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ABSTRACT

Solutions of low frequency scattering of acoustic and electromagnetic
waves by a torus are derived in this work using a '"quasi-static'" approach
based on a method due to Stevenson (1953) and Kleinman (1965). The solutions
are in power series, in ascending powers of k, the wave number. These
series are also called the Rayleigh series and are valid for small k.

Since the method is such that the solution is constructed from the
solution of the potential equation, Laplace's equation is solved in toroidal
coordinates for both the Dirichlet and Neumann boundary conditions. Green's
function is derived for the Dirichlet case and particular problems are solved
for the Neumann case. These results also have applications in fluid dynamics.

Two non-zero terms in the low frequency solution expansion are explicitly
derived for the cases of acoustic scattering by soft and rigid tori. Two
terms in the low frequency expansions for both the electric and the magnetic
fields are derived for the scattering of a normally incident plane electro-
magnetic wave. For this case the torus is assumed to be perfectly con-
ducting.

The far field is calculated for a small torus for the acoustic problem,
with normal incidence on a soft forus, and compared with the known results
for the corresponding problem of a sphere’and of a disc. The radii of these
bodies which give equivalent scattered far fields are calculated as a function

of the radius of the torus.
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I
INTRODUCTION

Scattering theory deals with the interaction of an obstacle in a wave field
and the best known and most often studied wave motions are those associated
with acoustics and electromagnetism.

A standard problem in acoustic scattering involves the determination of a
function ((F) which is the field scattered by a body. In particular we seek
a solution of the Helmholtz equation

(v2+x%) 6 = o

such that
=\ - inc _
(] (tg) = -0 ()
or
a@ (f) o a@mc
on FoF on ==
rB T rB

and @ satisfies the Sommerfeld radiation condition (assuming harmonic time

dependence, e w t) .

Lim 0
( — - =
Tr—> £ or Q ik(b) 0

in -
where (I) ¢ is the incident field, T is the radius vector (employing spher-
ical coordinates) and T.

B
ary, B, of the scatterer and i is the outward normal from the scatterer.

is a vector from the origin to a point on the bound-

Correspondingly, in a vector problem we seek solutions of the Maxwells

equations in vacuum,

= 2B .
VX E = 51 V:-B =0
Vxﬁ=-§TD+J v-D =0



where E and H denote the electric and magnetic fleld strengths , while

B=puH and D=€E
where € and p are the permittivity and permeability of the medium, assumed
to be constants.
It is of particular interest to solve for E and H, exterior to a body of

infinite conductivity and in a region of space containing no free charges and

electric currents. If we assume harmonic time dependence of the wave motion,

our problem can be stated as follows:

Determine E and H , such that

vX(VxE)-kz-E=o,‘ Vx(Vxﬁ)—k2ﬁ=o
ﬁXET=f =0
B
ﬁxﬁf=f =k
. B
n'B?=f =0
B
A-D =56

where k represents the surface current density and 6 is the surface charge

density. The scattered fields must, in addition, satisfy the radiation conditions:

lim — —scat —=scat

- scat =scat
+ = =
. r x (VxE )+ ikrE rx (VxH )+ierS 0

The scalar Helmholtz equation in three dimensions has only been solved in
eleven coordinate systems. These eleven coordinates systems have the property of
separability;viz. , the wave equationis split into three second order differential
equations, eachequationbeing a function of only one variable. Then the field @ can

be written as a linear combination of terms of the form

d = v@vEmWwmw
where u,v, and w represent the coordinates in an orthogonal curvilinear
coordinate system.

On the other hand, the vector wave equation inthree d imensionsis separable

onlyinrectangular coordinates and spherical coordinates. Ingeneral thevector



problem is considerably more difficult than the scalar, since one has to solve

for six scalar components of the fields E and H.

Efforts have been made to extend the method of separation of variables to
certain other coordinate systems where one of the coordinates can be separa-
ted. leaving a non-separable second order differential equation. This, then is
reduced to a recurrence set of ordinary differential equations in one variable.
In particular. this method has been applied to the wave equation in toroidal
coordinates by Weston (1956). Although the solution of the equation is
written in terms of toroidal wave functions, the application of boundary con-
ditions poses some problems because the wave functions do not form a com-
plete set. But in the limit of a very thin ring results have been obtained by
Weston for the scattering of a plane electromagnetic wave.

These problems have led researchers into attacking the scattering by
non-separable bodies by techniques, where separability of the wave equation
is not involved. In the low frequency limit (when the wavelength of the inci-
dent radiation is larger than the dimension of the scatterer), advantage has
been taken of the solution of Laplace'sequation,which is a limiting form
of the wave equation when the wave number, k, 1is zero. This method of
treating the scattering problem as a perturbation ot the potential equation is,
of course, valid only when k is small. A detailed exposition of various
methods of treating the low frequency scattering problems for both scalar and
vector problems is given by Kleinman (1966).

The correspondence between low frequency solutions and the static prob-
lem was recognized by Lord Rayleigh as early as 1897. He seems to be the first to
have observed that the solution of Laplace's equation constitutes the first termin
an expansion for the scattered field in powers of k, when k is small. This
was not pursued any further until the 1950's, when interestwasrevived in this
subject to obtain systematic series expansion valid for small k. The advan-
tage of such a method lies in  that the potential problems, though formid-
able at times, still are simpler than problems in wave phenomenon. The

major contributions in this area have come from Stevenson (1953). Noble
(1962), and Kleinman (1965).



Stevenson's method holds good for both scalar and vector problems. The method
isfairly straight forwardand has beenapplied successfully to certain shapes including
anellipsoid of revolution. Butthe major disadvantage of this method comes fromthe
fact that one has to solve a static problematevery stage of the expansion. Everyterm
is derived interms of the previousterm and a static problem. In spite of it, ithas
provedtobe a powerful method for low frequency scattering problems.

Noble (1962) formulates the probleminterms of integral equations and a solution
for a scattering problem for a general boundaryis obtained as the perturbation of the
solution of the corresponding potential problem. Eachterminthe low frequencyex-
pansionisthe solution of an integral equation differing from termto termin the
inhomogeneous part. In general the solution is obtained onlyas a formal inverse for

successive terms and does not vield an explicit representation. Difficulties arise

in carrying out the scheme except for some simple shapes.

The technique proposed by Kleinman is a very elegant one and one can obtain the n th
iteration inthe expansion of the scattered field systematically. The method is limited
toscalar problems as yet and itis limited in another sense that one would have to know
the static Green's function. Details of the methodare giveninhis paper (1965). It was
originally applied to problems with Dirichlet boundary conditions, but it has recently
been extended to scattering problems with Neumann boundary conditions by Ar (1966).

Inthis thesis aquasi-static approach based on Stevenson's method will be used to
study the scattering of plane acoustic and electrbmagnetic waves byatorus. This
brings us to the subject of solution c¢f Laplace's equation. For separable coordinates
systems thisis a fairly simple matter, but the Laplace's equationintoroidal coordinates
is not separable. Byremovingafactor called the R-factor, the equation canbe made

simply separable and the solution of the equation can be written as

U) V) Ww)
Ru, v, w)

d () =

where R is a function of the coordinates: and is not a constant. The separa-
bility of Laplace's and Helmholtz equations are discussed in great length by
Moon and Spencer (1961).

The work reported in the literature on the subject of toroidal coordinates

have dealt only with the solution of Laplace's equation and in particular for



the Dirichlet case. The earliest one reported is by Hicks * (1881), who has
developed many interesting results involving toroidal functions with applica-
tions to some potential problems. It was followed by another paper by the
same author in 1884, where he focussed his attention on the motion of a
hollow vortex,wherecyclic motion exists in a fluid, His work is by far one of
the most detailed and valuable., The papers by Basset (1893) and Dyson (1893)
are mainly concerned with the toroidal functions as such and serve as a good
supplement to Hick's work.

Recently, S. Loh and his coworkers have done extensive numerical
work on the toroidal functions which are published in a series of papers
1959a, 1959b, 1961). Most of the theoretical work in their papers is already
contained in Hick's papers.

Although a good deal of work has been done on the Dirichlet or the
electrostatic problems involving tores surprisingly little has been reported on
the Neumann boundary problem. In the preparation of this thesis it was found
that there are great difficulties in solving the Neumann boundary problems,
while the Dirichlet problems can be solved in a fairly straight forward way
a$ hag baen reported by Hicks (188} ), Moon and $pencer (1961 ), Morse and Feshbach
(1952), Hobsan (19558), Loh(1960) etc., justtopameafew. Butwiththe exception of
Hickg' work, no mention has heen made by any of the authors about the other problem
where the pormal derivative rather than the potgntial itself is specified on the boundary.
Fluid dyngmicists have beeninterested in the Neumann problem in connection with the
vortex rings and Basset (1893) and Lamb (1932) have reported some results for the above
mentioned problem for the particular case of the fluid flowing in the direction
parallel to the axis of symmetry of the torus. This special case can be
handled elegantly by means of a vector potential which satisfies Stoke's equa-

tion and enableg one to obfain the stream-lines. But unfortunately this method is not

* Hicks gives credit to Neumann (1864) for introducing the toroidal functions
for the first time to study the temperatures in a shell bounded by non-
concentric spheres.



applicable to studying the related problems when the fluid is flowing in any
other direction. Hicks also has studied the problem of a torus moving parallel
to its axis of symmetry in an infinite fluid. This was done in terms of a scalar
velocity potential and considerable simplification resulted due to symmetry

in the azimuthal variable.

The above mentioned symmetry does not necessarily exist in the scatter-
ing problems as such, and as a first step the solution of the potential equation
with non-symmetric Neumann boundary condition is derived in this thesis. But
still much remains to be done in potential problems for a torus.

For example, it has only been found possible. so far to solve the Neumann
boundary value potential problemswhenthe torusis immersed in uniform fields,
at any angle. But for arbitrary sources the results are yet not suitable, be-
cause the Green's function of the second kind is known only up to a set of con-
stants.

It is worthwhile to mention at this outset that very few authors have con-
sidered the solution of wave equation in toroidal coordinates. The two papers
known so far are the ones of Weston (1956) and Bond (1955). Both solutions
hold good for thin rings. The latter, obtained by the method of local separation,
being valid only in a limited region,

Chapter II of the present work deals witﬁ the toroidal coordinates and the
solution of Laplace's equation. Chapter III describes the method of low fre-
quency expansion for the scattered fields and the derivation of the far fields.
Scattering of acoustic waves by both soft and hard tores are considered and
explicit results have been obtained up to the third order terms using the quasi-
static approach in Chapter IV. In Chapter V the zeroeth and first order terms
in the expansion of the scattered field are derived for scattering of an electro-
magnetic wave incident normally on a perfectly conducting torus. The derivation
and discussion of Helmholtz formula is included in an appendix for the sake of

completeness.



I
SOLUTION OF LAPLACE'S EQUATION

2.1 TOROIDAL COORDINATE SYSTEM

Toroidal coordinates are generated by rotating the bipolar coordinates

obtained by the familiar transformation

(e + 1)

ew—l

z%=a

about the y - axis. (See Fig. 2-1), where
z=x+ 1y w = u+tliv

These orthogonal curvilinear coordinates n, 6, ¥, are defined by the equa-

tions:

_ sinh n cos ¥

x a cosh n-cos 0

- sinh n sin ¢

Y = & oshn-cos 0
sin 6

cosh n - cos 0

where n ranges from 0 to o, 6 from 0 to 27 and ¥ from 0 to 27.
The surfaces n = constant are tores or anchor-rings with an axial circle in
the x - y plane centered at the origin and of radius a coth 7, having a
circular cross section of radius a csch n. The surface n = n, defines a

torus. (See Fig. 2-2).

2 2 2 2
z + (p -acothno) = aesch "7

and 6= 60 defines a spherical bowl,
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n-—=>w

6<0)

FIG. 2- 2: TOROIDAL COORDINATES (n, 6,¥). COORDINATE SURFACES
ARE TOROIDS (n = constant), SPHERICAL BOWLS (8 = constant),
AND HALF-PLANES (¢ = constant).
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2
(z -acotn )2 + p2 = a cs026
0 0
where

=x2+ 2 - asinhn
p y coshn-cos6

The metric coefficients are given by ,

a
hn B he B cosh n - cos 6

h a sinh n
] cosh n - cos b

If we define acothn = R and acschn = r then
0 o 0 o

a = R2 -T
o
and
Ro
cosh T)o = _I'_
0

The z - axis corresponds to n =0 and 1 =0 corresponds to an infinitely

thin ring of radius a.

The Laplacian in toroidal coordinates can be written as follows:

vz(ﬁ_(coshn-cos())3 { ) [C sinh n 8(}]+_8_[ sinh 7 8@]

azsinhn on |cosh n-cosf on 060 | coshn-cosf 06

1 i)
+
sinh n[cosh n - cos 9] awz
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2.2 GENERAL SOLUTION OF LAPLACE'S EQUATION

The Laplace's equation V2 Q = 0 can be written in toroidal coordinates

as,

2
0 [ __sinh 7 3<L,i[ sih 0 9@} L
on|cosh n-cosf on 96 Lcosh n-cos§ 86 sinhn[coshn—cos@] 8(//2
=0 . (2.1)
This equation is not simply separable, but if we set
® = Yeosh n - cos8 F(n, 6,y)

the Eq. (2.1) reduces to

2 2
T%—%[Smh"%g]*ag* it ARSI
st n on 1 96“ sinh“n oy

Equation (2. 2) can be separated into three second order differential equations

given by,
o
1 d dE 1 3
——'(sinhn——)'*'[—-a'- } E =0 (2.3)
sinh n dn dn 4 2 sinhzn
2
—d92+09=0 (2.4)
2
de
2
_dig +a f =0 . (2.5)
dy

Following the usual procedure

F =E(n) 8(6) W
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2 2
and letting o g = D and @z =m, the solutions of the above set of equa-

tions are, (Morse and Feshbach, 1952)

m
E = «a P

m :
nm  n- 1/2(COSh n Bnrn Q- 1/2 (cosh n)

0 (6)

J)

C cosnf + D sinn®b
n n

+ .
Amcos my Bmsm my

where ¢ ,B ,C,D,A and B_ represent constants.
nm’ "nm’ n’ "n’ m m

P n_ll /2 (cosh 1) and an_ll /2 (cosh n) are called tesseral toroidal functions.

They are Legendre functions of the first and second kind respectively, of
order m and degree n-1/2. These functions are defined by: *

m 1
P ™ (cosh m) = L v (n+§) j”r cosmu du
- 1 :
n 1/2 T f(n-m+ —2) 0 [cosh n+ sinh ncosu]n+1/2
COPP 4 L) poo
Qm (cosh n) = 2 j cosh mu du
n_l/z M(n-m+ '12") 0 [cosh n+ sinh 7n cosh u]n+ 12

Now. we can write the complete solution of the Laplace's equations in toroidal

coordinates.
(00)
Y) = - cos 6 + ]
(P(n, 6. y) ’Vcosh n - cosf mZ=‘o = [Amcosmxlj Bm sinmy

m m
i +
[Cncos né+ Dn sinn G] [anmpn _'1/2(cosh n) Bann -1 (cosh n)] )
(2.6)
The toroidal functions were first introduced by C. Neumann (1864), and they

have been studied in detail by Hicks (1881, 1884), Basset (1893), and briefly
* Alternate definitions of these functions canbe found in Hobson (1955) (see Appendix C).
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by Heine (1881 ).

It should be noted that neither the space interior nor exterior to the torus is
simply connected, hence the direct application of these functions for potential
problems involving circulation is often not possible as the potential in such
cases are not always uniquely determined by their values on the surface of the
torus.

Equation (2. 6) is the general solution of Laplace's equation, but now we
have to consider the values of these functions in the space interior and exte-
rior to the torus. 0 <n < UR constitutes the exterior to the torus and
no <n ) < o, the interior. The outer space contains the plane surface
n=0.

Investigation of Pni 1/2 (cosh n) and Q Iill /2(cosh n) 1in these regions

reveal that as n—> 0, the function Q (cosh n) goes to infinity and

-1/2

as n—> , (cosh n) goes to infinity. Therefore the potential

p
n-1/2
function suitable to the exterior region of the torus, in which we will be pri-

marily interested, is given by

o)
() =\{coshn—cos9l Z ZO.?[A cosmy + B sinmd/] X

m=0 =

=
o

m
+ < . .
X [Cncosne Dn sinne] Pn-l/Z(COSh n 0<n< m, (2.7)

Similarly for the interior region,

[_\/_]8

©
d = {coshn—cose Z

[‘ cosmy + B;n sinmw] X
m=0

o

-

=

m
1 + 1
X [Cn cosnf Dn sinne] Qn-l/Z(COSh n) m, <n<mw . (2.8)
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Two of the most important types of potential problems encountered in
physics are, to find the potential everywhere,
(1) when the value of the potential is specified on the surface
(ii) the value of the normal derivative of the potential is specified on the
surface.
These are commonly referred to as the Dirichlet and the Neumann boundary

value problems respectively.

2.3 GREEN'S FUNCTION FOR THE EXTERIOR DIRICHLET PROBLEM FOR A TORUS

The Green's function for the Dirichlet problem can be derived easily, but
apparently, it has not been done before. So we proceed to derive this in the
following way. Let G represent the Dirichlet Green's function.

DE

1
"The free space Green's function for the Laplace's equation is R where

R is the distance between the source point (no, 60, x//0) and the field point
(nJ 6, w) .

1 [Cosh n - cos 6] 1/2 [cosh n, - cos 60]1/2

a"ﬁ' [cosh 1 cosh Mo~ sinh n sinh n, cos (xp—wo) - cos (6 - 90)]

1
R 1/2

and — can be expanded in toroidal coordinates (Hobson, 1955);
! Ycosh n -cosf_ "Alcosh n-cos§ @ @ [ (a-m+ %)
_R Z Z‘ Cm€ 1
am n=0 m=0 " r‘(n+m+—2-)
(cosh n) Q

1/2 “1/2 (cosh no) n<n
cos m (¥ -wo) cosn(6- 60)
1/2(cosh n )Q “1/2 (coshn) n> n,

(2.9)
€ and ¢ are the Neumann numbers given by
m

n:
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We can now find a function GDE
1

= - +
Spe * " TR " ®DE
where
G =0 _
DE n=ng
and &g 18 such that
2
v gDE =0
_ 1
®pE| _ &R |
n 778 s
8pE regular at oo.

in the sense of Kellogg (1929), i.e.,

Hm <o and lim r2 _8_ <
r—>oo|r gDEI : r— or gDE @
(n =1, represents the surface of the torus).
Matching boundary conditions we get
1
-m+ —
'?/coshn coseﬁ)shﬂo cos 6, Z\ ZE ¢ (-1 m C@-m¥35)
DE 47ra n=0m-= r‘(n+m+%)

m m
P (coshn ) Q s, (coshn )
cos m(y-y ) cos n(6-6 ) n-1/2 o “n-1/2

(coshn)  (2.10)
P -1)2 (coshns) n-1/2

The Green's function for the Dirichlet problem is then given by:

coshn - cosf 'coshn - cos o'
0 0 m
€ € (-1)
m n

G =+
DE 47r2a n=0m=0
rn-m+ %) P n_l 1/2 (cosh no) Qn _ 1/2(cosh ns)
cos m(w-zpo)cos n(6- 90)
M(n+m+ 5) P 112 (coshns)
- Q;Iil/z {cosh no) Pnnr_1 1/2 (coshn) . (2.11)

With the help of this Green's function, one can solve any Dirichlet poten-
tial problem (i.e., whenever the potential value is specified on the surface) by

using the Green's function as the kernel of an integral representation:
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FIG. 2-3: CROSS-SECTION OF A TORUS.
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2.4 EXTERIOR NEUMANN BOUNDARY VALUE PROBLEM

Physical problems which involve such boundary conditions frequently
occur in studying fluid dynamics, magnetostatics and some steady - state
heat conduction problems. However, as stated in the introduction only
special case can be solved explicitly as follows and Green's function can
be written up to a set of constants and in the following we treat the two
cases when the torus is moving parallel to the fluid and when the flow is
perpendicular to the axis of the torus. The former has been studied by
Hicks (1881), but a summary of it is included here.

2.4.1 Torus Immersed in an Infinite Incompressible Fluid Flowing
Parallel to the Axis of the Torus with a Uniform Velocity A

It is quite clear that there is complete symmetry in the angular variable
¥ and hence the velocity potential V 1s independent of {y. We seek a solution
of the problem

v2 V=0 (2.12)
oyl =0 te., ¥ v (2.13)
on _ 77 9n - on - ’

n=n, n=ng n=n,

and V is regular at infinity in the sense of Kellogg. The incident velocity

potential Vi can be obtained from the velocity vector v

AL ol asin@
coshn-cos 6

where c is an integration constant.

Expanding v! in an orthogonal expansion
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i v
v o=

©
8a 1 .
- Vcoshn—cos@ nZ=0ns1nr19 Qn—l/Z(COSh n .

(2.14)
The solution of (2.12) can be written as

o
V = 4 cosh n - cos 6 ZI i:l [Amcos my + Bm sin mw] [Cncos no+ Dnsln ne]

n=0 m=0
m
Pn “1/2 (cosh n) (2.15)

in the exterior of the torus (c¢f. Eq. (2.7)) .
Because the problem is independent of  (2.15) can be written as

®©
Vv =’Vcosh n-cosb Z [Cncosn9+ DnsinnG] Pn—l/Z(COSh n) .
n=0
(2.16)

Applying the boundary condition (2.13) , we get
80) sinh My

(cosh ns) +

: [Cncosn9+ Dnsinne] Pn-1/2
n=0 2 coshns-cosé)

o0
+ - ) + ' h
cosh ng - cos 0 [g (Cn cosnf Dnsinne) Pn— 1/2 (cos ns)

sinh n 00)
_ vV8a S
= - Z n Qn-l/z(COSh nS) sinn @

2 Ycosh ns—cos 8 n=0

V'V-Ea
s

®
- y 1
1/cosh ng - cos 6 nzzo n Qn— 1/2(cosh ns) sinng . (2.17)

The primes denote differentiationwith respectton. Since the right hand side is

only a function of sinn@, all Clis must equal zero. Dividing throughout
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(2.17) by v’\{?a and rearranging

®
. _ + _
VA {smh Ny [Bn Pn -1)2 (cosh ns) nQn 1 /z(cosh Ny )] 2 (cosh ns cos 8)
1 - 1 =
[BnPn_l/z(coshnS) nQn—1/2(COShns)] } sinn @ 0 (2.18)
where
Dn7r
Bn =
vi8a
Rearranging further,
1 1 - + 1
Brr1tas 1/2 * By -1Fa- 3/2 By [sinhns Pa- 1/2 2 coshn P _ 1/2]

=(n+ 1)Q;1+ 1/2+(n- 1)Q;1_ 32 —n[sinhﬂsQn _ 1/2+ ZcoshnsQr'l_ 1/2] :

(2.19)
The arguments of the Legendre functions are omitted for convenience, but

they must be understood to be cosh N But

! + ! - + =
Pn+1/2 Pn—3/2 [sinhns Pn-l/z 2coshnsplil_l/2] 0 (2.20)

and similarly for the Q-functions. Introducing this simplification in (2.19),

we obtain
- 1 - - 1 = 0! -0
(Bn+1 Bn)Pn+1/2 (Bn Bn—l)Pn-3/2 Qn+1/2 Qn—3/2
(2.21)
true for n>1,, . with
- P! - ' = Q' -0
(By =B Py g B P g = Q5/9- Q9 (2.22)

for n=1.
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If we write the successive equations in order and multiply the equations

and P' by Pr'l _

3/2 o+ 1/2 and add, we get

1
containing Pn _ 1/2

- ' 1 - 1 1 - D! Xl _D! 1
[Bn+1 Bn] Pn+1/2Pn—1/2 B1P1/2P—1/2 Pn—l/ZQn+1/2 P1/2Q-1/2

n-1

+ (2.23)

y ! -0 1
= [Pr -1/2 U+ 1/2 Q. 1/2 Pt 1/2] ‘
But

2r+1

P"r-l/ZQ'r+1/2 ) Q}—1/2P1~+1/2 ) (2.24)

Using (2.24) in (2. 23) gives

- ! 1 - 1 1 = 1 1 - 1 1
[Bn+1 Bn] Pr1pPa-1 Bl " Pao 1ot T Plip e

2r+1
+ rz-o 5 ) (2. 25)

Summing the series in(2.25)and rearranging, we get

1 1 1 - 1
_B =Qn+1/2 N P—1/2[]31P+1/2 Q+1/2J+l n?
+ 1 1 1 1 1
ntl o Pip Par1/2%n-1/2 2 P ripPn-1p
(2. 26)
Let
5 pr [ C ] - 2. 26a
Plia 1B P10 Q1/2] “ (2. 26a)
then (2. 26) can be written as
1 2 Ql 1
_B = n+1/2 L [ n+1/2 n-1/2] (2.27)
+1 ' T ' ' : :
. no P 22D [ Pavie Paoape

Rearranging we obtain

n+1 n 2n+1 P!

1 Q'
{[<n+1>2+ o] U2 2, __ﬁ} 2.28)
n+1/2. n-1/2
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writing n more equations in succession, and adding,

2 1 ' '
B -B = (n+1)"+a n+1/2 2 g Qr—1/2_1+ar Q1/2

+ 2
+17°1" T2ndl P v
n . nt1p Toart1 Prop 3 Pip
(2. 29)

Bn is now determined up to the extent of (a or Bl) and to determine «

(2.26a), follow the argument due to Hicks (1881). Since we know that the

velocity potential must be finite everywhere. we can choose an o such

00)
that Z Bn sinn 6 Pn -1p (cosh n) 1is convergent. A necessary condition for

)
this series to be convergent is that the nth term of this series goes to zero

as n goes to . So weproceed as follows:

(i) It must be proved that Bn is finite when n is large.

(i1) o must be chosen such that Bn vanishes when n is infinite, by
making the limit of B00 go to zero.

From (2.29) we can see that for large n, the term that should be con-

sidered is

1
fl‘lr2+oz r-1/2
2 P!

r=24r"-1 “r-1p2

and for large n (Hobson, 1955)

Q™ ~ Jlmr (1)1/2 o I (n+m+1)
n-1/2 n [2sinh n] 12 [ (n+1)
(2.30)
pm - 1 | el [ (nt+1)
n-12 = (M)17§. (2 stah n)l/z [ (n-m+1)

hence, for large n

1
Qn—1/2 ~ o 2un

1
P11—1/2



22

which is highly convergent. So,

Q

1
24 a r-1/2

1
r=1 41‘2-1 Pr—1/2

is also convergent.

Thus Bn lends to a finite limit for increasing n

) © 2 Q' Q'
Lim r+ao ‘r-1/2 -1/2
n—> o By ® 2 2. 5 -« : (2.31)

1 1
r=1 a1 Pro12 Pl

This limit must be set equal to zero, when we get a vlue for a*

® 2 !
r r - 12
"ZZ 2 P

a = I‘=1 41‘ "1 Ir - 1/2 (2.32)
© Q' Q'
1 ®r-1 Yap
22 2 P P
r=1 4r"-1 "r-12 " -1/2
and hence
1
B = n2+a_ 9 ©, 2, Qr-1[2 (2. 33)
- ' '
n 2o-1 = oar?-1 Prouye

and the velocity potential is given by

(0.9)

a:!S \'
V = - 'I/cosh n - cos 6 E Bn sinn @ Pn— 1 /2(cosh n)

1

where B is given by (2.33).

* This value for o Is unique as it is establised by Hicks, by verifying the
®
convergence of the series ; B sinn 6P _, /z(cosh n), withthisvalue. It must

also be mentioned that such a method of determining the coefficients has not been
necessary in any other diffraction problems in the author's knowledge and seems to
be rather peculiar, being necessary for this case.
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2.4.2 Torus Immersed in a Fluid Flowing Perpendicular to the Axis of
Torus with a Uniform Velocity v

The boundary value problem in this case is very similar to the previous
case, except that we no longer have symmetry in ¢ .

We seek a solution for the velocity potential V,

V' v=20

av| v

on _ an n=
n ﬂs ns

V regular at infinity in the sense of Kellogg. The velocity potential of the

uniform flow is

i va sinhn sin ¢
y coshn-cos 8

©
= -va ’Vc:oshn - cosGZ ﬂﬂ?smd/ cosnGQ(i)_l/z(cosh n) .
n=0

(2.34)
Employing the boundary condition, we obtain

[00) (0]
0 o
ET] { 'Vcoshn -cos 6 E Z [Amcos my+ Bmsm mgb] [Cncos né+ Dnsin n 9]

n=0 m=0

= _Q_{vaz‘\/? ‘Vcosh N-cos6
on T

Pnn_1 12 (cosh n)}

77=77$
3 (1)
Z sin Y cosn6 Q (cosh n)} . (2. 35)
n-1/2
n=0 n=n
s
This ylelds
A =0 for all m
m
B = 1 for m =1

m 0 for m # 1
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Rearranging (2. 35), we obtain

(1) (1) ] ifﬂ (1)
Z [sinhnsPn_l/2+Zcoshr;SPn_l/2 Cncosn6==-Irl 1Cn+1Pn+1/2 cosné -

n=1 n-1
0] ' o '
- izw{g[sinh ”SQ[(II_)I/2+ 2cosh HSQS_)I/JCOS né -HZ;;QS: 1720080 6-
[00)
1)
_;1 Qn—3/2 cosne} . (2. 36)

The arguments of the Legendre functions are understood tobe cosh g and are
omitted here for convenience. Equation (2.36), in turn gives rise to a set of

recurrence relations for the coefficients Cn'

. (1) (1)* (1 (1)
{Smhnspn—l/2+2005hnsPn-1/2 Cy Cn+1Pn+1/2-Cn—1Pn—3/2

_ va2f? . (1) (1) (1) (1)'
ST {[SmhnsQn-1/2+200ShnsQn—1/2]-Qn+1/2_Qn—3/2}

(2.37)
for n=2, 3. 4. ..

with the initial equations,

. (1) (1) (1)'
CO{smhnsP_l/2+2coshnS P—1/2} - CIP1/2 =

. va2y2 )| (1) (1)’ (n'}
- {[s1nhnsQ_1/2+2coshnSQ_1/2] -Ql/2

(2.38)
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and

(1)' . (1)
-2C.P +Cl{smhnSP1/2

0°-1/2

(1) '
+2coshnSPl/2 }-=C2P3/2 =

T -1/2 s '1/2 1/2 3/2
(2.39)

= va2yZ {-ZQ(l)' + [sinhn Q(l) +ZcoshnsQ(1)' ] - Q(l)' }

Cn is determined to the extent of CO' (We cannot employ the method
of the previous section to determine C 0). But it has not been found possible to

express Cn explicitly in terms of C_ or to get a sufficiently simple expression

totest for convergence. Hence adifferegt approach has to be taken.

Although we do not have a symmetry in the angular variable ¢, the
symmetry about the plane z =0 brings a simplification. Since the flow of
fluid is parallel to the y - axis, the flow has 'stagnation points' at the points
A,B,C.D shown in Fig. 2-3. .

These four points correspond to n = ns ,0=0,¢y=7m; n= nS , 0=m,
x//=7r;n=ns, 6=m ¥=0; and n=ns, 6 =0, Yy =0 respectively. At
these points the total velocity should be zero. This can be seen as follows.
We know that the normal component of total velocity is zero everwhere on the
surface. Due to the symmetry about z =0 plane, the tangential velocity
components must be zero at these points or this would give rise to circulation.
There is a cancellation of the tangential components at these points thus
making the total velocity zero.

This can be written as,

i.e.,

V(V+V)
n=ng, 0= .y =
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We obtain the two equations

. 3/2
(coshns+ 1) (") o (_1)np(1)
n n-

+
sinh7_a 1/2 (cosh ns)

(cosh ns + 1)3/ 2
sinh Ny

va2f2’ = n (1) B
- ZO (-1) Qn_l/z(coshns) =0 (2.40)
and

(cosh ng - 1)3/2

(1)
+
sinh nga ZO:‘ Cn Pn -1/2 (cosh ns)

(coshr)S - 1)3/2
sinhn a

vafZ s (1) )
T Z()‘Qn—l/Z(COShns) =0 . (2.41)

These two equations will be consistant if it is possible to find a set of Cn's
that satisfy both the equations. This set of C;ls is then given by

® 00
Z‘ (1) . _va? Z (1)
CZnPZ 1/z(coshns) = - a an_l/z(coshns) (2.42)

(1) _ va21'_'
;{;02n+1P2n+1/2(coshnS) = ZQz +1p coshns) . (2.43)

Equations (2.42) and (2. 43) seem to be th= additional equations nscessary to
determine all the coefficients Cn. Although this still does not provide us with
an explicit value for Co’ Eqgs. (2.42) and (2.43) implicitly give the information
needed. These conditions come from the symmetry of the problem involved
and are connected with the circulation, and hence serve as additional’conditions

to the boundary conditions.
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2.5 GREEN'S FUNCTION

We can follow the method of the previous section to write the Green's

function as follows

SNe T T iR T ®nE
where
Vz =0
ENE
on _ on 47R -
n ﬂs n ”S
ENE is regular at infinity. Using (2.9) and (2.7) we get
_ © 00)
_ _ _ 1
gNE— ’vcoshn cos 6 AVcoshno cosenz_o Hg Emcos m(t//—gbo)

m m m
[Cn cosnf + Dn sinne] Pn-1/2 (coshn)

where C::l satisfy the recursion relation

m m m'
C nhn P + -
N { sinhn P _ (cosh ns) 2 cosh ngP,_4 P (cosh ns)}

12
m m m
Cat1 n+1/2(°°8h”) " Cao1Paosp (coshn)
2 M(n-m+1/2) '

1/2(00|sh ns)}

cosnf
o)

_ m m
T [ (n+tm+1R) [{(sinh nsQn - 1/2(009'h ns) +2cosh nsQn -

m! {
QnJr 1/2 (cosh ns)cos (n+1) 60 -Q;ri 1/2 (cosh ns) cos(n-1) 90]

for n = 2,3,
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m'

-1/ (cosh ns)} -ch Pm}z (cosh ns)

+
Co {sinhn p™ /Z(coshn) Zcoshn P L Py

t

m m m
= {sinhnsQ -1/2 (coshns) + ZcoshnSQﬂ_ 1/z(coshns)} -Q 1/2(coshns) cos 00

and

m n m'
+
C1 {sinhnsP+1/2(coshn ) Zcoshn P ﬂ(coshn )} 9 P3/2(coshns)

2["(% -m) m
—_— [{sinh nSQ 112 (cosh ns)+ 2cosh ng

r (%+ m)
PT/"Z (cosh ns)} cos 60

1 1
2 Q_Hll/2 (cosh ns) - QH;/2 (cosh ns) cos 260} .

—2C P /z(coshns)~

Similarly Dn's satisfy the recurrence relations

m' m
+ -
n {sinhn P 1/2(coshns) ZcoshnsPn_l/z(coshns)} Dn+1 +1/2(coshn )

m _m' _ 2 (n-m+1/2)
- Dn_an_S/z(coshns) F o ms 1/2)1 l:{( inhn Q -1 (coshns) +

1
+ 2coshns Ql:ll_ 2 (coshns)} sinn 60

m'
- Q n+1/2 (coshns) sin(n+ 1)(9o

i

- Qn;_ 12 (coshns) sin(n- 1)6(]

for n=2,3,4. .

with the initial equation
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m m

m ! m_m'
+ -
D1 {sinhns P1/2 (coshns) 2coshnS P1/2 (coshns)} D2 P 3h (coshns)

2M(=-m) l m m! }
= sinhn P_ _(coshn )+ 2 coshn P, (coshn )
- (%+m) { s 12 s s 12 s

ml
sin 90 -Q 3h (coshns) sin 2 60]4

These equations, as before, determine Cn's and D,'s up to C:,n and

Dlln. At this point, it has not been possible to obtain C:)n and Dlm
for all values of m. althoughfor m =0 and m =1, the constants have
been determined laboriously in the previous sections. For m =0, D1 is

glven by Eq. (2. 32) explicitly where

a = 2P

"1 [P1 P~ Q)

and C, for m =0 can be determined in a similar way. For m = 1, C(l) is

0
(1)

obtained from Eqs. (2. 38) through (2.43), and analogously D1 can be

obtained. In spite of many efforts it has not yet been successful to determine
the coefficients Co and Do for all values of m.
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QUASI-STATIC APPROXIMATION FOR
LOW FREQUENCY SCATTERING
The basic assumption underlying this method is that when an acoustic or
electromagnetic wave is incident on a scattering surface, the scattered field can
be expanded in a convergent series in powers of k, the wave number. * The problem
of determining the coefficients is then reduced to asuccession of 'standard' potential

problems. The problem can be formulated using a method due to Kleinman (1966):

3.1 THE SCALAR PROBLEM

Let a small amplitude sound wave propagating with a constant velocity Ve
be incident on the body, whose boundary is denoted by B. (The density and
compressibility of the external medium is denoted by Pe and m respectively.)
The resulting disturbance, as a function of position and time, can be calculated
in terms of a velocity potential @ . Figure 3-1 shows the arrangement. We
are concerned only with the exterior problem and the velocity potential (I)ex ¢
satisfies the equation

2
)

1

v2 t-—E—-—Z’EE:o (3.1)
=y ot '
e
m
Ve © —2 s the velocity of propagation. Assuming (pext has a harmonic

o .

time dependence e_iwt , the Eq. (3.1) becomes,

qu)

2
W
4+ — =
ext 2 (I)ext 0
Ve

a‘Such an expansion has been proved to exist (see Werner, 1962, Kleinman,
1965) for sufficiently small k.

30
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FIG. 3-1: GEOMETRY FOR SCATTERING BY AN
ARBITRARY BODY.
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The acoustically soft and hard boundaries. are generally represented by the

boundary conditions

(I)ext =7 =0
B
29 = 0
an To%
B
respectively.

Q scat

inc
@e L Tepresents the total fleld in the exterior, i.e., ) . o, +9

Hence if we consider a plane wave incident on the body, our problem becomes

one of finding a @ S;ca't ,  such that
2 2 t
(V" + k) P - o (3.2)
e

where

k = _bl)_.

(& v

e
scat *
Lim r <8 (I)e ik @scat 20
T—> ® or e

The latter is the Sommerfeld radiation condition implying that the outgoing
ik r SRR
waves look like _eT (6, §) forlarge r. The subscripts and super-
scripts on q)zcat and ke will be dropped henceforth, because we are
only concerned with the exterior and we can refer to the above quantities as
® and k, without any cause for confusion.
As usual, one begins to solve the problem with the Helmholtz integral

representation, (Baker and Copson, 1950), which expresses the scalar solution

* See Appendix A for a discussion of Sommerfeld's radiation condition.

e
5

T, 6, § here represent spherical coordinates.
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of the Helmholtz equation in terms of its values and those of its normal derivatives

on a closed surface. *
ikR

o) = — 2t e 2 las (3.3)
Y 3y B on R R 9n ) '

9
The integration is carried over the surface of the scatterer and n refers
to o - 5’ and dB refers to a surface element of area. We now introduce

the expansion for the incident and scattered fields, viz. .

(60)
0@ =2 ¢_®an”
m=0
(3.4)

(00)
.q)inc(f) - Z‘ @nilnc(f) (ik)m
m=0

The factor i 1is included in the expansion parameter for the scattered field

because it appears in the expansion for the incident field. eikR is an entire
function which can be expanded as follows,
[0) L 4
ikR Z“! ik) R
e = L—])—'—— . (3 5)
£1=0 ’
Substituting (3.4) and (3. 5) in (3.3), we get
[¢0) (00) L 4
m_ 1 _ m 0 (ik) R
Z_;'cb (F) (k) = = f dB{Z; ¢ @k = -
m=0 B m=0 L=
L 1-1 [¢0)
ik) R 0 _
D NG <1k)“‘} . (3.6)
£=0 0

Interchanging the order of summation and integration and rearranging terms,

we get

>liSee Appendix B for the derivation and the physical significance of the Helmholtz
formula.
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W o
Zl 1 Z‘ Z‘l (ik) 0 _f-m-1 L-m-1 0
@ (r)(1k) o (- I { mE)nR R on q)m}

£=0 m=0
(3.7)

Matching coefficients of k on both sides of the equation. we obtain

1 . 8 I-m-1 L-m-10
0@ - 5 Z - mys dB{@mmR “R 571%}

£=0.1. 2 .. (3.8)
We can now introduce the boundary conditions
in

o,y = -9,y (3.9)

29, 8Q," 510

— - .10

on F-F on FoF

T"Tp B
inc . N
(f , isa known quantity and is given by (3.4).
Hence.
{ . o
- _ 1 1 inc 0 _f-m-1 _f-m-1 " *m
@ﬂ(r)- 47 Z (!Z-m)'.j dB @mfanR TR on }
m=0 B
£=0,1,2. .. (3.11)

Let us first treat the term £ =0 in Eq. (3.9).
Considering the case of a soft boundary, we substitute (3.9) in (3. 8) to get

1 inc 9 1 1 A
(I’O(r)— 4WdeBO TS B—————dB : (3.12)

The first term on the right hand side is known and the second term represents

an exterior potential function (for e.g. see Kellogg. 1929). In other words, if

we let
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3(150

— 1 1
UO(I‘) = T Ir jBﬁ— P dB

then Uo(f) is a solution of

VU @) -
(0]

and Uo(f) is regular in the sense of Kellogg. viz..

ouU
Lim Lim ’ 2 0
< <
r—> onl ® and r—> or @
the boundary condition for UO(?) is specified by
- inc _ Lim 1 inc 0 1
Uo(rB) h _éo (rB)+ r—> TB47r IB o on R dB . (3.13)

Equations (3.9) to (3. 13 constitute a standard Dirichlet potential problem with
a unique solution. Therefore Uo(?) is determined completely in terms of
the incident field. (The integral on the right hand side must be evaluated be-
fore the limit is taken)) Hence (I)O(f) is known . The succeeding terms
§,(r) canbe determined as follows:

Let us assume all the terms (I)O , @1, <I>2 . . . up to and including
(Dﬂ ) 1(r) are known. If we write (3.8) as

¢, (r) = U,(r) + F,(r) (3.14)
where,
[00]
1 Z S inc 8 f-m-1
= - — —R dB
1
41rm:0 (£ - m) B m on
1-1 ad
1 1 {-m-
T Ir (z-m)'s L (3.19)
m=0 v B
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and

X0
U F) = - — 51— _Lam (3.16)

F ’ (r) is a known quantity since all the ®'s up to and not including Q) , are
known. Qn;c is knownand sois R. U l(r) is again a single layer distri-
bution which obeys the Laplace's equation and the regularity conditions in the

sense of Kellogg. and whose boundary value is given by.

UGy = -8, ) - F, ()

Thus the determination of U 0 is reduced to a standard potential problem and
U f is known in terms of incident field and the previous term. Then (I) I is
given by Eq. (3.14).

An analogous procedure holds good for the Neumann boundary condition
(the hard boundary). Substituting the boundary condition (3.10) in (3.18), we

get

{
- _ 1 1 {-m-1 0 £ inc 0 _{-m-1
(Dll(r)—thrz (ﬂ—m)?deB{R 9n “m +Qm8nR ‘}

m =0 (3.17)
Following the same procedure as in the previous case. we can write the
velocity potential @ , 2 follows:
¢, = G, + V, () (3.18)

where
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and

1 d
v, (r) =Hj @f———l—dB . (3. 20)

B on R
If we assume all the §'s are known up to and not including @ It then G ' (F)
is a known function. V ’ (F) is a double layer distribution, which implies
v, (r) is the solution of a standard exterior Neumann potential problem,

satisfying the equation

\' l(f) is regular in the sense of Kellogg. namely,

Lim v < o Lim r2 m <o
r—> o ! { l r—>m or
and whose boundary value is given by
8V 5@ 10¢ e
! S !
on S=F on S =F on FeF
B B B

Thus V ﬂ('f) is uniquely determined and hence @ ’ (r). This method permits
the evaluation of any number of terms in the low frequency expansion of the

scattered field in terms of a potential solution. But the explicit determina-
tions of the terms grow immensely in complexity and limits the ease of

calculation to bodies with very simple geometry.

3.2 FAR-ZONE FIELD
The far-zone scattered fleld, i.e. when kr >> ka, provides interesting
information in practical applications. In particular, while studying the scattering
cross section of objects one is primarily concerned with the far field
scattered. Generally, the far field is written as
¢ - i £(6, g)
) ;



38

where f(6, §) is called the far field amplitude.

One can calculate readily the far scattered field when all the terms in the

expansion for the scattered field are known.

But when only a finite number of

terms are available one has to proceed taking the far field approximation at the

initial stages.

T fB A
eikR e1kr -ik e1kr -ikr - T
B~ = = = (3.21)
A A —
eikR ikr -ikr - T
v R ~ ikr (3.22)
Substituting these in Eq. (2.6) , we get
1kR 4kf-F, kT T
0
@(r)~9—r—j dB{(Dikﬁ-?‘e B B —%} (3.23)
B

But

09]
0w = D' 3 K"
m=0

A —
1kr-rB

(1K) @ 7)™

o)
e =
m=0

Using these, Eq. (3.23) becomes

e1kr o _® (r.f)n
c]é(f)=—;——j ZZ(—lf—TB-—[(
=0 m=0 -

Bn

Rearranging the terms, we have

ikr o rm !.

ml

ikgu.m

oQ

m

., otmt1
5o T k) ﬁ-?(ﬁn] dB .




39

where
¢, =0

Equation (2. 34) indicates that the knowledge of a finite number of terms in the
near field will determine the same number of terms in the far field.

3.3 THE VECTOR PROBLEM
A plane electromagnetic wave is assumed to be incident on a perfectly

conducting body . Einc and £ °° represent the incident fields vectors. We
seek a solution of the Maxwell's equations

Vx E = ik H V'E =0

n

(3.26)

1]

Vx H = 4kE V-H=0

in the region exterior to the scatterer and subject to the boundary conditions

ixE = —ﬁxﬁmc
r=rB r=T'B
(3.27)
N A =inc
n- ' H = ~-n-+H .
r=rB r=rB

and the Sommerfeld radiation condition

lim — — =
r E00rx(VxE)+1krE—0
lim - —_ —

r 5mrx(VxH)+ier-0

The procedure for reducing the solution of (3.26) to a set of potential
problems is analogous to that of the scalar problem. The starting point is the
vector analogue of the Helmholtz representation viz., the Stratton-Chu
formula (Stratton, 1941), relating the field at an exterior point to their values
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on the surface.

1 elkR ik eikR 1 eikR
TR - AT X AT o2 A T oo,
E(r)—47erJ R nxE dB+47r m nxHdB 47TVS R0 EdB
B B B
(3. 29)
ikR 1kR ikR
- 1 ik e 1 A =
H(r)—4—7r ij' R andB—47r R EdB- ypn v R n-HdB
B B B
(3.30)

where the quantities R, fi, B have the same meaning as in the previous sec-

tion. V operates on T and the corresponding operator on FB will be denoted by

V_ in the future.
B ikR = = =inc =inc
Expanding e , E, H, E and H In power series, we get
[00) L _1-
ikR Z‘ (ik) R 1
£=0
©
- - L
E = Z Eﬂ(r) (1k) £=0,1,2. .. (3.31)
£=0
09)
Einc - ino (1k)
L =0

and similarly for H. Now the boundary conditions can be rewritten as,

A= . a_=inc
n EJZ s = HXE!Z s
B B

A, = -8 HY
f=TB ‘f-::fB

In addition to this,
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Incorporating all these in Eqs. (3.29) and (3.30). we can write

n

1 - El
EF) =FF - —V j dB (3.32)
{ 4q

dB (3.33)

where

=
~
~~
gl
~
i
1

i
1 1 - m-1
v Z ' EV j D R dB (3.34)

g
s =02 Vj. g g™ lap | (3. 35)
B

L-1 )
It must be noted that Z' and Z are identically zero for £ =0.
m =0 m=0
F ’ (F) and G ' (F) are expressed only in terms of known quantities, in view of

the fact that we know EO, El' . E!Z—l and HO, Hl’ . 'HJZ-l .
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The unknown term in the right hand side of (3.32) is the gradient of a
function which we know to be an exterior potential function. Let

a-E
. .}_S ! p (3.36)
£ 4T R '
00
then
2 -
v Ul =0

U 2~ regular at infinity in the sense of Kellog

A
nx VU!Z _ J
r—rB

= —ﬁx[ﬁiﬂc + F]

which can be solved in a conventional way. Hence E, can be determined.

]
But the determination of the H, is a considerably more difficult task,be-

L
cause it 1s not clear that the unknown term in the right hand side of (3.33) is
the gradient of a potential function. In order to make it possible to solve for
this function in terms of a potential function, we introduce a function g ) (r)

such that

1 fixH, |
-— Vx j R dB + gi(r) = sz : (3.37)

To solve for g 2 (r) which satisfies (3.37), we proceed as follows:

xH

P>

1
— Vx fo

{
+ T) =
i . dB ngﬂ(r) 0 . (3.38)

Using the vector identity

Vx(VxA) = V(V E)-V°R
and

V= = -V

L
BR

|

(3.38) can be rearranged to give
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P A
_ 1 _
Vg, = -V % v, x H,dB (3.39)
A —

i ] n N E[_]_

= ‘Z;V T—dB L >0
;!

=0 L =0 (3.40)

Stevenson (1953) has developed a method for finding particular solutions of
equations of the type

when f isa gradient of a scalar potential function. We have from (3. 40)

Vg, = VU‘Z

where

=

A
n
e 1 -1
Uz all e IB — R dB . (3.41)

Stevenson, at this point, introduces an interior potential function U; (r)
defined when T 1is interior to B, (This function is defined purely for analyt-

ical convenience and does not have a physical significance in this problem) such

that

v2uj(f) =0

T interior to B.

i e
A - VU, (F) =@ VU, (F) (3.42)
B F=ry

T=T

This can be solved for in a conventional way. It is also necessary to
have
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But this, clearly, is true.

The particular solution of g ’ (F). then is

e, _ i,
V.U, () V.U, (r_)
_ ] ]
8@ x| v+ [Tt av (3.49

which can be rearranged to give

e i
U, (F_)-U,(T,)
1 £ "B 1B
g (r) rpe nyB R dB . (3.43)

Now we can determine V 2 () by solving a potential problem because

1 nx H
———ij. dB+¢g, = VV
i B 1

4 R 1
and V2 A ) = 0 , with the value for V , oo the surface given by
Axv_we-ud)
AL ] a dnc A~ 1 A B' 1 L
n VV/Z e —{-n Hl -n G1+ 7. 0 S R dB} s
o0 B

from this we get Hl .
Although the above method is a systematic way of obtaining terms of all
orders, certain simplification result when one solves for the first term.

From Maxwell's equations using the expansions (3. 31). it is easy to see

VxE = H and VxH = -E

But H0 and Eo are known to be gradients of scalar functions and hence we

have new equations of the type

Vx E =VU Vx H =-VV
1 (o] 1 0
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and particular solutions of these equations can be obtained by using (3.43) which
is a solution of equation of the type V x F = V. Since arbitrary gradient
functions can be added to these solutions. they are required to satisfy the

boundary conditions ,viz. .

ﬁxf‘.l and ﬁxﬁl
¥F=r r=r

In this chapter the theory of approximating a diffraction problem, at low
frequencies, in terms of a series of potential problems was discussed. No
assumption as to the shape of the diffracting body was made. In the next chapter
we apply this method to the problem of diffraction by a torus.
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ACOUSTIC SCATTERING BY A TORUS

In this chapter we shall apply the method described in Chapter III to the

scattering of a plane acoustic wave incident normally on a torus.

4.1 PLANE WAVE INCIDENT NORMALLY ON A RIGID TORUS
The incident wave is propagating down the negative z - axis, and taken

to be of unit amplitude.

y/ {

inc 2 inc , 4 -ikz _ (-z) (k)

o = ;, , k) o= = 0

=0 £=0 ’
and hence
]
inc (-z)
¢, = 4.1)

we now proceed to obtain the first three terms, directly from the Eqs. (3. 17)

to (3.19) of the previous section.

4.1.1 Zero'th Order Term

Qo(f) = G (F) + V () (4.2)
- _ 1 1 0 inc
Gol®) Z;IB ® 7 Lo (.9

is a single layer distribution and a solution of Laplace's equation, given by

46



® o .
Vo(r) = VCosh n-cos @ Z Z [:Amcos my + Bm sinm tp]

n=0 m=0
[C cosnf+D inne] p™ (cosh n) (4.4)
n n® n-1/2 cosin :

Am" Bm.. Cn and Dn are constants to be determined by the boundary condi-

tions . Vo(f) is regular in the sense of Kellogg can be easily verified.

Since
[coshn + cos 0 1/2
r = a
coshn-cos @ ’
12 12
- 9 1 - 9
_8_8; = - _;: (cosh n - cos 9)/2 sinhncos@-s—- Y (coshn - cos 6)1[2 coshnsin 6 57
(coshn+cos 6) n (coshn+ cos 6) n

Substituting these along with (4. 4) gives

Iim lim
= <
r—> rVol n—>0 ‘rVol ©
9—>0
lim ’2_8_\3) lim 22) <o (4.5)
r—=>o |¥ Br n—>0 or ‘ ‘
6—>0
Boundary condition on Vo (r) is
8V 5§ 5G
- - -2 (4.6)
on n = on - on - )
s n=ng n=n
But
(I)inc -1
o
and hence
8@()mc
= 0 and also G =0
on o

This gives V0 = 0.
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Therefore. the first term'in the expansion for the scattered field

4.1.2 First Order Term

This term (I)1 is given by

Ql(r) = G(r) + V, (r)

B B
But
5 @inc
° 0
on
and

- _ 1 1 9 zinc
Gl(r)—ﬂSBRan(Pl aB

From (4.1) we have

@inc - a sinf
1 coshn - cos 6
and
inc
8@1 - cosh n - cos 0 _3 @inc
on a on *1
sinhn sin 6

coshn - cos 6

The surface element of area dB is given by

(4.8)
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2
a smhns
dB = do_ dy
2
(cosh ns - CcOoS GB) B B

and —11% is given by (2.9). Substituting for all these quantities in (4.8) and
integrating over wB gives a value of 27 for the case m=0 and vanishes

for all values m # 0.

[0.9)

- _ 4 2
Gl(r) = - = Vcoshn—cose Z €nPn—1/2 (coshn)Qn_l/z(coshns)sinh ng

n=0

2m sineBcosn (e-eB) y o

0 (coshn -cos@ )Wi B '

ns B
But
sin6 0
B 42 1
=T inp6_ Q' (coshn ).
5 ps )
(coshn_-cos 6) /2 3r siohn, pZ=(I) B “p-1/2 5

(4.10)

( the prime on Qi) _1p refers to a differentiation with respect to 7).
Finally using (4.10) in (4.9) and integrating, yields

2P fooshin—cos 3
Gl(r) =q 3s coshn -cos 6 sinh ns ;; n enPn_l/z(cosh n)Qn_l/z(cosh ns)

1
Qn— 1/2(coshns) sinn 6 (4.11)

Vl(f) , again, is given by
® @
Vl(r) = vcoshn -cos 6 2 _s_ (Amcos my + Bmsin my) (Cncos no+ D sinn 6)

m=0 n=0

Pnrfll /2 (coshn) (4.12)
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with the condition

9V Y 3G, (F)
1 o 1 _ 1 (4.13)
- on - on - '
n TIS n s n TIS
inc _ asing vﬂ(————" 292"
{)1 " Gomhn -cosd 2 oshn-cos 6 T Z‘n sinneQn_l/z(coshn) .
(4.14)

Examining (4.11) and (4.14) we see clearly that the expressions are
independent of  and therefore the only non zero coefficient of cosmy 1is
for m =0, 1i.e., A0 =1 and all the Bl‘ns are identically zero. By in-
spection we can also see that all the Cns are zero, since Gl(l-') and Vl(f)

are only series of sinn6 and not cosnf. Hence,

8

nh
8i ns

D sinnf P (coshn ) +
n n s

' ) L -1/2
2Vcosh ng - cos 6 n=1

00}
- ' ! ,
+ '\’cosh ns cos 6 é Dn sinné Pn -1 (cosh nS)

sinhn (00)
= S Z n sinn6 [——ai@Qn_l/z(coshnS) -

2 coshr)s -cosf n=1

a412 ,
- —3%? sinh ng Pn _y /2(cosh ns)Qn “12 (coshnO)Qn -1 /2(cosh ns):I

0
+Vcoshns—cose Znsinne [aZ‘{z Q' /2(coshns) -

n=1

T '
- inhn P /z(cosh ns)Qn _ 1/2(cosh ns)Qn “1/2 (cosh ns)] )

(4.15)
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After simplification we obtain (the arguments of the Legendre functions
are omitted. but should be understood to be coshns)

DI[PS/Z P—1/2] DyP3/0 r o Qe Ly

_ad4p?

2 ] i ! ! - ! ! (
Y Sinhn‘ [Q1/2Q1/2P3/2 + Q1/2Q1/2 P-]_/Z 2P1/2Q3/2Q3/2J .

for n= 1 (4.16)
1 - - P! - = _a'.gﬁ‘[ ! -0 ]
Pt 1/2 [Pn+1 Dn] Pn—3/2 [Dn Dn-l] 37 L'n+1/2 “n-372

+ -%E nsinhnS [P

3 n+12%-10%-1p ~ P L-3/2Qn-1/2Q{1-1/2]

a412f
- + ! 1
gr (AT UsIhnP e 10%' + 12

a 4|2

- - 1 1 7
3 (n 1)81nhnspn—3/2Qn—3/2Qn—3/2 for n>1 (4.17)

This can be summed to become:

D _-D = _”'_z__v—z.:l_( 2+B) { Q;”% - Q;l—l/z }+ a2V§'v‘Q;1+l@
wrion ey Pt Phogp) T Paeip

242’ ' _ '
t g, stahng {nQn - 1/2Qn -1/2 (o+1) U+ 1/2Qn+ 1/2}

1 1
, 24 siohng P 1217297201 )2
1 1
3T PiviePa-1p

(4.18)

where

. a2\2 .
B = — [D1P1/2 i 7£ Q1/2] B2 (4.19)
o
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Writing successive equations from n=n, n-1. . . 1 and adding together,

we get. using (4.19)

+1 + ' ! 1
. T 2l Pl rm1art1 Proip Pl

b -22E {(n+1)2+ﬁ heip L, shrts Yo O,Q'-l/z}

agle
31 Smh"s{ 12 0TV L 1p Qe *

+

"B P 1/2Q1/2Q1/ZZ . } . (4.20)

1 Brs 1/2 r- 1/2
In order to find 8, (i.e.. D ) we employ the same method as in (2,41) due to
Hicks. i.e.. we find the limit of D as n- o and set the limit equal to

zero in order to have Vl(r) finite everywhere‘ The series

Q!
tB _r-i1p2 (4.21)
- .
r=1 4r2—1 P 1/2
converges and the series
1
' 1
r=1 I)r+1/2pr— 1/2
also tends to a finite limit. Hence B is given by
o P P Q
I:2sinhn Q59 * E e cab - 1/2 1/2] (4.22)
r+ 1]2 r- 1/2

@ r— QL
[2 }; L 112_ '1/2}

4r-1 “r-1p Py
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and Dn is then

1 1
_ a2 n2+[3 Qn-1/2_ 2412’ < r2+B U_1p

1 1
n T 2ntl Pn-I/Z L 4r2—1 Pr—1/2

D

¢ )

P P Q. .Q
a4yZ : -2 1/2°12°% 1
T {nQn—lﬁQn_l/z + Zn:' o } . (4.23)

Finally, we obtain from

+

() = Gx) + Vv (x) |

Q)(r) =_a_g@ oshn-cos 6 sinh EOOI ne P (coshn) Q (coshn ) x
1 3w p SN -cos r'sn=0 n n-1/2 1 n-1/2 °%% g

1
X Qn— 1/z(coshns) sinn 6

®
+ Vcoshn -cosf 2 . D sinnf P (coshn) (4. 24)
n =

n-1/2
where Dn is given by (4.23) and (4. 22).

4.1.3 Second Order Terms

We shall proceed in an exactly similar manner as we did in Section4.1.2 to
determine (I)z, the third term coefficient in the expansion of the scattered
field .

(1)2(f) = G2<f~) + Vz(f)
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- 11 0 zinc 1 9 «inc 1 {1 9 zinc
S — - —_— — — 4+ — —_——
Gyl = o7 2!jBRan¢o dB+41r§B on 2y B 4153311@2 dB

1 1 0
+Z-7F§~'.J‘§5?1Rd]3 . (4. 25)

Since

we get
S | 0 zinc 1 1 9 zinc
G®) = 47 jan o, 4B+ I R on O 9B (4.26)
Qinc _ _z_2 - a2 sin2 6
2 2 (coshn-cos 6)2
inc inc
aq’z sin26 sinh n 8({)1 _ sin6sinhn
o0 a 2 on " coshn-cos @
(coshn - cos 6)

—% is glven by (2.9).

Substituting these in (4.26) we get

f = 3’— Vcosh -cos 6 Z COShn)Q /Z(COShnS) cosnf x
27 n- sinhn 5

T{n+72) (3) Mn+11/2) _(3)
{ r Fn-5R) Q, Z1p2 (coshns) + 2|2 Fla-12) Q +3/2( coshn )

'r PE:@@; (3) _5p (cosh Tls) } (4.27)
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Algo
a(Pinc 9
2 _ a 1A Vcoshn -cosf Z‘I N(n+ 7/2) (eosh )
on 27 stah 2n Fn-5p) @ n

() M(n+11/2) M(n+3/2)
+ +3/2(coh )F——-—17§-)r+ 2Q (ohn) T—éz—}cosne

(4.28)
V2(f) once again is a solution of Laplace's equation which satisfies the
regularity conditions and the boundary conditions
5V, (%) i 8G, ()
2 - 2 _ 2 (4. 29)
on = = = .
n=n, n=ng n=n,
Let us abbreviate
2
a |2 [(n+ 7/2) [ (n+1/2)
- +
2rsithn_ [ m-52) & / p(coshn) 2Qn+ 312 (98h ) =TI By

(n-902)

+2Q( /z(coh M’] = K_ . (4.30)

Equation (4.29) takes the form

®

‘Vcosh n -cos Z Z (Amcos my+B, sin my) (C gosn6+D sinn 6)

m=0 n=0
ml
P 12 (cosh ns)

sinhn S ® o
N .
Z‘ E (Amcos my+B_sin my) (Cncos n6+D sinn 6)

2 Vcosh ns -cos6 m=0n=0

m
P n-1 (cosh ns)
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(o)
\
= - - 1
‘Vcosh ns cos 6 nzz enKnPn “1p (cosh nS)Qn _ 1/2(cosh ns) cosnf

sinhn 0
s

) €. K, P (coshn )Q (coshn )cosn®.
24/coshn -cos 6’ n; n o n-1/2 s’ “n-1/2 s
S (4.31)

We shall omit the details of getting the coefficients since the arguments

and procedures are identical to the previous case . After rearrangement and

simplification we get

n
1 1
r=1 r+ 1/2Pr - 1/2

C . =C,* p_l/z[cop'_3/2-P1/2Q1/2K1] Zl !

n r
1
+ _— Z (r-s+1)K_P! P @ +Q! )
! 1 - - -
= Pr+1/2Pr-1/2 el s s-1R2"s-1/2" s-1/2 “8+3/2

> ! Zr' (x-5+) P!

1 1
r=0 Pr+1r-1p 51

! -
-1/2P s+ 1/2Qs + 1/2Ks +1

=

r .
1
- —_— Z -s+ !
5 (r-s l)Ps

1 P (4.32)
r=0 r+12 r-12 s=1

1
~12Ps-3/%-3128s-1

with Co given by

8

1
C +P [c P, -P K]
o " P21 32 " Fip ek rz-lzl P 1

Q0
1 [
+ P Z;KP P 0@y 10T Qg _ap) ~
1 ! - - -
r=1Pr+1/21>r_1/2 e s s -127s-1/27 s + 12 Vs -3)2

r r
- P p! ! - > : ' = 0.
SZ=1 s-1/2 s+1/2Qs+ 1/2KS +1 SZ=I1 PS —1/2PS‘3/2Q8—3/2KS _1] 0
(4.33)



Thus @2(5) is given by

®
Qz(r) =‘Vcoshn - cos 6 nzlzo €, P._ 1/2(cosh n)Qn_ 12 (cosh ns)Kn cosnf
@
+ -
‘Vcoshn cos 6 ;jo Cn cos nf Pn- 1/2 (coshn) (4.34)

where Kn and Cn are given by (4.30) and (4.32), respectively,

4.2 PLANE WAVE INCIDENT NORMALLY ON A SOFT TORUS
We start with Eq. (3.14) and (3. 15) to obtain the zeroeth and the first
order terms in the expansion of the scattered field when a plane acoustic

wave 1s incident normally on a soft torus.

4.2.1 Zero'th Order Term

Qo(f) = F(F) + U_(F) (4.35)
where
L 1 0 1
FO(I‘) = -H 5o —R— dB (436)
B
-\ _ 1 1 aq’o
Uo(r) B —4—7?] R on dB
B
and
Uo(r)
is such that
2 —
v Uo(r) =0 (4.37)

Uo () regular at infinity

U_(®) - -E (®) - 3@ | (4.38)

n=ns n=ng n=rng



Solving (4. 37) we get for Uo(f), and Fo (T)

o ®
Uo(r) = /Vcoshn cos 0 Z ;4;0 (Amcos my+B_sin my) (Cncos no+ Dnsinn 6)

m
and Py - 1jplcosh)

Fo (f) -

1
o

Also

inc _
o, =1

Matching boundary conditions,

®
'Eosh ns—cos 0 E E&mcos my+ Bmsin mw] [Cncos no+ Dnsin n 9]
n=0 n=0
_ 1/2(cosh nS) =-1
and
(o)
1 _ 1
s Z_‘ cosneQn_ 1/z(coshns)
VCOShns ~ cosf n=0
giving thereby
A =-1 m=0
m
=0 m#0
V-' (coshn )
B =0 forallm and C = —
m T (coshn )
1/2
Hence
oy A2(coshn - cos 6) S n-1/2 plcosh ns)
Uo(r) = - - P (osh ) -1 /2(coshn) cosnf .
n=0 " n-1/2 s
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Substituting for this in {4.35), the first term is found to be

(4.39)

— Q (coshn )
- 2 hn -
¢ 1) = - 'Y(cos n - cosf) cosné - n-1/2 (coshn)
0 m - (coshn) Py 1/2
n=0 n-1/2
4.2.2 First Order Terms
@1(f) = F (T) + U/() (4.40)
where
. eX)
- 1 inc 0 1 1 o
F = - — — . dB - —
l(r) 47rj‘B¢o on R dB 4%_“ on (4.41)
0
v = -4 (L @ldB
1 47 JR On
The incident part is
inc _ _ a sinf inc _
(I)l Z = Coshn - cos and @ =1

This may also be expanded as follows:

inc —ZV—Z—'a

= - A\
(I)1 = — 'Vcoshn cos 6

SMB

3 Qn— 1/2(coshn) nsinnd .

Substituting these in (4.41) one obtains for F 1(f)

F(r) =—— avcoshn cos GZ‘nP (coshn)sinhn Q -1/ (coshns)

n-1 /z(cosh n_ ) sinn6

Qn- 1/2(COSh ns)

€
) n_1/2(cosh ns)

(4.42)

(4.43)
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Ul(r) is once again a solution of VaU (F) = 0, whose boundary conditions

1

are
U . (r) - F 1 (r)

TI:TIS

The quantity
© Q1 /Z(cosh ng)

cPARS 5
T | nPn_l/z(coshn)

is actually the measure of the capacity of the torus, since the capacity KT of

the torus with respect to infinity is defined by

K=-€-5 -g—g—dB
B

where V is the constant potential on the torus and € 1is the free space

permittivity. Substituting for these values, we obtain for the capacity KT’ the

value

Q (coshn )
K_ = 8ae € n- 12 8

T =y 0 P ._1/2(coshns)

It {s interesting to compare this with the capacity of a sphere whose radius is a,
and is carrying a total charge distributed uniformly,

KSph = 47€ea

Then the ratio is given by

_2. o) Qn _q /z(eosh ns)

€
T &2 n Pn_l/z(coshns)

and is plotted in Fig. 4-1 as a function of sech nB .
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Matching boundary conditions

®
- 4R s 4D &
’l/cosh ng-cos 9 n?_: s (Amcos my Bmsm my) (Cncos no Dnsmn 6)

p )
n - 120088 g

TK
= 8T - 4;5?; /'coshns-cosé)‘L X

®
1
X Z n Pn _3 /z(cosh ns)sinh nsQn— ) /z(cosh ns)Qn_1 /2(cosh ng )sin n 6

n=1
[0}
+ Z’E‘a coshn -cos6 Q (coshn )n sinné . (4.44)
T s <= n-1/2 s

Solving for the coefficients A_ , B_, C_ and D _ we get
m’ "m’ n n

A =1 for m=0 B =0for m=0,1, 2. ..
m m
=0 m#0
K Q (coshn )
c - L _n-1p2 5 n=012. ..

n 4'1? Pn_l/z(coshns)

) n{ 27 Y- 1pleoshny)

- a sinhn Q (coshn )
m P 1/z(coshns) 3w s 'n-1/2 s

Q;l ) 1/z(cosh ns)} .

n=0,1,2. ..
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Thus the solution for Ul(?) is given by

Q (cosh N )

U (r) ﬂéoshn—cose ZE)[ 5P (coshn ) cosnf +
S

1/2

n2y2’ Q (coshn ) wf7

"\ P o1 / (cosh ns) T3y AsihnQ 1/2(00Sh 7":s)Qn-l/z(COSh ns)
sinn 6] Pn -1/2 (coshn) (4.45)
(coshn )
(r) ={lcoshn-cos 6 Z‘ 1/2(cosh ) cosn 6 +
Q (coshn) K
n Z'P -1/2 8 ) T
- 1/2(0081177 ) sinn 9} P 1 (coshn) 3 (4.46)

We can continue to obtain higher order terms this way, but the complexity in the
functions involved not only make it formidable, but also it becomes more

difficult to derive meaningful results from them.

4.3 FAR-ZONE FIELD

The expressions obtained for the scattered fields for the scattering of an
acoustic wave by a hard and a soft torus are in a rather complicated form but
can be readily utilized for computer calculations. Since it is beyond the scope
of thiswork to do numerical computations we shall look at the analytical expressions
and trytocompare this with some known results say, for a sphere andfor a disc. In order
to do this we shall look at the far-zone field for a particular case, viz., the soft torus.

The soft torus is chosen because the results in this case are relatively

simpler to deal with.
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Equation (3. 25) can be directly used to obtain the far zone field i.e. .
Jkr @ 1)n m a@m
X m . A
Q(r)N47rr HZ:'(1k) (n (m-m)" f - [ erml- on ] dB

when @_1

Examining the term n =0

= 0 and all the quantities have the same meaning as in Chapter III.

From (4.39), we know

hn )
o _ UK o) COS
o @ = - ),[\COSh” cos 0) 1/2 (coshn)cosne .
o T (coshn ) Pn-1/2
n=0 n-1/2
Therefore,
ikr =~ @ 1/z(coshn ) R3S K.

e
(P(r) r 7 .Zolen Pn—l/Z(COShns) r 8r (4.47)

where

A plot of the quantity

K =2" c Qn-l/Z(COShns)
T 5 n Pn_l/z(coshns)

against sech ns is shown in Fig. 4-1.

This quantity is already shownto correspond to the capacity of atorus. So, the
first terms in the far scattered field for a soft torus, interms of the first terms in the
near scattered field is always a measure of the capacity of the bodyunder consideration.

It is interesting to compare this term with that of a disc and a sphere (Senior, 1960).
ikr

_ 2
q)disc(r)N r T a‘d

_ eikr
) () » — a

sphere T S
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where a d and as are the radii of the disc and the sphere respectively.

Figure 4-2 enables us to estimate the equivalent sizes of the discs and

spheres which would give size to the same far zone scattered field. Figure

4-2 is a plot of re;iius against %)— . To illustrate this. let us take a
disc whose radius is 0. GRO . thus th: size of the torus which gives the same far
scattered field has ;—O = ,125. Similarly for a sphere whose radius is
.6 RO_, the size of theotorus which gives the same return is —11);—0— = 0.5. But
for large values of -;i , the relative sizes do not make muc;i difference,

)

as Is expected.

Unfortunately. no results are available for scattering of an acoustic wave
by a torus. But it is expected that at a future time numerical computations
done with these analytical expressions will give systematic information (for

both the soft and the rigid torus) for scattering as a function of r and/or Ro.
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FIG. 4-2: EQUIVALENT RADII FOR SPHERE AND DISC IN TERMS OF THE
RADIUS OF TORUS.
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ELECTROMAGNETIC SCATTERING FROM A TORUS

Let us consider now the problem of scattering of a linearly polarized plane
electromagnetic wave by a perfectly conducting torus. The incident wave is

propagating down the z-axis. with the electric field polarized parallel to x-axis

and the magnetic field parallel to the y-axis.
Z

Hao |7

E'mc

N /*
{J/ N

X

FIG. 5-1: ELECTROMAGNETIC WAVE INCIDENT ON A
TORUS.

=i - -
e ;‘ aw'e," ; g - L2 i 6

yi
- - {_ i -
Hinc =-li\ o ikz _ i‘ ax)'E inc ‘ Hmc _ z‘) li\y (5.2)

We shall follow the method in Chapter III to derive the zeroeth and first order

terms in the expansion for the scattered fleld in powers of k.

5.1 ZERO'TH ORDER TERMS

=inc A A 1-cos@coshn A sinhnsin6 A
E =1 =1 -y =157 -
o) X 1 coshn-cos6 cosy 16 coshn-~cos 6 4 i(l/ siny

(5.3)
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The scattered electric field to this order is

E = vv
0 0

where V0 is an external harmonic function to be determined under the con-

ditions

v2v =0 (5.4)
0
A x vV = - ﬁxﬁf)nc (5.5)
n= Tls n= TIS
8Vo

V0 regular at infinity and I—ﬁ— dSs = 0.

Solution of (5.4) is glvenby (2.6) and (5.5) can then be written as
oshn -cos6

A V s
- + +
i‘b [ e sin@ Z Z (Amcos my Bmsinmd/) (Cncosne D sinn 6)

P /2(cosh ng)

[cosh ns— cos 6] 3/2

+ + - +
2 Z Z(Amcos my- Bmsinmw)( nC;1 sinnf nDncos né)

Pn 1 /2(cosh ns)]

A (coshnS - cosf 32
+ i E - +
iy — ™ 2 mAmsin my mBmcos my) (Cncos né+ D sin nb)

Pn _ 1/2(COShns)}

A sinhns sin 6

"y coshn - cos 6 g Siny (5.6)

which gives
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a 212 Q _ (coshn )

C .
n T P][1 _ 1/2(cosh ns)
D =0 for all n
n
Thus
Q' _,plcoshn)
az\[" -1/2 (1)
V,© ‘Vcoshn cos 6 2 1/2(coshn )cos Ycos nGPn_1 /z(coshn)

(5.7)
and Eo = VVO gives the first electric field term.

To determine the first term in the series for the scattered magnetic field, we
write

H = VU
(o] (o]

The excitation is given by T-I-znc = - VUi(t)lc

inc a A 1l-cosh ncosG A sinhnsinf A
- = ———————— +
vUo iy iy coshn - cos g ° fny-1 6 coshn-cos 6 siny iwcosw
9 (5.8)
U satisfles V U =0
) 0
A a =inc
n-Vvu = -n'H
ol _ 0 -
n= TIS n ns

and the radiation condition.

From the boundary conditions we obtain

8¢]

m
+ +
(Amcos my Bmsin my) (Cncos no Dnsin n o) Pn— ) /2(cosh ns)

(coshns-cos f) ®
+ . .
Z Z l (Angos mw+Bmsmmw)(Cncosn6+Dns1nn6)

a n=0m=0

Pn— 12 (coshn)
1-coshn cosé

_ s
B coshn_ - cos B sing . (5.9)
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Expanding the right hand side of (5.9) in a series over toroidal functions.

we solve for the coefficients,

A
m

0 for all m

"

B _ 1 for m=1
m 0 for m#0

]

D 0 for ail n

n

and Cn is given by

Cn{sinhns Pél_)l/z(coshns)+ 2coshn P( i/z(coshn ) } - (_21/2(coshn )
- Cn_lp(;)'S/z(coshn ) = —‘&{sinhn Q( )l/z(cosh ns)+2003h nSQéill/z(coshnS)}
(5.10)
_22 o 2f2'a oy n=234. ..

r Ynt 1/2 T n- 372

with the initial equations

. (1) (1 (y
C0 [smhnSP (1/2 + 200shnS P-1/2]" C P1/2

_ 202 (1) 1) 1y
= =L {[s,inhnsQ _1/2+2coshn Q 1/2] _Ql/z} (5.11)

and

(1) 1y 1y (1)
C1 [sinhn P1/2+ 2coshn P1/2] 2C P-1/z -C P3/2

_ 212'a (1 (1 (y
= —I“;rl- [( inhn Q1/2+Zcoshn Ql/2)+ 2Q 12 - Q3/2:|. (5.12)

Now Cn is determined up to Co’ To determine Co’ we proceed in a
way analogous to the fluid flow problem in section 2.4, since the flow of a
fluid around a rigid torus is analogous to the magnetostatic problem for a per-

fectly conducting body.
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By virtue of this, the magnetic field at the points A, B, C, D, shown in

Fig. 2-3, must be zero, which gives rise to a condition on the C's viz..

(09] (00
_ 2‘f§'a
Zo:'CnPn_l/2(coshns) = Z;‘ 2 Q, _ypleoshn) (5.13)

Thus Co can be determined from Eq. (5.13) in addition to Eqs. (5.10) through
(5.12). Therefore, Uo and hence Ho 1s completely known.

5.2 FIRST ORDER TERMS
The next higher order terms in k can be solved for by using the

equations

VvxE =H and Vx H = -E p >0 (5.14)
P P P

thus V x _E—:l = ﬁo and V x ﬁl = —Eo and H and E  are both
gradients of scalar functions and therefore Eq. (3.43) can be utilized in

solving for E1 and H1 directly.

o0
I 57 0 s (1)
Vx E1 Ho =V [Vcoshn cos 6 Ly Cns1n¢/cosn6 Pn_l/z(coshn)

where Cn is glven by (5. 10) through (5.13) .
Using

. (u, - U,) 8
gﬁ‘?ﬁ”jB—R—dB

where Ui and U(z)

same as in Section (3.3).

refer to the exterior and interior potential functions the



Omitting all the cumbersome details. we obtain the quantities E. and H1 given by

1
K Vcoq}m COSGZ" [C P( )/ (coshn ) 2’{;21aQn({)1/2(coshns)]
Mn-12) (1)
“n [ (n+32) Q /z(coshns)w nsinhns +

+ L Esimns—coshns)ll_n[—(sinhns~coshns)1+n]} smwsmneP( )

1 S1/2 (cosh n)

/\lcoshn cos 6 Z‘ [C P (coshn )- Ejr:zja Q;fi/z(coshns)]

€, %%22—) Z1p (cosh n)Q ( 1}2(cosh n_)cos cos nf

and similarly (5.15)

/Z(coshn )

® Q'
VXH=-E =+ V[’\/mz | 2‘7Vr§'a p:l-1 (cosh S)
0 n-1/2 g

cosycosnbh Pn(-ll) P (cosh n)]

and using (3.43)

- A 2‘v22,
= i - —_ !
H1 IW ‘Vcoshn cos 6 Z [ - + An] Qn—1/2 (coshns)

n=0
€ P_((r?ﬂ?}/;— (coshn ) w{—n sinhn
l [(smhn -coshn )l l— (sinhn -coshn )1+n]}
4 s s
1
cosycosn@ Pn(-l)/z(COSh )

@
A 242
+ i hn- _ﬂ. + ' 5.16
16'Vcos n-cos 6 wnzzo,: - An] Qn-l/z(COShns) ( )

Fa-1/2) n-1/2(00807)

(1)
n M (n+3/2) Pn_ . /z(coshns)

siny sinnf Pn- | /z(cosh n)
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where An is given by:

(1) . (1) (1 (1)
Ay [2 coshn @y 1 Smh”sQn-l/z] A 1%rip T @nrp

' Q
_a2f2 2 cosh_ “n-p oy st 2712 p @)
T s P!, 112 Py- 1/2 h-102 n-1/2

' Q! '
a212 n+12 i)l/z (co sh _ 32:—‘ P? 3/2 (_)3/2 (coshns) :
+1/2 - 32

This can be solved, as usual, up to Ao, and AO remains to be determined.
In order to obtain this, the static Neumann Green's function must be obtained

complete with all the coefficients. (5.15) and (5. 16) represent general solutions

of E ) and 1'{'1 that satsify Eq.(5.14). Now any arbitrary gradient of a scalar

(say VS, and VSZ) can be added to (5.15) and (5. 16) and still have theia

satisfy (5.14). These arbitrary functions then should be fixed by the boundary

values, which El and ﬁl should satisfy viz.,
fx @ +ET5 =0 (5.17)
n=mn,
nxﬁ1+4m) =0 (5.18)
n=n

OB (1-cos Hcoshn)sin b +3 asinhznsinze cos¢+f asinysin@

=- : )

* M (coshn-cos6) 0 (coshn-cos 6)2 ¥ (coshn - cos 6)
(5.19)

A asinf(1- cosecoslrn) +4 asinhnsin29 A _asinfcosy

Hi;m— Z'iy =-i
T (coshn-cos 6) (cosh n-cos 9)2 ¢ (coshn-cos 6
9.20
If we let ( )

: (1) 242a (1) 1/2
a n[CnPn_1/2(coshns)——;«r:—Qn_1/2(coshnS)Je 52_{_32; (1 )/(coshn)

(5.21)



14

(1-n) 1, 1+n
2 (smhnS coshns)

(5.22)

1
= + = | -
Bn [n sinh ns 3 (sinh ns cosh ns)

5370 8] sinysinnop h1)
El- (//Z; ozn[n] siny sinn- n_1/2(cos 1

(1) A
+1 VS _+i VS+ v S
+19 Z ‘acoswcosnGP 1/2(coshns) inn | 16 051 IW 51

(5.23)
where

= S. + S
V1 1nV Sl+19v61 1WV¢/ 1

is the arbitrary gradient of a scalar that is added to E

L
Hence
3 x (B, + Eilnc ) = 0
n= Tls
VTI S1 =0
asinhn sinfcosy
VS = ‘Ycoshn -cos 6 Zla/ cos yycos nb
¢ 1 _
(cosh n,-cos 9)
(1)
Pn- 12 (coshns)
asmhn siny sin 6
V8, =" (coshn 5o50) 1/<§oshn cos 0 Z‘ o (B ) siny sinn 6
(1)
n-1/2 (coshn ) (5.24)
Similarly for ﬁl we can add VS o and solve for it using
- @+ " =0
n= TIS
we get

vg = _2asinf(l-coshncose) (55 25)

2 (coshn—cos@)2
Vesz =0

vs =0

vo2
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This technique of obtaining higher order terms in a low frequency expansion
can be continued, but at this point it is considered to be not so important to
get the higher order terms. but rather to derive some meaning from these

complicated expressions.
The only result known for the scatterin of an electromagnetic wave by a

perfectly conducting torus is that due to Weston (1956). He has derived the
far -zone scattered field for a very thin ring. In order to compare our result
with his, we first have to derive the far-zone field for our case. We use a form

for this field. given by Kleinman (1966):

n-m
ikr n (4\]6 u)
E—scatN e wz - i\ (w)n Z o_o (-i‘-.f )n m
m=0

drr 70

A A A B A - A =B A -
-rxT /"E 'T - nxH + T XT_ € n-E + € r - nxE
B“o o“o m H m H

- A B
+ 1’ ! -
BNEH, Tph H dB . (5.26)

This expression is a power series expansion for the far field in powers of
w(l.e.,k) in terms of the near field terms. This also gives n far field terms

when n near field terms are known. If we are interested only in the first term

(i.e., n=0)

47r

A A B - A B .
+ € T + € n- A
oMo an0 “ov oMo rB Ho} dB (5.27)

Since (5. 27) involves Eo and ﬁo and in as one Eo is known explicitly,

scat eikr2 A A B 4 A B
E A —— ) ij‘{—fXF”oeo“ r nxH +rxr_€ un-E +
B

but Ho is known only implicitly, we cannot yet obtain a suitable far-zone
scattered field to compare with Weston. It is expected that some numerical

work will be done to be able to compare with experimental results for a ring.
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The low frequency expansion terms is carried out here for the case of the
electric field polarized in the plane of incidence, but the other polarization can
be used without any difficulty. The scattering cross-section is also a quantity of
interest which can be obtained from the far field. The scattering cross-section

is defined by

- = lim 4 r2 8
Tr —> 00 4 Wo

when WS 1s the scattered power density and Wo" the incident power density

at the scatterer.



VI
SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

The main results of this work contain the derivation of the solution of
the potential equation for a torus placed in a uniform field in directions parallel
to and perpendicular to the axis of the torus. From this one can solve the
corresponding problem for a torus placed in a uniform field in an arbitrary
direction. Further these results have been used to construct the solutions of
scattering of acoustic and electromagnetic waves using the techniques proposed
by Kleinman (1965) and Stevenson (1953). The solutions are in a power series,
in ascending powers of k, the wave number. This series is often called the
Rayleigh series and is valid for small k or low frequencies.

Two non-zero terms are derived in the scattered field expansion for the
acoustic problem for rigid and soft toroids and for the electromagnetic prob-
lem for a perfectly conducting torus. The process could be carried to higher
order, but the complexity in the forms of the terms increase progressively
thus making it more difficult to derlve meaningful results from them. The far
field is calculated for the simpler case of the acoustic problem i.e.. for an
acoustic wave incident normally on a soft torus, and compared with the
known results for the corresponding problem of a disc and a sphere. The
equivalent radii for the latter are plotted in terms of the radius of the torus,
to obtain the same scattered field,

No attempt has been made to do any numerical computation,
but the formulae can readily be used to get results from an electronic digital
computer. Also, no attempt has been made to estimate the radius of con-
vergence of these solutions. *

The exterior Neumann problem for a point source excitation can only be
solved yet up to a set of constants, which still need to be determined. The
*The series for the scattered field converges for |k| sufficiently small, that

is, there exists some number |k0 >0, such that the series converges for
|k| < ‘kol . |k0| in turn determines the radius of convergence. This has been

estimated only for very special surfaces so far (e.g., Senfor and Darling, 1965).

7
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procedure of determining the scattered fields will apply directly to all R -

separable bodies (for definition see Chapter I),fore.g., flatring, washer, special bowl,
ogive etc. In contrast to a torus which is a smooth body. these bodies have

edges. and it is expected that this might help in solving for the unknown set of
constants, because in addition to boundary and radiation conditions the scattered
fields should also satisfy edge condition.

Once the Green's function of the second kind is completely explicitly found,
one could use a method to find the scattered fields by an iteration technique due
to Kleinman; however, it is hard to predict whether the method will render
itself convenient at this stage, since when applied to ogive (Ar, 1966) the results
could only be found in terms of integrals which could not be evaluated easily.

Torus is typical of a class of R-separable bodies and any work done on
this will certainly lead a way to solve the problems involving other R-separable

bodies.



BIBLIOGRAPHY

Ar. Ergun, (1966), "Low Frequency Scattering from an Ogive', The University
of Michigan, Radiation Laboratory Report No. 7030-3-T, November 1965
(being published in Quart. Appl. Math. ).

Ar, Ergun, and R.E Kleinman (1966), "The Neumann Problem for the
Helmholtz Equation', being published in the Arch. Rat. Mech. and Anal.

Baker, B.B., and E. T. Copson (1950), The Mathematical Theory of the
Huygen's Principle, Oxford, Clarendon Press, Second Edition.

Bassett, A.B. (1889), Treatise on Hydrodynamics, Deighton, Bell and Company,
Cambridge, England.

Bassett, A.B. (1893), "On Toroidal Functions", Amer. J. Math., XV,
pp. 287-302. T

Blank, A.A., K.O. Freidrichs and H. Grad (1957), '"Notes on Magneto-
Hydronamics, V, Theory of Maxwell's Equations without Displacement
Current'", New York University, Report No. NYU - 6486 - V.

Bond, S (1955), "The Current Distribution on a Toridal Antenna', M.A. Sc.,
Thesis, University of Toronto.

Carter, G.W., and S.C Loh, (1958) , "The Approximate Calculation of the
Electric Field Between a Rod and a Concentric Ring by Means of Toroidal
Functions', J. Inst. Elect. Engrs., Part IV, pp. 13-17.

Dyson, F.W. (1893), "The Potential of an Anchor Ring", Phil. Trans. Roy.
Soc., London, 184 A, pp. 43-95.

Erdleyi, Magnus, Oberhettinger and Tricomi, (1953), Higher Transcendental
Functions , I, Bateman Manuscript Project, Mc-Graw Hill, New York.

Grobner, W. and N. Hofreiter (1957), Integraltafel, Teil I unbestimmte
Integrale, Teil II bestimmte Integrale, Wien: Springer-verlag.

Heine, E. (1881), Anwendungen der Kugel Functionen , 2, (Reimer, Berlin).

Hicks, W. M. (1881), '"On Toroidal Functions'", Phil. Trans. Roy. Soc., London
Part III, 31, pp. 609-652.

Hicks, W. M. (1884), "On the Steady Motion and Small Vibrations of a Hollow
Vortex'", Phil. Trans. Roy. Soc., 35, pp. 161-195.

Hobson, E W. (1955), The Theory of Spherical and Ellipsoidal Harmonics ,
Chelsea Publishing Company, New York.

Kellogg, O.D.(1929), Foundations of Potential Theory, Springer- Verlag,
Berlin.

Kleinman, R_E. (1965), "The Dirichlet Problem for the Helmholtz Equation’,
Arch. Rat. Mech. Anal., 18, No. 3, pp. 205-229.

79



80

BIBLIOGRAPHY
(continued)

Kleinman, R.E. (1965), '""Low Frequency Solution of Three-Dimensional
Scattering Problems', The University of Michigan, Radiation Laboratory,
Report No. 7133-4-T.

Kleinman, R.E. (1966), "Low Frequency Methods in Classical Scattering
Theory", Laboratory of Electromagnetic Theory, Report No. NB18,
The Technical University of Denmark, Lyngby.

Lamb, H. (1932), Hydrodynamics, Dover Publications, New York.,

Loh, S.H. (1959), "On Toroidal Functions", Can. J. Phys., 37, pp. 619-634.

Loh, S.C. (1959), "The Calculation of the Electric Potential and the Capacity
of a Tore by Means of Toroidal Functions'", Can. J. Phys. , 37,
pp. 698-702.

Loh, S.C. (1961), "Uncharged Conducting Toroidal Ring in a Uniform Electric
Field", Can. J. Phys., 39, 1961.

Magnus, W. and F. Oberhettinger (1949), Formulas and Theorems for the
Special Functions of Mathematical Physics, Chelsea Publishing Company,
New York.

Moon, P.H. and D.E. Spencer (1960), Field Theory for Engineers, Van
Nostrand Company, New York.

Moon, P.H. and D.E. Spencer (1961), Field Theory Handbook Springer-
Verlag, Berlin

Morse, P. M. and L. Feshbach (1952), Methods of Theoretical Physics, Part II,
McGraw-Hill Company, New York.

Noble, B. (1962), "Integral Equation Perturbation Methods in Low-Frequency
Diffraction", Electromagnetic Waves, edited by R. Langer
The University of Wisconsin Press, Madison.

Neumann, C. (1864), "Allgemeine Losung des Problems uber den stationaren
Temperaturzustand eines homogen en Korpers welcher von irgend zwei
nicht conzentrischen Kugelfldchen begrenzt wird: Schmidt, Halle, 1864.

Lord Rayleigh (1897),"On the Incidence of Aerial and Electric Waves upon Small
Obstacles in the Form of Ellipsoids or Elliptic Cylinders and on the Passage
of Electric Waves Through a Circular Aparture in a Conducting Screen",
Phil. Mag., XLIV pp. 28-52.

Senior, T.B.A. (1960), "Scalar Diffraction by a Prolate Spheroid at Low
Frequencies", CanJ. Phys., 38, pp. 1632-1641.

Senior, T .B.A. and D A. Darling (1965), '"Low Frequency Expansions for
Scattering by Separable and Non-Separable Bodies!' J. Acoust. Soc. Amer.,
§1, No. 2, pp. 228-234.




81

BIBLIOGRAPHY
(continued)

Snow, C. (1952),7”Hypergeometric and Legendre Functions with Applications to
Integral Equations of Potential Theory'! Appl. Math., NBS, Series 19.

Stevenson, A.F. (1953), "Solution of Electromagnetic Scattering Problems as
Power Series in the Ratio Dimension of Scatterer/ wavelength', J. Appl.
Phys. , %, No. 9, pp. 1134-1142.

Stevenson, A.F. (1954), ""Notes on the Existance and Determination of a Vector
Potential", Quart. Appl. Math.. V, No. 2, pp. 194-197.

Van Bladel, J. (1964), Electromagnetic Fields. McGraw-Hill Company, New
York.

Werner, P. (1962), "Radwertproblems der Mathematischen Akustic', Arch.
Rat. Mech. Anal., 10, pp. 29-66.

Werner, P. (1963), ""Beugungs problems der Mathematischen Akustik'', Arch.
Rat. Mech. Anal., 12, pp. 155-184.

Werner, P. (1966), "On the Behavior of Stationary Electromagnetic Wave Fields
for Small Frequencies", J. Math. Anal. Appl. , 15, p. 447-496.

Werner, P. (1966), "On an Integral Equation in Electromagnetic Diffraction
Theory', J. Math. Anal. Appl., 14, p. 445-462.

Weston, V.H. (1956), "Solutions of Toroidal Wave Equations and Their .
Applications', Ph.D. Thesis, University of Toronto.



APPENDIX
A

Sommerfeld, in 1912, was the first to discuss the conditions . viz.,

RO|<k R— o (A.1)

ou
G ﬁ -1k®‘90 R—> o . (A.2)

Equations (A.1) is called the "condition of finiteness (Endlich keitshedingung)
while (A.2) is the important " radiation condition" (Ausstrahlungsbedingung).
From the mathematical point of view, these equations are important because
this enables one to find a unique solution to the Helmholtz equation i.e.. a
solution of a Helmholtz equation which itself or whose normal derivative takes
on prescribed value on a surface and which satisfies (A.1) and (A.2), is
necessarily the only solution. These conditions specify the behavior at
infinity of the wave function and in particular the condition of finiteness states
that §—>0 as R—> o and the radiation condition implies that ¢ must
behave like outgoing spherical wave at infinity and the sources written cannot
give rise to incoming waves at infinity. All physical fields generated by finite

source distributions must satisfy these conditions.
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APPENDIX
B

HELMHOLTZ FORMULA
Helmholtz formula expresses a scalar solution of the reduced wave

equation
) 2
(V2 + K)u = 0 (B.1)

in terms of the boundary values of u or %% . In order to derive this
formula, let us suppose u is a solution of (B.1) in a domain V bounded by
a closed surface S, and internally by Sl" and u together with its first and
second derivatives is continuous in V. Let Vv Dbe ahother function defined
throughout in V with the same continuity properties as u. Now we can use

Green's identity, which states

j (quu;uVZV) dv =g (u% -v g%) ds (B.2)
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FIG. B-1: REGION OF APPLICATION OF GREEN'S THEOREM

0 4 ‘
T denotes a differentiation along an normal drawn outward from V.

Let v satisfy(B.1) except at a point P0 within V, where it is singular.
If we choose v, in particular, to be spherically symmetric, given by
ikR(P, P )
)

e

1
vV 4 R(P, P)

(B.3)

where P and P0 are both inside V, then v corresponds to spherical waves

emanating from Po since (B.2) is not valid unless P0 is excluded from V,
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and let us define the newvolume by V' which represents the volume bounded
externally by S and internally by S1 and SO. which is the surface of a small
sphere bounding P .

The Green's identity becomes

j‘ (u-g—z -Vg—l&)ds=0 ) (B.4)
S-i—SO+S1

2

9p
d§2 is the solid angle subtended by dS0 at P0

So is a sphere of radius p and 58?1— = - . Also dS0 = pzd 2 where

dy _e

tkp -1 1
Also — = (ik - p ")/p and is of the order — as p—> 0.

on  4r 0
But dSo is of the order p2 as p—> 0 and the integral

0
J' ug%ds,
S

o

is independent or p. Hence p can be made very small i.e., we can

choose p—> 0. But

ou
ss A _BH dSO = O(p)

(0]

as p—> 0 and constitutes nothing. However,

u(P )
Ilim ov _ 0 -
b —> 0 ss Uy dpg = - “.dQ = u(PO) (B.5)
o
and so Eq. (B.4) gives
_ v __ ou
u(Po) = j (u T an)dS (B. 6)
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We can drop the subscripts on P0 and we get

ikR(P.P) 1KR(P,P) o o
U(P)=I —u(p ) & + 2 8
S+Sl s 47rR(P.PS) 47rR(P;PS) dn

ds

where PS is a point on the bouncz)ilr;g surface. Thus Eq. (B.6) expréss u
at P in V interms of u and 55 the bounding surfaces of v. A
similar formula could be easily derived if there are source distributions
within a small volume. Equation (B.6) is termed the Helmholtz formula.
In many problems, we are interested in the field outside the surface S1
which contain the sources. Then there are no sources outside S and we
expect the surface integral over S to vanish. In order to verify this let us
use the Helmholtz formula on two functions u and v with no singularities
outside S, satisfying the wave equation o the same continuity conditions as
Sefore.
If we suppose S is a large sphere of radius R, centre P and has
S1 interior to S.
I

ikR
e

4TR

V -
onS, we get

w(P) =‘[ [v (P, Ps)a—aII u(1>s)-u(ps)5aH v (P, ps)] ds
S
1

+ j' [u(PS) % v(P, PS) -v (P, PS) % u(PS)] ds
S

then the integral over S takes the form

d 2m dv du
j‘o des jo d¢s Smes{Rsu(Ps)Rs[_éﬁ: —ikv:l -RSVRs[a—RS -iku]}.
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In order to have this integral vanish, we have to impose restrictions

dictated by physical considerations and hence u must process the property

Rilgloo [rRl bounded
RP_I:OO R [%% -iku] —0

in order to be a physically meaningful solution if there are no sources at
Infinity.

(That these conditions are 'stronger' than necessary has been shown by
some authors who have termed the first condition superfluous).

Thus,

P outside S



APPENDIX C
Some useful relations involving the toroidal harmonics:

-m

n
~-m o2 -2nm -(n+1/2)
P _1/2(coshn)— Fmt 1) (1 ) e X

1 -2n
x2F1(~§+ m + n, 2+m 2m+1 31 -e )

) o™ r n+m+1/2)1—'( inh )m (n+m+1/2)

Q:i 1/Z(covah n) =

r(n+1)

szl(;+min+m+;,n+1;e-2n)

Pnnfl/z(z) - ()PP - ™ d—d;I—Pn_l/z(z)
2

Q. pt0) = F-0™? fz?mn' Q. 1)
P! @ = Pl2)

M) = Llottl [k <)-; e M sinuri @ )]
W(P.Q) = nm1/2 T -— (coshn) - Q. 1/2 ddn n_ll/z(coshn)=

-1)" " (a+ m+1/2)
[ (n-m+1/2)sinhn
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