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ABSTRACT

Recent years in natural language processing (NLP) research have seen a paradigm shift

toward foundational language models (LMs), which are self-supervised, transformer-based

language models that are trained on large amounts of text data from the web that serve as

flexible foundations that can be applied to downstream tasks with a small amount of fine-

tuning or in-context learning from demonstrations. While commonsense reasoning, i.e., the

ability to incorporate implicit background knowledge into natural language understanding

(NLU), is a long-standing grand challenge in NLP research with decades of effort spent,

these foundational LMs exhibit an apparent human-level proficiency on traditional NLU

benchmarks requiring it. However, given limitations of these LMs, including their lack

of transparency, tendency to exploit statistical bias in language data, and capability to

hallucinate factual information, we argue that traditional benchmarking practices are no

longer appropriate to evaluate the commonsense reasoning capabilities of foundational LMs.

In this thesis, we develop a new evaluation paradigm targeting coherent commonsense

reasoning. While traditional benchmarks boil down NLU into high-level text classification

tasks targeting various semantic phenomena, we first propose a notion of consistency of

LMs’ decisions by requiring them to localize these semantic phenomena within long lan-

guage contexts, serving as evidence for decisions. To enable evaluation of consistency of

foundational LM text classifiers, we propose a simple annotation scheme and apply it to two

existing benchmarks for NLU and commonsense reasoning. Further, we propose a notion

of verifiability, which requires LMs to explicitly generate the implicit commonsense back-

ground knowledge underlying this evidence, enabling evaluation and comparison to that of

humans. We implement this concept in Tiered Reasoning for Intuitive Physics (TRIP), a new

benchmark for coherent physical commonsense reasoning (PCR) in procedural texts.

Using the collected data, we evaluate and analyze the coherence of foundational LMs under

traditional strategies to apply them to downstream tasks. While traditional approaches

severely lack coherence in their commonsense reasoning, we develop new fine-tuning and in-

context learning strategies inspired by the theory of dual processes in human cognition. Our

cognitively motivated approach significantly improves coherence by focusing LMs’ attention

to the appropriate segments of the language context during each step of reasoning.
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Lastly, in the wake of recent foundational vision-and-language models (VLMs) which can

be applied to both image and language inputs for broad potential real-world applications,

we adapt our notions of consistency and verifiability into visually grounded PCR. After per-

forming an initial study of visual representations underlying these VLMs, we apply them

to the challenging PCR task of procedural mistake detection in video frames. We develop

automated, reference-free metrics for the relevance and informativeness of VLM-generated

explanations in this problem, using them to create a novel, multi-tiered coherence evaluation

of accuracy, consistency, and verifiability. We then draw from earlier findings to systemat-

ically investigate the impact of various interventions on VLM performance, and show how

our evaluation framework can reveal a wealth of insights into the strengths and weaknesses

of VLMs, enabling auditing and possible future improvement.
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CHAPTER 1

Introduction†

We humans use a variety of knowledge and reasoning to help understand meanings of lan-

guage. For example, consider these sentences from Marvin Minsky [163]: “Jack needed some

money, so he went and shook his piggy bank. He was disappointed when it made no sound.”

From this, it is not difficult for us to understand that Jack did not find any money, and

because of that, Jack was having a negative emotion. What makes us come to this con-

clusion, which was not explicitly stated in the text, is the knowledge we have about the

world and the underlying reasoning process, often called commonsense reasoning [53],

that allows us to connect pieces of knowledge to reach the new conclusion. For example,

we know that a piggy bank is a pig-shaped container that holds coins, and that coins are

pieces of currency made of metal. Since metal is a hard solid, the coins will make a sound

when shaken inside of a container such as a piggy bank; if there is no sound, then there are

no coins. It is also likely that we can predict that as piggy banks are typically possessed

by children, there is a good chance that Jack is a child. Alternatively, these predictions

may be derived from similar events we have experienced as children, and allow us to make

similar conclusions by analogy [163]. While this kind of knowledge and reasoning comes so

naturally to humans, it is notoriously difficult for machines due to reporting bias [84] and

a long tail [53], which make collection and formalization a challenge. Despite significant

advances in natural language processing (NLP) in the last several decades, including the

recent advent of transformer-based foundational language models (LMs) pre-trained

on web-scale text data, machines’ proficiency in this type of coherent natural language

understanding (NLU) supported by human-aligned commonsense knowledge and reasoning

beyond the text remains under-explored.

In this thesis, we conduct a pioneering investigation into the coherence of commonsense

reasoning in NLU achieved by foundational LMs, including methods to evaluate, strengthen,

†Shane Storks, Qiaozi Gao, and Joyce Y. Chai. Recent Advances in Natural Language Inference: A
Survey of Benchmarks, Resources, and Approaches. arXiv preprint arXiv:1904.01172, 2019.
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Figure 1.1: Since the early 2000s, there has been an explosion of benchmark tasks geared
toward commonsense reasoning. In 2018, we saw the creation of more benchmarks of larger
sizes than ever before. Data collected from papers cited in [227].

and apply commonsense reasoning in LMs. Targeting real-world embodied agent applica-

tions, we emphasize physical commonsense reasoning (PCR) in NLU, where LMs are

expected to understand language about concrete objects, actions, and state changes to rep-

resent a dynamic physical environment. In this chapter, we first provide an overview of

traditional benchmarking practices for commonsense reasoning in NLP systems. We then

briefly introduce the advancements in NLP leading to foundational LMs and approaches

typically used to apply them to benchmark tasks for commonsense reasoning in NLU, high-

lighting the key limitations of these approaches that make it difficult to objectively evaluate

their performance. Lastly, we introduce the main contributions of this thesis research, and

outline the remainder of the thesis which addresses these goals.

1.1 Benchmarking Commonsense Reasoning in NLP

Systems

The NLP community has a long history of creating benchmarks to facilitate incremental

algorithm development and quantitative evaluation for language processing tasks, e.g., for

part-of-speech tagging [153], named entity recognition [86], question answering [97, 244],

semantic role labeling [81, 192], and coreference resolution and relation extraction [60]. For

earlier benchmarks like these, although it is often the case that some type of commonsense

reasoning may be required to reach an oracle performance, they were primarily created to

target approaches that apply linguistic context to solve these tasks.
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As significant progress has been made by using the earlier benchmarks, recent years

have seen a shift in benchmark tasks which are beyond the use of linguistic context, but

rather require external knowledge and commonsense reasoning to solve the tasks. These

benchmark tasks aim to require a deeper understanding to solve, thus targeting commonsense

reasoning. These tasks typically take the form of text classification, where given some

language context, a system must assign a label to it or choose from multiple text choices to

complete the context or answer a question. Figure 1.1 shows a trend of growth among such

benchmarks since 2000. The Recognizing Textual Entailment (RTE) Challenges [43] and

Winograd Schema Challenge [128] had been the dominant reasoning tasks for many years,

encouraging development of systems through competitions. More recently, there has been an

increasing variety of benchmarks with a much larger number of data instances to facilitate

training of deep neural networks.

Some examples of these benchmarks that have attracted significant activity in the research

community are shown in Figure 1.2.1 Situations With Adversarial Generations (SWAG) is

a straightforward multiple-choice sentence completion task where given the beginning of a

sentence, systems must choose the most plausible ending to the sentence based on knowledge

about how the world typically works [267]. The General Language Understanding Evaluation

(GLUE) benchmark offers a suite of textual entailment tasks focused on different domains

and skills, some of which aim to require commonsense reasoning [247]. Textual entailment,

originally proposed in the RTE Challenges, requires making a judgement of whether a hy-

pothesis text must be true given some premise text. The particular example shown was

adapted from the Winograd Schema Challenge, which poses a challenging problem where a

reference (e.g., a pronoun) in a sentence can only be resolved based on implicit common-

sense knowledge. Lastly, given two partial observations of a situation, Abductive Reasoning

in narrative Texts (ART) [22] requires systems to choose the most plausible hypothesis that

connects the observations, a form of abductive reasoning [184].2 Benchmarks like these serve

as useful tools to quickly evaluate commonsense reasoning capabilities in foundational LMs

and other NLP systems, and have attracted significant research activity toward commonsense

reasoning in NLU.

1Benchmarks for commonsense reasoning in natural language understanding are reviewed in greater detail
in [227] and [52].

2A unique aspect of SWAG and ART is that the datasets were adversarially filtered to be especially
challenging for pre-trained language models; see [267, 22] for more details.
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(A) SWAG [267]

He pours the raw egg batter
into the pan. He...

a. drops the tiny pan onto
a plate

b. lifts the pan and
moves it around to
shuffle the eggs.

c. stirs the dough into a
kite.

d. swirls the stir under the
adhesive.

(B) GLUE [247],
Winograd NLI [128]

Premise: The trophy
doesn’t fit into the brown
suitcase because it is too
large.

Hypothesis: The trophy is
too large.

Label: entailed

Hypothesis: The suitcase is
too large.

Label: not entailed

(C) ART [22]

Observation 1: There was
ten feet of snow outside.

Observation 2: In all that
time I was unable to check
my mail.

Hypothesis:

a. I couldn’t open my
door against a drift
for 3 days.

b. It took 10 minutes for
the snow plow to come
through.

Figure 1.2: Example natural language understanding benchmarks that require commonsense
reasoning: Abductive Reasoning in narrative Texts (ART) [22], Situations With Adversarial
Generations (SWAG) [267], and the General Language Understanding Evaluation (GLUE)
[247]. Correct answers in bold.

1.2 Applying Foundational Language Models to

Commonsense NLU Tasks

Nowadays, foundational LMs are the most common approaches to be applied to NLU bench-

marks like these. First, we will introduce the key research developments from the last several

decades that led to the creation of foundational LMs, as well as how the ways in which they

were applied to benchmark tasks changed. We then discuss key limitations of these LMs that

arose from this evolution which now make it difficult to objectively judge research progress

on commonsense reasoning in NLU, despite their impressive capabilities and apparent super-

human performance on many benchmark tasks.

1.2.1 Evolution of Foundational Language Models

NLP approaches for commonsense reasoning and language understanding have continually

evolved over the last several decades. The earliest approaches applied traditional symbolic

and statistical methods. Symbolic approaches, derived from classical theories of logic and

reasoning [11, 50, 167, 29, 184], parse language into logical forms and apply various operations

to make inferences [154, 122, 166, 178, 35, 174, 150, 83, 51]. These approaches were highly

accurate, but rigid and difficult to scale. Meanwhile, statistical approaches were used to

develop the first instances of language models (LMs), which counted co-occurrences of

tokens and n-grams to estimate probabilities of sequences in language and classify texts

4



[216, 148, 221, 33, 21, 208, 112, 36, 207].

The advent of neural networks in statistical language processing led to the ability to

learn latent semantic vector representations of tokens [54, 20, 25, 159, 158, 186], which could

later be reused as inputs when training task-specific deep neural networks for language tasks

[210, 98, 38]. While these neural language models enabled progress on various language

tasks (e.g., machine translation), the requirement of large amounts of in-domain training

data, difficulties handling long-range dependencies in text, and the challenge of incorporating

external background knowledge remained bottlenecks for commonsense reasoning [227, 214].

The invention of attention mechanisms [14], transformers [241], and contextualized token

representations [187, 194, 56, 142] were instrumental in further progress, as they enabled

LMs to implicitly learn dependencies between every pair of tokens in text, and could be

efficiently trained on large corpora of text scraped from the web through self-supervision. Due

to their pre-training on open-domain, web-scale data, these foundational LMs acquired

a breadth of knowledge about the distribution of natural language that could serve as a

flexible foundation for various downstream tasks. More than ever before, these LMs were

easily adaptable through directly fine-tuning the architecture, i.e., training it end-to-end, on

a small amount of in-domain data from datasets like the benchmarks discussed previously.

A period of scaling up the training data and complexity of LMs followed, along with

various improvements to training paradigms, which led to foundational LMs becoming more

ubiquitous and capturing public attention in recent years [195, 34, 236, 2, 76]. This is largely

because as these LMs scaled, new capabilities emerged. Most notably, they became capable

of generating high-quality, task-specific language without task-specific training. To apply

them to downstream tasks, it became viable to prompt them directly (zero-shot) or apply

in-context learning by providing a small number of demonstrations for a task before eliciting

a prediction from them [34]. Later work found that it was possible to prompt foundational

LMs with a chain-of-thought (CoT) to demonstrate reasoning chains to support inference

on downstream tasks in in-context learning, improving performance on complex reasoning

tasks [254, 118].

1.2.2 Limitations of Foundational LMs

As shown in Figure 1.3, foundational language models like BERT [56], RoBERTa [142], and

T5 [197] marked a period of rapid progress on NLU benchmarks, with state-of-the-art accu-

racies rising by over 20% (sometimes in a matter of months), and approaching and exceeding

human performance. This is striking, as while commonsense reasoning had been thought to

be a major bottleneck in automating NLU for decades, these results on NLU benchmarks

5
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Figure 1.3: Graph of state-of-the-art accuracy by language models (as it approached human
accuracy) on three NLU benchmark tasks for evaluating commonsense reasoning: SWAG
[267], GLUE [247], and ART [22]. Human performance shown as horizontal dotted lines.

targeting commonsense reasoning suggest the problem may finally be solved. In this thesis,

we argue that on the contrary, key limitations of foundational LMs make it difficult to ob-

jectively evaluate their commonsense reasoning through traditional benchmarking practices.

Lack of transparency. At their core, deep neural networks are pattern recognition models

which learn large numbers of parameters in nonlinear functions to capture variations in

high-dimensional language representations. As in many sub-fields of artificial intelligence

(AI) where deep learning approaches are heavily applied, transparency and the ability to

explain system behaviors are essential for trustworthiness. However, as state-of-the-art LMs

have been scaled up, their architectures consist of up to hundreds of billions of learned

parameters [34]. Consequently, the underlying reasoning process of these models cannot

be easily interpreted, and it is quite opaque why particular conclusions are made by these

models. Chapter 2.1 introduces related work toward interpreting decisions made by LMs,

which typically requires additional steps like training probing classifiers on top of LMs,

systematically manipulating LM inputs or architectures, or curating adversarial data that

can target specific phenomena. As there is not yet an agreed-upon or general method to

interpret LMs [219], this lack of transparency remains a drawback of LMs as opposed to

earlier symbolic and statistical approaches for NLU.

Superficial correlations in language data. This lack of transparency becomes prob-

lematic when we consider the presence of superficial statistical biases in datasets used to

train and evaluate AI systems, particularly in deep neural networks. Unlike biases in class

labels or domains, which are easy to resolve by balancing the data during collection or sam-

pling, such superficial correlations are not straightforward to resolve, and create a number

of challenges in practical applications of neural networks. In image classification, the insidi-

ousness of these biases became apparent through the use of adversarial attacks; for example,
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[229] found that small changes (virtually undetectable by humans) in images could change

the predictions of image classifiers, making it possible for bad actors to manipulate their

decisions. This brittleness of neural networks also impacts our ability to benchmark system

capabilities, which [202] demonstrated by showing that spurious correlations in training data

can cause accurate decisions by image classifiers to be based on invalid evidence from images.

For example, when classifying images as wolves or huskies, it was found that the presence of

snow in the background of images was the key factor in this decision rather than features of

these animals.

This prompted extensive investigation of such biases in language data and brittleness of

NLP systems (including recent foundational LMs) through adversarial attacks and training

text classifiers on incomplete inputs [4, 215, 109, 90, 191, 104, 209, 79, 177, 143]. While

these biases can be linked to meaningful properties of data, e.g., gender bias [209], they

are largely driven by more incomprehensible cues like punctuation or otherwise semantically

inconsequential tokens or phrases that create correlations between task context (e.g., ques-

tions) and answers (e.g., text choices or class labels). For example, [215] found that for

the Story Cloze Test [168], a commonsense NLU benchmark requiring systems to choose a

plausible ending for a story from two candidates, correct answers were more likely to use

exclamation marks (i.e., “!”), despite this being generally unimportant in understanding the

plausibility of candidate endings. This incoherent behavior enables fine-tuned foundational

LMs to achieve artificially high performance on benchmark tasks, as exploiting shortcuts like

these enables them to bypass true reasoning. It is important to note that these biases are

dataset-specific, often introduced by patterns in human annotation [215, 79], which do not

reflect the broader distribution of natural language and thus undermine the performance of

LMs in real-world applications. While Chapter 2.3 introduces approaches from prior work

to make fine-tuned LMs resilient to superficial statistical biases, the dominant task-agnostic

approach here is adversarial filtering [267], a cyclical approach which requires regenerating

and filtering datasets regularly based on whether examples are difficult for fine-tuned state-

of-the-art LMs to classify. Furthermore, similar problems with bias have been found even in

prompting and in-context learning approaches to apply LMs to downstream tasks [253, 218],

which introduce additional challenges specific to text generation settings, e.g., hallucina-

tion [108], where LMs generate fluent-sounding language with illusory or false information.

The issue of spurious correlations in language data thus appears inescapable for the current

paradigm of foundational LMs.

Despite the impressive results and apparent human-like reasoning capabilities of founda-

tional LMs, these limitations compromise traditional benchmark evaluations of their com-

monsense reasoning and NLU. This problem motivates the creation of deeper evaluations
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of reasoning which go beyond high-level text classification tasks and require LMs to explain

their predictions with coherent, human-aligned reasoning chains. Such auditing tools will

be especially important for applying LMs to real-world physical settings which recent work

has already begun to explore [101, 5, 220, 87]. In such settings, LMs could be embodied in

robots and collaborate with humans in a shared environment, where they would be expected

to understand human instructions. This understanding requires PCR and visual grounding

to understand the implications of actions on the environment with respect to the current

state of the environment. To ensure safety and trust in this setting, it is critical that the

depth of LMs’ understanding of language and its surroundings matches that of their human

partners.

1.3 Contributions

In light of the inability of current benchmarking and modeling practices to account for the

incoherent behaviors of foundational LMs, this thesis makes several novel contributions.

First, we develop a multi-faceted evaluation paradigm for coherent commonsense

reasoning in NLU. This paradigm introduces a notion of consistency between an LMs’ text

classification predictions and its beliefs on sub-segments of language contexts, particularly

for problems where the context consists of multiple sentences that systems must reason

over (incorporating commonsense knowledge as needed) to fully understand. Evaluating

consistency in NLU text classification tasks enables a previously unexplored view into the

evidence supporting LMs’ predictions. Further, this paradigm adopts a notion of verifiability

of LMs’ predictions, where domain-specific commonsense knowledge invoked by the language

context is made explicit in LMs and additionally evaluated, enabling greater transparency

and ability to compare with human reasoning.

To enable quantitative evaluation of consistency and verifiability in foundational LMs ap-

plied to commonsense NLU tasks, we curate densely annotated benchmark datasets

for coherent commonsense reasoning. To evaluate the consistency of LMs, we propose

a simple yet effective technique to annotate discourses of language to characterize the ground

truth evidence that supports text classification. We apply this technique to annotate two

existing benchmark datasets related to commonsense reasoning [269, 22]. Further, to enable

investigating LMs’ ability to learn consistent and verifiable reasoning structures, we compile

Tiered Reasoning for Intuitive Physics (TRIP), a new multi-tiered benchmark dataset of pro-

cedural texts annotated with traces of PCR. TRIP, like other NLU benchmarks, includes a

high-level classification task (physical plausibility), but additionally includes annotated evi-

dence in the form of conflicting sentences creating plausibility conflicts in the texts (targeting
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consistency), and commonsense physical state changes implied by each sentence (targeting

verfiability). These datasets are valuable resources for the community to incrementally

strengthen the commonsense reasoning (especially PCR) in LMs while accounting for their

spurious behaviors, with a goal of coherent reasoning aligned with that of humans.

Next, we apply foundational LMs to these benchmark tasks through several

empirical experiments. To understand whether LMs reason consistently in text classi-

fication tasks, we fine-tune LMs on our two annotated NLU benchmarks. To investigate

whether LMs can learn consistent and verifiable reasoning chains jointly with text classifica-

tion tasks, we fine-tune LMs on TRIP with various loss configurations and perform a detailed

analysis. In these experiments, we find that LMs struggle to learn coherent reasoning strate-

gies through traditional fine-tuning methods. Inspired by dual process theories of human

cognition, we then propose novel heuristic-to-analytic strategies for fine-tuning and prompt-

ing LMs on PCR in TRIP. These strategies condition lower-level steps with higher-level steps

of the reasoning process, sharply improving the coherence of PCR by focusing LM attention

to the most relevant parts of the language context during each step.

To complete this thesis, we extend the problem of coherent PCR to multi-

modal settings with recently developed foundational vision-and-language models

(VLMs). We first explore the strengths and weaknesses of foundational vision-and-language

representations in capturing physical concepts, e.g., objects, states, and actions, finding that

they capture physical state descriptions better than higher-level action descriptions. Draw-

ing from this, we adapt our concepts of consistency and verifiability to procedural mistake

detection (PMD) in egocentric video frames. Specifically, we extend this reasoning-intensive

multimodal problem, previously posed as a high-level classification task for whether a pro-

cedure was successfully completed, by requiring VLMs to generate low-level explanations

for their decisions through visual questions and answers. We develop novel, automated,

reference-free evaluation metrics for the relevance and informativeness of VLM-generated

explanations in this problem, using them to recreate a multi-tiered coherence evaluation of

accuracy, consistency, and verifiability. We then systematically investigate the impact of

various interventions on VLM performance: varying the direction of reasoning steps, in-

corporating our coherence metrics and in-context learning into explanation generation, and

applying recently developed approaches to mitigate incoherent visual processing tendencies

in VLMs (e.g., hallucination). We show that prioritizing coherence through our proposed

metrics can yield large gains in both coherence and accuracy of PMD, while visual halluci-

nation mitigation methods can optimize VLMs’ efficiency, confidence, and reliability. Lastly,

we show how our evaluation framework can reveal a wealth of insights into strengths and

weaknesses of VLMs here, enabling inspection and possible future improvement of systems.
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1.3.1 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 summarizes prior work in several areas related to the contributions of this

thesis.

Chapter 3 introduces the concept of consistent commonsense reasoning, details our pro-

cess to annotate existing commonsense reasoning benchmarks to evaluate consistency, then

evaluates the consistency of foundational LMs fine-tuned on the unannotated benchmark

training data.

Chapter 4 introduces the concept of verifiable commonsense reasoning, and discusses

the curation of the multi-tiered TRIP benchmark for consistent and verifiable PCR.

Chapter 5 presents experiments to evaluate the consistency and verifiability of founda-

tional LMs fine-tuned on the sub-tasks of TRIP.

Chapter 6 implements, evaluates, and analyzes cognitively motivated PCR strategies

for LM fine-tuning and in-context learning.

Chapter 7 performs initial tests of PCR in foundational VLMs, identifying key challenges

for applying them to more natural multimodal task settings requiring PCR.

Chapter 8 adapts concepts of coherence to multimodal PCR, resulting in a novel inter-

pretable formulation of PMD in video frames, automated evaluation metrics for evaluating

coherence of VLMs’ decisions and explanations, and a thorough initial analysis of the im-

pact of various interventions on the accuracy, coherence, efficiency, and reliability of VLMs

in PMD.
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CHAPTER 2

Related Work

This thesis makes contributions to several areas of ongoing research:

1. Interpreting and evaluating reasoning in language models (Chapters 3-6)

2. Benchmarking physical commonsense reasoning in AI systems (Chapter 4)

3. Improving reasoning in language models (Chapters 5-6)

4. Applying dual process theory in AI (Chapter 6)

5. Grounded language understanding in foundational multimodal models

(Chapters 7-8)

6. Procedural mistake detection for task guidance (Chapter 8)

In this chapter, we highlight relevant work from each area, and contextualize the contri-

butions of this thesis within each area.

2.1 Interpreting and Evaluating Reasoning in Lan-

guage Models

To address the black-box nature of neural NLP models, including foundational language

models (LMs), and questions about the spuriousness of their decisions, a broad space of past

work has proposed methods to interpret and evaluate their reasoning processes in various

tasks and domains. [18, 219] provide detailed reviews of work in this space, while we highlight

some of the most relevant work below.

In addition to the adversarial attacks discussed in Chapter 1.2.2 which exposed incoherent

behaviors in LMs, several prior works have behaviorally tested NLP models like LMs to

evaluate their reasoning capabilities. Some work has studied coherence of generated language
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through the proxy task of text ordering [123, 144]. Other work has collected and generated

specialized data to stress test the coherence and consistency of models’ reasoning processes

in various settings [203, 57], some targeting specific aspects like natural language inference

[155], question answering [107], causal inference [111], and memorization of training data [92].

Related to these efforts, in Chapter 3 of this thesis, we propose an easily-accessed, versatile

evaluation of reasoning consistency in text classifiers which can be enabled from only a small

amount of additional annotations on spans of a discourse. Using this evaluation method, we

show that foundational LMs fine-tuned on commonsense reasoning tasks often make decisions

based on evidence inconsistent with that used by humans. Further, in Chapters 4 and 5,

we develop Tiered Reasoning for Intuitive Physics (TRIP), a novel specialized benchmark

to evaluate the consistency and verifiability of intuitive physical commonsense reasoning

(PCR), an under-explored challenge in natural language understanding (NLU).

Meanwhile, another line of work seeks to understand model behaviors through their in-

ternals. To interpret the semantic vector representations used by LMs to make decisions

and the knowledge they actually capture in various task settings, a common approach is to

train lightweight (often linear) probing layers on them [3, 64, 234, 96, 106, 233, 40]. An al-

ternative approach is to elicit and analyze attention-based explanations for model decisions

and generated language over other possible decisions and generations [105, 262]. Parallel

work has applied causal methods to judge the importance of aspects of model inputs in

reasoning, locate knowledge in model parameters, and identify roles of model components

[132, 157, 77, 225, 226, 99, 248]. This line of work, recently referred to as mechanistic inter-

pretability, has developed numerous statistical methods to analyze the flow of information in

transformer-based models during training and inference [170, 243, 78, 48, 172, 165, 235, 95].

The majority of this thesis focuses on developing behavioral evaluations for the coherence of

commonsense reasoning, especially PCR, in foundational LMs, as there remains significant

room for improvement in this area even through such evaluations. However, in Chapter 6, we

contribute to this line of work by proposing metrics for the faithfulness, precision, and recall

of model attention over a discourse, using it to demonstrate the advantage of a cognitively

inspired LM prompting approach proposed there.

2.2 Benchmarking Physical Commonsense Reasoning

in AI Systems

Some past works have proposed NLP benchmark datasets around the domain of PCR, which

offer various classification tasks that have been used to evaluate the capabilities of LMs.
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In this area, benchmarks take various forms. Some benchmarks target the low-level pre-

diction of changing physical states implied by procedural text [46, 232, 268]. Other bench-

marks use higher-level tasks like question answering and textual entailment to measure LMs’

understanding of specific aspects of PCR, such as physical properties of actions and ob-

jects [71, 24, 12], temporal reasoning [278, 279], and spatial reasoning [164]. Visual [113, 15]

and multimodal [102, 49, 9, 217] benchmarks also investigate systems’ commonsense under-

standing of the physical world through perception and interaction. Different from existing

benchmarks, this thesis proposes TRIP (Chapter 4), a first-of-its kind benchmark which

combines aspects of previous text-based benchmarks for a multi-tiered evaluation targeting

coherent PCR. This multi-tiered task creates a reasoning chain from low-level physical states

to higher-level decisions of locating plausibility conflicts and the end task of choosing a text

which is more physically plausible. Through this benchmark, we find that classification tasks

are not enough for LMs to learn to reason coherently, and thus it becomes essential to elicit

multi-tiered reasoning chains like these to support decision-making tasks. This may be es-

pecially important for machine reasoning in real-world physical settings, where humans and

agents powered by LMs may share an environment.

2.3 Improving Reasoning in Language Models

Another broad body of work has developed strategies to strengthen the reasoning capabilities

in NLP models. These efforts can be categorized into two areas: supervised methods to

train and fine-tune LMs to reason, and unsupervised methods to prompt LMs in a way that

facilitates reasoning.

While progress has been made by fine-tuning LMs on various specialized reasoning tasks

to augment their capabilities in natural language inference [255, 240], mathematical reason-

ing [80], temporal reasoning [279], and other forms of commonsense reasoning [198, 213],

such effort is largely data-driven and thus vulnerable to superficial statistical bias. Some

approaches have been proposed to remove biases from language by filtering out data too

easily discriminated by state-of-the-art fine-tuned text classifiers [267, 176], and to improve

robustness and consistency of systems through specialized architectures, learning objectives,

and data augmentation [19, 39, 135, 161, 13]. Meanwhile, other work has attempted to

compile large amounts of semi-structured commonsense knowledge [212, 169] and inject this

knowledge into pre-trained LMs [31, 275] in order to enable knowledge-supported language

understanding and on-the-fly explanation. Related to these efforts, in Chapter 5, we pro-

posed a multi-tiered strategy to fine-tune LMs to jointly make decisions and explain them

in coherent PCR, finding that removing a high-level decision-making objective from train-
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ing improved coherence of reasoning. Following this, some work (discussed in Chapter 6)

similarly attempted to build in explicit coherent reasoning structures [149, 204, 130], but

these approaches reason from the bottom up over various representations of the world state,

or jointly optimize all reasoning steps without dependency. In Chapter 6 of this thesis,

we instead found that the coherence of commonsense reasoning in fine-tuned LMs could be

majorly improved through a top-down heuristic-analytic reasoning strategy inspired by dual

process theories of human cognition.

With the introduction of GPT-3 [34], in-context learning became a common way to ap-

ply LMs to new tasks without in-domain gradient-based training, where one prompts the

LM with helpful task-specific knowledge or even full demonstrations at inference time be-

fore finally asking it to solve a task. A number of works found applications of in-context

learning in PLMs for complex reasoning tasks [47, 230, 223]. Among these works, significant

improvements came from inserting or generating free-text reasoning chains in prompts to

support task predictions [254, 118]. These findings sparked the exploration of many different

in-context learning and sequential prompting approaches to strengthen reasoning in PLMs

and tackle various tasks [116, 179, 266, 258, 261, 145, 251]. These methods usually rely

on an assumption that by decomposing a high-level task into many low-level sub-tasks, the

model can solve the low-level sub-tasks easily, which helps it achieve better performance on

the high-level task. However, in complex cases like commonsense reasoning, even lower-level

sub-tasks are hard to solve due to the requirement of retrieving and incorporating knowledge

beyond the text. As such, in Chapter 6, this thesis proposes a heuristic-analytic in-context

learning approach which instead uses higher-level decisions to refine the generation of low-

level commonsense knowledge from LMs.

2.4 Applying Dual Process Theory in AI

Dual process theories of cognitive psychology have recently attracted interest in various ar-

eas of AI. [10] apply them to augment reinforcement learning algorithms with deliberative

planning of policies through tree search. [72] combine them for more efficient navigation with

AI agents that evolve from slow to fast decision-making while navigating. Similarly inspired

by dual process theories, [100] apply logical reasoning over representation learning for more

accurate commonsense knowledge base completion. [125] use dual-process inspired associa-

tive selection combined with evidence generation to perform question answering on scientific

articles. [28] propose additional research questions and directions around the application

of dual process theories of human cognition in AI. Complementary to these past works, we

apply dual process theories of human cognition in coherent PCR with foundational LMs in
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Chapter 6, both through fine-tuning and in-context learning.

2.5 Grounded Language Understanding in

Foundational Multimodal Models

A large amount of recent work has been devoted to grounding foundational LMs for NLU

and reasoning in the visual modality, especially relevant to tasks involving physical reasoning

about real-world environments. The most relevant work to this thesis has occurred in three

general areas: developing multimodal representations suitable for PCR, analyzing and evalu-

ating NLU and physical commonsense in foundational vision-and-language models (VLMs),

and formulating strategies to improve the visual reasoning capabilities of foundational VLMs.

First, prior work has attempted to build and strengthen multimodal representations

specifically for physical reasoning tasks, such as understanding object states and state

changes [42, 138]. A significant line of work has attempted to integrate a notion of vi-

sual imagination into physical commonsense NLU through physical simulators [17, 58, 141,

120, 119] and intuitive simulation with language-conditioned image and video generation

[242, 151, 147, 260, 115, 131, 263]. Complementary to these efforts, which largely target syn-

thetic settings, in Chapter 7, we probe foundational multimodal representations to evaluate

their suitability for physical state prediction in natural images. Notably, we take advantage

of foundational LMs and text-to-image diffusion models to implement textual and visual in-

tuitive physical simulation strategies, finding that these representations capture declarative

textual physical state descriptions better than descriptions of actions or images of objects in

particular states.

Vision-and-language pre-training paradigms have rapidly evolved in recent years and seen

much success in multimodal tasks [231, 136, 272, 117, 238, 134, 6, 2, 133, 44, 185, 140, 139,

76, 271, 1], enabling the development of VLMs which can generate language about input

images. Several works have analyzed the grounded NLU capabilities of VLMs [103, 264],

including relevant studies on their capturing of object properties [91, 270] and physical ac-

tions [94, 265, 110, 175]. Other works have attempted to benchmark their capabilities in

multimodal applications requiring physical reasoning, such as robotic planning and manip-

ulation [101, 5, 220, 87, 173], as well as procedural mistake detection (PMD), where a VLM

must determine whether a human has performed a procedure correctly based on a text de-

scription of the procedure and an image or video of the current state of the environment

[62, 16]. In Chapter 8, we extend previous work to analyze the capability of VLMs to gener-

ate explanations of their decisions in PMD, a previously unexplored aspect of the problem.
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These explanations are formulated as a series of questions and answers that infer the success

conditions from the procedural text and check for them in an image, thus testing VLMs’

grounded NLU capabilities. To evaluate explanations, we propose automated metrics based

on pre-trained NLI models to judge the coherence of generated explanations for decisions.

We then apply these metrics, along with in-context learning from human-generated ques-

tions, to improve question generation and thus improve the accuracy and coherence of VLM

decisions and explanations.

Related to the above, several works have specifically studied the visual perception ca-

pabilities of foundational VLMs. VLMs are vulnerable to visual hallucination and illusion

[45, 137, 274, 88], making it difficult to apply them to reasoning tasks requiring visual per-

ception. A recent line of work has attempted to address this by proposing strategies to

manipulate VLMs’ input images and output logits in such a way that removes illusory and

irrelevant information [245, 127, 8]. An alternative approach is to train question-aware visual

encoders to ensure visual representations capture only the most prompt-specific information

[73]. Other works have attempted to address this through VLMs’ textual inputs by utilizing

foundational LM-generated questions and feedback to guide VLMs through complex reason-

ing and question answering problems [224, 37, 280]. As mentioned above, in Chapter 8, we

follow these works to frame PMD as a self-dialog of questions and answers generated by

VLMs. We then examine the impact of some hallucination mitigation strategies [245, 127, 8]

on VLMs’ performance in PMD, finding that they can improve the efficiency of explanation

and reliability of decisions at a possible cost of coherence.

2.6 Procedural Mistake Detection for Task Guidance

Lastly, prior work has developed resources and approaches for PMD in the broader problem

space of task guidance. Early systems for task guidance provided the user with pre-defined,

task-specific, context-agnostic information without the capability to track the state of the

environment, provide user-specific feedback, or generalize to new tasks [181, 180, 250, 126,

201]. Interactive task guidance based on visual perception, language communication, and

mixed reality is a recently emerging area of AI research that aims to address these limitations,

largely stemming from a DARPA program on the topic [55].

To enable research on this problem as well as the sub-problem of procedural mistake

detection (PMD), prior work has produced annotated datasets [62, 16, 249, 183] and built

development platforms [27]. Related to these resources, in Chapter 8, we recast the Ego4D

dataset [85] as a PMD problem, providing a large-scale data source for PMD in simple

everyday procedures. This dataset lowers some barriers to understanding VLMs’ capabilities
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in PMD by focusing on narrated actions rather than recipes (which can include difficult-to-

perceive aspects like temperatures, times, and small measurement quantities), and excluding

any dialog or social interactions. We refer to this simplified dataset as Ego4D for PMD

(Ego4D-PMD). In addition to Ego4D-PMD, we propose automated, reference-free coherence

metrics for natural language explanations in PMD.

These prior works have also begun to develop approaches to address this problem.

[249, 183] fine-tuned specialized neural models for PMD and other sub-problems of inter-

active task guidance based on features from video frames, eye tracking, and hand tracking.

Meanwhile, [62] explored the role of foundational VLMs for binary PMD, finding that task-

and domain-specific fine-tuning was required to achieve a viable level of performance. [16]

extended this inquiry to apply foundational LMs and VLMs to the entire problem of inter-

active task guidance, including environmental state tracking, user modeling and interaction,

and PMD. This work found that a major bottleneck of PMD is that visual information

extracted through VLMs tends to be noisy and overly vague or high-level. All of these

early approaches struggled to achieve a viable level of performance in PMD, possibly be-

cause they largely approached PMD as a classification problem without language or explicit

reasoning. As mentioned above, in Chapter 8, we formulate PMD as an explicit reasoning

problem through a self-dialog of questions and answers generated by a foundational VLM,

enabling evaluation of the coherence of PCR in foundational VLMs for PMD. We further

apply various interventions in both question generation and answering, achieving significant

gains in accuracy, coherence, efficiency, and reliability of VLMs for PMD. Notably, this re-

formulation of the problem enables previously impossible visualization and understanding of

common bottlenecks in PMD, such as gaps in commonsense knowledge and erroneous visual

perception (e.g., object hallucination).
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CHAPTER 3

Consistent Commonsense Reasoning†

As discussed in Chapter 1, while foundational language models (LMs) have approached

or exceeded human performance on many existing natural language understanding (NLU)

benchmarks requiring commonsense reasoning, the coherence of these state-of-the-art mod-

els and their alignment to human reasoning is not well understood. This is perhaps be-

cause benchmarks geared toward NLU only cover the tip of the iceberg, typically focusing

on a high-level end task rather than diving deeper into the kind of coherent, robust un-

derstanding based on commonsense knowledge and reasoning that humans are capable of.

Specifically, NLU in machines is often boiled down to text classification, where a classifier

(typically built with a foundational LM in recent work) is tasked with recognizing whether

a text contains a particular semantic class, e.g., textual entailment [43, 32], commonsense

implausibility [205, 168, 22, 24], or combinations of several phenomena meant to serve as

comprehensive diagnostics [190, 247, 246]. Without regard to the underlying evidence from

the language context that is used to reach a conclusion, systems are rewarded for correct

predictions on the task without “showing their work.”

To make meaningful improvement on machine NLU, it is important to have more infor-

mative performance measures. To address this issue, the key contribution of this chapter

is to introduce a novel model- and task-agnostic evaluation framework that allows a quick

assessment of text classifiers’ ability in terms of the coherence of their predictions. Specif-

ically, we apply text classifiers to all sub-spans of sentences in a discourse, enabling us to

isolate the specific contextual evidence used to make prediction on the full discourse. We

then compare their predictions with that of humans to determine whether the evidence used

to make decisions is consistent with humans. We demonstrate our framework in two differ-

ent NLU benchmark tasks, highlighting its versatility. This evaluation framework, although

†Shane Storks and Joyce Chai. Beyond the Tip of the Iceberg: Assessing Coherence of Text Classifiers.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Findings of
the Association for Computational Linguistics: EMNLP 2021, pages 3169–3177, Punta Cana, Dominican
Republic, 2021. Association for Computational Linguistics.
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simple in ideas and implementation, is effective as a quick measure to provide insight into

the coherence of machines’ predictions. Finally, we use this framework to determine whether

foundational LMs fine-tuned on classification-based NLU tasks use consistent contextual

evidence to arrive at conclusions.

3.1 Defining Consistency in Text Classification

For any text classification task requiring reasoning over a discourse, a coherent classifier

should use the same evidence as humans do in reaching a conclusion. For any positive

example, we expect that there are specific regions of the text which contain the semantic

class of interest and thus directly contribute to the positive label. Conversely, for any

negative example, there should be no such regions of the text. First, we will propose novel

consistency metrics to capture whether foundational LM text classifiers can give consistent

and human-aligned predictions on these regions to support the end task conclusion.

Depending on specific tasks, this measure can have different implementations while main-

taining the same high-level goal. In the following sections, we will use two example bench-

mark datasets, Conversational Entailment (CE) [269] and Abductive Reasoning in narrative

Text (ART) [22], to illustrate how this metric can be applied. We intentionally chose these

two distinctive benchmark datasets for our investigation which follow typical commonsense

NLU task formulations. CE is formulated as a textual entailment task, while ART is a

multiple-choice text plausibility classification task. CE is small-scale, created over ten years

ago before the era of deep learning, while ART is a large-scale (∼171k examples) dataset

created more recently. Through these two different datasets, we aim to demonstrate the

versatility of this framework.

3.1.1 Consistency in Textual Entailment

CE poses a textual entailment task where context is given as several turns of a natural

language dialog, and we must determine whether the dialog entails a hypothesis sentence.

All required information is explicitly given in the dialog. In each positive example, only

some dialog turns directly contribute to the entailment, while others are irrelevant to the

hypothesis. For example, as shown in Figure 3.1a, turns A1 and B2 together entail the

hypothesis, while others are not necessary for entailment.

As shown in Figure 3.1b for CE, we can label individual spans of a discourse that entails

a hypothesis with whether or not consecutive sub-spans of the discourse also entail the

hypothesis. Here, while the entire dialog from A1 through A2 entails the hypothesis, the
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Entailed?

✓
Why?

Dialog:
A1: Yeah, yeah. Is that why you like aerobics 
classes, because you're not, sort of, someone 
else is doing the counting for you, so,
B1: Yeah.
…
B2: And, someone else is telling me, okay, you 
know, let's move this way, let's move that way,
A2: Uh-huh, uh-huh.
B3: instead of me having to think about it so 
much.
…
Hypothesis:
Speaker B likes the aspect of Aerobics that 
someone else is leading.

(a) Entailment and corresponding evidence.

Dialog: 
A1: Well, ironically enough I’m sitting here 
with a cast on my leg because I resumed an 
aerobics class the night before last.
B1: Oh, no.
A2: I ripped the ligaments in my right ankle.

Hypothesis: 
Speaker A ripped the ligaments in her 
ankle at aerobics class.

✗

✗ ✓

(b) Sub-span annotation to capture evidence.

Figure 3.1: In Conversational Entailment (CE) [269], language model text classifiers only
predict whether a hypothesis is entailed by a dialog, while ignoring the underlying evidence
in the discourse toward this conclusion. To enable a systematic evaluation of the consistency
of models’ predictions with the underlying evidence contributing to them, we label each
sub-span of dialog with whether it entails the hypothesis (✓ for yes, ✗ for no).

spans from A1 through B1 and B1 through A2 do not, as they omit details required by the

hypothesis. Given an example of length N ,1 we can decompose it into N +
(
N
2

)
possible

consecutive sub-spans2 to label with human judgements.

For a correctly classified example, we can then perform inference on all sub-spans. If the

system additionally classifies all of them correctly, we consider the prediction to be consis-

tent. We then calculate consistency on the task as the percentage of examples coherently

classified. Extremely simple to compute, this provides valuable insight beyond the surface

of end task accuracy, measuring how well the classifier’s perceived evidence toward the con-

clusion aligns with that of humans. Alternatively, the average sub-span accuracy may be

considered as a more lenient measure.

3.1.2 Consistency in Plausibility Classification

ART, meanwhile, is a multiple-choice text classification benchmark for commonsense plausi-

bility recognition. The task is to determine which of two candidate sentences most plausibly

fits between two given context sentences when considering commonsense constraints on the

world. This translates naturally into a choice between two three-sentence stories (differing

1Length can be defined in units of dialog turns, sentences, paragraphs, or other appropriate units of the
text. Text should be decomposed such that individual sub-spans are not malformed or fragmented, so token-
and character-level sub-spans will typically be inappropriate for this evaluation.

2There are
(
N
2

)
combinations of starting and ending points for multi-sentence sub-spans, plus N individual

sentences.
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Story 1:
Kelly wanted to try out for soccer this year.
Kelly tried out for the soccer team but was cut.
Kelly celebrated by getting pizza.1

Why?

Which is less plausible?

Story 2:
Kelly wanted to try out for soccer this year.
Kelly made it onto the team.
Kelly celebrated by getting pizza.

Figure 3.2: In Abductive Reasoning in narrative Texts [22], systems only compare two texts
by their commonsense plausibility, ignoring which parts of the stories support this conclusion.

only by the second sentence), one of which has some implausibility (the positive choice). For

example, as shown in Figure 3.2, Story 1 is implausible because while the second sentence

describes a negative event, the third sentence indicates celebration. Meanwhile, in Story 2,

the agent is celebrating a positive event.

Multiple-choice tasks. To account for multiple-choice tasks like ART, where we identify

one of two texts to be semantically implausible, we must adjust this setup. We still consider

sub-spans of the context, breaking down each pair of texts into N +
(
N
2

)
pairs of sub-spans.

Intuitively, the model’s choice on each pair should again align with that of humans. How-

ever, there is a possibility that none of the texts contain the positive class. In such cases, the

classifier should not make a confident prediction, and instead believe the texts are equally

likely. Confidence should be defined based on the classifier’s internal model of the prob-

ability distribution over all possible class labels, i.e., text choices (typically calculated by

applying softmax over the activations of several neural network branches). This is concep-

tually visualized in Figure 3.3, where a classifier should only become confident that Story B

is implausible once both the second and third sentence are present, as the trash is less likely

to end up on the floor with a hole in the top of the bag.

Generally, let Ta:b represent the consecutive sub-sequence of text T from unit a through

b, e.g., sentences a through b of text T . Consider a set S1:N of M texts of length N such that

S = {T 1
1:N , T

2
1:N , · · · , TM

1:N}, and a classifier f such that f(S1:M) ∈ [1,M ].3 When classifying a

set Sa:b, let f(Sa:b) = c∗ be considered a confident prediction if max
c∈[1,c∗)∨(c∗,M ]

(p(c∗) − p(c)) ≥ ρ,

where p(c) refers to probability of class c under the classifier’s output distribution, and ρ is a

confidence threshold. Where there is no positive text within Sa:b, then the desired outcome

(ground truth) is for f(Sa:b) to be a non-confident prediction. This should be reflected in

the calculation of consistency.

3While text choices may be different lengths, this can be trivially resolved by padding.
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Which choice is implausible?

1. Ada was emptying the trash one night.

1. Ada was emptying the trash one night.

1. Ada was emptying the trash one night.
2. The bag broke as Ada was walking out the door.

1. Ada was emptying the trash one night.
2. The trash bag ripped open from a hole in the top.

1. Ada was emptying the trash one night.
2. The bag broke as Ada was walking out the door.
3. Ada had to pick up all the trash from the floor.

1. Ada was emptying the trash one night.
2. The trash bag ripped open from a hole in the top.
3. Ada had to pick up all the trash from the floor.

span pair: classifier output:

A

B

A

B

A

B

✗

✓

✗

✗

✗

✗

P(A) P(B)

1.0

0.0

P(A) P(B)

1.0

0.0

P(A) P(B)

1.0

0.0

Figure 3.3: In ART, a multiple-choice text classification problem, we can label sub-spans
with the least plausible choice, although in some cases, both choices are plausible. To address
this, we consider the classifier’s posterior probability for each choice; it is ideal if the classifier
has low confidence in such instances.

3.2 Annotating Text Classification Benchmarks for

Consistency Evaluation

To enable the type of evaluation described in Chapter 3.1 for our benchmarks, additional

annotation is required. CE contains 50 unique dialog sources from the Switchboard cor-

pus [82]. We randomly selected 10 testing sources to form the test set and left all remaining

sources for training and validation, creating an 80%/20% split for training and validation

(703 examples) versus testing (178 examples). We annotated the positive examples in the

test set with the range of dialog turns entailing each hypothesis, allowing us to generate

ground truth labels for the consistency measurement. Examples were labeled by two sep-

arate annotators and cross-verified with a near-perfect Cohen’s κ [41] of 0.91, then a third

annotator resolved any disagreements.

To transfer ART to our framework, we annotated 200 random examples from the public

validation set (1532 examples) with the evidence for implausibility. There are 3 possible

cases in implausible story choices: 1) the second sentence conflicts with the first and/or third

sentence, 2) the second sentence is malformed or nonsense, presumably due to annotation

error or adversarial filtering [267], and 3) the first and third sentence conflict with each other

by default, and the second sentence does not resolve this. These cases are labeled by two

annotators then merged with a fair Cohen’s κ of 0.30 (perhaps lower due to subjectivity

of commonsense-based problems), and a third annotator again resolving disagreements. 11
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examples were discarded as two annotators agreed that both story choices were entirely

plausible, presumably due to annotation error in ART.

3.3 Evaluating the Consistency of Fine-Tuned LMs

To evaluate the consistency of reasoning in state-of-the-art text classifiers, we fine-tune LMs

on CE and ART, then use the annotations collected in Chapter 3.2 to evaluate their consis-

tency, i.e., the proportion of end task predictions that are supported by valid evidence from

the language context. Specifically, we choose three transformer-based language models from

recent years: BERT [56], RoBERTa [142], and DeBERTa [93].4 On CE, we additionally

apply transfer learning from MultiNLI [256], a large-scale textual entailment dataset with

some dialog-based problems. We measure both the accuracy, i.e., the proportion of instances

where the end task prediction is correct, and consistency of models on respective evaluation

sets. We refine the proposed metric for consistency into two forms: strict and lenient. Given

a set of evaluation instances, strict consistency refers to the proportion of instances where

the end task prediction is not only correct, but also coherent as described in Chapter 3.1.

While strict consistency only rewards systems for examples where all sub-span predictions

are correct, lenient consistency averages the sub-span accuracy over all examples for a less

rigid reward. We include this alternate form of consistency to accommodate some disagree-

ment with our annotations (which can be subjective based on measured inter-annotator

agreement) without severe penalty.

Training details. Following common practice, systems are trained with cross-entropy

loss toward the end task of text classification, maximizing accuracy on the validation set

for model selection. On CE, we used 8-fold cross-validation split by dialog sources, then

re-trained the model with the highest average validation accuracy on all folds. Pre-trained

model parameters and implementations come from Hugging Face transformers [257],5 each

trained with the AdamW optimizer [146]. We performed a grid search over a wide range of

learning rates and a maximum of 10 epochs. Training batch sizes are fixed based on available

GPU memory. Selected hyperparameters can be found in Appendix A.

Discussion of results. Results on the test set of CE and public validation set of ART

are listed in Table 3.1. All results show a statistically significant drop in performance from

classification accuracy to strict consistency under a McNemar test [156] with p < 1e-5,

4We use the “large” configuration of all models, which have 24 hidden layers and 16 attention heads.
5https://huggingface.co/transformers/
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CE, test :

Model Accuracy (%) Strict Consistency (∆; %) Lenient Consistency (∆; %)

majority 57.8 – –

BERT 55.8 28.5 (-27.3) 35.7 (-20.1)
RoBERTa 70.9 39.0 (-31.9) 47.5 (-23.4)
↪→ + mnli 78.5 50.6 (-27.9) 58.2 (-20.3)
DeBERTa 67.4 37.2 (-30.2) 45.2 (-22.2)

ART, validation:

Model Accuracy (%) Strict Consistency (∆; %) ρ Lenient Consistency (∆; %) ρ

majority 55.0 (50.1) – – –

BERT 66.7 (66.7) 42.3 (-24.4) 0.15 43.7 (-23.0) 0.85
RoBERTa 87.8 (84.2) 55.0 (-32.8) 0.1 59.3 (-28.5) 0.05
DeBERTa 88.4 (85.7) 59.8 (-28.6) 0.85 61.8 (-26.6) 0.95

Table 3.1: Accuracy, strict consistency, and lenient consistency on CE and ART for state-
of-the-art text classifiers. ∆ is the total performance drop from the classification accuracy
to each consistency measure, and each ρ is the confidence threshold achieving the highest
consistency. For ART, accuracy on the full validation set is given in parentheses.

some dropping below majority-class accuracy. While lenient consistency is slightly higher

for both tasks, we still see large drops from accuracy. This demonstrates that while our

text classifiers can achieve high classification accuracy on CE and ART, they do not deeply

understand the tasks. Much of their performance is supported by incoherent intermediate

predictions. Although pre-training on MultiNLI improves the end task accuracy on CE, it

still suffers from comparably significant drops to the consistency measures. On ART, while

all models see significant performance drops, DeBERTa, the state-of-the-art system for the

task, achieves the best accuracy and consistency measures, as well as the highest chosen ρ

values, which generally indicates more confident predictions. Even though it only marginally

outperforms RoBERTa in accuracy, we see larger improvements in consistency measures

and the chosen ρ, suggesting DeBERTa is more robust.

3.4 Summary of Findings

In this chapter, we proposed a simple and versatile method to evaluate the consistency

of text classifiers, particularly targeting the problem where end task prediction depends

on a discourse rather than a single sentence. By annotating a small amount of data in

a benchmark, this method supports a quick assessment on whether machines’ end task

performance is supported by coherent intermediate evidence from the language context, in

line with the evidence humans might use.
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We used this method to evaluate the consistency of various foundational LMs fine-tuned

on CE [269] and ART [22]. Our results showed that on these reasoning-intensive text classifi-

cation tasks for NLU, LMs’ high performance is attributed to inconsistent evidence from the

language context, and is thus artificially achieved. Future work in commonsense reasoning

and NLU driven by benchmarks should consider similar examinations beyond the end task

accuracy, whether this be through our proposed consistency measures or other appropriate

means. As we showed, such effort is quite straightforward and effective, and could facilitate

progress toward more powerful classifiers that can support human-aligned reasoning.
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CHAPTER 4

Verifiable Physical Commonsense Reasoning

in Natural Language Understanding†

The previous chapter proposed a notion of consistent reasoning to identify and objectively

evaluate the evidence from the language context used by foundational language models (LMs)

to make predictions on natural language understanding (NLU) tasks. While consistency

covers a surface-level component of coherent reasoning, it also remains unclear whether

machines can perform verifiable reasoning based on background commonsense knowledge

as humans do. As discussed in Chapter 1, this background knowledge can be difficult to

collect, as it is rarely mentioned explicitly in language, it can vary widely between people

and cultures, and its distribution has a long tail.

Physical commonsense reasoning (PCR), also referred to as näıve physics [53] or intuitive

physics [121], has recently gained attention in the NLP community [74, 70, 46, 30, 71, 24].

From a young age, humans possess commonsense knowledge and reasoning skills about a

wide variety of physical phenomena, such as movement, rigidity, and balance [26]. This

problem is consequently thought to be especially challenging for machines because physical

commonsense is considered obvious to most humans, and majorly suffers from reporting bias

[70]. As most foundational LMs are trained only on written communications, it remains

unclear whether they can learn this type of reasoning [23]. On the other hand, due to its

concreteness, physical commonsense is relatively subjective compared to other types of com-

monsense knowledge, making it an ideal testbed for analyzing the coherence of commonsense

reasoning.

In this chapter, we introduce Tiered Reasoning for Intuitive Physics (TRIP), a bench-

mark for coherent PCR. TRIP poses a high-level end task for story plausibility classification,

†Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai. Tiered Reasoning for Intuitive Physics:
Toward Verifiable Commonsense Language Understanding. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 4902–4918, Punta Cana, Dominican Republic, 2021. Association for Computational
Linguistics.
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Powered(telephone) 
Running(telephone)

¬Powered(telephone)

Conflicting sentences: 2 → 5

Physical states:

Which story is more plausible? A

Powered(telephone) 

x

1. Ann sat in the chair.

2. Ann unplugged the telephone.

3. Ann picked up a pencil.

4. Ann opened the book.

5. Ann heard the telephone ring.! Powered(telephone) 

1. Ann sat in the chair.

2. Ann unplugged the telephone.

3. Ann picked up a pencil.

4. Ann opened the book.

5. Ann wrote in the book.

Why not B?
Story A Story B

Figure 4.1: Story pair from TRIP, along with the tiers of annotation available to represent
the reasoning process.

a common proxy task for commonsense reasoning problems [205, 168, 213, 24]. Notably,

however, it includes dense annotations for each story capturing multiple tiers of reasoning

beyond the end task. From these annotations, we propose a tiered evaluation, where given a

pair of highly similar stories (differing only by one sentence which makes one of the stories

implausible), systems must jointly identify (1) the plausible story, (2) a pair of conflicting

sentences in the implausible story, and (3) the underlying physical states in those sentences

causing the conflict. The goal of TRIP is to enable a systematic evaluation of machine co-

herence toward the end task prediction of plausibility. In particular, we evaluate whether

a high-level plausibility prediction can be verified based on lower-level understanding, for

example, physical state changes that would support the prediction.

4.1 Tiered Reasoning for Intuitive Physics (TRIP)

The Tiered Reasoning for Intuitive Physics (TRIP) is a benchmark for PCR that provides

traces of reasoning for an end task of plausibility prediction. The dataset consists of human-

authored stories, such as those in Figure 4.1, describing sequences of concrete physical ac-

tions. Given two stories composed of individually plausible sentences and only differing by

one sentence (i.e., Sentence 5), the proposed task is to determine which story is more plausi-

ble. To understand stories like these and make such a prediction, one must have knowledge

of verb causality1 and precondition2, and rules of intuitive physics.3

Plausible stories were crowd-sourced from Amazon Mechanical Turk.4 To convert each

story into several implausible stories, we hired separate workers to each write a new sentence

to replace a sentence in the original story, such that the new story after replacement is

1For example, cutting an object causes it to be in pieces, and melting an object causes it to be in liquid
form.

2For example, to cut an object, it must be in solid form, but to stir an object, it must be in liquid form.
3For example, the constraint that an object inside of a container moves when its container moves.
4https://www.mturk.com/
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no longer realistic in the physical world. To ensure quality, these workers flagged stories

which were incoherent or did not describe realistic actions. We eliminated those stories and

performed a manual round of validation to remove any remaining bad stories and correct

typos.

4.1.1 Controlled Data Curation

TRIP was carefully curated and restricted to support probing of reasoning abilities possessed

by text classifiers. Compared to current benchmark trends, this dataset has the following

unique properties.

4.1.1.1 Objectivity in Physical Commonsense

As commonsense knowledge differs between humans based on region, culture, and other

factors [51], plausible reasoning tasks can become ambiguous and subjective, for example, in

open-domain commonsense reasoning problems [273, 22]. To address this issue, we directed

story authors to write sentences involving concrete actions, which can be unambiguously

visualized in the physical world, while avoiding mental actions such as to think or like. We

limit stories to typical household happenings by directing annotators to write stories in one

of six possible “rooms” seen in everyday life.

To further reduce subjectivity and block other confounding factors that may result from

complex use of language, we encourage crowd workers to write sentences in a simple declar-

ative form, typically starting with the agent of the story, followed by a verb, a direct object,

and an optional indirect object. The simplicity of language use would additionally allow us

to focus less on linguistic processing and semantic phenomena, and more on investigating

machines’ reasoning ability.

4.1.1.2 Plausibility in Longer Context

Many benchmarks for plausible reasoning only (or most frequently) provide one sentence

of context, with similarly short choices to complete the context [205, 267, 23]. In TRIP,

we imposed several restrictions to require reasoning over multiple sentences with associated

physical state changes. First, we required annotators to write stories at least five sentences

long. Further, when collecting new sentences to convert plausible stories into implausible

stories, we required that the new sentence should be plausible in isolation, and only become

implausible when considering the world state implied by other sentences in the story. This

constraint encourages stories to be rich in interesting action dynamics rather than nonsense

sentences such as “Mary fried eggs on the printer” or “Tom ate the spoon,” which may be
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Measure Train Val. Test All

# plausible stories 370 152 153 675
# implausible stories 799 322 351 1472
avg. # sentences 5.1 5.0 5.1 5.1

avg. sentence length 8.3 8.0 8.5 8.3

# story authors 97 57 62 134
avg. # stories/author 3.8 2.7 2.5 5.0

avg. # conflicting sentence pairs 1.2 1.2 1.2 1.2

# physical state labels 18.8k 8.74k 9.09k 36.6k

Table 4.1: Statistics of the TRIP dataset. Implausible stories in each partition are generated
from and paired with the plausible stories in the same partition.

easier to recognize through distributional biases. As this new sentence can conflict with any

other sentence(s) in the story, solving the task requires reasoning over the entire context.

4.1.1.3 Multi-Tiered Annotation

To enable a systematic investigation of a system’s reasoning process, we manually provided

three levels of annotation. As shown in Figure 4.1, the first level is the end task label to

indicate which of the two story choices are more plausible. By design, most implausible story

choices have exactly one pair of conflicting sentences, e.g., Sentences 2 and 5 in the example.

The second level of annotation identifies these sentences in each story. The third level justifies

the implausibility with labels for the underlying physical states, giving a detailed account of

the physical changes associated with each sentence. In our example, unplugging the phone

in Sentence 2 causes it to lose power, while Sentence 5 requires that the phone is powered

in order to ring.

Table 4.1 lists various statistics to summarize the resulting dataset. While this dataset

is small by today’s standards, our goal is depth, not breadth. Rather than training models

on a surplus of data to simply achieve high accuracy on the end task, we aim to use our

deep, multi-tiered annotations to probe the capability of NLP models to perform coherent

reasoning toward the end task. Next, we provide additional details for annotating conflicting

sentences and physical states.

Conflicting sentence annotation. For each implausible story, an annotator identified

one or more pairs of conflicting sentences. On a random set of 100 implausible stories from

the training data, a second annotator labeled these pairs of sentences, reaching a near-perfect

Cohen’s κ [41] of 0.929, supporting the objectivity of these labels.
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Label
Human
Location

Object
Location

Other
Attributes

0 irrelevant irrelevant irrelevant

1 disappeared disappeared false → false

2 moved picked up true → true

3 – put down true → false

4 – put on false → true

5 – removed → no

6 – put in container → true

7 – taken out of container false →

8 – moved true →

Table 4.2: Label space and meanings for human location, object location, and other at-
tributes. Each label represents a specific physical change (or lack of change).

Physical state annotation. In order to generate the rich physical state annotations in

TRIP, we defined a space of 20 physical attributes (5 for humans, 15 for objects)5 which

capture most conflicts found in the stories. This was collected in part from related attribute

spaces proposed in [74] and [30], and chosen based on a random set of implausible training

stories, specifically the nature of their conflicts and physical changes objects underwent

during the stories. For each entity in each sentence in the dataset, we annotate the implied

values of these attributes before (precondition) and after (effect) the events of the sentence

take place. This step of the annotation was a substantial effort.

More specifically, physical states were annotated with values from the attribute-specific

label spaces in Table 4.2, each of which represented directions of physical state change (e.g.,

attribute became true or attribute became false). In the training data, we manually labeled

each entity in the sentence with these attributes and values. For predicting precondition

and effect in non-location attributes as done in this work, it is straightforward to collapse

this space into true, false, or unknown for each. For human location labels, we use the full

label space for predicting both precondition and effects for simplicity. Meanwhile, for object

location labels, we simplify the problem by mapping them to smaller precondition and effect

label spaces. While this does not significantly affect verifiability, this should be expanded in

5For humans, we track location, hygiene, and whether a human is conscious, dressed, or wet. For objects,
we consider location and whether or not an object exists, is clean, connected to power, functional, in pieces,
wet, open, hot, solid, occupied (i.e., containing another object), running (i.e., turned on), movable, mixed, or
edible.
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[SEP]
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Figure 4.2: Structure of the physical state classifier used for semi-automatic annotation,
consisting of 20 parallel instances of DistilRoBERTa [211]. Each instance outputs an
integer representing a particular kind of change (or lack of change) in the corresponding
attribute.

a full solution for better interpretability. For more detailed explanations, future work may

consider tracking spans of text describing entity locations along the lines of [7].

To expand our manual physical state annotations to the validation and testing data,

we used a semi-automatic approach to label physical states. First, we used the existing

annotations to fine-tune classifiers to predict values for each attribute given a sentence-noun

pair. To achieve this, each story was broken down into all possible sentence-entity pairs,

using spaCy6 to identify noun phrases.7 As shown in Figure 4.2, these sentence-noun pairs

were passed into the physical state classifier,8 implemented with 20 parallel instances of

DistilRoBERTaBASE (82 million parameters) [142, 211] with classification heads, one for

each physical attribute. Using this collection of classifiers, we generated candidate physical

state annotations for the remaining data, then manually revised them. For a representative

subset of 157 sentences from 31 stories in the training data, a second annotator repeated

this process, finding a substantial Cohen’s κ of 0.7917.

4.1.2 Proposed Tasks

From the TRIP dataset, we propose several tiered tasks as shown in Figure 4.1. Together,

these tasks form a human-interpretable reasoning process supported by a chain of evidence.

6https://spacy.io/
7While relevant entities in each sentence are available to models at inference time for convenient evalua-

tion, these can be fairly reliably re-extracted using spaCy.
8Followed [89] for formatting the input in order to generate entity-centric embeddings.
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Physical state classification. From our physical state annotations, we propose two tasks

for each sentence-entity pair in each story choice: precondition and effect state classification.

For example, consider the entity potato in the sentence “John cut the cooked potato in half.”

First, we should predict that the potato was solid in order to be cut, i.e., the precondition

label for the solidity attribute is true. Second, we should predict that the potato was in

pieces as a result of being cut, i.e., the effect label for the in pieces attribute is true.

Conflict detection. Next, we define the task of conflict detection as identifying a pair

of sentences in the form Si → Sj. Sj is a breakpoint, i.e., the point where the story first

becomes implausible given the context so far, while Si serves as evidence that explains the

breakpoint, usually causing a conflicting world state. For example, in Figure 4.1, Sentence

5 is a breakpoint, while Sentence 2 is the evidence that explains why the story becomes

implausible after Sentence 5. Note that it is possible that a story may have multiple pairs of

conflicting sentences beyond the breakpoint and evidence pair. However, across the dataset,

the average number of conflicting sentence pairs is only 1.2, so one conflicting sentence pair

is a sufficient and simpler explanation for the conflict (albeit not exhaustive).

Story classification. Lastly, the end task is to determine which of two stories is the

plausible one. This should be determined based on any conflicts detected within the two

stories.

4.1.3 Benchmark Goals

It is important to note that while one can treat these tasks separately, the goal of this

benchmark is to solve them jointly to form a coherent reasoning chain: physical state classi-

fication explains conflict detection, which further explains story classification. Unlike most

existing benchmarks in this area, which assess language understanding ability through some

high-level end tasks, the goal of our benchmark is to enable development of systems for

interpretable, consistent, and verifiable reasoning toward language understanding.

It is also worth noting that although data bias is an issue for high-level benchmark tasks

where systems are not required to justify their predictions, we are not directly targeting this

issue. Recent work has attempted to remove biases from benchmark data and thus prevent

exploitation of them in performing high-level tasks [267, 176]. In contrast, our framing of

language understanding as being built from the ground up (i.e., from low-level to high-level

tasks) provides systems with the proper supporting evidence toward high-level tasks, and

thus can potentially mitigate some of the problems around data bias.
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4.2 Defining Verifiability in TRIP

To enable a better understanding of machines’ ability in coherent reasoning toward end task

performance, we apply the several multi-tiered evaluation metrics. This includes the intro-

duction of a new metric for verifiability, which captures commonsense background knowledge

underlying the understanding of surface-level language context.

Accuracy. The traditional metric of end task accuracy, i.e., the proportion of testing

examples where plausible stories are correctly identified.

Consistency. The proportion of testing examples where not only the plausible story is

correctly identified, but also the conflicting sentence pair for the implausible story is correctly

identified. This is to demonstrate the consistency with identified conflicts when reasoning

about plausibility.

Verifiability. The proportion of testing examples where not only the plausible story and

the conflicting sentence pair for the implausible story are correctly identified, but also un-

derlying physical states (i.e., preconditions and effects) that contribute to the conflict are

correctly identified.9 This is to demonstrate that the detected conflict can be verified by a

correct understanding of the underlying implausible change of physical states.

It is worth noting that this notion of verifiability, although different, is motivated by the

notion of verification in software engineering [189]. This term refers to determining whether

a given software solution satisfies its architectural and design requirements, and is built from

the correct sub-components. Along this line, our notion of verifiability can be seen as a

method to evaluate whether a language understanding system’s reasoning process is built

up from the correct components.

Each successive metric dives deeper into the coherence of reasoning that supports the end

task prediction. Consequently, if accuracy is a, consistency is b, and verifiability is c, then

a ≥ b ≥ c. A system that reliably produces a coherent chain of reasoning is demonstrated

by a ≈ b ≈ c.

In Chapter 5, we will evaluate the accuracy, consistency, and verifiability of various foun-

dational LMs fine-tuned on the tiered sub-tasks of TRIP.

9At least one nontrivial, i.e., non-default, positive-class physical state label must be predicted in the
preconditions of the breakpoint sentence and effects of the evidence sentence, and all such predictions must
be correct.
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CHAPTER 5

Coherence of Physical Commonsense

Reasoning in Fine-Tuned Language Models†

Chapter 3 showed that fine-tuning foundational language models (LMs) on natural language

understanding (NLU) classification tasks elicits artificially high accuracy through incoherent

reasoning supported by inconsistent evidence. An alternative method to tackle NLU tasks

requiring complex reasoning is to fine-tune LMs as multi-tiered reasoners.

To explore this possibility, in this chapter, we design a baseline architecture and training

paradigm for the Tiered Reasoning for Intuitive Physics (TRIP) benchmark proposed in

Chapter 4. We present experiments in fine-tuning this architecture powered by foundational

LMs for coherent reasoning, comparing various configurations of loss functions for the multi-

tiered sub-tasks of TRIP. Through this, we seek to unearth insights into how overly high-

level learning objectives may interact with lower-level reasoning-based learning objectives.

We conduct a detailed analysis to reveal several insights on the reasoning behaviors of fine-

tuned LMs, creating opportunities for future work.

5.0.1 A Tiered Baseline for TRIP

Figure 5.1 displays a high-level view of our proposed baseline system to solve TRIP. It uses

a foundational LM backbone to individually embed each sentence-entity pair in each story,

classifies physical precondition and effect states, then identifies conflicting sentences from

these. Given a pair of stories, it aggregates conflict predictions for each story to decide

which is more plausible.

†Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai. Tiered Reasoning for Intuitive Physics:
Toward Verifiable Commonsense Language Understanding. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 4902–4918, Punta Cana, Dominican Republic, 2021. Association for Computational
Linguistics.
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Figure 5.1: Proposed tiered reasoning system with loss functions Lp for precondition state
classification, Lf for effect state classification, Lc for conflicting sentence detection, and Ls

for story choice classification. The model is trained end-to-end by optimizing the joint loss
L, a weighted sum of these loss functions.

5.0.1.1 Module Implementations

Each module of this baseline is implemented through a neural network architecture. Here,

we describe some details of the implementations.

Contextual Embedding. The Contextual Embedding module is implemented with a

transformer-based foundational language model. Generally, this module takes as input a

sentence and the name of an entity from a story, following an entity-first input formulation

[89], and outputs a dense, contextualized numerical representation. While there are some

model-specific variations in special tokens, given an entity e and a sentence t1, t2, · · · , tn,

we structure the input sequence as “ [CLS] e [SEP] t1 t2 · · · tn [SEP],” where [CLS] is a

special token meant for input to classification layers, and [SEP] is a special separator token

for multi-text inputs.

Precondition and Effect Classifiers. The Precondition and Effect Classifiers are im-

plemented as typical feedforward classification heads for contextual embeddings, with one

precondition classifier and one effect classifier for each of the 20 physical attribute tracked

in the dataset. Specifically, each classifier is made up of two feedforward layers, each pre-

ceded by a dropout layer (using model specific defaults for dropout probability), with tanh

activation in between them. The first layer performs a linear transformation on an input

contextual embedding, while the second layer projects the hidden state to the size of the la-

35



bel space for the corresponding attribute. Argmax is applied to the output for classification.

Altogether, the predictions from these classifiers label physical states of each entity in each

sentence of the story.

Conflict Detector. For each entity and its predicted physical states over all sentences in

a story, the Conflict Detector predicts whether there is some conflict in the entity’s physical

states, specifically flagging a pair of conflicting sentences through multi-label classification.

We use another transformer for this module (6 additional layers with 8 attention heads), but

model the high-level sequence of sentences in a story rather than the low-level sequence of

tokens in a sentence. For each sentence-entity pair, we input the contextual embedding, as

well as the classification logits behind all physical state predictions. We project both repre-

sentations through linear layers to the same size, then concatenate them to form an entity

dynamics representation.1 This representation for each sentence is input to the transformer,

and the resulting hidden states are concatenated. Lastly, we use a feedforward layer followed

by sigmoid activation to transform the hidden state to a belief probability of each sentence

conflicting with another sentence in the story.

Story choice prediction. Given any detected conflicts, we lastly select which of the two

given stories is plausible. As each Conflict Detector output represents a belief that the

physical states of an entity in a particular sentence conflict with that of another sentence,

we can simply sum the negative outputs for each story and apply softmax to determine which

story is least likely to have a conflict.

5.0.1.2 Model Training

We train the architecture’s parameters through gradient descent on the overall loss L:

L = λpLp + λfLf + λcLc + λsLs

L sums individual cross-entropy loss functions Lp for precondition classification, Lf for

effect classification, Lc for conflict detection, and Ls for story choice classification, each

balanced by respective weights λp, λf , λc, λs summing to 1. In preliminary experiments, we

found the best balance between state classification and the other tasks with the following

assignment of weights: λp = λf = 0.4
|A| , λc = λs = 0.1, where |A| is the number of attributes

tracked, i.e., 20. When omitting different loss functions, we rebalance the weights by ensuring

λc + λs = 0.2, or λc = λs where state classification losses are omitted.

1Appendix A.2.1 presents an ablation study for each component of the entity dynamics representation
input to the Conflict Detector.
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5.0.2 TRIP Experiments

Using TRIP, we evaluate several variations of the proposed reasoning system powered by

selected pre-trained language models: BERT [56], RoBERTa [142], and DeBERTa [93].2

These models offer a range in design choices such as model complexity and size of pre-training

data. We begin with an evaluation from the perspective of the end task, then take a detailed

look at the lower-level tasks.

5.0.2.1 Tiered Baseline Results

Recall that we consider four loss functions for training the tiered system: Lp for precondition

classification, Lf for effect classification, Lc for conflicting sentence detection, and Ls for

story choice classification. To investigate how each loss affects model performance, we train

instances using several combinations of them. The results of this study on the validation set

are listed in Table 5.1.

The role of end task supervision. In the first section of Table 5.1, we train the system

jointly on all four loss functions. Here, we see low verifiability and consistency for all three

LMs, while the end task accuracy is relatively high, reaching 78.3% when using BERT.

When we omit the story classification loss in the second section, however, we see sharp

gains in verifiability and consistency for all models, with RoBERTa jumping from 0.9%

verifiability and 6.8% consistency to 10.6% and 22.4%, respectively. This comes at a slight

cost of end task accuracy for BERT and RoBERTa.

This suggests that while fine-tuning systems based on a high-level classification loss tar-

geting the end task can improve the end task accuracy, this drastically reduces the inter-

pretability of the underlying reasoning process. One potential explanation for this is that this

loss drives the system to exploit spurious statistical cues in order to further increase the end

task accuracy. This gives us motivation to move away from using over-simplified end tasks to

train and evaluate language understanding. In fact, if we fine-tune RoBERTa’s contextual

embedding directly on the end task of TRIP without intermediate classification layers, we

can achieve up to 97% accuracy, but have no insight toward verifiability or consistency of

the system. This raises questions about the validity of such a result.

Natural emergence of intermediate predictions. In the third and fourth sections of

Table 5.1, we respectively omit conflict detection loss and state classification losses to explore

whether conflicting sentences or physical states would emerge naturally in the reasoning

2We use the “large” configurations of BERT (355M parameters) and RoBERTa (355M parameters),
and the “base” configuration of DeBERTa (140M parameters).
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All Losses

Accuracy Consistency Verifiability
Model (%) (%) (%)

random 47.8 11.3 0.0

BERT 78.3 2.8 0.0
RoBERTa 75.2 6.8 0.9
DeBERTa 74.8 2.2 0.0

Omit Story Choice Loss

Accuracy Consistency Verifiability
Model (%) (%) (%)

BERT 73.9 28.0 9.0
RoBERTa 73.6 22.4 10.6
DeBERTa 75.8 24.8 7.5

Omit Conflict Detection Loss

Accuracy Consistency Verifiability
Model (%) (%) (%)

BERT 50.9 0.0 0.0
RoBERTa 49.7 0.0 0.0
DeBERTa 52.2 0.0 0.0

Omit State Classification Losses

Accuracy Consistency Verifiability
Model (%) (%) (%)

BERT 75.2 17.4 0.0
RoBERTa 71.4 2.5 0.0
DeBERTa 72.4 9.6 0.0

Table 5.1: End and tiered task metrics for tiered classifiers on the validation set of TRIP

trained on varied combinations of loss functions. Random baseline (averaged over 10 runs)
makes tiered predictions at random.
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Accuracy Consistency Verifiability
Model (%) (%) (%)

random 49.5 10.7 0.0

BERT 70.9 21.9 8.3
RoBERTa 72.9 19.1 9.1
DeBERTa 72.9 22.2 6.6

Table 5.2: Metrics for the best tiered systems on the test set of TRIP. Compared to random
baseline.

process. When omitting conflict detection loss, all metrics degrade to near or below random

performance. Clearly, conflict detection is not implicitly learned from the downstream story

classification loss, and since the story choice classification directly depends on the conflict

detection output, the end task accuracy drops as well.

Meanwhile, when omitting physical state classification loss, verifiability unsurprisingly

drops to zero, but high accuracy on the end task can still be achieved by all models (up to

75.2%). Notably, this suggests that reasonable supporting evidence is not required in order

to achieve high accuracy on the end task. This casts further doubt that existing state-of-

the-art results on other commonsense language understanding benchmarks possess any kind

of coherent reasoning beyond end classification tasks which over-simplify the problem.

In Table 5.2, we present the testing results for the best loss function configuration of the

system, i.e., omitting story choice classification loss. Compared to the validation set results

in Table 5.1, we see slight drops in consistency and verifiability, further demonstrating the

difficulty of this problem.

5.0.3 Results Analysis

Given the poor performance along our proposed metrics, we next consider the connections

between the tiered tasks, and what goes wrong in unverifiable end task instances. We

focus our analysis on the systems achieving the highest verifiability on the validation set in

Chapter 5.0.2.1.

Failure mode distribution. Figure 5.2 provides a detailed breakdown of the combina-

tions of failure modes on the validation set. Of the 73.6% of validation instances that are

classified correctly on the end task, almost half of these (31.4% overall) are entirely un-

verified, with incorrect physical states and conflicts predicted by the system. Similarly, of

the 26.4% of instances with incorrect end task predictions, about half (13% overall) have

incorrect physical state and conflict predictions. Meanwhile, a combined 31.1% of instances
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Figure 5.2: Distribution of RoBERTa successes and failures on TRIP. SC (sentence conflict)
and PS (physical state) denote whether the predicted conflicting sentences or physical states
are correct (✓) or not (×).

Prec. F1 Eff. F1 Confl. F1
Model (%) (%) (%)

BERT 54.9 57.2 66.3
RoBERTa 51.2 51.2 69.6
DeBERTa 52.8 57.3 63.6

Table 5.3: Macro-F1 scores of best tiered systems on aggregate precondition, effect, and
conflicting sentence classification. Scores averaged over all attributes for physical state clas-
sification.

correctly predict physical states in the conflicting sentences of the implausible story, but

fail to detect a conflict in those sentences (19.9% are correct at the end task, while 11.2%

are not). These instances, represented by orange wedges in the graph, are a significant

disconnect in the reasoning process.

Low-level task performance. To further address this disconnect, we examined system

performance from the perspective of physical state classification and conflict detection. First,

Table 5.3 lists the validation metrics for our best baselines on the tasks of precondition and

effect classification (by sentence-entity pair), as well as conflicting sentence detection (by

end task instance). Across the board, we find reasonable performance on all tasks.3

The best performing baseline from Table 5.1 is trained using loss functions for both phys-

3Appendix A.2.2 presents additional results for physical state classification performance by attribute.
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Figure 5.3: Training (purple, dotted) and validation (orange, solid) losses for best tiered
RoBERTa system trained on TRIP for 10 epochs. Uses the best configuration of the loss
functions (as found in Chapter 5.0.2.1) for (A) physical state classification, (B) conflict
detection, and (C) story choice classification. Validation loss recorded 4 times per epoch,
with training loss averaged over the trained batches since the previous recording.

ical state classification and conflict detection. Given this configuration, we further examined

how each task is learned. Figure 5.3 shows training curves for the loss functions of physi-

cal state classification (averaged for precondition and effect), conflicting sentence detection,

and story choice classification. Notably, though story choice classification is not used as a

training objective, this end task is learned fairly well (albeit overfitting), with training and

validation losses generally decreasing through training. This shows that learning to reason

from the lower-level tasks is successful to some degree. However, the lower-level tasks appear

challenging to learn. For physical state classification, losses decrease steadily, but slowly. For

conflict detection, the losses also decrease slowly, and the model begins overfitting the train-

ing data, perhaps indicating a need for more training data at this challenging step. Future

work may consider automatic data augmentation techniques to resolve this.

Connecting states to conflicts. To dig deeper into the connection between physical

states and plausibility conflicts, we next examined correct physical state predictions by

attribute in Figure 5.4. In the graph, we indicate the percentage of predictions supporting a

successfully detected conflict, which may be interpreted as a utility measure of each attribute

toward conflict detection. We find that some attributes, like whether an electrical object

is running, rarely contribute to successful conflict detections (only 26.1%) despite having

reasonably high F1 score (0.69). Other attributes, like wet, are more likely to appear in

successful conflict detections when predicted correctly, even though their overall classification

performance is lower. This provides strong insights for targeted improvement, for example,

to better take advantage of lower-level predictions toward high-level tasks.

Sample system outputs. Figure 5.5 presents sample outputs from the tiered RoBERTa

system. In Example (a), the prediction is entirely verifiable. The system correctly chooses

41



power
contain

open
pieces

solid
running

edible
wet

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

30.8%
26.3% 34.1% 33.3% 39.4% 26.1%

27.3% 42.9%

65

57

41 42

33

46

11
7

consistent inconsistent F1 score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.59

0.50

0.70

0.59

0.50

0.69

0.43
0.40

Figure 5.4: Contribution of correct RoBERTa-predicted physical states to consistency eval-
uation for selected attributes. The macro-F1 score of precondition and effect predictions is
shown by blue stars. Among all correctly predicted states (for both effects and precondi-
tions), the bar regions indicate whether these states appear in successfully detected conflict-
ing sentences.

the plausible story, identifies Sentences 4 and 5 as the conflicting sentences in the implausible

story, and even predicts that the box is in pieces after Sentence 4, and thus cannot become

open in Sentence 5. In Example (b), the prediction is consistent but unverifiable, as the

system identifies a conflict between Sentences 1 and 2, but cannot support the conflict with

correct underlying physical states in either sentence. Although some relevant attributes are

identified for the breakpoint sentence, e.g., power and running, they are not quite right.

Meanwhile, no states are predicted for the evidence sentence.

5.0.4 Summary of Findings

In this section, we applied LMs to TRIP, our proposed tiered benchmark dataset for physi-

cal commonsense reasoning posing a new challenge of jointly solving low-level to high-level

tasks to form a coherent reasoning process. We experimented with several variations of

multi-tiered LM fine-tuning paradigms to solve the tasks. Our results show that in many

cases, supervising foundational LMs based on high-level classification tasks in order to learn

commonsense NLU leads to inconsistent and unverifiable reasoning, and inability to cap-

ture intermediate evidence toward the end task. Instead, we should train systems to jointly

incorporate multiple types of lower-level evidence to solve reasoning tasks coherently. Our

detailed analysis of these results offers strong intuition for future progress toward this goal.
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1. Tom brought a box to the table.
2. Tom opened the box.
3. Tom took scissors out of the box.
4. Tom cut up the box with the scissors.
5. Tom put the scissors back in the box.

1. Tom brought a box to the table.
2. Tom opened the box.
3. Tom took scissors out of the box.
4. Tom cut up his book with the scissors.
5. Tom put the scissors back in the box.

S4 Pieces(box)
Solid(box)

¬Pieces(box)
Solid(box)

Preconditions       Effects

S5 Open(box) Contain(box)
InContainer
(scissors)

A

B

Verifiable: example id 129-C2

Here I translate “location:2” to “location:6” (put in 
container) to make the prediction looks more reasonable.
Can I do this?

Also not sure what is solid(box) means. 

Physical State Predictions

(a) A verifiable prediction.

1.Ann put the pants and towel in the 
washing machine.

2.Ann turned the washing machine on.
3.Ann turned on the faucet, and filled the 

sink with water.
4.Ann put bleach in the water.
5.Ann used the brush to clean the sink.

1.Ann realized that the washing machine 
was broken.

2.Ann turned the washing machine on.
3.Ann turned on the faucet, and filled the 

sink with water.
4.Ann put bleach in the water.
5.Ann used the brush to clean the sink.

A

B

S1 N/AN/A
Preconditions Effects

S2
Power(wm)
Running(wm)

Power(wm)
Running(wm)

Physical State Predictions

Consistent but not verifiable: example id 238-C1

Should be ¬Running(wm)

wm: washing machine

Missed detection of ¬Usable(wm)
Error Explanation

(b) A consistent but unverifiable prediction.

Figure 5.5: Sample outputs from the baseline system. The detected conflicting sentences are
in red, and physical state predictions are shown on the right.

As such, TRIP and our baselines provide an important first step toward verifiable, human-

aligned commonsense language understanding, and a direction for development of artificially

intelligent systems in this area.

TRIP uses physical commonsense reasoning as an example, but we expect that a similar

approach can apply to many aspects of NLU. In the context of spurious behaviors of LMs,

our results reveal a new challenge to build machines that can reason logically and coherently,

similar to what we expect from human reasoning. As these machines ultimately will work

with humans, such alignment in reasoning is critical, as it will improve accountability and

transparency in human-machine enterprise.
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CHAPTER 6

Cognitively Motivated Strategies for

Coherent Physical Commonsense Reasoning†

In the previous chapter, we showed that applying traditional fine-tuning approaches to adapt

foundational language models (LMs) to physical commonsense reasoning (PCR) leads to

incoherent behaviors, particularly inconsistent and unverifiable decisions. This possibility of

incoherence in reasoning with LMs makes them difficult to rely on in practice, and creates

a demand for more reliable, logical, and transparent reasoning strategies compatible with

differentiable architectures like pre-trained LMs [152, 124].

Meanwhile, in theories of cognitive psychology, drawing conclusions in reasoning prob-

lems and coherently rationalizing them have long been thought to come from dual processes

of human cognition [252, 65, 66, 68, 239, 69]: fast, associative heuristic thinking based on

experience, and slower, deliberative analytic thinking, which requires more working mem-

ory. Specifically, prior work theorizes that heuristic processes enable us to extract the most

relevant information from the context and provide quick intuition for decisions, which can

then inform analytic processes that operate on this information to perform inference and

rationalize when needed [66, 67, 114].

In this chapter, inspired by the synergy between these dual processes in humans, we

propose analogous heuristic-analytic reasoning (HAR) strategies for LMs, which bootstrap

lower-level (analytic) rationalization from higher-level (heuristic) decision-making. Targeting

coherent PCR, e.g., in the TRIP benchmark introduced in Chapter 4, we implement HAR

for LM fine-tuning (Chapter 6.2) and in-context learning (Chapter 6.3).1 In the in-context

†Zheyuan Zhang, Shane Storks, Fengyuan Hu, Sungryull Sohn, Moontae Lee, Honglak Lee, and Joyce
Chai. From Heuristic to Analytic: Cognitively Motivated Strategies for Coherent Physical Commonsense
Reasoning. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pages 7354–7379, Singapore, 2023. Association for
Computational Linguistics.

1Additional performance analysis of both approaches on types of TRIP plausibility conflicts provided in
Appendix B.5.
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Story A: 
1. Air is brought in through the mouth.
2. Passes through the lungs.
3. And into the bronchial tissue.
4. The carbon dioxide is removed.
5. The lungs bring the oxygen to the rest of the body.

Story B: 
1. Carbon dioxide enters the leaves through the stomates by diffusion.
2. Water is transported to the leaves in the xylem.
3. Energy harvested through light reaction is stored by forming ATP.
4. Carbon dioxide and energy from ATP are used to create sugar.
5. Oxygen exits the leaves through the stomata by diffusion. …

Story A: 
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on the counter.
5. Mary ate the donut.

Story B: 
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary tossed the donut in the trash.
5. Mary ate the donut.

Plausible story: A
Conflicting sentences: (4, 5)
States: inedible(donut) → edible(donut) 

Carbon dioxide conversion story: B
Carbon dioxide conversion sentence: 4
Carbon dioxide conversion entity: sugar

 ✓ accurate
  ✓ consistent
  ✓ verifiable

Figure 6.1: TRIP (left; 228) compared to reframed Tiered-ProPara (right) task for coher-
ent physical commonsense reasoning. Each task requires multiple levels of reasoning from
surface-level story and sentence selection and commonsense physical state prediction. While
accuracy only evaluates the ability to perform the highest-level task, consistency and veri-
fiability are used to evaluate lower-level steps and judge the coherence of reasoning.

learning setting, given the role of these dual processes in humans to filter out irrelevant

information, we explore how various reasoning strategies influence LMs’ self-attention weights

on the language context.

6.1 Reframing ProPara for Coherent Physical Com-

monsense Reasoning

To supplement the results on TRIP, we recast ProPara, a previously existing dataset of texts

about scientific processes annotated with the dynamic existence and location of entities

throughout the processes [46]. While ProPara originally focused on the low-level task of

predicting the states of entities before and after each sentence of passages, we propose Tiered-

ProPara, a novel reframing of the task which requires multiple levels of reasoning. As shown

in Figure 6.1, in this version of the task, a system is presented with two passages from

ProPara with shared entities, and asked in which story is a particular type of entity, e.g.,

carbon dioxide, converted into another entity. In addition to this, the system must identify

the sentence in that story in which the conversion occurs, and what the entity is converted

into. Similarly to TRIP, we can use these two lower-level tasks to evaluate consistency and

verifiability of system predictions on the end task of choosing a story. More details on how

we generate this data are given in Appendix B.1.
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Story B:
1. Carbon dioxide…

…
4. Carbon dioxide…
5. Oxygen exits…

Story A:
1. Air is brought…

...
4. The carbon…
5. The lungs…

B

Story:

4

Conversion
Sentence:

Story B:
1. Carbon dioxide…

…
4. Carbon dioxide…
5. Oxygen exits…

Story A:
1. Air is brought…

...
4. The carbon…
5. The lungs…

Story B:
1. Carbon dioxide…

…
4. Carbon dioxide…
5. Oxygen exits…

Story A:
1. Air is brought…

...
4. The carbon…
5. The lungs…

sugar

Converted
Entity:

PLM

PLM

PLM Story 
Classifier

Sentence 
Classifier

Entity 
Classifier

Figure 6.2: Heuristic-analytic reasoning for fine-tuning LMs, where the language context is
iteratively refined using classification predictions during training and inference. In Tiered-
ProPara, after the LM is used to classify which story contains a conversion, the other story
is deleted from the model inputs. After classifying which sentence describes the conversion,
other sentences are deleted. Lastly, the resulting entity after the conversion is identified.

6.2 Heuristic-Analytic Reasoning for LM Fine-Tuning

Fine-tuning LMs is one popular approach for adapting them to downstream tasks, applied in

recent work toward coherent commonsense reasoning [149, 204], and suitable for applications

with compute or privacy restrictions. As shown in Figure 6.2, we can build explicit heuristic-

analytic reasoning structure into LM fine-tuning for our target tasks by deleting parts of the

language context that are no longer relevant as the model makes predictions for each step of

reasoning, both during training and inference. While our approach provides just one example,

this reasoning trick can apply to LM fine-tuning for any multi-step reasoning problem where

the most relevant language context to support reasoning changes with each step.

6.2.1 Fine-Tuning Experiments

Next, we introduce our experiments with HAR in fine-tuning LMs.

Implementation. To implement HAR in fine-tuning, we use the recent state-of-the-art

Coalescing Global and Local Information (CGLI) model for TRIP and ProPara [149] as a

backbone for HAR in fine-tuning. We apply two tricks to better focus the model on relevant
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Figure 6.3: Validation metrics for unstructured FCGLI baseline and FCGLI with heuristic-
analytic reasoning (FCGLI-HAR) through epochs of training on TRIP (top) and Tiered-
ProPara (bottom).

”Story A is more plausible.”

”In Story B, sentences 4 and 5 
conflict with each other.”

“For sentence 4: After Mary 
tossed the donut in the trash … 

the donut is now inedible.”

“For sentence 5: Before Mary 
ate the donut …

 the donut was edible.”

Story A:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on the counter.
5. Mary ate the donut.
Story B:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary tossed the donut in the trash.
5. Mary ate the donut.

Language Model Prompt Language Model Generation

Heuristic
Decisions

Analytic
Rationalization

Figure 6.4: Heuristic-analytic reasoning (HAR) for in-context learning with pre-trained lan-
guage models (LMs). HAR uses chain-of-thought prompting to bootstrap low-level ana-
lytic rationalization (e.g., physical state prediction) from high-level heuristic decision-making
(e.g., implausible story and conflicting sentence selection), focusing the LM’s attention to
the most relevant context in each reasoning step.

information. First, while the original CGLI model takes one text as input, Focused CGLI

(FCGLI) takes two texts, enabling the model to consider both together. Additionally, we

filtered down training annotations in TRIP for low-level state prediction tasks to only include

the most relevant physical states, i.e., those causing conflicts.2 This allows the model to focus

on learning the most important physical states from the high-dimensional hypothesis space.

Development and testing data remain unchanged for fairness. FCGLI with heuristic-analytic

reasoning (FCGLI-HAR) applies the above iterative deletion strategy to the input context

of FCGLI.

2More fine-tuning details provided in Appendix B.2.
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TRIP

Approach Accuracy Consistency Verifiability

RoBERTa 72.9 19.1 9.1
CGLI 94.1 77.3 28.0

Breakpoint 80.6 53.8 32.4
FCGLI 93.7 66.2 33.8

FCGLI-HAR 94.3 75.4 41.1

Tiered-ProPara

Approach Accuracy Consistency Verifiability

FCGLI 94.5 56.7 36.2

FCGLI-HAR 95.1 83.6 57.4

Table 6.1: TRIP and Tiered-ProPara results for baselines (introduced in Chapter 6.2.1), and
heuristic-analytic reasoning with fine-tuned LMs (FCGLI-HAR).

Baselines. To measure the advantage of informing low-level reasoning steps with higher-

level steps through sequential heuristic and analytic processes in FCGLI-HAR, we use

FCGLI, where all reasoning steps are performed jointly without dependency between them,

as a baseline. To contextualize TRIP results with past work, we also include RoBERTa [142]

results from Chapter 5, CGLI [149], and Breakpoint Transformer [204].

Results. Results are listed in Table 6.1.3 On TRIP, FCGLI-HAR exceeds or achieves

comparable performance to baselines on all three metrics, pushing verifiability up to 41.1%

and setting a new state-of-the-art result on the most difficult sub-task of TRIP. On Tiered-

ProPara, FCGLI-HAR exceeds the FCGLI baseline on all metrics, with consistency and

verifiability reaching a respective 83.6% and 57.4%, thus beginning to close the gap between

accuracy and these coherence metrics. This shows that HAR is indeed a promising strategy

to improve coherence and dependability of reasoning in LMs.

6.2.2 Learning Curves for FCGLI-HAR

We plotted the validation metrics through fine-tuning FCGLI and FCGLI-HAR in Fig-

ure 6.3. Unsurprisingly, we see that consistency and verifiability increase slower than accu-

racy through training, suggesting that these lower-level objectives are indeed most difficult

to learn. However, FCGLI-HAR converged 1-2 training epochs faster than FCGLI on both

datasets, suggesting that HAR may enable more efficient learning of coherent reasoning.

3Statistical significance testing of fine-tuning performance improvements in Appendix B.3.
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6.3 Heuristic-Analytic Reasoning for LM In-Context

Learning

While HAR can benefit domain-specific applications when integrated into LM fine-tuning,

it requires expensive training on in-domain data that may sacrifice generalizability. To

alleviate the limitations of fine-tuning, we also integrated HAR into in-context learning,

taking advantage of emergent abilities of large LMs to perform coherent reasoning through

free-form language generation.

Prompting techniques like chain-of-thought (CoT; 254) can be useful in in-context learn-

ing to demonstrate valid reasoning strategies to reach conclusions. However, CoT has tra-

ditionally been used to improve performance on complex high-level tasks by breaking them

down into simpler low-level steps and reasoning from the bottom up. Meanwhile, the most

complex sub-task and bottleneck in our problem is low-level physical state prediction [228],

which is impossible to further break down, as descriptions of actions directly invoke a world

state based on physical commonsense rules of how the world works. Since it would thus be

difficult to use traditional CoT to generate a useful explanation to support physical state pre-

diction, we apply HAR through a reverse CoT method where tiered tasks are demonstrated

and predicted in a top-down sequence from high-level decisions to low-level rationalization.4

In TRIP, as shown in Figure 6.4, LMs are conditioned to first predict plausibility, a

relatively easy heuristic process. To further refine the relevant context, the LM then predicts

conflicting sentences, another heuristic judgement that need not be directly based on low-

level commonsense knowledge, but may still benefit from being conditioned on the higher-

level implausible story prediction. Lastly, the LM rationalizes these decisions with low-

level physical states, an analytic process requiring the integration of external background

knowledge about actions and objects. Instead of breaking down physical state prediction

further (the typical purpose of CoT), we hypothesize that conditioning this sub-task with

higher-level heuristic processes in HAR helps focus the model on the correct context and

reason more coherently. We similarly apply HAR in Tiered-ProPara by prompting the LM

to first select a story and sentence in which a particular entity is converted to another, and

finally rationalizing these decisions with the name of the resulting entity after conversion,

which requires commonsense understanding of how entities change as a result of various

actions and processes.

4LMs are first conditioned with 4 consistent demonstrations of the ICL-HAR strategy from the training
set. More details in Appendix B.6.
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6.3.1 In-Context Learning Experiments

Next, we introduce our experiments on in-context learning with HAR (ICL-HAR).

Implementation. We apply ICL-HAR with InstructGPT5 [34, 182] and LLaMA-

65B6 [236] using greedy decoding. Since LLaMA is limited to a context length of 2048

tokens, while prompts for TRIP include over 3000 tokens to familiarize the model with the

physical state classification label space,7 we apply it to a filtered version of TRIP which

only includes instances where annotated states involve only the top-6 most frequent physical

precondition-effect pairs.

Unstructured baseline. We propose a more traditional, unstructured in-context learning

(ICL-U) baseline to help measure the advantage of HAR strategies applied in in-context

learning. Instead of prompting LMs to predict all 3 reasoning steps in sequence, we extract

each step of the task through separate but comparable prompts.8 The LM is provided

both input stories for each task, and given 4 task-specific demonstrations comparable to

ICL-HAR. We then combine the 3 extracted predictions on each testing example into one

reasoning chain to calculate evaluation metrics on them.

Traditional chain-of-thought baseline. Despite the anticipated limitations discussed

above, we augment the ICL-U baseline with traditional CoT for comparison, creating an

additional in-context learning with CoT (ICL-CoT) baseline. Specifically, we prompt In-

structGPT9 with “let’s think step by step about ⟨sub-task⟩” [118] to generate a free-text

explanation for each separate reasoning step. We then append these explanations to their

respective prompts before eliciting predictions from the models. Unlike HAR, which enforces

a top-down chain-of-thought, this traditional application of CoT allows the LM to attempt

to break down each step before making a prediction for it.

Results. As shown in Table 6.2, we observe sharp performance improvements10 from ICL-

HAR over the baselines, particularly in the coherence metrics of consistency and verifiabil-

ity, where our proposed strategy primarily comes into play. Meanwhile, compared to both

5Specifically, we use the text-davinci-002 version through an Azure OpenAI deployment.
6Specifically, we use a HuggingFace [257] compatible version available at https://huggingface.co/

decapoda-research/llama-65b-hf at the time of writing.
7See Appendix B.6.1 for more information.
8Example prompts provided in Appendix B.6.2.
9Based on preliminary experiments with both LMs, we expected InstructGPT to generate more reasonable

explanations on the in-context demonstration examples, so we used its explanations in prompting both
InstructGPT and LLaMA.

10Statistical significance testing of in-context learning performance improvements in Appendix B.3.
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baselines, HAR improves InstructGPT consistency on TRIP from 40.7% up to 47.9%, and

verifiability from a maximum of 10.8% up to 23.9%, over a 100% improvement on the latter.

LLaMA sees similar improvements, especially in verifiability. On Tiered-ProPara, Instruct-

GPT’s consistency improves from 19.2% to 31.5%, and verifiability improves from 7.5% to

20.7%, nearly a 200% improvement on the latter. LLaMA again sees similar improvements.

These results demonstrate that compared to common approaches for in-context learning

with LMs, human-inspired heuristic-analytic reasoning can significantly improve coherence

and reduce hallucination.

As expected, traditional chain-of-thought in the ICL-CoT baseline brought only marginal

improvements in most cases, especially for verifiability, as physical state prediction (the

bottleneck in coherent physical commonsense) cannot be further decomposed. Instead, we

saw that the free-form explanations generated by InstructGPT for physical state prediction

typically repeated specific sentences and actions from the story, which introduced no new

information. ICL-HAR reveals a possible new use case for chain-of-thought-style prompting:

refining LM attention to the most relevant language context. We investigate this further in

Chapter 6.3.2.

Interestingly, HAR not only brought vast improvements on verifiability metrics, but also

some improvements in consistency. In other words, the mid-level sentence selection tasks

benefited slightly from being conditioned on higher-level story selection tasks, despite being

considered heuristic processes that simply refine the context. This may suggest that rather

than belonging to separate dual processes, these consecutive steps of reasoning may fall along

a spectrum from heuristic to analytic processes in a recursive manner in LMs.

We also observed that LLaMA’s accuracy decreased with ICL-HAR. As discussed in

Chapter 4, it is not ideal for accuracy to far exceed consistency and verifiability, each of

which require end-task predictions to be accurate as a prerequisite, as this indicates inco-

herent reasoning with insufficient support for the end-task prediction. Therefore, drops in

accuracy with HAR are not necessarily problematic. Nonetheless, we believe it occurs due

to the smaller complexity of LLaMA (65B), making it more sensitive to long prompts and

generations. A quick fix could be to sequentially prompt the LM multiple times with shorter

prompts for each reasoning step, where the prompt for each step is informed by the previous

step’s prediction. We explore this approach in Appendix B.4, and indeed find the accuracy

does not drop with HAR.

51



InstructGPT

TRIP Tiered-ProPara
Approach Acc. Cons. Ver. Acc. Cons. Ver.

ICL-U 70.9 40.7 7.1 54.9 17.4 5.2
ICL-CoT 75.0 40.7 10.8 50.7 19.2 7.5

ICL-HAR 72.6 47.9 23.9 54.9 31.5 20.7

LLaMA

TRIP Tiered-ProPara
Approach Acc. Cons. Ver. Acc. Cons. Ver.

ICL-U 70.4 42.3 14.8 51.2 3.8 1.4
ICL-CoT 74.6 42.3 19.7 57.3 9.4 4.2

ICL-HAR 55.6 44.4 35.2 41.8 17.8 13.1

Table 6.2: Accuracy, consistency, and verifiability percentages for in-context learning with
heuristic-analytic reasoning (ICL-HAR) in LMs, compared to an unstructured in-context
learning (ICL-U) baseline that tackles reasoning steps through separate focused prompts.

6.3.2 Faithful Attention in ICL-HAR

To explore possible reasons for why HAR strengthens LMs’ reasoning, we last compare

and examine models’ attention weights when generating language in our in-context learning

experiments, where the model has access to the entire input language context throughout

inference. Earlier in this section, we hypothesized that ICL-HAR enables the model to focus

in on key parts of the context to make decisions and rationalize them more faithfully, similar

to its role in human reasoning. For example, as shown in Figure 6.4, after a LM identifies the

implausible story in TRIP, it should attend more to that story when identifying conflicting

sentences. After identifying these sentences, it should attend more to those sentences when

generating physical commonsense evidence.

In order to validate this hypothesis, we aggregate and normalize transformer self-attention

weights for each story or sentence within the input prompt,11 then use the ground truth

reasoning chains for TRIP and Tiered-ProPara to evaluate the faithfulness of them.12 To our

knowledge, prior work has not studied attention weights in this way for in-context learning

with LMs, so we hope to yield new insights on the nature of reasoning with them. We next

introduce the evaluation criteria used for attention weights, then the results of the analysis.

11More details in Appendix B.7.1.
12It is important to note that the research community has adopted a broad space of methods and used

various signals to interpret the predictions of language models. While this is just one avenue for such
interpretabilit, [276] provides a detailed review of other approaches that could be applied in future work in
this vein.

52



6.3.2.1 Attention Evaluation Criteria

We propose two kinds of measures to capture the faithfulness of attention and its relationship

with coherence in TRIP and Tiered-ProPara: attentional ratios and attentional precision and

recall.

Attentional ratios. To evaluate the faithfulness of LMs’ attention, we can compare the

attention weights for the correct segments of language context (i.e., stories or sentences)

versus others through an attentional ratio. In both TRIP and ProPara, the model must first

identify one of two stories containing some physical phenomenon before identifying which

sentence(s) in that story contain it (sentence selection step). In TRIP, in cases where it

correctly identifies the implausible story, we can calculate the attentional ratio for sentence

selection by taking the ratio of the mean attention weight of the implausible story (i.e.,

where the LM must attend to identify conflicting sentences) to that of the plausible story.

Similarly, in Tiered-ProPara, when the model correctly identifies which story contains an

entity conversion, we calculate the ratio of the mean attention weight for the story containing

an entity conversion to that of the story that does not.

When the model correctly identifies which sentence(s) contain a phenomenon (i.e., a plau-

sibility conflict or entity conversion), the model must lastly generate physical commonsense

knowledge for those sentences to rationalize its decisions (physical state prediction step).

In TRIP, we calculate the attentional ratio for physical state prediction by taking the ratio

of the mean attention weight for conflicting sentences (i.e., sentences from which physical

states must be predicted) to that of all other sentences. In Tiered-ProPara, we similarly cal-

culate the ratio between the mean attention weights for the conversion sentence and other

sentences.

Together, these ratios can provide a sense of how strongly the LM is attending to the

relevant language context to produce each level of the reasoning chain. We expect that

higher ratios indicate more faithful rationalizations from the model.

Attentional precision and recall. Beyond the faithfulness of attention, we would like

to understand how faithful attention relates to coherent reasoning, i.e., the LM’s predicted

sentence(s) and physical state(s) to rationalize which story it chose. For each of these

reasoning steps, there are four possible combinations of faithfulness of model attention and

correctness of its predictions:13

1. Attends to the correct context, and generates a correct prediction (true positive)

13Attention faithfulness classified by a threshold. More details and supporting examples listed in Ap-
pendix B.7.2.
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Sentence Selection Step

TRIP Tiered-ProPara
Approach Ratio Prec. Rec. Ratio Prec. Rec.

ICL-U 0.96 42.6 39.6 0.90 14.8 30.6
ICL-HAR 1.07 75.2 48.7 1.80 51.1 58.2

Physical State Prediction Step

TRIP Tiered-ProPara
Approach Ratio Prec. Rec. Ratio Prec. Rec.

ICL-U 1.23 43.0 35.4 1.21 14.6 25.9
ICL-HAR 1.95 79.8 98.2 2.20 72.1 83.3

Table 6.3: Attentional ratio, average precision (%), and average recall (%) for LLaMA
baseline and HAR strategy, during different physical commonsense reasoning steps. Precision
and recall averaged across several attention thresholds, as outlined in Appendix B.7.2.

2. Attends to the correct context, but generates an incorrect prediction (false positive)

3. Attends to the incorrect context, and generates an incorrect prediction (true nega-

tive)

4. Attends to the incorrect context, but generates an correct prediction (false negative)

We can calculate the precision and recall of attention to measure how the correctness

of attended language context correlates with correctness of these model predictions (and

thus coherence of reasoning). Given a set of evaluation examples, we define attentional

precision as the number of true positives divided by all positives, representing how often the

LM is correct given faithful attention. We define attentional recall as the number of true

positives divided by the sum of true positives and false negatives, representing how often

the LM attends faithfully given a correct prediction. Together, these metrics can provide

an impression of the connection between faithful attention and coherent reasoning under

different prompting strategies.

6.3.2.2 Attention Analysis Results

To understand why HAR improves coherence so significantly, we compare LM self-attention

distributions as a reasoning chain is generated in the in-context learning setting. As this

analysis requires access to LM internals, we can only use open-source models like LLaMA

here. Following findings from prior work that the middle layers of transformer-based language

representations contain the most transferable semantic information [188, 234], we extract self-

attention weights from the center-most 20 layers of the transformer backbone in LLaMA.

As shown in Table 6.3, ICL-HAR sharply exceeds the unstructured ICL-U baseline across
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Story A: 51.1%

1. The book was on the table.
2. Sarah took the book to the copier.
3. Sarah copied a few pages and used the stapler to keep them together.
4. Sarah could not find her notebook.
5. Sarah put the notebook next to the keyboard.
Story B: 48.9%

1. The book was on the table.
2. Sarah took the book to the copier.
3. Sarah copied a few pages and used the stapler to keep them together.
4. Sarah put the pages inside her notebook.
5. Sarah put the notebook next to the keyboard.

Story A: 61.7%

1. The book was on the table.
2. Sarah took the book to the copier.
3. Sarah copied a few pages and used the stapler to keep them together.
4. Sarah could not find her notebook.
5. Sarah put the notebook next to the keyboard.
Story B: 38.3%

1. The book was on the table.
2. Sarah took the book to the copier.
3. Sarah copied a few pages and used the stapler to keep them together.
4. Sarah put the pages inside her notebook.
5. Sarah put the notebook next to the keyboard.

Figure 6.5: Story-wise attention visualization on TRIP in sentence-of-conversion detection,
ICL-U (top) vs. ICL-HAR (bottom).

Story A: 41.0%

1. Coal is heated in the boiler.
2. The water tank over the boiler is heated.
3. Creates steam.
4. The steam is funneled to the piston.
5. Piston uses the steam as energy.
6. The piston causes the crankshaft to move.
Story B: 59.0%

1. Plates on the Earth’s crust move slowly past each other.
2. As the plates move, they exert a great force.
3. When the force is large enough, the crust breaks.
4. The stress is released as energy.
5. The energy moves through the Earth in the form of waves.
6. We feel the earthquake.
What happened to energy?

Story A: 16.3%

1. Coal is heated in the boiler.
2. The water tank over the boiler is heated.
3. Creates steam.
4. The steam is funneled to the piston.
5. Piston uses the steam as energy.
6. The piston causes the crankshaft to move.
Story B: 83.7%

1. Plates on the Earth’s crust move slowly past each other.
2. As the plates move, they exert a great force.
3. When the force is large enough, the crust breaks.
4. The stress is released as energy.
5. The energy moves through the Earth in the form of waves.
6. We feel the earthquake.
What happened to energy?

Figure 6.6: Attention visualization on Tiered-ProPara in selecting which sentence energy
is converted in, baseline ICL-U (top) vs. ICL-HAR (bottom). Attention averaged across
stories and reflected by the intensity of color.
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Story A:
1. Tom found he is out of ice cream. 9.0%
2. Tom peeled a hard boiled egg. 5.5%
3. Tom sliced the egg with a knife. 4.6%
4. Tom washed the knife in the sink. 4.4%
5. Tom ate ice cream for dessert. 8.6%
Story B:
1. Tom poured a glass of milk. 10.4%
2. Tom peeled a hard boiled egg. 25.4%
3. Tom sliced the egg with a knife. 3.3%
4. Tom washed the knife in the sink. 16.2%
5. Tom ate ice cream for dessert. 12.5%

Story A:
1. Tom found he is out of ice cream. 21.3%
2. Tom peeled a hard boiled egg. 7.1%
3. Tom sliced the egg with a knife. 5.3%
4. Tom washed the knife in the sink. 4.4%
5. Tom ate ice cream for dessert. 15.4%
Story B:
1. Tom poured a glass of milk. 7.2%
2. Tom peeled a hard boiled egg. 8.2%
3. Tom sliced the egg with a knife. 2.4%
4. Tom washed the knife in the sink. 20.8%
5. Tom ate ice cream for dessert. 7.9%

Figure 6.7: Sentence-wise attention visualization on TRIP in state change prediction for
baseline ICL-U (left) vs. ICL-HAR (right). Attention averaged across sentences.

Story A:
1. Plants have roots. 10.8%
2. The roots grow out. 3.9%
3. Roots have fibers that are attached to them. 8.6%
4. They attract water. 6.7%
5. They suck up water. 5.1%
6. They absorb the water. 12.1%
Story B:
1. The air is cold. 6.0%
2. Water is in the air. 4.4%
3. The water forms tiny ice crystals. 9.9%
4. The ice crystals collide with each other. 4.3%
5. The ice crystals stick to each other. 3.0%
6. The ice crystals get bigger as more of them stick together. 3.4%
7. The ice crystals get too heavy to be in the air. 3.8%
8. The ice crystals become snowflakes. 9.4%
9. The snow flakes fall to the ground as snow. 8.6%
What happened to water?

Story A:
1. Plants have roots. 2.3%
2. The roots grow out. 1.5%
3. Roots have fibers that are attached to them. 3.4%
4. They attract water. 2.8%
5. They suck up water. 3.2%
6. They absorb the water. 11.4%
Story B:
1. The air is cold. 4.4%
2. Water is in the air. 7.4%
3. The water forms tiny ice crystals. 26.5%
4. The ice crystals collide with each other. 9.9%
5. The ice crystals stick to each other. 4.9%
6. The ice crystals get bigger as more of them stick together. 6.5%
7. The ice crystals get too heavy to be in the air. 4.0%
8. The ice crystals become snowflakes. 6.6%
9. The snow flakes fall to the ground as snow. 5.4%
What happened to water?

Figure 6.8: Sentence-wise attention visualization on Tiered-ProPara in entity conversion
prediction, ICL-U (top) vs. ICL-HAR (bottom).
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all attentional metrics, both when selecting sentences (i.e., conflicting sentences or sentences

with conversions) and predicting states of entities. While observed ratios show that ICL-

HAR has more faithful attention to relevant parts of the context, the high values of attentional

precision (up to 80%) and recall (up to 98%) show that faithful attention and coherent rea-

soning go hand-in-hand ; faithful attention in ICL-HAR is likely to bring coherent reasoning,

and vice-versa. This demonstrates that HAR enables more trustworthy reasoning in LMs.

Lastly, we present example visualizations of self-attention patterns [259] for ICL-HAR

compared to the ICL-U baseline in Figures 6.5, 6.6, 6.7, and 6.8. For example, in Figure 6.6,

we see that in the sentence selection step in Tiered-ProPara, LLaMA had higher average

attention on the story containing a conversion of energy under ICL-HAR than the baseline.

Similarly, in Figure 6.7, we see that under ICL-HAR, LLaMA paid more attention to the

conflicting sentences in the physical state prediction step in TRIP, whereas the baseline had

high attention on irrelevant sentences. This shows how HAR can help focus LMs on the

most relevant language context at each step of reasoning.

6.4 Summary of Findings

In this chapter, we took inspiration from the synergy between heuristic and analytic pro-

cesses in human reasoning to explore how high-level decision-making tasks in commonsense

reasoning can condition and drive lower-level rationalization tasks supporting them in LMs.

We proposed two general strategies to integrate heuristic-analytic reasoning (i.e., HAR) into

LM fine-tuning and in-context learning, and found that HAR sharply improved reasoning

coherence, outperforming competitive baselines on two benchmark tasks. In fine-tuning, we

saw that HAR enabled LMs to learn to reason not only more coherently, but also faster.

Meanwhile, in in-context learning, we found that improvements were enabled by more faith-

ful attention to the language context within each step of reasoning, shedding light on the

nature of incoherence in language generation. While this human-inspired approach shows

promising strides toward more trustworthy reasoning from LMs, future work should continue

to dive deeper into cognitively motivated strategies to further strengthen coherent reasoning

in AI systems and improve human-machine alignment.
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CHAPTER 7

Physical Perception and Causality in

Foundational Multimodal Representations†

The previous chapters of this thesis have made strides in evaluating and strengthening the

coherence of physical commonsense reasoning (PCR) in natural language understanding

(NLU) for foundational language models (LMs). As discussed in Chapter 1, such effort is

especially important for trustworthiness between humans and intelligent agents powered by

foundational LMs in real-world, physical settings. However, the work thus far has yet to

move beyond text-based settings. In the real world, commonsense NLU may also depend on

a number of other modalities, especially visual perception (e.g., through images or videos).

To bring foundational LMs into tasks in this space, a parallel line of work has developed

foundational vision-and-language models (VLMs) [231, 136, 272, 117, 238, 134, 6, 2, 133,

44, 185, 140, 76], which extend the language modeling paradigm to incorporate images and

videos into LM inputs, enabling LMs to generate language to describe or reason over them.

While early works attempted to jointly learn VLMs by pre-training them end-to-end on

large-scale datasets for vision-and-language tasks such as image and video captioning, more

recently this is typically achieved through learning a projection from a frozen pre-trained

visual representation into the input space of a frozen pre-trained foundational LM, imple-

mented by a neural network architecture (as shown in Figure 7.1. Foundational VLMs

acquire broad capabilities in visual understanding from their pre-training, accessible by sim-

ply prompting the VLM. It is common for recent state-of-the-art VLMs to use Contrastive

Language-Image Pre-training (CLIP) for visual representation [193, 133]. CLIP is trained

through contrastive learning over paired images and texts to learn dual vision and language

vector representations, such that the representations for related images and texts should be

highly similar (and vice versa). This was an early example of zero-shot visual understanding

†The experiments described in this chapter are from an intermediate unpublished study led by Shane
Storks. We acknowledge Wenfei Tang, Sungryull Sohn, Moontae Lee, Honglak Lee, and Joyce Chai for
helpful discussions and contributions to this work.
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##### ##### ##### Q : What color is the grass ?… A :

What color is the grass?

Yellow

Learned Projection 

Foundational LM

Vision Encoder

Figure 7.1: Foundational vision-and-language models (VLMs) learn a projection from the
outputs of a frozen foundational vision encoder to the inputs of a frozen foundational lan-
guage model (LM), optionally informed by text inputs.

achieved through large-scale pre-training, and thus serves as a strong frozen visual encoder

to integrate into VLMs.

Given that today’s state-of-the-art foundational VLMs are built on top of LMs, we can

expect similarly incoherent tendencies in them. For example, past work has discovered new

forms of hallucination specific to VLMs, such as the fabrication of objects when generating

image captions [45, 137]. As such, when applying them to physical settings, it is essential

that we ensure information generated by them is consistent with both the language and visual

context, and can be verified through observable states of the environment. A key component

of this is to understand how VLMs represent physical concepts like objects, actions, and

physical states. This is particularly difficult in visual perception, as objects may appear

vastly different depending on what physical state they are in, and physical states can also

appear vastly different depending on the object they are applied to. For example, an orange

will look different depending on whether it is peeled or sliced, while a peeled orange looks

quite different from a peeled banana.

In this chapter, we perform an initial investigation of the viability of multimodal language-

and-vision representations for PCR. Specifically, we apply CLIP to action-effect prediction

(AEP) [75], a task where an AI system is given a physical action in the form of a verb-noun

pair, e.g., “peel orange,” and must rank a large pool of candidate images for how well they

portray the effect of this action. To capture the challenges of visually representing actions,
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Figure 7.2: To apply dual-encoder multimodal representations like CLIP [193] to action-
effect prediction (AEP), candidate images of an action are ranked based on the similarity of
their representations to the representation of a verb-noun pair describing the action.

each action in the dataset is unique, and may have multiple correct images.1 By applying

CLIP to this task, we seek to understand how its visual representation captures objects and

their physical states, and how well this representation can be mapped to language descrip-

tions of actions. In comparison with zero-shot CLIP, we also attempt to augment CLIP with

intuitive physical causality by applying generative LMs and text-to-image diffusion models

to simulate effects of actions both textually and visually.

7.1 Zero-Shot Action-Effect Ranking

Applying CLIP to AEP, a cross-modal language-to-image task, is straightforward. As shown

in Figure 7.2, given an action described in language l and a set of candidate matching effect

images Ve, we apply the CLIP language and visual encoders EL and EV to generate vector

representations of the same dimension. Each candidate effect image ve ∈ Ve is ranked in

descending order by cosine similarity cos (EL(l), EV (ve)).

For a more CLIP-friendly prompt, we form l from the verb-noun pair (lv, ln) given in the

AEP data. We use the template “A photo of a ⟨lv⟩ ⟨ln⟩,” where we use mlconjug32 to convert

lv to its past participle and spaCy3 to adjust prompts for grammaticality as needed. For

example, given the verb-noun pair “slice orange,” we generate the prompt for CLIP as “A

1To reproduce the train-test split in the original paper, we follow [75] in randomly sampling 10% of each
verb-noun pair’s positive and negative images for training, 30% for validation, and 60% for testing to make
up the pools of candidate effect images in each split.

2https://mlconjug3.readthedocs.io/
3https://spacy.io/

60

https://mlconjug3.readthedocs.io/
https://spacy.io/


“peel orange”

Text-to-Image 
Diffusion Model

Foundational 
LM

Multimodal Representation

“the orange 

is separated 
from the rind”

Figure 7.3: Generative foundation models as simulation engines to simulate the effects of
physical actions. In action-effect prediction [75], we can simulate the effect of peel orange
by prompting foundational text-to-image diffusion and language models (LMs) for addi-
tional multimodal context before using CLIP [193], a foundational dual-encoder vision-and-
language representation, to rank effect images.

photo of a sliced orange.” After ranking, we evaluate CLIP’s zero-shot performance through

label ranking average precision (LRAP), which is higher when correct images are ranked

higher, and top-n accuracy metrics Acc@n for n ∈ {1, 5, 20}, which measure the proportion

of verb-noun pairs for which the top n images are correct.

7.2 Zero-Shot Action-Effect Ranking with Intuitive

Action Simulation

CLIP represents the language and images associated with a physical situation the same

regardless of whether they are applied to physical perception or reasoning. Inspired by work

toward intuitive physics-engine approaches to physical understanding [121], we hypothesize

that when used as a backbone for PCR, they could benefit from being augmented with

explicit reasoning through an imagination-inspired simulation engine, as shown in Figure 7.3.

Specifically, we can condition generative models on task inputs, and use them to generate

additional helpful context to support prediction of effect states. Notably, this creates an

intuitive separation between reasoning, which happens within the generative models for

simulation, and perception, which happens in the CLIP backbone to infer the effect state.
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The availability of generative foundation models for images [200, 199] and language [34]

enables us to perform both textual and visual simulation, and thus understand where each

is most beneficial.

7.2.1 Intuitive Textual Simulation

The recent scaling of large pre-trained language models [34] has enabled the ability to prompt

them for zero-shot reasoning and planning with astounding results [118, 101]. Inspired by

this success, we explore their capability to support PCR by augmenting the CLIP backbone

with textual simulation.

In AEP, we achieve this by generating language descriptions for the effect state of an

action. Given a verb-noun pair (lv, ln), each simulation is generated by prompting a PLM

with the text fragment “Question: When someone ⟨lv⟩ an ⟨ln⟩, what happens to the ⟨ln⟩?
Answer: The ⟨ln⟩ is now,” where mlconjug3 is again used to convert lv to third-person

singular form. From the GPT-3 generated text T , we form the imagined effect lie by the

more CLIP-friendly prompt “A photo of a ⟨lv⟩ ⟨ln⟩. The ⟨ln⟩ is ⟨T ⟩,” where lv is again

converted to an adjective form.

For example, given the verb-noun pair “slice orange,” we prompt the PLM as described,

and receive an output T to describe the state of the orange, e.g., “in multiple pieces.” From

this, we create a CLIP prompt “A photo of a sliced orange. The orange is in multiple pieces.”

Compared to the simulation-free CLIP prompt “A photo of a sliced orange,” we expect this

simulation-augmented prompt to be more informative and better guide the model to choose

the correct image. Upon generating k textual simulations lie ∈ Li
e, we now perform inference

by averaging their similarity to each candidate effect image ve ∈ Ve when represented with

language and visual encoders EL and EV :

∑
lie∈Li

e

cos
(
EL(lie), EV (ve)

)
7.2.2 Intuitive Visual Simulation

The development of foundational text-to-image diffusion models [200, 199] has produced

systems capable of generating realistic images conditioned on text prompts, which have

been shown to be somewhat helpful in simulating situations and world states to improve

language understanding [147, 260, 141] and planning [115]. To apply them to physical state

prediction, we augment the CLIP backbone with visual simulation powered by these models.

In AEP, we achieve this by generating simulated images for the effect state of an action

using such a diffusion model. Given a verb-noun pair (lva, l
n
a ), each simulation is generated by
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prompting the diffusion model with the same prompt used to interface directly with CLIP,

i.e., for “slice orange,” the prompt would be a “A photo of a sliced orange.” We expect

that generated images may look quite similar to the ground truth images for the action’s

effect, and thus serve as a useful signal for this task. Upon generating k visual simulations

ve ∈ V i
e , we can again perform inference through an ensembled similarity search similar to

the method described in Chapter 7.2.1.

7.2.3 Multimodal Simulation

We may also consider using both textual and visual simulation jointly to augment the

pipeline. We consider two strategies for combining these signals: parallel and sequential.

Given sets Li of textual simulations and V i of visual simulations, we can combine them in

parallel by simply incorporating all of them as possible signals to support the final prediction

by CLIP. Or, we can do a sequential two-stage simulation by first generating Li using a foun-

dational LM then using the k generated textual simulations as prompts for a text-to-image

diffusion model to then generate visual simulations. In the sequential approach, only visual

simulations are considered, but they’re conditioned on textual simulations.

7.2.4 Experimental Results

The results on the AEP testing set are shown in Table 7.1. We use an instance of CLIP

using vision transformer (ViT) [61] as a visual encoder.4 Textual simulation is implemented

with the InstructGPT variant of GPT-3 [182], while visual simulation is implemented with

DALL-E 2 [199].

Zero-shot performance. Without simulation, CLIP achieves impressive zero-shot results

on AEP, significantly exceeding all metrics from supervised convolutional neural network

(CNN) baselines from [75], one of which was trained on a large dataset of images retrieved

from the web. This demonstrates the viability of foundational multimodal representations,

and thus VLMs, for capturing actions in images.

Impact of textual simulation. Augmenting CLIP with just k = 1 textual simulation

shows a sharp performance improvement to 50.7% top-1 accuracy, with similar increases in

other metrics. This shows that using a foundational LM to generate language simulating

action effects, which we have extensively studied in previous chapters, may better reveal

4Pre-trained CLIP weights can be found at https://huggingface.co/laion/
CLIP-ViT-L-14-laion2B-s32B-b82K.
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Model LRAP Acc@1 Acc@5 Acc@20

CNN 18.2 32.9 62.9 80.7
CNN + Web Images 29.0 41.4 75.0 92.1
CLIP 40.6 45.0 84.3 94.3

CLIP + Textual (k = 1) 43.3 50.7 85.0 98.6
CLIP + Textual (k = 5) 43.5 50.0 85.7 97.9

CLIP + Visual (k = 1) 23.4 32.9 65.0 86.4
CLIP + Visual (k = 5) 24.6 35.7 66.4 87.9

CLIP + Textual + Visual (Parallel; k = 1) 31.9 42.9 72.1 92.1
CLIP + Textual + Visual (Parallel; k = 5) 34.0 45.7 72.1 94.3

CLIP + Textual + Visual (Sequential; k = 1) 25.0 34.3 72.1 88.6
CLIP + Textual + Visual (Sequential; k = 5) 27.0 38.6 68.6 90.7

Table 7.1: Metrics for CLIP on action-effect prediction (AEP) [75]. In the first section,
zero-shot CLIP is compared to supervised baselines from [75]. In the remaining sections
various configurations of action simulation are applied with k = 1 and 5 simulated effect
texts and/or images respectively. In multimodal (“Both”) imagination, generative model
outputs are combined in parallel or sequentially as described in Chapter 7.2.3.

physical state information from CLIP’s visual representations as opposed to only using de-

scriptions of actions themselves (i.e., through verb-noun pairs). Increasing k to 5 brings

shows minimal further improvements.

Impact of visual simulation. Surprisingly, visual simulation surprisingly causes perfor-

mance degradation. Increasing the number of visual simulations k leads to a slight recovery

in performance, but the performance of CLIP is still better without using them at all. This

may suggest that visual representations vary significantly for images of the same physical

concepts. Since language provides powerful abstractions for physical concepts, language-

based representations for physical concepts may be more consistently mapped to a variety

of images portraying the same physical concepts. This may further explain the performance

degradation in the multimodal simulation settings that integrate both textual and visual sim-

ulated effects. In Chapter 7.2.4.1, we qualitatively analyze sample simulated effect images

and texts to better understand this disparity.

7.2.4.1 Sample Simulations

Based on the results so far, it seems that textual simulations is helpful for PCR, but vi-

sual simulation is not. As such, we provide some sample simulations for each modality to
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Verb-Noun
Pair

Simulated
Effect Text

Reference
Effect Text

Simulated
Effect Image

Reference
Effect Image

Top-Ranked Effect Images
(Textual, Visual, Both)

chop carrot the carrot is
in smaller
pieces

the carrot
is cut into
small pieces

crack egg the egg is
broken

the egg is
broken open

ignite wood the wood is
on fire

the wood is
on fire

peel orange the orange is
peeled

the orange
has no skin

smash door the door is
broken

the door is
broken in

Table 7.2: Intuitive simulation outputs for selected verb-noun pairs, compared to selected
reference human-annotated effect texts and images provided in the AEP dataset. The top-
ranked effect image by the pipeline is also shown when the inference includes only textual
simulations, visual simulations, or both (highlighted in green for correct choices and red for
incorrect choices).

qualitatively examine their relevance and coherence to their prompts. Sample simulations

compared to reference human-annotated counterparts are shown for selected verb-noun pairs

in Table 7.2.

First, we observe that both the textual and visual simulation models generate quite re-

alistic and relevant outputs for each verb-noun pair, with generated effect texts nearly or

exactly matching reference effect texts, and images appearing to represent verb-noun pairs

mostly well. Nonetheless, they contribute to mixed success in the final ranking, depending

on whether imagined texts, images, or both are used in the ranking. For example, we see

that while both types of simulation lead to correct predictions on chop carrot, ignite wood,

and peel orange, visual simulation causes incorrect predictions for crack egg and smash door.

This may suggest that CLIP may be better at fine-grained semantic matching of text to im-

ages than images to images. Interestingly, the incorrect predictions are still nearly correct;

for crack egg, an image of a boiled egg is selected, and for smash door, an image of a smashed

window is selected. even when the pipeline fails, it still produces a somewhat reasonable
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incorrect answer.

7.3 Summary of Findings

In this chapter, we introduced foundational vision-and-language models (VLMs), and inves-

tigated the capacity of CLIP [193], a typical language-dependent visual representation used

in VLMs, to be used for action-effect prediction. First, we found that CLIP exhibits an im-

pressive capability to represent actions outperforming supervised baselines from prior work.

Notably, its performance is enhanced if we simulate the effects of actions with a foundational

LM, then incorporate the generated physical state descriptions into action representations.

This may suggest that VLMs’ visual representations are better equipped to handle more

direct descriptions of physical states of objects than the high-level actions that have been

applied to objects. Furthermore, we found that using text-to-image diffusion models to sim-

ulate images of action effect states hurt CLIP’s performance. This suggests that VLMs’

visual representations are not well-equipped to represent physical concepts abstractly and

generally, and thus language may be advantageous because of its ability to describe and

abstract physical concepts with symbols.
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CHAPTER 8

Coherent Physical Commonsense Reasoning

for Procedural Mistake Detection in Video

Frames†

The problem of automated, interactive task guidance has recently attracted attention in the

AI research community [16, 249, 183, 27]. A successful intelligent agent for this problem can

observe a human user through video (usually egocentric) and interact with them through

language and visual cues to guide them through completing a task. One key component of

such an agent is procedural mistake detection (PMD): the ability to detect when the user

performs an action that deviates from a procedural text, e.g., a recipe or instruction man-

ual. This ability requires physical commonsense reasoning (PCR) to anticipate the success

conditions for actions from this procedural text, extract relevant physical state information

from the visual scene, and reconcile these sources of information to determine whether a

mistake has occurred.

Mistake detection has proven to be a challenging problem within task guidance. One

thread of work here has attempted to fine-tune primarily vision-based classifiers without in-

corporating language [249, 183], while another has attempted to apply foundational language

models (LMs) and vision-and-language models (VLMs) to this problem [62, 16], but both

types of approaches have failed to achieve a viable level of accuracy in detecting mistakes. In

the latter effort, [16] finds that while the web-scale multimodal pre-training of these models

enables flexibility and generalization to a wide variety of procedures, they often produce

noisy, vague, or otherwise insufficient information to facilitate reasoning about the success

of procedure execution in visual scenes. This capability to extract key task-relevant visual

information may be crucial for improving mistake detection accuracy in foundation models,

†The work described in this chapter is from an ongoing project led by Shane Storks. We acknowledge
Yayuan Li, Itamar Bar-Yossef, Zheyuan Zhang, Fengyuan Hu, Ruixuan Deng, Megan Su, Jason J. Corso,
and Joyce Chai for helpful discussions and contributions to this project.

67



as well as providing system interpretability for user trust. However, prior work has largely

overlooked the interpretability of mistake detection, instead targeting binary and categorical

classification tasks in their system design and quantitative evaluations.

In this chapter, inspired by the previously presented work toward coherent commonsense

reasoning, we adapt our notions of consistency and verifiability to the problem of interpretable

procedural mistake detection (interpretable PMD) in egocentric video frames with founda-

tional VLMs.1 To enable this inquiry, we transform an existing egocentric video dataset for

experimentation with foundational VLMs on this problem. We then propose and validate

novel reference-free automated metrics for the coherence of PCR in this problem based on

a fine-tuned natural language inference (NLI) model, which we adapt into a multi-tiered

evaluation paradigm for both accuracy and coherence in mistake detection. In our experi-

ments, we formulate the problem as a multi-tiered reasoning process consisting of iterative

visual question generation (VQG), visual question answering (VQA), and a determination

of success based on visual information and/or information collected from VQA. Since foun-

dational VLMs are still in early stages and highly vulnerable to illusion and hallucination

[45, 137, 274, 88], their reasoning capabilities are not yet well-understood, and there are

thus many under-explored questions about how best to apply them to multimodal reasoning

tasks like mistake detection. Several of these questions guide us in laying the groundwork

for studying coherent PCR in interpretable PMD with foundational VLMs:

1. How does the direction of multi-tiered reasoning (top-down or bottom-up) impact the

accuracy and coherence of PMD?

2. In addition to VLM likelihood, can reference-free coherence metrics provide a useful

signal for more accurate or coherent PMD?

3. Can foundational LMs’ in-context learning capability be leveraged for more accurate or

coherent PMD?

4. How do available methods to mitigate visual illusion and hallucination [245, 127, 8]

impact accuracy and coherence of PMD?

To address these questions, we perform experiments evaluating impact of various inter-

ventions in question generation and answering on the performance of foundational VLMs in

interpretable PMD. Notably, we show how our multi-tiered metrics for this problem enable

previously impossible rich insights into VLMs’ reasoning from various perspectives, enabling

1Here, we are particularly targeting lightweight, open-source VLMs that are feasible and affordable to
run in online settings like interactive task guidance.
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a previously impossible level of interpretability in mistake detection that could support tar-

geted improvement in downstream engineering of task guidance systems.

8.1 Redefining Mistake Detection for Interpretability

and Coherence

Given a text description of a procedure and a video frame of the procedure being performed

by a user, the task of PMD is to judge whether or not the procedure was performed correctly.

Since prior work has made limited progress on this problem by primarily focusing on the

visual modality and binary or categorical classification, we additionally wish to draw from the

previous chapters of this thesis to elicit interpretable and coherent explanations for mistakes

in natural language.

In this section, we first formally define the problem of interpretable PMD in an approach-

able manner for recent open-source VLMs. We then introduce a naturalistic benchmark

dataset we curated for evaluating interpretable PMD in open-source VLMs.

8.1.1 Interpretable Procedural Mistake Detection

For interpretable PMD, we not only want a decision from the system on whether or not a

mistake has occurred in executing a procedure, but also an explanation for why. Since current

state-of-the-art approaches for mistake detection do not have a viable level of accuracy,

especially those based on foundational VLMs, explanation is crucial to ensure the human

user can understand the system’s reasoning process and act on, disregard, or even correct its

outputs accordingly. Further, given findings that VLMs perform better on complex visual

reasoning problems after breaking them down into lower-level steps [224, 280], it is possible

that eliciting such explanations can improve the accuracy of VLMs.

Formally, interpretable PMD provides the following inputs:

• A short procedural text P

• A single video frame F which may or may not show the successful completion of the

procedure described in P

Given these inputs, as shown in Figure 8.1, a system must return the following outputs:

• A binary decision y for whether the procedure has been successfully completed (y = 0

indicates success, and y = 1 indicates a detected mistake)
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Procedure: In a bowl, add the cut cherry tomatoes
Frame:

Decision: Mistake

Q1: Are there cherry tomatoes in 
the bowl?

A1: Yes

Q2: Are there any cherry tomatoes 
that are not in the bowl?

A2: Yes

Figure 8.1: In interpretable procedural mistake detection (PMD), foundational VLMs must
not only to judge whether a video frame shows a successful or mistake state for a given
procedure (e.g., “In a bowl, add the cut cherry tomatoes”), but also generate visual ques-
tions and answers to reveal key physical states of the environment that justify the decision.
Procedure and frame from CaptainCook4D [183].

• A sequence of generated questions Q and yes-no answers A which together provide a

sufficient explanation for the decision y

Later in this chapter, we will introduce specific approaches to evaluate and generate

these explanations. As this process requires generating several pieces of information, it is

expected that this would be applied once at the end of procedure execution to verify the

state of the environment, e.g., when the user asks a task guidance system to advance to the

next step. Based on the results of our study, one could explore streamlined, lighter-weight

approaches to apply VLMs to a stream of video frames in a live online setting. However,

as the capability to reason over sequences of frames is still limited in state-of-the-art VLMs,

we leave this for future work. In the meantime, formulating the problem in this way enables

our initial experiments to begin building a meaningful understanding of the behaviors of

VLMs in PMD. As future VLMs become better at capturing physical states in videos, the

formulation of this problem can be revisited.

8.1.2 Constructing a Dataset for Procedural Mistake Detection

Various benchmark datasets have been created for mistake detection from egocentric video,

each of which includes video and procedural text along with various other modalities

[62, 16, 249, 183]. Videos are annotated with detailed information about mistakes. While

these datasets are useful resources for research in task guidance, most of them include dialog

interaction between a user and instructor agent which often causes mistakes to be corrected

before or while they happen. Furthermore, they include mistakes around temperature, tim-
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Success Mistake (Incomplete) Mistake (Wrong Verb) Mistake (Wrong Noun) Mistake (Wrong Verb & Noun)

Figure 8.2: Selected examples from our reformulated Ego4D [85] for Procedural Mistake
Detection (Ego4D-PMD). For each matching pair of a video frame and procedural text (in
this case, “Fold the cloth with your hands”), we generate a success example, and generate
various types of mistake examples by sampling alternate video frames: incomplete execution
of the procedure, execution with the wrong verb (e.g., wringing a cloth instead of folding),
execution with the wrong noun (e.g., folding a paper instead of a cloth), and execution with
both the wrong verb and noun (e.g., opening a notepad instead of folding a cloth). Images
slightly cropped for space.

ing, small measurements, and other physical properties of the environment that are difficult

for open-source VLMs, which are mostly optimized for representing single images, to per-

ceive. While some of these difficulties could be overcome through a two-way dialog between

the agent and a user, this makes it difficult to isolate mistakes occurring in the videos and

dive deep into the PCR behind detecting them. As such, we follow [62] in recasting Ego4D

[85], a narrated procedural video dataset, into an offline mistake detection format. While

the recasted dataset targets the coherence of PCR in mistake detection, it could still be used

to inspect the capabilities of a larger dialog system for task guidance.

8.1.2.1 Ego4D for Mistake Detection

Ego4D is a large-scale egocentric video dataset for everyday activities with dense annota-

tions for various aspects of the videos [85]. Ego4D’s hand and object interactions data

subset includes videos of physical actions being performed with various objects. Each video

is annotated with narrations describing fine-grained procedures being performed, timestamps

for when it begins and ends, and category labels for the verb and noun characterizing the

procedure. This makes an ideal testbed for evaluating foundational VLMs’ physical com-

monsense understanding of real-world actions, but the data is not formulated for mistake

detection. We thus apply several preprocessing steps to the data to create a new Ego4D for

Procedural Mistake Detection (Ego4D-PMD) benchmark that includes successful cases and

a variety of mistake types for each annotated procedure, outlined below. Example data from

Ego4D-PMD is shown in Figure 8.2.
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Generating success examples. As discussed above, Ego4D’s hand object interaction

data is annotated in units of egocentric video clips of individual actions being performed by

humans. We can form an example of a successful execution of the procedure by pairing each

video clip with its annotated natural language narration of the procedure. Since most VLMs

are not optimized to reason over multiple frames and videos, and those that are are still in

very early stages, we sample exactly one frame from each video clip. Specifically, as each

clip is carefully annotated with a postcondition time for the action, i.e., the time that the

action has been completed, we simply sample the video frame at this annotated time and

pair it with the text narration.

Generating mistake examples for incomplete procedures. One natural type of mis-

take a user could make is not finishing a procedure. In addition to postcondition times, each

video clip is annotated with a precondition time. Following a similar approach in [62], we

can generate a mistake example by sampling a frame at the precondition time and pairing

it with the video clip’s narration text. We expect that by doing this, the sampled frame

will show the procedure at an incomplete state, and contain most of the same objects as

the success example for the same clip. This poses a difficult challenge of identifying the key

physical properties of the scene that would indicate completion.

Generating mistake examples for mismatched verbs and nouns. Mistakes also

happen when a user applies the wrong type of action to an object, causing an unexpected

state, as well as when a user uses the wrong object or ingredient in a procedure. Following

this intuition, we generate additional easier mistake examples from each clip by matching

each clip with other clips that have a mismatched verb, noun, or both. While each clip

is annotated with verb and noun categories, these categories are coarse-grained, making it

impossible to guarantee that two clips with the same verb or noun label actually involve the

same verb or noun, thus preventing sampling clips that share the same verb or noun. Instead,

we apply the AllenNLP2 semantic role labeler to each narration text to identify the key

participants in each procedure. For each clip, we then attempt to sample the postcondition

frames from three mismatched clips: one with a mismatched verb (but matching nouns), one

with a mismatched noun (but matching verb), and one with a mismatched verb and noun.

We then pair these frames with the source clip’s narration text, creating mistake examples

with varying levels of overlap with the source clip.3 While it is not always possible to find

every such alternative clip for each clip in Ego4D, we can usually find at least one of them.

2https://allenai.org/allennlp
3We acknowledge Yayuan Li for significant contributions to curating this data.
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Transforming narrations into instructions. The narration texts annotated in Ego4D

are declarative statements about the actions being performed in each clip. This is not an

accurate depiction of typical interactive task guidance and PMD settings, which usually

revolve around instructional texts like recipes or guidebooks. As such, we convert each

narration, e.g., “Someone washes the lettuce,” into imperative form, e.g., “Wash the lettuce,”

using spaCy.4 Further, some narrations describe procedures that are not suited for comparing

physical state changes in text and images, such as social interactions, interactions with

animals, interactions with electronic devices, and movements that are impossible to precisely

characterize from the narration text (e.g., in “Move plate”). We use the verb and noun

category annotations on each clip to filter out such cases.

Ensuring data quality. We perform several additional steps to ensure high-quality mis-

take detection task instances. First, we remove clips where the precondition and postcon-

dition frames are overly similar (i.e., at least 0.95 cosine similarity). We remove clips that

are too dark (i.e., where the mean of all normalized RGB values is less than 0.2). When

sampling frames from source clips, we sample several candidates within a small range around

the precondition or postcondition timestamp, then select the least blurry candidate by the

variance of the images’ Laplacian. Some videos in Ego4D show the same action being per-

formed over and over (e.g., “Roll a ball of dough”), which can make it difficult to determine

whether the state of the environment shown in a clip is the result of the current procedure

or a prior one (given only a single frame). While future work applying video-optimized

VLMs for interpretable PMD in long-horizon tasks will need to address this challenge, this

adds an unnecessary complexity to an already challenging task for current VLMs. As such,

we remove any clips such that the same procedure in the clip has already been performed

previously in the video. Lastly, we remove a handful of videos in Ego4D that we notice to

be corrupted or significantly distorted.

The statistics of the full Ego4D-PMD dataset are presented in Tables 8.1 and 8.2. As

listed there, to avoid spending unnecessary compute on the experiments in this chapter, we

randomly sample a subset of 500 validation examples and 2,000 testing examples (evenly

split between success and mistake cases) for the forthcoming experiments. The validation

data is used in these experiments unless otherwise specified.

4https://spacy.io/
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Example Type Train Validation (Sample) Test (Sample) Total

Success 56,643 13,058 250 18,057 1000 87,758

Mistake 106,600 25,423 250 34,182 1000 166,205

Mistake (Incomplete) 20,261 4,908 51 6,545 194 31,714
Mistake (Wrong Verb) 12,171 2,694 31 3,747 108 18,612
Mistake (Wrong Noun) 37,065 8,914 87 11,843 344 57,822

Mistake (Wrong Verb & Noun) 37,103 8,907 81 12,047 354 58,057

Table 8.1: Distribution of example types in each partition of our proposed Ego4D [85] for
Procedural Mistake Detection (Ego4D-PMD) dataset.

Action Label Type Train Validation (Sample) Test (Sample) All

Verbs 83 77 55 78 71 83

Nouns 440 365 151 390 257 487

Verb-Noun Pairs 3,976 2,185 326 2,658 833 5,363

Table 8.2: Distribution of unique verb, noun, and verb-noun pair categories in each partition
of our proposed Ego4D [85] for Procedural Mistake Detection (Ego4D-PMD) dataset. Verb
and noun categories are annotated for each narration in the Ego4D dataset.

8.2 Evaluating Coherence of Procedural Mistake

Detection

In the previous chapters of this thesis, we collected detailed annotations to support evaluating

coherence in PCR tasks. In this setting, we instead opt to propose automated coherence

metrics for generated questions and answers. We do this for two reasons. First, in mistake

detection, there may be multiple valid ways to detect a mistake through asking and answering

visual questions, each of which could involve asking different questions and different numbers

of questions.5 Second, in a real-world setting like PMD for task guidance, we argue that

automated metrics are better suited for understanding and improving a deployed system

than an offline benchmark.

In this section, we describe our application of a fine-tuned NLI model to calculate such

metrics, proposing two coherence metrics for interpretable procedural mistake detection:

relevance, an evaluation metric for generated questions, and informativeness, an evaluation

metric for predicted answers to those questions. Lastly, we describe how these metrics are

incorporated into new definitions of consistency and verifiability for this problem.

5For example, in trying to determine the success of the procedure “In a bowl, add the cut cherry tomatoes”
from [183], we could reasonably ask one question “Are all the cherry tomatoes in the bowl?” or two questions
“Are there cherry tomatoes in the bowl?” and “Are there any cherry tomatoes outside of the bowl?”

74



There is a cloth in the image. 
There are pegs on the cloth.

The procedure “Unclip the 
pegs on the cloth” has been 
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+ 
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Is there a cloth in the image?

Are there pegs on the cloth?
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𝒬,𝒜

Unclip the pegs on the cloth.𝑃

Figure 8.3: Usage of BART [129] fine-tuned on MultiNLI [256] to judge procedural success.

8.2.1 Using NLI Models to Judge Success

NLI, also referred to as textual entailment, is the task of determining whether a hypothesis

text must be true given a premise text, and has long been studied in the NLP community [43].

Once thought to be a grand challenge for commonsense reasoning, many human-annotated

resources have been compiled for this task, and thus significant progress has occurred [227].

Recent work has successfully leveraged this progress by applying LMs fine-tuned for NLI

to improve the competence, confidence, and coherence of LMs for tasks like conversational

dialog [255, 63], summarization [206] and visual question answering [224].

As shown in Figure 8.3, LMs fine-tuned for this task can similarly prove useful for mea-

suring the coherence of machine-generated explanations for mistake detection. Formally,

given:

• Procedural text P

• A sequence of n binary questions Q = {Q1, Q2, . . . , Qn} and their answers A =

{A1, A2, . . . , An} (each “No” or “Yes”)

• Fine-tuned NLI model fNLI that transforms a premise and hypothesis string into a

probability distribution of entailment versus contradiction

• Rephrasing transformation tQA that converts a question Q and answer A into a declar-

ative statement

• Procedure success prompt template tP

We calculate the NLI model’s probability distribution of a success versus a mistake as

follows:

pNLI(P |Q,A) = fNLI

(
tP (P )|fQA(Q0, A0), fQA(Q1, A1), . . . , fQA(Qn, An)

)
(8.1)
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We implement fNLI with BART [129] fine-tuned on the large-scale MultiNLI dataset

[256].6 To implement tQA, we will follow [224] and prompt a foundational LM7 with 10

demonstrations of transforming a question and answer, e.g., “Is there a bowl on the table?”

and “Yes,” into a declarative statement, e.g., “There is a bowl on the table.” For the

procedural text P , we choose a success prompt template tP “The procedure ⟨P ⟩ has been

successfully executed.”

8.2.2 Relevance

A coherent mistake detection decision should be supported by relevant questions about

the state of the environment.8 We propose to measure the relevance of a question Q′ to

the success of a procedure P , given previous questions Q = {Q1, . . . , Qi−1} and answers

A = {A1, . . . , Ai−1}, as follows:

Rel(Q′|P,Q,A) =
∣∣pNLI(P |Q′ ∪Q, “No” ∪ A) − pNLI(P |Q′ ∪Q, “Yes” ∪ A)

∣∣ (8.2)

This definition for relevance quantifies how much impact the answer to the proposed

question Q′ can have on the success probability (as estimated by the NLI model). If this

probability is estimated to be a similar value for “Yes” and “No” answers, this suggests that

Q′ would not reveal much pertinent information (beyond what was already gathered in Q
and A) about whether or not the procedure P was successfully executed by the user, and

thus the relevance will be low. If the success probabilities vary widely depending on the

answer, this suggests that Q′ can reveal important new information to help decide whether

P was successfully executed by the user.

Comparison with human judgements. To judge whether this relevance metric corre-

lates with human judgements of relevance, we recruited 5 annotators (all English speakers

with with conferred or in-progress undergraduate degrees). We presented each annotator

with 10 randomly selected VLM-generated questions Q′, along with previous questions and

answers Q and A.9 Annotators were instructed to rate the relevance (i.e., given the previ-

6Model weights can be downloaded at https://huggingface.co/facebook/bart-large-mnli.
7To conserve GPU memory, we will later choose to use the evaluated VLM’s LM backbone to facilitate

rephrasing. Prompt details in Appendix C.3.
8For example, given a procedure “In a bowl, add the cut cherry tomatoes,” the question “Are there

tomatoes in the bowl?” is relevant to the success of the procedure, while the questions “Is the bowl blue?”
and “Is the person wearing a white shirt?” are less relevant.

9Questions to annotate were sampled from the outputs of the best and worst VLM approaches presented
later in Table 8.4. More details in Appendix C.1.
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ous questions and answers, how helpful could an answer to this question be in determining

whether the task was successfully completed) on a scale from 1-5 (least to most relevant).

Between the resulting 50 annotations and corresponding automated metrics, we found a

moderate Spearman correlation [222] of ρ = 0.55 (p = 0.000029). This suggests that this

automated measure of relevance is indeed correlated with human judgements of relevance.

8.2.3 Informativeness

Beyond relevant questions, a coherent mistake detection decision should also be supported

by informativeness answers to those questions. Since a highly relevant question does not

guarantee a highly informative answer,10 and errors made by the VLM in answering questions

could unintentionally introduce conflicting information, it is necessary to evaluate the quality

of predicted answers in justifying the mistake detection decision. To achieve this, we propose

to measure the informativeness of a predicted answer A′ for a question Q′ to the success of a

procedure P , given previous questions Q = {Q1, . . . , Qi−1} and answers A = {A1, . . . , Ai−1},

as follows:

Inf(A′|Q′, P,Q,A) = 1 −H
(
pNLI(P |Q′ ∪Q, A′ ∪ A)

)
(8.3)

H is the binary entropy of the success probability returned by pNLI from the NLI model,

calculated by H(p) = −p log2 p− (1 − p) log2(1 − p), p ∈ [0, 1].

This definition for informativeness quantifies how much information the answer to this

question gives us toward determining the success of the procedure. As such, if the success

probability given this answer A′ to Q′ is confident, this indicates that A′ (along with previous

questions and answers Q and A) are sufficient to determine whether or not the procedure

was successfully completed, and thus informativeness will be high. On the other hand, a

success probability closer to a uniform distribution suggests that the information gathered

thus far still has not made the user’s success clear, and thus will yield low informativeness.

Comparison with human judgements. To judge whether this informativeness met-

ric correlates with human judgements of relevance, we recruited 5 annotators (all English

speakers with conferred or in-progress undergraduate degrees). We presented each annotator

with 10 randomly selected VLM-generated questions Q′ and answers A′, along with previous

10For example, in the procedure “In a bowl, add the cut cherry tomatoes,” “Are there tomatoes in the
bowl” is a relevant question, but a “Yes” answer to that question does not give us enough information to
confirm that the procedure is 100% complete (there could be more tomatoes still left outside the bowl). On
the other hand, a “No” answer allows us to confidently judge that the procedure is incomplete.
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questions and answers Q and A.11 Annotators were instructed to rate the relevance (i.e.,

based on all the information we have, how sure is the annotator about whether the procedure

was successfully completed) on a scale from 1-5 (least to most informative). Between the

resulting 50 annotations and corresponding automated metrics, we found a weaker Spearman

correlation [222] of ρ = 0.32 (p = 0.024). Interestingly, if we multiply the automated informa-

tiveness metrics by the relevance for Q′, Q, and A, we find a stronger Spearman correlation

of ρ = 0.50 (p = 0.00022). This suggests that while informativeness does have a relationship

with human judgements, when multiplying it by relevance this relationship is stronger and

more significant. This might be because the concepts of relevance and informativeness are

themselves related. Intuitively, in most cases, a relevant question should be informative, and

an irrelevant question should be uninformative. Meanwhile, fine-tuned NLI models could

theoretically score an answer to an irrelevant question as informative, and vice versa. When

proposing multi-tiered coherence metrics in Chapter 8.2.4, we incorporate the inductive bias

reflected in these human judgements by multiplying informativeness by relevance. Later,

in Chapter 8.7, we visualize the full distribution of relevance and informativeness on our

evaluation data to better understand this issue.

8.2.4 Accuracy, Consistency, and Verifiability

Using these metrics, we next propose a multi-tiered evaluation of accuracy, consistency, and

verifiability in line with the previous work in this thesis. Formally, this evaluation requires

the following information:

• Task data instance D = {P, F, y} consisting of a procedural text P , a video frame F ,

and a binary ground truth label y∗ for whether a mistake has occurred in the execution

of P (1 if mistake, 0 if success)

• Sequence of n generated questions Q = {Q1, Q2, . . . , Qn}, their predicted answers

A = {A1, A2, . . . , An} based on F , and likelihoods for those answers L = {l1, l2, . . . , ln}
(derived from the softmax of evaluated VLM’s likelihoods for “Yes” and “No”)

• Sequence of m (m ≤ n) high-confidence answer indices C, such that for all i ∈ C, li ≥ s,

where s is a minimum answer sureness threshold

• Predicted binary mistake detection decision y (1 if mistake, 0 if success)

11Questions to annotate were sampled from the outputs of the best and worst VLM approaches presented
later in Table 8.4. More details in Appendix C.1.
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For each instance D, accuracy is defined as the traditional binary mistake detection

accuracy:

Acc(D, y) =

1 y = y∗

0 else
(8.4)

For any sequence of items S = {S1, . . . , S|S|} and sequence of indices I, let SI be the sub-

sequence of elements Si for all i ∈ I. Now, relevance measures whether a generated question

can yield new information consistent with a decision about the success of the procedure at

hand. As such, we define consistency by the mean marginal relevance for each question in

Q:

Con(D,E, y) =


1

n

n∑
i=0

Rel(Qi|P,QC ∩Q{1,...,i},AC ∩ A{1,...,i}) y = y∗

0 else

(8.5)

In other words, for accurate mistake detection predictions, consistency is the average

relevance for each question with respect to all previous confidence-filtered questions and

answers. As shown, to ensure consistency is strictly less than or equal to accuracy and that

we do not reward VLMs for generating questions that do not help them arrive at the correct

decisions, it is set to zero for instances with incorrect mistake detection decisions.

Informativeness judges whether the model’s predicted answers provide enough information

about the state of the environment to fully verify a decision about the success of a procedure.

To additionally measure whether the decision the answers point to match the ground truth

decision for the task instance, verifiability is defined by the maximum reference-adjusted

informativeness of confidence-filtered answers:

Ver(D,E, y) =Con(D,E, y) max
(
max
i∈C

Inf∗(Ai|Qi, P,QC ∩Q{1,...,i},AC ∩ A{1,...,i}, y∗), 0
)

y = y∗

0 else

(8.6)

Relevance is included as a coefficient for two reasons: first, to ensure verifiability is strictly

less than or equal to consistency, and second, because we found earlier that informativeness

has a stronger correlation with human judgements when multiplied by relevance. Verifi-

ability is again set to zero for instances with incorrect mistake detection decisions. The

reference-adjusted informativeness Inf∗(Ai|Qi, P,QC ∩ Q{1,...,i},AC ∩ A{1,...,i}, y∗) is equiva-
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Visual Question 
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Figure 8.4: Overview of self-reflective explanatory dialog between VLM and itself to facilitate
interpretable procedural mistake detection. Here, reasoning occurs in a bottom-up direction
(i.e., mistake detection decision occurs after explanation), but as discussed in Section 8.4,
this can also be formulated in a top-down manner with the mistake detection occurring
before and conditioning explanation.

lent to Inf(Ai|Qi, P,QC ∩Q{1,...,i},AC ∩A{1,...,i}, y∗) if and only if the most likely outcome in

pNLI(P |QC,AC) is equivalent to y∗, i.e., the NLI model’s probability of success for answers

and questions through Ai and Qi agrees with the ground truth label for the success of the

procedure. Otherwise, it is negated. This allows us to incorporate whether the informa-

tion gathered in generated questions and answers is actually leading to the correct answer.

In other words, for accurate mistake detection predictions, verifiability is the consistency-

weighted maximum informativeness of any confidence-filtered answer found to be indicative

of the correct mistake detection decision, with respect to previous confidence-filtered ques-

tions and answers. It is worth noting that this notion of verifiability is slightly different

than the one defined in Chapter 4, since we do not have ground truth labels for answers to

questions generated by VLMs. As such, rather than directly capturing the correctness of

physical state information extracted from the context, verifiability evaluates the potential

usefulness of the information extracted from the context.

Accuracy, consistency, and verifiability are averaged over an entire PMD dataset and

system predictions to produce global evaluation metrics for interpretable PMD systems.
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8.3 Applying VLMs to Interpretable Procedural

Mistake Detection

As shown in Figure 8.4, in applying VLMs to interpretable PMD, we formulate PCR as a

self-reflective dialog between the VLM and itself.12 To facilitate this dialog, our experiments

apply InstructBLIP13 [44] and LLaVA 1.5-7B14 [140]. Both of these VLMs are based on

Vicuna-7B [277], an instruction-tuned version of LLaMA 2-7B [237], but apply different

architectures, training datasets, and training strategies to integrate vision into the model.

Neither VLM was trained on Ego4D data. To conserve GPU memory, VLM weights are 4-bit

quantized at inference time. To provide sufficient information for interpretable PMD, the

dialog must consist of several steps (in no particular order): proposing questions to ask about

the procedure at hand (visual question generation or VQG), answering them (visual question

answering or VQA), and making a final decision about whether or not the procedure has

been successfully completed in the given video frame (SuccessVQA [62]). This structure goes

beyond past approaches for PMD with foundational VLMs, which at worst only elicited the

final decision [62], and at best used procedure-agnostic prompts to caption images before

making a final decision, nonetheless ignoring this information in quantitative evaluations

[16].

8.3.1 Visual Question Generation

To facilitate VQG, we prompt the VLM to generate a series of questions given the text

description of the procedure. Each question is generated based on the full dialog history with

previous questions and their answers, enabling deductive reasoning about the status of the

procedure. To ensure the VLM generates yes-no questions, we constrain generation during

decoding to enforce that each generated text begins with a word that can signal a yes-no

question,15 does not include the word or, and ends with a question mark. To encourage logical

questions while ensuring variety, we apply greedy beam search decoding with k = 8 beams,

returning the top 4 candidate questions.16 Out of these candidates, we remove any that

are exactly the same as previously generated questions, then select the most likely candidate

based on the LM’s log-likelihoods. Question generation is not conditioned on the video frame,

12Prompt templates provided in Appendix C.2.
13Model weights can be downloaded at https://huggingface.co/Salesforce/instructblip-vicuna-7b.
14Model weights can be downloaded at https://huggingface.co/liuhaotian/llava-v1.5-7b.
15Specifically, questions must begin with is, does, or has, along with all plural and past tense forms of

these verbs.
16Due to generation constraints, it is often the case that the VLM does not successfully generate all 8

candidates.
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as we found significant performance degradation when VLMs were conditioned on the video

frame while generating questions, often leading to completely nonsensical questions, e.g., “Is

is is is is is?”

8.3.2 Visual Question Answering

To facilitate VQA, each generated question is immediately answered by the VLM, condi-

tioned on the video frame. To produce the answer, we extract the resulting logits from the

forward pass of the VLM for both the Yes and No tokens, then apply a softmax over them

to form a probability distribution for the binary answer. If the probability of the most likely

answer exceeds the minimum answer sureness threshold introduced earlier in Chapter 8.2.4,

we append it to the dialog history; otherwise, we append the string “Unsure.” Also dis-

cussed there, these unsure cases are excluded from the previous questions and answers in

calculating relevance and informativeness in coherence evaluations, and excluded from the

example-level calculation of verifiability. In all forthcoming experiments, we set the sureness

threshold to s = 60%. It is important to note that we exclude the dialog history from the

context during VQA, as we again observed significant performance degradation when VLMs

answered visual questions in the context of a longer dialog. This was especially prominent

when several similar questions were generated and answered in a dialog, which often caused

the VLM to creep from being initially unsure about the answer to being confidently wrong.

8.3.3 Success or Mistake Determination

Given the video frame and procedural text, we also need to elicit a prediction from the VLM

about whether the procedure has been successfully executed in the frame, and we follow [62]

in referring to this sub-task as SuccessVQA. To facilitate SuccessVQA, we simply append a

question to the dialog history directly asking this. Both the video frame and any questions

and answers generated before this step are included. Similarly to VQA, the logits of the

Yes and No tokens are used to produce a probability distribution over a success or mistake

decision. The final decision is then determined by a mistake confidence threshold τ , which

is varied in the forthcoming experiments.

8.4 Impact of Reasoning Direction

In Chapter 6, we took inspiration from human cognitive psychology to investigate how

the direction of the steps of PCR impacted accuracy and coherence in foundational LMs.

There, we found that a top-down reasoning strategy using quick decisions about the end
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classification task helped condition foundational LMs to better predict physical states of the

environment, a much more complicated task. In this section, we will similarly investigate

how the direction of reasoning impacts performance in this problem.

In the top-down approach, we first prompt the VLM to judge whether the procedure

was successfully executed before generating questions and answers to justify the decision.

Meanwhile, in the bottom-up approach, we do the converse and first prompt the VLM to

generate questions and answers, then ultimately use that information to decide whether the

procedure was successfully executed. For both approaches, we generate n = 10 questions

and answers, and measure the percentage accuracy, consistency, and verifiability.17 We select

the best result across 99 thresholds τ ∈ {0.01, 0.02, 0.03, . . . , 0.97, 0.98, 0.99} based on the

validation set accuracy.

In the bottom-up approach, the SuccessVQA step is conditioned on generated questions

and answers. As such, to prevent over-generating noisy information, which degrades the ac-

curacy and thus the consistency and verifiability, we implement an early stopping mechanism

for this approach. This mechanism inserts a SuccessVQA check after each generated question

and answer, and uses the resulting success likelihood to determine whether to stop generat-

ing questions. Generation stops early (i.e., before n = 10 questions have been generated) if

one of the following conditions are met:

• The likelihood of success stabilizes, changing by less than 10% for two consecutive

iterations of VQG, VQA, and SuccessVQA

• The likelihood of success becomes highly confident, subceeding 5% or exceeding 95%

Such early stopping is not possible in the top-down approach, since the probability of suc-

cess is only calculated once before generating questions and answers. To ensure a relatively

fair comparison, we set the number of iterations n for all task instances in the top-down

approach as close as possible to the mean number of iterations taken by the bottom-up

approach for each VLM.

8.4.1 Multi-Tiered Coherence Evaluation Results

We compare the performance of top-down and bottom-up approaches in Figure 8.5 and

Table 8.3, observing mixed results. Across most thresholds, the top-down approach achieves

lower false positive and false negative rates. At the selected threshold, the top-down approach

achieves the highest accuracy, while the bottom-up approach achieves higher verifiability. On

17Verifiability relies on informativeness, which is a measure of information in bits that varies between 0
and 1, so percentage verifiability simply refers to the proportion of maximum information.
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VLM Direction τ Accuracy (%) Consistency (%) Verifiability (%)

InstructBLIP Top-Down (n = 4) 0.49 59.2 9.5 2.8
InstructBLIP Bottom-Up 0.40 63.4 10.0 4.0

LLaVA Top-Down (n = 3) 0.58 65.0 21.8 6.2
LLaVA Bottom-Up 0.81 60.6 18.1 10.0

Table 8.3: VLM multi-tiered coherence evaluation results on Ego4D-PMD validation set for
top-down and bottom-up reasoning approaches. Each result is reported for the maximum-
accuracy mistake confidence threshold τ , and the top-down result is reported for a uniform
number of iterations n for each task instance based on the mean number of iterations taken
by the bottom-up approach.

the one hand, this suggests that forcing the VLM to first generate an explanation through

iterative VQG and VQA in the bottom-up approach hinders it in making an accurate mistake

detection decision. On the other hand, this approach delivers more verifiable explanations,

suggesting that first making a mistake detection decision also hinders later VQG and VQA

steps.

Qualitatively, the lower verifiability in the top-down approach seems to happen because

conditioning VLMs with a high-level question about success influences them to generate

overly cumbersome and high-level questions afterward. For example, the following questions

are generated by LLaVA using the top-down approach:

• “Is the person working on the procedure ’Pick up the plastic bowls in the cabinet’?”

• “Is the person wearing a lab coat while working on the procedure ’Put liquid in the

paper’?”

• “Is the person working on the procedure ’Drop a glass on the countertop’ still in the

process of dropping the glass?”

Overall, for this reason, and because the accuracy of the bottom-up approach can possibly

benefit from improvements in generated questions and answers, we choose to use the bottom-

up approach in forthcoming experiments.

8.5 Encouraging Coherence in Question Selection

While the previous results selected candidate questions generated through beam search

by their likelihood, an alternative approach could be to rerank the candidates using the

reference-free coherence metrics introduced in Chapters 8.2.2 and 8.2.3. This could possibly
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Figure 8.5: Mistake detection error tradeoff (DET) curves for VLMs applied to the Ego4D-
PMD validation set with top-down and bottom-up reasoning approaches. Here, a “positive”
refers to a mistake case, while a “negative” refers to a successful case.

encourage the selection of questions that are more likely to bring in new, salient, and helpful

information.

Furthermore, while our current setting is entirely zero-shot, in Chapter 6, we showed how

the in-context learning capability of foundational LMs enables them to acquire coherent PCR

from just a few in-context demonstrations. As such, we will explore whether supplementing

existing candidate questions from each iteration with additional questions generated through

a similar in-context learning approach can support more accurate or coherent results from

the VLM’s explanatory dialog.

For the remainder of this section, we will introduce two approaches we use to augment

the candidate question pool for more coherent candidates: coherence-based reranking and

candidate generation through in-context learning. We will then present the multi-tiered eval-

uation results for these approaches, and analyze how the impact of these two approaches

extends beyond accuracy and coherence into efficiency of generating explanations.

8.5.1 Coherence-Based Candidate Question Selection

For the bottom-up reasoning approach, we implement a coherence-based candidate question

reranking approach as follows. Given a set of question candidates Q̂ for procedural text P

along with previous confidence-filtered questions Q and answers A, we can select the best
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question Q∗ by maximizing the product of relevance and potential informativeness:

Q∗ = arg max
Q∈Q̂

Rel(Q|P,Q,A) max
A∈{“Yes”,“No”}

Inf(A|Q,P,Q,A) (8.7)

This ranking prioritizes well-rounded questions which could yield both the most impactful

information for the final determination of success, and the most confidence in the final

determination of mistake or success. Q∗ is then concatenated to the dialog history and

answered by the VLM, in line with the previously presented approaches.

8.5.2 Improving Candidate Questions with In-Context Learning

Applying in-context learning in interpretable PMD is not straightforward, as each bottom-

up explanatory dialog includes an image, a variable number of iterations of VQG and VQA,

and a final mistake detection decision. All these complexities make interpretable PMD an

impractical task to guide VLMs through with in-context learning. Instead, we propose to

apply in-context learning to improve the text-based VQG step by providing examples of

human-written questions.

As shown in Figure 8.6, we achieve this by manually annotating 20 procedures from the

Ego4D training data with 3 reasonable questions one could ask about a given procedure

to judge its success.18 On average, these human-written example questions achieve 53.9%

relevance and 83.2% maximum informativeness (i.e., for either a yes or no answer). We

prompt the VLM (without any input image) with these example procedures and questions,

the current procedure at hand, and the previous 2 questions proposed by the VLM (as avail-

able) to incorporate information the VLM already collected. We then generate 4 additional

candidate questions, again using beam search with k = 8 beams. To minimize the impact of

ordering, in-context examples are randomly shuffled in every prompt.

8.5.3 Multi-Tiered Coherence Evaluation Results

The evaluation results from both above approaches are presented in Figure 8.7 and Table 8.4.

Coherence-based question reranking. Unsurprisingly, we find that introducing

coherence-based reranking of candidates sharply improves the consistency and verifiabil-

ity of resulting explanations. Interestingly, though, this also sharply improves the accuracy

of the approach across most mistake confidence thresholds to as high as 63.6%. This shows

that when more relevant and informative information is extracted from the scene, VLMs can

18Procedures and questions listed in Appendix C.4.
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Is there an onion in the image?

Peel the onion.

Is the onion’s skin removed?

Is the onion peeled?

Is there a tap in the photo?

Turn off the tap.

Is the water running?

Is the faucet switched off?

Do you see any dough?

Cut the dough into two.

Is the dough in two pieces?

Is the dough whole?

Do you see a scrubber somewhere?

Pick the scrubber from the sink.

Is the scrubber in the sink?

Is the scrubber in someone’s hand?

Is there a cabinet in the image?

Pick up the plastic bowls in the cabinet.

Are the plastic bowls visible in the photo?

+

Is the cabinet open?

Are there any plastic bowls in the cabinet?

Is the person holding the plastic bowls?

Are the bowls plastic?

In-Context Question Examples (x20)

Generated Question Candidates

Figure 8.6: To bolster visual question generation (VQG), we apply in-context learning from
20 sets of 3 human-written questions for procedures. Ideally, this enables the generation of
more coherent questions.
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Figure 8.7: Mistake detection error tradeoff (DET) curves for VLMs applied to the Ego4D-
PMD validation set with likelihood- and coherence-based candidate question selection ap-
proaches, with optional supplementary candidates generated through in-context learning
(ICL).
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VLM Ranking ICL τ Accuracy (%) Consistency (%) Verifiability (%)

InstructBLIP Likelihood ✗ 0.40 63.4 10.0 4.0
InstructBLIP Likelihood ✓ 0.40 61.6 10.7 4.4
InstructBLIP Coherence ✗ 0.30 62.8 15.6 7.7
InstructBLIP Coherence ✓ 0.32 63.0 21.3 11.3

LLaVA Likelihood ✗ 0.81 60.6 18.1 10.0
LLaVA Likelihood ✓ 0.83 61.4 19.1 10.7
LLaVA Coherence ✗ 0.69 63.6 33.5 22.1
LLaVA Coherence ✓ 0.72 67.0 46.1 37.5

Table 8.4: VLM multi-tiered coherence evaluation results on Ego4D-PMD validation set for
likelihood- and coherence-based candidate question selection approaches, with optional sup-
plementary candidates generated through in-context learning (ICL). Each result is reported
for the maximum-accuracy mistake confidence threshold τ .

make better final mistake detection decisions. Furthermore, questions that a VLM judges

to be most likely are not naturally the most coherent, in line with earlier findings with

foundational LMs.

In-context learning for candidate question generation. Supplementing candidate

questions with those generated through in-context learning from human-written examples

also exhibits a sharp improvement in accuracy, consistency, and verifiability to their best

respective values of 67.0%, 46.1%, and 37.5%. Notably, accuracy now exceeds the level of

top-down reasoning, showing that conditioning mistake detection decisions with coherent

questions and answers (rather than the converse, as done in the top-down approach) can

promote more accurate mistake detection.

While incorporating these additional candidates is quite beneficial when using coherence-

based ranking, likelihood-based ranking sees no significant changes in accuracy or coherence.

This suggests that coherence-based ranking is better suited to identify potentially helpful

questions even if those questions come from another context. This is unsurprising, though,

as the beam search that generates the initial set of candidate questions from the dialog

context also relies on the VLM likelihood. While it is possible that the beam search misses

high-likelihood candidate questions, it is unlikely that the VLM would score questions from a

completely different context in a similar range to those coming from those initial candidates.

To shed more light on where selected candidate questions come from in each approach,

we visualize the distribution of question sources in Figure 8.8. As expected, candidates

generated with in-context learning are only rarely selected in the likelihood-based ranking,

amounting to about 24.2% of VQG iterations for InstructBLIP, and 9.4% of VQG iterations

for LLaVA. On the other hand, they are selected more frequently in the coherence-based
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Figure 8.8: Histograms of VLMs’ selected question sources, either explanatory dialog context
or in-context learning (ICL) examples, by visual question generation (VQG) iteration for
likelihood-based question selection (top) and coherence-based question selection (bottom).

ranking, amounting to about 34.1% of VQG iterations for InstructBLIP, and 45.5% of VQG

iterations for LLaVA. Interestingly, in-context learning candidates are more dominant in

earlier iterations, while candidates generated based on the dialog context are relatively more

common in later iterations. This may suggest that after selecting a few questions from in-

context learning in earlier iterations, the VLM is able to utilize them to generate better

questions from the dialog context in later iterations. Alternatively, this could suggest that

candidates from in-context learning have limited variety, and thus are less likely to be selected

in later turns to avoid redundant questions or information.
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8.5.4 Explanation Efficiency and Confidence Analysis

In addition to improving the accuracy and coherence of PMD in VLMs, we may wonder how

these approaches impact the efficiency of the explanatory dialog and confidence in the VLM’s

predictions. Such factors can be important in the practical utility and trustworthiness of

systems for interpretable PMD. We measure them in several ways:

1. Number of iterations of VQG and VQA that occur before the dialog terminates

2. Information gain from the dialog toward the likelihood of success in SuccessVQA steps

(in bits)

3. Average VQA confidence, i.e., maximum likelihood for answers to generated questions

4. Expected calibration error (ECE) [171] of the likelihood of success, calculated over 10

bins of likelihood ranges

5. Area under the risk-coverage (AURC) curve [59] for the likelihood of success19

Together, these measurements provide an impression of how efficient, confident, and reli-

able each approach is in interpetable PMD. The results of this analysis are shown in Table 8.5.

From the results, we see that while all combinations of approaches take similar numbers of

iterations on average, the information gain from approaches using coherence-based question

selection and candidates generated from in-context learning is significantly higher. While

the earlier evaluation already showed that questions generated from these approaches are

theoretically more relevant and informative, this demonstrates that in practice, these im-

provements to VQG enable VLMs to use approximately the same number of questions to

gather more useful information to determine whether the procedure has been successfully

completed.

Further, while the average VQA likelihood and ECE are similar for all approaches, the

AURC is significantly lower for the approach using coherence-based question selection and

candidates generated from in-context learning. This suggests that we can restrict VLM

predictions under this approach to specific risk tolerances to maximize reliabilty of decisions

that the VLM makes while maintaining a relatively higher coverage of task instances that

the VLM can make predictions for.

19AURC is calculated in a selective prediction setting, where the VLM abstains from making a mistake
detection decision if the maximum likelihood from the SuccessVQA step does not meet a threshold. For a
given threshold, we calculate the risk as the error rate for those predictions the VLM made, and coverage
as the proportion of examples in the dataset that the VLM made a prediction for. AURC is then calculated
from a comprehensive set of thresholds {0.0, 0.01, 0.02, . . . , 0.98, 0.99, 1.0}.
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VLM Ranking ICL # Iter. ↓ Inf. Gain ↑ VQA Conf. ↑ (%) ECE ↓ (%) AURC ↓ (%)

InstructBLIP Likelihood ✗ 4.13 0.348 75.9 18.0 35.4
InstructBLIP Likelihood ✓ 4.25 0.366 76.2 19.3 36.9
InstructBLIP Coherence ✗ 4.17 0.359 75.9 18.9 38.6
InstructBLIP Coherence ✓ 4.36 0.460 75.3 22.4 36.0

LLaVA Likelihood ✗ 3.27 0.383 77.5 23.5 33.4
LLaVA Likelihood ✓ 3.22 0.403 77.6 24.8 31.6
LLaVA Coherence ✗ 3.37 0.496 77.4 23.8 32.9
LLaVA Coherence ✓ 3.28 0.650 76.6 24.4 25.3

Table 8.5: VLM explanatory dialog efficiency and decision confidence evaluation on Ego4D-
PMD validation set for likelihood- and coherence-based candidate question selection ap-
proaches, with optional supplementary candidates generated through in-context learning
(ICL).

Is the yellow saucer on the white saucer? Modified Image Combined Logits

-  VLM

- 𝛼VLM

VLM

+ 𝛼 VLM

(1 + 𝛼) VLM

VLM

CRG

VCD

AGLA

Spatial VLM

Figure 8.9: Comparison of evaluated visual hallucination mitigation strategies: Contrastive
Region Guidance (CRG) [245], Visual Contrastive Decoding (VCD) [127], Assembly of Global
and Local Attention (AGLA) [8], and our proposed question-aware spatial filter.

8.6 Impact of Visual Hallucination Mitigation

Strategies

Given the pervasive problems of visual hallucination, illusion, and other incoherent visual

processing behaviors in VLMs, recent work has proposed various training-free methods to

mitigate these problems [245, 127, 8]. As shown in Figure 8.9, these methods typically

modify images before inputting them to the VLM at inference time, then may combine

the resulting logits with those from prompting the VLM with the unmodified image. In

this section, we first compare these methods, including a method we design for targeting

spatial information in questions, then investigate how such methods impact the accuracy

and coherence of interpretable PMD.
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Contrastive Region Guidance. Contrastive Region Guidance (CRG) [245] identifies

objects mentioned in visual questions, then modifies the input image by using foundational

open-vocabulary object detection models to mask these objects out. The VLM then answers

the input question twice, once with the original image and once with the modified image.

To form the final logits from which a yes-no prediction can be extracted, the logits for

the modified image are subtracted from those of the original image. When replicating this

approach, if no target objects are identified, the logits for the original image are directly

returned. Ideally, CRG prevents distracting background information from factoring into the

VLM’s prediction.

Visual Contrastive Decoding. Visual Contrastive Decoding (VCD) [127] modifies the

input image by applying diffusion noise. The VLM answers the input question for both

the original and modified image, yielding original image logits Lo and modified image logits

Lm. These logits are combined using an equation (1 +α)Lo−αLm, where we assign α = 1.0

following the original paper. From these combined logits, we then extract a yes-no prediction.

Ideally, VCD prevents illusory or spurious information in images from factoring into the

VLM’s prediction.

Assembly of Global and Local Attention. Assembly of Global and Local Attention

(AGLA) [8] modifies the input image by applying a lighter-weight image-text matching

module across patches of the image to compare each patch to the input question. Regions

of the image judged to be irrelevant to the question are masked out. The VLM answers the

input question for both the original and modified image, yielding original image logits Lo

and modified image logits Lm. These logits are combined using an equation Lo+αLm, where

we assign α = 2.0 following the original paper. Unlike the original paper, we remove a step

that zeroed out all but the highest-probability tokens in the original frame logits, as this

often impacted the logits for “Yes” and “No,” which are required in our evaluation. Ideally,

AGLA enables the VLM to attend to only the most question-relevant information in images.

Question-aware spatial filter. We also attempt to implement such a hallucination mit-

igation approach in this thesis. We are motivated by the lack of prompt-specific visual

attention in most VLMs. This stands in contrast to humans, who are capable of leveraging

language guidance to adapt and control their attention to the most relevant visual infor-

mation for the task at hand [160]. This capability seems particularly important for this

task, as the questions generated by VLMs often target only specific sub-regions of an image,

which are usually indicated by asking about the state of a specific object (e.g., in “Are the
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tomatoes sliced?”), or including spatial relations in questions (e.g., in “Are the tomatoes in

the bowl?”).

To investigate whether we can use these cues from generated questions to better focus

VLMs on the most relevant information, we implement a rule-based question-aware spatial

filter. This filter works by first identifying noun phrases and/or spatial prepositional phrases

in the question using spaCy,20 accounting for negation where appropriate (e.g., in “Are there

any tomatoes that are not in the bowl?”). We use this information to then determine which

regions of the image should be attended to, which are expressed in a logical form, e.g., ¬bowl
for “Are there any tomatoes that are not in the bowl?”. We then apply OWL-ViT [162] to

the input image to extract bounding boxes for the identified object(s) in this logical form,

and apply a Gaussian blur (kernel size 55) to the appropriate regions of an image. The VLM

then answers the input question based on this modified image instead of the original image,

and the resulting logits are used to extract a yes-no answer. Similarly to AGLA, this spatial

approach ideally enables VLMs to focus only on the most relevant regions of an image to

answer questions.

8.6.1 Multi-Tiered Coherence Evaluation Results

We augment our best approach thus far, bottom-up reasoning with coherence-based question

ranking supplemented with candidates generated through in-context learning, with each of

the above visual hallucination mitigation strategies. The evaluation results are presented in

Figure 8.10 and Table 8.6, and interestingly show that these approaches have mostly small

impacts on the accuracy and coherence of PMD in VLMs. We observe that CRG yields some

of the lowest accuracy, consistency, and verifiability for both VLMs, causing performance

to be slightly worse than not using any hallucination mitigation strategy. VCD improves

the accuracy of InstructBLIP slightly, and yields the highest consistency and verifiability for

LLaVA. AGLA yields some of the highest consistency and verifiability for InstructBLIP, and

remarkably low mistake confidence thresholds for both VLMs. Lastly, our spatial filtering

strategy does not appear significantly more or less beneficial than any of the comparison

approaches.

8.6.2 Explanation Efficiency and Confidence Analysis

While these hallucination mitigation strategies have minimal impact on accuracy and co-

herence, we next test whether there is any advantage in the efficiency of explanation or the

confidence of predictions. We measure these aspects using the same values as we did earlier

20https://spacy.io/
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Figure 8.10: Mistake detection error tradeoff (DET) curves for VLMs augmented with various
training-free visual hallucination mitigation methods introduced in Chapter 8.6, compared
to using no such method (“None”).

VLM Strategy τ Accuracy (%) Consistency (%) Verifiability (%)

InstructBLIP None 0.32 63.0 21.3 11.3
InstructBLIP CRG 0.50 60.4 21.5 10.1
InstructBLIP VCD 0.34 65.8 22.2 11.7
InstructBLIP AGLA 0.16 61.6 25.0 11.6
InstructBLIP Spatial 0.26 62.6 21.1 11.1

LLaVA None 0.72 67.0 46.1 37.5
LLaVA CRG 0.51 64.8 43.1 29.3
LLaVA VCD 0.41 67.2 46.5 36.1
LLaVA AGLA 0.37 66.8 45.6 33.6
LLaVA Spatial 0.44 67.0 45.4 35.1

Table 8.6: VLM multi-tiered coherence evaluation results on Ego4D-PMD validation set
for VLMs augmented with various training-free visual hallucination mitigation strategies
introduced in Chapter 8.6, compared to using no such method (“None”). Each result is
reported for the maximum-accuracy mistake confidence threshold τ .
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VLM Strategy # Iter. ↓ Inf. Gain ↑ VQA Conf. ↑ (%) ECE ↓ (%) AURC ↓ (%)

InstructBLIP None 4.36 0.460 75.3 22.4 36.0
InstructBLIP CRG 4.38 0.332 72.0 16.6 36.3
InstructBLIP VCD 4.21 0.442 80.3 19.2 33.2
InstructBLIP AGLA 2.49 0.880 89.6 36.5 29.7
InstructBLIP Spatial 4.31 0.452 75.4 23.4 33.5

LLaVA None 3.28 0.650 76.6 24.4 25.3
LLaVA CRG 3.54 0.364 73.4 15.3 29.6
LLaVA VCD 2.94 0.714 83.3 26.3 26.1
LLaVA AGLA 1.64 0.943 90.3 32.6 23.4
LLaVA Spatial 3.34 0.639 76.4 23.6 25.6

Table 8.7: VLM explanatory dialog efficiency and decision confidence evaluation on Ego4D-
PMD validation set for VLMs augmented with various training-free visual hallucination
mitigation strategies introduced in Chapter 8.6, compared to using no such method (“None”).

in Chapter 8.5.4, and the results are shown in Table 8.7. Interestingly, we find AGLA sharply

outperforms other strategies in number of iterations, information gain, VQA confidence, and

AURC for both VLMs. This suggests that AGLA, while achieving similar accuracy and

coherence to earlier approaches, drives the VLM to arrive at a decision faster and with more

confidence. We observe that CRG yields the lowest ECE, suggesting that its SuccessVQA

likelihood is the best calibrated compared to other strategies. This property may be impor-

tant for the reliability of decisions in higher-risk settings, or to enable the system to ask the

human user for help when it is unsure.

Lastly, we find that our proposed spatial filtering strategy does not compete with other

strategies under this efficiency and confidence evaluation. It seems that such a simple rule-

based approach simply does not consistently provide an advantage in applying VLMs to

interpretable PMD. Future work may see more significant benefits by learning question-

conditioned visual attention from similar cues to those we used to define the spatial filter.

8.7 Testing Results and Analysis

Lastly, we select four representative approaches to evaluate on the test set and further

interpret the performance of VLMs with:

1. Likelihood-based ranking

2. Coherence-based ranking

3. Coherence-based ranking with in-context learning

4. Coherence-based ranking with in-context learning and AGLA
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Figure 8.11: Mistake detection error tradeoff (DET) curves for selected approaches on the
Ego4D-PMD test set.

We first report the accuracy, coherence, and other efficiency and reliability measurements

for these approaches on the test set of Ego4D-PMD. We then take a closer look at the

distribution of accuracy and coherence metrics on the test set, showing how these metrics

can be used to characterize system behaviors and identify knowledge gaps.

8.7.1 Testing Results

We present the test set results for selected approaches in Figure 8.11, Table 8.8, and Table 8.9.

The trends observed on the validation set mostly hold, with coherence-based question ranking

and in-context learning in question generation bringing significant gains in accuracy, consis-

tency, and verifiability. Meanwhile, integrating AGLA into VQA improves the efficiency and

confidence of VLMs.

8.7.2 Visualizing Behaviors with Coherence Metrics

An additional benefit of our automated coherence metrics is the ability to audit the global

and local reasoning behaviors of LLaVA under various strategies. In Figure 8.12, we visualize

the distribution of decision error, relevance, and informativeness of the same four represen-

tative approaches applied to LLaVA. For each example, decision error is calculated by how

far the VLM’s success likelihood was from being 100% confident in the correct mistake de-
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VLM Ranking ICL Strategy τ Accuracy (%) Consistency (%) Verifiability (%)

InstructBLIP Likelihood ✗ None 0.43 67.2 9.7 4.2
InstructBLIP Coherence ✗ None 0.38 69.1 16.6 7.6
InstructBLIP Coherence ✓ None 0.28 69.3 23.0 11.9
InstructBLIP Coherence ✓ AGLA 0.29 67.7 27.0 12.7

LLaVA Likelihood ✗ None 0.84 62.6 17.1 8.1
LLaVA Coherence ✗ None 0.77 64.8 33.6 22.2
LLaVA Coherence ✓ None 0.38 68.9 46.7 35.3
LLaVA Coherence ✓ AGLA 0.99 67.1 44.4 30.5

Table 8.8: Multi-tiered coherence evaluation results on Ego4D-PMD test set for selected
combinations of approaches to apply the LLaVA and InstructBLIP VLMs. Each result is
reported for the maximum-accuracy mistake confidence threshold τ .

VLM Ranking ICL Strat. # Iter. ↓ Inf. Gain ↑ VQA Conf. ↑ (%) ECE ↓ (%) AURC ↓ (%)

I-BLIP Likelihood ✗ None 4.10 0.336 76.4 12.8 30.2
I-BLIP Coherence ✗ None 4.09 0.372 75.4 13.6 27.9
I-BLIP Coherence ✓ None 4.31 0.457 75.4 16.2 27.5
I-BLIP Coherence ✓ AGLA 2.48 0.866 89.7 30.9 35.4

LLaVA Likelihood ✗ None 3.37 0.374 77.6 23.1 32.2
LLaVA Coherence ✗ None 3.31 0.498 78.0 21.3 28.3
LLaVA Coherence ✓ None 3.21 0.651 76.9 22.0 23.7
LLaVA Coherence ✓ AGLA 1.59 0.944 90.7 32.8 24.7

Table 8.9: Explanatory dialog efficiency and decision confidence evaluation on Ego4D-PMD
test set for selected combinations of approaches to apply the LLaVA and InstructBLIP (I-
BLIP) VLMs.

tection decision. Relevance is calculated by the mean relevance of all generated questions.

Informativeness is calculated by the maximum reference-adjusted informativeness among all

confidence-filtered answers generated by the VLM, which can range from -1 to 1 (as discussed

in Section 8.2.4.

The colors of points in these plots indicate various combinations of decision error, rele-

vance, and informativeness in VLM outputs, highlighting common behaviors. In Figure 8.13,

we provide several examples from LLaVA with coherence-based ranking, which displays a

range of behaviors. Below, we further explain these behaviors and examples.

Correct and coherent points. Cyan points have low error with high informativeness

and relevance, indicating correct decisions with coherent explanations. These are the best

case examples from the model. Figure 8.13, Example A is one such case, where LLaVA

correctly determines that the procedure “Pick up a sink brush from the kitchen slab” has

been successfully completed, explaining it coherently and succinctly with a single question

and answer about the location of the sink brush.
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Figure 8.12: Visualization of decision error, relevance, and reference-adjusted informativeness
for selected configurations of LLaVA applied to the Ego4D-PMD testing data. Informative-
ness is reference-adjusted to be negative when the NLI model used for evaluation is favoring
the incorrect mistake detection decision (i.e., predicts success in a mistake case, or predicts
mistake in a success case). Each data point represents a testing example, and its color indi-
cates its position on each of the three color-coded axes.
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Incorrect and incoherent points. Conversely, red to magenta points have high error,

low informativeness, and low relevance, indicating incorrect decisions with incoherent expla-

nations. These are the worst case examples from the model. Figure 8.13, Example B is one

such case, where LLaVA incorrectly decides that the procedure “Pick a Christmas tree from

the floor” was not successfully completed due to the person in the image not wearing a Santa

suit or costume, an incoherent explanation for the decision.

Correct but incoherent points. Indigo to black points have low error, but low relevance

and informativeness, indicating correct decisions without sufficient explanation. Figure 8.13,

Example C, is an instance of this, where LLaVA correctly decides that the person in the

image has not successfully completed the procedure “Open the box,” but explains it by

asking about the color of their shirt.

Coherent but incorrect points. White points have high error, relevance, and informa-

tiveness, indicating coherent explanations that do not lead to a correct decision. In other

words, the information collected by the VLM should theoretically be sufficient to make a

correct decision (according to our automated coherence metrics), but this did not occur.

Figure 8.13, Example D shows one such case, where LLaVA incorrectly decides that the

procedure “Open the fridge with your hand” was unsuccessful. While it correctly identified

that the fridge in the image was open, it could not find the person’s hand in the image,

causing its incorrect decision. The VLM appears to be weighting the presence of the hand

as a success condition for the procedure, but the key state change caused by this procedure

is only that the fridge is open; whether or not the hand is present does not matter. This

failure may be accountable to a deficiency in commonsense knowledge in LLaVA. The ability

of this analysis to easily identify issues like this may be useful for future work in PMD and

task guidance, as it enables the detection and thus the correction of system bugs.

Irrelevant but informative points. Blue points have low relevance but relatively high

informativeness, indicating irrelevant questions that still yield informative answers. As shown

in Figure 8.13, Example E, this does not necessarily indicate a failure of LLaVA, rather a

terse explanation. In this example, LLaVA correctly determines that the procedure “Cut

a plant with the sickle in your hand” has not been completed successfully. It reasonably

explains this decision by asking whether the person is holding a sickle and responding with

No. The question of whether the person is holding a sickle is deemed irrelevant by our

metrics because if the answer were instead Yes, this would not provide sufficient information

to conclude that the procedure was successful. However, since the answer was No, we do have
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sufficient information to conclude that the procedure is unsuccessful, despite the question

being relatively indirect. Blue points may thus point to sufficient explanations which lack

some detail or specificity.

Relevant but uninformative points. Green and yellow points have high relevance but

low informativeness, indicating a failure to extract useful information in VQA. Green points

have close to zero informativeness, indicating unsure responses in VQA. In Figure 8.13,

Example F, LLaVA explains its decision about the procedure “Cut the guava on the cutting

board with the knife in your hand” by asking whether the guava is on the cutting board.

However, these objects are not present in the image and thus LLaVA’s answer is not confident,

causing it to respond Unsure, which causes zero informativeness. Despite this failure to

answer the question, LLaVA still arrives at the correct conclusion that the procedure has

not been successfully completed.

Meanwhile, yellow points have highly negative informativeness, indicating counterproduc-

tive responses in VQA that oppose the correct decision. As shown in Figure 8.13, Examples

G and H, these cases typically occur when the VLM does not recognize an object in the

image, or it recognizes an object that is not in the image. In Example G, LLaVA incor-

rectly decides that the procedure “Take a bottle of soda” is unsuccessful because it does

not recognize that the person in the image is holding the bottle of soda, which is partly oc-

cluded. In Example H, LLaVA incorrectly decides that the procedure “Put the bottle in the

cabinet” is successful because it hallucinates that a bottle is in the cabinet, despite neither

object appearing in the image. The ability of this analysis to easily identify failures of visual

perception in VLMs again may be useful for future work in this area.

In comparing the plots in Figure 8.12, we see a dramatic shift as coherence-based ranking

and in-context learning are introduced. Specifically, we see much fewer red and black/indigo

points, indicating much fewer cases of incoherent explanations and complete failures.

Meanwhile, when we introduce AGLA, we see a striking polarization of decision error,

which comes at a tradeoff of more red points appearing in the plot. It is worth noting that

introducing AGLA in LLaVA only changed the verifiability from 35.3% to 30.5%. Meanwhile,

the average informativeness in the plots in Figure 8.12 drops more dramatically from 50.3% to

33.1%. Since verifiability is strictly positive, this suggests that while having similar numbers

of insufficiently verified correct decisions, AGLA introduces a significant number of cases

with negative informativeness, i.e., misleading information from the scene. Nonetheless, the

improved efficiency and confidence from AGLA may be advantageous for some applications.

Ultimately, when choosing an approach to use in a task guidance system, we recommend

weighing all of the factors we explored as appropriate for the setting: accuracy, coherence
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Example A: Pick up a sink brush from the
kitchen slab.

Label: ✓ Predicted: ✓

Explanation:
1. Is the sink brush in the person’s hands? Yes

Example B: Pick a Christmas tree from the
floor.

Label: ✓ Predicted: ✗

Explanation:
1. Is the person wearing a Santa suit? No

2. Is the person wearing a costume? No

3. Is the person wearing a uniform? No

Example C: Open the box.

Label: ✗ Predicted: ✗

Explanation:
1. Is the person wearing a white shirt? No

2. Is the person wearing a black shirt? No

3. Is the person wearing a blue shirt? No

Example D: Open the fridge with your hand.

Label: ✓ Predicted: ✗

Explanation:
1. Is the fridge open? Yes

2. Is the fridge open with the person’s hand? No

Example E: Cut a plant with the sickle in your
hand.

Label: ✗ Predicted: ✗

Explanation:
1. Is the person holding a sickle? No

Example F: Cut the guava on the cutting
board with the knife in your hand.

Label: ✗ Predicted: ✗

Explanation:
1. Is the guava on the cutting board? Unsure

Example G: Take a bottle of soda.

Label: ✓ Predicted: ✗

Explanation:
1. Is the person holding a bottle of soda? No

Example H: Put the bottle in the cabinet.

Label: ✗ Predicted: ✓

Explanation:
1. Is the bottle in the cabinet? Yes

Figure 8.13: Sample outputs from LLaVA with coherence-based ranking, representing the
range of behaviors visualized in Figure 8.12. Some images cropped for clarity and space.
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(both raw and cascading metrics), efficiency, and reliability. For example, online applications

may benefit from higher efficiency, even at a cost of accuracy or coherence. Meanwhile, high-

risk applications may prioritize better calibration above other factors. Additional insights

toward the fine-grained strengths and weaknesses of various approaches may be gained from

breaking down these results by class label, mistake type, or verb and noun categories.

8.8 Summary of Findings

In this chapter, we adapted our multi-tiered accuracy and coherence evaluation framework

for PCR to a new, practical problem of PMD. Specifically, we proposed automated coher-

ence metrics leveraging fine-tuned NLI models, finding moderate correlations with human

judgements of coherence. We then formulated PMD as an iterative question generation and

answering problem, and drew from the previous chapters of this thesis to demonstrate that

conditioning mistake detection with these questions and answers, prioritizing coherence in

selecting questions to generate, and using in-context learning in question generation im-

proved accuracy and coherence of VLMs in PMD. Lastly, we analyzed how various recent

visual hallucination mitigation strategies, which aim to better align VLMs’ visual attention

to their prompts, impact performance, finding that they could improve VLMs’ efficiency,

confidence, and reliability at a possible cost of coherence. This first-of-its-kind study laid

a foundation and yielded several valuable insights for future work in applying foundational

VLMs to this difficult problem.
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CHAPTER 9

Conclusions

This thesis has taken several steps to formalize, understand, and improve the coherence

of foundational language models (LMs), including vision-and-language models (VLMs), in

physical commonsense reasoning (PCR) tasks. Particularly, we extended PCR from what

was traditionally viewed as a high-level classification task to a multi-faceted problem of

identifying the most relevant aspects of noisy contexts, extracting physical state information

about the environment based on those contexts, and making decisions about physical phe-

nonema, e.g., physical plausibility, physical conversion of entities, and procedural execution

mistakes. In this chapter, we review our breadth of research questions and findings about

foundational LMs, as well as the limitations and future directions of this work.

9.1 Review of Research Questions

Despite the impressive capabilities and results of foundational LMs, incoherent behaviors,

such as overfitting to superficial statistical cues and hallucination in language generation,

hinder their utility in practical applications. To better understand how this problem mani-

fests in applying LMs to reasoning tasks, we developed a multi-tiered evaluation paradigm for

the coherence of reasoning in LMs. While reasoning-intensive tasks typically only evaluate

the accuracy of end decisions from LMs, we proposed two concepts for more deeply evaluat-

ing the coherence of reasoning: consistency, which is the property of an LM’s decision being

supported by the most appropriate segments of a noisy language context, and verifiability, a

PCR-specific property of these segments being associated with valid commonsense physical

states from a surrounding environment.

To understand the consistency of LM decisions on reasoning-intensive classification tasks

for natural language understanding (NLU), we annotated two existing benchmark datasets

for dialog-based textual entailment and commonsense plausibility [269, 22]. We then fine-

tuned various foundational LMs on the original datasets, and used our annotations to eval-
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uate the consistency of their learned reasoning. Surprisingly, despite achieving very high

accuracy on the end tasks, we found that fine-tuned LMs’ reasoning was severely inconsis-

tent, with predictions largely based on invalid evidence from the language context. Further,

we found that transfer learning from larger relevant datasets, a common approach to improve

performance on downstream tasks, did not remedy this issue.

To dive deeper into our notion of verifiability, we curated a novel, densely annotated

benchmark called Tiered Reasoning for Intuitive Physics (TRIP), which presented a physical

plausibility classification problem supported by multi-tiered reasoning chains from low-level

physical states to conflicting sentences within stories, ultimately causing one story to be more

plausible than the other. Using this dataset, we found that fine-tuning LMs on high-level

end tasks often drove them to produce incoherent low-level reasoning chains. Interestingly,

we were able to achieve the highest level of coherence by entirely excluding the end task

objective from fine-tuning, and instead focusing on fine-tuning LMs to be coherent reasoners

from the bottom up. Our analysis revealed several additional insights into the strengths and

weaknesses of LMs’ PCR capability.

Motivated by human cognitive psychology, we then explored heuristic-analytic approaches

to apply foundational LMs to PCR. Specifically, we investigated how first making intuitive

decisions then justifying them with lower-level reasoning chains in a top-down manner im-

pacted the accuracy and coherence of PCR. Here, we found that in both fine-tuning and

prompting LMs, a top-down reasoning direction enabled more consistent and verifiable rea-

soning chains to be generated, as these difficult reasoning steps benefited from being con-

ditioned on higher-level intuitive decisions about procedural texts. More interestingly, we

showed that this occurred because our cognitively motivated approach caused LMs’ attention

to be more faithful to the appropriate regions of language context in each step of reasoning.

We then extended our inquiry into multimodal settings with foundational multimodal

representations and VLMs. First, we explored the capability of multimodal representations

to capture physical states of objects in images, evaluating the similarity of visual represen-

tations of images to language descriptions of actions as well as simulated texts and images

portraying action effects. Through this, we found that these representations best captured

low-level physical state descriptions rather than general concepts of actions across images.

Inspired by these findings, we lastly adapted our notions of consistency and verifiability to

the practical setting of procedural mistake detection (PMD), developing novel, reference-free,

automated metrics powered by fine-tuned foundational LMs for natural language inference

(NLI). We converted this PCR problem, previously only viewed as a classification task, to

a multi-step reasoning task consisting of generating low-level questions and answers as well

as the end task of making a final determination of whether some given procedure (described
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in text) has been successfully completed in a given egocentric video frame of someone per-

forming the procedure. We performed a thorough set of experiments here, measuring how

various interventions on text and visual inputs impacted the accuracy, coherence, efficiency,

confidence, and reliability of VLMs on PMD. We found that for this problem, which has

significantly more freedom than earlier settings in the reasoning chains that could validly

be used to explain decisions, using this self-reflective dialog to condition VLMs’ final PMD

decision improves coherence at a small sacrifice of accuracy. Furthermore, we found that

prioritizing coherence in generating questions and utilizing in-context learning to generate

questions maximizes both coherence and accuracy. Interestingly, we found that various visual

attention manipulation strategies for improving the coherence of visual processing in VLMs

[245, 127, 8] had minimal impact on their accuracy and coherence, but instead improved the

efficiency, confidence, and reliability of their explanations.

All in all, this thesis revealed a wealth of insights into the coherence of reasoning learned by

foundational LMs. While significant progress has yet to be made in achieving truly coherent

reasoning in foundational LMs, this work provided a suite of new tools for future work to

interpret and improve reasoning in both text-based and practical multimodal settings. In

future work, such interpretability will be essential to human users in building trust and

achieving common ground with foundational LM agents in real-world task-oriented dialogs.

9.2 Limitations and Future Directions

While this work revealed many insights into the coherence of PCR in foundational LMs, the

scope of these insights is largely limited to reasoning problems based on physical actions

and states. On one hand, PCR has far-reaching impacts in many embodied AI application

areas, and is sure to be an essential component of future solutions in these areas. On the

other hand, there are many other aspects of reasoning, such as social commonsense, theory

of mind, mathematical reasoning, and factual reasoning, that this thesis does not address

despite prevalent incoherent behaviors in foundational LMs when applied to them. Future

work on agents requiring these capabilities, e.g., in assisting humans in areas like writing,

learning, and detecting disinformation, could benefit from similar deep inquiries into the

coherence of foundational LMs.

Additionally, much of this work relies on the ability to densely annotate classification

tasks with coherent reasoning chains. In many cases, this could be impractical, or even im-

possible to do comprehensively due to subjectivity. As such, it becomes beneficial to evaluate

coherence in a softer, reference-free manner as we did in Chapter 8. This approach enables

inspection of real-world systems applied to naturalistic data rather than requiring the use
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of meticulously curated benchmark data. While we made an initial attempt at quantifying

coherence in one problem area, future work on other practical applications of LMs could cer-

tainly benefit from the development of automated metrics for various aspects. Additionally,

future work may explore fine-tuning foundational LMs based on such automated metrics,

e.g., using preference optimization techniques [182, 196], which was left unexplored in this

thesis. The widespread availability of lightweight and specialized foundation models, e.g.,

LMs fine-tuned for natural language inference (NLI), can be useful for these efforts.

Lastly, much of this work relies on reasoning structures with limited flexibility or ability

to recover from errors. For example, in Chapters 5 and 6, we forced LMs to reason in in-

flexible ways about PCR problems, without any capability to change intermediate reasoning

steps after predicting them. While this improved the overall performance, it is possible that

this causes unrecoverable cascading errors. Similarly, in Chapter 8, if hallucination or other

errors occur when generating and answering questions toward determining the success of

a procedure, they may severely degrade model performance. Future work on downstream

systems employing reasoning strategies similar to those used in this work may further en-

hance the coherence of foundational LMs by exploring more robust, non-greedy strategies

to generate reasoning chains. Furthermore, a particularly interesting inquiry could occur in

developing LM-based agents that can anticipate their own incoherence, and communicate

with or ask for help from a human-in-the-loop to recover from it.
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APPENDIX A

Implementation Details and Supplementary

Results for TRIP Baselines

In this appendix, we present several implementation details and supplementary results for

the results presented in Chapter 5.

A.1 Fine-Tuning Details for TRIP Baselines

The RoBERTa, BERT, and DeBERTa models are built from HuggingFace’s

Transformers library [257], particularly their implementation for multiple-choice classifi-

cation, and the pre-trained BERTLARGE parameters (336M), RoBERTaLARGE parameters

(355M), and DeBERTaBASE parameters (140M) respectively. For all models, we use the

AdamW optimizer [146]. Batch size is fixed at 1 story pair for all models, the maximum

allowed by our available GPU memory. To select the optimizer learning rate and number

of training epochs, all models are trained by grid search over these two, maximizing the

validation set verifiability as defined in Section 4.2. Learning rate is selected from the set

{1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4}, while the maximum number of epochs is

fixed at 10. Ties are broken first by validation accuracy on the end plausibility classification

task, then by selecting the model instance trained for fewer epochs (to avoid overfitting).

The selected learning rate and number of epochs for each model presented in Chapter 5 are

listed in Table A.1.

A.2 Supplementary Results for TRIP Baselines

Lastly, we provide additional results for the TRIP baselines presented in Chapter 5.1

1Note that the results in this appendix use a slightly simpler label space for location state classification,
and thus are not directly comparable to the results presented in Chapter 5.
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Table 5.1, All Losses

Model Learning Rate Epochs

BERT 5e-6 5
RoBERTa 1e-5 8
DeBERTa 5e-6 6

Table 5.1, Omit Story Choice Loss

Model Learning Rate Epochs

BERT 5e-5 9
RoBERTa 1e-5 6
DeBERTa 5e-5 8

Table 5.1, Omit Conflict Detection Loss

Model Learning Rate Epochs

BERT 1e-6 2
RoBERTa 5e-6 9
DeBERTa 1e-6 4

Table 5.1, Omit State Classification Loss

Model Learning Rate Epochs

BERT 1e-5 4
RoBERTa 1e-6 8
DeBERTa 5e-6 10

Table A.1: Selected learning rate (LR), number of training epochs, and validation verifiability
and accuracy for all results presented in this thesis.

A.2.1 Conflict Detector Ablations

The Conflict Detector module takes in two types of inputs: 1) contextual embeddings of

sentence-entity pairs, and 2) physical state logits from the Precondition and Effect Classifiers.

To determine the impact of each, we present ablations omitting them for the best-performing

instances from the previous section, i.e., those not considering story choice classification loss.

Table A.2 presents these results for the validation set, while Table A.3 presents these results

for the test set.

Without including the physical state inputs, we see a slight drop in consistency and

verifiability of some models. For example, RoBERTa drops from 9.7% verifiability and

23.4% consistency to 4.6% and 17.7%, respectively. Meanwhile, DeBERTa increases from

8.0% verifiabiliy and 20.2% consistency to 11.4% and 24.5%. While RoBERTa seems to

depend slightly on the predicted physical states in performing conflict detection, DeBERTa

favors the contextual embedding.

Without including the contextual embeddings, we see a drastic drop across the board to

below-random performance, with RoBERTa dropping to 0% verifiability and consistency,

and DeBERTa to 2.3% and 6.6% respectively. This suggests that while forcing the model to

track physical states enables greater explanation, they are not sufficient for models to learn

conflict detection, or they are not incorporated successfully into the higher-level predictions.

The contextual embedding, which is fine-tuned on physical state classification and conflict

detection jointly, seems to be most powerful for solving the end task. Future work should

further explore how to harness the rich information provided by the physical states to improve

system performance and interpretability.
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Contextual Embeddings + Physical States

Verif. Acc. Prec. F1 Eff. F1 Confl. F1
Model (%) (%) (%) (%) (%)

BERT 9.6 70.2 74.4 66.7 65.1
RoBERTa 12.1 77.0 72.3 62.7 70.9
DeBERTa 11.2 72.7 77.0 71.1 68.2

Contextual Embeddings Only

Verif. Acc. Prec. F1 Eff. F1 Confl. F1
Model (%) (%) (%) (%) (%)

BERT 10.9 72.7 75.9 69.3 66.7
RoBERTa 9.6 76.1 72.5 61.6 70.3
DeBERTa 9.9 76.1 77.3 71.3 68.6

Physical States Only

Verif. Acc. Prec. F1 Eff. F1 Confl. F1
Model (%) (%) (%) (%) (%)

BERT 0.6 54.7 60.5 59.9 51.1
RoBERTa 0.0 43.2 38.4 37.8 49.5
DeBERTa 2.2 58.1 81.0 79.0 53.0

Table A.2: Validation set performance of best models in Table 5.1 when ablating inputs to
the Conflict Detector.

A.2.2 State Classification Performance by Attribute

Figure A.1 breaks down the F1 score for predicting precondition and effect states by attribute

across the TRIP dataset. We find that for preconditions, openness and whether objects are

running, i.e., activated, are best captured, and for effects, existence and consciousness are.

Meanwhile, wetness and temperature are challenging for predicting both preconditions and

effects.
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Contextual Embeddings + Physical States

Accuracy Consistency Verifiability
Model (%) (%) (%)

BERT 63.2 15.7 7.4
RoBERTa 76.6 23.4 9.7
DeBERTa 72.9 20.2 8.0

Contextual Embeddings Only

Accuracy Consistency Verifiability
Model (%) (%) (%)

BERT 70.7 16.8 6.8
RoBERTa 76.6 17.7 4.6
DeBERTa 74.1 24.5 11.4

Physical States Only

Accuracy Consistency Verifiability
Model (%) (%) (%)

BERT 56.1 3.4 0.3
RoBERTa 42.2 0.0 0.0
DeBERTa 59.3 6.6 2.3

Table A.3: Validation set performance of best models in Table 5.1 when ablating inputs to
the Conflict Detector.
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Figure A.1: Precision and recall of predictions for each attribute from our best RoBERTa
model on the validation set.
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APPENDIX B

Implementation Details and Supplementary

Results for Cognitively Motivated Reasoning

Strategies

In this appendix, we present several implementation details and supplementary results for

the results presented in Chapter 6.

B.1 Tiered-ProPara Generation Details

Tiered-ProPara was generated by a simple matching process over the original dataset. We

first re-split the dataset to distribute more stories into the testing and development sets from

training set. Then, we applied a pairwise matching process to select two stories. Specifically,

we enforce that the selected entity appears in both stories, but only converts to another entity

in one of them. Also, the entity being converted must disappear after the conversion, while

the entity converted must appear only after the conversion. The selected entity is provided

as a known fact before the inference. Therefore, similar to TRIP, a system needs to predict

which story has the conversion of the known entity given two stories, measured by accuracy.

And Consistency is used to measure how often a system predicting the correct story and the

sentence that has the conversion. Additionally, Verifiability measures how often a system

identifies the fully correct reasoning chain, from story and sentence prediction to physical

state prediction of understanding what entity has converted to. After our conversion of

the dataset, there are 496 training instances, 206 development instances, and 213 testing

instances.
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B.2 Language Model Fine-Tuning Details

In Section 6.2, we proposed two fine-tuning approaches powered by CGLI [149], which pre-

dicts reasoning steps through task-specific layers. These layers are linear projections for the

tiered tasks of selecting stories, sentences, and physical states. We preserve the entity-aware

and timestep-aware encodings in CGLI. Specifically, given an entity E, we concatenate it

with a story pair S to create a prompt C = [CLS] E [SEP] S [SEP]. Following CGLI, C is

then mapped with the embedding layer of the language model and summed with the timestep

embedding. Finally, it is encoded by the language model to create a latent representation for

task-specific classifications. We jointly optimize three cross-entropy losses for the story selec-

tion step, sentence selection step, and physical state prediction step (Lstory+Lsentence+Lstate).

In TRIP, in order to make our proposed Focused CGLI (FCGLI) models focused on pre-

dicting explicit conflicts (defined in Appendix B.5) in stories, we do not optimize the physical

state prediction loss for implicit conflicts. As such, the physical state information for each

task instance consists of an entity, an attribute, effect state, and precondition state. The

physical state loss is calculated by averaging four losses.

We selected the model for the test set by using the model with the highest validation

verifiability for each task. We used a consistent set of hyper-parameters across tasks: a

learning rate of 5e-6, a maximum of 10 training epochs, and a batch size of 1 (the maximum

that could fit in GPU memory). The weight decay is set to be 0.01 for all parameters except

for bias and LayerNorm.weight, and we use a warmup scheduler following CGLI. We report

the performance by averaging three random runs. All experiments were performed on a

single NVIDIA GeForce RTX 3090 Ti graphics card (24GB).

B.3 Statistical Significance Testing

While the performance gain in consistency and verifiability from our HAR strategies over

baseline approaches was quite large in most cases, we performed McNemar’s tests to measure

the statistical significance of these gains [156]. We found that in the TRIP and Tiered-ProPara

results presented in Table 6.1, the differences in consistency and verifiability between FCGLI-

HAR and the FCGLI baseline were statistically significant (p < 0.05). This was also true

for the differences in consistency and verifiability on both tasks between ICL-HAR and both

ICL-U and ICL-CoT in Table 6.2, except for LLaMA on TRIP, where the consistency gain

from ICL-HAR over either baseline was not significant. As expected, HAR indeed brings

about statistically significant performance gains in verifiability of physical commonsense

reasoning, while sometimes also significantly improving consistency.
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InstructGPT

Approach Accuracy Consistency Verifiability

ICL-U 70.9 40.7 7.1
ICL-CoT 75.0 40.7 10.8
ICL-HAR 72.6 47.9 23.9

PCICL-HAR 70.4 39.6 12.8

LLaMA

Approach Accuracy Consistency Verifiability

ICL-U 70.4 42.3 14.8
ICL-CoT 74.6 42.3 19.7
ICL-HAR 55.6 44.4 35.2

PCICL-HAR 70.4 40.8 28.2

Table B.1: TRIP results of heuristic-analytic reasoning (HAR) strategies in in-context learn-
ing with LMs, including PCICL-HAR, the prompt-chaining alternative to ICL-HAR. As
mentioned in Section 6.3.1, LLaMA is evaluated on a subset of TRIP, so in-context learning
results on different LMs are not directly comparable.

B.4 HAR for Multi-Prompt In-Context Learning

On top of the chain-of-thought (CoT) implementation of HAR for in-context learning pre-

sented in this thesis, we experimented with a more strict form which chained multiple

prompts together, one for each step of the reasoning tasks. This adds explicit structure

that may make it more dependable. As shown in Figure B.1, each successive prompt is

generated based on the previous higher-level prediction. In TRIP and Tiered-ProPara, LMs

must first select one of two stories in which some phenomenon occurs (i.e., implausibility or

conversion of entities). Then, the chosen story is used in a separate prompt to that LM and

predict the sentence(s) where the phenomenon occurs. Lastly, given predicted sentence(s),

LMs should predict the specific states underlying the phenomenon. While similar to the

approach presented in this thesis, this approach enables us to completely remove irrelevant

information from the context at each step of reasoning and rationalization, so that the model

can focus only on the correct parts of the language context. While this restriction may help

LMs ignore irrelevant context, this structure limits the general applicabilty of this approach

compared to the more flexible chain-of-thought approach presented in this thesis.

As shown in Tables B.1 and B.2, prompt chaining for in-context learning with HAR

(PCICL-HAR) also brings performance improvements over the ICR-U baseline in both TRIP

and ProPara. In Tiered-ProPara, PCICL-HAR slightly exceeds HAR with chain-of-thought

(ICL-HAR) in consistency when applied to both InstructGPT and LLaMA (up to 36.2%

and 21.6% respectively), and in verifiability with LLaMA (up to 17.4%). This suggests that
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Story A: 
1. Air is brought in through the mouth.
2. Passes through the lungs.
3. And into the bronchial tissue.
4. The carbon dioxide is removed.
5. The lungs bring the oxygen to the rest of the body.
Story B: 
1. Carbon dioxide enters the leaves through the stomates by diffusion.
2. Water is transported to the leaves in the xylem.
3. Energy harvested through light reaction is stored by forming ATP.
4. Carbon dioxide and energy from ATP are used to create sugar.
5. Oxygen exits the leaves through the stomata by diffusion.
6. The plant reuses the water or the water exits through the stomata...

PLM “Carbon dioxide is converted in story B.”

Story: 
1. Carbon dioxide enters the leaves through the stomates by diffusion.
2. Water is transported to the leaves in the xylem.
3. Energy harvested through light reaction is stored by forming ATP.
4. Carbon dioxide and energy from ATP are used to create sugar.
5. Oxygen exits the leaves through the stomata by diffusion.
6. The plant reuses the water or the water exits through the stomata...

PLM “Carbon dioxide is converted in sentence 4.”

Carbon dioxide and energy from ATP are used to create sugar.

PLM “Carbon dioxide is converted to sugar.”

Figure B.1: Heuristic-analytic reasoning with prompt chaining for in-context learning with
LMs on physical commonsense rationalization (PCICL-HAR). On Tiered-ProPara, the LM
will first decide which story a conversion of an entity occurs in, then this will be used to
refine the language prompt before asking the LM which sentence the conversion occurs in.
Lastly, the chosen sentence will be used to predict the resulting entity after conversion.

in some cases, more explicitly structured HAR can be beneficial.

B.5 Implicit vs. Explicit Conflicts on TRIP

Plausibility conflicts between physical states in TRIP can take two forms. First, explicit

conflicts like the one shown in Figure 6.4 exhibit direct disagreements in physical effect

states of a particular entity after one sentence and its precondition states in a later sentence.1

Other stories have implicit conflicts where no such disagreement exists, though the story may

violate commonsense expectations.2

While our evaluation on LLaMA focused on explicit conflicts to ensure only the top-

6 most common physical attributes could be used to rationalize plausibility conflicts, our

1For example, if Mary put the cucumber on a plate and tossed the donut in the trash, then in a later
sentence, Mary ate the donut, the effect of the former sentence (i.e. donut is inedible) conflicts with the
precondition of the latter sentence (i.e. donut is edible).

2For example, in one sentence, we may see that Tom put the soup in the microwave, which indirectly
implies the soup should be heated up, then in a later sentence, Tom ate the cold soup.
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InstructGPT

Approach Accuracy Consistency Verifiability

ICL-U 54.9 17.4 5.2
ICL-CoT 50.7 19.2 7.5
ICL-HAR 54.9 31.5 20.7

PCICL-HAR 54.5 36.2 18.8

LLaMA

Approach Accuracy Consistency Verifiability

ICL-U 51.2 3.8 1.4
ICL-CoT 57.3 9.4 4.2
ICL-HAR 41.8 17.8 13.1

PCICL-HAR 51.2 21.6 17.4

Table B.2: Tiered-ProPara results of heuristic-analytic reasoning (HAR) strategies in in-
context learning with LMs, including PCICL-HAR, the prompt-chaining alternative to ICL-
HAR.

evaluation on InstructGPT included both. As the connection between physical states and

plausibility conflicts is unclear in implicit conflicts and our HAR strategies are intended to

strengthen lower-level rationalization to support higher-level tasks, we may expect them to

be especially beneficial for explicit conflicts. Table B.3 includes results for both types of

conflicts on the fine-tuning and in-context learning approaches introduced so far. We see

that implicit conflicts are more difficult to rationalize across the board, even with traditional

chain-of-thought as applied in the ICL-CoT baseline. However, HAR indeed has a much

more significant impact on TRIP examples with explicit conflicts, increasing verifiability

from 10.0% to 36.1%, compared to an increase from 4.1% to 11.3% on implicit conflicts.

This suggests that models’ heuristic predictions of which story is plausible can indeed help

improve performance on the analytic predictions of conflicting sentences and physical states,

the latter of which has a large search space.

B.6 Language Model Prompt Details

Here, we include some extra details about how we prompted LMs in Chapter 6.

B.6.1 Automatic Exemplar Generation

We automatized exemplar generation for smoother and consistent experiments on TRIP and

Tiered-ProPara.
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Explicit Conflicts

Approach Accuracy Consistency Verifiability

ICL-U 71.7 42.2 10.0
ICL-CoT 73.9 41.7 16.7
ICL-HAR 72.2 53.3 36.1

PCICL-HAR 70.6 47.2 17.8

FCGLI 98.3 81.1 56.7
FCGLI-HAR 98.7 89.4 68.9

Implicit Conflicts

Approach Accuracy Consistency Verifiability

ICL-U 70.2 39.2 4.1
ICL-CoT 76.0 39.8 4.7
ICL-HAR 73.1 42.1 11.1

PCICL-HAR 70.2 31.6 7.6

FCGLI 88.7 50.2 9.3
FCGLI-HAR 89.5 60.3 11.3

Table B.3: TRIP results of heuristic-analytic reasoning (HAR) strategies in in-context learn-
ing with InstructGPT (top) and fine-tuning FCGLI (bottom) for explicit and implicit plau-
sibility conflicts.

B.6.1.1 TRIP

The lowest level task in TRIP dataset is annotated with symbolic states to represent pre-

condition and effect states over 20 physical states. Therefore, we convert symbolic physical

states to natural language. For stories with explicit conflict, we iterate through all com-

binations of entities and 20 attributes for the 2 conflicting sentences in order to find the

conflicting physical states. For some conflicts that have different entity name for the same

entity, we used the following algorithm to first find all possible conflicting entity pairs, and

then iterate them for the conflicting entity pair which results in maximum cosine similarity

(argmax) between GLoVe embedding vectors (50-dimensional) [186] and more specifically,

the argmax function is defined by:

arg max
c∈candidates

V c
GloV e(entity1)

· V c
GloV e(entity2)

∥V c
GloV e(entity1)

∥∥V c
GloV e(entity2)

∥
(B.1)

Physical state familiarization. To prime PLMs for the highly-dimensional physical state

classification step of TRIP, all in-context learning experiments are prepended with a list of

possible physical states (e.g. dirty, clean, unpowered, powered) and a 1-shot example for
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each one.3 This process is called familiarization, and is essential to fully specify the expected

outputs for the reasoning task and enable systematic evaluation, as the model will be more

likely to predict physical states within this demonstrated space of labels. As Tiered-ProPara’s

low-level state space consists of entities mentioned in the given text, this is only necessary

for TRIP.

Filtering TRIP to shorten prompts. Since LLaMA is limited to a context length of

2048 tokens, we create a filtered version of TRIP which only includes instances where an-

notated states involve only the top-6 most frequent physical attributes. The familiarization

process mentioned above contains ∼ 70% tokens in the full prompt (∼ 3800 tokens). There-

fore, we first perform a statistical analysis on the dataset and select 6 highest-frequency

physical states for effect and precondition, namely (no longer existent, existent), (broken,

functional), (in pieces, whole), (turned off, turned on), (inedible, edible), (unpowered, pow-

ered). After that, the prompt length is reduced to ∼ 1600 tokens. As familiarization of

physical states is used to familiarize the model with the classification space, we filtered the

dataset to stories that only contain explicit conflicts between these high-frequency physical

states.

B.6.1.2 Tiered-ProPara

The automatic exemplar generation process for Tiered-Propara is similar to the TRIP, but

more straightforward. There’s no familiarization stage for Tiered-Propara. After two-story

prompt, we asked the model with a question: What happened to [converted entity]? The an-

swer prompt in the demonstration is composed by filling ground truth labels (story, sentence,

and the entity converted to) to the template.

B.6.2 Full Prompt Examples

From our in-context learning experiments, we include full example prompts used with In-

structGPT for the in-context learning with heuristic-analytic reasoning (ICL-HAR) and

unstructured in-context learning (ICL-U) strategies. Figures B.2 and B.3 show examples for

ICL-HAR in TRIP and ProPara, respectively. Figures B.4, B.5, and B.6 show examples for

the ICL-U in TRIP, while Figures B.7, B.8, and B.9 show examples for the ICL-U baseline

in ProPara. For the ICL-CoT baseline, we simply append “Let’s think step by step...” and

zero-shot CoT generated by InstructGPT into the ICL-U prompting demonstrations before

3For example, After Mary sliced the apple, what is the state of the apple? The apple is now in pieces.
and Before Tom opened the door, what was the state of the door? The door was closed. may be used to
familiarize the model with the physical state classification space.
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final predictions are made for each sub-task. We provide the full zero-shot CoT prompts we

used for each sub-task in TRIP and Tiered-ProPara below:

• TRIP, Story Selection: Let’s think step by step about which story is more plausible.

• TRIP, Sentence Selection: Let’s think step by step about which sentences are

conflicting in one story.

• TRIP, Physical State Prediction: Let’s think step by step about which physical

states are conflicting in two sentences in one story.

• Tiered-Propara, Story Selection: Let’s think step by step about which story [en-

tity] were converted in.

• Tiered-Propara, Sentence Selection: Let’s think step by step about which sen-

tence [entity] were converted in one story.

• Tiered-Propara, Physical State Prediction: Let’s think step by step about what

[entity] were converted to in one sentence in one story.

B.7 Attention Analysis Details

B.7.1 Self-Attention Weight Extraction

To enable our attention analysis for soft HAR in in-context learning, we used the out-

put attentions flag in the Transformers [257] library to extract the raw attentions computed

during inference with LLaMA. An attention mask is applied to the attentions to remove the

attentions associated with the demonstration prompt and special characters, only keeping

the attentions associated with the tokens from the test prompt. We then summed up the

attentions across each sentence in the test prompt, averaged across a subset of the generated

tokens, and normalized by dividing the sum of the attentions. Here, we computed the token

subset’s average attention on a sentence of the story prompt, and we used it to measure the

importance of a sentence to the model’s reasoning outcomes. We then used these normalized

weights to calculate the evaluation criteria proposed in Section 6.3.2.

B.7.2 Attentional Precision and Recall Details

Attentional precision and recall are calculated by converting normalized attention weights

into binary measures of whether attention is correct. To do this, we check whether the
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average attention weight for the relevant segment of language context (i.e., the appropriate

story or sentence(s)) exceeds a threshold. We calculate the average precision and recall over a

set of 9 candidate thresholds centered around 0.1 (0.08 - 0.12) with an interval 0.005 because

on average, there are about 10 sentences in a pair of stories, and all sentences’ attention are

normalized to a sum of 1.

Given this binary measure, we can then classify each PLM output into four combinations

over whether its attention is faithful, and whether its intermediate predictions are coherent

(i.e., consistent or verifiable): true positive, false positive, true negative, and false negative.

We provide some examples here, assuming a static threshold of 0.09. In the story-level

prediction example from Figure 6.6, we calculate the average sentence-wise attention in the

story containing a conversion (i.e., story B), and compare it to the threshold. These values

are 0.590/6 = 0.098 and 0.837/6 = 0.140 for ICL-U and ICL-HAR, respectively. Both

values of ICL-U and ICL-HAR exceeded the threshold, but ICL-U didn’t correctly identify

the sentence that contains a conversion, while ICL-HAR did. Therefore, we classify the

example from ICL-U as false negative and ICL-HAR as true positive. Similarly, in the

physical state detection example from Figure 6.7, we calculate the average sentence-wise

attention on the two conflicting sentences, which are sentences 1 and 5 in story A. These

values are (0.09 + 0.086)/2 = 0.088 and (0.213 + 0.154)/2 = 0.184 for ICL-U and ICL-HAR,

resp. Because ICL-HAR exceeded the threshold but ICL-U didn’t, and ICL-HAR actually

generated the correct response while ICL-U didn’t, we classify the example from ICL-U as

a true negative and ICL-HAR as a true positive.
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TRIP - ICL-HAR

Familiarization Prompts - Physical States (6 of 80):
Physical state options: powered, edible, whole ...
Before Tom turned on the microwave, what was the state of the microwave? The microwave was powered.
Before Tom ate the cereal, what was the state of the cereal? The cereal was edible.
Before Tom cut the banana into slices, what was the state of the banana? The banana was whole.
...
Physical state options: unpowered, inedible, in pieces ...
After Tom unplugged the microwave, what is the state of the microwave? The microwave is now unpowered.
After Tom threw the cereal in the dustbin, what is the state of the cereal? The cereal is now inedible.
After Tom mashed the banana, what is the state of the banana? The banana is now in pieces.

Demonstration Prompts - Physical States (1 of 4):
Story A:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on a plate and tossed the donut in the trash.
5. Mary ate the donut.
Story B:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on the counter.
5. Mary ate the donut.

Story B is more plausible.
In Story A, sentences 4 and 5 conflict with each other.
For sentence 4:
After Mary put the cucumber on a plate and tossed the donut in the trash, what is the state of the donut?
The donut is now inedible.
For sentence 5:
Before Mary ate the donut, what was the state of the donut? The donut was edible.

Test Prompt:
Story A:
1. Ann opened the toolbox and realized that someone took away all of her tools.
2. Ann took out an axe, a pair of scissors, rope and a few other things.
3. Ann put these items in a box and placed them in the trunk of her car.
4. Ann fastened her bicycle to the bicycle rack on her car.
5. Ann went inside the house to get the rest of her gear to put in the car.
Story B:
1. Ann opened the toolbox to get a few things for her camping trip.
2. Ann took out an axe, a pair of scissors, rope and a few other things.
3. Ann put these items in a box and placed them in the trunk of her car.
4. Ann fastened her bicycle to the bicycle rack on her car.
5. Ann went inside the house to get the rest of her gear to put in the car.

LLM Sample Output:
Story B is more plausible.
In Story A, sentences 1 and 2 conflict with each other.
For sentence 1:
After Ann opened the toolbox and realized that someone took away all of her tools, what are the state of the tools?
The tools are now no longer existent.
For sentence 2:
Before Ann took out an axe, a pair of scissors, rope and a few other things, what were the state of the things? The
things were existent.

Figure B.2: Sample prompt used for in-context learning with heuristic-analytic reasoning
(ICL-HAR) on TRIP. Some redundant sections of the prompt are omitted (indicated with
“...” and in section headings).
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Tiered-ProPara - ICL-HAR

Demonstration Prompts (1 of 4):
Story A:
1. Wind and water erode rocks.
2. The wind and water pick up sediment that came off the rocks.
3. Sediment is carried to an area by the wind, water, air, or ice.
4. Sediment is deposited on the same spot many times.
5. The sediment piles on top of other sediment for a long time.
6. The sediment near the bottom is compressed by the weight of newer sediment.
7. The sediment becomes sedimentary rock as it is pushed together by the heavy weight.
Story B:
1. Waves hit the coast.
2. Waves have energy that pushes the water and sediment.
3. The sediment can help erode land like sandpaper.
4. Water washes the sediment back.
5. Some sediment is left as sand.
What happened to sediment?
Sediment is converted in story A.
In story A, sediment is converted in sentence 7.
After the sediment becomes sedimentary rock as it is pushed together by the heavy weight, sediment is converted to
sedimentary rock.

Test Prompt:
Story A:
1. Coal is heated in the boiler.
2. The water tank over the boiler is heated.
3. Creates steam.
4. The steam is funneled to the piston.
5. Piston uses the steam as energy.
6. The piston causes the crankshaft to move.
Story B:
1. Plants obtain water through the soil they are growing in.
2. The plants roots absorb the water from the soil.
3. Transport the water to the parts of the plant where the water is needed.
4. The plant uses the water as part of the photosynthesis process.
5. The plant creates food, called glucose, for itself.
6. The plant uses water to circulate the glucose around the plant to deliver the glucose to where it’s needed.
What happened to water?

LLM Sample Output:
Water is converted in story A.
In story A, water is converted in sentence 3.
After creates steam, water is converted to steam.

Figure B.3: Sample prompt used for in-context learning with heuristic-analytic reasoning
(ICL-HAR) on Tiered-ProPara. Some redundant sections of the prompt are omitted (indi-
cated with “...” and in section headings).
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TRIP - ICL-U Baseline - Plausible Story Selection

Demonstration Prompts (1 of 4):
Story A:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on a plate and tossed the donut in the trash.
5. Mary ate the donut.
Story B:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on the counter.
5. Mary ate the donut.
Story B is more plausible.

Test Prompt:
Story A:
1. Ann opened the toolbox and realized that someone took away all of her tools.
2. Ann took out an axe, a pair of scissors, rope and a few other things.
3. Ann put these items in a box and placed them in the trunk of her car.
4. Ann fastened her bicycle to the bicycle rack on her car.
5. Ann went inside the house to get the rest of her gear to put in the car.
Story B:
1. Ann opened the toolbox to get a few things for her camping trip.
2. Ann took out an axe, a pair of scissors, rope and a few other things.
3. Ann put these items in a box and placed them in the trunk of her car.
4. Ann fastened her bicycle to the bicycle rack on her car.
5. Ann went inside the house to get the rest of her gear to put in the car.

LLM Sample Output:
Story B is more plausible.

Figure B.4: Sample prompt used for plausible story selection step of unstructured in-context
learning (ICL-U) baseline on TRIP. Some redundant sections of the prompt are omitted
(indicated with “...” and in section headings).
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TRIP - ICL-U Baseline - Conflicting Sentence Selection

Demonstration Prompts (1 of 4):
Story A:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on a plate and tossed the donut in the trash.
5. Mary ate the donut.
Story B:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on the counter.
5. Mary ate the donut.
Sentences 4 and 5 conflict with each other in story A.

Test Prompt:
Story A:
1. Ann opened the toolbox and realized that someone took away all of her tools.
2. Ann took out an axe, a pair of scissors, rope and a few other things.
3. Ann put these items in a box and placed them in the trunk of her car.
4. Ann fastened her bicycle to the bicycle rack on her car.
5. Ann went inside the house to get the rest of her gear to put in the car.
Story B:
1. Ann opened the toolbox to get a few things for her camping trip.
2. Ann took out an axe, a pair of scissors, rope and a few other things.
3. Ann put these items in a box and placed them in the trunk of her car.
4. Ann fastened her bicycle to the bicycle rack on her car.
5. Ann went inside the house to get the rest of her gear to put in the car.

LLM Sample Output:
Sentences 1 and 2 conflict with each other in story A.

Figure B.5: Sample prompt used for conflicting sentence selection step of unstructured in-
context learning (ICL-U) baseline on TRIP. Some redundant sections of the prompt are
omitted (indicated with “...” and in section headings).
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TRIP - ICL-U Baseline - Physical State Prediction

Familiarization Prompts - Physical States (6 of 80):
Physical state options: powered, edible, whole ...
Tom turned on the microwave. Before, what was the state of the microwave? The microwave was powered.
Tom ate the cereal. Before, what was the state of the cereal? The cereal was edible.
Tom cut the banana into slices. Before, what was the state of the banana? The banana was whole.
...
Physical state options: unpowered, inedible, in pieces ...
Tom unplugged the microwave. After, what is the state of the microwave? The microwave is now unpowered.
Tom threw the cereal in the dustbin. After, what is the state of the cereal? The cereal is now inedible.
Tom mashed the banana. After, what is the state of the banana? The banana is now in pieces.

Demonstration Prompts (1 of 4):
Story A:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on a plate and tossed the donut in the trash.
5. Mary ate the donut.
Story B:
1. Mary went to the fridge.
2. Mary took out a bowl from the fridge.
3. The bowl had a cucumber and a donut in it.
4. Mary put the cucumber on the counter.
5. Mary ate the donut.
After, what is the state of the donut? The donut is now inedible.
Before, what was the state of the donut? The donut was edible.

Test Prompt:
Story A:
1. Ann opened the toolbox and realized that someone took away all of her tools.
2. Ann took out an axe, a pair of scissors, rope and a few other things.
3. Ann put these items in a box and placed them in the trunk of her car.
4. Ann fastened her bicycle to the bicycle rack on her car.
5. Ann went inside the house to get the rest of her gear to put in the car.
Story B:
1. Ann opened the toolbox to get a few things for her camping trip.
2. Ann took out an axe, a pair of scissors, rope and a few other things.
3. Ann put these items in a box and placed them in the trunk of her car.
4. Ann fastened her bicycle to the bicycle rack on her car.
5. Ann went inside the house to get the rest of her gear to put in the car.

LLM Sample Output:
After, what are the state of the tools? The tools are now no longer existent.
Before, what were the state of the things? The things were existent.

Figure B.6: Sample prompt used for physical state prediction step of unstructured in-context
learning (ICL-U) baseline on TRIP. Some redundant sections of the prompt are omitted
(indicated with “...” and in section headings).
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Tiered-ProPara - ICL-U Baseline - Conversion Story Selection

Demonstration Prompts (1 of 4):
Story A:
1. Wind and water erode rocks.
2. The wind and water pick up sediment that came off the rocks.
3. Sediment is carried to an area by the wind, water, air, or ice.
4. Sediment is deposited on the same spot many times.
5. The sediment piles on top of other sediment for a long time.
6. The sediment near the bottom is compressed by the weight of newer sediment.
7. The sediment becomes sedimentary rock as it is pushed together by the heavy weight.
Story B:
1. Waves hit the coast.
2. Waves have energy that pushes the water and sediment.
3. The sediment can help erode land like sandpaper.
4. Water washes the sediment back.
5. Some sediment is left as sand.
What happened to sediment?
Sediment is converted in story A.

Test Prompt:
Story A:
1. Coal is heated in the boiler.
2. The water tank over the boiler is heated.
3. Creates steam.
4. The steam is funneled to the piston.
5. Piston uses the steam as energy.
6. The piston causes the crankshaft to move.
Story B:
1. Plants obtain water through the soil they are growing in.
2. The plants roots absorb the water from the soil.
3. Transport the water to the parts of the plant where the water is needed.
4. The plant uses the water as part of the photosynthesis process.
5. The plant creates food, called glucose, for itself.
6. The plant uses water to circulate the glucose around the plant to deliver the glucose to where it’s needed.
What happened to water?

LLM Sample Output:
Water is converted in story A.

Figure B.7: Sample prompt used for conversion story selection step of unstructured in-
context learning (ICL-U) baseline on Tiered-ProPara. Some redundant sections of the
prompt are omitted (indicated with “...” and in section headings).
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Tiered-ProPara - ICL-U Baseline - Conversion Sentence Selection

Demonstration Prompts (1 of 4):
Story A:
1. Wind and water erode rocks.
2. The wind and water pick up sediment that came off the rocks.
3. Sediment is carried to an area by the wind, water, air, or ice.
4. Sediment is deposited on the same spot many times.
5. The sediment piles on top of other sediment for a long time.
6. The sediment near the bottom is compressed by the weight of newer sediment.
7. The sediment becomes sedimentary rock as it is pushed together by the heavy weight.
Story B:
1. Waves hit the coast.
2. Waves have energy that pushes the water and sediment.
3. The sediment can help erode land like sandpaper.
4. Water washes the sediment back.
5. Some sediment is left as sand.
What happened to sediment?
Sediment is converted in sentence 7 in story A.

Test Prompt:
Story A:
1. Coal is heated in the boiler.
2. The water tank over the boiler is heated.
3. Creates steam.
4. The steam is funneled to the piston.
5. Piston uses the steam as energy.
6. The piston causes the crankshaft to move.
Story B:
1. Plants obtain water through the soil they are growing in.
2. The plants roots absorb the water from the soil.
3. Transport the water to the parts of the plant where the water is needed.
4. The plant uses the water as part of the photosynthesis process.
5. The plant creates food, called glucose, for itself.
6. The plant uses water to circulate the glucose around the plant to deliver the glucose to where it’s needed.
What happened to water?

LLM Sample Output:
Water is converted in sentence 3 in story A.

Figure B.8: Sample prompt used for conversion sentence selection step of unstructured
in-context learning (ICL-U) baseline on Tiered-ProPara. Some redundant sections of the
prompt are omitted (indicated with “...” and in section headings).
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Tiered-ProPara - ICL-U Baseline - Physical State Prediction

Demonstration Prompts (1 of 4):
Story A:
1. Wind and water erode rocks.
2. The wind and water pick up sediment that came off the rocks.
3. Sediment is carried to an area by the wind, water, air, or ice.
4. Sediment is deposited on the same spot many times.
5. The sediment piles on top of other sediment for a long time.
6. The sediment near the bottom is compressed by the weight of newer sediment.
7. The sediment becomes sedimentary rock as it is pushed together by the heavy weight.
Story B:
1. Waves hit the coast.
2. Waves have energy that pushes the water and sediment.
3. The sediment can help erode land like sandpaper.
4. Water washes the sediment back.
5. Some sediment is left as sand.
What happened to sediment?
Sediment is converted to sedimentary rock.

Test Prompt:
Story A:
1. Coal is heated in the boiler.
2. The water tank over the boiler is heated.
3. Creates steam.
4. The steam is funneled to the piston.
5. Piston uses the steam as energy.
6. The piston causes the crankshaft to move.
Story B:
1. Plants obtain water through the soil they are growing in.
2. The plants roots absorb the water from the soil.
3. Transport the water to the parts of the plant where the water is needed.
4. The plant uses the water as part of the photosynthesis process.
5. The plant creates food, called glucose, for itself.
6. The plant uses water to circulate the glucose around the plant to deliver the glucose to where it’s needed.
What happened to water?

LLM Sample Output:
Water is converted to steam.

Figure B.9: Sample prompt used for conversion entity prediction step of unstructured
in-context learning (ICL-U) baseline on Tiered-ProPara. Some redundant sections of the
prompt are omitted (indicated with “...” and in section headings).
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APPENDIX C

Implementation Details for Procedural

Mistake Detection Strategies

In this appendix, we present several implementation details for the results presented in

Chapter 8.

C.1 Coherence Metrics Human Study Details

To collect the human judgements reported in Chapter 8.2 when introducing our proposed

metrics for relevance and informativeness, we randomly sampled the outputs for 50 iterations

of LLaVA’s self-dialog from two combinations of evaluated approaches:

• Likelihood-based question ranking

• Coherence-based question ranking augmented with question candidates from in-context

learning

For both relevance and informativeness annotation, we provided the following background

for the task:

Imagine you just had eye surgery, and are currently unable to see. You’re per-

forming a task you’re familiar with, but need help to determine whether you

successfully completed it. You video call a friend (who is unfamiliar with the

task) and show them what you’re working on. You then ask them some yes/no

questions to figure out whether you successfully completed the task.

Relevance annotation instructions and example. Annotators are provided the fol-

lowing instructions for annotating relevance:

For each annotation task, you will be given the following information:
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• A sentence describing the procedure you’re trying to perform.

• An optional list of previous questions you already asked, and their an-

swers.

• A potential next question you could ask your friend.

You must rate how relevant the potential next question is. By relevant, we

mean: given the previous questions and answers, how helpful could an

answer to this question be in determining whether you successfully

completed the task?

We recruit 5 annotators, each of which annotates 10 samples. One sample is listed below:

Sentence: Drop the bowls on the table with your hand

Previous questions and answers:

1. Are the bowls on the table? (Answer: Yes)

2. Is the person holding the bowls in their hand? (Answer: No)

Potential next question: Is the person about to drop the bowls on the table?

Your rating:

• 1 (very irrelevant)

• 2 (slightly irrelevant)

• 3 (neutral; may or may not be relevant)

• 4 (slightly relevant)

• 5 (very relevant)

• Instructions Unclear

Informativeness annotation instructions and example. Annotators are provided the

following instructions for annotating informativeness:

For each annotation task, you will be given the following information:

• A sentence describing the procedure you’re trying to perform.

• A list of questions you asked your friend, and their answers.

You must rate how informative the questions and answers are. By informative,

we mean: based on all the information you have, how sure are you

about whether you succeeded?
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We recruit 5 annotators, each of which annotates 10 samples. One sample is listed below:

Sentence: Clean the bowl

Previous questions and answers: None

Last question: Is there a bowl in the image? Last answer: Yes

Your rating:

• 1 (very uninformative/unsure)

• 2 (slightly uninformative/unsure)

• 3 (neutral; may or may not be relevant)

• 4 (slightly informative/sure)

• 5 (very informative/sure)

• Instructions Unclear

C.2 Self-Dialog Prompt Templates

When prompting vision-and-language models (VLMs) to generate questions, we use the

following prompt template for the bottom-up approach:

This is a photo of someone working on the procedure “⟨procedural text⟩”. I will ask
a series of different yes/no questions to gather information about the scene, then

use it to determine whether the person has successfully executed the procedure.

The goal is to extract as much relevant information as possible from the scene,

so I will not repeat questions.

Q:

For the top-down approach, we use the following prompt template:

This is a photo of someone working on the procedure “⟨procedural text⟩”. I will

ask a series of different yes/no questions to determine whether the person has

successfully executed the procedure, then explain why based on information about

the scene. The goal is to extract as much relevant information as possible from

the scene, so I will not repeat questions.

Q:
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Once a question is generated, we append it to the prompt, then prompt the VLM again

with “A:” to elicit an answer. Questions and answers are generated iteratively until the

stopping criteria described in Chapter 8.4 are met. To prompt the VLM to judge the success

of a procedure, we use the following prompt:

Based on the image and above information, has the procedure “⟨procedural text⟩”
been successfully executed?

C.3 Rephrasing Prompt Details

As discussed in Chapter 8.2.1, we use a fine-tuned NLI model to judge the success of proce-

dures given questions and answers. In order to convert questions and answers into declarative

statements to pass into the NLI model, we prompt a VLM with the following 10 in-context

demonstrations of rephrasing before prompting it to rephrase a question and answer for the

task at hand:

1. Question: Is there a bowl on the table?

Answer: Yes

Statement: There is a bowl on the table.

2. Question: Are the eggs cracked?

Answer: No

Statement: The eggs are not cracked.

3. Question: Does the cardboard box look open?

Answer: Yes

Statement: The cardboard box looks open.

4. Question: Are there any leaves outside of the basket?

Answer: No

Statement: There are not any leaves outside of the basket.

5. Question: Is the orange peeled?

Answer: Yes

Statement: The orange is peeled.

6. Question: Is the mug empty?

Answer: No

Statement: The mug is not empty.
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7. Question: Are there hedge trimmers in the image?

Answer: Yes

Statement: There are hedge trimmers in the image.

8. Question: Has the light switch been turned on?

Answer: No

Statement: The light switch has not been turned on.

9. Question: Does the table have any cups on it?

Answer: Yes

Statement: The table has cups on it.

10. Question: Is the cabinet closed?

Answer: No

Statement: The cabinet is not closed.

C.4 Example Questions for In-Context Learning in

Question Generation

As discussed in Chapter 8.5.2, we condition VLMs with sets of human-written questions

for 20 procedures from the Ego4D for Procedural Mistake Detection (Ego4D-PMD) dataset.

The annotated procedures (underlined) and questions (italicized) are listed below:

1. Soak the sponge in a soapy water with your hands

(a) Is there a sponge?

(b) Is the sponge in water?

(c) Is the water soapy?

2. Open the bottle

(a) Is there a bottle in the image?

(b) Is the bottle open?

(c) Does the bottle have a lid on it?

3. Take the baking tray away from the table

(a) Can you see a baking tray?

(b) Is the baking tray on the table?

(c) Is the baking tray picked up by someone?
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4. Turn on a torch light

(a) Is there a torch light in the photo?

(b) Is the torch light powered on?

(c) Is the torch light lit up?

5. Fold the right edge of the wrapper

(a) Is there a wrapper in the image?

(b) Is the wrapper completely flat?

(c) Is the right edge of the wrapper folded?

6. Pour the water into the blue container

(a) Do you see a blue container anywhere?

(b) Is there water in the blue container?

(c) Is the blue container empty?

7. Paint the patio with the paint brush

(a) Is this a photo of a patio?

(b) Is the patio painted?

(c) Is someone holding a paint brush?

8. Spread the black peas on the salad with the spoon in your hand

(a) Is there a salad?

(b) Are there black peas on the salad?

(c) Is there a spoon in someone’s hand?

9. Scoop paint from the pallet on the table with the paint brush

(a) Do you see a paint brush and a paint palette?

(b) Is there paint on the paint brush?

(c) Is the paint brush in someone’s hand?

10. Wash the car with a sponge in your hand

(a) Do you see a car?

(b) Is the car clean?

(c) Is the sponge being held?

11. Pick the scrubber from the sink

(a) Do you see a scrubber somewhere?

(b) Is the scrubber in the sink?

(c) Is the scrubber in someone’s hand?
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12. Peel the onion

(a) Is there an onion in the image?

(b) Is the onion’s skin removed?

(c) Is the onion peeled?

13. Put the dirt in the dust bin

(a) Is there a dust bin?

(b) Is there dirt in the dust bin?

(c) Is there any dirt outside of the dust bin?

14. Cut dough into two

(a) Do you see any dough?

(b) Is the dough in two pieces?

(c) Is the dough whole?

15. Break the walnut with the nutcracker in your hand

(a) Do you see a walnut?

(b) Is the walnut cracked?

(c) Is there a nut cracker in someone’s hand?

16. Turn off the tap

(a) Is there a tap in the photo?

(b) Is the water running?

(c) Is the faucet switched off?

17. Heat the edge of the bag with the lighter

(a) Do you see a bag and a lighter?

(b) Is there a flame coming from the lighter?

(c) Is the lighter near the bag?

18. Close the fridge

(a) Is there a fridge?

(b) Is the fridge open?

(c) Can you see inside the fridge?

19. Chop green beans with a knife on the chopping board

(a) Do you see green beans on a cutting board?

(b) Are the green beans sliced?

(c) Is someone using a knife?
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20. Drop the brush in your hand on the oven

(a) Is there a brush in the scene?

(b) Is there an oven?

(c) Is the brush on the oven?
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rhonen, David Traum, and Llúıs Màrquez, editors, Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 1441–1451, Florence,
Italy, 2019. Association for Computational Linguistics.

[276] Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, and Mengnan Du. Explainability for large language
models: A survey. ACM Trans. Intell. Syst. Technol., 15(2), 2024.

[277] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances
in Neural Information Processing Systems, volume 36, pages 46595–46623. Curran
Associates, Inc., 2023.

165



[278] Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth. “going on a vacation” takes
longer than “going for a walk”: A study of temporal commonsense understanding. In
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3363–3369, Hong Kong, China, 2019. Association for Computational Linguistics.

[279] Ben Zhou, Kyle Richardson, Qiang Ning, Tushar Khot, Ashish Sabharwal, and Dan
Roth. Temporal reasoning on implicit events from distant supervision. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 1361–1371, Online, 2021.
Association for Computational Linguistics.

[280] Kaiwen Zhou, Kwonjoon Lee, Teruhisa Misu, and Xin Wang. ViCor: Bridging visual
understanding and commonsense reasoning with large language models. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for
Computational Linguistics: ACL 2024, pages 10783–10795, Bangkok, Thailand, 2024.
Association for Computational Linguistics.

166


	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Benchmarking Commonsense Reasoning in NLP Systems
	Applying Foundational Language Models to Commonsense NLU Tasks
	Contributions

	Related Work
	Interpreting and Evaluating Reasoning in Language Models
	Benchmarking Physical Commonsense Reasoning in AI Systems
	Improving Reasoning in Language Models
	Applying Dual Process Theory in AI
	Grounded Language Understanding in Foundational Multimodal Models
	Procedural Mistake Detection for Task Guidance

	Consistent Commonsense Reasoning in Language Understanding
	Defining Consistency in Text Classification
	Annotating Text Classification Benchmarks for Consistency Evaluation
	Evaluating the Consistency of Fine-Tuned LMs
	Summary of Findings

	Verifiable Physical Commonsense Reasoning in Language Understanding
	Tiered Reasoning for Intuitive Physics (TRIP)
	Defining Verifiability in TRIP

	Coherence of Physical Commonsense Reasoning in Fine-Tuned Language Models
	Cognitively Motivated Strategies for Coherent Physical Commonsense Reasoning
	Reframing ProPara for Coherent Physical Commonsense Reasoning
	Heuristic-Analytic Reasoning for LM Fine-Tuning
	Heuristic-Analytic Reasoning for LM In-Context Learning
	Summary of Findings

	Physical Perception and Causality in Foundational Multimodal Representations
	Zero-Shot Action-Effect Ranking
	Zero-Shot Action-Effect Ranking with Intuitive Action Simulation
	Summary of Findings

	Coherent Physical Commonsense Reasoning for Interpretable Procedural Mistake Detection in Video Frames
	Redefining Mistake Detection for Interpretability and Coherence
	Evaluating Coherence of Procedural Mistake Detection
	Applying VLMs to Interpretable Procedural Mistake Detection
	Impact of Reasoning Direction
	Encouraging Coherence in Question Selection
	Impact of Visual Hallucination Mitigation Strategies
	Testing Results and Analysis
	Summary of Findings

	Conclusions
	Review of Research Questions
	Limitations and Future Directions

	Appendices
	Implementation Details and Supplementary Results for TRIP Baselines
	Fine-Tuning Details for TRIP Baselines
	Fine-Tuning Details for TRIP Baselines
	Supplementary Results for TRIP Baselines
	Supplementary Results for TRIP Baselines

	Implementation Details and Supplementary Results for Cognitively Motivated Reasoning Strategies
	Tiered-ProPara Generation Details
	Tiered-ProPara Generation Details
	Language Model Fine-Tuning Details
	Language Model Fine-Tuning Details
	Statistical Significance Testing
	Statistical Significance Testing
	HAR for Multi-Prompt In-Context Learning
	HAR for Multi-Prompt In-Context Learning
	Implicit vs. Explicit Conflicts on TRIP
	Implicit vs. Explicit Conflicts on TRIP
	Language Model Prompt Details
	Language Model Prompt Details
	Attention Analysis Details
	Attention Analysis Details

	Implementation Details for Procedural Mistake Detection Strategies
	Coherence Metrics Human Study Details
	Coherence Metrics Human Study Details
	Self-Dialog Prompt Templates
	Self-Dialog Prompt Templates
	Rephrasing Prompt Details
	Rephrasing Prompt Details
	Example Questions for In-Context Learning in Question Generation
	Example Questions for In-Context Learning in Question Generation

	Bibliography

