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In this research, the phenomenon of electromagnetic wave propagation
through, and scattering from, radially inhomogeneous dielectrics is studied

for very high frequencies. The dielectrics are considered lossless, radially

inhomogeneous in the spherical coordinates system and of the convergmgor of \

the diverging type. The lens problem is studied by the geometrical optics tech-
nique and the radar cross-section of perfectly conducting spheres coated with
radially inhomogeneous dielectrics is investigated. By assuming a plane wave
as the incident electromagnetic field, the contribution in the backscattering
direction due to the reflected field and the creeping waves is determined by

;‘*a;);lyﬂlg asymptotlc ‘theory. This necessitates the use of the WKB and/ or

/J Langer S method for the solutlonref the pertlneet Eiittefentlel e(}tietlerie:_-_
dependlng on whether there exist transition points in the range for which the
solutions are required. Also, the integrals of Scott (1949) are needed in order
to determine the reflected portion of the field.

Such a study is 1nterest1ng not only from the theoretical but also from
the practical point of vxev;:;that it lends itself useful to the understanding
of radio wave propagation in radially inhomogeneous dielectrics and of the
effect of coating perfectly conducting spheres with radially inhomogeneous
media. It also has applications to problems of wave propagation in the iono-
sphere and around the earth.

 To begin with, a general outline of the problem and the methods of sol-
ution is given. Then, a new class of radially inhomogeneous dielectrics is

introduced and it is studied by the ray tracing technique. This new class of



radially inhomogeneous dielectrics is also treated as the coating of a perfectly

conducting sphere and the monostatic cross-section is examined when the

dielectric is of the converging or diverging kind. Finaliy gﬁbthep cla‘sjrs’of

radially inhomogeneous media, previously discussed by Nomura and Takaku,

is considered and its effect in reducing or enhancing the radar cross-section

of a perfectly conducting sphere is ldetermiheﬁd.
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ELECTROMAGNETIC SCATTERING FROM CERTAIN
RADIALLY INHOMOGENEOUS DIELECTRICS

by
Nicolaos Georgiou Alexopoulos

/ ABSTRACT\

In this research, the phenomenon of electromagnetic wave propagation

through, and scattering from, radially inhomogeneous dielectrics is studied
~ for very high frequencies. The dielectrics are considered lossless, radially

inhomogeneous in the spherlcal—coordmates system, and of the converging or of"l
the diverging type. The lens problem is studied by the geometrical optics tech-
nique and the radar cross-section of perfectly conducting spheres coated with
radially inhomogeneous dielectrics is investigated. By assuming a plane wave
as the incident electromagnetic field, the contribution in the backscattering
direction due to the reflected field and the creeping waves is determined by
applying asymptotic theory. This necessitates the use of the WKB ahd/or.
Langer's method for the solution of the pertinent differential equations,
depending on whether there exist transition points in the range for whigh the
solutions are required. Also, the integrals of Scott (1949) are needed in order
to determine the reflected portion of the field.

Such a studyis interesting not only from the theoretical but also from
the practical point of view, in that it lends itself useful to the understanding
-of radio wave propagation'inAradially inhomogeneous dielectrics and of the
effect of coating perfectly conducting spheres with radially inhomogeneous
media. It also has applications to problems of wave propagation in the iono-
sphere and around the earth. '

To begin with, a general outline of the problem and the methods of sol- -
ution is given. Then, a new class of radially mhomogeneous dielectrics is

introduced and it is studied by the ray tracing technique. This new class of

iii



radially inhomogeneous dielectrics is also treated as the coating of a perfectly
conducting sphere and the monostatic cross-section is examined when the
dielectric is of the converging or diverging kind. Finally another class of
radially inhomogeneous media, previously discussed by Nomura and Takaku,
'is considered and its effect in reducing or enhancing the radar cross-section

of a perfectly conducting sphere is determined.
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CHAPTER I
GENERAL CONSIDERATIONS

1.1 Introduction

The problem of electromagnetic scattering from radially inhomogeneous
media has been considered in the past by many authors. On the subject there
exist some books such as Brekhovskikh's (1960) and Wait's (1962) and numerous
articles published in technical journals., The problem in its most general form
was considered by Gutman (1965). Gutman assumed the electromagnetic
properties of the medium to be inhomogeneous in the‘angulrar as well as the
radial direction. He applied a modified form of the Hansen-Stratton vector
wave-function method due to Kisun'ko in order to solve the vector wave equation
and thus to determine a representation of the electromagnetic field in the
medium. The solution which he obtained, however, is of a purely formal
nature since it involves an infinite set of first order linear ordinary differen-
tial equations. Explicit results can be obtained if the inhomogeneity is only
in the radial direction and it is with this case that this research is concerned,
Marcuvitz (1951) gave a rather systematic treatment of the electromagnetic
field representation in a medium whose index of refraction depends on the
radius in the spherical coordinate system. Nomura and Takaku (1955)
studied the radio wave propagation around the earth. They considered both
the earth and the atmosphere radially stratified with the permittivity being

2pk

given by e(g—) = (2-111) , P <—1,‘j:c = index pertaining to the k th layer of

stratification. Tai’(1958a)§5plied the "Xié_ctor wéve-funéﬁc;_method of

Hansen and Stratton to obtain a complete representation of the electromag-
netic field by superposing electric and magnetic types of waves each of which
he expressed in terms of two vector wave functions. He then applied these

general results to the particular case of a sphere whose index of refraction
, 1/2

e

2

Y _[o_T_
‘N(a)_z 2



is that of the Pt}pe}aurg lens and obtained the complete representation of the
electromagnetic field inside the sphere, as well as the scattered and total
fields, when the excitation source is a dipole of moment Py in the x~direction
and located at (r, 6,§) = (b, 7,0 ) fin the spherical coordinates system. Flammer
(1958) gave asymptotic solutions 7fvc7>rrthe case of the conical Luneburg‘lens -
His approach is not complete in the sense of comparison Witﬁ ther method
developed by Tai and also the solutions he obtained are not exact, but asym-
ptotic. Other radially inhomogeneous media which have been studied are

the Maxwell fish-eye by\ Tai (1958b) and a Gaussian type of inhomogeneity by

iYeh and Kaprielian (1960). Arnush (1964) studied the case of scattering when

'the dielectric constant vanishes on a spherical surface by using a phase-shift
analysis method. Fikioris (1965a) examined the behavior of a bi-conical
'antenna immersed in radially stratified media and performed detailed cal-

'culations for small-angle and wide-angle biconical antennas. Farone (1965) |

=

used the Rayleigh-Gans approximation to determine the scattering by a
radially inhomogeneous sphere whose index of refraction is close to unity.
Finally, Uslenghi}(1967) extended Tai's method for media whose permeability
is also radially inhomogeneous. He established general results for the pre-
sense of resonances and dips in the low-frequency backscattered cross section.

Uslenghl (1968) also studied the high frequency backscattering problem from

|

In this dissertation, the case of high frequency electromégﬁ‘etic scat-

the inverse square power lens by applying asympf})‘t—ic tilgér‘y.-
tering from radially inhomogeneous media in the spherical coorai;liail‘{:gsﬁ sysrten'l\
is considered. The relative magnetic permeability is taken to b;, unity and

the excitation field is assumed to be a plane wave. Particular emphasis is
placed upon the study of backscattering from perfectly conducting spheres
coated with a radially inhomogeneous medium and on the computation of the
monostatic scattering cross section. This study is of practical importance

in that it lends itself useful to the understanding of electromagnetic wave
propagation in dielectric lenses at microwave and optical frequencies, the
propagation of radio waves around the earth, and the effect of coating per-

fectly conducting spheres with radially inhomogeneous dielectrics.



In assuming the incident field to be a plane wave, it is implied that the
more general case of an arbitrary incident electromagnetic field can be sim~
plified by decomposing it into the sum of plane'monochrozniti_g waves by
Fourier analysis, and therefore the simplest case only is considered. In
what follows, the rationalized MKSA system of units is used and the time
dependence e~10t is omitted. The following symbols are listed for con-
venience,

w = angular frequency,
o _
ool
€, " electric permittivity (dielectric constant) in vacuo

w Jeouo' = wave number in vacue,

M, = magnetic permeability in vacuo,

7 =yl =Juo/€o = intrinsic impedance of free space (= 1207 ohm),

€, 4 = relative permittivity, permeability inside the inhomogeneous
medium (functions of r ) ,

i =J— = imaginary unit,

E and H = electric and magnetic field vectors,
X,y,z = rectangular Cartesian coordinates,
r, 0, = spherical polar coordinates.

Vectors will be underlined and unit vectors will be denoted by carets.

Maxwell's equations are recalled and in the notation considered they

are
Vx H=-ikY€E, (1.1)
Vx E = ikZuH,
with the constitutive relations
Ve €E =0
V.-H-0 (1.2)

eral geometry of the problem is_

and € = u = 1 in the case of ,Vaaufﬁ.ﬂ The gen

shown in Fig. 1-1 with region I representing the scatterer and II the free
space. The superscript i indicates the incident field while , later on, s

indicates the scattered field.

gl
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FIG.1-1; GEOMETRY OF THE PROBLEM

The electric field of the incident plane wave is
g4 (1.3)

The scattered field is required to satisfy Sommerfeld's radiation condition

at infinity throughout the free space region, specifically the condition
ES

lim [ x (Vx)+ke ;s = 0 (1.4)

must hold uniformly in #. This is known as the Silver-Miiller condition.
Also, at the interface of regions I and I the appropriate boundary con-
ditions, i.e. the continuity of the total tangential electric and magnetic fields,
are applied for the determination of any constants pertinent to the solution of
the problem. In order also are the following definitions in regard to the

scattering cross-section of the body. The differrehtia!_écgttering cross-

section or bistatic radar cross-section a(6, ) is given by

2
1 2 _E|

= lim
0(9,¢)r 4T ' ilz

(1.5)



The total scattering cross-section is defined by the ratio of the time averaged
total scattered power to the time averaged incident Poynting vector, and is

related to the bistatic cross-section by

T 2r
1
ctotal=4_7rf f (0, P)sinodeodp. (1.6)
6=0 *P=0

Since the research herein is concerned primarily with backscattering, the

definition of the monostatic radar cross-section is given for reference as

2
S

2 |E

o6, = iim drr

- (1.7)
6=m

i2
E

=7

It is also mentioned here that the methods of solution to be applied are the
geometrical optics method, exact solutions and asymptotic determination of
formal solutions. The approach employed in each of these methods is well

known (e.g. Uslenghi, 1967) and therefore detailed description is omitted.

1.2 Scattering From Radially Inhomogeneous Media

Assume a plane wave incident upon a radially inhomogeneous sphere of
outer radius a whose index of refraction is N(£) where €= r/a (see Fig. 1-1).
Applying the pertinent boundary conditions at r=a and at r=co the far zone

(r-> ) bistatic scattered electric field produced by the incident field of Eq. (1. 3}_

is given by the well known expression
ikr ;1(0059) dP1
Ew-i 2n+1 a E .4 o R cos § é\ -
= 1 Kr z n(n+1) n sin@ n d6

apl Pl(coso) A
-la® =2 4 2 sinf ¢ (1.8)
n dé ’ )

n sinf

which in the backscattered‘ ciirection be;tizrc;r‘n”és



Eb S elkr/A n s s

S, & ) 1 _

E "~ - / X z (-1)" (n+1f,) -an bn_ ] (1.9
| n=1 [

These expressions are the Mie series for the radially inhomogeneous scatterer.
s S
The scattering coefficients an and bn are given in their general form by

t t ~
v (ka)-M (ka) ¢ (ka) ¥, (ka)-M (ka) A (ka)

S
a =- , b =- (1.10)
¢Wanr g e ™ ¢ o)7L e ¢ Vo)

where
_ [nka 1T, .. ﬂka (1)
U o)z 22 Ty, 060 € )= 5 Ly ()

and the primes indicate differentiation with respect to ka, The constants Mn(ka)
and 1\71' (ka) are determined from the boundary conditions at r=a and r=0, if't'ﬁéz‘
scatterer is a radially inhomogeneous sphere throughout the range 0<r<a or
by the boundary conditions at r=a and r=b if the scatterer is a perfectly con-
ducting sphere of radius r=b coated with a radially inhomogeneous medium of

outer radius a. For these two cases, these constants are given respectively by

_1 0 1) _ 9 (1)
Mn(ka)— 1—{—3- -55 In Sll (E_). E=1 M (ka) a 881 nT (El Ezl (1. 11)
and by
0
M (ka)—— = InC_(&,B) s
of n £=1
2~ (1. 12)‘
) cn(E,B) |
~ 1 TOEOB "’
M (ka')’ T : )
PR 9E en ——

T8 £=1

and they are true only if €(1)=1 which is the case in this research, The para-

meters involved in the previous expressions are defined as
S 8

=L =12 ‘
=62 (1.13)
c .0 s‘l’@)s‘z’(ﬁ) sDesPe (1.14)



and I
¢ (&0= ’\I‘ D T(Z’(B) g 1P (1.15)
The functions S( )(S) T(J)(E) j=1,2, are any two linearly independent solutions
of
2 ’ .
d s (&)
—2— 4 () %e(®)- <n;1>2 b 5 (8)=0 (1.16)
€ o k)
and
2 I'd - r Y
d'T (§) dT (8)
7 ~(ag meled—t—+ @) ¢e(e- 22y 1 (520 (1.1m)
a® ) (ka)“g”

where €(§)=N2(§’) The functions S( )(S) and T( )(‘g’) which are used to

determine M (ka) and M (ka) in (1. 11) are requlred to be finite at & =0,

The d1fferentlal equations ( 1. 15)7 and (1 _7)‘ar1se as fo lows. Cons1der the

vec-or wave equation

v4iE F-o (1.18)

with k2(5)=w2u e(€§), F= ¢ % inside the radially inhomogeneous medium.
The vector wave equation is reduced to the scalar wave equation
) ~(m)
viide o9 -0 (1.19)

by defining, after Tai (1958a), vector wave-functions M(m)= Vx(rz//(m)) pro-
portional to the electric field for magnetic type or transverse electric modes,
and M(e)- vx(r dx( )) proportional to the magnetic field for electric type or
transverse magnetic modes. Separation of variables in the spherical polar
coordinates system yields (1.16) and (1.17) for the magnetic and electrlc type
of waves correspondingly. Superposition of the two types of waves g1ves the

complete representation of the electromagnetic field in the medium.



1.3 Outline of Research .

The backscattered field given by (1.9) is amenable to numerical calcula-
/tion for ka not too large. When ka >> 1, Eq. (1.9) is extremely slowly

convergent and it is necesséry therefore, since this research is in regard
with high frequency backscattering, to subject expression (1.9) to a Watson
transformation, Thus the summation is firstly transformed to a line

integral by applying Cauchy's residue theorem. The backscattered field
is then given by

b.s. A eikr i, s s) 1 vdy S S
.S, e )1 _ _= - 1.20
E-~x kr )2 (ao bo 2 CcosSTY [aV'l/z bV‘l/z] ' ( )
C

|

—— )

where V = n+é anddv{ and ka are assumed complex with 0 < Imk << 1,

The path C in the complex v-plane is shown in Fig. 1-2.

Tmy_
4
> >
3/2 -
3/ 7/2 11/2 — Rev
1/2 5/2 9/2 —
<4 <
C

FIG. 1-2: CONTOUR C IN THE COMPLEX y-PLANE



By observing that

M I/(ka)"ﬁ i_1/ (ka.)

s s
a 1 "b 1 =i 1 1
vty vl ((l)/ (ka) -M 1/(k )C(l)/ (ka))( (1)/ (ka) -M v, (ka)f( )/ (ka))

the path C is deformed in such a manner that it accounts for the contribution
of any poles of the integrand in the first quadrant of the complex v-plane.

These poles occur at the zeros of

(1)' (1)

v, (ka)-M v, (ka) §’ Y, (ka) =0 (1.21)
and
(l)' (1)
ka ka) =0 . .
/( )M /(k)§ /(a) (1.22)
The new path is shown in Fig. 1-3.
Imy

—» Rev

FIG. 1-3:! THE DEFORMED PATH IN THE COMPLEX v-PLANE



10

Expression (1.20) can now be rewritten as

”

b.s e1kr i 1 v " s s
B " <§( b )-3 fr‘ cosT v _av—l/z—bv—"/z. v -
1

-

L L 25 b dv+2ri Z (residues
2 o COSTV V—/2 v-1,,
9

LY

in 15¢ quadrant) » . (1.23)

-

/ Further computation of (Z.23) is achieved througi asymptotic
analysis, The integral along l"1 together with the term i/2 'acs)— bz. gives
the major contribution to the backscattered field. It physically corresponds

to the reflected portion of the field. The integration over r‘l is performed by the

saddle point method over the range y=0(ka) 12+ with 6>0 but 6 < < 1 and

the major contr bution arising near v = 0. In performing the 1ntegrat10n
one needs the appropriate Debye expans ons'for the spherical Bessel and

Hankel functions in the proper regions of the complex v-plane. The

1ntegrat10ns are carried out with the aid of the formulas of Scott (1949) to

1/2(8) and ~—
(E) need to be comouted to O (ka) . This can be achieved by

—_—

0 (ka) . This mpl es ‘that the rad1a1 elgenfunctlons S:];
e
v-1 /2

expansions vahd in the regions of interest or by obtaining the asymptotic
solutions directly from the differential equations, The latter is achieved

by operating directly on the differential equations by the WKB method
provided that the Stokes phenomenon is not present in the regions of interest.

Otherwise, Langer's theory of transition points is to be used.
(3)

172
)

v 1/2(&') j=1,2, ecuation (1.17) is sut first in the normal form

To obtain the De'ﬁigelﬁ'asymptotic expansions for S



11

2 -1(2(5) 2 v2-1/4 1 dze(S)
5 +(ka)” (e(§) - 5 9 T - 3 2 -
dg £7(ka)”  2e(ENka)” dE
2
3 1 de(S)]
_3 U -0 1.24
* [e)] 2 [ d } 129 v
by setting
T, 0= {® U, (1.25)
By defining now
2
ap- Ly |
_ £"(ka)
Q(i)(g) ) 2 2 T
v-1/4 1 de(® 3 1
- =5t 5 .2 4 2 *
Eka)®  2e(B)ka)®  dE [e()]
X @)2- i=2 (1.26)
(ka) dg ’ )

the asymptotic solutions for (1 77i6) and (1‘\.'2»'4) are found directly by applying
the WKB method prov1ded that the Q( )(E) have no zeros and that the

followmg cond1t1ons hold

2
5 i?_(i_@) ) Ty ® o (5) 49
A AT 2 g L
LK —| —m———— | 1
Blka)? [a,®]° 42| [q @]

(1.27)
throughout < § < 1 . The solutions are



12

(J) -1/4
HGE [Q( )(5) [expd+ ixa f VQ( (@
aQ,.(8)  d°Q,.(&)

s & T 2 %)
- & € %+OMmaﬂ~uz&

2
8(ka) Q( i)(E )

with
() L e s
Sv-l/Z(E) ; ifi=1
23;@) (1.29)
( ) e .
_1/2(5) if i=2
( ) _ (J)
1/2(5) Ve('g‘) (2)(8) . (1,30)

It remains now to develop,with the aid of (1 28),the asymptotlc expansions

to O[(ka) 2] of M

o1 /z(ka) and M _1/2 (ka) From the definitions of

C, 4 /2(ka) and Cv-l /2(ka) and 'fi'qf'r?ﬁqu (1. _28)_“ is found that
(1) (2) (1) (2),
C /Z(S,B> V)& VB - ViyB) V(&) (1.31)

and asymptotically

1/4 |
C,. 158 ~21 [ @0 (8] " sin [ika (&)

X [1+o [(ka)'?‘] ] . (1.32)

Likewise

P i} (D) ey (2 2y (1) v (2)
Cy_l/z(S,B) = Ve(E)e(B [ (2)(§)V(2)(B) V(z)(B)V(z)(E)] (1.33)

and asymptotically
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~ . -1
CV_l/z('S,B)rv 2i VG(S)e(B) [Q(z)(g)Q(z)(B)] sin [1kaF(2)(E B)] X

X [1+o[(ka)'2]] , (1.34)
with

3
F(i)(E, B) =f Q(i)('é') [l+ f(i)(S)] t3 (1.35)
B
and

2
5 dQ(i)(E) dQ(i)(é’)

4 g8 d§2 Q(i)<§)
f (&) = (1.36)
(i) 5 3
k)’ [Q,(®)]
Fronr'lv the definitions of Mv—l /z(ka) and 1';‘/11/_1 /2(ka) in terms of Cv-l /2(ka)
and C (ka) one obtains
v-1/2

1 d r -1/4 . -
M,y jglka) ~ {ka i (o) @) " iy s
x cot [ika F(l)E 3)] } [1 +0 [(ka)'z] ] ) (1.37)

g=1

and

N i adl o4 -1/4

M,y jolkal ~ {E & ° (ﬁ ) @8] / ) ¥
1 2@ T[4 p

t e Q(Z)—(B) [d—ﬁ ln(‘fe(ﬁ) [Q(Z)B)] / )]sec [1ka Fof& B)]_

'\,Q(Z)(E) tan [1ka (2)(5 B)]} o [1+O[(ka)_2]] . (1.38)

From expressions (1.37) and (1.38),the difference of the scattermg coefficients

follows
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aslms“'HQm MmWQQDSBWﬁ@m )mﬂmaﬁ#g@”+
vy v-Y [(l) ka)_{va(l) )cot(1kaF (‘g" B>)+E—5§£ [(1) 5)] 1/4})(

-1/4
. Q1y(8)
. o) (1) -1/2\

(%’)
x§( )/ (ka)] [ (1)/ (ka)- {k BSM( €(& )[Q )(E)] 1/ (2)(3) e(B)
(2)

e T e ey

1/ . . ) X
X [Q(z)(ﬁ)] ﬂse(ﬁ?(lkaF(Z)(S:B)) 1",Q(2)(E) tan (1kaf‘(2)( B))} 1, (ka)] .
X [1+o[(ka)'2]]. (1.39)

and (a(s)—b(s)) is obtained when v = 1/2. By substituting in (1. 39) the appro-
priate Debye expansions for the spherical Bessel and Hankel functions in the

proper regions of the complex v-plane and by carrying out the algebra to

O[(ka)_ ] the reflected portion of the field is 1mmed1ately ‘obtained after the

integration is carried out along I"1 with the aid of the integrals of Scott (1949).

The advantage of this last result is that the final form of the integrand in (1. 23)

is determined for arbitrary €(£) and one can, with direct substitution of the

functional form of €(£) in expression (1.39), carry out the algebra asymptot-

(3

ically and perform the integration without solving for the V ('r;) eigenfunctions,
in order to determine the reflected field.

The contribution of the integral along r‘2 has been shown to be zero for

the general case (Goodrich and Kazarinoff, 1963) as R —r o, “and the verifi-

cation for the partlcular cases cons1dered here is therefore omitted.
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The summation over the residues in (1.23) gives the contribution in the
backscattering direction due to creeping waves. In order to determine this
contribution, asymptotic expansions are needed for the radial eigenfunctions
which are valid for v near ka. These asymptotic expansions are derived
directly by the WKB method if Q(,)(S) has no zeros in the interval Bg EK1.

In case there exists a single turning point at B ’g"o <1, then Langer's method 1/3
isused to sqlve the dlffgre;}tlgl equatlons By writing v = mt+ka with m= ( 5 )

Langer's scheme gives, with the following definitions

¢(i)(8) = \’ Q(i)(S) (1.40)

3

@(i)(%‘) = f ¢(i)(€) d€ (1.41)
3
1/6 -1/2

(E) ¢(1) (%) ¢( (&) (1.42)
()(S)—kasb (&) (1.43)

and g
u (€ = [ Ap@ (1.44)

o

the solutions

v (51 1/3 )
()(S) ....()(S){ {)()(S)} 1/3(A(i)(§')) (1.45a)

g 1/3
kaL]fQ(i)(S) g X
0 /
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If one now d defines:
2/3
r(l)(s) —<—f '\IQ( )( dS) (1.46)

_2 -3/2
“( >‘5’ s [x0] .40

and

it follows that
23
x(i)(’é’) = (ka)™~ S (8) (1.48)

and the solutions can finally be written in the form

1/4
v (g KU T ka3 (@, = 1,2 (1. 49)
Vi) Qp® (5) @ '

The W(j) {(ka)z/3 §’(i)(§) are Airy functions in Fock's notation and they
are related to the Airy functions of Miller (1946) by

w§1§w =Y7[Bi(t) + A ;(t)] . (1.50)
2

The creeping wave contribution to the backscattering direction now becomes

b.s eikr? % ) (1) | (1)
[Ex ]cr.v'v\.”r kr {Z cosmy (v /(k) [§ 1/ (ka) -

VEY

o M , ‘;

(1) v (1) (.
- MV_1/2 (ka) §V_1/2(ka)]> = cosmy (Cv-l/z( Dow [§ Vs (ka) /
- o ! l e

-1
~ (1)
B, G 6D (ka)]) } , (1.51)

with v, and v being respectively the roots of

i P
if
077
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(0
§V‘l/z

M v, (ka)

and of

M vy, (ka)

with Im;/l >0, Im?/'é > 0.

With the asymptotic forms

(1)

o1
§V_1 /2 (ka)~ -im /2 )(t)

(1

(l) 1/
/ (ka)~ (1) ()

and the substitution v = mt+ka, the creeping wave contribution gives

E> vzl z g [ (t )] I
X m kr COSTV (1) 2
CT.W. m

J J
1 éM(t) ’ o |t ?;z ~ 1-2 Nt’z
+E ot _[M(tl)] " cost?d [w(l)(tl)] 2 +
t=tz ) m
) ~ o~ 12|
Tt | "[M(tz) ]
t=t
)
where the index £ scans the zeros of
Wity (t) - N
(1)(” = -mM(t,), and “’m = -mMI(E)
Yt Yo'

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)
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It remains to evaluate M &Y (ka), M B / (ka) and then put them in the form
2

(t ) and M(t ) for the solutlon of equat1ons (1.57) for the zeros tl and tIZ
The following explicit forms can be written down for M )Y, (ka) and M 1/ (ka)

for the case where v is near ka:

2y (8)
1 (1) 1 (1)
M (ka)~ +
v=/a e {"(1)‘5’ R NC IS }§=1
. 2/3 23, i 2/3
t 28,y { o e o], [0 @] [ - ¢ 1y (B

1/3 o&
(ka) ey [02)?/ cm@] w(z)[(ka) c(l)w)] (1)[(ka) cmw)]
\ 2/3 ]

(1.58)

23

and

ol
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(2)

98, (8) (®
~ |18 1) 1 @2~ 1 Q9
Mu—l/z(ka)” ka OF “‘@ " {f(z)(‘s“) 13 (&) 8¢ } *
- ) . 2/3 )] I 2/3 B)] [k 2/3 )
IO { o [0 o @] w o [0 e oy (8] w ) [0 7y 8]
1/3 9 2/3 2/3
ORI PPN (R (2)(*5)] w02 % o] L™ e, ]

8% 5)(5) 98\ (A)
ol /3 2@ %
wioy [ 2)(5)]} k) X

o€ B
wioy L) ™3 61

0¢, .\ (B)
9 -‘, 2/3 (2"
[BB InYe(B) +(ka) Y X

2
x {u gy [0k P @] w g [0 3§(2)(B)] RN [ ) P (SRR NG

iy [0 8] v [t 58] -wiyy [(ka)z/ G
o [0 g @ v [0 P el ) o™ 0 ]

-

] >l > (1 59)
Xw (ka) (€)
(2) TS ‘(2 >+-— (% f(z)(B) ln §(2)(§‘))]
!W(z) [(ka) r(z)(EL ) k:l

where to arrive at the forms (1.58) and (1.59) use has been made of the

Wronskian

(t) w

Wiy Wiy = w0 w0 =2t (1.60)

Primes above indicate differentiation with respect to the argument and it is

assumed that

D
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" \2[3 : = 2/3 / ° .23 -
Wiy (Ka) (8w (ka) )(B) i1)- (ka) $iy (B Wig (ka) ¢;)(8), 7 0.

(1.61)

~ o~
By substituting v = mt+ka in (1.58) and (1.59),M(t1) and M(tﬂ) can be
simplified asymptotically and then equations (1.57) are solved numerically
for the first few roots when t lies in the first quadrant. Finally for particular

ka, expression (1. 56) w1ll give a numerlcal value for the creeping wave

Econtnbutlon in the backscattermg dlrectlon

From the theoretical expressions which will be obtained for the reflected
electric field, the monostatic cross-section based on this reflected field will be
derived and it will be computed for various thicknesses of the radially inhomo-
geneous coating as a function of ka, for two types of radially inhomogeneous
dielectrics.

In Chapter Twé, a new class of radially inhomogeneous dielectrics is dis-

cussed. The exact solutions for the radial eigenfunctions are derived and the
gﬂe:r;l;mcal optics technique is applied in order to determine the ray path of \
an incident ray throug1 -1e medium in the optical limit (ka - ). Detalled
numerical computations of the deviation angle as a function of the angle of 1n01”—
dence and other pertinent parameters, are given. In Chapfer Three this new
class of radlally inhomogeneous dielectrics is considered as a cc;étlng ofa
perfectly conducting sphege. The detailed asymptotic computations for the deri-

" vation of the reflected electric field are presented, beginning with the application
of t1e W<3 metaod for the asymptot ¢ determination of the radial eigenfunctions.
The expresswn for the reﬂeciéci ;gc‘tmc field obtained by this method, is carried
out to O (ka) . As a means of compamson tqe reflected field is also obtained
by application of geometrical optics to O (ka) . The results of the two methods
are compared and the monostatic cross—sectlon is computed for both cases with
ka varying from ka = 50 to ka = 1000. Then tmer percentage error in

considering only the geometrical o}iticé solution is examined. Finally, in

this chapter, the creeping wave study is outlined.
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In Chapter Four, the Nomura-Takaku (1955) radial inhomogeneity is
considered, as in Chapter Three with the exception that a more detailed
study is carried out for the creeping wave contribution in the backscattering
direction. This type of radial inhomogeneity has an index of refraction
N(&) = Sp (with p> -1, for reasons which will become apparent from the

discussion of the exact solutions of the radial differential equations).



CHAPTER II
A NEW CLASS OF RADIALLY INHOMOGENEOUS MEDIA

2.1 IIntroductlon
IIT the -study of electromagnetle wave propagatlon in, as well as
scattering from, radially inhomogeneous media, one of the difficulties is
the defe;nlraﬁ—en of exact solutions for the eigenfunctions S(J)(E) and
(J)(S) and especially for the latter., Generally speaking, these eigen-
functlons are expressed in their exact form in terms of hypergeometric
and/or confluent hypergeometric functions, which are chosen to be finite
at the origin. Although asymptotic solutions for the differential equations
in the radial direction can always be found, by either applying the WKB
method or Langer's uniform asymptotic theory under certain restrictions
on the coefficients Q(.)(E), it is with the exact solutions that one has most
of the difficulties. In this chapter, a particular technique is presented
which simplifies the problem of finding exact solutions for](l 16) and (1. 17)

considerably and which at the same time gives rise to a new class of radlally

inhomogeneous dielectrics.

If the differential equatlon (1. 16) and the normal form of ( 1. 17) are

considered, it is seen that they reduce to one and the same differential

equation if
Qy® = Qg)® : (2.1)

which implies that one needs to solve only one equation, since in this case
() (3 ey - (3 . . e

T (€)= V(&) s, (€) —VE(E) U@ . Re1at10n (2.1) is satisfied if and only

if

2
1 de®) 3 (dd'é)) 0 (2.9)
2¢(&) dg_,z 4 [ (E)]z

which is rewritten as

22

R
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2
d [d 1 de(§)) _
i [dS In G(S)] (d'é’ ) 0. (2.3)

2
2 [e(®)]
By substituting w(&) = d/dg [Ine(g)] in (2, 3), the following Riccati differential

equation is obtained in w(£) ;

dw(§) 1 2
rae LG AR (2.4

If variables are separated in (2.4), then upon integration one _ro‘bga}ip_s_

fd§=2fd12’ or S=-v%+‘}’ , (2.5)
DA R

where v is an arbitrary constant. From the substitution

WE) = d/de [ e(8)] and (2.5), it follows that

21 de®
VELET D a (2.6
which finally gives a solution for €(£) . This solution is
c®) = —— (2.7
(€- )

where A is another arbitrary constant, For the cases of interest in this
research, i.e. for radially inhomogeneous media, the constant A is
determined by choosing a continuous transition from free space to the

inhomogeneous dielectric, i.e. e(§)| =1 , which yields A = (1- 7)2, and
=1 '

— 1- 2
e(®) = (ﬁ) : (2.8)

This type of functional dependence for the permittivity éncompasses a large

family of inhomogeneous media. Depe?iding on the choice of 7, it lends

itself to both converging and diverging types of dielectrics. Its most

o
;i
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valuable importance rests however in that it facilitates the theoretical
study of the problem byi reducing the two differential equations essentially

to one.

2
2.2 Solution for the Eigenfunctions/when e(§) = (1- %) A ‘g’-y)z

In this section, the exact solutions for the radial eigenfunctions are

determined when e(£) is given by (2.8). The various possible applications

with such a permittivity function are also discussed Vbrri'eﬂy.

By investigating the differential eq&ation for thevﬁ(SnJ }(S) eigenfunctions,
when €(€) is given by (2.8), it is found that it has three regular singular

points at £=0, €=y and £= . This differential eq;;tion is éasily reduced \/

to a hypergeometric type with its Rieman P-symbol given by

SS)(S) = P a'! b ¢ £ , (2.9)

with a',a"; b',b"; and c', ¢" being the exponents or solutions of the indicial
equation at the singularity points 0',7 'yar;d 700, respectively. In particular,

these exponents are

a'=1+n , a'=-n , (at§=0) , (2.10)

1 +'{1 - 4(ka)2(1-'L)2_ 1 -'{1 - 4(ka)2( 1-7)2

b' = R b" =

,(at E=7) ,  (2.11)

2 2
and
- 161 el X1yt . 1 V1L ater)
2 ? ) s

(at £ = oo) . (2.12)

By reducing (2.9) to its canonical form, the result is
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1+-\/1-4(ka)2( 1—7)2 0 1 (00}

where

o

= n+1+J—— (ka) (1- ‘Y) ‘/(n+1/2) (ka) (1 7) (2.14)

Nr—‘

and

@ = 2(n+1) . (2.15)

The functions represented by the canonical P-symbol are well known, and
a solution is chosen which is finite at the origin. Then the radial eigenfunctions

are given by

1+ 7 1-4(ka)2(1-7)2

s - hen 2 JF, (@, 2nt1); E/) (2.16)
and
(1) _oly (D)
(8) N (§) . (2.17)

(1)

A second solution S( )(E) lmearly independent from S

(£), is obtained
by replacing 2F1 in (2. 16) with any other solution of the hypergeometric
differential equation ﬂ;rs_flqdrby 2 1 which is linearly independent from
2F1 itself,
Now e(£) is investigated for various choices of 7.
Case 1 The constant v is chosen so that 0L v < 1. The dependence
of e(§) is plotted vs. & aér shown 1n§‘_1§‘2—1 It is seen that as & tends to v,

e(§) approaches infinity (i.e. lim. e(g_)\—> o ). This implies that the dielectric
§>v
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sphere acts as a penetrable barrier at £=v and therefore allows
2 .

energy penetration for £ <vy. When v=0 then €(§)=1/§". This

case corresponds to the inverse square power lens which has been

studied by Uslenghi (1968).

(&)

Y 1 €

FIG. 2-1; Casel: 0L v<1

Case 2 'In this case v 1 (see Fig. 2-2) and e(g) < 1 for 0< £ <I.

This case may be useful in studying diffraction of waves by plasma coated

spheres or scattering from plasma clog(_i‘_s of spherical nature surrounded

by an external medium withjel;‘fﬁ)} 1.
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e(E)

7=l £=1 ;

FIG, 2-2: Case2: v 2 1

. Case 3 Under this case (y < 0, see Fig. 2-3) the lens has been studied

from the point of view of geometrical optics in section 2,3.
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e(§)

FIG. 2-3:Case 3: v< 0, 'yé-h, h>0

For a spherical lens of radius r=a made of a radially inhomogeneous

dielectric with

. th
NE = o, (0<E<), (2.18)

and h 2 0, the exact backscattered field when the incident field is a plane

wave is still given by expression (1.9) with
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S S - (1)
Mn(ka) * ka [35 ﬂnS (S)] l i (2.19)
£=1
and
oy - 1
Mn(ka) = Mn(ka) " kal(l+h) (2.20)

where S( )(E) is given by (2.16) with y=-h. It is observed here that
(ka) - M (ka) is a known quantity and that it is independent of n.

' ThlS 1s of great advantage in the determmatmn of the hlgh frequency

— _— {

backscattered field, because whenever e(l) 1 (as is usually the case for
dielectric lenses), the leading terms in the high-frequency expansions of
Mn and 1\'71n are equal, and since (Mn—IVIn) appears in the numerator of
all terms of the infinite series representing I*_Jb's: two terms are generally
needed in the expansions of M and\ﬁ ﬂt‘o obtain the leading term in the

expansion of Eb 'S

2.3 Geometrical Optics Approach for the New Class of Lenses

In this section it is assumed that the wavelength is infinitesimally
small,i,e. ka - o for finite a. Under this condition, the electromagnetic
wave propagation properties through the dielectric sphere are examined with
the aid of optical ray theory. By considering Fig. éf‘l, one traces any
incident ray making an angle of incidence o at the surface of the dielectric

sphere. The following parameters are also defined in Fig. 2-4}

6= id‘('d, h) = deviation angle
Y=y(8); v() =«

Mﬁmm) =7 [2
p=p(&)
and

6=2p(8 ) .

(RN ]
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tangent at-P

FIG. 2-4: RAY PATH THROUGH THE INHOMOGENEOUS DIELECTRIC:

A
\,\;
(. i
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The generalized Snell law for the index of refraction is given by

§N(§)r smxp = constant, When £=1, N(1)=1 and ¢ =a. Then it follows that

_ 1+h  sinea
N(§) = Eh - Esing (2.21)
and when S:Smin
1+h sin o sin o
NE .) = = - = (2.22)
min Smin+h Sminsm T[2 Emin
or
£ _ hsine (2.23)

min = l+h-sina

@E@i“e,\j Smin #0 unless h=0. If h=0, then agreement results
with the inverse square power lens, where Eminz 0. In order to investigate

how the refracted rays leave the lens, one considers the differential equation

for jthe ray traiéctory,whichv is \

€. oty . (2.24)

dp

Upon integrating (2.24) one obtains the following expression

3
p(8) = - f Sdf—w . (2.25)
1

With the aid of (2.25) and the relations 6= 60+ 2a-7 , 6 = 2p(§mm) and

e 2osca - (£+)?
E+h

coty = , the deviation angle is given by

g .
min P

§layh) = 2 - 7 - ZJ (E+h) d€ . (2.26)
] V'é’z( 1+h)2 csc?a - (E+h)2 '
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which upon completion of the integration yields

, 2 2
2 sin & h+cos2a + cos «a ’(1+h) -sin «a

sla,h) = ————— log . (2.27)

— h sina
.]/ (1+h)2- sinzoz

From the latter expression, the quantitative behavior of 6(a,h) has been

computed for different values of @ and h, In I*j@s 2-5 anAd' 2-6, 6(a, h)
has been plotted vs. o. In these figures it is seen that 6 increases from

zero at =0 (with a slope (d—é)
dar a
then it decreases toward zero, which is reached at & = 7 /2 with a slope

=+ o | toa maximum value 6 ,
-0 max

(—g:%) = f% . Also the maximum deviation angle is shown as a function
a=m[2

of h in Fig. 2-7. As h diminishes, 6max increases to infinity which

indicates that the ray trajectory inside the lens follows a logarithmic spiral

toward the origin in agreement with the inverse square power lens. On

the other hand, as h increases indefinitely, the maximum deviation

approaches zero in agreement with the fact that

lim N(&h) =1
h— o

i.e. the lens assimilates free space.

R
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CHAPTER III

HIGH FREQUENCY BACKSCATTERING FROM A PERFECTLY
CONDUCTING SPHERE COATED WITH THE NEW CLASS OF
RADIALLY INHOMOGENEOUS DIELECTRICS

3.1 Introduction
In this chapter, a theoretical study is carried out in order to determine
the electric field in the backscattering direction, for high frequencies, when
a plane wave is incident upon a perfectly conducting sphere, coated with the
new class of radially inhomogeneous dielectrics. By high frequencies it is
implied that ka >>1 or X << a, where X is the wavelength of the incident
field. The analysis follows the discussion of section 1.3 in chapter one.
The perfectly conducting sphere is of radius b and the outer radius of the
coating is a. The electric field of the incident plane wave is given by (1.3)
and the geometry of the problem is shown in Fig. 3-1. Following the
development in chapter one, the Mie series (1.9) is transformed into a
contour integral in the complex v-plane, where v=n+ 1/2, Then, the
reflected portion of the electric field is determined asymptotically to
0 [(ka)-z] . This is accomplished by solving for S(]) ()

1/ (§) and T 1/(5)

+
with the WKB method for v = O [(ka)ll 2 6] , then computing aV 1 / - v 1 /
- 2

to O[(ka)—z] with the aid of the Debye expansions for §( )1/(ka) and
1
§(1)1 (ka) in the proper regions of the complex v-plane,and fmally by per-
/2 i
forming a saddle point 1ntegrat10n usmg the mtegrals of Scott (1949) Itis
recalled that the main contribution results near v=0 on the F path of
integration. The expression thus obtained for the electric field is then used
to find the monostatic cross section, which is normalized to the monostatic

relation is then used for numerical computations for 0.2 < < 0.99,

0.258< v<0.998, 1.1 <v< 2 and 50 < ka < 1000. The ray tracing

36
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technique is also applied to determine the reflected electric fgel_ci to O Eka)—l].
This is accomplished by considering the conservation of energy between
incident and scattered fields in order to find the amplitude of the reflected

field,and the eikonal relation in order to determine the phase. The result
" is then compared to the first term of the electric field obtained by the

use of asymptotlc theory Fmally, usmg this geometrlcal optics

expression, the monostatic cross sectlon normahzed to that of a perfectly
conducting sphere of radius b is computed, for the corresponding values
of B and v considered previously, From these numerical data, the
monostatic cross sectlafl as determined by geometrical optics is plotted
vs. B. Also,the percent error in using geometrical optics instead of the
rigorous asymptotic theory to O [(ka)_z] to determine the cross section

is plotted vs. ka for 50 < ka < 1000.

The last section of this study is devoted to outlining the creeping wave
contribution in the backscattering direction. The differential equations (1.13)
and (1.24) are solved for v near ka by applying Langer's uniform asymptotic

theory, since in this case it is found that Q(i)('g‘) has a zero So in 'B$ L1

3.2 The Asymptotic Solutions of S_ ;,(§) and T ,, ().
V-1 v/

The asymptotic solutions to 0[(ka)_2] for the radial eigenfunctions

(3)

(])1/(3;-’) and T /(E) are obtained in this section, by applying the WKB

method d1rect1y to Egs. (1 16)_'and (1 24) Firstly, it is recalled‘that for
this class of radially inhomogeneous dlelectrlcs S(J)l/(&’) = (J) b1, (§) and

therefore

v2— 1/4

(3.1)
(ka)2E?

2
al®) = Q@) = (L 7) -
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for i =1,2. From (3.1) it is seen that Q(£) has a zero at

v(1-7) ka VV2-1/4 - 7(1/2—1/4)

(1-1%(ka)? - W2-1/)

(3.2)

which is almost zero. It follows, therefore, that if B < §<1 such that

B> 80 the WKB method can be used. By restricting [ to values greater

than Eo it is seen that;conditions (1.27) are also satisfied, and this further

justifies the use of the WKB method. The solutions which are obtained
+
here are valid for v~ O [(ka)l/2 6'} with 6 >0 but §<< 1. These

solutions are given by

(J) (

st @ = vl @ ‘”(g’) (3. 32)

from (1.28) with Q(£) as in(3.1) and

) ( 7) K0 3 3
/(5) 1/(5) . (3.3b)

To obtain these solutions in their final form, one has to develop the asymptotic
expansions. To this end, it is found with the aid of the binomial series

expansions that

2 2
foe] /4 {EL expd L (52) [1+

aka)’e® V1Y

4
+ ofa®] + o [ ]:l (3.4)
(ka)®

and that

A



39

2
5 d(8) ddgs) Q) }
d€ ) A~

3
exp{i ikaf VQ(S) 4 2 & 73

8(ka)” Q (&)

2 :
~v €XP {i i (ka(l-‘y) n (§-v) - 2k:(1-'y) [1n€+ %:D} X

. 4
g Xy_ Yy 5, —2
X[l + Ska (1) (ln (1— E) E) + i 3 3 (ln'g" +

4(ka) (1-7)

2 3 2 4
g d)] G2l
Y Y (ka) (ka)®
6 8 ,
+ o[" 5:] + ol: ] i (3.5)
(ka) (ka) '

By combining (3.4) and (3.5) the solutions in their final form are

m (€)~ %1 exp {i i [ka(l-v) Lo (§-y) -
2 =Y

9 .
) v Y. T 1 A B
2ka(1-7) (ﬂn“ g)]} <1 ¥ Bka(l-7) [“ (1 S)

1] UZ ( 1 2 _ i 1/4
S ST
§ a(ka)2(1-7) £ 8(ka)(1-7)°

3 2
—7—-] 11+ of(kay?] +|:o —”——] +
I > 1 (ka)®

u4 ' v6 8

of—F |+ o/ + o —"—6 (3.6)
(ka) (ka) (ka)

and T(J)l/(S) is given by (3.3b). These solutions are valid provided that

'g“f 0, £#v and l2ka(1—'y)l > 1.

15
<

+
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e



41

3.3 The Reflected Electric Field

(3)

With the asymptotic forms of S(])l/(ﬁ') and T 1/(‘é’) one easily

proceeds to determine the reflected electric field to O[ka) ] . Itis

pertinent, that first of all the asymptotic expression for ai y - byS y
I “T2 V=72

be derived. To this end, a step by step procedure is employed in deter-

mining these coefficients. Firstly, the definitions for 1\% y (ka) and
: T2
M 1, (ka) are recalled in terms of C 4,(£,8) and (] y (&, B). In this
V-1, -1, -1,

case 'IUIV 1 (ka) is simplified in the following form.
=2

| 8¢ . (20)
/<ka> g S 1 |:c & - (Bv)___ll_]

" ka(1-y)  ka 3&’ 3B
| et
From (3.6) : T - ———
2 2
C, .y (€A~ v(s NE-7 exp{; L5 (g_z) T
(k) £
2 5 s 6 g
+ ([f—:yl) —12-) sing (£, 9) [1+ ofxa) %]+ O[L§]+ O[—V—Z]+ 0[ v 5]+o[ v 6]] .
g (ka) (ka) (ka) (ka)
(3.8)

From this derivation for Cv y (£, one obtains:
=12

o1 .1 og(&, B
MV_1/2 (ka) Ska(l-7) t i (cot g(E,B))\ 3 (1+
M £=1

] 2 49 6 8
+ o) %) + o[ 3]+ o[ = 4]+ 0[ £ 5]+ o[ z 6] (3.9)
(ka) + (ka) (ka) (ka)

and
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B, 1) (e) ~ { ot (et e ) EEA
2

oka(l-y) |
Ca 2 1+
v —21<B -7) (B- ’Y)(cot g (£, 3))_&5;@. -
2 4 2 2\1-v 58
- g=1

A A1
+ O[(ka) 2] + O[(k )3]+o[(k )4]+O[(ka ]+O[(ka)6] ] (3.10)

where 2
) 1 E9)_ 1 _w
g(E,p) = {ka(l-'y) - 8ka(1—7)} fn (3_7) "~ 2 ka(l-v) X

3
32 L _1_> 7 (_1_ _1_)]
- ¥ - + - (3.11)
2 52 32 3 83 B3
and henceforth g(E,B)' =g(1,f) =g . (3.12)
=1

By observing that

2 4
1 og(&, B) 1 v -2] [v ]
— ~l-= + 0O} (ka) + O — (3.13)
ka 98 |g 2 (ka)? L (ka)*

and by simplifying (3.10) after the term (B-v)(cot g (E,B))Qg;—%-@ is factored

out in the denominator, the following expressions are derived:

2
1 v
(ka) —_— 1-= )cotg [1+O[(ka) ] +
/ <2k (1 v) < 2 (ka)z \> g

2 4 e —
RENEN
ka) (ka) (ka) (ka)

and
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1 1 2 1 2
/(ka) - 2ka(1-'y)+2ka(1-7) sec g - 1-5 (fg tan g (1+
- 2 A4 6 8
+ o] + O[(lfa)3]+o[(ka)4]+o[(lia)5]+0[(11:a)6:|) ' (3.19)

It remains now to obtain the asymptotic expansions for the spherical Hankel
function of the first kind and its derivative in the proper regions of the complex
v-plane, Therregriions in'the complex v-plane are shown in Fig. 3-2 (Watson,
1952). For the case orfr‘the reflected electric field the Debye asymptotic

expansions are needed in region one, These expansions are

QT | 2
e ' 5 i 2
6, (k) ~ ]/Smlhn e *{1- b v oftar?] OL:a)S] (3.16)

and

Q- I 2
(1) i 4 ; 1 i v -2
Sy Yo ¢ M ee 2 2 1+ of0ar?] +

(ka)

2
+ 0 [ ] (3.17)
(ka)

with the following relations being recalled

v=kacoshnp , Q=v(tanhn-n) , (3.18)

the restriction

- g < arg(-isinhn) < -g (3.19)

and the requirement that r;

wh11e it runs close to the imaginary v-axis in the second quadrant It is

is sufficiently far from v=ka in the fourth quadrant

noted here that the notation has been changed somewhat from that of Watson T

(e.g. Watson uses vy instead of n) for convenience. If now the following l

7 asymptotlc express1ons are taken 1nto account //// B
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FIG, 3-2: CONTOURS OF INTEGRATION AND DIFFERENT REGIONS
CONSIDERED IN THE COMPLEX v-PLANE,
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-292 v2 V4 v6
e~ exp iwv-il;—iZka 1-1i 3+O 5 s (3.20)
12(ka) (ka)
1 vz 4 v6
sinhn~ i 1-5——5 1+O[ 2 + 0 5 s (3.21)
(ka) (ka) (ka)

2
1 1 1
1/(ka) My ke M T\ (k2 (2 o8¢ 2g> " Zhaliom)

. . 2 4 6 8
X sec’g p )1+ o[(ka)' ] + o[—’i—?] + o[—’—’——‘;l+ o[l——s-:l + o[—”——s] (3.22)
(ka) (ka) (ka) (ka)

then together with (3,14, 15, 16 and 17) the difference of the scattering

~ coefficients is found to be R S

2 4
S S 3 i iv
a g -b 4 ~ |iexp{irv-—-i2ka+i2gp 1+ ——- —
[o v-Y, ka 4ka 12(ka)3
_ _tang . _ 1 sin2g ) i . 1
ka(1-v) exp i2g 2 ka(1-v) exp Cimvy i2ka + i2g 1+

d

P
ka
-9 2
+ ofkar?] + O['V_s_] +o[ ] [ ] [ ] . (3.23)
(ka) (ka)’ (ka)’ (ka)®

By substituting in (3.23) :

g = €1 + 62 (3.24)
where
- ka(1- )1211(1—1)+l v B+ (l 1) (3.2
IE) 2 iy YRBYY B Y -29)
2 7
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4

€ * 8katl 7) (B Y) é (—-————ka);(l_ws [£n6+ 3y (%3— 1) +

) )

such that € Ke 1 then (3.23) is given in the following simpler forms

) .
S S . . .V . . 1 . 14
- - i - + + - +
ay_ll2 by_l/ZN < iexp l:mv i i2ka 1261] {1 1 1 12(ka)3
4
i B—) i v 1 ) 3 2(1
+ i (BEX) + 2 Y lpgesya-1) +244(2 ) -
i (1) * 5 (kaP (1) [ " 37(3 ARRR R

] e
3\ g i N

2
(sin 261) exp[iwv- it - i2ka + 1261] ; .
1 , . )
2 ka(1-7) Tha(ls )sm2e sec’e, exp {irv

o) ) [reolir] o 2] o]
-i— - i2ka + i2¢ 1+ 0} (ka) +0 +0O|——| +
ka ! 'l Lixa)*
6 8
+ O[V z +O[ ] . (3.27)
(ka) (ka)

If v=1/2in(3.27) then

a(s)- bz ~ e-i2ka [1—(1_7)111 (1_7/6-7)]{1 - [ia} [1 + O[(ka)_z] +

2 4 6 8
+ O[LE:I + o[”—zl] + ol: LJ 5] + o[ :, results. (3.28)
(ka) (ka) (ka) (ka)
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If now one writes

b S. eikr if s s f ve—iwy S s

A

X —{a -b |- —— | a -b dv ) , (3.29)
—reﬂ kr | 2 < 0 o) n 1+e_12ﬂ—p [ v-Y, v-Y, ]

then by substituting (3.27) and (3.28) in (3.29) and by performing the inte-
gration along I-.l' with the aid of the integrals of Scott (1949), the fr.iﬂ'e_@ )
electric fi>e1d‘is obtained in an explicit but asymptotic form.

It is recalled that the integration along P is a saddle point integration
over the range v = [(ka) [2+ 6] with the major contribution arising for
v near zero. Scott (1949) evaluated such a class of integrals which in their

general form are

Toe -€EW
+
E = f e—_w qu 1dW (3.30)
ly

with q=0,1,2,3,. .., 0<y< 7/2. By performing the saddle point
integration for v << ka Scott found that the major contribution arises
for v near zero. Some of the integrals which he computed and which are of

importance here are

2

1 T 1
—_— - — +

Eo,o~ e 5 Oe) (3.31)
1 o

E ,~ —+ 0O) (3.32)

0,1 2
2€
and

1 (o}

Eo,2~ 63 + Oe) . (3.33)

Scott used these integrals in order to determine the backscattered electric

field from a perfectly conducting sphere, when the incident field is a plane
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wave, for ka >> 1. Throughout expressions (3.30) - (3.33), € and w
are given by
i

47r2ka

and w = i27v. In the problem considered here, expression (3.29) is
reduced to several integrals of the type (3.30) by substituting the asymptotic
expression for a 1/2— b 1/2 in (3.29) and by letting w = i27v. In this
case, in each occurring 1ntegra{ € is a function of the B and 7y parameters
as well as of ka. A typical integral e.g. results if the first term of (3.27)
is considered.i.e. the term -1iexp {im/ - i(vz/ka) - i2ka + 1261} . The

integral along r{ in this case becomes :

f i i —i2ka[1-(1-'y)in(;:—:yy)]
i [ =0} V;] I

-2y
1+
l'; e

1y
+27ve we—€w2 ) -i2ka [1 (1-y) fn ([13 ?Y/)] i 7r2 =
Xf —_—wdw.f‘,’——z— -é-e-__g.+o(€)
i l1+e 4T
—2rve’
(3.34)
where for this particular integral, € = - 1 [ 1-fnfB-y/ B] and
47r2ka -y

= (ka) 12+ €. By proceedmg ina s1m11ar manner, the followmg expressmn

is finally obtained for the reflected electric field:j
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. 1=y
[_kaLw__J e“z“a[ “{-v)ing 7]

R
_X . i
2(1-fn B B) J—
By oy 1, oY
K T [“B(l-v) : 3(1 i B) i
X 1 2 13
. §+47'y 6ﬁ+3B 3 B - 24nf .
2
(1-an-6)
1-
exp |i2ka(1-v) fn =1
+(1_1n6_1) [ B"'Y] +
B 1+ -2 (np+ %)
. 1-y
exp | -i2ka (1-y)&n z—
s [ 5‘7] + of(kay2] : (3.35)

1y

The correctness of this expression is checked with the known result for the
perfectly conducting sphere. It is thus observed that if (=1, i.e. if the
thickness of the radially inhomogeneous coating is zero, then (3.35) reduces
to
b.s. A (_ _a}_) oikr-i2ka
=refl, , _ 2
b=a

1- <L+ ofwar?]}, (3.36)

Wthh is the well known result for the reflected f1e1d by a perfectly con-

“ducting sphere. It is also observed in (3.35) that since Imk << 1 but pos1t1ve,

in the limit B=y the expression (3.35) reduces to

Ebts' ~ A i eikr-iZka
=refl., 8kr(1-v)

1+ oltmar?] b (3.37)

which indicates that if =< the reflected field contribution is very small.
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3.4 Derivation of the Reflected Electric Field by Geometrical Optics.

Although the geometrical optics contribution can be determined from

therqf‘irsit term of expression (3. 35), it is of interest to derive this contri-
bution by the ray tracing technique. Such a derivation gives not only a
means of comparison withﬁe—-results obtained by rigorous asymptotic
theory, but also a physical insight into the problem.

In considering the geometrical optics solution for the reflected electric
field, it is implied that ka - 0. Furthermore, the reflected electric field

b. S._ A b.s.

is polarized as the incident one, i.e. E X Ex , and it satisfies the

vector wave equation. This vector wave equation easily reduces to

[v2+(1§a)2N2(€)] EZ' S=0 (3.38)
where
-4
%<& - (3.39)

A solution is assumed for Ez S in the form

100) Eb.s.
N elke(s)ﬂfr Z . (3. 40)
x (i)

£=0

whose leading term is

. S. .8, i +1
Eb ., Eg s e1k8('g") ir

X (3.41)

and which is the geometrical optics solution for the reflected electric field.

The amplitude E:' S is easily determined from the principle of con-
servation of electromagnetic energy between the incident and scattered
electromagnetic @q{ds This of course implies that the inhomogeneous
dielectric is assumed to be lossless. The phase &(f) is determined from
the eikonal equation

[1 v, e(s)] N (3.42)

a
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which follows from substituting (3. 40) into (3. 38), performing the differen-
tiations and then equating terms in powers 1 / k2 to zero.

In order to determine Ez' S ‘explicitly, a tube of rays of cross-sec-
tional area 7rd2 is assumed incident- upon the coated sphere in the +z-
direction. By considering the amplitude of the incident plane wave to be

unity, the electromagnetic energy carried in the incident tube of rays is

given by
_ 2
“gincident _ 7d_
E =57 : (3.43)
On the other hand, the energy of the scattered field is
~ [ b. s )
Escattered (iS (3. 44)

2 [o+o]

where &€ = electromagnetic energy.

From the last two relations, it follows that

Eb' 52 Jim d

d-»0 21 p 7
‘g ds (3.49)
0 T-2 [a-l-p]"\ ;

where dS is the element area in the spherical polar coordmates system The

5 .

limits of integration can be understood from Fig. 3-3. Upon completion of

the integration, the denominator inside the radical of (3. 45) is

[ j; 2[&erjjls= 27rr2[1—cos[2(a+P)]] (3. 46)

and therefore the magnitude EZ' S becomes

b. s. . d

E - 2r sin (a4p)

1 (3. 47)
d-»0
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From the definition of p(£) as given by (2.25), one obtains

B B
P =f dp(E) = -sina f (25;— ﬂd; —= . (3.48)
1 1 SVS (1-7)"-(§-9"sin"a

By observing that d = a sinq, it easily follows that

asin«o
ECS= lim
0 B

a—+0 2r {sin a-sinaf > (S—;)dg — ) (3. 49)
-9 evsin’a

and finally by carrying out the limit

b.s._ _a l-vy

Fo T 2r \iomBafB (3.50

results.
In determining the phase O(f), it is first mentioned that the factor of =
in (3. 40) is added in order that the 180o phase shift, from the total reflection
of the incident rays at r=b, petaken into account. The explicit form of 6(§)
is evaluated from (3.42). By taking the origin (£=0) as the zero phase reference

point, the solution of the first order linear differential equation

Gl (u
i a 5-7) (3.51)
is

6(£) = ak-2a [1—(1—7)!n([13—:-jy)] . (3.52)

It follows then from (3. 41) together with (3.50) and (3.52) that the reflected

electric field is given by
ikr -i%a [1 «1-7)4 n(ﬂ)]
b.s Ae ka(1-7y) B-v
EX ~ -X Kr v e
2 [1 —lnB-E]

(3.53)

e
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It is observed that this latter expression is in agreement with the first order

term of (3. 35).

3.5 Scattermg Cross-Section Computatmns

I — l

Ttis of interest to perform numerical computations, so that the effect
of the radially inhomogeneous coating in reducing or enhancing the monostatic
cross-section of the perfectly conducting sphere of radius b, is determined.
These computations are carried out for different values of & v, and ka. The
cross-section of the perfectly conducting sphere of radius b is denoted by
o, and it is normalized to crc, where O'C is the cross section of this same

b S

perfectly conductmg sphere coated with the new class of radially inhomogeneous
Oh

dielectrics with outer radius a. The normalized cross-section oN = —Q- is
determined for two cases. Under case one, GNI is derived by considering the
reflected electric field given by‘ giaometric optics. Under case two, oNz is
derived by using expression (3 35). The expressions for oNl and oNz are
given respectively by
oN, = Bz 1—_2{1?—,;7& : (3.54)
and , S N
ONZ = 52 1+ 21 5 (1_1111_[1_7/3 —Lljkrﬁ;;yf sm[2ka(l-'}’) ln(B 7)]
48" (ka) ‘ v

i Tﬁt‘ R N . I S
1 1 1 By \ _xy _,_uf v
X (1-7’ 1+7—2[fn3w/8])] " e 2[“‘(5(1-74) 8717 (1 tof-

ka)"(1-7)
L Fa T ) -
(l—an—'y/B)z/ B +(1—£nB ’Y_/_@ COS[2ka(l—'y)ln(B " ]

re T -1 (3.55)

x( 1, 1 2
1-v = 1+v-2(2nB+ v/B)
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g, -0
Nl

Along with o and oy the relation D = 2 x 100 is computed for

1 2 GN2
0.2 B £0.99, 50K ka £ 1000 and various values of v. The parameter D
gives the percent error in using the geometmcal optics approx1mat1on in order
to determine the cross-section, instead of (3 35) The most 1nterest1ng num-
erical results are shown in Fig. 3-4 through Fig. §-7173. In Fig. 3-4 the

parameter o is plotted vs. B for 0< yY< 1. For this range of v, the

N,
inhomogeneous dielectric is of the converging type and the coating enhances

the cross-section of the perfectly conducting sphere as one weu‘ld expect based

on physical reasoning. On the other hand when ¥> 1 the inhomogeneous dielectric
is of the diverging type and gs it would be expected the coating reduces the cross-
section of the perfectly conducting sphere. In Fig. 3-5 one observes that this

is the case and that for smaller 8 and v very close to unity, the reduction of

the cross-section is considerable. The percent error D is presented in the
remammg flgﬁ;es vs. ka for various values of 8 and v. It is deduced

from these flgures that the percent error is 1ns1gn1flcant for ka as low as 950.

The conclusion then is that the geometmcal optics technique is mdeed a power—

ful, very accurate and very simple tool in studying the cross sectxons of per-
fectly conducting spheres coated with radially inhomogeneous dielectrtes. An
‘exception to the above conclusion is the case v = 0.99B. It is seen in the last
two graphs that for this case, the error is as high as 74 percent when ka = 50.
However, this should be expected 1f it is recalled that the rad1a1 eigenfunctions
(]) y-1/, (%) and T(J)l/ (§) as obtained by the WKB method are valvl_d:)—r*e'v;led that

g#o and|2ka(1 v|>>1. When v= 0.998 and B= 0.98 it clearly follows that

this latter condition is violated and therefore the error for this case is ex-

plainable.

— T T

3.6 An Outhne for the Creeping Wave Contribution in the Backscattering

D1rect1on
In this section, part of the analysis required in order to obtain the creeping

wave contribution in the backscattering direction, in an explicit form, is presented.
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FIG. 3-9: DVS. ka FOR v = f/2
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FIG. 3-11: DVS. ka FOR vy =38/4
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FIG. 3-12: D VS. ka FOR = 0.998

B=0.2

—
—

\A/
v

e >

\ B=0.4
o~ — e
N_— T

\\ B=0.6
/—\cav .
N —

’—\ B=0.8
/\ e —— —
~— N~
N\ o

1 ) 1 ] |

| 1 | 1 1 1 |

1
50 100 150 200 250 300

400 500 600 700 800 900 1000



65

D
A FIG. 3-13: DVS. ka FOR 7=0.998
10 /ol
\ B = 0.92
-10 %o}~
F
10°/o-
\ B = 0. 94
-10 %[~

2090~
B =0.96
\ i

-20%}

100 %o -
B=0.98

-100%o [

50% [~

-50% |-

1 ) | 1 1 1 | 1 | 1 1 1 l o ka
50 100 150 200 250 300 400 500 600 700 800 900 1000



66

P ()

The asymptotic expansions for the radial elget}_funchons S 1, (8) and T 1/
which are valid for v near ka, are given in terms of the A1ry functions in Fock's
notation. These expansions must, more accurately, be valid for v = ka+mt,
where m= (ka/2)1/3 and t is of the order of unity. Since, in this research,
interest is confined to the contribution of the first few creeping waves in the
backscattering direction, particular attention is paid to those poles in the com-
plex-y plane which are located nearest the Re v-axis. A parameter 7 is,

therefore, defined such that

K
]

t
3 (3.56)

which implies that 1< <1, and this latter condition corresponds to considering
only the first few creeping waves in the 6 = m d1rect10n

With deﬁmtmn (3.56), the coefficient Q(g‘) of the differential equation (1.16)
becomes

T 1

9 4 2
Q) = ( Y) - iz— 4(ka) (3.57)

§-7 : £

In order to examine whether the zeros of Q(£) lie within B £ 1 one first

finds the zeros of

2

1-7y 1

—L) - = =90 3.58
which are at

b 01° 1 (3.59)
and ¥

502 = ﬁ (3.60)
It follows that since Y < B, 'g" is outside B & 1 and therefore 801 is the
on1y7s1r7r71-p_1eErnmg pomt in fhzaérzg—é By deflnmg a parameter

———— — /-T 1 —_ - e e -
T=r1+ TT . s

(i



67

then since 7 = O[(ka) _2/3] and similarly T = O[(ka)_2/3], by a pertur-

bation technique the s;mple turning point is found more accurately to lie at

£, =1-(52) T+ o) (3.61)

Since 72 = O(Tz), then to the same order of approximation T~7 and

£ =1- (12'77) 7+ Ofr)) (3.62)

This turning point is within 8 o <1 and therefore Langer's technique is now

used to solve the d1fferent1a1 equation. By writing the coefficient as

2
_[1-7 1+7
o0 =(£1) - ;

the differential equation to be solved is

2
_da (3 _
dg’z SV'l/g (&) + (ka) Q ('é') S ), (&)=0 . (3.63)
The solutions of (3.63) are given by
o e\ Y
Q) 2/3
/(S)'(Q (S)) Vi) [(ka) C(S)] (3.64)
and
™, (e -2 OISR (3.65)
In the above relations
£ 2/3
3
CO(E) ={3 f VQO({-.‘) dg , (3.66)

g0

and therefore one calculates:
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X §
"V(YZ—ZY—T)§2+27(1+7)€—72(1+7) +(72—2’Y—7)§'+'y(1+7)} —ifi+7 x

EO
) 3
X fn{ér V-t V(72—27—7)§2+27(1+7)8—72(1+T) - g(1+7)+(1+7)} .
(0]
—(1-v7) ¢ S V( 2—2 - )§2+27(1+ )‘:;-’—72(1+j)+—3'—+1 :
VE YO ey (T T Ty :
0
(3.767)

In order to proceed in computing numerically (1.56) which gives the contri-
bution of the creeping waves in the backscattering direction, equations (1.57)

must be solved for the zeros t]Z and ?ﬁ. This in turn necessitates simpli-

fication of MV y (ka) and i\v/IV y (ka) asymptotically in terms of 7 or
=2 =/2

t/mz.

J

EO

From relation(3.67), the asymptotic expansions to 0(75/ 2) of

1
B
vQO(S) d¢ and f -"QO(S) dg are obtained first. Then ¢(1),
%o

e(B), a¢(®)  ayB

55’ o8 etc., are computed, to give finally the asymptotic forms

~)

of M(t) and M(t). This work has not been included here due to the cumber-

some expansions. The same technique, however, is carried out in Chapter

Four for a simpler type of radial inhomogeneity, and the constants M(t) and

~
M(t) are there given explicitly.



CHAPTER IV

HIGH FREQUENCY BACKSCATTERING FROM A PERFECTLY
CONDUCTING SPHERE COATED WITH A DIELECTRIC
WHOSE INDEX OF REFRACTION IS N(§) = &P

4,1 Introduction

Nomura and Takaku (1955) considered an interesting class of radially
inhomogeneous dielectrics in their study of radio wave propagation in an
inhomogeneous atmosphere. They assumed the atmosphere to consist of
stratified layers of radially inhomogeneous media. The index of refraction
of the k th layer was taken to be N(§) = 'g"p", with p> -1. This index of
refraction represents a class of radially inhomogeneous dielectrics which

EE of the divefﬁgﬁiﬁgit'ﬁe . V’fhér iafge}' ;c.ﬁévé;ibio‘ﬁentr p; tﬂewg‘x:é‘ater is the diveréence

and superposedﬂ the solutions of TE and TM modes in order to obtain a com-

plete representation of the electromagnetic field. The following radial

eigenfunctions were obtained for the corresponding TE and TM modes.

N . ptl
(3) _of ™ () (ka&"
SV_I/Z(E) =\ 2 Hv' ( ] > for TE modes

. — . ptl
(3 P T () [ ka&
Ty, 8 7has vz(zpﬂ)s Hv"<p+1 ) for TM modes

with \ r—— _—
v2+22+2

R d "=
14 pHl and v pt1 -

From these solutions, the restriction p> -1 becomes clear if one observes
the argument of the Hankel functions. By assuming a dipole excitation source
and by applying the Watson transformation the authors obtained a residue
series, which represents the radio waves traveling around the earth. Nomura
and Takaku also applied geometrical optics to trace the ray paths in the inho-
mogeneous atmosphere, and performed numerical computations by assuming

different values of p for various environmental conditions.
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In this chapter, the above mentioned radial inhomogeneity is con-
sidered as being the coating of a perfectly conducting sphere of radius b.
The outer radius being taken as r = a, the normalized index of refraction
is written as N(§) = Sp, p> -1. In the same manner as in Chapter Three,
a plane wave is assumed incident on the coated sphere with its electric field
given by (1.3). The backscattered electric field is put into an integral form
by applying the Watson transform on the Mie series and the explicit asymptﬁof'icrﬁr
expression for the reflected electric field is obtained by integrating alog B
the path I‘1 (see Fig. 1-3) with the aid of Scott's integrals (Scott, 1949).
The creeping wave contribution is given by the sum of the residue series
as in (1.23). The monostatic cross section is finally obtained from the

geometrical optics reflected electric field and it is computed for different

thicknesses and different values of the exponent p.

—

4.2 The Radial Eigenfunctions in their Asymptotic Form \

7In solviﬁg rtlﬂle differential ed{lations (1.13) and (1.14) exactly, one may
encounter difficulties in developing their asymptotic expansions to O[(ka)_z].
In this case the exact solutions are Hankel functions of complicated argument
and index and their asymptotic forms may be derived from the well known
Debye expansions of these functions. Nevertheless, it is earsiveI;t'crg obtain )
these asymptotic expansions by applying the WKB method 1f possible. In order
to apply the WKB method the normal forms (116) and (1. 24) are considered
in S(lj)-l/z (§) and Uf}jil/z(‘g“). From these differential equations, it is seen that

2
Q) (@ = £ - L22 (4.1
(ka) " &

v2-1/4+ p(p+1)

(ka.)2 Ez

and Qg (®) = 2P _ (4.9)
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have zeros at )

o1y | 2D -
107 5 (&.3)
(ka) a
1
2 2(pt1)
- +
and 20 =[v 1/42 p(p+1)] (4. 9)
(ka)
correspondingly. It follows that since v = O[(k ) ] w1th 6§<<1 and 6> 0,
then 510 <<1 and 820 << 1. For finite p, 820 > 510 and therefore if b> E

then the WKB method can be used to obtain solutions of S( )

"y () and
(J)  J—

v, (§) which are valid throughout b £ < 1. It must be mentloned here

that in this case the WKB method is applicable because condltlons (1 27) are

also satisfied for b { £ 1. By considering (1.28) valid over the range
¥ -1/4

v = O[(ka)l/ 2 6], it remains to develop the asymptotic forms of[Q (i’)(ﬁ)] 1

and perform the integration and carry the asymptotic algebra in the exponential

term, in order to obtain the explicit asymptotic expressions for S(J) 1 (§) and
(])1/ (). In particular, for the functions S(J)I/ (£), bynoting that

ley@]” s expdm €%+ sz s+ ol ]’“O[ 44]
(ka)* &P" (ka)

(4.5)

5 dQ(l)() © dQ(l)(E)
(1) dE

exp +1kaf ."Q(l) g |1+ 4 g
8(k) Q (€)
(1)

4
v -1/4 1 % 1 - 51 _-3p
~exp+1ka +i + [ ]+ £ "+
2 orePtt T gia)d La(pryg® @] 48ka

s e ot o o oo

(ka) (ka) (ka) ka)

d§ ¢+ ~

|+

(4.6)
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the solutions

4
Epﬂ V2-1/4 1 v i

£ i +
pH kaomeP T gay® 3(pi) e

S(j) 17 (&)~ E_p/2 exp <t ika F
v- /2

2 2
5 1 i plep-) 1.1 21 ( () [ ]
+ + 1+0f(ka) "|+ O +
48ka _3p 4ka‘ pt+l Sp+1 4 (ka )2 2(p+1) ] (ka)3

:
o552 )

+0 +0 + Ol—— (4.7)
k)t la® ke

are derived, which are valid foer > —1rand b > 520. The superscript j denotes

. _ |1, upper sign
1= {2, lower sign (4.8)
By proceeding in a similar manner for the eigenfunctions Ulfj)l/ (&) , it is found
/2
that with
[, 8] % &2 1 L ———’i——— €+0[(ka) 2] 0[ 4]> (4.9)
@ Sk AN ()
j‘g o SpH v2 1
exp <+ ika Q, ., (§)d&) ~exp(+ ika +i +
(2) - ptH 2ka (p+1)§’p+1"\
. 4 2
n ! +i p L, L . €+0{—1——]+
sra(pri)eP™ T 2Ka Pl T 24 03 e3P [\ L)
ol [5] )
+ 0 +0 +0|—— s (4.10)
k)l lka)® (ka)®
and
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2
5 dQ(2)(§) 0@ dQ(2)('s°)
€ 4 d§ (2) g2 5 )
iikaf 2 5/2 e <;Z§k— 3p =
atie) [ 00] * P
b (2p 1) )( [ ] 2 1/4 :
+ 1+0|(ka) - +o[ ] + 0[—] ) (4.11)
fa \prl/ prl (2> Y
the solutions
) ptl 2 .
§); -p/2 0 & .V 1 i
U7 (E)~vE exp(+ ika +1 F +
v=le PR 2k e akaprng”
4
. p 1 .y 1 —. 5 1 ( )
ti t1 +i t
2ka §p+1 24(ka)3 (p+1)§3(p+1) 48ka §3p 4ka

1 2 <[ 2] v2 v4
ot Mool 2o o 2] o 2]
b (ke 2e2PH) k> k¥ e ke

(4.12)
result and they are valid for the same restrictions as Sf/J)l/ (]). From (4.12),
=2

( (3

v, (8) = gP U,y © (4.13)

is obtained. It is furthermore observed that

() e oD [ . p ] ()
T7) (§) =& exp|ti (&) . (4.14)
V—]/2 2ka§p+1 /

4,3 { The Reflected Electric Fleld

In th1s sectlon the reflected portion of the backscattered electric field
is derived. With the aid of the asymptotic expansions for the radial eigen-

functions the parameters C (8, B, C (8, B, M (ka) and
V"l/z V'l/z V'l/z

~
My 1/ (ka) are computed. Then the difference of the scattering coefficients
=2
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is found and finally by integrating along the path l"1 in the same manner
as in Section 3.3 the reflected electric field is determined. From (4.7),

(4.13) and the definitions of C ,, (&, B). and 8 1, (£, B one obtains:
v- /z v/
C L, (& A~a 2 P expdt Tl U ] sin[g (&, 8] {1+
p-lfy B 4 2l 2D T e B

+ o[(ka)'2]+ o[ﬁ—]+ O[i]+ o[ ] + o[ ' ] > (4. 15)
kS g g e

ka)

o o (emP/2 1 v 1 1 _
Gy, (&P~ 2 EDT exp {4 (? LoD " Bz(ml)]}sm[g(Z)(g’B)]éJ“

P 2 4 6 8
o[(ka) ™+ o[ r— +O[LZ]+ o[ r— +o[ Y 6} , (4.16)
(ka) (ka) (ka) (ka)
where
_ ka [.p+l p+1 -114 1 1 1
g(1) 1 ("E ~ 8 2ka pt1 ( ptl pl-l)+
3 B
( )_ 5 (T_ 1)+
24(k )3 p+1 3(p+1) 3(p+1) 48ka \ 3p | g%
p(2p-1) 1 1
¥ Zka(pr1) ( ol T p+1) (4.17)
£ B
and
g (EB =g (508 + : - (4.18)
(2) (1) 2ka Ep+1 Bp+1 ’ .

From (4.15, 16, 17, 18):
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2
L -2
MV_1/2(ka)~ - 5]% + (1 -5 _V_2> cot g(l)(S,B) <1+O[(ka) ] +
(ka) i
=1
2] o[22 o5 o )
B P N | R B (4.19)
(e)” (ka)* (ka) (ka)®

and

2
~ 1P 1 v p 2

(ka) -
» 9 2 4 6 8

x { 1+0[(ka) ]+ o[ . 3]+o[ Y 4]+ o[ Y 5]+ 0 "—6] (4.20)
' (ka) (ka) (ka) (ka)

result, where the expansions

og,.,(£.P T2 ) 4
;al- —-(;)E—' ~ 1l- % _1/__2 + O[(ka) 2]+ O[L—é':] (4.21)

£=1 (ka) (ka)

and
' og (5.8 /8t 2 4
e 5 (-1 2 bl ol o2
| A - 1 - 1- +0|(ka) [+ O

ey ®AIBY e ( 2 ? b g0 ()
(4. 22)

have been used to arrive at (4. 20) and (4. 21).

By writing
- VI B L T T (.29
with
ka ptl 1/2 1 1
€1=——-1 (1—B )+% E(I—BTPH) s (4. 25)
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4
11 ( 1 ) v ( 1 ) 5 ( 1)
€. =-——(1- + 1- - 1- —) +
2 8ka p+1 Bp+l 24(ka)3 83(p+1) 48ka B3p

2p-1) 1
* Tralor) (1- Bp“) , (4. 26)
__p({,_ _1
63 = ka (1 Bp+1) s (4.27)

and by using the tr1gonometr1c approx1mat1ons

=

‘ 2
tan g(2)~ tan 61 +(€2 +63) [1+tan 61] (4.28)
and
T 2
cot g(1)~ cot € — € [1+cot 61] s (4.29)

the following relationships are obtained:

M _Pp, _2 P S +
1/2(ka)~ ka sin2€1 1 2 (ka)z 26200t2€1

+ e tane p + —E— {1+tan2€ }><1+O[(ka) )4 o[”—z] +‘ o[—”4— ] ¥
ot 2kaBp+ ! ; " )l Loy

M -, (ka) —

T

/ 6
Y‘O[ v ) (4. 30)
. (ka) (ka)
(ka)

.2
262 2€3s1n 61
M (ka) + M cos2 - — -
v-Y, mZe1 sin2e,
2 4
- % Y ) - (1+tan e) 1+0 [(ka) 2]+ O[ 3] + o[———" 41+
(ka) 2kaBp+ (ka) (ka) L

25)o23))
+0 +0 s (4.31)
(ka)5 (ka)6

and
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2 2 4
~ -2 vV v
M o, (ka) M, (ka)~ — (1 e )<1+ o|(ka) |+ o[———]+ o[———] +
vl v, (ka)® (t] ka)’l  lka)®

6 8
+ o[ L 5]+ o[ v 6] . (4.32)
(ka) (ka)

W "

With these expressions and the Debye asymptotic expansions for C -, (ka) and
(1)'
A

is found to be : e —

(ka) the asymptotic form for the difference of the scattering coefflclents

. . imy-i 1—’2; - i2katiZe, i 4
v /2 v /2 T 4ka 12(ka)3 2
2
im -i Y= +ide_-i2ka imy -i%— -i2%ka
P ka 1 _ b ka S -2
+ Za © 2 © 1+O‘[(ka) ]+
2 4 6 8
+ o[ v 3]+ o[ Y 4]+ o[”—5] + o[—v—G] (4. 33)
(ka) (ka) (ka) (ka)
1
and when v = 5‘ , o
- ioka [1- —(1 Bp+1 .
aS —bs =as—b~e _ 1- 2 x
vy v, . o o e 4ka
.ng 1
, N
p+ ——
pl ] 2 4 6 8
" [_'Iéf"'] 1+ Of(ka) 2]+ O[L§]+O[ v 4]+o[ ”5] +o[—”—73]
P (ka) (ka) (ka) (ka)
results. (4.34)

The reflected electric field is now given by
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‘ . 4
ik [r—2a(l— = [1—Bp+1])] v [1+ T ka -i —— + 2ie ]
pt+l . 4 3 2

b.s. . e 12(ka)
E v —H _

X kr -i2my

1+e
r
1
1 1 -i ”—2 1-

s mpedl. tE

. ka p+l Bp+1 o el L [1 B ]‘l‘ .
4ka 1+
Q
1

_2 (1 i} _1__)] 2

ptl Bp+l _ Zka [1_ Berl] i

dv + 2 e ptl ve dv + d (ka)_z]
-i2my 4ka -i2my :
e 3 1+e

1
(4. 35)

The_»légr}i@gtioﬁ from each of these integrals is given with the aid of Scott's

i —————

integrals (Scott, 1949) as follows:

v2
o e-l ka 1 27TV<617y we €W2
e.g. e =+ TR 4w (4. 36)
' 1o 2T (2)2 iy 1+e ™
r,l e 7i ;ZIY,G e
_ " .

where v=(ka)1/2€, €= - 21 , W=1i2mw and0<y<7r/2.

o 47" ka

It is easily seen that the integral l:)h the right hand side of (4. 36) corresponds
to E of (3.31). Then
0,0 °°

"ka = 2
ve SN U 1
f —— .2{26 - 6]+O(e) , (4.37)
g v
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or \
2
N\ _i ——
ka _
ve - . ka1 -1
f 0w dy~i 5 52+ (?[(}{a) ] . (4.38)
o 1+e ——

Another type of integral occurring in (4. 35) is

- ky'; [l_pil ( - Bpli-l)]

5
-1 f vV € dy = 1 1 X
3 -i2 T
12(ka) n 1+e °™ 12(ka)3 (27Ti)6
27rve1y, W5€—€w2
xf _:N—— dw (4. 39)
i 1+
-27rvely ©

The right hand side integral of (4. 39) corresponds to the type (3.30) with

q=2. Then from (3. 33):

, ) 271'veiy b} -€w2 ; 1 11 3
o we dwr + 5 : [—3—]+O(€ ).
[, v 12(ka)° (27i)>- te” 4 T

12(ka)° (2mi)° iy lte
€ (4. 40)

In this case € = i,2 [1_ -1;_1—1- (1_ EplTl-)]

By proceeding in a similar manner, the saddle point method integrations are

completed and théﬂ final result obtained for the reflected electric field is
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o e A Gt = X
a1y 1)y 8,2 1
Y aa \ 3 o (1 Bp+1) 373 [1_ ?Pi_l(l_é_;_ﬁ)]z“
-
prl )
R S
L Za (g
x(l— BFll)] * p[l‘ p+11 (1' Bg’rl)He " prl ( ) -
e Sy
E gy
pHl ol

This expression is valid for p> -1 and B> 620' Furthermore it reduces

to thé !Ijgsmfﬁ(é.' 36) for the perfectly 'c—onducting sphgre when B=1, |

4.4 The Geometrical Optics Approach

The ray tracing technique, as it was shown in Chapter Three, is very
useful not only because it is helpful in checking the results obtained by rigorous

asymptotic theory to O[(ka)_ll but also because it clarifies to a good extent

the physical phenomena which take place. In this section, the ray tracing
technique is again applied to obtain the optical ray paths in the radially |
inhomogeneous coating and the reflected electric field to O[(ka)_l].

It is assumed that a tube of rays of diameter 2d is incident on the coated

sphere. Upon incidence on the inhomogeneous medium the rays divergé away
from the perfectly conducting sphere, as shown in Fig. 4-1. Itis expected,

therefore, that, based on physical reasoning, the coating will reduce the

A
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monostatic cross-section of the perfectly conducting sphere. Indeed, it is
shown in Section 4.5 that this is the case by computing numerically the mono-
static cross-section.

The reflected electric fieldjé now determined. By assuming that it

is given by
Ez S, El;. S. elke(s)igf ‘(73.}71)7

for ka - o when a is finite, the amplitude is found first by applying the
principle of conservation of energy between incident and scattered fields. The

factor 7 in the exponent of (37.’41) is due to the abrupt change of phase which

—_—

occurs due to reflection of the incident ray at r=b. The relatiorrlffor{ EZ' S

—

is given by (3.45). In this case the angle p for an arbitrary incident ray is

P =fBP(§$d§= - sinafB dg s (4. 42)
| = . EVSZ(WD—sinza
or,by integrating
p=- p—lq (cos_1 [;;:_ci] - cos-1 [sina]) (4. 43)

and it is shown in Fig. 4-1. From (3. 45) and (4. 43) one obtains

Eg. S lim a sina | M)

a0 2r sin) a— —— (cos_1 sine cos—1 [sina]) ‘
=l ® ptl [Bp+1] —_

By expanding the inverse cosine terms in a series form restricted to principal

values (4. 44) becomes:
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sin @
Eg' 5= lim — —

3 3
a0 sin{(af— L a- —— & _ 2 + . )}
ptl Bp+1 6 6[33(p+1)

sin o

_a . (4. 45)
” [1' o1 (- B‘}“)]

In order to computélthe phase O(£), the eikonal equation (3. 40) is considered,

which in this case gives the following differential equation:

%) — agp . (4. 46)
dg
With the phase reference point being the origin, the solution of (4. 46) is
aron 1o —Lf4_ gPH
(&) = ii?_‘? [1 e (1 B ) ] . (4. 47)

The reflected electric field is then given by

ikr-i2ka [1— pTll (1- 8 1)]’

\
b.s. A EAW
) N:x(Zr)j[l (-] (4.49

1
pt ghtl

and it agrees with the first order term of (4. 41).

4.5 Numerical Computations

Based on the expression for the reflected electric field derived by

geometrical optics, the monostatic cross-section of the coated sphere is

found to be
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_ ma
o, [1_5%1(1_ —p—-lq)]z . (4. 49)

By proceeding as in Chapter Three,the cross-section of the perfectly conducting

sphere % is normalized to o, Then computations are performed for

01$37$7099 and p=1,2,3,4,5. The computed normalized expression is

2

% 2[ 1 ( 1 )]
o. = — =p1- =—{1- — (4. 50)
N1 oc ptl Bp+1

and the reSﬁIt is shown in a tabulated form in Table 4-1.

It is seen from Table 4-1 that the monostatic cross-section of the per-

fectly conducting sphere of radius b is reduced considerably, as the thickness

of the radially inhomogeneous coating is increased (B decreases) and as the

exponent p increases.| The calculations of o, and D have been omitted for

————— 2 —

this case, since it is felt that the results of Section 3.5 give a rather general
idea of the error involved in using geometrical optics down to ka=50 to compute

the monostatic cross-section.
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4,6 The Creeping Wave Contribution

The contribution of the creeping waves to the backscattered electric
field is studied in this section. In chapter one, it was mentioned that this
contribution is given in terms of an infinite summation of residues in the
first quadrant of the complex v-plane, where the residues closest to the
real v-axis occurﬁfé_'; v near ka. The strongest contribution in the back-
scattering direction comes from the residues nearest the real v-axis. It
is this case which is |exam1ned here. First it is recalled that the asymptotic

() ()

expansions of S 1, (§) and T

1/(-‘5) valid for v near ka are required,
so that M4 /! (ka) and M 1/ (ka) can be determined from their definitions
 — - 2 -

in terms of C 1/(ka) and C p-1 (ka). By cons1der1ng the differential

equations (1 16) and (1. 17) with Q(l)'g“) andi Q(Z) 'g") given by(l 26) (4.1) and

(4.2), it is readily seen that for

—&% <1, or p finite and (ka.)z'g"2 >> 1, one can define in approximation
(ka)"&

14

2p o
QE) =Q (&) =Q, (&) =& - . (4.51)
(1) (2) (ka.)z'é2

By setting v = ka + mt, where m = (ka/ 2)1/ 3 , and by defining a parameter
2
T = t/m (4.52)

such that |7|<< 1 for the first few creeping waves, it follows from (4.51) that

QE) = & - 5 . (4.53)

It is immediately seen that Q(£) has a zero at
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1
FI (T LI (4.54)

which is outside the interval < £€< 1 but nevertheless very close to it.
Langer's theory is therefore used in order to obtain the solutions. These

solutions are

4
@ -0, 0~ (g—‘g—;) wey L0 eio)] (4.55)

- oa?Pee)] (4.56)

2/3
{Q(E) d& > . (4.57)

By followmg the outline in Chapter One M 1/(ka) is still given by (1.58)
with ¢

()(S) ¢(£), whereas M 1/(ka) in this case is:

i B8 20
p,1 (_1_ kB 1 aQ(B))
B 4\tB) 98 ~ QP 8B

M ll(ka) =

- LM 1/(ka)

ka

(4.58)

x(mglote] (@) -w,, (18] k! o)
2/3 24(B) [‘”(1)[“"’5)] ') ()] o [AP)] vy [ X9 ]
% Lo [A9] ¥ [P o ftP] Ty [

+ (ka)

with\L
o8) = k) 3ee), W) = 2P (4.59)

and it is assumed that B # 1 so that



88

gy [50] st o8] - [8] [t # 0

The asymptotic expansions M(t) and IYI(t) of (1.58) and (4. 58) will be N

de%eloéed,sAo that

Tty
(1) ¢

and
w'(T)
1) ~
~ = _M(t ) m
¥t ¢
can be solved numerically with the aid of the asymptotic expansions and

diagrams of Logan and Yee (1962), to yield the zeros tl and ’t} . To this

end the following procedure is followed. Firstly the integral

&
f vQ(E) dg is evaluated.
SO P

One finds that

2

f'e ./%2(_,?*1)_ (1+_”_)2 & ='I§2(p+1)_ (1+§) _
£

2 g Pt

2
T 2(pt1) T
e sin”! JE (H 2)‘ (4.60)
_ gi'i' ) Sp+1 ? .
from which

g/l
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1+

f Yoo a - (0

pt1

ptl

results, The asymptotic expansion of (4.61) in T yields

j Yoo

from which

2 3/2
%~ S (1

1 2/3

«n = |3 f QO a| o~

3

op

T
40

i
e

wiy

(v

results. With the aid of (4.62) and (4.63) one has

1<1 G BQ(S))

§E) o

and

aﬁ_alf»
% |y

T o) oE £=1

-1 —

3 EKP+D]1/3 ( .

1
™ 2ka

2

15 "

i (5ol

( -2 [p+1]) + o [2/?]

Other computations jpeffééiﬁ to finding M(t) and M(t) are

f{__ds-

JBZ(IH'I) 1 2f

1+

ptl

p+l

sin

191 g) N o[f]

28800

- (e

1)2
2

g 1

C/

{4

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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. T

2 2(p+1)]3/ 2

B -i
2
f VQ(S) s~ C [31(_5%) [ozo+ a T+ 0272+ 0 [73]] (4.67)
Eop

with
1
o < [8-352(1’“)], (4.68)
1 [ 12D _ 1 5g4(pt)
ST 2o+ - (4.69)
and (1)
2(p+1
_ U3 BT |, np2Aptl), , LA(pt])
@, 3 [1_52(13““1)]2 [:2 8 + 48 ] . (4.70)
Also
-i— 9\
() ~

Lo

i— 1/3
o) _ e Laprn] 1+[ 1 ) "‘1] .
B 6001/3 N [1_Bz(p+1)] 3010
o o ! 2(pt+1)
2 1 1 2 B ] 2 [3]
+ - - - , T + OlT , (4.72)
l:g a(z) 6o [1_Bz(p+1)] 3a,  g[1-gXr*D]2

and
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o(p) _ L aQ(B)) 1 LV
T B QB B ) s [1-g2e)]
_ el

1 + 1 1 —p-‘-—‘&——( 1) 2(p+1) T +
% \% L% 2[1;3 o] | [ g2et0)]

2
c (2 () + e
o Lo, 2, \ g2ptD "i g [1-g2P ]2
20 Lo L] ) 5 gl
2(pt1) 41620 ] 2 | |

all valid for a_ £0,

By substituting (4 69) through(4 73) into (1.598) and (4. 58) Mv-l/z(ka) and

M 1/(ka) are obtained asymptotically in 7. Then with 7= t/ni2 and
keeping terms to O [m 4] i

3-2p
M(t) ~ ot C(t) (4,74)
and
~§_ZR
M(t) 0 + C(t) (4.75)

result where ;

; 27r
1/3 w! [w(l)] w [w(B)] -
e (p+1) 2 t -4 11 2

-wy [uB) w, [w(l)]
W E"(B)] ¥ [“’(12] :I ,

(4.76)

and
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27

L RNV £ w ) [1)] wy [(B)] -
~ (ptl) 2t -41 \| (1) (2)
C(t) ~ € - <1+1—5- -I-‘?+O[m ]>[(1) [w(l] 2)[‘9(3)]

bl ] T (12 4ok )x

") [“"B] (o []

x((l Eo(l) "2) [“’(B)] " ["J B "2) [‘*’“]) (“’(1)[‘*’(1)] %2) w(p]] -

o '\ _1:11
-y [o08i] [wm]) — [t+otm™] (W(l) )] wiy [8)] -
3
W) [u48] W(z)[f"(_l_)]v)‘_ 1 , (4.77)
| 1+ pg2PD. 211
1/3 0
where g = 2a0 2p + BZ(P“) . (4.78)

With the expressions given by (4.76) and@.77) the first few zeros| t , and

'%’1 can be found approximately by solving the following equations numerically

(t,))

(1) 1 2p - 3 '
- m C(t,) (4.179)
(1)“1) 20 m’ ! |
and
(7)) ~
(1)( ti) 2p “23 -m &) : (4.80)
(1) { 20m

Then the approximate contribution in the backscattering direction due to the
first few creeping waves is given by (1.56), where the explicit derivatives

2c(t) and 2c(y can be determined from (4,76) and (4.77). It must flm;iﬁ

ot dat
be noted that in (4.76) and (4.77) the asymptotic expressions for w(1) and

w(B) are given by
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(T
3 2
(1) ~ __9_2/_3 t- _t_2 +0(m Y (4.81)
(pt+1) 60m

and

(p+1)2/3 0 3ao
' 2
2 a 2
2 1 71 t -4
+ e "9 T3 —'§+ O(m ") . (4.82)
0 QO m

For large b, it is to be expected that the creeping wave contribution is

small compared to the reflected field contribution. Also it must be men-

tioned that by observing the{ coéffi'ci”e'nts a T 02 and 037 s tﬂosg values
of B must be excluded for which the denominator of these coefficients

becomes zero, i.e. B#1 and p # -1.
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CHAPTER V
CONCLUSIONS

In brief, it has been shown that the monostatic cross-section of

perfectly conducting spheres is eqhapgﬂ or reduced, when coated with
radially inhomogeneous dielectrics, depending on whether the radially
inhomogeneous dielectric is of the converging or diverging kind. It has
been verified in the case of the Nomura and Takaku radial inhomogeneity
that the greater the gradient of divergence of the coating, the greater the
reduction of the radar cross-section of the perfectly conducting sphere.
Furthermore, the new class of radially inhomogeneous dielectrics has
been determined to be important in'raﬁaiﬁvcilistudies for radar cross-

sections, because it can present converging or diverging properties depending

on the choice of the parameter v, and because it reduces the two differential

equations|(1.16) and (1.17) essentially to one. When this new class of radially

inhomogeneous media is considered as the coating of a perfectly conducting

sphere, it has been found that when 0 < ¥ <1 it enhances the cross-section,

whereas when y> 1 it reduces it. However, it must be mentioned that the

computations for when 7 is very close to B, based on geometrical optics,

o.
are not very reliabll\lelsince the m 0 <Imk << 1 is not taken into consi-
deration. This is verified, if it is recalled that when v = B the rigorous
asymptotic theory to O[(ka) _2] predicts a very large reduction of the cross-
section, whereas the geometrical optics based computations for O‘Nl predict
enhancement of the cross-section for ¥ = 0.99B8. The introduced error in
computing the radar cross-section by using the geometrical optics solution for
the reflected electric field instead of the solution obtained by rigorous asymptotic
theory to O [(ka) -2] , has been found to be insignificantly small, except for the
case where Y= 0.998 and f near unity. In this latter case, the error is as
large as 75 °/o due to the fact that the asymptotic solutions for the radial eigen-

functions are no longer valid since the condition |2ka(l- 'Y)|>> 1 is violated.
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Since this research has been confined to considering bodies whose radius
is much larger than the wavelength of the incident electromagnetic field, par-
ticular emphasis has been placed upon the study of the reflected portion of the

field. The creeping wave contribution is much smaller than the reflected field,

since these waves radiate as they travel around the scatterer and since in

actuality the dielectric coating presents some losses.

Other possible contributions to the backscattering direction, such

as lateral or evanescent waves are not taken into account. These contributions
are waves with algebraic or exponential decay, respectively, and they are
expected to be much s;gélizif than the reflected field. Such kind of contribution
is given in terms of branch-cuts of Sf/jzl/z(’g") and Tl(/jzl/z(g) in the complex v-
plane; for example, it is seen from equation (2. 14) that two branch points occur
at v = + ka(1-7).

Finally, it must be menti;qr‘iedftﬁéf from the practical point of view the

research in this disseftatioh\ has possible applications to the study of the mono-
static cross-section of space vehicles during their re-entry flight in thevaitr;l;s;
phere. In particular, the black-out phenomenon may possibly be explained by

the formation of a plasma coating around the body, whose index of refraction

7 behaveé as a radially inhomogeneous dielectric of the diverging type.
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