP packets between the client and legitimate server using
the same source IP involved in the training evaluation.

Real-World Evaluation: We evaluated circumvention strategies against the Great Fire-
wall (GFW) of China, testing each strategy multiple times across different vantage points. The
GFW censors HTTP requests by injecting RST packets and employs residual censorship, blocking
connections for a limited time. To bypass DNS poisoning, which redirects users to fake IP ad-
dresses, we manually resolved correct IPs and successfully accessed certain websites using tools
like Geneva. However, websites with more advanced censorship, such as null-routing, remained
inaccessible. Similar tests were conducted in India and Kazakhstan on other censored websites,
yielding comparable results.

Detection Resilience: We evaluated DeResistor’s detection-resilience against GFW,
India, Kazakhstan, and mock censors, using a real-time Geneva detection system (ML+TRW). The
system monitored training, blocking the client if censor-probing was detected with 99% confidence
(α = 0.99, β = 0.01). To balance success and detection-resilience, DeResistor used a two-
objective fitness function with equal weights (a = 0.5, b = 0.5) and started with a jump size of
J = 1. Detection-resilience was achieved if DeResistor completed training without IP-blocking or
reduced detection rates over time.

Detection-Resilience Results:
A strategy evaluation against the censor is tracked by a network flow between the client and

the server. We recall that, our detection approach uses a ML model that performs a preliminary
flow-level detection. Each flow detection is marked as another observation for the TRW algorithm
to make a more confident IP-level detection. Figure 8.5 shows generations (x-axis) vs. flow-level
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Figure 8.5: Flow-level detection rate evolution during Geneva and DeResistor training against
China’s GFW. We consider the 5 first generations.

Censors IP-Level Detection
(Geneva−→DeResistor)

Flow-Level Detection
(Geneva−→DeResistor)

Jump
Size
J

China’s
GFW

Detected after 2 flows −→
Undetected

96.27% −→ 45.06% 1

India Detected after 2 flows −→
Undetected

99.50% −→ 34.93% 1

Kazakhstan Detected after 2 flows −→
Undetected

99.50% −→ 49.22% 1

Censor 1-
4,7,9

Detected after 2 flows −→
Undetected

99.4% −→ 32.46% 1

Censor 5,10. Detected after 2 flows −→
Undetected

99.4% −→ 31.21% 1

Censor 6 Detected after 2 flows −→
Undetected

99.4% −→ 34.05 1

Censor 8 Detected after 2 flows −→
Undetected

99.4%−→ 30.93% 1

Censor 11 Detected after 2 flows −→
Undetected

99.4%−→ 29.91% 1

Table 8.1: Geneva vs. DeResistor detection results using history-aware TRW. Details about mock censors
can be found in [30].

detection rate trend (y-axis) during Geneva and DeResistor training. Furthermore, in Table 8.1, we
report the IP-level detection results recorded by the TRW on Geneva and DeResistor when trained
against different censors.

Flow-Level Detection Resilience: Figure 8.5 confirms that DeResistor traces are
way less detectable compared to Geneva. In particular, as DeResistor training advances, the de-
tection rate continues to drop until it reaches 45.06% after 5 generations while it stays very high

106



(96.27%) during Geneva training. The immediate drop observed at the beginning of generation
1 (i.e., 1 −→ 0.5) is caused by the guided pausing of the genetic algorithm training when a flow
is detected that permits the client to engage with a number J of normal benign flows. The same
drop is observed when we run Geneva with guided pauses for normal traffic injection (without
multi-objective optimization). However, due to the proposed two-objective fitness function, the
observed decrease in the detection rate from generation 0 to generation 5 shows that DeResistor
is learning to generate less detectable strategies as it advances to higher generations, compared to
”Geneva+normal traffic”.

To further explain our findings, we investigate the features of DeResistor traces (adversarial
examples) compared to Geneva traces (normal examples) and normal traffic in Figure 8.6. Over-
all, we observe that the feature values density of DeResistor (green curve) are closer to Normal
traffic (blue curve) compared to Geneva (red curve). Furthermore, Looking into the data-points
of each traffic type (gray scatter plots), it seems that DeResistor traces exhibit less overlapping
TCP segments, less corrupt data-offset fields, and less corrupt SYN packets compared to Geneva.
We conclude that DeResistor is able to tone down detectable features exhibited by Geneva, which
leads to lower flow-level detection rate (answers RQ2). However, we acknowledge that DeResistor
traces are still different from normal traces, which is natural considering that its main objective is
still to manipulate packets and evade censorship. It is noteworthy that DeResistor can be even less
detectable if the user chooses to give advantage to the detection-resilience objective at the expense
of the strategy success objective (e.g., a=0.3, b=0.7). In-line with the GFW results, Table 8.1 (3rd

column) shows that DeResistor was able to reduce the flow-level detection rate (99.4% −→≈ 32%)
when trained against the 11 mock censors as well.

IP-Level Detection Resilience: As reported before, using the proposed detection
approach we were able to detect with high confidence a source IP address running Geneva after
the TRW receives only 2 observations (i.e., 2 Geneva flows/probes). According to results reported
in Table 8.1, we observe that, against all the studied censors, DeResistor was able to complete its
training without being rejected by TRW (2nd column), which answers RQ1. A jump size J = 1

was sufficient to reach these results (3rd column). Particularly, as we illustrated in Figure 8.4, after
each flow-level detection of a strategy test, the injected normal flow restores the likelihood ratio
Λ(Y ) of the TRW to its initial value. This pattern encapsulates the Λ(Y ) between η0 and η1, which
makes it longer for the TRW to converge to a decision. Setting the jump size to J = 1 is not only
sufficient to avoid detection, but also recommended to avoid triggering TRW resets. We recall that,
our implementation of TRW algorithm is powered by a history-aware reset of the likelihood ratio
in case the TRW is converging to a decision that the source IP is benign. Thus, it is in favor of
the client to avoid pushing the TRW to make a reset that considers all previous detection of packet
manipulations.
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Figure 8.6: DeResistor training feature analysis. The scatter plot displays data-points of Geneva, DeResis-
tor, and normal traffic. The curves show the data distribution density of each traffic type.

Conclusion: AI security is a paramount research problem to explore, particularly adversarial
examples. Moreover, through DeResistor we demonstrate that it can be useful in the broader
application of ML in multiple tasks, specifically in cases where evading a ML system can provide
a greater good (e.g., censor-side detector of censorship evasion tools). DeResistor factors in the
likelihood of detectability of censorship strategies when it generates evasion strategies and guides
Geneva’s strategy generator to rely on less-detectable features. By doing so, it not only enables the
generation of a successful censorship evasion strategy, but also shields Geneva from being detected
by the censor. We evaluated DeResistor first using 11 mock censors and then against real-world
censors, China’s GFW, India and Kazakhstan.

8.3 Future Work: Security and Privacy of Foundation Models

Foundation models, particularly large language models (LLMs) like GPT, PaLM, and LLaMA,
have revolutionized artificial intelligence (AI) by exhibiting remarkable capabilities in language
comprehension, generation, and reasoning. However, the increasing power and accessibility of
these models raise significant concerns about security and privacy. Their deployment spans across
sensitive domains such as healthcare, finance, and governance, which exacerbates the need to
address vulnerabilities, misuse, and privacy breaches.

As AI research and development increasingly pivot toward foundation models, our research
is naturally following this trend, addressing the unique security and privacy challenges associated
with large language models (LLMs). These challenges include vulnerabilities in training data, the
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risks of adversarial manipulation, and potential data leakage. Furthermore, we explore emerging
mitigation strategies and regulatory frameworks aimed at resolving these issues.

8.3.1 Security Threats in LLMs

Foundation models, particularly large language models (LLMs), introduce unique security chal-
lenges due to their ability to autonomously and adaptively generate text. Key threats include adver-
sarial attacks, where crafted prompts manipulate outputs to produce harmful or biased content, and
poisoning attacks, in which malicious data injected during online learning distorts model behavior.
Evasion attacks further exploit vulnerabilities, tricking models into leaking sensitive information
like personally identifiable data (PII). LLMs also face risks of model theft and extraction attacks,
where adversaries replicate proprietary models, undermining their economic value and exposing
proprietary algorithms. Additionally, LLMs can be misused to generate spam, phishing messages,
or large-scale misinformation, posing significant social, political, and economic risks through au-
tomated disinformation and hyper-personalized manipulations.

8.3.2 Privacy Challenges in LLMs

LLMs, often trained on large datasets scraped from public sources, can unintentionally ingest pri-
vate or sensitive information, leading to several privacy risks. One major issue is data leakage and

memorization, where models retain sensitive details, such as passwords or private conversations,
which attackers can extract through repeated queries or membership inference attacks. Addition-
ally, the lack of transparency and data governance complicates efforts to determine if training data
contains personally identifiable information (PII) or copyrighted material, potentially breaching
regulations like GDPR or CCPA. Even with anonymization efforts, re-identification risks persist, as
LLMs can infer identities by correlating seemingly anonymous data with other available datasets.

8.3.3 Ongoing Efforts and Future Research Needs

While several mitigation strategies have been introduced to address the security and privacy chal-
lenges of LLMs, further research is needed to enhance their effectiveness. Techniques like differ-

ential privacy are being employed to obscure sensitive data points, and federated learning offers
a decentralized approach to limit data exposure. Prompt filtering and output moderation help
block adversarial inputs, while encryption techniques such as homomorphic encryption and secure
multi-party computation protect data during inference. Additionally, regulatory frameworks like
the EU’s AI Act and NIST’s AI Risk Management Framework are emerging to promote ethical
and secure AI practices.
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However, these efforts are only the beginning. Future research must focus on developing AI-

powered auditing tools for real-time threat detection, improving explainable AI (XAI) for greater
transparency, and fostering collaborative regulatory ecosystems that involve academia, industry,
and government. Continuous adversarial testing and privacy-preserving innovations will be es-
sential to maintaining trust and ensuring that LLMs remain secure and privacy-conscious as they
evolve. Balancing innovation with robust security and privacy measures will be critical for sus-
tainable AI development in the future.
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CHAPTER 9

Related Works

In this chapter, we position our contributions with respect to the related works. Since, we have
already covered prior Evasion Attacks in 3.2, Here we focus on studying the previously proposed
Defenses.

9.1 Defenses against ML Evasion Attacks

A handful of defense techniques were proposed as countermeasures against evasion attacks. Among
the notable defense methods are defensive distillation [94], adversarial training [79], adversarial

example detection[137], monotonic models [66], and certified defenses.
Defensive distillation. Papernot et al. [94] propose a method that generates a new model

whose gradients are much smaller than the original undefended model. If gradients are very small,
attack techniques like FGSM [55] or BIM [79] are no longer useful, as the attacker would need
great distortions of the input image to achieve a sufficient change in the loss function. The defense
enhances DNN-based image classifiers against gradient descent-based attacks. This defense mech-
anism has been broken later on by Carlini & Wagner (CW) attack [35] as the attack does not rely
on the gradient function.

Adversarial Training. One of the relatively effective defense techniques is training the model
on adversarially-perturbed examples using their true labels. This method is originally proposed
by Kurakin et al. [79] and has been proven to reduce the evasion rate of adversarial examples.
However, merging the training data with adversarial samples would make the model less accurate
on benign input.

Monotonic Models. The output of a monotonic ML model can increase/decrease only if there
is an increase/decrease in its monotonic features since, by definition, monotonic features are the
only features that are highly correlated with the model’s output. This idea has been harnessed to
build robust malware detectors [66]. Such classifiers whose monotonic features are only malware
features are robust against any benign feature injection to a malware file. Monotonic modeling can
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be an effective defense only in binary classification, typically in malware detection.
Detection of Adversarial Examples. Numerous prior works in this area attempted to detect

adversarial examples by performing transformations on input examples (e.g., via spatial smooth-
ing, rotation) instead of changing the ML model. These simple and inexpensive transformations
on images have been proven to be effective to detect adversarial inputs generated by famous at-
tacks (e.g., PGD, CW). However, it can confuse the model to incorrectly predict the label of clean
samples [137, 125]

As shown in Table 9.1, several other defense techniques were proposed to counter specific
attacks such as Random Feature Nullification (RFN) on Windows PE [130] that enhances DNN-
based malware detectors against the FGSM attack [55] by nullifying (or dropping) features ran-
domly in both training and testing phases. This offers a probabilistic assurance in preventing a
white-box attacker from deriving adversarial files by using gradients of the loss function with re-
spect to input. One-and-half-class classifiers as well enhance the PDF malware detector against
the gradient-based attack in the feature space, given that its decision boundary is often tighter than
that of two-class classifiers.

Certified Defenses. Another promising research direction that has been recently explored
[100, 81, 134] suggests going beyond best-effort defense measures by exploiting the norm bound
constraint (i.e., ||δ|| < ϵ) that limits the possible perturbations of most of previously proposed
attacks. The goal is to offer a certificate of robustness that guarantees a maximum of evasion rate
which by design cannot be surpassed by the attack. Prior work managed to reach a certificate of
robustness that bounds the evasion rate to a maximum of 60%. Although it is still not an acceptable
guarantee of ML robustness, such a promising outcome encourages future improvements in this
direction.

Moving Target Defenses. Network and software security has leveraged numerous flavors of
MTD including randomization of service ports and address space layout randomization. Recent
work has explored MTD for defending adversarial examples. Song et al. [118] proposed a fMTD
where they create fork-models via independent perturbations of the base model and retrain them.
Fork-models are updated periodically whenever the system is in an idle state. The input is sent to
all models and the prediction label is decided by majority vote.
Sengupta et al. [110] proposed MTDeep, which uses different DNN architectures (e.g., CNN,
HRNN, MLP) in a manner that reduces transferability between model architectures using a mea-
sure called differential immunity. Through Bayesian Stackelberg game, MTDeep chooses a model
to classify an input. Despite diverse model architectures, MTDeep suffers from a small model pool
size.
Qian et al. [98] propose EI-MTD, a defense that leverages the Bayesian Stackelberg game for
dynamic scheduling of student models to serve prediction queries on resource-constrained edge
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Table 9.1: Systematization of defenses against test-time evasion.

Domains Works Adv. Knowledge Defense Strategy Target Attack

Image
Kurakin et al. [79] white-box adversarial training all attacks
Madry et al. [89] white-box robust optimization all attacks
Papernot et al. [94] white-box defensive distillation gradient-based
[137, 125] white-box+ black-box Adv example detection all attacks
[100, 81, 134] white-box certified defense Lp-norm attacks

Windows PE Incer et al. [66] gray-box Monotonic Models adding benign features
Wang et al. [130] white-box random feature nullification FGSM

Android PDF Smutz and Stavrou [116] white-box ensemble learning gradient-based
PDF Biggio et al. [26] black-box+white-box One-and-half-class classifier gradient-based

devices. The student models are generated via differential distillation from an accurate teacher
model that resides on the cloud.

Compared to EI-MTD [98], Morphence-2.0 avoids inheritance of adversarial training lim-
itations by adversarially training a subset of student models instead of the base model. Unlike
EI-MTD that results in lower accuracy on clean data after adversarial training, Morphence-2.0 ’s
accuracy on clean data after adversarial training is much better since the accuracy penalty is not
inherited by student models. Instead of adding regularization term during training, Morphence-2.0
uses distinct transformed training data to retrain student models and preserve base model accu-
racy. Instead of the Bayesian Stackelberg game, Morphence-2.0 uses the most confident model
for prediction.

With respect to MTDeep [110], Morphence-2.0 expands the pool size regardless of the het-
erogeneity of individual models and uses average transferability rate to estimate attack transfer-
ability. On scheduling strategy, instead of Bayesian Stackelberg game Morphence-2.0 uses the
most confidence model.

Unlike fMTD [118], Morphence-2.0 goes beyond retraining perturbed fork models and ad-
versarially trains a subset of the model pool to harden the whole pool against adversarial example
attacks. In addition, instead of majority vote, Morphence-2.0 picks the most confident model for
prediction. For pool renewal, instead of waiting when the system is idle, Morphence-2.0 takes a
rather safer and transparent approach and renews an expired pool seamlessly on-the-fly.
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CHAPTER 10

Conclusion

The sudden emergence of the field of Adversarial Machine Learning has proven that ML is not
completely reliable for real-world deployment. Despite the exponential growth of the number of
research papers in this area, our study in this report shows that the adversarial ML field has a
long way to go given the various open problems discussed earlier. In this dissertation, we pre-
sented our contributions to this area of research focusing on four dimensions. We drew meaningful
insights and diagnosed the ML evasion attacks through explanation-guided analysis (Chapter 3).
Additionally, we advanced the security-related evaluation process of ML models by proposing an
explanation-guided booster of ML evasion attacks that tests a ML model under a more serious
evasion threat (Chapter 4). After that, we advanced the defense landscape by suggesting a moving
target deployment of ML as a service that aims to dodge adversarial threats (i.e., Morphence in
Chapter 5). Furthermore, we addressed the adversarial examples problem from the root cause by
studying its cause-effect link with the OOD-Generalization problem (Chapter 6). In particular, we
build a framework that generalizes the ML model on natural OOD inputs and adversarial inputs.
Lastly, we focus on examining Neural Networks at the granularity of the activation patterns given
different inputs (Chapter 7) to enable model robustness enhancement and we explore a different
perspective where ML models’ vulnerability to adversarial examples might be ‘monetized’ to solve
real-world problems such as Internet censorship (Chapter 8).
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