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PREFACE

méﬂpg}actjiolution of Hallé;'s integral equation has
long been a goal of many researchers in the theory of
linear antennas. This thesis presents a method of
solution for a class of integral equations which, in
particular, yields a closed form}solution to Hallé;'s
equation, .
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be found in P. M. Morse and H, Feshbach's "Methods of
Theoretical Physics" in the chapter on integral equations.
Professor Feshbach was most kind in communicating his
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assistance is kindly acknowledged.
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An error has been brought to my attention by Dr. Olov Einarsson of the
Radiation Laboratory, who has pointed out that one cannot hope to solve the system
of equations (3.1-7) of Chapter I when a or b is infinite.

If one proceeds as indicated in the thesis it will always be found that

b

szj exp(-y))H_(y)gl)dy , (3.1-6)
a

is independent of the limits a and b. However, this equation gives us the m'th

coefficient in the expansion of the function

g(y) a<xg<hb

t0 elsewhere /

in series of Hermite polfnomials; and
r@® 7

Z
C_= | expby’)H_(n)hiy)dy (3.1-12)

is the m'th coefficient in the expansion of

r® ~
1 _ f(s) _
h(y)= 5 exp(-isy) —— ds (3.1-11)
Yoo K(s)

in series of Hermite polynomials. Since the Hermite polynomials form a complete
set it would follow that g(y)=h(y) almost everywhere, which is certainly incorrect.
This shortcoming of the procedure can, however, be overcome by operating
directly on the system of equations (3. 1-7) and the corresponding one for the
equation with infinite limits without making any attempt to eliminate the C's,
That is, one has )

®
f(k)(0)= Z (-)n a'ncn+k
n=o0



where b

i —y2
C ="' e Hm(Y)g(Y)dy
and a
10 0)
k) T
£7(0)= ;—a( ) ancn+k
n=o
where ©
,f/, —y2
t =
cr [ H @)y .
=

From this one can write

@ g L,
SN oS .
o) anC&k /. ) aC ..
n=o n=o
or explicitly ’
e
- - - - 1 ' _
CO alcl+a202 C0 alcl+a202
- - - - 1 t_
Cl a102+a203 Cl a102+a203
- + - = O - 1 1.
C2 alC3 3204 02 alC3+azC4

If one multiplies the second equation by

(-inm)
al+

(b-a)1!
and adds it to the first equation, this gives

(-in7) ' e (-in7) Vanl OF
CO+(b-a)11C1+a'2C2 ce —CO+ boa)l ! Cl+a202 een

where a'2, a’3, ... are the new coefficients. We can now multiply the third
equation by
Ll (-in7)?
2" (b-a)22!

and add it to the first to give



(-in7) (-in7)?
— +
Cot ot C1F BoayZar Ca 305" -

(- m7r) (-in7)?
=t + 1 " Y+
=Co By C1T ayrer O 23 G5

It is obvious that by continuing this procedure one can again recover

Equation (3. 1-18)

l ,"/ - 2 nrws ﬁ
2.7 exp(-s /4) b -a b-a R(s)
C’L(D 4
el etyen (2 Iny, w1 g
- ’ BX'p Y~ )18y )exp nb -a (b-a) y
Ya ’ .

v 4
It should be noted that from an infinite set of relations between the C's and

the C' 's we have obtained one relation at the best. It would seem a more satis-
factory procedure to begin the above scheme with the k'th equation, i.e. multiply
the (k+1)th equation by a certain constant and add it to the k'th , Multiply the
(k+2)th equation by a certain constant and add it to the k'th, etc. In this manner
one would obtain one such relation for each k and hope to determine a g(y)
which would satisfy each of them. I must confess that if I proceed in this fashion
I find myself unable to solve the resulting set.

It is my belief that because of the form of the solution

-(h-q)2 °
g(y)= / exp(- 1sy) K() 0, I( l(b a)( -iy)e (b-a) ds

and its limiting behavior as b —=» m, a - - giving h(y), that this g(y) is at
least a part of the complete solution. If an independent proof were to be found, the
above expression should appear naturally in the complete solution.



Furthermore when applied to the problem of the radiating antenna the solution
yields an expansion for the current whose structure is in agreement with the
travelling wave argument advanced by Hallén . Quantitatively, however, the
solution falls short of being in agreement with experiment.

Recently P. C. Waterman in a Technical Memorandum entitled "Exact Theory
of Scattering by Conducting Strips'' (AVCO Research and Development Division,
Wilmington, Mass. ) has shown that the wave scattered by a strip z//(ao;r) is

determined by the equation

.a .
f ikx'cos a
, crYy=—(— ; 1 -
U (a_;r)=-(-1/2) |Sma0[ l dkx'e H (KR)-S_¢(ar),
- a
where Sa is a linear operator which depends only in the solution for the infinite
Vs
plane o
@ ikx'cos a
-(1/2) sin @ 1 J kdx'e H (kR') .
I 0 (0]
-

It is seen that in this equation the scattering by the finite strip is described
as the solution of an operator equation involving the solution of the infinite plane.
This is a confirmation of our general belief that the solution of the equation with
finite limits can be expressed in terms of the solution of the equation with infinite
limits, inasmuch as the scattering by a strip is determined by a solution of the
equation a

( H(()l)(kl x§ ()3, () = A E acx<a.
)

!

.......

DC/cfw

Dario Castellanos

The University of Michigan
Radiation Laboratory

30 March 1965



ABSTRACT
In this stugdy a systematic method of solution is presented for a class
of P¥UMRSTn integral equations. The most significant result is a closed
form solution, valid under very weak restrictions, for the equations

b
f(x) = S K(x-y) g(y),iy , a<x<b

a
and

b
f(x) + g(x) = g K(x-y) gly)dy, a<x<b )
“~ a -

if the interval (a,b) if&m’te.
If the ;pterval *(a,b) is infinite the solution is given in series of
orthogonal polynon;ials vﬁth explicit cbefﬁcients.
Integral equations of the first kind u;hose kernels are generating functions
for polynomial sets are also treated,
b

f(x) = K(x,y) gly) dy, a<x<b
a

K(x,y) = ; pn(y) x°

where ¢n(y) is Jpolynomial of degree n in y.

1
A general sblution is also obtained for the equation
J
b
f(x) = e Axy gly) dy
a

with A generally complex. The special choice a=0, b=, and A=1 leading

to Laplace's integral equation is illustrated by two examples.



A striking agplication of these results is a closed form solution of Hallén's
integ_rf._l_ emg.qationér a radiating antenna. The current wave is obtained as the
superposition of traveling waves predicted by Halléh. The current consists of
two parts: a series of TM waves representing waveguide modes inside a hollow
tube antenna and a superposition of traveli,lg waves on the surface of the antenna.

One further application of the method concerns the problem of electro-
magnetic back-scattering frorIn a cylindrical wire. The solutionlto this problem
possesses all the :mlitative features one would naturally expect, b; éontrary
to common belief the ehi? s:urfaces are seen to 'play a major role in the determina-
tion of the current distribution. The solution, consequently, affords a very poor
representation of the physical facts.

The difficulties created by the presence of the end surfaces for the scattering

problem do not exist for the radiating antenna when the antenna is assumed to be

a hollow tube.
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CHAPTER ONE

A CLASS OF INTEGRAL EQUATIONS.
i

Section 1. Statement of the problem.

We wish to consider a class of Fredholm integral

equations of the first kind

/
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b
f(x) = J. K(x,y)g(y)dy a<x<b (1-1)
a '

where f(x)‘&nd K(x,y) are given functions satisf;zhg
appropriate cogdﬁtions and g(y) is to be determined.
f(x) is defiﬁed in the interval a<x<b and K(x,y) in the
square a<x,y<b.

As is well known, the central difficulty in the study
of equations of this type is the following: if K(x,y)
is continuous, Eq.(1-1) maps the set of all piecewise
continuous functions into a more restrictive set, since
all functions f(x) obtained in this manner are certainly
continuous. If K(x,y) is differentiable every piecewise
cohtinuous function and in fact every integrable function

is mapped into a differentiable function., Hence, in general,
A

the integral equation with continuous f(x) cannot be
solved by A continuous function g(y). If f(x) belongs to
a more general class of functions we may expect Eq.(1l-1)
to be solvable only if K(x,y) deviates from continuity

in some way.



In light of the above remarks, the method to be
expounded in the sequel possesses a definite advantage.
For instanceifhen the kernel is of the form K(x-y) it is
onI;_;::essary in order for the method to be applicable
that g(x) be integrable and bounded, provided that f and
K satisfy suitable conditions, For other types of kernels
the conditions on g(x) become mEre severe, but it is
never necessary that the kernel be continuous.

4
in

———

The techniques to be presented were developed
: L SR v
order to solve certain integral equations which are. of
s :
importance in the*€tudy of distribution of currents in

linear antennas.

Section 2. Some results from the theory of distributions.

In what follows we shall have occasion to use some
results of the theory of distributions. The pertinent
lemmas are stated in this section and are proved in the
appendix.,

Lemma 1. In the sense of convergence of distributions
lim- exp(ixg) dg = 2v &8(x)

Lemma 2, If’

£,(x) = L exp(-xZ/ut), >0

ZJtt



Then in the sense of convergence of distributions

%ig ft(x) = 8(x)

Lemma 3. If f(x) & g(x) denotes the convolution of two

e

functions f(x) and g(x)

/
f(x) = g(x) = j‘f(z) g(x-£) dg
and if D be a differential operator, then P

DOwg) = Dfag = faDg

Lemma 4, If fvf$\then f, *+ g*fag in each of the
following cases:

a) The functionals fv are concentrated in one agd the
same bounded set,

b) g is concentrated in a bounded set.

c) The supports of the functionals fv and g are bounded
on the same side in a manner independent of v,

- Lemma 7, With the Fourier transform of the functional f

denoted by the symbols f or F(f) we have

—~—
exp(bx) = 2v é§(s-ib)

for any complex b. .

Lemma g. e Fourier transform of the convolution of

two functiochs

f(x) & g(x) = S f(g) g(x-¢) dg

is given by

~ ~
F [f(x) * g(x)] = f(a)gla).



Section 3. The kernel K(x-y).

To obtain,a solution of the equation
i,

f(x) .= \[ K(x-y)g(y)dy a<x<b (3-1)
a ,

TN

we will consider two separate cases: the interval (a,b)

J

is finite and the interval (a,b) is infinite,

Section 3.1, The interval (a,b) is finite. ‘

Section 3.1l. y.Expression of the solution as an infjnite
integral., 2

We will construct a solution of Eq.(3-1) as a
function of the solution of the same equation with both
limits infinite. The essence of the method will b; the
determination of an entity related to Eq.(3-1), which is
independent of the limits of the integral equation, this
quantity being then evaluated in terms of the solution
of the equation with infinite limits.

We will assume that f, K and g satisfy the following
conditions
G-1) f(x) hal a Maclaurin expansion
(ii-1) f(x) &an be continued apalytically’for all x and
is such that its analytic continuation belongs to Lz(--,w)

(iii-1l) K(x-y) has a formal (not necessarily convergent)

series expansion

K(x-y) = nzo kn(y)xn



(iv-1) K(x) an be continued analytically for all x and
is such that its analytic continuation is L(-w,=),
(v-=1) K(x) ‘ o(|xl M as |x|+= for all n>0.
(szijn-f(s)/£?§3 belongs to L2 (-w +®) e
(vii-1) g(x) is bounded in (a,b), and the interval can
be broken up into a finite number of open partial intervals,
in each of which g(x) is monotdnic.
(viii-1) exp(-32/W?7ﬁ'is bounded and integrable in
every interval (a,b).' !
éonditi;;s-(i-l) to (viii-1) will later be
relaxed by us1ngﬁ$&str1butlons.
In Eq.(3- l) let us expand exp(t2)K(t) in a series

of Hermite polynomlals(l)

, ) .
exp(t)K(t) 'n§0 a, Hn(t) (3.1-1)

The coefficients a in this expansion are given Dby

a = —t U[ H (£)K(t)dt (3.1-2)
n n
2 SN AR

The convergence of this integral is guaranteed by

conditions iiv-l) and (v-1). -

Replacfhg t by x-y in Eq.(3.1-1),there follows
- i(-v2) T — - -
K(x-y) = exg(-y )nio a, exp(2xy-x¢) Hn(x y) (3.1-3)
(2)

By use of the generating function

k
(-)"H (y) x
ntk (3.1-4)

1% 3¢t ]

exp(ny-xz)Hn(x—y) =

k=0 k!



~ JUCS TR,

Eq.(3.,1-3) becomes

? k
: e o (2)"H__ (y) x
Kgx-y)i exp(-y2) £ I a ntk

n=0 k=0 n k!

Introducing this expansion into Eq.(3-1), and making use
of condition (i-1), there follows

b

f(k)(O) = 1 (-)"a Jﬂ exp(-y2)H ,k(y)g(y)dy ¢« (3.1-5)
=0 n n

n a

L "I -

Some words a e necessary regarding the validﬁfy of
Eq.(3.1-5), which was obtained by means of formal series;
especially, since similar arguments are to be useE again.
It is necessary when studying the summation of series to
satisfy requirements of absolute convergence for
rearrangement of infinite series and uniform convergence
for term by term integration., It is to be remembered,
however, that such arguments are only pertinent when one
'is concerned with the sum of the series. Our only need
was for establishing the relationship among the coefficients
expréssed bWEqQ.(3.,1-5), and the sum of the series did
not enter ingo the discussion._ To jus%if§ these remarks
one can replace the infinite series by finite sums which
agree with the infinite expressions through the term in

x® to obtain

b
(k) xk S xk ° n 2
f7(0)=— = [ =— 20 an(-) exp(-y )Hn+k(y)g(y)dy.

S
L
- 1 - !
k=0 k! k=0 k! n A



Hence

k) :
{i-—ig) = jto an(-)n\jp exp(-yz)Hn+k(y)g(y)dy, k=0,1,2,...,S.

As s is arbitrary it follows that the above relation is
true for all k.

Since the use of formal Eeries leads to correct results
in the case considered above, we shall continue, when

! 4
necessary, to use them in what follows leaving the
arguments in the present section as a guide to any further

proofs. 4

A

Returning now to Eq.(3.1-5), we let

b
- 2
Cm = Jaexp(-y )Hm(y)g(y)dy (3.1-6)
a

and Eq.(3,1-5) takes the form

(k) ()™ a ¢

£ n n+k;

(0) =
n

for each k. (3.1-7)

neg

0

Eqs.(3,1-7) are a set of equations determining C_ . This
system of quations was solved by Pgofe§sor Feshbach in
order to sblve Eq.(3-1) with a = -, b =-(3). His

solution # reproduced here by permission. Let us write

out equations (3.1-7)



C - a‘cl + azcz‘.oo

f(or- o

(4)

£ 0) .

C‘ - aLC2 + a2C3‘00-

2 3
f( )(0i= Cz - 31C3 + azC“-...

In the above a, was set equal to}one.

To find C0 one multiplies the expression for £30)
by a, and adds the first two equations. This ‘
automatically ¥liminates C,. This gives a new coefftrient
for C, which can bi;gllmlnated by multiplying the -
expression for f‘ )(0) by a suitable coefficient. In
this mannef one can successively eliminate all the C's
except C . A similar procedure bbviously works for

any C . Each C. is thus obtained as a linear combination

of ££57(0)
C = I £(n*s) (q) T, (3.1-8)
s=0
where the coefficients Ts are given by
ro*fyte.s (Pi4rotr3+,,)!  rt P, ry
T = I (-) i al az a3 ) (3.1'9)

S

; r;! ra! r3!,..

summed over all combinations of the integers r; such that

Pl + 2?2 + 3?3 + urq + eee = S



It is seen that the C's are determined only by
the values aof the derivatives of f(x) at the origin
angd.the cod‘ficients a, of Eq.(3.1-1), but neither of
these depends on the limits of the integral equation.
In other words, we will obtain the system of equations
(3.1-7) regardless of the limits in Eq.(3-1).

Because of conditions (ii-1) and (iv-1) we see
that we can determine Cn without carrying .out the difficult
inversion (g.1-8) to (3,1-9), provided that we can solve
the integral quftion

f(x) = f K(x-y)h(y)dy —o<X<® (3.1-10)

This equation has been considered by Titchnarsh(u).
Titchmarsh proves the following theorem
Theorem 1. Let f(x) belong to L2(-=,=), and K(x) to
L(-»,=), Then in order that there should be a solution
h(x) of L%(-=,=), it is necessary and sufficient that
F/¥ should belong to Li(-=,=),

Sincegthe conditions of theorem 1 are satisfied by
hypothesizlit follows that h(x) is given by

A

h(x) ; L J( exp(-isx) f(s) ds (3.1-11)
2

R
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and

I 2
Cm = kexp(-y )Hm(y)h(y)dy.

AP ——-

(3.1-12)

In order to express Cm as a single integral let us

expand exp(-isx) in a series of Hermite polynomials,
We have /

- , n.nnn ¢
exp(-isx) = ¢ =1 isx

(3.1-13)
» . n=0 n! -

but(S) §

¥

n [n/2) nl H 5 (x)
X = I

63.1-1'4)
k=0 k! 2%(n-2x)!

where [n/2] denotes the greatest integer in n/2.

Replacing (3.,1-1%) in (3,1-13) we have

(n/2] (-)"i"%"nt H (x)
I

n-2k
0 k=0 n! 2" k!(n-2k)!

exp(-isx) =
n

we™sg

. = (-)P§f(.)kgnt2k H_(x)
= I .
n=0 k* LY I

{

= exp(-s}/u)
n

(=)0 if ¢P Ho (x)

nwe s

0 2" nt (3.1-15)

and from Eq.(3.1-11)
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o ()" iM H (x) ~
h(x) = I L \f’ exp(-s2/4)s" £(s) 4
n=0 2% n! 2r s)

so that, usiig the orthogonality of the Hermite polynomials

DU

m.m Py
C, * )1 exp(-s2/4)s™ £(s) 4 (3.1-16)
2 . 136)

This solution is, of course, e&uivalent to (3.1-8).

Combining Egs. (3,1-6) and (3.1-16) we have

4

L% ) —
m.m
21| expt- sz/u)sm 0B 4 exp(-y2)H_(y)aly)dy(3.1-17)
2 & FANEE s) | m

Let us multiply both sides of Eq.(3.1-17) by (-inx/(b-a))™/m!

and sum over m., This gives

‘f exp(-s2/4)exp(-222) = f(S) ds

2{'" b-a k(s)
= ‘f exp(-y2)g(y)exp(- 2nilx + n? v dy (3.1-18)
A b-a (b-a

where we made use of Eq.(3.1-4) with n = 0,

The intrehange of the order of summation and
integration‘;an be justified without éifficulty. For the
right hand side it follows by condition (vii-1l) that g(x)
is integrable(s) and bounded. The series (3.1-4) converges
uniformly for all y. The interchange is then permissible
by a well known theorem of analysis (7). Similarly for

the left hand side it suffices to recall that the exponential
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séries converg®s uniformly for all values of its argument.

Hence by condition (viii-1) and a pertinent theorem(a),
term by term integration is permissible.

~agation ¥3.1-18) can be written in the form

1
— exp(-21i nmy ) exp(-y )q(y)dy
b-a 3 b-a

(o ,
- 2P ’ )fexp( s2/4)exp (- “”9 ) _L_). ds.
2 F (b’.) - K(S)

4

This 1is just thg Fourier coefficient in the expansion-ef -
exp(-y2)g(y) in a rourier series in the interval (a.d)

g(y)=———= xP(y ) -Z- xp (L7 n2n? C . s2 _ nms | f(s)
2fm(b- a) n¥-0 -a - ) el 4 p- );=r—'ds
(b- a) @ a "k(s)

Since condition (vii-l1l) corresponds to Dirichlet
(9)

conditions

and it follows that

, the above series is uniformly convergent

g(y) = 2521131 exp(-sz/4) Eé?l_

. 2Vr(b-a) ‘o K(s)
®
exp i2 _Il d
[Zw exp (- _Iﬂ(b-a) ) exp i2n ( b My .))] s

The expression: brackets will be recogﬁizéa as the
third theta funttion defined by(10)

J
Y,
83(&.9) = o 3 exp(i2nZ)

n=-
hence
2 4 YT
g(y)= 25211_1_.'J exp(-sz/4)£i') 03( jEL+i s -ti/b -a) )ds
2¥r(b-a) -® K(s) b-a  2(b- a)

(3.1-19)
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‘Wwith the notation.

g = exp(riT), Im(T)> 0, (3.1-20)

and .s

83(2,q) = 85 (2IT)
the third théta function 1is known to satisfy the functional
equatiOn(ll)

2 /
03(ZIT) = (-1i1)°1/2 exp(z____ >93 (_E__| _i) (3.1-21)
viT T T

! 4
Use of equation gg.l-Zl) in equation (3.1-19) yields

P~

1
gly)= — f exp(-iys)ig2) o, ((b-a) (3 -iy). ¢ (b'a)2> ds
2T ‘o .- K(s)

_ (3.1-22)
which is the desired solution.

We wish now to show that by aépealing to the theory
of distributions it is possible to relax considerably condi-
tions i-1 to viii-1 and still preserve Eq.(3.1-22) as a
solution.

we will assume, then, that f, K and g of Eg.(3-1)
satisfy the following conditions
(1-2) f(x) can be continued analytically for all x and is
such that its analytic continuation belengs to | (-@,®)
(11-2) K(x-y) h@§s a formal expregsion

K(x-y) = 2l Xky(y)x"
n¥0
(11i-2) K(x) can be continued analytically for all x and
is such that its analytic continuation isl (-o,@).
(iv-2) K(x) = o(|x| "®) as [x|—) ® for all n>0.
(v-2) G(y,s) of Eq. (3.1-23) is integrable and bounded in
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. the interval a{y<b.

Consider the equation

1 ~
— f(8) exp(-#BX) sfx(x-y)c(y.s)dy, ad< x<b (3.1-23)

L3 o

where fTQ) denotes the Fourier transform of f£(x) and s
is to be interpreted as a parameter. |
Since the left hand side of Eg.(3.1-23) has a
Maclaurin expansion it is possible to proceed as before

4
to Eq.(3.1-7) with

Cr ={b ew(-yz)&(y)s(y.s)dy, _ (3.1-24Y
Since exp(-1isx) can be continued analytically for all x,
we will determine Cp by solving the equation

;: fT;) exp(-isx) = J:K(X-y)h(y)dy (3.1-25)

By use of lemmas 7 and 8 of section 2, we have

h(%}= p'l ['g?;) §(d-3) J
X(d)

(3.1-26)

where F~1 denotes the inverse Pourier transform. It follows
then that i

lz._il.é._uﬂ_)] ‘F) =1 (§(3-s)E(s) 'T‘)

K(9) T\ X9
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s ﬁ%‘ﬂ) -5 g—‘-:))-"‘ﬁ(-)-

1 f(a) ux ‘¢ (x)dx

L -Z.ﬁ,
~
JE T e (B0 g0
) v X (s) 2’?(.)
80 that }
rl [gud_ ﬂ_f_l exp(-18x). (3.1-27)
K (6) 2y x(-)

The above detivatitn of Bq.(3.1-27) is based on Parseval's
formula for dilttibutionl

(gM) = 2w(£,Y)
which is discussed in the appendix.

Hence

n(x) = 2 £(8) exp(-18x).
r f(’l)

By use of Bq.(3.1-15) it follows at once that

n =£E_*.£m-f ol ’
2yA x(s)

J
and from Bq.(3.1-24)

£(s) exp(-82/4) ()™ 1™ o™

=f exp(-yz)H,.(y)c(y.-)dy
2Vx K(s)
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rProceedtg-os in-Bq.(3.1-17) we obtain

: P 2
)= L ep(ggyn £ o (-arg - ty), € 0% ) (5.1.2q)
6Ly s, % z )

as the solution of Eq.(3.1-23).

Let us now integrate both sides of Eq.(3.1-23) with
/

regpect to 8 from -y to

4

128 b y
— L S ; —_—
L f(s)exp(-isx)dla‘{ x(x-y)ljfg(y,s)dl dy (3.;:?9)

<y A y

¥

The interchange of the order of integration follows
b
by Pubini's theorem since the left hand side is integrable.

Letting
y

?]3 f G(y,s)ds

%
and assuming that the infinite integral

«©
,

‘/ G(y,s)ds
-®

converges, we Hjve by virtue of lemma 4, since the interval
. y e

(a,b) 1is finite

» a
f(x) =’/f k(x-y) ///G(y,s)ds dy

a -@

In other words the solution of Eq.(3-1) is
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(4 ]
/\.
9(Y)=;$ -wexp(-iys).,f#:_g- 83 ( (b-a) (-;- - 1y).exp('(b'a)9) ds

which is equa'.on (3.1-22).

It is not difficult to extend the previous results

to equations of the second kind

f(x) + g(x) -Ib K(x-y)g(y)dy, £<x<b. (3.1-30)

Considering g(x) as a testing function vanishing out-

a—

side the inter¥al (a,b) we can write

an ~
R d
£x) + (§ (x-y),-9(¥) = (K(x-y),9(y) ,

that is

£(x) = (K(x-y) -5(x-y). q(y)) (3.1-31)

Let us consider the related equation

2
- fb y) - exp(- (x-y) 2/at)a(y, t)a
£x) = S (Kx-y) 2_'%_ xp (- (x-y) “/at)e(y, t)dy

(3.1-32)
where t is a perameter greater ’than zero.
Letting 1 .
' - (x-y) 2 -
K' (x-y) = K(x-y) - _2# exp( (x-y) /4t) (3.1-33)

and assuming that £, K and G satisfy conditions 1i-2 to v-2,

we have from Bq. (3.1-22)
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3 4 fc: oy 2)
Gly,t) = — J" exp(-iys) £(8) o /. . y(s _ Lvy e (B-2)?)
27 “ol I/Js) 3 (( ‘)(T Y), s.

(3.1-34)

—af—-af tdo result

2 ’ 1l 2
(-s7t) = exp (isx) exp(-x4/4¢t)) dx
e !: (2 Vv t )

in Eq.(3.1-34) gives |

Gly, t)= L f -1ys) EZS) ‘ -(b-a)?
Y, 2y g EXP(-1¥s). — 93((})-;)(% “iy).e ds
.- K(s) -exp(s2t) —_—
| (3.1-85)

as the solution qf%q.(3.1-32).
Taking the limit of Bq. (3.1-32) as t approaches zero

gives, in view of lemma 2

f(x) = (x(x-y) -J(x-y).q(y)>
where
g(y) = lim G(y, t)
t —0

It follows then from Eq.(3.1-35) that the solution of

Eq. (3.1-30) 11 \

®
2
gly)= L1 [exg(-iys)f(s) e ((b-a)(g . e (b-2)

(3.1-36)

which is the required result
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Section 3.12. Expression of the solution in series of

orthogonal pol ials.

It is posdiible to obtain the solution of Eq.(3-1)
in series of orthogonal polynomials. This form of the
solution has the advantage that it is not necessary to
obtain the analytic continuation of £(x) in order to
determine g(x). One other point in its favor will‘Pc

—

seen in the next section.
~ .

f, K, and g will be assumed to satisfy the folloWwing

conditions 1'4'

(1-3) £(x) has a Maclaurin expansion

(11-3) K(x-y) has a formal expansion

K(x-y) = &= Xky(y)x"

=0
(111-3) K(x) can be continued analytically for all x and
is such that its analytic continuation is | (-@,®), (iv-3)
K(x) = o(/xI ™) as |x|-> % for all n»O0.
(v-3) axp(—yz) g(y)/w(y) can be expanded in a uniformly
convergent serid‘ R
. :
Z »
"hetezfﬁnt}is a set of polynomials orthogonal in the interval

(a,b) with respect to the weighting function w(y)/” 0.
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Conditions\, (1-3) to (iv-3) are sufficient to go from
Eq. (3.1) to Bqa(B.l-S). With C_ defined by Eq.(3.1-6) we
| b
Ca -.f exp(-y?) Hy (¥)g(y)dy (3.1-6)

Multiplying both sides of this eqﬁation by (-t)'/zl‘n!

and sumning from m = 0 toe, we obtain
' 4

= Cul-)™ ® 2
> L s'.j exp(-y?)exp(-yt- £ Yq(y)ay

or

® ,, - .
a0 o -/ cxp(-yt)(exp(-yz)q(y)dy
2 m! a '

2
exp(t )
)

Expanding the exponentials in t in a power series and collect-

ing powers of t we have

x
o [m/2] b
Z Z _C%-ln(')'.'t? .}— (-I't'f y® exp(-y2)g(y)dy
m=0 n=0 2 (m-2n)!n! m=0 a2

comparing coefilcloatl
[m/2] b

Saanm: g '_{ y" exp(-y?) gly)dy (3.1-37)
n=0 27 (m-2n)!a: @

We now expand oxp(-yz)q(y)/w(y) in a uniformly convergent
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series
a0
exp(-y%)g(y)/yly) = Z b M (y)
n=0

o (3.1-38)
where’ﬁn(y) are polynomials orthogonal in the interval

(a,b) with respect to the weighting function w(y)>~0;

The existence of such a set is gufranteed by application

of the Gram-Schmidt orthogonalization process to the
sequence of functions (Q(y))l/zl, (w(y))l/zy, (w(§3)1/2 2,...

" —_—
in the interval (a,b). We shall assume that the set

e
{hfl(yi}is complet¥’
We will assume that the polynomials ’ﬁn(y) are given

by an equation of the form

K
o) = 2 Xx,m)y®

m=0 (3.1-39)
Multiplying both sides of Bq.(31.-37) by of(k,m) and

summing over m from O to k we find

K lm/2] b
EZj zg- X(k,m)Cm-2n m: fr My (v) exp(-y?) g (y) dy
m=0 n=0 2®(m-2n); n! a

(3.1-40)

substitution 01 Bq.(3.1-38) in Be.(3.1-40) yields

K [m/2
dﬂﬁ'm’cm-Zn mi

bk = =
%k m=0 n=0 My _omyi n (3.1-41)
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where
b
* 2
Iy = af w(y)'f’k (y)dy
(3.1-42)
~aln-ohe pjynomiall Pﬁn(y) are such thatfﬁn(y) is
an even function of y when n is even and odd when n is odd,

then*n(y) is given by an equation of the form

[n/2] /
n-2m
mn(Y) = Z B(nlm)y (3.1_43)
m=0. ' 4
% —

In this case we ha\z from Bq.(3.1-37)

(/2 /24 g x, m) m)ck 2m-2n(k-2m)

b
-Z Z ,["f‘lk(y)exp(-yz)g(y)dy
2k 2m(k-2m-2n): n!

m=0 n=0 : (3.1-44)

and substituting, as before, Eq.(3.1-38) in Eq.(3.1-44)

we find
[e/2] fr/2-d
Z z B(x, l)ck-Zn-Zn(k'zll)!
Jk-2m (3.1-45)
m=0 n=0 (k-2m-2n) !

with g, given by Bg.(3.1-42).

We have }-own then that the solution of Eq.(3-1) is
.

given by
o k En/z
) ( )()5‘;;— kmm'Cm2n'.ﬁk(Y)
=e w
Iy *P y Y %=0 m=0 ==0 ? 2 (m-2n)!n!

(3.1-46)
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where "
Pﬁk(Y) = Z ok, m)y"
“‘1 (3.1-39)

are polynomials orthogonal in the interval (a,b) with

- — e

respect to the weighting function w(y)> 0. Cp, is given

by Eq.(3.1-8). j

If the polynomial set is such that 'ﬁn(y) is an even
' 4
function of y when n is even and odd when n is odd, then

% A
with

[n/21 ",’ \

M (y) = B(n,m)y" 2"

i (3.1-43)

the solution takes the form

® [x/2 [k/2-m]

) B (k. m)Cx - 225 (k-2m) M ()
g(y)=exp(y“)w(y) g ; ; ”
x=0 m=0 n 9,2 “2M () _2m-2n) !A!

(3.1-47)

If instead of conditions (i-3) to (iv-3) £, Kand g

s

satisfy condit1ns (1-1) to (vi-i) and also condition

s given by Eq.(3.1-16)
00

) Y
Cp = (-lmim — fexp(-sz) (28)™ /\/ﬂ"’_'l._ ds
F ‘4 K(2s)

(v-3), then Cn

(3.1-16)
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where we replaced s by 2s. Substitution of this result

in Eq.(3.1-46) gives

4

— Jd o «x
) _ynm
gly)=exp(ydiwiy) ) > AGmim () )
k=0 m=0
9%
0 m/ZJ '
1 n m-2n 'S
(-)m:(2s) .2, £(2s)
_— exp(-8%) —m——o- d
2™m: V7 " ® 10 n'! '(m-2n)! K(2s) ¢
- —
(3.1- 48
7 .
but (12) ind
G/2]
n , -2
H () =Z (-)m: (25) 7777 (3.1-49)
n=0 n! (m-2n)!
and it follows immediately that
a0
1 / oo
2 2s
——— exp(-s“)Hy(8) ————— ds
2™y @ (23)

' ) S N— N
is the mth coe’ficient in the expansion of f(2s)/K(2s)

s

1
in a series of Hermite polynomials

/(\_/) 0
f(2s

= E hml'yn(s) (3.1-50)
"k(2s) m=

and Eq.(3.1-48) becomes
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o k
2y )X Y o(k,m)m: (-)™i" m*x(y)
Y k=0 m=0 gk

‘g (y)=exp(y (3.1-51)

Similarly, by su?’tituting Eq.(3.1-16) in Eq.(3.1-47)

we find

o0 [k/2]
' m+k . k
g (y)=exp (y*)u(y) 3;0 ,;go B (k,m) (k-2m) Ty (9) ()™
"
sz
RRLTI ' k-2m-2n ~
1 2 ()" (x-2m) ¢ (28) ap () Fi2s) g
XM omyy {7 @ ns0  Dlk2mo2n) T Ras)
(3.1-52)
7
T
but again
[ix -2m) /2]
[] k-2 '2
B, () = S (-)0(k-2m) ! (25) %220

n=0 n! (k-2m-2n)!

and Eq. (3.1-52) becomes

o [k/2 X
m+k  k
’ = e (- i - ( )
SreerpeDyuty) L ) BUem Ge2m ()T g T U
k=0 m=0

I
H

(3.1-53)

where hm is given by Eq.(3.1-50). The possibility of

the expansion (3.1-50) is guaranteed by condition (vi-l).(l3)
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In the event that f(x) does not have a Maclaurin
expansion as assumed by condition (i-1l), one can, at
leas;mj_.gwgrinc*ile, replace f(x) by a sequence{fy\}of Co
functions converging to f; solve the corresponding integral
equation for £, and take the limit of the resulting solutijion.

As illustration let a = -1, b = +1. One possible

choice forrﬁn(y) are the Legendre polynomials(l4).
. 4
. _
N
- : 2™
Pn(y) =kZ=0 i) @_ D’k( Y)
k! (n-2k)! (3.1- 54

The factorial function (a)n used in Eq.( 3,1-54) is

defined as

(a), = a(a +1)(a+2)...(a +n-1), n>1

and
(a). =1 a # 0.

For the Legendie polynomials we have

2
9 = — o w(y) =1
k 2k + 1 (¥

1 -
5 ic.m) = ()™ ng kzmzk 2m

m! (k-2m):!
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and Eq.(3.1-46) becomes

» [k/2)

. 1l 1 -
g(y;wf)}_—-ez (ki o) &) xm 2 2 amPx (¥)
k=0 m=0 m!

(3.1-55)
corresponding to the solution of the equation
l /

£(x) = [k(x—y)g(y)dy- (3.156)
-1
p
Solutions in sepies of orthogonal polynomials can
R4
also be obtained for equations of the second kind by using

the limit process employed to derive Eq.(3.1-36)

Section 3.13. Expression of the solution as a contour

integral.

In many cases it is possible to transform the solution
in series of orthogonal polynomials into a contour integral
(15)
We do this following a method due to Watson.

The solution of Eq.(3.1l) in series of polynomials is

given in its mosi general form by Eq.(3.1-38)

&
g(y) = w(y) exp(yz) E;b bn’hn (y). (3.1-57)
n=

bn will be assumed such that if n is allowed to vary

continuously, then bn is an analytic function of n.
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Also "rn(y) will be assumed defined when the index n
varies continuously and to be an analytic function of n.
we will show th;f in this case g(y) can be represented

-

by the following integral

g(y) = wiy)exp(y?) -%— / by exp(ir2) *;(y)d?—
¢ sin 72 (3.1-58)

where C is a contour that starts at ®-i¢ in the z-plane,

4
goes below the real axis to z = --%— and then above the

~ -

real axis to @+ 15 .
’
BV 4

/—*C

A

-1/2 1 2 3

FIGURE 1.1: CONTOUR C

Since b, and |5(y) are analytic functions of z, the

only singularities of the integrand are poles at those

values of z insjde C for which sin v z = 0, those are z =

0,1,

2,... . Since the contour C is described in the clockwise

direction, the integral (3.1-58) is equal to the negative

sum of the residues at the poles, so that

b ()" M (v)

mCOs8 T n

g(y)=w(y)exp (y?) L (-271) fio
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o0

= w(y)exp(y?) Z bhmn(y)

n=0

which is Eq.(%bl-S?).

Equation (3.1-58) can be used to advantage with the
principle of deformation of contours to transform the
solution into another one more d;rectly accessible to
numerical computation.

Section 3.2. The interval (a,b) is infinite.

N

Equationsr(3.1u46 ) and (3.1-47) are, of course,
g
also valid if the tMterval (a,b) is infinite, provided

that g(y) is a sufficiently well behaved function.

Condition (v-3) is no longer sufficient to guarantee
term by term integration when the interval is infinite,
but we will assume g(y) to be such that term by term
integration is permissible. One example of the conditions
g(y) may satisfy is given in reference (6), page 178,
Theorem III.

when a = @, b =/4 we may select for’*n(y) the

() (y), (16)

Laguerre polynomials L, orthogénal in the

interval (0, ) with respect to the weighting function
y9exp(-y), Re(®)> -1.
n
@) § o _kasx, y*
n'¥ k=0 k!(n-k)!(l+0()k

(3.2-1)
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For this set we have(17)

q_ = [ A +d+n) = [M(1+X) (1+q)
n n!
n!

w(y) = yd‘ exp(-y) , Re(a) -1

()" (1 +9)x
mt (k-m) ! (Fo()m

~- —

q(k,m) =

and Eq.(3.1-51) begemes
ar

XD

k
™)
gly)= exz(zz-xlx“ Z Z i™ k¢ hp Lk (y)
P(l+°’~) K=0 m=0 (k-m) . (l‘*d)m

(3.2-2)
corresponding to the solution of the equation
@
f(x) = ‘(K (x-y)g(y)dy 0<x <0 (3.2-3)
0

In particular forX= 0, Eq.(3.2-2) takes the form

o K
Z Z 1m(:,>hm’-k (y)

= 2-’
gly) = exp(y®-y) 74 "

(3.2-4)
where (g) is the binomial coefficient.
In both Egs.(3.2-2) and (3.2-4) hm is given in
Eq.(3.1-50',

An equation of the type
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b
f (x) =af K (xy) g(y) dy (3.2-5)

can be reduceduto the form (3-1) by putting x = exp (%),
y = exp (-1), and writing f(exp¥) = § (¥¢),
-exp(- % )g(exp(- 7)) ’h”(’l). and K(exp(i"?))’ K'(¢-1)

to obtain ' ,

b
4(%) = a( x' (£-0)M( ey
. 4
where a' = -1n & b = -1n b. —
A similar set of substitutions can be used for the
equation ‘;:
£(x) =a[ K(x/y)g(y)dy. (3.2-6)

Section 4. Kernels which are generating functions for

polynomial sets.

A class of equations directly a menable to the
previous techniques consists of those integral equations

whose kernels are generating functions for a set of

polynomials.
o0
Z n
= X
k (xy) = = 4n(y)—;7 (4-1)

where(fn(y) is a polynomial of degree n in y.

If we substitute Eg.(4-1) in the equation
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b
f(x) ={ K (x,y)g(y)dy (4-2)

£ (o) =) _(vIgy)ay (4-3)

where we have assumed that f(x) possesses a Maclaurin

4

expansion.

“ —
Let us also assume that g(y)/w(y) can be expanded
; . .
in a series of pokynomials’”n(y) orthogonal in the
interval (a,b) with respect to the weighting function

w(y) > 0.

o0
g(y) = wly) 2 bmmm(y)

m=0 (4-4)

Substituting Eq.(4-4) in Eq.(4-3) and assuming term by

term integration permissible, we have

m i
£7(0) 32 b fw(y) 4.9 M (v)ay
m=0 a .

We now appeal to a theorem in the theory of polynomial

(4-5)

sets.,
Theorem 2. Let'ﬁn(x) be a polynomial of degree n in x
and assume there is one such polynomial for each n. Let

w(x) > 0 on a{x<{b. Then a necessary and sufficient



33

condition that the setzhﬂn(x{} be orthogonal with respect

to w(x) over the interval a(x<{b is that

b
J{ W(X)XEiﬁn(X)dx =0, k=0,1,...,(n-}).

This is a well know result. (18)
Since ¥ (y) is a polynomial of degree n, it follows
from theorem 2 that the integral in Eq.(4-5) vanishes

4

identically for m>n,

\5‘, —

n
b
£ (o) =sz‘bm f wiy) PoM(v) ay  (4-6)
m=0 a

This relation can be written in the form

£(0)
b, = -
) )M (y)a
[W(y 500(3’ ’f(oy 4 (4-7)
- b
b - £ (o) - g by, a( w(y) Son(y)mm(y)dy . ny1

f w(y) £ (v) M (y) ay

Giving successive values to n, Eq.(4-7) provides an
iterative scheme for determining the b's of Eq. (4-4).
If in Eq. (4-6) we let

b
£™ 0 = [ wiy) Gaw) ey (4-8)
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Then as is obvious by inspection of Eq. (4-7) bo =1, bm =0
m)l. Hence if we have iterated Eq.(4-7) N times and have

P
obtain@d a set of relations

m
b = Z 2mm f(n)(o)c m=20, 1,..., N. (4-9)

f

then by letting f(n)(O) take the values specified by
' 4

Eq.(4-8) we must obtain b, =1, b =0, mzl. If this

W oo 0 m =

result is not obtaiqfq, a mistake was made in the com-
putations. This dé;{Ee can be used to check the numerical
accuracy of Egs. (4-9).

It should be noticed that the integral in Eq. (4-6)

(h wiy) fon M) ay (4-10)

a

is gél times the mth coefficient in the expansion of ?n(y)

in a series of polynomials *rm(y), where Im is given by

Eq.(3.1-42). Hence in order to do the integral (4-10)

4
1
i

it is, perhaps,’ the simplest procedure, to expand Va(y)
in series of}vm(y) and pick out the coefficients. Such
expansions are given for a number of classical polynomials

in Professor Rainville's "Special Function$" (See References).



35

we shall see now that it is quite easy to solve
the system of equations (4-6) when the polynomials V%(Y)

possegg a genesating function of the type

A
A(t)G(xt) = gg; A(n) P (x)e, (4-11)

where A\is some function of n. We shall assume that A(t)

and G(t) have the formal expansions

e o0
EZ -1 n
ate) =L 9 5", [;(ti} = 2;% Bnt
(4-12)
LZXD
— n -
G(t) = &0 ¥t (4-13)
Consider the integral equation
b
£(x) = j/ G(xy)g(y)dy (4-14)
a
Multiply both sides of this equation by A (x)
b
A (x) £ (x) ='j/ A(x)G(xy)g(y)dy ~ (4-15)
a
Let 00
A(x)f(x) = ;z; Nm) ¢ x" (4-16)

then from Egs.(4-11) and (4-16)
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b
c, = 'j/ (fm(y)g(y)dy (4-17)
a
Let nQw o
o0
g(y) = w(y) 2{: bn’ﬁn(y) (4-18)
n=0

Substitution of Lq.(4-18) in Eq.(4-17) gives in view

of theorem 2

Sm
o )

»
=0 ’w

b
} w(y) Pan) M (v)ay

a

3

which are equations (4-¢).

Now from Egs.(4-13) and (4-14) there follows

b
£(n) (0) n
R = y gl(y)dy (4-19)
5?1 n a

Let the polynomialshhk(y) be of the form
—
*ﬁ,(y) =/ Ak y" (4-20)
dw n:O

Multﬁplyiboth sides of Eq. (4-19) by k(k,n) and

sum over n

X , 2

S Otik,n)f_ff)(o) _.f'kfk(y)g(y)dy (4-21)
YA J.. n!

n=0 n °

Inserting Eq.(4-18) in Eg.(4-21) we hLave by virtue of



37

the orthogonality of the polynomials %%(y)

k
<< (n)

X

b =4 ) Kkt (0) (4-22)
gk n=0 In n.
where

b 2

gk =f w(y) '"hk (y)ay. (4-23)

“a
From Eqé.(4-16) and (4-12) we have

JE (X):} Z A (m) e

f(x)

1

so that

£(n) (g) = Z A(m)c, nt By, (4-24)

X 0 :
1 N X (m) Bn-mX(k,n)Cm
2, I, 2

m=0
(4-25)

which is the solution of Egs. (4-6).

If the polynomials Ahk(y) are of the form
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(/2]
Mo = 5 pkn) yeo2n (4-26)

n=0

4

then we have from Eq. (4-19)

/2 b

) e £ ) / T (y)gya
. = y)g(y)dy

n=0 x-2n (k-2n)! )k

Use of Eq.(4-18) gives as before

-
) L] age.n £ %72 (0)
by = — '
9% n=0 k-2n (k-2n): (4-27)

with 9y given by Eg.(4-23).

Finally, from Eq. (4-24)
[k/2) k-2n
_ 1 < < B(k,n) A(m) Bk-2n-mcm
> N ZL ZZ‘ 2rk-2n

9% h=0 m=0

(4-28)

We have thus shown that the solution of the equation

b
£(x) = [ K(x,y)g(y)dy . (4-29)
a
with
2
Kix,y) = 2 0
o) = Yty X 430,

and f_(y) satisfying Egs.(4-11) to (4-13) is given by
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a0
gly) = W(y)Z b, fﬁn (y) (4-31)

n=0

where the ﬁhk(y) are polynomials orthogonal in the
interval (a,b) with respect to the weighting function

w(y)> 0, and bk is given by

X n
Z Z A(mLﬁn -m ¥ (k,n)£(™ (o)
g&- n=0 m=0 n
(4-32)
7
if <
n
mk(Y) =Z; ¥(k,n)y (4-33)
or —
[k/2) x-2n
b = 1 y Z B(k,n) A (m) Bk-2n-m £(m 0y
9% n=0 m=0 ¥ x-2n
i (4-34)
[x/2
M () = Z‘ B(k,n) 572 (4-35)

n=0
Many polynomial sets have generating functions of

the form (4-11). Thus for example, tha Hermite polynomials

J0

—

n
n:

(4-36)
and

Aln) = 1/nt, By, = 1/nt, Bypyy = 0, X =2"/n



In Eq.(4-25) replace m by n-2m, then

| =
57

/2]
A(n-2m) B2m of (k,m) Cn-2m

7

b = L

I

3
5<

since Bjypyy = O

Hence for this case
k (/2] _

- y ZZ X(k,n)n! Cn-2m

9x ng m=0 (n-2m)! m: 2"

(4-37)
which is, of course, Eq.(3.1-41).

A similar substitution can be made for Eq. (4-34).

For the Laguerre polynomials(lg)
2% L N
exp(t) F, (-: 1+&; -xt) = n_(t) t
n= (1+%)  (4-38)

Bn=(‘)n/n! p 3(n=(‘)n/(l+°()n n: , A(n) =1/(1+Y)n
and from Eq.(4-§2)
(-)™ of (k,n) (1+X ), n! C,

=0 (14-0()m (n-m)!
(4-39)

. i

9%  n=0

% P\/!B

The substitution could just as easily have been made

in Eq. (4-34).
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Other polynomial sets with generating functions

of the form (%-11) are

j 0
Bernewili pol‘fnomiall.(2 )
78]
t z B,(x) tn
exp(xt) = _ (4-40)
exp(t) -1 n=0 e
Euler polynomials,(ZI)
4
LS S0 -
2 n
(x) t -
mie) = 2 B0 aa
exp(t)+1 ad n=0 n.

etc.

Section 5. The kernel exp(-A xy).

As an incidental result to the derivation of Egs.
(3.1-41) and (3.1-45) we have found an interesting way

to solve the integral equation

f(x) = {b exp(- Axy)g(y)dy (5-1)

with the parantter)\generally cbmplex.

We shall 5ssume that £f(x) has a TaYlor series

expansion about some point x
g0

(n)
£(x) =nﬁ=: £ (%) (x-xg) ", (5-2)

n|

0"

Also g(y) will be assumed to have the uniformly conver-

gent series expansion
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o0
g(y) = w(y)exp(Ax,y) Z bn/ﬁ (y) (5-3)

n=0

Uh...rfﬂn(yrdare polynomials orthogonal in the interval
(a,b) with respect to the weighting function w(y)?0.

In Bq.(5-1) replace x by x + x
b /
Elx +xq) =£ exp(- Axy)exp (- xgy)g(y)dy
(5-4

Expanding the exponential in x in a power series and

making use of Eqi$§-2) we have

b
()" £ () y? exp(-Axgy)g(y)dy

An (5-5)
wWe shall assume the polynomials ’”k(y) to be given

by an equation of the form
k

)"\((y) - }ﬁ—zo X (k,n) y? (5-6)

Multiplying Eq.(5-5) by (k,n) and summing over n from

4
0 to X, giv@s
k

Rl (n) ¢
Z ( ) D(r%(‘an \XQ) = /'bff(k(Y)eXP('/\ XDY)g(Y)dY
n=0 A a

(5-7)

Use of Eq.(5-3) in Eq.(5-7) gives finally
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X
b =L ()" K(x,n) £ ()
9 %=0 AR (5-8)
so that a0 n
S
Gg(y) = w(ylexp(Axgy) Z — O‘Lnlk)(-)kf(k)("O)Wn (y)

n=0 k=0

k
g A
is the solution of Eq.(5-1)
If the polynomial set is such that Ahk(y) is given

by an equation of the form
[x/2]

/ﬁkm =§ L Blk,n) y<72 (5-10)

n=0 g

4

then we modify Eq.(5-5) to read

b
_k-)?(f;k-zn)("m: [ y< 2D exp(-A xg Y)g(y)dy
)\K' n 4

and an identical procedure leads to

%

b = L 7 (%572 (x) Bk,n)

Iy i:o \k-2n (5-11)

The solution of Eq.(5-1) is then

oo &Dﬁj
EZ zz; (-)™ B(n, k) f(n-Zk)(xo)/‘ﬂn (y)

(5-9)

g(y)=w(y)exp(Ax,yY) T o= .
04 "'n=0 k=0 I, /\n 2k

(5-12)
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A special case of Eq.(5-1) corresponding to

A =1 and thej}nterval (a,b) finite
f£(x) = | exp(-ixy)g(y)dy (5-13)

is of central importance in the'study of antenna

synthesis.(zz) ‘

Another :pecial case is provided by the choice

A=1, a=0, b =@, which gives Laplace's intergral

g
equation(23)
[0
f(s) =,4: exp(-st)F(t)dt (5-14)
Selecting as the set 2’&(5{)} the Laguerre poly-
nomials Lgxg(y) we have from Eq.(5-9) and the results
on page 30
0 n
oL x X
p(t) = toexp(-(1-sg)t) X Z ( ) £ sg) | ¢ ' 6
T (14() n=0 k=0 * ' (1+4), n
i (5-15)
as the solution of Eq.(5-14)
Suppose for example that
g™
f(s) = (5'16)
(S+a)m+l
then
o0
g™ _ 2:- (m+l)k (-)k sk+m
m+1 a

(s+a) k= a)('H'IH‘]. k!
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and

o) = my ()X (Ly4n
(0) = (5-17)
k+m+1l
a k!

f(k+m)

Then from Eq. (5-15) with X = 0, s = 0

@ ] (k)
f 0) L (t)
F(t)=exp(-t) Z Z (1) nvx (O T

n=0 k=Fn (k)2 n!

® o !
- exp(-t)x;gj _ (D naicam €5 (0) Lyyam 46

n=¢ k=0 2

;; (l)k+m n!
@ n
=exp(-t)§£b o (1) n+m f(k+:) (0) Lpypy (t)
(l)k+m (n-k):

With Eqg. (5-17), F(t) takes the form

S ) e, () (t)
m+ - L t
F(t) = exp(-t) 5: n+m k nm
n=0 k=0 k+m+1
a k! (l)k+m (n-k)!
(5-18)
but
(l)k+m = (l)m (l+m)k

and Eq.(5-18) becomes

m+1

n

00

L -

F(t)=exp(-t)_2 E: (1) pym Enam (1) Z: (;)(_)k 2k
a n=0 m: n: k=0
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@
= ep(-t) Z (1) 4 Lo (8 (1 - 1/)7
am+l n=0 '
m: n
J
Use of the reault(24)
)
;zi: (n+m) ! L, (t) x" .
n=0 = (1-x) =" exP<f XY (2
m! n! 1-x'>Lm(1_;>
4
gives
N —
1 7’ :
F(t)=exp(-t) ——=F ™1 exp(-t(a-1)) L (at)
am+1

= exp. (- at) Lm(at) = exp(-at)F.(-m;1;at)
(5-19)

or by use of Kummer's first formula (25)

exp(-z),F,(a;b;z) = |F(b-a;b;-2)

equation (5-19) becomes

1 (L + m; 1; -at).

Thus 1fg€'l denotes the inverse Laplacé transform we
have

-1 g"
;{ = lFl(l + m; 1; - at)

(s + a).'n-o-l

(5-20)

This result is well known.(26)
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Suppose now that

n (5-21)
£(s) = L (1 - _L>
) S S

then with s =1

sn

f(s + 1) =
(s + l)n,
but this is the example we just considered with a = 1.

' 4
It follows then from Egs. (5-15) and (5-19) that

N ] -

o
e d

exp (-t) P(t) = exp (-t) L_(t)

that is

Ln (t)l (5'22)

%
—
l —
~
-
)
lH
S~~———
o ]
1}

also a known result.(27)

We now proceed to consider some applications of

the above methods to physical problems.



CHAPTER TWO

RADIATION FROM A LINEAR ANTENNA.
. J
Section 1. Formulation of Hallén's inteqral equation.

We will consider the problem of electromagnetic
radiation from a perfectly conducting cylindrical antenna
excited across a small air gap gy an external a-c source.

It is well known that the electric field vecter can
be derived frdm a scalar and a vector potential accdording

to the relation 1;;0

E=- Vg - im A (1-1)
If the potentials are subject to the Lorentz condition
V- A+ ioped = 0 (1-2)

then E can be derived from a vector potential alone

2 2
5 = S . 3 QL 3 _
E im(v(v A)+C2A) (1-3)

where ¢ = lAbue .
(r)

For the rlﬁiated field E the vector potential
5 (r)

A is related to the induced current density by means

of the equation
_ lr - ¢
RE S J(E -7, ¢ - c_ )
3

dv (1-4)

r being the distance from the origin of coordinates to

the field point, and r' the corresponding distance to

48
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the source point.

We shall assume the z-axis chosen along the axis of
the anbenna, tﬂL length of which extends from -1 to
+1 (Fig. 2.1). At z = 0 the antenna is fed across a small
air gap by an external a-c voltage 2V°exp(imt). Because
of the assumption of infinite conductivity, the current
only flows along the sugface of the antenna, and we may
assume that it is symmetrically distributed with respect
to the axis of the gylinder. The current density vector
has thus only a z-é::ponent, and the vector potential is
parallel to the z-axis at all points. The end surfaces
of the cylinder make an exception and should consequently
be assumed small. We can, however, surmount the difficulty
by assuming that the antenna consists of a tube thus eli-
minating the end surfaces.

On the surface of the antenna Ez = 0 because of the
assumption of infinite conductivity. Furthermore, for a
straight antenq‘a V.a=20 Az /&Z . We have then for

Y

the z-component of Eg.(1-3)

2
3 Z2 + k Az =0, (1-5)

where k = w Vue .
The solutions of Eq.(1-5) are of the type coskz and

sin kz.
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As the antenna we have considered consists of two
halves between which there exists a difference of potential
we shewdd not d;pect the coefficients of cos kz and sin
kz terms to be the same for both halves of the antenna.
Instead it is the vector potential which is to be sym-
metrical with respect to the air gap when the antenna is

fed at the middle. Consequently we shall put

Az = (AT cos kz + A2 sin k|z|)exp(int), —

7. '
where Al and A, areasgonstants. For the scalar potential

2
of the antenna we have from Eq.(l1-2) ing = - C2 a‘AZKSZ

i.e.,

iwg = czk(A1 sin kz + A2 cos kz ) exp(iwt)

where the upper sign corresponds to z > 0 and the lower
one to z < 0. Hence the potential has two values

g =+ icAz exp(iwt) at z = 0. We know already, however,
that there g = + Vo exp(iwt) and A, is thus defined. The

2
vector potentiil obtains then the form

[N

i . :
Az = (Al cos kz - Vo sin k [z|) exp(iwt).

It is possible to complement the last term in the paren-
thegis by a corresponding real cosine term to give an
exponential function, the cosine part of which is taken

from the first term. Az obtains then the alternative
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form

\Y

g = (A' cos kz + :? exp(-ik {(z|)) exp(iwt) (1-6)

where A' ilja new constant.

The vector potential Az may be expressed in terms
of the antenna current with the help of Eq.l-4). Let A
be the radial coordinate in a ‘cylindrical coordinate
system whose polar axis coincides with the axis‘ of the
antenna and Wwith origin in the mid point of :the amtenna.
Let "a" be the radius of the antenna. The surface current

A
I(z) is then given by the limit of (J227ra)A P as AP—o

and J —> &7 .

Equation (1-4) becomes a surface integral upon re-
placing szv by I({)d{a dg/2m a, where the integration
over © has, so to speak, already been performed. For
the time dependence exp(iwt) the retardation factor

|\t - &'

takes the form exp iw(t - —E—'— ). The magnitude of

the vector potential A on the surface of the antenna is

given by ‘ y 27

=E_( __EL___L 1-
A = J I(%’) dg a ¢ (1-7)
where r is the distance from the source point on the

surface of the antenna, to the field point al:zo on the

surface of the antenna (Fig.2.1l)

!

21 )
zd (1-8)

r-\/(z—?)2+4azsin
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From Egs.(1-6) and (1-7), the integral equation of a
cylindrical transmitting antenna fed at the middle is

obtained in spe form { "

%%}Voexp(—ik[zl) + A cos kz) =‘Xd€1(§)%; O ex ;ikr ag (
where A is a new constant and 'ij :!/“/45-

This is Hallén's integral equation.

It has been argued by Halléh(ze) that to Eq.g;—Q)

one must add the boundary condition I(/) = I(-{) =_0
.~

to specify the coqgtant A. We shall not follow his

ar
suggestion for, as we shall see, it is the constant A
that is determined by the solution and not the other way

around; that is I(g) is independent of A.

Section 2. Solution of Hallén's integral equation.

In Eq.(1-9) replace z by lx and { by ly, then
2T

/
1 T
S_E(vo exp(-ikl|x|)+ A cos klx) =)' dyI(ly)-z—j'; J S-_xp_(;ggl_)d‘
o
- fo) (2-1)
where now
V/ 2 a2 21 ’
r = ‘(x—y) + 4);3 sin” 7 # (2-2)
. d2 \ :
Multiply both sides of Eq.(2-1) by ¢ (x1)°, to obtain
. exn (=i
- (-2ik1)5 (x) = (1_2_ N (kl)z)) dyI(ly)%— xp(-iklr) o
™ r
0 dx
-1 o (2-3)

where 8 (x) is the delta function. The factor (-2ikl)
accounts for the jump discontinuity in the first derivative

of exp(-ikl|x|) at x = 0.
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Let us as in page 14, consider the related equation

i 2
exp(isx) = 43:’1 Q__ + (k) )/{ dyG(y, s) __:[;Eﬁl_i5££l dg
dx

& L (2-4)
where 8 is a parameter. By letting G(y,s) = 0 for (yl >1

we have by virtue of lemma 3 of chapter one
! 21

in a2 .y
exp(isx) = v k}‘{dyc(y,s)(——— +(k[) yy exp(rlk r)dﬁ
I x

~I o

(2-5)
but this is Eq.(3.1-23) with f(s) = 27, a = -1, b =1,

s replaced by -s angd (2-6)
- o R l’“)
27 )2 exp (ik{ {(x-y) +4 £ gin‘ = )
Kooy Gy 7 ¢ k%) = bi—lay
o X ox° an (x- ) + 42 sin2 L g
0 ; Y VE 2

In order to satisfy the requirement that K(x) = o((xl‘n)
as [ x! = oo for all n >0, we require k to have a small
negative imaginary part, corresponding to the medium having
finite non-zero conductivity

= p - iq pP,q>0. (2-7)
for substitution in Eg.(3.1-28) we need the Fourier trans-
form of Eq.(2—é).

(29)

To obtain this consider the following integral

o / 1 Vi -]

r K { ay (t2 + zzy w2 2

| Ip (bt ) v mlo, - b ia___t_b__j X {2/32
) (£ +z2)l/2v a” A Ypay

In this equation let VvV = %y p = —%, a =ikl, b=sg, z = a

and since J (z) = (2/7 z) cos z, and Kl(z) = (r/2z) exp(-z),

there followg 2
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\

* oty Vet el
(cos st 2‘2.(._1_%‘___“_2_‘ dt = Ko a\/s - (kQ) )\
/ Vt© + a
O
or A
-1 Vtz + az) ' 2 2
J exp(ist) m'%&z'?r*- dt = 2 K i a /; - (x1)
/.2 o
= Vt© + a
Hence by PFourier's theorem

_— L0

[ 2 2 { , r )
exp(—iijt +a) _1] . | /2 _ A
5 5 = g exp ( lst)Koz ay s (k8 ds
t° + a N
) 4

Replace t by x-y, a by 2(a/l)sin ‘;‘ % and integra® with

respect to ¢ fromP to 27

exp (ikf (x—y)2 + 4 — sin %

) 2 ) dg
J (x-y)2 + 42 5in° =
° £

1
2T

0O 2T (2-8)

= —1-3 j exp(—is(x-y))J Ko {2 E‘ sin *]2; & \/52 _ (kﬂ)z }ddds

27
74
o

(30)

Consider now the following integral
e
2
Io(z)Ky (z) = . KL(ZZ cosB) cosyv 846

that is
A

K, (2z cosb6) cédsyp6dé (2-9)

-
/1 |

LO(z) Ky (z) =

3 |~
;'“—\

et =0, 8=38 -5, z = (a/0) (s?-x1)%)" , and BEq.(2-9)
becomes
1 /82 - xh?) k(G Vs° - xh?) =
o —_—
1 a 1. /2 2
P J Ko(z,( sin 2 g Ve - (k)" ) ag (2-10)

-
(%
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Substitution of this result in Eg.(2-8) yields

1 exp( lkf \/(x—y) + 4 i—;— i -;—’;)
(x-y)% + 4 -3- sin” 5 g
) 4
/_oO
1 E;———-_3,
=—2—;J exp(-is(x-y)) 21 = J - (kﬂ) ) K (I‘/s - (x{) )d
oo (2-11)

By use of the result, proved in the appendix, that «

P& ) ?:yr(p(ix)f ] -

ds L
P

where P(x) is a polyné?tﬁal in x, we have

27 / 2 }
2 .
2 J exp (-ik{ (x-y)2 + 4 'z—; sin % g)

2, 1 v
\/(x—y)2 + 4

cji- + x0?
I

dg

aa .21
Ve sin” 5 g
0

/,.00

It
= %‘; )2eXP(-is(x-Y))((ki)2 -:32)10(/52 m)xo(f \Jsz-(kﬁ)z)ds
- | (2-12)

Hence from Eq.(2-6) we have

o~ ino(kﬁ)z-sz)

— a
K(s) = — VOV;kIZ

|2 2 a
1,G s - kb x G

- xh?)
(2-13)

which is the desired transform.

From Eg.(3.1-28) there follows

2V k4 93(5 + 2iy, exp(-4))

G(y,s) = exp(iys)
iqo((kﬂ)2 - sz) Io(f s —(kl) )x ( J_i (kﬁ) )

(2-14)
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where we made use of the fact that the third theta function
is an even function of its argument.

Let us now/integrate both sides of Eq.(2-4) with re-
spect to s from - to 4/ amd take the limit as ./ —>e0,

Then by use of lemma 1, we have

!

' ! 00 27
. 42 2 1 { exp(-ik{r)
5 (x) EEY) ( >t (k¢) )dejc(y,s)ds‘zjr - dg
o dx
- -00 o —
Sy
which is equation (2 3). Hence
00, wf £
i2kV exp(is?)ég (21:; + 8{, exp(-4))ds
(€) = Q - R
(¢ 2 2 2 2

(82 - X1 _(a 52 - XDk _(a {s? - X2
o o
(2-15)
which is the desired result.

Section 3. Nature of the solution.

We now examine, in some detail, the nature of the
results given in section 2.
The solution of Hallén's integral equation is given

from Eq.(2-15) fy

0©
I(z) = 2V _._2_(L§z) % (sf +ﬁi_z,/_£ exp(-4)) ds
Y% (2 - x? )I (a Js - % )K (a\/s2 - x? )
-00

(3-1)
Let us first note that because of the complex nature of

k (Eg.(2-7)), the integrand in (3-1) has no singularities
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in the real axis. The singularities of the integrand
are located in the s-plane at s = Xk énd s = -k,

Use of the redation

oD
9 (sf + 211 . exp(-4)) =1 + ZZ exp (- 4n ) cos 2n(21£+ sl)
n=/
in Eq.(3-1), gives
o0 /
I(z) = izkvo explisz) ds
(s* - 1)1 (a Va2 - x2) - %K _(a /s 2 _ %)
-0
O S
iv k exp(ls(ﬂ*z))exp(—4nz(l+z) exp(ls(2n—l)ﬂ)45
+ . f exp (-4n(ng})) (sz ) kz)io(a\,fs_i _ kz)xo(a v’si _ kZ')
ne Zoo
=D . o0 1
iv k exp(il(l-z))exp( 4rr-(f-z))exp(is(2n-l)£)ds
—- exp(-4n(n-1)) —
Y% ey (82 - k )I (a\ - x? )K (a \/ -k )
- -0

This expression is seen to be of the form

= )
I(z) = io(z) + ;2'— {%n(l +z) + in(l - z) E (3-3)
where =1 J

b

12 . ’
i (z) = _.Ll v _XE.L_Bz) ds
o

N (a2 —k)I(;}z‘—k!)K(a\Ji

I (3-4)
iVok exp(is(ltz))exp(—4ni;(l+z))exp(€$()n l)esb
i (1+z) = —exp(-4n(n-1)) r=ff——
n T (52 - kZ)Io(a Vsz - k )K (a T}
)

(3-5)
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That is io(z) = io(~z) is the outgoing current wave and
the in are reflected traveling current waves of different

orders as fugftions of the distances 1 + z, 1 - z res-
pectively from the end points, in(l + z) traveling in
the positive and in(l - z) in the negative z-direction.

The expression for io(z) was obtained independently

by Hallén by considering the infinitely long antenna.

Note from Eqs.(3-4) and (3-5) that

4

. od
exp(jzn(n-l))exp(-4;§)i2vok exp(is(f’+(ZﬁLl)£) ds
i (5) = — —
n ? ,;2‘ R (sz-kz)Io(aJsz-kz)Ko(a 8 -k’
that is it

in( 'f') = i‘ exp(-4n(§— +n-l))io($+ (2n - 1)1) (3-6)

Hence it suffices to study io(z) and to use Eqg.(3-6) to

obtain corresponding results for in(l + z).

The outgoing current wave io(z) has been extensively
studied by Hallén.(Bl) We shall illustrate Hallén's

approach.

Since Eq.(3-4) does not change when s is replaced by

-g and z by -z, it is convenient to replace z by —{z! in

the exponential term

(oo
. ' 2Vo k exp(-isl!zl) ds
i (z) =

2
% | (7 - Kk (a s - KK _(ai/s® - K0)

(3-7)

- 00
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Let us now replace the path of integration by another

path (Fig.2.2)

s-plane

e Figure 2.2: CONTOUR

The rotation of the left half of the path of integration

in Eq.(3-7) is permissible because of the factor exp(-is)z|)

in the numerator, and the asymptotic behavior of IOKO,(SZ)

when residues are provided for the poles. Since

(33)

there follows

Io(z)Kl(z) + Il(z)xo(z) =1/z

L K\l (3-8)

2 f—_m' K*W‘l i

(87 - k )I K
Ko has no zeros in the lower half of tHe complex plane.

) — e =y

The zeros of I (a 82 - k2 ) are located at a 32 - k2 = i f '
o m om
i.e.,
2 -
_ 2 $CM
s, =\ K - (3-9)
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where ?om are the zeros of Jo(z). Now(34)16(z) = Il(z),

and so in the immediate neighborhood of the poles

ak; 1

2 : -
s -k Io sm(s sm)

Consequently if the contribution of the poles is determined
by the calculus of residues, the expression for the out-

going wave takes the form

C&ij
. _ 4 -k . ‘
10(2) = N VO 5 exp ( 1smkz[)

e | -

(3-10)

21V
o) Xk %épi -islz! lﬁds
+
o L (82 —k)I (a|s —k)K((z K2

It is a simple matter to determine the physical signifi-
cance of the infinite series above. When]c(fmq/a, then
. in Eq.(3.9) is imaginary (Fig.2). The terms of the

series are then

]

1zl 2
g' 2.2

4wa exp(- a om™2 k)
i o= iak SR (3-11)
om R { ? _ a2k2
Om

and are exponentially attenuated with distance. When

k> 5 /a they

(3-12)

s 2 2
m w - w

in question then lie on the real axis betSeen k and the

= C = ——eee———
where W, ?Om /a. Also . The poles

origin. The terms of the series then are of the form
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v
.zl 2
iom(z) = ;f exp (-1 = Voo - w: ) (3-13)
where  J
Y [
= 2 - (=< -
N = 2 1 (w) (3-14)

The series terms in both cases represent guided waves
within the hollow cylindrical antenna, and W, has the

meaning of a cutoff frequency. Equation (3—10)‘gives

the traveling wave partly as an external antenna gurrent
expressed by the Aast term, and partly as a series of internal
ar -

waves in wave-quides. It was pointed out before, that

Hallén's integral equation was rigorously valid when the
antenna consisted of a thin metal tube. It is for this
reason that the sum of both the internal and the external
solution is obtained as the answer to the problem.

Hallén has shown that the integral in Eq.(3-10) can

be put in the form

ir‘-: A N (kz) exp(-ik|z!) (3-15)

where’Y\(kz) is a non-periodi¢ complex amplitude function

given by
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Pf\(kz) _ 2 du
vz uyl - u2 [H(i)(aku)lz
4": 0 TT/Z.

2 . _ s
+ 2 exp(ik[z]) exp (-ik |zl i?? g) exp(zlkizl)d¢

T sin g IH o (aksiné),

_'n/]_ (o}
+ ‘?’1‘1)’("‘[5‘“'”2‘) g (3-16)
) 1"’ (ak/sing) |
' 4

where H(l)(z? is a Hankel function of the first kind.

o

The last two ;éregrals have both finite ranges of
integration and finite integrands and are suitable for
numerical evaluation as functions of kz. The first
term which is a constant has an important physical sig-
nificance. It forms the limiting value of the real part
of ’YA when z -0, and this term alone in Egq. (3-15)
gives the conductance at the feeding point of an
infinitely long antenna, i.e., the characteristic wave

conductance of an antenna of arbitrary length,

r &

2T ‘ 4 *  du

N Y7 A —

© P € 2 noTr J uJP; - u [H(i)(aku){z
5

(3-17)
The imaginary part of Ar , according to Eq.(3-16)
does not approach a finite limit as z approaches zero.

The reason for this lies in the fact that as the gap
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between the two halves of the antenna is reduced, the
mutual capacitance increases without bound. 1In reality
the air gap neverjyanishes since even when the sepa-
ration equals a the capacitance is still very small.
The absence of a finite limit when the antenna is consi-
dered without the feeding line makes it impossible to
assign to the antenna a well defined susceptance Bo
whereas it may be ascribed'a well defined conductance‘Go:
L%

From Egs.(3-3), (3- 6), (3-10) and (3- 16) it follows

that the solution of H?fien s integral equation is

= iI k_ s
1(z) <z~ N, o - exp ( 1sm[zf)
oy
60 oo r . ‘
+.ST Zi—exp j %(£+z)+n-l] %f Vo E: expl—is‘\}ﬁ+z)+(2n-l)j‘

A
u
<

(™™g
Y™ gy

. -
expg %(l-z)ﬂx—l] —2'1_3 v X exp i‘ism 5(1-2)”2“-1)1_ }
=/

X
u

+'ﬁ§ Vonp(%z) exp (—ik]z})

. \
+Z ?z'lr‘voexpg -4n[3 (§+2) +n- 11} W(k(hz)ﬂcuzn-l)>exp3-1k (f+2)+f(2n-1 3}

- 0
n=y

o I V)

oD .
+Z -—F-Voexp}-4n[%(f—z)+n—l]} N (k(f-2z)+k£4(2n-1) )expi—ik [ (Q-z)+1(2n-l)}}
n-1 ©
(3-18)
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where i.Lva
2 om
sm = Ak - a;r_

and f;n\are the zeros of Jo(z).

The first term corresponds, as we have seen, to an out-
going internal wave in the tube antenna. The second and
third terms given by the doubly infinite sums represent
a series of reflected wave-guide currents of different
orders as functions of the distance { + z, { - z respec-
tively from the engkj’bints, the former traveling in the
positive and the latter in the negative z-direction. The
fourth term represents the outgoing external current wave
in the antenna. The fifth and sixth terms represent re-
flected external currents of different orders as functions
of the distances { + z, { - z respectively from the end
points, one set traveling in the positive and one in the
negative z-direction. The factor exp(~ik¢ (2n-1)) in the
last two terms corresponds to the total distance {(2n-1)

over which thé wave has traveled before the last re-

flection.



CHAPTER THRER

Y,
SCATTERING BY A THIN WIRE.

Section 1. Formulation of the integral eguation.

We wish now to consider the prohlem of electro-
magnetic back scattering from a perfectly conducting

cylindrical wire excited by a plane electronagnetic‘wave

S —
with harmonic time dependence.

7
From Eq.(1-7) of cMapter two we have for the mag-

nitude of the vector potential on the surface of the wire
-4 2T
A 1 exp (ikr)
A = J I(f) 27 T dg df (1-1)
V4

z 4T
o

where as before X = w/c and r is the distance from the

source point on the surface of the wire, to the field point

alse on the surface of the wire

—
2Ly

r = le - g')z + 4azsin %‘ (1-2)
1

!
The wire must be: assumed thin enough so tHat the assumption,

used in arriving at Bg.(l-1), that the current is sym-
metrically distributed with respect to the axis of the
cylinder is satisfied.

On the surface of the wire, the tangential component

of the scattered field E(s) must be equal to the negative

66
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N

< Cylindrical Wire

Sy p—

FIGURE 3.1 ORIENTATION OF THE INCIDENT E-VECTOR AND THE POSITION
OF THE CYLINDRICAL WIRE
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of the tangential component of the incident field E(l)

that is
7 7 217
2 2 g
pli)_c 4 2, n 1 | exp(-ikr)
£ Tiw ( 2tk ) 2T 1(§) 2T r ¢ af
dz |
£ 0 (1-3)

With the direction of the incident E-vector indicated in

Fig. (3.1) we obtain at once

.~ iq 2 : ( N
E sinticosYexp(ikzcos8) = “-Q(Q“—+ I( ?) ““£i~é££)d¢d?
o ’ 4Tk dz2
£V 4 .y O(l -4)

where N, = Vu/e and E is the amplitude of the incident
field.

Eq.(1-4) was derived on the assumption that the end
surfaces play a negligible role and its solution will,
accordingly, bear the same limitation.

Section 2. Solution of the integral equation.

In Eq.(1-4) replace z by 1x and § by ly

! 21
: in, 2 ,
Eosinﬂcos“féxp(iky X cos@) = (-——*k 1 Ty )J;. QEEI:ALQE)dﬁdy
arky  dx t
- o
(2-1)

2
\ 2 a 2
=‘/(x-y) + 42 gin" 1 g
ﬁZ 2
We have already solved this equation in section 2 of chapter

two. In fact it follows from Eq.(2-4) that I(z) is ob-
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tained from G(y,s) in Eq.(2-14) upon replacing . by kl cos 8,

v, by wEol sin 0 coa(YN, and y by z/1; that is

4
4Eocoi7\exp(ikzcose)e3(kﬂcoso+2i.f‘. exp(-4»
I(z) =
nk sin 8 J_ (aksin®@) H(z)(aksine)
o o o)
(2-2)
where we made use of the relations
. . . . 1 .71 _(2) .
Io(lak51n 9) = Jo(aksln 9), Ko(_1k51n 8) = 5, Ti H (aksin 8).
Eq.(2-2) is the desired solutiomn.
’
Section 3. Ng;u?é'gg the solution.
For the scattering problem we have obtained for the
current
4Eocos/T\exp(ikzcos 9) 93 (kfcos 68 + 2i f, exp(-4))
I(z) =
n_ ksin 8 J_ (aksin 8) H(z)(aksin 9)
o o) o)
(3-1)

The imaginary part of k will henceforth be taken equal to
zero.
Use of the relation
o
83(klcos 8 + 21 5yexp(—4)) =1 + 22{jexp(—4n2)cos2n(kﬁcos 6 + 2i

n=/
in Eq.(3-1) gives
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4EQ cos’Y" exp (ikz cos 6)
(2)

(o]

I(z) =

n, k sin 8 Jo(aks1n 8) H (aksin 9)

4Egcoswhéz; exp(-4n(n—l)exp(—4n/%([+z))exp(ik(l+z+(2n—l)[))cos 9

* (2)
ng k sin 8 Jo(akain 9) H (aksin @)
)
4E cos V") exp(-4n(n-1))exp(-4n J(f-2))exp -1k ({-z+(2n-1){) )cos
+ A= 4
n k sin 6 J_ (aksin 0) H(z)(aksin 0)
o 3’ o (3-27
This expression is 3lso of the form
ar
o0 ]
I(z) = io(z) + L i l+z)+i (1-2) ; (3-3)
=) '
where
4E cos WV\exp (ikzcos 9)
i (z) = —2 B (3-4)
° n, k sin @ J_ (aksin ) H®' (aksin @)
4E cos’Y‘exp(—4n(n-l))exp(-4n%(£+z))exp(ik(£+z+{2n-llﬂ)
i w+z) = o (2) cos 8)
n n.k sin 8 J (aksin 68) H (aksin 9)
o o o (3-5)
4E_ cos ¥\ exp(-4n(n-1))exp (-4@(14) Yexp (-ik (f-z+2n-1)2)
i (1-z) =
n Ry k sin 8 Jo(aksin 9) Héz)(aksin ) cos )
(3-6)

That is, io(z) is the induced primary current wave and the

in are the reflected traveling currents of different orders
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as functions of the distances 1 + z, 1 - z respectively
from the end points.
»ﬂho~expredsion for I(z) is given to a very good

approximation by keeping terms to order n = 1 only,

4Eo cosﬁY\
. 2) exp (ikzcos @)

D, k sin © Jo (aksin Q) Ho (aksin 8)

I(z) =

. . - )
+ exp[-4(lf%%lcos[k(z+2ﬁ)coso‘+iexptf4(l+%§ sin[k(z}zl)cos 9}

A

-

1

+ exp{-4(ljf{]CO;F;(Z-20)COS e]+ iexp[-4(lifflsin[k(z—Zﬁ)cos SJ
(3-7)

This solution possesses the following features: 1I(z)
is composed of a traveling wave plus standing waves. Away
from the ends the standing waves are nearly space harmonic;
but contrary to what is commonly assumed, for normal in-
cidence, 6 = 1/2, the standing waves are no longer harmonic.
In fact, for normal incidence the z-component of the
impinging fi‘ld is uniform in space and there is, indeed,
no a priori reason for the belief that‘the standing waves
in this case must be space harmonic.

One more fact of this solution is yet to be discussed,
namely the behavior of the current at the ends of the

wire. Por this we return to Eq.(3-1)
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4Eocosﬁnexp(ikzcos 6)03(k9c00 e + 21% , exp(-4))
(2)

(o]

I(z) =

“ﬂk sin 0 Jo (axsin 68) H (aksin 8)

The zeros of the third theta function 93(2) are located
at(35) z = %v + %ﬂ U-mr - nmT , where m and n are any
integers and T is defined in Eq.(3.1-20) of chapter

/

one.

For Eq.(3-1) we have T = i4/v and I(z) vanishes at

. —_—

D SR S -
z = 21(2 4n 1Ih42 m + k{ cos 9)) (3-8)

since the range of variation of z is the interval (-[,f),
n can only take the values 0 and 1, and m must be such

that

2rcos 8 = (2m-1) %/\/1. (3-9)

Equation (3-9) assures the vanishing of the imaginary
part of BEq.(3-8). For angles such that Eq.(3-9) is satis-
1
fied 1(2z) vaiishes at -1 and +1.
For other angles the non-vanishing of the current at
the ends indicates the presence there of a displacement
current in order to satisfy the equation of continuity.
In fact it is well known that the radiation field of an

electric dipole vanishes along the axis of the dipole,
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but in the near zone there is an appreciable longitudinal
component of E; and indeed it is this component, and not
the radiatiow field, which determines the distribution
of current in a vertical antenna above the earth.(36)

On the other hand, experiment has shown that the current
at the ends of the wire is always very small contrary to
the large values predicted by Eq.(3-7).

. d

This enphafizes the fact that although Eq.(3-1) is
the exact solutioq,of Eq.(1-4), the neglecting of the
end surfaces affo;g; a very poor representation of the
physical situation. This point was emphasized by L.
Brillouin.(37) Brillouin alleged that the end surfaces
played a fundamental role in the scattering by a thin
cylinder and consequently should be takem into account
in the formulation. When this is done, the analysis leads
to coupled integal equations which are considerably more
difficult to solve.

Other researchers have compensated for the limitations

of Eq.(l1-4) by assuming current distributions suggested

by the experimental results.

Section 4. The expression for the back-scattering cross
section.

According to definition, the back-scattering cross
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section 9 (8, V") is given by

4wR2 fEQcos”r 2
gle,5r) = —>—; (4-1)

E
o

where Ee denotes the field produced by the induced current

I(z) at a large distance RO in the direction opposite that

of the incident wave; that is,

L y

iqoksin 8 exp(-ik R ) [

o
Eg QWRO I(z) exp(ikzcos 8) dz —
s (4-2)
'
ar
Hence
2
r L -
nikzsinz ) coszﬂ\ |
dee,T) = — > I(z) exp(ikzcos 8) dz |
4WEO L
AL (4-3)

Por obtaining numerical values of<5(9,“r), it is
convenient to eliminate the‘ﬂ\-dependence by introducing
the average value of J(8,”") over all values of'ﬂ“ ,
corresponding to a random distribution of dipoles.

Denoting the ‘latter by ¢(8), we have

T

~

Jge) = = J Je,Y) at (4-4)

m
]

From Eqgs.(4-3) and (4-4) there follows
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g(8) _ 312
}\2 2T )\Zgi(aksin 9)\H(()2) (aksin G)l2

- /|

exp(2ik 4 x cos 8) 0

L (4-5)

3 (kfcos © + 2ix, exp(-4))dx

Use of Eg.(3-7) gives to a very good approximation

4

d(8) 3%

P /\ZJi}aksin 0) | Héz) (aksin @) |°
v 4

sin(2xlcos 8) 2 '
kfcos © 4+ k2£2c052 0 J

4 I, |

which is the expression sought.
If ak <<1, then Jo(ak sin 8) is nearly unity and for

the Hankel function we have for small values of z(38)

Héz) (z) =1 -2 = log ’é‘ zJ (4-7)

where log) = 0.5772... 1is the Euler*Mascheroni constant.
The expression for the scattering cross section takes

the form
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d(e) _ 3 42
2 2 [ I Y ak sin 6,2
A | 8 %}; L(z) + (log ) )

]
]

(4-8)
- T2

- sin(2k dcos 0) + 2 :

. k{cos® 4 +x24% cos? 0 J
L ,

This expression is similar to that obtained by other

(39,40) !

research workers, but it predicts values much

-~
smaller than those indicated by experiment. This is not

’ .
a surprising f;adﬁ"since we have seen that the end sur-

faces play a dominant role in the shaping of the current

distribution.



APPENDIX

FUNDAMENTALS OF THE THEORY OF DISTRIBUTIONS

In the main body of the thesis we had occasion to
use several results from the theory of distributions. It
is the purpose of this appendix to give rigorous justi-
fication to these assertions. Our approach is pattesned

after the Gelfand-Shilov theory as found in their book
ar

(41)

Les Digtributions.

By a class K of testing functions is meant a set of
finite functions y;(x), i.e., functions that vanish out-
side a bounded set (corresponding to each function %Rx))
and which have continuous derivatives of all orders.

Adding the testing functions, or multiplying them
by complex numbers, we will always obtain testing functions;
in other words K is a vector space.

The sequence of testing functions

P, Y, e B,

is said to converge to zero in K if they all vanish out-
side the same bounded set, and if they, together with their

derivatives of all orders, converge uniformly to zero in

77
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the ordinary sense.

By a continuous linear functional f in the space K
is meant a def%gite rule that assigns to each testing
functi§; a certain complex number (f, ) satisfying the
following conditions:

a) For any two complex numbers a,, a, and any two testing

1’ 72

functions ‘fl(x), ‘ﬁz(x) we have the equality

4 - . 4
(£, 0, )+, P) =a (£, £ +a, (£ )
-
(linearity of the functional f);
’
b) If the sequence"ﬂ% testing functions %7, 90,..., 96/,...

tends toward zero in K, the sequence of numbers

(fl sol)l(fl %2)1 cee r(f: %), cee

tends toward zero. (Continuity of the linear functional f).
From here on we will designate as distributions
every continuous linear functional in the space of testing
functions.
If a function f(x) is alsolutely integrable in every
finite interval;this function is said to be locally in-

tegrable. With each such function we can make correspond

to each testing function yo(x) the number

o
(£, P) = £(x) P(x)ax (A-1)

-0
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where f denotes the complex conjugate of f and the inte-
gration ranges over the bounded set outside of which ¢ (x)
vanishes. It4§| easy to show that the conditions (a) and
(b) above are satisfied. Distributions of this type are
known as regular distributions. Any other type is known
as a singular distribution (in pﬁrticular the 6-function
defined by (5(x), P(x)) = @(0) for any testing function).

A distribution f is said to vanish in the neighborhood
U of the pointx;o if for each testing function @(x’w
vanishing outside Héthe equality (f, 4)(x)) = 0 holds.
Hence, the distribution f, corresponding to the ordinary
function f, vanishes in the neighborhood U of X, if the
function f(x) itself vanishes almost everywhere in this
neighborhood. The singular distribution 6(x-x1) vanishes
in a certain neighborhood of any point X # X, .

If the distribution f does not vanish in any neigh-
borhood of the point X o X is called an essential point
of the functiopal f. The union of all the essential points
is called the support of the distribution. The support
of a distribution f, corresponding to an ordinary function
(continuous or piecewise continuous) is the closure of the
set over which f(x) # 0. The support of the distribution

6(x—xo) is made of the single point x . If the set F
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contains the support of the functional £, the functional
f is said to be concentrated in the set P.

Exmggfinition, a distribution f vanishes in the open
set G if it vanishes in a certain neighborhood of each point
of this set.

Given two distributions f and g, we define their sum

as the linear functional defined by

(£+9,¢) = (£, §) + (g, ¢).

g
A

The product of a distribution by a number a is de-

fined by
(af, ¢) = G(£, ¥) =(£,d¥).

The multiplication by an infinitely differentiable function

a(x) is defined by
(a(x)f, ¢).= (£f,a(x)§). (A-2)

By definition, the sequence of distributions £ f

ll 2'

f3,...,fy ++.. converges to the distribution f if for any

testing function (p(x)

lim (£ , ) = (£ ).

L0
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oD

In the same fashion, the series of distributions Z: h

nzxop

is said to converge to the distribution g if the sequence
<

of partial sumsigp =‘Z: hn converges to the distribution
— Nz o

g in the sense indicated above.

Let f be a continuous linear functional over the
space K of testing functions: theidistribution g given
by the formula (g, ¥) = (f,- ¥') is called the deriyative

of the functional f and is designated by the notation f'
“-

or df/dx.
’

e d
Lemma 1. In the sanse of convergence of distributions
v
lim 3 exp(ix§)d§ = 21 6(x).
e X
-

Proof.

It is well known that

oD 0
1 sin“x _
dez/(x)dx = -j " dx =1
- 0O -0

Also for b>a >0

F;) b by
‘ .y .
Jf(x)dx=L5 de=lfmdy—90asu"“’°o
< ™ X ™ Y
a alL’

The same result being valid for a<b<0. Finally, the

magnitude
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b by

/ .
1 siny
e
a

[
1 n
_,.;J.!_L_zdy
Y

Qv

is uniformly bounded with respect to a and b, for any 4.
Let us now consider the sequence of primitives

/

/
P, (x) = Jf&(‘f)gﬂ? y

Y

It follows immediattjly from the defi_nition of the sequence
£, (x), that the f\’?x;tion L (x) has for limit as v —>.0 a
constant ec;ual to zero for x< 0, and unity for x >0, and
is also uniformly bounded with respect to < in every
finite interval. It follows then that the sequence F_ (x)
has for limit, in the sense of distributions, the step
function a(x), 0 for x<0 and 1 for x >0, hence the
sequence of functions fz/ (x) = F! (x) has for limit, in the

sense of distributions, the function a' (x)

nO

(@ (x), P &) = (a(x), - ' () = j ¥ (x)ax = (o)
(o]

and by definition of the delta function

a'(x) = 5(x)
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so that
, l sin#x
lim =BT X - p(x).
200 T, X
. l sinv x .
The function ;’“—;T—— can in turn be represented as the

result of integrating with respect to f , from -_ to 2,

the function (1/27)exp(i §¥x). We have then: In the sense

of convergence of distributions ‘
LA, -
lim exp(lxjg)d‘s’ = 2m6 (x).
Y00 r
-u

1 2
Lemma 2. If ft(x) =t exp(-x /4t), t >0, then in the
v

sense of convergence of distributions

lim £ (x) = 5(x)
2 t
k.‘")o

Proof.
Since ft(x);>0, then for any a and b

b .00
. 1 2
ft(x)dxjﬁ Ve J exp(-x /4t)dx = 1

[
| *

a .00

Making the change of variables x/V t = y, we have for

a<0d<b
b WAVE
1 2
lim f (x)dx = lim PWE exp(-y /4)dy = 1
t—> ¢ t t —o L

@ @/f:
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also, for any b > 0:

° 2
1 2 1 2 x 2t
Ve jiexp(-x /4t)ax < ST JGXP(X/M:) vl
s, i
t 2
Y exp(-b /4t) —> 0,

as t— 0. The integrals over the intervals (b,>2), b >0
tend to zero, and an analogous result holds for the intervals

(- ~,a), a < & Constructing as in lemma 1 the sequence

s

of primitives -

X
Ft (x) = E ft(f)d

-
shows, in view of the results above, that the functions
ft (x) form a sequence converging to the delta function.

That is

2 };r—t. exp (—x2/4t) —> 5 (x).

Convolution g_f_é distributions. .

In classical analysis one frequently uses the operation

of convolution of two functions f(x) and g(x)

£(x)*g(x) = g f(?)g(x-f)df. (A-3)
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The definition of convolution in the domain of distributions
is made starting with the concept of direct product of two
distribggions w’ieh is now introduced.

Let a distribution £(x) be defined over the space of
testing functions Kx of one variable x and g(y) a distri-
bution defined over the space of t?sting functions KY of
one variable y. Starting from these distributions we
wish to define a distribution h(z) over the space 6%
testing functio;: kz of two independent variables x a;é
y. We proceed in thi}folloving way: >We denote the testing
functions for the distribution h(z) by #(x,y). Let us
fix x and consider  (x,y) as a function of y. This is
obviously a testing function in the space Ky. Let us apply
to it the functional g(y) to obtain a certain function

qn(x). This function is infinitely differentiable, since

Px +Bx)-Hx) Plx +8x.y) - Flx,y oY
RS L (g(y), HEEERL h) g y), =&

Where we used tle fact that the sequence

Vix + Ax,y) - Yix,y)
A x

converges to a‘ﬁ(x,y)/é)x in the sense of convergence in

the space Ky and g(y) is continuous. It is evident also that
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Aﬂ(x) is finite. Hence, Y (x) is a testing function in
the space Kx and we can apply to it the functional £(x).

Therefase the eﬂbression

(£(x), (g(y), Y(x,¥))) (A-4)

1
is well defined. This is a certain functional over the

space Kz. Prom the continuity of the functionals £(x)
and g(y) one car deduce the continuity of this functromal.

This functional is gépignated by
h(z) = f(x) X g(y)

and is called the direct product of the functional f(x)
by the functional g(y).

The direct product has a particularly simple

appearance when it is applied to a testing function V(x,y),

product of two testing functions (fl(x) and ((z(y). In

this case, accqrding to the definition

(£(x) X g(Y).‘Pl(X)(Fz(y)) =(£(x), (g(y), ¥ (x) ¥, (y)))
(A-5)

= (£x), ¥} () (g(y), Y, (¥)) = (£(x), ) (x)) (a(y), ¥, (¥)).

If £(x) and g(x) are two absolutely integrable functions
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over the line and h(x) = f(x)*g(x) their convolution, the
functional defined by the function h(x) (absolutely inte-

grable‘) can bg expressed in the following form
(h(x), ¥ (x)) =J h(x) f (x)ax =J jf( P)g(x-3)af( Y(x)ax

= f(f(?) g(q) {(§ +njdfan .

In other words, the desired result is no other than the
result of the applﬁéation of the functional f(x)g(y), which
one can consider as the direct product of the functions
f(x) and g(y), over the function Y(x + y).

Quite naturally, the general definition of the

convolution of distributions f and g is given by

(f*g, ¥) = (£(x) X gly), P(x +y)) . (A-6)

We now show that the direct product of two distributions

is commutative,

£(x) X g(y) = g(y) X £(x) . (A-7)

Por the proof let us note that by virtue of the continuity
of both members of Eq.(A-7), it is sufficient to prove
the equality over a space of testing functions which is

everywhere dense. We will consider then the dense set of
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functions of the form

&
Z‘:’pj () 3, (v)
J=i

where ({Jj(x), ’1’\3.()’) (j =1,2,..,03; /=1,2,...) are

testing functions in their corresponding variables. We

have then

d

(£0) xgly), ) 0Ty = ) (560 X9(y), ¢ 00 P5(y)

7
r

= ) (560, P g ), T ()
In the same fashion
() X £6), /A T = 7 (aly), Py () (£6), P ().

and the result follows at once.

Lemma 3. If D be a differential operator then

D(f*q) = Dfdg = fDg.

We have

(D(f*g), ¥) = (f*g,Dx {)
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where, for example

Da = (—)V D

if D is a homogeneous differential operator of order ~.

FPurthermore, according to the definition of convolution

!

(f#g,Dx ¢ ) = (g(y), (f(x),D* ¥ (x + y)))

= (g(y), (Df(x), P (x + y))) = (Dfxg, ¢)

e
Y 4

hence

D(fxg) = Dfxg

and by virtue of the commutativity of the convolution

D(fxg) = D(g*f) = Dg*f = fxDg.

Let us now establish the following lemma, relating
to the continuity of the convolution.
Lemma 4. If fy — f then f  *g —> fg in each of the
following cases:
a) The functionals f,, are concentrated in one and the
same bounded set.

b) g is concentrated in a bounded set.
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c) The supports of the functionals f and g are bounded

<

on one and the same side in a manner independent of y

Proof. ) y

According to the definition of convolution, fer any

testing function (f t

(£,#9, %) = (£.(y), (g(x), P(x + y)))

4
For the case (a) %the function (g(x), ¥ (x + y)) can be —
modified to a functio&vanishing outside the set where

all the f (y) are concentrated. Hence

(£ 29, f) = (£, (y), T (y) —> (£, 1) = (£+q, {),
and

£ #g —) fag.
For t he case (b),‘

P ly) = (g(x), P(x + y))

is a testing function and the proof proceeds as above.
For case (c), if we suppose, to fix the ideas, that the

support of the functionals f, and g are bounded on the
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left, then the function

My) = (ggc).ti(x +y))

has a support bounded on the right. We can then change

it to a testing function vanishing outside the set where

!

the functionals f, (x) are concentrated and the proof

proceeds as before. , ¥
Pourier transforms of distributions. -

In classical ani%ysis there exists a one-to-one
correspondence between the class of functions possessing
a Pourier transform and their corresponding transforms.
This correspondence preserves linear operations and the
properties of convergence. An analogous coreespondence
can be established among the linear functionals defined
over these spaces. This correspondence is established in
such a way that it makes correspond the classical Fourier
transform to functionals corresponding to absolutely in-
tegrable functiohs.

Let f(x) be an absolutely integrable function and
g(4) its Fourier transform. For each testing function
¥ (x) and its Pourier transform ﬁ”(d) we have Parseval's

formula
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') o i o0

| 1
(£, (F)-a . f(x)y(x)dx = %; J £ (x) J &"/‘(d) exp(-ix J)d ¢ {dx
)

= -
1 . (
-5 J”‘/’\(d)} J f(x)exp(lxd)dx}d0’= %‘;) g (&) P ()4 = é_, (9.7
“00 Zoo -0

/

This formula is valid when f(x) and Y (x), and hence their
) 4
Pourier transforms g(0) and ﬂhaj), are of integrable square.

Y

Parseval's formula shows that g(0) considered as a distri-
.’ Y .
bution, acts on a teiﬁng function according to the formula

(9.7 = 2n(£, ¥), (A-8)

This formula is used to definethe distribution g over the
space Z of testing functions "f\ corresponding to any
given distribution f over the space K. The functional g
defined by Bg.(A-8), is called the Fourier transform

of the functional f and is denoted by the symbols £ or

Ky

F[f].
The usual rules of differentiation of Fourier trans-

forms carry over for Fourier transforms of distributions:

P(%;)F = P[P (ix)f) (A-9)

F[P (%)f] = p(-is)f (A-10)
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where P(x) is a polynomial in x.

For the proof it is sufficient to consider the case

pd _d
dx dx

We have then

o~

P , ~
(x0), F) - 2r(ixt, P) = 2n(£,-ix ¥) = (£, (-ix §))

o~

?7 S,

IQ-

which gives equation (A-9). Equation (A-10) is established
in an analogous manner.

Lemma 5.

According to the definition

o0

(5. 9) = 2r(5, @) = 27 ¥(0) = J Y hao = (1, 1)
-00
hence
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Lemma 6. If P(x) is a polynomial

M~

P(x) = 2mp(-i g;)ﬁ(s).

Proof.

o T~ d ~
P(x) = [P(x)¢l] = P(-i 7)1,

ds
and !
% 0O 0 -
(I;;s = 27(1,{) fgzw J/Lp(x)dx = Zﬁu; 7Kx)exp(_ix0)dx

-

-0

= 2r TN0) = 27 (5, M)

hence

P g

P(x) = 27 P(-1i %;)6(8).

Lemma 7. The Fourier transform of the exponential function
exp(bx) is 2w§,(s-ib).
We will make use of the convergence in the complex

plane of the series

)
- .nn
exp(bx) = Zi_ 2;%‘

N=0
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applying the Fourier transform operator term by term to

this series, we obtain

oo oo
n n
exp (bx) = Z]—z—- ‘”Z% (-+5)™ 6(s)
’7’0 VYo
and
00
.
(2n}—b --) "6 ( /\f\(S))=27r Z(%‘- b (s ”f\(S))
7=0
£ n
= 29 Lﬂ\ 532— q“ (s)) = 2v(6(s),2§ii§%_.Ar(n)(s))
=0 =0

and the series

8

converges in the functional sense to the function 44(5 + ib).

Hence

a0
n
EZt%T (‘igg)nb(s),/yﬂ(s)) = 21 (b (s 1“(5 + ib))

hzo

= (275 (s - ib),/Y’\(s))

where the translated 5-function, (s + h), is defined by
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the equality
(€ (s + h}, M(s)) = (5 (s), Y (s - h)) = A\ (-h) (A-11)

for all (complex) h.

Hence

—— -
——

exp(bx) = 21 & (s-ib) ‘(a-12)

‘N’ s

7
for any complex B¢

Fourier transform of a direct product.

The Fourier transform of the functional f, acting
over the space K of testing functions (P(x) of several

independent variables x = (x,, x

1 SLRRRY xn), is defined

as the functional g acting over the space Z of testing

functions M\ (x), s = (Sl’ SOYRRRY Sn)' by the formula
(g. 1) = @2m (£, @) (A-13)
N

where AV\= Hp is the Fourier transform of the function
ﬂo(x). The functional g is also designated as f or F(f].
Let f(x) and g(y) be given distributions over the

variables x and y respectively, and let f(i?) and g(q) be



97

their Pourier transforms. The Fourier transform of the

direct product f(x) X g(y) is given by the formula

. “
o~ L ——

£ Xg = f(‘f) Xg(r\) (A-14)

that 1s, it is equal to the direct product of the Fourier

transforms of the functionals f and g.

For the proof it is sufficient to consider test&nq functions
-

?O(X,y) of the form

’
kv 4

n
Z P00 L.
=1

In this case

T TN~—

(f\g,ka Af\ (27r)2(fxg,Z(P /'r‘) = (2m) Z(f, (pj)(gl /Y‘j)
~ o~ . e
(£X3, Zsﬁjﬂ) = (£ X9, Z‘Pj 1.

When the convolution is given by ah expression of the

form
£(x)*g(x) = £(§)9(x-3)ay (A-15)

then the ordinary Fourier transform
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S

) f (x)*g(x)exp (ix J)dx

R

can be considered as a distribution depending on a para-
meter O defined over the space of testing functions

exp(ix 0). According to Eq.(A-6) we have then

(fxg,exp(ixd)) = (£(x) x gly),exp(i O(x + y))
’
= (f(x) Xg(y),expa(ixo’)exp(iya’)) = (f(x),exp(ix o)) (g(x),exp(ix<,

T~

S~
= f(d)g(0),

where we used Eq.(A-5).
We have then

Lemma 8. The Fourier transform of the convolution

f(x)*g(x) = jf(f)g(x-f)df

is yiven by

~ o~

F[f(x)*g(x)] = £(8)g(8).
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This result, commonly used in classical analysis, is known

as the convolution theorem for Pourier transforms.
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