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Lessons from the International Space Station (ISS) emphasize the necessity of exterior
inspection for anomaly detection and maintenance, but current methods rely on costly and
limited human extravehicular activities and robotic arms. Deployable free-flying small spacecraft
offer a flexible, autonomous solution, capable of comprehensive exterior inspections without
human involvement. However, the safety of these spacecraft during close proximity operations
remains a concern, particularly given uncertain variability in thruster performance. This paper
presents SmallSat Steward, a reactive and integrated architecture for online model learning
and trajectory planning based on the Dyna reinforcement learning architecture. By combining
model-based planning and direct reinforcement learning, Dyna offers a potentially flexible and
computationally efficient solution capable of adapting to changes in thruster performance and
other system uncertainties. Preliminary results in both simulation and hardware environments
demonstrate the potential of this architecture to successfully regulate position under single and
double thruster failures. In simulation, the Dyna-based controller outperformed a PD-LQR
controller in ∼70% of all cases. On hardware, Dyna was able to eliminate the steady state error
caused by thruster failures.

I. Introduction
Lessons learned from the International Space Station (ISS) in low-Earth orbit have demonstrated the value of exterior

inspection for detecting anomalies or assessing maintenance needs. However, current inspection capabilities on the ISS
rely on costly human extra-vehicular activities or imagery taken by robotic arms mounted to the exterior of the station
and visiting vehicles (e.g. cargo resupply missions). These approaches detract from valuable crew time or severely limit
the possible visual coverage of the station’s exterior—mounted robotic arms cannot survey the entire exterior of the
station and visiting vehicles may be infrequent or need to operate within high safety margins.

Deployable free-flying small spacecraft can provide a unique and cost-effective solution for exterior inspection
of future space stations that would resolve the limitations present in current inspection techniques. These spacecraft
can be stowed, deployed as needed, and re-stowed in order to autonomously perform regular or on-demand exterior
inspection. Furthermore, these spacecraft might also perform light extra-vehicular servicing work which currently
requires extensive crew effort. Such an approach could provide multiple benefits over traditional methods for exterior
inspection: no human involvement is required; a free-flying small spacecraft can access the entire exterior surface rather
than the limited regions accessible to a mounted robotic arm; and the small spacecraft can be deployed on demand
rather than waiting for a visiting vehicle.

However, safety is key for any free-flying spacecraft during close proximity operations, primarily in terms of avoiding
collisions between the free-flying spacecraft and the station. Passive CubeSats that are ejected away from the station [1]
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alleviate safety considerations but suffer from similar visibility constraints to mounted robotic arms and are single-use.
Actively-controlled CubeSats [2, 3] enable full coverage of the exterior of the station, but can collide with the station in
the event of common small satellite failures [4]. Current considerations for avoiding collisions—other than extreme
conservatism not possible in close proximity operations—rely on the ability to use onboard thruster systems to perform
collision-avoidance maneuvers as well as maintaining accurate knowledge about the thruster system’s performance
[5, 6]. However, thruster performance can change over time, with the recent Seeker mission predicting changes in the
thrust output of up to 70% during the brief demonstration mission [7]. These performance changes can be difficult to
predict, and may result in the inability to accomplish maneuvers designed under an assumed thruster performance level.
Such was the case with NASA/JPL’s Lunar Flashlight mission, which experienced a wide range of unexpected thrust
levels that eventually prevented it from reaching the intended lunar orbit [8].

Accounting for thruster performance changes and, more broadly, system model uncertainty, can be a computationally-
demanding task. Recent algorithm developments that rely on nonlinear trajectory optimization to plan trajectories that
resolve model uncertainties [9] might be beyond the real-time capability of traditional small spacecraft computers while
only targeting parametric uncertainties. Compute constraints are especially of interest for small (3–6U) CubeSats, which
would be the desired form factor for an external free-flying inspector spacecraft, providing a balance between a compact
form factor and sufficient payload volume and onboard capability to perform an inspection mission. This computational
boundary and modeling flexibility represents the technology gap our work aims to resolve: no known planning solution
in the literature is amenable to implementation on small spacecraft computers while providing capability for online
planning and learning with varied disturbance sources. This gap prevents small spacecraft from reliably performing
close proximity operations tasks like autonomous inspection, as the spacecraft would not be able to safely plan and
fulfill inspection objectives under significant model degradation.

The broad context of this work is to introduce SmallSat Steward, a reactive and integrated architecture for online
model learning and trajectory planning based on the Dyna reinforcement learning architecture [10]. Dyna combines both
planning and learning: it is both a model-based and direct reinforcement learning framework, where real experience is
used to provide direct updates of a learned value function and to update a system model that is available for model-based
planning updates of the same value function. It is anytime in the sense that a solution can always be constructed
from a prior initialization of the saved value function and real-time in the sense that updates to the value function are
computationally cheap, and simulated planning updates are allowed to execute within a specified time bound. Dyna is
appealing in comparison to numerical trajectory optimization methods since solutions are guaranteed, runtime can be
hard bounded, and the use of linear model updates is computationally simple. It is also appealing in comparison to
alternative reinforcement learning methods as the use of a learned model for simulated value function updates allows
the agent to avoid failure states without having to experience them.

This paper presents preliminary results for the application of Dyna towards reactive proximity operations in both
simulation and hardware environments. The demonstration of interest is to show the Dyna architecture’s capability to
respond to onboard thruster degradation or failure for a simple regulation scenario, where the inspector spacecraft is
tasked with maintaining a fixed position relative to the target space station. A variety of failure causes were tested with
thruster failure modes ranging from partial degradation to full failure. The demonstration was conducted both in a
simulation environment and on a hardware testbed, using a thrusting planar air bearing platform [11], to demonstrate the
implementation of Dyna on flight-like CubeSat processors.

II. Problem Formulation and Description
Figure 1 shows an example of a small, free-flying spacecraft deployed to inspect the exterior of a space station. The

inspection point has been predetermined, and the spacecraft is tasked with navigating to it autonomously, performing
a task (e.g., taking a picture), and returning to the space station for recovery. The spacecraft has been provided with
waypoints that avoid the station and provide a safe path to the inspection point. The thruster array onboard the spacecraft
has a low probability of degrading or failing unexpectedly, and the onboard controller must be able to handle these
failures to protect the spacecraft and station as well as complete the mission objective.

A. Dynamics

The scenario detailed above can be modified to be a sequence of position regulation tasks. For each regulation task,
we attempt to drive the spacecraft to a given reference state 𝒔ref (the waypoint). We assume that our spacecraft’s state
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Fig. 1 An example inspection task.

vector, 𝒔s/c, contains two positional degrees of freedom and one rotational degree of freedom

𝒔s/c =
[
𝑥 𝑦 𝜃 𝑣𝑥 𝑣𝑦 𝜔

]𝑇
(1)

which mimics the degrees of freedom for the planar air bearing hardware testbed, described in Section V.A. For a
position regulation task, we attempt to drive the relative state, 𝒔, to the zero vector, 0.

𝒔 = 𝒔s/c − 𝒔ref (2)

The controller will output high-level actions in the form of the desired net forces and torques in the reference frame

𝒂 =

[
𝐹𝑥 𝐹𝑦 𝜏

]𝑇
(3)

The dynamics of the spacecraft’s state relative to the reference point are given by the standard Newton-Euler
equations for two positional degrees of freedom and one rotational degree of freedom in discrete time. Given the
spacecraft’s relative state, 𝒔, at some time 𝑡, the spacecraft’s updated relative state, 𝒔′, at some time 𝑡 + Δ𝑡 is

𝒔′ = [𝐴]𝒔 + [𝐵]𝒂 (4)

where [𝐴] and [𝐵] are defined as

[𝐴] =



1 0 0 Δ𝑡 0 0
0 1 0 0 Δ𝑡 0
0 0 1 0 0 Δ𝑡

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


[𝐵] =



Δ𝑡2/2𝑚 0 0
0 Δ𝑡2/2𝑚 0
0 0 Δ𝑡2/2𝐼

Δ𝑡/𝑚 0 0
0 Δ𝑡/𝑚 0
0 0 Δ𝑡/𝐼


(5)

and 𝑚 is the spacecraft’s mass while 𝐼 is the spacecraft’s rotational inertia about its single rotational degree of freedom.
For all testing, Δ𝑡 = 0.2 s, 𝑚 = 14.5 kg, and 𝐼 = 0.35 kgm2 to mimic a 5 Hz control loop using the planar air bearing
hardware testbed, described in Section V.A. The choice to mimic the setup of the hardware (including its dynamics) was
made out of practicality. The simpler dynamics allow us to compare to known optimal control algorithms. Additionally,
matching hardware dynamics allows for better comparison between hardware and simulated testing and informed design
of the architecture (such as neural network sizing). However, the overall design of the actual implementation will be
able to handle nonlinear and more complex dynamics.
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B. Constraints

Throughout all testing we define a “safe” zone, {𝜒safe}, around the reference point that constrains the allowable
relative state of the spacecraft. This constraint helps with training times, but is realistic in actual mission scenarios, as
mission trajectories usually have defined “keep-in” zones to offer some margin of safety. [12] For the purposes of this
problem, we define {𝜒safe} as

{𝜒safe} = {𝒔 | |𝒔 | < 𝒄safe} (6)

where

𝒄safe =
[
5 m 5 m 𝜋 ∞ ∞ ∞

]𝑇
(7)

which constrains the spacecraft position to lie in a 5 m square around the reference point, and the spacecraft’s rotation to
lie on the range 𝜃 ∈ [−𝜋, 𝜋]. Similar to the state constraints, we also define action constraints arising from hardware
limitations. We define a set of feasible actions, {𝜒action}, of all possible valid actions as

{𝜒action} = {𝒂 | |𝒂 | < 𝒄action} (8)

where

𝒄action =

[
1.0245 N 1.0245 N 0.1682 Nm

]𝑇
(9)

which represents the capabilities of the thruster system onboard the planar air bearing hardware testbed.
Finally, we also define a set of goal states, {𝜒goal} as

{𝜒goal} = {𝒔 | |𝒔 | < 𝒄goal} (10)

where

𝒄goal =
[
1 mm 1 mm 1 mrad 1 mm/s 1 mm/s 1 mrad/s

]𝑇
(11)

During training, {𝜒goal} is used as a terminal state set to account for the fact that the agent will never be exactly at the
desired reference point.

C. Markov Decision Process Formulation

To determine the appropriate control inputs for the position regulation task, we formulate the regulation problem as
a Markov decision process (MDP). In an MDP, an agent operates with a policy that determines the action to take when
the spacecraft is in a given state, 𝒂 ← 𝜋(𝒔). The goal of the agent is to determine the optimal policy, 𝜋∗, that maximizes
the discounted expected cumulative reward

𝜋∗ = arg max
𝜋
E

[ ∞∑︁
𝑖=0

𝛾𝑖𝑅(𝒔𝑖 , 𝒂𝑖)
]

(12)

where 𝛾 is the discount factor, 𝑖 is the time index, and 𝑅 is the instantaneous reward function. The instantaneous reward
is a function of both the spacecraft state and the chosen control action. In this work, the reward function is defined as

𝑅(𝒔, 𝒂) = −(𝒔𝑇 [𝑄]𝒔 + 𝒂𝑇 [𝑅]𝒂)Δ𝑡 + 𝑟safe (𝒔) + 𝑟goal (𝒔) (13)

where the matrices [𝑄] and [𝑅] are defined according to

[𝑄] = diag
( [

0.2 0.2 1/𝜋 0 0 0
] )

[𝑅] = diag
( [

0.9761 0.9593 5.9436
] )

(14)

and the functions 𝑟safe and 𝑟goal augment the reward according to whether the spacecraft is in the safe zone and/or goal
region

𝑟safe (𝒔) =
{

0 𝒔 ∈ {𝜒safe}
−100 𝒔 ∉ {𝜒safe}

𝑟goal (𝒔) =
{

100 𝒔 ∈ {𝜒goal}
0 𝒔 ∉ {𝜒goal}

(15)
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The values for the diagonal elements of the [𝑄] and [𝑅] matrices were selected in this work to be equal to the
element-by-element inverse of the state and action bounds in Eqs. 7 and 9.

The reward function is inspired by a traditional linear-quadratic regulator (LQR), where the equivalent policy is
defined as a linear feedback controller

𝒂 = −[𝐾]𝒔 (16)

where the gain matrix, [𝐾], is calculated from

[𝐾] = ( [𝑅] + [𝐵]𝑇 [𝑃] [𝐵])−1 [𝐵]𝑇 [𝑃] [𝐴] (17)

and [𝑃] is the solution to the infinite-horizon discrete algebraic Riccati equation

[𝑃] = [𝐴]𝑇 [𝑃] [𝐴] − ([𝐴]𝑇 [𝑃] [𝐵]) ( [𝑅] + [𝐵]𝑇 [𝑃] [𝐵])−1 ( [𝐵]𝑇 [𝑃] [𝐴]) + [𝑄] (18)

In the absence of state and action constraints as well as the additional rewards for being in the safe zone and in the goal
region, the LQR policy would be the optimal policy. The goal of the reinforcement learning agent is to understand how
to modify the policy due to the state and action constraints as well as the potential for propulsion system degradation and
failure. Throughout this work, the traditional LQR controller will be used as a reference policy in order to understand
the relative performance of the reinforcement learning agent.

III. Reinforcement Learning Implementation
Dyna is a reinforcement learning architecture that combines learning and planning [10]. In Dyna, real-world

experiences (i.e., observed state transitions) are used to update an internal state transition model. Between actions, the
agent uses the learned state transition model to simulate experiences that can be used to further update the policy. In
effect, Dyna augments traditional reinforcement learning algorithms by enabling the agent to plan. The key benefits of
such an architecture for this work are that the agent will be able to re-plan its policy in the event of propulsion system
degradation or failure and that the agent will be able to explore and test actions in simulation without having to actually
experience failure states. These benefits are why Dyna is being applied to solve this problem, the overall architecture
is simple and flexible enough to run on flight-like hardware while containing the necessary components to adapt in
real-time to unexpected model changes.

Algorithm 1 shows the implementation of the Dyna architecture used in this work. The outer control loop is similar
to any standard reinforcement learning algorithm: the agent observes its current state, takes an action according to its
policy, and uses the observed new state and reward to update its state-action value approximation. The incorporation of
Dyna adds an inner planning loop based on a learned state transition model. The planning loop simulates trajectories
from the current spacecraft’s state using the learned state transition model and performs value function updates using
the simulated results. The sampling approach used for Dyna planning is further described in Section III.C.

A. State Representation

The state representation, 𝒔, uses an angular representation for the attitude. The values for 𝜃 are restricted to range
between −𝜋 and 𝜋 from a given reference angle, creating a discontinuity as the spacecraft’s attitude crosses from 𝜋 to
−𝜋 or vice versa. To rectify this, we adopt an extended state representation, 𝒔𝑒𝑥𝑡 , which uses the cosine and sine of the
angular position as the attitude representation

𝒔ext =
[
𝑥 𝑦 cos 𝜃 sin 𝜃 𝑣𝑥 𝑣𝑦 𝜔

]𝑇
(19)

This extended representation is commonly used inside neural networks to improve the accuracy and performance of the
agent [13].

B. Twin-Delayed Deep Deterministic Policy Gradient (TD3)

In this work, our chosen reinforcement learning algorithm is the twin-delayed deep deterministic (TD3) policy
gradient algorithm. TD3 was used as the reinforcement learning algorithm as it is an off-policy algorithm which makes
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Algorithm 1 Dyna Algorithm with Trajectory Sampling
1: Initialize state-action value functions 𝑄1/2 (𝒔ext, 𝒂), policy 𝜋(𝒔ext), and model 𝑀 (𝒔ext, 𝒂)
2: while not done do
3: Get current agent state, 𝒔ext
4: Get action, 𝒂 ← 𝜋(𝒔ext)
5: Take action 𝒂, observe new state 𝒔ext

′, and calculate reward 𝑅(𝒔′, 𝒂)
6: Update 𝑄1/2 (𝒔ext, 𝒂) and 𝜋(𝒔ext)
7: Update 𝑀 (𝒔ext, 𝒂) based on observed state transition
8: Update 𝛼 based on transition loss 𝑙𝑜𝑠𝑠𝑡
9: for 𝑛 trajectories do

10: Initialize simulation state with current agent state 𝒔ext,sim ← 𝒔′ext
11: Create empty trajectory 𝑇 (𝒔ext, 𝒂, 𝒔ext

′, 𝒓)
12: for 𝑙 look-ahead steps do
13: Get simulated action 𝒂sim ← 𝜖-greedy(𝒔ext,sim, 𝜋(𝒔ext))
14: Simulate state transition, 𝒔′ext,sim ← 𝑀 (𝒔ext,sim, 𝒂𝑠𝑖𝑚)
15: Get simulated reward, 𝑟 ← 𝑅(𝒔′sim, 𝒂sim)
16: Update current state 𝒔ext,sim ← 𝒔′ext,sim
17: Store tuple in trajectory, 𝑇 ← (𝒔ext,sim, 𝒂𝒔𝒊𝒎, 𝒔

′
ext,sim, 𝑟)

18: end for
19: Batch update 𝑄1/2 (𝒔ext, 𝒂) and 𝜋(𝒔ext) using 𝑇
20: end for
21: end while

it sample efficient. TD3 is built upon the deep deterministic policy gradient (DDPG) framework and is designed to
address the overestimation bias and function approximation errors commonly encountered in reinforcement learning
with continuous action spaces. TD3 introduces several critical improvements: the use of a pair of critic networks to
mitigate overestimation by taking the minimum value from the two critics as the target, the policy update delay which
decouples the actor and critic updates to prevent destructive interference, and the application of target policy smoothing
through adding noise to the target action in the policy update to reduce variance. These improvements make TD3
significantly more stable and reliable, leading to better performance in various continuous control tasks [14].

Within TD3, a pair of critics each individually maintain a function approximation of the state-action value, 𝑄(𝒔, 𝒂),
which estimates the expected future cumulative reward from taking action 𝒂 while in state 𝒔. This increases the number
of unique neural networks from two to three. Note that this implementation also employs the use of target networks for
the actor and two critics. These target networks are clones of the original networks but are updated less often and by
copying the parameters of the original networks. Target networks are signified with a ′ in the subscript.

Typically, the target state action value, 𝑄target, is calculated as

𝑄target (𝒔, 𝒂) = 𝑅(𝒔, 𝒂) + 𝛾 ∗𝑄(𝒔′, 𝒂′) (20)

with the next action, 𝒂′, determined using the policy, 𝒂′ = 𝜋(𝒔′). The policy is determined by picking the action that
maximizes the Q-value

𝜋(𝒔) = max
𝒂
𝑄(𝒔, 𝒂) (21)

In TD3, the minimum of the two critics is used

𝑄target (𝒔, 𝒂) = 𝑅(𝒔, 𝒂) + 𝛾min[𝑄1′ (𝒔′, 𝒂′), 𝑄2′ (𝒔′, 𝒂′)] (22)

By taking the minimum, we avoid overestimating the Q-value, leading to better stability.
We also modify the way 𝒂′ is determined by adding clipped noise

𝒂′ = 𝑐𝑙𝑖𝑝(𝜋′ (𝒔′) + 𝑛,−𝒄𝑎𝑐𝑡𝑖𝑜𝑛, 𝒄𝑎𝑐𝑡𝑖𝑜𝑛) (23)
𝑛 ∼ 𝑐𝑙𝑖𝑝(N (0, 𝜎) ∗ 𝒄𝑎𝑐𝑡𝑖𝑜𝑛,−𝛿, 𝛿) (24)

where 𝛿 is the noise clip and 𝜎 is the policy noise. For this implementation, 𝛿 was set to:

𝛿 = 0.5 ∗ 𝒄𝑎𝑐𝑡𝑖𝑜𝑛 (25)
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The addition of noise to the action (when updating the critics) smoothens the Q-value estimate and reduces the chance
of the critic networks overfitting to function approximation errors. [14]

The last innovation of the TD3 algorithm is to update the policy network less often than the value network, with one
policy update for every four value updates in this implementation. This is to further stabilize the policy. This is also the
frequency the target networks are updated. Further details regarding the TD3 algorithm can be found in Ref. [14].

C. Trajectory Sampling

During the inner planning loop of Dyna, the learned state transition model simulates experiences that can be used
to update the agent’s policy and estimated state-action value functions between real-world actions. In selecting what
experiences to simulate, we use a simple trajectory sampling approach where trajectories are simulated starting from the
real-world state of the agent. For each trajectory, we start at the current state 𝒔 and propagate the trajectory forward for 𝑙
planning steps. At each step, an action, 𝒂sim, is chosen using an epsilon-greedy policy based on the current simulation
state, 𝒔sim. The new simulation state is determined using the transition model of the learned state, 𝒔′sim ← 𝑀 (𝒔sim, 𝒂sim),
and the corresponding reward is determined from the reward function, 𝑟 ← 𝑅(𝒔′sim, 𝒂). After propagating for 𝑙 planning
steps, the trajectory is used to batch update the state-action value function and policy using TD3. The trajectory sampling
is repeated for a total of 𝑛 trajectories, where the number of planning trajectories, 𝑛, and trajectory depth, 𝑙, become
hyperparameters of the algorithm.

The choice for 𝑛 determines the number of updates done to the actor and critics. Lower values of 𝑛 lead to slower
learning and longer response times to model changes. Larger values of 𝑛 allow the network to react quicker but are
much more costly to compute, reducing the maximum control frequency. On the other hand, the choice for 𝑙 affects
the amount of exploration the agent is able to gather. Since the actions in the planning steps are determined using an
𝜖-greedy algorithm, larger 𝑙 values create more divergent trajectories. Additionally, larger values of 𝑙 allow for the agent
to see further, allowing for it to avoid state violations. Increasing 𝑙 also increases computational time, but this has less of
an effect than 𝑛, allowing for the use of larger 𝑙 values when running on flight-like hardware.

D. Transition Model

The transition model, 𝑀 (𝒔, 𝒂), is the agent’s internal model of the real environment dynamics. The objective
of the transition model is to accurately determine the next state, 𝒔′, given a state-action pair, 𝒔 and 𝒂. In the Dyna
architecture, the transition model is only updated from real-world actions and is not updated during the planning loop.
In our implementation, the transition model consists of a single-layer perceptron (SLP). The purpose of the SLP is to
determine the next state given a state-action pair. The SLP is initially trained offline using the nominal system dynamics
outlined in Section II.A. During the mission, the measured 𝒔′ are used to update the SLP using backpropagation. The
loss is calculated as follows:

𝑙𝑜𝑠𝑠𝑡 = 𝑀𝑆𝐸 (𝒔′ − 𝑀 (𝒔, 𝒂)) (26)

where MSE is the mean-squared error. This allows the agent to adapt to changing dynamics in real time.

E. Learning Rate Suppression

Figure 2 shows the transition loss, 𝑙𝑜𝑠𝑠𝑡 , over the course of an episode with a thruster failure at t = 0s. The spike in
the loss and its subsequent decay is due to the agent actively relearning the model. During this process, the outputs of
𝑀 (𝒔, 𝒂) (used inside of the planning steps) may be inaccurate, and using these values could add instability to the actor
and critics. To counteract this, while the agent is relearning the model, signified by a transition loss greater than some
threshold Γ, we lower the learning rate, 𝛼, of both the actor and critic. In our implementation, this is done as follows:

𝛼 =

{
0.001 𝑙𝑜𝑠𝑠𝑡 < Γ

0 𝑙𝑜𝑠𝑠𝑡 ≥ Γ
(27)

where Γ = 0.0001 in our implementation.
As a general note, 𝛼 is not modified for the actor and critic update in Algorithm Step 6, which uses the observed

next state, 𝒔′, rather than the simulated output (𝒔′
𝑠𝑖𝑚

) from 𝑀 (𝒔, 𝒂).
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Fig. 2 Transition loss with a single thruster failure at t = 0s

Table 1 TD3-Dyna Neural Network Structures

Actor Critics Transition Model
Input 𝒔𝑒𝑥𝑡 𝒔𝑒𝑥𝑡 , 𝒂 𝒔𝑒𝑥𝑡 , 𝒂

Output 𝒂 𝑄 𝒔′𝑒𝑥𝑡
Shape (64,64) (64,64,64) (32)
Activation Functions ReLU with Tanh on output layer ReLU SiLU

IV. Training and Development
Our Dyna implementation has four main neural networks that need to be trained: the actor, the two critics, and the

transition model (we exclude the target networks as they are direct clones of these networks). Rather than train all four
together as in a typical reinforcement learning training scheme, we train each separately to reduce training time and
build in specific properties that decrease the unpredictability of the agent. The structure of each network is given in
Table 1. As a general note, the two critics are initialized to be identical (with identical shape and initial values).

For the actor and critic, the Rectified Linear Unit (ReLU) activation function was used due to its simplicity. ReLU is
defined as

ReLU(𝑥) = max(0, 𝑥) (28)

However, the transition model uses a variant of ReLU called the Sigmoid Linear Unit (SiLU), also known as the
Sigmoid-Weighted Linear Unit or Swish. It is defined as

SiLU(𝑥) = 𝑥

1 + 𝑒−𝑥 (29)

SiLU smoothly interpolates between a linear activation and a non-linear activation, providing a balance that can improve
performance in some neural networks [15]. The choice to use SiLU over ReLU for the transition model was to improve
the robustness of the transition model to a variety of inputs. Additionally, the simplicity of the network shape (only one
hidden layer) and its relative infrequency of updates (only once per time step) ensures the increased computational
complexity from using SiLU is not noticeable.

A. Actor

The actor, or the policy, is responsible for providing the optimal control action for a given state. Under nominal,
failure-free, dynamics, classical control algorithms work quite well. Therefore, we can train the actor using imitation
learning with the traditional PD-LQR controller described in Section II.C as the “expert” [16]. With the PD-LQR
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feedback controller, we generate 105 random state vectors such that

|𝒔 | ≤
[
7 m 7 m 𝜋 5 m/s 5 m/s 10 rad/s

]𝑇
(30)

The range of random states extends beyond the states that are members of {𝜒safe} or are expected to be observed, this is
done to eliminate performance degradation arising from experiencing states far outside of the training set, as neural
networks tend to struggle with generalization [17].

The optimal control actions are determined using

𝒂optimal = −[𝐾]𝒔 (31)

We then fit our neural network to this dataset using mean squared error as our loss function over 75 epochs of batch size
100. The neural network structure for the actor was obtained by minimizing the loss function using trial and error. It
should be noted that the optimal actor structure contains no hidden layers or activation functions. However, this was
not chosen as it constrains the agent to linear policies, which would perform poorly should the optimal policy become
nonlinear due to unexpected model changes.

B. Transition Model

Similar to the actor, we generate a dataset of random states and actions and calculate the next state, 𝒔′, using Equation
4. Although the dynamics are known and linear (and would not necessitate a neural network of this complexity), thruster
failures or model changes would lead to definitively nonlinear dynamics that cannot be captured using simpler neural
network structures.

C. Critic

In Q-learning, the Q-value is updated according to

𝑄𝑛𝑒𝑤 (𝒔, 𝒂) ← 𝑄(𝒔, 𝒂) + 𝛼
[
𝑟 + 𝛾 ′max

𝑎
𝑄(𝒔′, 𝒂′) −𝑄(𝒔, 𝒂)

]
(32)

Since the formula for 𝑄(𝒔, 𝒂) depends on the 𝑄 for a different state-action pair, it is difficult to train the critic in the
same manner as the transition and actor models. Therefore, we converge the critic model using a traditional RL training
loop, as outlined in Algorithm 2.

Algorithm 2 Critic Training Algorithm
1: Initialize Q-function 𝑄(𝒔, 𝒂), optimal policy 𝜋∗ (𝑆) and model 𝑀 (𝑠, 𝑎)
2: for 𝑛 episodes do
3: 𝒔← Get random initial state
4: while not done do
5: 𝒔← current agent state
6: 𝒂 ← 𝜖-greedy(𝑆, 𝜋∗)
7: Take action 𝒂, observe new state 𝒔′, reward 𝑟 , and terminal condition 𝑑𝑜𝑛𝑒
8: Update 𝑄(𝒔, 𝒂)
9: 𝒔← 𝒔′

10: end while
11: end for

To encourage exploration and improve the accuracy of the Q value in suboptimal states, we use a high 𝜖 (0.25) in our
greedy epsilon strategy. An important consideration when training using this method is to balance the use of the optimal
policy with random actions. Due to the high dimensionality of the input, it is impossible to explore every possible
state-action pair. Therefore, we must approximate the Q-value using a neural network. Only using the optimal policy
during critic training leads to an overrepresentation of “good” outcomes and high Q-values, leading to a critic that is
overly optimistic and unstable, while only relying on random actions leads to an over-representation of lower Q-values
and an overly pessimistic critic function.
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Fig. 3 Planar air-bearing thruster diagram, adapted from Ref. [11]

V. Evaluations
The Dyna agent was evaluated in both simulation and hardware environments. Hardware testing was conducted at

NASA/JPL’s GSAT (GNC (Guidance, Navigation, and Control) Spacecraft Autonomy Testbed) using a planar air-bearing
sled [11]. The Dyna agent was compared against a PD controller using LQR gains determined in Section II.C. The
performance cost for both agents was evaluated according to

𝐽 =

𝑘∑︁
𝑖=0
(𝒔𝑇𝑖 [𝑄]𝒔𝑖 + 𝒂𝑇𝑖 [𝑅]𝒂𝑖)Δ𝑡 (33)

where 𝑘 is the total number of time steps; 𝑘 = 300 for all test cases for a total simulation time of 60 s and a time step of
0.2 s. This cost function is the same as the reward function given in Equation 13 without terminal state penalties.

A. Hardware Setup

The hardware testing was performed on the planar air bearing platform located in the GSAT (GNC(Guidance,
Navigation, and Control) Spacecraft Autonomy Testbed) at NASA’s Jet Propulsion Laboratory, shown in Figure 4. The
planar air-bearing platform consists of a 2D flat floor and a platform that maintains a reduced-friction environment by
expelling air through planar air bearings. The platform is able to move along two translational degrees of freedom and
one rotational degree of freedom (whose axis of rotation is normal to the plane). The air-bearing platform consists of
eight thrusters, which can be controlled independently to achieve the desired attitude [11]. Figure 3 shows the thruster
layout of the planar air-bearing platform.

The controller outputs high-level actions in the form of the desired net forces and torques given in the reference
frame. These actions need to be converted to individual thruster commands to simulate thruster degradation and fire
the physical thrusters. On the planar air-bearing platform, thrust allocation is formed using a mixer matrix, [𝑀]. The
individual thruster forces are then calculated by solving the following constrained minimization problem using least
squares

min |𝒂 − [𝑀]𝒖 | (34)
subject to |𝒖 | ≥ 0 (35)

where 𝒖 is a vector of requested individual thruster forces. Further details on the formation of [𝑀] and the thrust
allocation can be found in Ref. [11]. Since this method of thrust allocation is blind to hardware thrust constraints, it is
possible that the requested force and the actual force differ by a significant margin. This also makes the true dynamics
of the system nonlinear.
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Fig. 4 The air bearing sled on JPL’s GSAT flat floor facility used for hardware verification, with +y pointing
toward the right.

B. Handling Failure

To model failure, we modify the thruster level control input as

𝒖∗𝑖 = 𝜂𝒖𝑖 (36)

where 𝒖∗
𝑖

is the modified thrust output for the thruster, 𝒖𝑖 is the required thrust output for the thruster 𝑖 and 𝜂 is the
degradation parameter. For each simulation, 𝜂 is randomly determined from a uniform distribution ranging from 0 to
1. Physically, when 𝜂 = 1, the thruster is functioning as expected (no failure) and a 𝜂 = 0 is equivalent to a stuck-off
failure (no thrust output). To keep testing simple and easily reproducible on hardware, the failures always occurred at
the beginning of the simulation (t = 0 s). It should also be noted that neither the controller nor the thrust allocator are
aware of the degraded thruster and are still able to request a force from the faulty thruster. This means the agent must
identify the thruster failure through the state measurements and react accordingly.

C. Simulation Results

The controllers were evaluated in a Monte Carlo simulation of 71,000 trials. The initial states were randomly
generated but kept consistent between the different controllers. Additionally, the models were reset after each episode to
prevent the agent from learning from previous episodes. Figure 5 shows the average cost for both the Dyna agent and
PD-LQR controllers as a function of the degradation factor 𝜂. To determine the average cost, the data was divided into
20 equally spaced "buckets" based on the degradation factor. The average cost for all trials in each bucket was then
calculated and plotted. Furthermore, all trials that contained a failure (where a controller exceeded state bounds) in
either agent were excluded from the dataset used to generate Figure 5. This exclusion was to prevent low costs from
early episode terminations from influencing the dataset. Figure 5 shows that Dyna and PD-LQR perform similarly at
high 𝜂 values, but Dyna tends to perform better at lower 𝜂 values. The large error bars are due to the high variance in
episode costs caused by initial state and failure modes.

Figures 6 and 7 show the median cost difference between Dyna and the PD-LQR controller, as well as the probability
that Dyna has a lower cost than PD-LQR. We observe that, on average, Dyna outperforms PD-LQR, regardless of the
degradation factor. The error bars for the cost difference increase slightly as 𝜂 approaches 0 because the outcome of
an episode heavily depends on the initial state and the specific thruster that failed. For example, a degraded thruster
may not be used much for a given initial state, increasing the likelihood that the PD-LQR controller outperforms Dyna.
Conversely, if the failed thruster is heavily used by PD-LQR for a certain initial state, then Dyna is more likely to
outperform the other controller.

Figure 8 shows the probability that either controller fails the regulation task (exceeds the state constraints). We see
that the probability of failure increases as 𝜂 decreases and that Dyna generally has a lower failure rate than PD-LQR,
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Fig. 5 Average episode cost for Dyna and PD-LQR. Episodes where a controller exceeded state bounds are
removed.

Fig. 6 Median cost difference between Dyna and
PD-LQR. Cost difference is calculated as 𝐽Dyna−𝐽LQR.
Episodes where a controller exceeded state bounds
are removed.

Fig. 7 Probability that 𝐽Dyna < 𝐽LQR. Episodes
where a controller exceeded state bounds are removed.

demonstrating that Dyna is able to adapt to the degraded model and still complete the task.

D. Hardware Results

The controllers were run at a 5Hz control rate and implemented inside of the F Prime (F’) framework running
on a Raspberry Pi 5. F’ is a flight software and embedded systems framework that has been used on several space
missions including a number of SmallSats and CubeSats such as those Steward might target [18]. The Raspberry Pi 5 is
a common single-board computer used as the main flight computer for many CubeSats and SmallSats and offers enough
computational power to run high-level controllers at a real-time frequency. Both controllers started from the same initial
state and ran for 60 seconds. Each initial state was repeated three times and the average was taken. Additionally, all
initial states during hardware testing began with no initial angular or translational velocity to ensure the initial states for
across controllers and trials were as similar as possible.
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Fig. 8 Probability that a controller exceeds state bounds.

Table 2 PD-LQR and Dyna cost comparison (failure-free)

Controller Trial 1 Trial 2 Trial 3 Experimental Average Simulation
Dyna 25.78 29.20 30.06 28.35 ± 1.07 12.05
PD-LQR 38.96 32.13 21.90 30.99 ± 4.05 8.28

1. The Failure-Free Case

We begin our analysis with the failure-free case. Table 2 shows the calculated cost for both controllers across all
trials along with the simulation prediction and the calculated average. We see that Dyna generally outperforms PD-LQR
in hardware testing (there is some overlap in error) but the opposite is true in simulation. We also see that the hardware
cost is higher than the simulation cost, this is mainly due to the difference between hardware and simulation testing. For
example, irregularities in the flat floor or inaccuracies in state measurements can manipulate the dynamics of the sled.

2. Single Thruster Failure

On hardware, thruster failures were achieved by disconnecting the thruster valve from power, ensuring the valve
always remained closed and unresponsive to controller commands. This allows for the controller and thrust allocator to
still request forces from the failed thruster (but it outputs no force). Table 3 again shows the calculated cost from this
position for both experiment and simulation. We see that PD-LQR outperforms Dyna with a single thruster failure in
both hardware and simulation. This is also an expected result, as the simulation results in Figure 7 show a significant
chance that PD-LQR outperforms Dyna when dealing with a stuck-off failure. This is mostly because the effect of a
single stuck-off thruster is highly dependent on the initial state.

However, there is more to the story. PD controllers typically suffer from steady-state error. This arises because the
errors become too small for the controller to provide any meaningful corrective action. This error increases when the
true dynamics begin to differ from the expected dynamics. Figure 9 shows the trajectories for the single-failure case for
both PD-LQR and Dyna controllers.

Table 3 PD-LQR and Dyna Cost Comparison (thruster 7 stuck off)

Controller Trial 1 Trial 2 Trial 3 Experimental Average Simulation
Dyna 31.57 28.86 43.82 34.75 ± 3.76 12.39
PD-LQR 18.77 18.29 19.46 18.84 ± 0.27 8.55
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Fig. 9 Trajectory comparison for single failure case between Dyna and PD-LQR controllers.

Table 4 PD-LQR and Dyna cost comparison (thrusters 2 and 4 stuck off).

Controller Trial 1 Trial 2 Trial 3 Experimental Average Simulation
Dyna 32.90 34.62 29.93 32.48 ± 1.12 84.48
PD-LQR 24.04 26.50 21.38 23.98 ± 1.21 15.9

We clearly see the presence of a steady state error for the LQR controller due to model degradation, as expected.
However, the Dyna controller is able to correct for this steady-state error. This is promising, as the agent was trained
using the exact same PD-LQR controller used meaning the agent has learned to overcome this deficiency in the PD-LQR
controller and still stabilize the spacecraft.

3. Double Thruster Failure

We now compare the performance of these controllers with a significant model degradation, as represented by
two thruster failures (Thrusters 2 and 4). Table 4 shows the average cost for each controller. We see that PD-LQR
outperforms Dyna again according to the LQR cost. While the simulation result for Dyna overshoots the expected cost,
the experiment outcome matches the simulation predictions.

Like in Section V.D.2, we see that Dyna is able to eliminate the steady-state error, as shown in Figure 10.

4. Dyna Runtime Analysis

Table 5 shows the average runtimes for the main functions in the algorithm. The getAction() function involves
retrieving an action from the agent’s policy (Step 4 in Algorithm 1). The learn() function is responsible for performing
updates to the neural network and includes all the planning steps in Dyna (steps 5–19 in Algorithm 1). From Table 5, it
is evident that Dyna is capable of operating in real-time on flight-like processors. The getAction() function is fast,
with mean runtimes close to 1 ms (1000 Hz). The high standard deviation is due to background processes running on
the Raspberry Pi. The learn() function takes significantly longer and is the limiting factor for the maximum control
frequency at which Dyna can operate. The runtime for learn() is linearly dependent on the number of trajectories
simulated in the planning steps, as this number also determines the number of backward passes through each neural
network.
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Fig. 10 Trajectory comparison for the double failure case between Dyna and PD-LQR controllers.

Table 5 Dyna key function runtimes.

Function Mean Runtime (ms) Standard Deviation (ms)
getAction() 0.959 ± 0.0032 6.462
learn(), 𝑛 = 5, 𝑙 = 20 100.587 ± 0.0044 8.761

VI. Conclusion
Deployable free-flying small spacecraft represent a promising solution for exterior inspection of future space

stations, addressing the constraints of current techniques employed on the International Space Station. By autonomously
conducting regular or on-demand inspections, these spacecraft can cover the entire exterior surface and minimize the
need for human involvement or costly extra-vehicular activities. Nonetheless, ensuring the safety and reliability of
free-flying spacecraft during close proximity operations is crucial to prevent potential collisions with the space station.
Existing strategies that rely on onboard thrusters for collision-avoidance maneuvers face challenges due to variable
thruster performance, which can hinder the ability to execute precise maneuvers. This variability, coupled with the
computational demands of traditional nonlinear trajectory optimization, necessitates the development of more adaptive
and computationally efficient solutions.

Our proposed reactive and integrated architecture, SmallSat Steward, harnesses the Dyna reinforcement learning
framework to address these challenges. By combining model-based planning and direct reinforcement learning, Dyna
offers a flexible, computationally efficient solution capable of adapting to changes in thruster performance and other
system uncertainties. Preliminary results in both simulation and hardware environments demonstrate the potential of
this architecture to maintain stable operations even under significant model degradation. Future work will focus on
refining the SmallSat Steward architecture, extending evaluation to more complex failure modes, incorporating more
realistic orbital mechanics (e.g. Clohessy-Wiltshire dynamics), and further testing on flight-like hardware.
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