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1. Introduction
One aspect of diffraction theory which is of practical importance at

the present time is the study of bodies which are characterized by a low back-
scattering cross section over a range of incidence angles. Quite frequently the
basic shape is a long thin body of revolution, and when this is viewed at or near
nose-on, some of the major features of the return can be attributed to the travel-
ling waves which are excited on the surface (Peters, 1958; Goodrich and
Kazarinoff, 1962). In many instances these represent the dominant portion of
the current distribution, and the extent to which it is possible to reduce the cross
section by, for example, small changes in shape is then determined by the degree
to which the travelling waves can be reduced or, hopefully, suppressed entirely.
It is therefore desirable to give some attention to the manner in which travelling
waves are excited, with particular reference to the influence of any surface

'singularities’ such as discontinuities in the slope or derivatives thereof.
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As a contribution to this end we consider the launching of travelling
waves by the effective field singularity represented by the curve on the body
separating the lit region from the shadow. Since the incident field is here
moving parallel to the surface, intuitive reasoning suggests that the neighbourhood
of the shadow boundary could act as a source of travelling waves, but because of
the inherent complication of the problem it is difficult to calculate the power going
into the travelling wave as opposed to the power in the radiated field. In order to
estimate the efficiency of the shadow boundary as a source of these waves, we shall
therefore restrict ourselves to the simpler problem in which the primary source of
energy is itself placed on the surface of the body, and is so chosen as to excite only
the fundamental travelling wave. The body can then be approximated by an infinite
cylinder of circular cross section and large (but finite) conductivity, allowing a

direct comparison of the powers via their integral expressions.

2. TFormulation of the Problem

Consider an infinitely long circular cylinder of radius a which is excited
by a circumferential ring current located at a distance r,.- 2 from the axis. If the
surface impedance of the cylinder is n , the boundary conditions on the total field
can be written as

E6=—nZHZ 1)

EZ =nZH 0 (2)
at r =a, where (r, 6, z) are cylindrical polar coordinates with the z axis coincident

with the axis of the cylinder, and Z is the intrinsic impedance of free space.

2



The fundumental travelling wave is the one with lowest attenuation in
the directior oi propagation, and this is conseguently the wave of most interest
in practical applications. Since its magnetic vector is entirely transverse with no
variatior i the 6 direction it is convenient to choose as the source of excitation
o nacrotie g current of constant amplitude and phase, Withoutl loss of generality, ths
iing can be chosen to lie in the plane z =0, and the incident ficld can then be

represented by the single component (electric) Hertz vector

7 =(0, 0, U)

2T .
where ; elu
U = — de _, (3)
u 0
0
with
u=k r’+r® -2rr cos(6-6 )+ z%. (4)
o) 0 o}

-iwt , . .
The time convention is here e “* and the coordinates of a variable point on the
ring source are denoted by the suffix 'o'.

In terms of the Hertz vector 7 the components of the incident field are

i p2ul o . Ul
E = s 2 O} k U1+ 3 (5)
oroz a 9
Z
i an
H = ikY(© —,0), (6)
= or

and this is a transverse magnetic field as required. From the boundary conditions
it now follows that the scattered field must also be of similar type, so that only the

sccond of the two conditions is relevant, and by introducing a single component



Hertz vector to represent the scattered field, the condition (2) becomes

2 v .
R+ L i 1wl od) =0, (7)
o2 or
oz
which can be written alternatively as
. +ikn r 2 (U1+ US) =0 (8)

.‘ or or
at r =a. This can be satisfied by inserting a suitable expression for US, but in

order to decide what is the appropriate form it is necessary to examine in more

detail the structure of the incident field.

3. The Incident Field

Let us consider first the power radiated by the source. If R is the

(spherical) radial variable defined as R = r®+ 2%, then at large distances from the

current loop

r?-2rr cos(6-6 )
0 0

u~ kR “1+ ,
2 R
giving
27
r2 s krr
i 1 ik(Rt+ O/2R) / .o
U R © exp- 13 cos(6 60)» dGO
"0

i.e.

. + 2
1 e1k(R ro? /oR)

i
U 27 Jo(krro/R) - R (9)

where JO(X) is the Bessel function of zero order. For R >>r0 the incident field is



therefore

r i
E=-% ®'% ® U
. 2
.- £ 1, 0v ¢
= R
and the resulting Poynting vector is
. ~ ‘ ‘ N2
1. i i r z (Tkr ,‘
— = — — x t"‘
,E H =0 R ZY‘ 2 Jo(krro/R);
R g

From this it follows immediately that the radial flow of power is

ok 22
B s1n¢Jo(kr051n¢)" )

2Y -

where ( is defined by the relations

r=Rsinf, z=Rcos§,

and consequently the total power radiated by the current loop is

T/2
i 32 /[ 3, -2
P =8Y71k | sin ¢<‘Jo(kro sin @) - dg. (10)
‘/ - '
0

When kro =0 the integral in (10) is clearly 2/3, but for more general
values of kro no precise analytical evaluation is possible. Nevertheless, numerical

results can be found for the smaller values of kro by introducing the series expansion

of Jo(x), and for larger values by numerical integration, and the data obtained in this



way is plotted in Figure 1. It will be observed that as kro increases the total power

radiated decreases in an oscillatory manner, with the first minimum occurring for
+

kro approximately 2.6.

For sufficiently large kro an alternative approach to the integral is to
apply the method of steepest descents. Since the dominant contribution comes from
values of { in the neighbourhood of the upper limit, the Bessel function can be
replaced by its asymptotic formula for large arguments to give

pl_gy k2 — /f sin?g-1+ sin(2kr_sin ) " d.

Hence
AN

Pl 8y 1K,

) 2 {
€1 - —== cos (2kr,+ %—)" 1)
fhr m.Krg J

showing a decreasing amplitude of oscillation about the me an value This is
in excellent agreement with the computed points (see Figure 1.)

Having calculated the power radiated by the loop, we now turn to the
question of the incident field structure. For this purpose the original expression

for U is not convenient, and it is necessary to seek an alternative form which

will bring out the dependence on the coordinate z.

+ The positions of at least the first few minima are similar to the zeros of Jo(kro).
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To begin with we observe that

1/2-

i ” 1/2,
T R PSS /2(r2+ r? - 2rr cos(6- ) d- (12)
u 0 "o 0 o

A
\

(see, for example, Campbell and Foster, 1948) where Ho(x) is the Hankel function
of the first kind of order zero; the path C extends from - to o passing above
the branch point at ~ = -k and below the branch point at ~ = k, and the chosen
branch of (k%- 7_2)1/ 2 is that which reduces to k at ~=0. But

g 1 1/2
H - (k%72 /2(1'2+r2 - 2rr cos(6-6 ) }1/2 =
) 0 ) o/

o (13)
= L H (rj'kz—fgz}J (r Jk2-12) em(@—eo) forr>r
—d) n n o (0]
©
= J (r u,»vkz- ¥2)H (r \/kg’:'gg)em(e—%) for r<r ;
n n o o (14)
-0

moreover,

/21r
; eln(e‘eo) d60 =27 5 (n)



where - is the standard delta function, and using this in conjunction with

equations (3), (12),(13) and (14) the formula for U becomes

el T k- H(r ) d, rer, (15)
0 0O O

= = / el?” H (r -_‘kz—;*zu)J (r —IZE——”—Z) dr, r>r (16)
) 0 0

The dependence on the variable z is here made explicit.

4, The Scattered Field

Of the above expressions only the first is required to satisfy the boundary

condition at r =a, and its form suggests that for the scattered field we take

_im [ izt T2 2 T2 22\ e~ a7
U = ; e HO(X‘k—v )Ho(l"ogk'ﬂ ) f(, )d' (]-7)

)]
o
<

where f(7) is to be determined. Since the radiation condition is now satisfied
automatically by virtue of the Hankel function dependence on r, it only remains
to calculate f(7) using the boundary condition, and if (15) and (17) are substituted

into (7) we have

K72 g (a i ) ikn 3! (a -7
(7)=- (18)

P

| H (2 {k*-7%)- ikn H_(a {k*-7%)




in which the prime denotes differentiation with respect to the whole argument.

The Hertz vector for the scattered field is therefore

7 =(0, 0, U%),

-2 I (a - 72)-ikn T (a K77

e g (r K-29H (r k2-79)d7,
(o) } O O

k| —
k2- ':250(3 k- +2)-ikn H'O(a Kk2-"2)

(19)

which represents the formal solution of the problem, and from this the field components

can be obtained by carrying out the differentiations indicated in equations (5) and (6).
For practical purposes the above solution is of little value as it stands

and the main characteristics of the scattered field are by no means evident from (19).

Some simplification is therefore necessary and in the course ofthis one of our primary

objectives is to bring out the contribution of the travelling wave; however, the sepa-

ration into travelling wave and radiated field appears as a natural consequence if the

path of integration is deformed into one of steepest descents, and to this end we

introduce the new variable «, where

T =k cos a.

The equation for U® then becomes

Pad

sin o Jo(ka sin @)-in J;(ka sin @)

4
s . <
U= g /_j oikz cos @ H (kr sin )
sina H (ka sin @)- in H' (ka sin a)

* H (kr sine) sin o do
o o



with S(7/2) as a steepest descents contour passing through the real angle 7/2.

Due to the logarithmic singularity of the Hankel function at the zero of
its argument, branch points exist at ¢ =0 and 7, and for convenience the branch
cuts are taken as shown in Figure 2. In addition the integrand has poles arising
from the zeros of

i7

Ho(ka sin @) - H:)(ka sin @) (21)

sin &
as a function of @, and these are in fact the sources of the travelling waves. A
detailed discussion is given later, and for the moment it suffices to say that if

ka M < 0.1, say, the relevant zero has ka 'sina = 0(10—1) or less, with arg
sina - 1100. In terms of @ we now have the two zeros a and 7 - a outside but
adjacent to the strip 0< Re ¢ < 7, and these are indicated in Figure 2.

To evaluate the integral in (20) the obvious approach is to apply a steepest
descents analysis. If ka =0(10) or greater (as is true in most cases of practical
interest), it follows that kr sin a1 providing only that the dominant contribution
to the integral does not come from values of @ in the neighbourhood of zero or 7.
Proceeding on the assumption that this requirement is fulfilled, the function
Ho(kr sin ) can be replaced by the leading term of its asymptotic expansion for large

arguments to give

s hﬂéf ei7f/4 / eikR cos(a-f)

f(k cos @) Ho(kro sin @) (sin a)l'? da
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where R and @ are as previously defined, and inasmuchas the saddle point is

now @ = , the substitution of the asymptotic formula for Ho(kr sin @) is justified

if kr? = R. It will be observed that this condition is independent of the surface
impedance 1 and consequently it is not entirely a statement of the minimum distance
from the cylinder at which the influence of the travelling wave can be ignored. It is
therefore feasible that in a displacement of the path of integration so as to pass
through the saddle point a pole of the travelling wave could be included even though
the above condition is still fulfilled. Practically, however, this is unlikely, and in
the cases under investigation here the magnitude of ao is such that the pole can be
included only by violating the condition.

If kr® >> R a simple displacement of the path of integration in (20) gives

yS. 21 | Jr/4 / (KR cos(e-f)
[ kR sin § j
s(@)

f(k cos a) Ho(kro sin a/)(sina)l"2 do

and since the non-exponential portion of the integrand is slowly varying in the neighbour-

hood of the saddle point, we have immediately that

ikR
U~ 2r f(k cos @ )Ho(kro sin §) Ek_ﬁ_ ) (22)

which is entirely a radiating field. The polar diagram is 'spikey' with a continuous

succession of peaks and near-zeros, but the average level shows little variation with ¢
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This is clearly seen if ka is large enough to allow Jo(ka sin @) and Ho(ka sin ¢)

to be replaced by their asymptotic forms, in which event

" -gin§
i-i—

o 2ika sin g

N |

f(k cos ) ~ - ,
+ sin ¢

. : T
ar e—1(ka sin § 4 ) cos (ka sin @ - 2175 ),
and since ro > ait follows that
| . _ . 'kR
S i o2n ik(ry-a)sin ¢ . 7€
U szm e cos(kasm¢—>4) R (23)

This is independent of 7 implying that away from the cylinder the radiated field is
unaffected by the surface impedance and is the same as if the cylinder had been
perfectly conducting. Even if r, > a the polar diagram is equivalent to that of

a source on the surface apart from a phase factor determined by the ’projected
distance between the real and image currents.

5. The Travelling Wave

2
When kR »>1 but (kr)~ not much greater than kR the above analysis

fails and a detailed evaluation of the integral in (20) is no longer possible unless
kr sin o is small in the neighbourhood of the saddle point. In this case the Hankel

function can be replaced by its logarithmic approximation, viz.

_ 2i ~ kr sin o L
Ho( kr sin @) ~~ = log 5 + ! (24 )
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where is Euler's constant (0.5772157..... ), and sincer - a

f(k cos a) - K-i (1+1

) sin @,

[\

leading to the following expression for the integranc in (20):

. ka . ikz cos @, Krsina . . . 3
i - (1+1i 5 ) e (log 5+ ) Ho(m"o sin @) sin a.

The restrictions on kR and kr imply k {z}>> 1 and consequently we can again think

in terms of a steepest descents evaluation with kz being the large parameter. The
saddle point is now @ =0 for  small or o =7 for 7 - § small, and since the integrand
vanishes at least as rapidly as (log sin a)2 sin3a in either case, we have for the

radiated field

v~ 0 (25)

in the immediate vicinity of the cylinder (i.e. for sin @ sufficiently small).

On the other hand, in a displacement of the path of integration to pass
through this new saddle point the'pole at « =a or m-o will be included, leading to
a residue contribution which is, in fact, the travelling wave. The residues at « = afo
and T-a differ only in the sign of kz and obviously correspond to waves travelling
in opposite directions. If o, is the pole adjacent to the saddle point o= 0 this will be
included in a negative sense in any displacement of the path to pass through the origin,
whereas the residue at n—ao will have a positive sign associated with it, but these

things apart the two waves are identical in all respects and it is sufficient to consider
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only the wave which travels in the positive z direction. In effect, therefore, we are
restricting attention to the case in which @ is small.
The pole from which the travelling wave originates is provided by the

function f(k cos @) anc is given by the smalle st root of

s

i7

Ho(ka sin @) = H;(ka sina) | (26)

sin o

Unfortunately, a complete analytical solution of this equation is not possible and

in order to proceed on a numerical basis it is necessary to set some bounds on the
values of ™ and ka to be considered. Inasmuch as our purpose is to investigate
travelling waves as they appear in radar scattering problems, 7 can be regarded
as the surface impedance of a highly conducting metal. A typical value for 7 ' is
then 10—4, corresponding to the conductivity of copper at a frequency of order 10 KMc,

and since the complex refractive index is now dominated by the conduction current

term,
arg 7 =-1/4.

Under these conditions it is a relatively straightforward matter to determine sin a
and if ka ©  is not greater than (say) 0.1, the solution of equation (26) can be found
by inserting the logarithmic approximation (24) for the Hankel function. The details

of the derivation are given in Goubau (1950) and it is there shown that

2 w7/ - Py )

sina =
0 ka

where the real quantities b and B are related by the equations
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blogh =- kz—a © cos B,

-B
tan B = TL

log b

These can be solved numerically, and in Figures 3 and 4 the resulting values

of b and f are plotted as functions of ka i for 10-6 < ka T < 10_1, It now

-4

r

only remains to specify to determine a for different ka, and taking ™ =10

some values for ozo are as follows:

ka 107 10 10°
o 6.5%10° 7.9x107% 1.2x107%
arg a_ 110, 9° 110.0° 106.1°

At the pole o =a the residue of the integrand in equation (20) is

. L .
) sina_J (ka sine )-im J (ka sina )
e1kz Ccos ag 0o 0 o 0

~

73% < sin a Ho(ka sin a) -i7 H'O(ka sin @) -

ooy

‘H (kr sinea ) H (kr sine ) sina
0 oo o 0 o

Using equation (26) and the differential equation for the Hankel function the denominator

becomes cosa - i

0 o~y . . .
> < 27 + ika (2~ sin? 'r H (kasina )
o, 0 o

~
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and since J O(ka sin ao) can also be replaced by the first term of its series expansion,

the residue can be written as

R . 2
o H(kra) ikz 1-0

e HO(KI' ao)

27 +ika (7 2- afi ) Ho(ka ao)

which has the general form characteristic of a travelling wave. For small § we there-

fore have
2r* * o Hokroo) o 1at
| H l_
US o — 2 0 g ), (20)

27 +ika ( n2- a'zo ) Ho(ka 0[0)

which reduces to
2712 no? 1.2
i1-
v~ - 0 elkz 117% Ho(kr ao) (28)

27 +ika(n2- af))

when the ring source is on the surface of the cylinder. The amplitude factor in (28)
_ -2 -6 . -1 3
decreases uniformly from 2.0 x10 ~to1l.0x 10 ~ as ka increases from 10 “ to 10,
implying that the 'launching efficiency' of the source decreases with increasing size
of cylinder. In fact the amplitude is almost proportional to 1/ka, but this must not

be interpreted as indicating a total power which is independent of the radius of the

cylinder.
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6. Discussion

The above derivation of the travelling wave contribution has been carried
out under the assumption that ka © .« 1, This is certainly the situation which is
likely to be encountered in practical cross section problems, but it is worth pointing
out that if ka is so large that ka ©!>>1, the solution of equation (26) is trivial.
Substituting the asymptotic expansion of the Hankel function for large argument we

obtain immediately

sin o =- ” (29)
which is comparable in magnitude to the results found in Section 5, but the most
interesting feature is that now the travelling wave is nothing more than the Sommerfeld
surface wave which a plane can support, with an amplitude which is exponentially
attenuated away from the cylinder according to a factor e_ir kr., This is in contrast
to the behavior if ka ™ << 1 when it is necessary to go out to a distance of many tens
of radii before the exponential decay sets in. Consequently, only with the very largest
cylinders is it true that the travelling wave energy is confined to the immediate vicinity
of the body, and even if ka = 103 the energy density may initially increase on moving
away from the surface.

To make a direct calculation of the power in the travelling wave it is necessary

to determine the field components and then integrate the z component of the Poynting
vector over a plane normal to the axis of the cylinder. In the simplest case of a ring

source actually on the cylinder the power contained is given approximately by the
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expression

27 a

! , @
ol - ovr A
0]

27 +ika(v2- 2)
(6]

}ka

but we are now stuck by our inability to evaluate the integral, and even a numerical
treatment would be a difficult undertaking in view of the complex nature of ao.

Only if ka is so large that ka g‘aoj' >>1 is any real progress possible, and bearing

in mind that o == 7, the asymptotic expansion of the Hankel function can be inserted

into (30) to give

pie 2 2Y7r% — e

ka (D)

This is extremely small and although (31) does not necessarily provide any indication
of the powers which would be obtained with cylinders of more practical size, the fact
that the smallness is due in part to the modulus in (30) would appear to mitigate
against Pt ever achieving a reasonable magnitude. Indeed, it seems likely that only
in the case of very thin wires (ka<< 1) can Pt become a significant fraction of Pi.
Further information in support of this conclusion can be obtained by con-
sidering the radiated field. If the ring source is on the surface so that ro=a, the

Hertz vector for the radiated field reduces to

ikR

[

kR

cos(ka sin @ - jz— ) (32)

_2m
2‘5kasin¢
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(see equation 23), and this is identical to the expression for the incident Hertz
vector (see equation &) when approximated under the same condition ka sin ¢ >> 1.
It follows that to this order of approximation the power in the radiated field is the
same as that in the incident field when the source is placed in vacuo, and only an
infinitesimal amount can be contained in the travelling wave; but since beth
Ui and U° decrease with increasing r, whereas the travelling wave amplitude
is independent of ro, the smaller the radius of the ring source the larger the
power available for the travelling wave, As a result a source on the surface of
the cylinder is the most effective in launching travelling waves, but it is still
far from efficient as a launching mechanism.
7. Conclusion
Although the integrals representing the powers contained in the radiated

field and the travelling wave are not amenable to computation, an examination of
their form suggests that the latter is insignificant in comparison with the former,
Inasmuch as the ring current was chosen in order to facilitate the coupling to the
travelling wave, it would appear that in an actual diffraction problem where (for
example) a plane wave is incident, the shadow boundary will not serve to launch
the wave, and we must look elsewhere for the source. In effect, therefore, we are
left with the nose of the body as the only possibility.
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FIGURE 2 - STEEPEST DESCENTS PATIl IN COMPLEX o« PLANE

22



12

====

—
==

===

x 10*

Vsalel

==

—
=

pe o~ O
L 1t oo~ © 0 o« @ o~

-1

\01Z

pa—

kalnl

SNOISIAIQ OL X SAIDAD S
V'STN NI 3AVW ‘0D ¥3ASSA W N3AdANaAN we.x
16-6S€ DIWHLINVYDOT-IN3S

-t 0~ W o0 - nL

0



ﬁf it ]
i °
T
i
] il
_
i
I
0
{11} ]
I I
I
. i il I
ﬁ ! e i it
s o
o
| il o+
i I il
i
| i il
I | il
| | __ o
¥ w 5_ o™
W ldonor~ © 0 < P o ' .0
C 0N @ =
D 0~ lci ©rm e e SNOISIAIQ OL X S3TIDAD S

¥'S'N NI 3aViN

16-6S€E

‘0D ¥ISSI B T3ddnad
DIWHLINVYOOT-IN3S

M



Legends for Figures

Fig. 1 Radiated power as function of loop radius
Fig. 2 Steepest descents path in complex @ plane
Fig. 3

Fig. 4
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