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LOW FREQUENCY SCATTERING BY A FINITE CONE*
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Abstract

The scattering of a low frequency electromagnetic wave by a metallic cone,
whose base is part of a spherical surface centered on the apex of the cone,
is analyzed using a mode-matching technique. The dipole contributions to the
soattering are obtained in complete generality, and numerical results are
presented for a wide range of cone angles. Comparisons of the computed data
with the predictions of an empirical formula for the scattering reveal both the
strengtheaidd weaknesses of the latter.

1. Introduction

At low frequencies the field scattered by a finite body when an electromagnetic
wave is incident can be expanded in a series of positive powers of the free space
propagation constant k, which series is absolutely convergent for sufficiently
small k. The leading term is produced by the electric and magnetic dipole
.contributions, and if the incident wavelength A = 2”/k is much greater than
all the dimensions of the body, the scattered field can be approximated by the
leading term alone. The result is Rayleigh scattering for which the scattering

cross section is o = v k4 .
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For metallic bodies Siegel [1] has reasoned that y should be proportional
to Vz, where V is the volume of the body, and from an examination of the known
expression for the back scattering cross section of a prolate spheroid at axial
incidence, he was led to an empirical formula for the constant of proportionality
in terms of the shape (length-to-width ratio, 7) of the body. Thus [1]

W
‘Y:;r‘;F (1)
with
F=1+7r1—7e-7 . @)

The resulting expression for ¢ is most accurate when the body is long and thin
(7>> 1), and though the definition of the elongation parameter 7 was later
modified [1, 2__] to produce cross sections in agreement with the known values
in such cases as the sphere ( 7 = 1) and the disc ( 7 =0 ), the formula is still
only applicable to the back scattering cross section of a body of revolution at
axial imcidence.

In practice, however, Siegel's formula is widely used as a means of cross
section estimation for any angle of incidence, and because of this, it is desirable
to seek some shape of more genemlity than the spheroid for which the exact
Rayleigh cross section can be found. Such a shapg should be one for which the
electric and magnetic dipole moments can be determined for all angles of incidence
and, for preference, be a shape whose low frequency scattering behavior is of
interest for its own sake. A body which satisfies these requirements is a finite
cone whose base is part of a spherical surface centered on the apex of the cone.

The standard method of solution of low frequency scattering problems is due
to Rayleigh [3] , and reduces the determination of the scattered field to the
solution of certain exterior potential problems for the body in question. The
general approach is summarizedin Section 2 and then particularized to the case of
a plane wave at arbitrary incidence on a round-backed cone. The potential pro-
blems themselves are solved by mode matching (see Section 3), and as such the
method is similar to that used by Schultz et al [__4§| in treating this same

geometry for a plane electromagnetic wave at axial incidence. In contrast,
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however, the boundary value problems which are now encountered are static
ones, and because of the considerable simplification which this provides, it is
possible to obtain solutions not only for axial incidence on a 30° angle cone

(as Schultz et al considered), but for all angles of incidence and any cone angle.

The numerical results are presented in Section 4.

2. Formulation
The general approach to the solution of scattering problems at low frequencies,
that is, for k sufficiently small, is to expand the incident and scattered field

vectors as power series in k, viz .

(6 0] (0 o]
P Y wleh, % Qe (3)
n=o n=o

When these are substituted into Maxwell's equations and the boundary and
radiation conditions, and the coefficients of like powers of k equated, it is found
(see, for example, Kleinman [6] ) that the conditions on the lowest order scat-

tered fields can be met if
8 = 8 =
E, vd, H =VJ, | 4
where @ and § are exterior potentials satisfying Dirichlet and Neumann boundary
conditions respectively at the surface of the body. In principle at least, Q and ¥
can therefore be determined.
To find the corresponding electric and magnetic dipole contributions to the

wave field, we first note that outside some sphere entirely enclosing the scatterer,

@ and ¢ can be expanded in terms of spherical harmonics in the form
i Yn(6,¢)
0.9 - vy (5)
n=1 r

where r, 0, P are spherical polar coordinates referred to an origin within the
body, and for large r the first term in (5) suffices. Moreover, this first term
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for the function é can be identified as the field of an electric dipole situated at
the origin whereas the first term in § is associated with a magnetic dipole.
This follows from the fact that the fields due to electric and magnetic dipoles

of moments® 4re oP and 47 M respectively are

e1kr eikr
E-‘- VAVA (B—;—-) +1k VA (M—;-) N

eikr eikr (6)
VA ) - o
H VAA(M r) ikVA(._I_’ m ),

(time factor e-l"Jt assumed and suppressed), and for kr sufficiently small,

A A
oP rM
_}_:;..".‘-v(rz..)’ E:‘.:’_V(._..-.2 ) . (7
r T

Having thereby determined P and M , the expressions for _l_?:_: and _I-lz at all
points exterior to the body can be obtained from (6). In particular, in the far
field,

B~ Tk (AR +MAF]

ikr ()

8 e
Ho~v— k" |T, M\D) -7,

from which the scattering cross section can be deduced.

The specific body to be considered is a round-backed cone whose surface is

the intersection of a cone of (interior) half-angle 1r--90 with a sphere of radius d

centered at the apex of the cone (see Fig.1). The body is assumed perfectly
conducting, and in terms of the coordinates r,6,§ with origin at the apex, the

surfaces are

6=6,, 0<r<d,

r=d, 76,07 .

all §

The incident field is a plane wave of arbitrary polarization incident at an
arbitrary direction, and it is convenient to take this as
N
where €, is the permittivity of free space. For brevity, we shall hereafter
refer to P and M as the dipole moments.
4
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A el
E-lz (11’? 13; mlﬁ)elk( x+my-+nz)
(9)
i A A, A, ik(fx+my+nz)
H=Y( 2x+m2y+n2z)e

where (x,y, z) are rectangular Cartesian coordinates such that
x=r 8inf cosP, y=r sinfsinf, z = rcos 6;

(£, m,n), (£ ey nl) and (£ 9 m2,n2) are sets of direction cosines for which

(11, ml, n1)=(12, m,, nz)/\(l, m,n),
(Lo, my, n)=(, m,n)A (4}, m,,m, )

and Y is the intrinsic admittance of free space.
To the first order at low frequencies ,
i i A A A
~ =4 x+ + =V
E~E =lX+my+nz (Ilr sinecos¢+mlrsinesin¢+n1r cosf) . (10)
Since this does not involve the direction cosines (£, m, n) or (12, m2,n2), ] P
m, and n1 can be chosen independently of one another, and for the corresponding
scattered electric potential we can therefore write ( see (4) )

- Z; B l{ 1a( )p! (cosG)cos¢+m a 2p (0089)8m¢“‘°-la ' (°°89)}
(11)

valid for r > d . The coefficients ag), j=1, 2,3, are independent of 11, m, and n,,
and in general their determination requires the solution of three elementary
potential problems. For a body of revolution, however, the symmetry about the
z axis dictates that am

(jin

to two. In terms of the a

, which reduces the number of potential problems

, the electric dipole moment is

PR PSR IR PSS a2



For the scattered magnetic field, the procedure is similar in all respects.

Corresponding to (10), we have

o gl =yw 5T 8infcosp+m, r sinfsinf+n,r cosé) , (13)

implying (see (4) )

v=Y Z, {1 b P (cosG)cos¢+m b(z)

3)

P (cose)sm¢+n b, P (cose)}

(14)

valid for r>d . In general three elementary potential problems must be solved

to find the b(j) j=1,2,3 , but for a body of revolution about the z axis, bm (2)
In terms of the bg) ,the magnetic dipole moment is
=-Y (b (1)52+m2b(12’9+ (3)9) (15)

3. Analysis

For the round-backed cone shown in Fig. 1, there are four independent
components of the dipole moments to be computed, and it is convenient to ap-
proach the task by considering separately the potential problems generated
by four elementary incident fields. If, for exampie, an incident field is
=1 with m_=n_=0, the transverse electric dipole moment a(l)

1 171 1

(= a( ) ) can be found; alternatively, if £ my" =0 but n,* 1, the axial electric

dipole moment results; and similarly for the magnetic dipole. All of these

chosen having £

four potential problems are comparable as regards the analysis involved, and it

(1)

is therefore sufficient to detail the procedure for a, alone.

As indicated by equations (10) and (11) with £_=1, m_=n_=0, the total

1 171
electric potential in r > d is
> ene1 (1) L
$ = QZ ; (c ™ "a “+ré )P (cos6)cosf (16)



where bmn is the Kronecker delta function, whereas in region 1 (see Fig. 1)

we assume
1
E @1 =Z CvrvPv (cosB)cosp (17)
v

with the coefficients c,, as well as the summation variable v, still to be
determined. From the boundary conditions on the electromagnetic field at the
surface of the cone and the requirement of continuity across r = d, we have
(for all §) :

ar W-=0 for9=90,
§-¢—=—3T forr=d, 0_<_6<90

= forr=d, 6,<6<m, > (18)
a@z a@l
Wz_a—é— forr=d, 0_<_6<60
=0 forr=d, 6,<6<m,
a@z aqgl
—— T —— forr=d, 0<6<6
r r - 0

The first of these conditions can be satisfied by choosing v such that
1 -
Pv (cos 60) =0, (19)

with the summation in (17) extending over all the zeros v = v}, i=1, 2,3,---, of
the Legendre function of order unity. By invoking the orthogonality of the functions
Plll(cose) over the range 0 to 7, the second and third boundary conditions give

-m=-2 (1) 2m+1
d o g Zc a’ (20)



where

6% .1 .1 1.1

1 3Pm BPV Pm PV
X mlme) f <8“‘6 56 56  sino > a9 . (21)
0
It can be shown [5] that
1 L
va= m(m+)-v(v+1) sinG F (00860) 39 6=6 @
0

providing v # m . Finally, from the fourth boundary condition we have

Z (n+l)( -n-2 (l)- 1 61 )P;(cose)h Z ucvdu-1 Pi(cose),

14
0 <6<6,,

from which a further relation between the 91(1) and the c, can be found by using

the orthogonality [5] of the functions Plll(cose) over the range 0 <6<6, . Hence

Q

cydv-1= 1 (n+1) ( -n-2 1(11)- % éln) Xn ,
-Av n=1 v

where 8o 1 2 '
A= f sin@ {PV (cose)} de , (23)
0

v

and by substituting this expression for cudu-1 into (20), we obtain

X

© X

(1) _ (1) Tmy oy

mArn + élm_ z_ (n+ )A y .A. , (24)
n=1 v

m=1,2,3,..., with



) _m+l [.-m-2 (1) 1
An " ImH (d ®m” 2 lm) ' (25)

The equations (24) constitute an infinite set of simultaneous equations for the
)]

determination of the coefficients A The particular coefficient of interest
to us is Ala) in terms of which the transverse component of the electric dipole
moment is

; |
a(l) d <3A‘1’+1>. , (26)

The other three potential problems are of a similar nature, and in each
case an infinite set of equations is obtained from which to compute quantities

related to a§3), b(ll) and b(ls) .

dipole moment, the equations corresponding to (24) are

B, == ) @rp)B) T (21)
"1™ L o LA

m=1,2,3,..., where v, va and Av have the same definitions as above, and

Thus, for the axial component of the magnetic

3. 1 -m-2, (3) ,
Bm "7 3mHl (d zbm * 6lm) ! (28)
implying
b= o® @+ 1 (29)

For the transverse component of the magnetic dipole moment, the summation
must be carried out over the zeros of the first derivative of the Legendre function

of order unity, so that here v = Vi 1i=1,2,3,..., with



-2- P (cos6)

5% =0, (30)

6=6,

and the resulting set of equations is

mB+s - Z(m He LA S 1)

m=1,2,3,..., where 'Av still has the form shown in (23), but now

X = V/ (m+1)
myv m(mH)-v(v+l)

1 0 _1
sind on(coseo) % Pm (cosb) (32)

6=6,

providing v #m, and

(1) m+1 -m-2 (l)
B f_l(d m lm) . (33)

The transverse component itself is

(__ d
b=

(1)

(3B +2) . (34)

Finally, for the axial component of the electric dipole moment, the required zeros

are those of the Legendre function of order zero, that is, v = Vo i=1,2,3,..., with
Pv(coseo) =0 . (35)

The equations that result are

X
(mﬂ)Ag)Mlm:'i (n+ )A(S) Z mv nvv ' (36)

n=

m=1,2,3,..., whereAv again has the form shown in (23), but
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(m+1) (+1) oP

. v
va " T m(m+D)-v(+) smeoPm(cosOo) 96 _ (37)
9-00
providing v ¥ m, and
3. 1 -m=2 (3) 1
Am " Im+l (d % " 2 61m) ’ (38)
implying 3
(3)_d (3)
al =5 (3A1 +1) . (39)

We thus have four infinite sets of simultaneous equations from which to
compute the dipole moments. All four sets are of rather similar form and are
to be solved for a variety of 00. Each contains a quantity va whose simplified
expression (22), (32) or (37) is valid only if v # m. Knowledge of the Legendre
function zeros shows that this condition is certainly fulfilled if 6, > 7 .

4. Numerical Results

For any given value of 6, there are three main computational tasks associated
with the solution of each equation set: (i) the calculation of an adequate number
of Legendre function zeros; (ii) the evaluation of the various factors involved, including
the numerical integration of the expression forAv; aﬁd (iii) the matrix inversion. Only
the first of these is other than straightforward, and even here we were fortunate
in having available a procedure that had been developed [7] in treating
the scattering of an electromagnetic wave by a semi infinite cone [8] . Taking,
for example, the problem of the transverse electric dipole moment for which the
required zeros are those of the Legendre function of order unity, we write

1 ) 1 (+1)!
P (cosf )= - S (6) (40)

o
{w"sineo (v+é)'. v

where

11



(- 5) 0,
5,607 2 —tztain {4206, ) . @1)
’ 2’k
valid for 0< 60 <m . The series does converge, albeit slowly, at a rate
which is independent of 6, , and the zeros can be found by an iterative method.
Similarly, for the zeros of the Legendre function derivative, we use the re-

currence relations to write

9 _1 v (v+1)! _ 1
=P (cosb )= - cosf S (6 )-(1+ =)S (6 )} ,
B VT penls ey | oV o WowlTo

(42)

and again resort to an iterative method. For the zeros of the zero order function,
however, no program was available, but in order to use to the utmost the pro-
cedures already developed, the recurrence relations’ for the Legendre functi on

were employed to give

BPl

_ v
Pv(coseo)- S wo

1
+ cos BOPV . (43)

With the aid of (40), the right hand side can be expressed in terms of the same
function SV(GO) previously computed, and the zeros again found by iteration.

The computations were carried out on an IBM 360 computer, and numerical
solutions to the sets of equations shown in (24), (27), (31) and (36) were obtained
for 00=95°(5°)1500(2 1/2°)177 Y/2° . Only the leading coefficients A(ln, B(IS), Bgl)
and A(f ) were printed out from which the dipole moments .were deduced as
indicated in (26), (29), (34) and (39), and in each case it was found that a
maximum of 20 zeros was adequate to give results accurate to three significant
figures. The values of a(ll) b(s) bm and ‘(3)

b ", by ) are plotted as functions of 6, in
Fig. 2.
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Having determined the dipole moments, the lowest order electric and magnetic
fields can be obtained at all points exterior to the cone by substituting into the
equation (6) the expressions for Pand M given in (12) and (15) respectively.

The far zone back scattered field is of particular interest to us. This follows

from (8) on putting £=- (£, m, n), and the direct and cross polarized components

are then
eikr
nl) E, " )=—k? Sy
r-- ,m,n (44)
ikr
_e
(120 n ) E lé— -(l = kr SL

respectively, where, from (8),

8 =K [ mpn)- 2=ty myn)- o]

S, = k3 [(12, mz,nz) P+ (!1, ml,n1)~ _L_'I]
(2)_ (2) A

(45)

Substituting from (12) and (15) and recalling that 8 = nl 1 , we now have
s, = {a(ll) 2620 <3),} , (46)

= (1__@, (1) (3)
k nlnz{1 -a, +b -b } (47)

In terms of S, and S, , the direct and cross polarized components of the back

scattering cross section are

o, =arkds)?, o cargf (48)

It will be observed that only the direction cosines n, and n, appear in (46)

1
and (47). If, therefore, the incident plane wave has either Ei perpendiculap to
2 (so that n,=0 ), or gi perpendicular to 2 (so that n2=0), S, is zero. This is
a general result, true at all frequencies. In the particular case of axial incidence

13
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(n1=n2=0),
1) (1
-k (b( )_ ( ) - (49)
This is the situation in which Siegel's empirical formula is relevant, and it
implies
_.3 VF
lS"l - k ""r— N (50)

where V is the volume of the cone and F is the shape factor given in (2).

In Fig. 3 the exact values of (kd)'3S“ obtained from (49) are compared with
the values predicted by (50), with the 'length-to-width' parameter 7 in (2) taken
as T = i cosec 6 (see [2] ). It is observed that the empirical formula is
remarkably accurate for narrow angle cones, but overestimates the scattering
by an increasing amount as 6, decreases, and is in error by as much as 2.7 dB
for 6, = 950 .

As noted in Section 1, the empirical formula (50) is also widely used to
estimate the scattering at all angles of incidence in spite of its inherent
limitation to axial incidence and its consequent inability to predict the aspect
variation of the back scattering pattern. To illustrate the error that is incurred
thereby, we can use (46) to compute (kd)"?’S“ as a function of 6 where 6 is the
angle from nose-on measured either in the E-plane (n1=sin6, ng=0) or the H-plane
(n,=0,np=8in6). The results for a narrow angle cone (6,=165°) are shown in
Fig. 4, and those for a wide angle cone (6,=120°) in Fig.5. For the H-plane
patterns, the angular variation is relatively small, amounting to only about
10 percent for 90=165° and 16 percent for 0°=120°, and in the latter case the
estimate obtained from (50) is almost as close to the average as it is to the nose-on
value. In the E-plane, however, the scattering is more aspect dependent, and
significant errors could result from using (50) without regard to aspect. This
is particularly true for the wider angle cones for which 6=90° is a minimum in the
pattern, and the estimate obtained from (50) is too large even for 6=0. In
contrast, 6=90° is a maximum for the narrow cone, with the situation reversed

in the H-plane, and from an examination of (46) in conjunction with Fig.2, it

14



can be seen that for a cone having 6, 22 161° the H-plane pattern is independent
of aspect, whereas for a cone with 6, 2 1510 the scattering in the E plane is

aspect independent.

5. Conclusions

In spite of the relative simplicity of electromagnetic scattering problems
at low frequencies, the number of finite bodies for which the low frequency
scattering behavior is known precisely is still very limited, and it is because
of this that the empirical formula (50) i8 so widely used.

A body of considerable practical interest is the round-backed come , and
by means of a mode-matching technique, we have determined the complete dipole
moments from which all features of the low frequency scattering behavior can
be deduced. Numerical results have been presented for a large range of cone
angles. When the back scattering cross sections are compared with those
predicted by (50), it is found that the latter is remarkably accurate for small-
angle cones regardless of the aspect. For wide-angle cones, however, the em-
pirical formula overestimates the nose-on cross section, and because of the
greater aspect variation now displayed, significant errors could be incurred on

using (50) to estimate the off-axis scattering.
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Figure Legends

1

2

Cone geometry, showing regions for mode matching.

Computed dipole moments: -a(ll)/ d3, -_ -a(13)/d3, _——-
(1), .3 (3),.3
b1 /a°, — — —; and b; [d°, - -~

Normalized back scattered amplitude for axial incidence: exact, —;

approximate (equation 50), - - - - - .

Normalized back scattered amplitude for off-axis incidence on a 15°
half-angle cone: exact (E-plane) —, (H-plane) — — — .

’

approximate (equation 50) , - - - - .

Normalized back scattered amplitude for off-axis incidence on a 60°

half-angle cone: exact (E-plane) —— , (H-plane) — — — .

approximate (equation 50), - = = - .
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