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ABSTRACT

ELECTROMAGNETIC PLANE WAVE SCATTERING
BY A PERFECTLY CONDUCTING DISK

by

George Russell Mattson

Chairman: Professor Chen-To Tai

In this research, the phenomenon of plane wave electromagnetic scatter-

ing by a perfectly coﬁducting disk is studied for both low and high frequencies.

Consideration is limited to only the far-zone backscattered fields for incident
plane waves having either the electric or magnetic vector parallel to the plane
of the disk.

For frequencies near or below resonance, a method based upon Flammer's
(1953) exact solutions to the plane wave scattering problems is developed for
computing the far-zone backscattered fields for both incident "plzingv;é?\‘rwe;s'. This
method, which involves the computation of various oblate spl;e—r:)_i-dal wave fﬁ;lctions
and has been programmed for use on an IBM 360 computer, is used to compute
direct and cross-polarized radar cross sections for integer values of the disk
ka product (k = free space wave number, a = disk radius) that range from one
to seven. These computed radar cross sections are compared with the same
cross sections obtained experimentally.

o Thé high frequency investigation is based upon an approximate method
proposed and applied by Ufimtsev (1958), which has as its foundation the approx-
imation that for a perfectly conducting flat plate or disk of large radius of cur-
vature the edge behaves locally like a half-plane. Known solutions to plane
wave electromagnetic scattering problems for the half-plane are used to obtain
explicit, though approximate, expressions for the surface current densities on

the disk, which, in turn, are used to find approximate expressions for the far-

zone backscattered fields. These expressions, which are very similar to those



obtained by Ufimtsev for the disk scattering problems, represent a formal
extension of his results to one greater inverse power of (ka) and to greater
aspect angles for the case of backscattering,

Several critical comparisons are made in order to test the exact and
approximate solutions of the plane wave scattering problems. These ’coxﬁﬁa}"—l T

isons are betweeT the exact solutions and low frequency solutions to the disk
scattering problems due to Eggimann (1961) for a ka-product of one half, be-
tween the exact and high-frequency solutions for an intermediate value of ka,
and between the high frequency solutions and solutions due to the Geometrical

Theory of Diffraction, The last comparison is not a quantitative one but is

concerned with the forms of the two approximate solutions. By employmg

the approx1mate results obtained in this research, an analysis patterned after

,/ that of Ross (1967) is used to find new expressions for disk and cone back-

/
/

scattering from expressions due to the Geometrical Theory of Diffraction.
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Chapter I
INTRODUCTION

1.1 General Discussion

Exact solutions to problems of scattering of plane electromagnetic waves by
perfectly conducting bodies of finite dimensions are few in number. For instance,
if the class of body shapes known as oblate spheroids is considered, it is found
that exact analytical solutions are known only for the two limiting shapes, the
ideal @ and the sphere. The solution to the sphere scattering problem is the
simpler of the two and is given in terms of the Mie series, which has proven
amenable to many types of analysis. The nature of the disk scattering problem
has resulted in several different formulations for the exact solution. Solutions
have been obtained by Meixner and Andrejewski (1950) in terms of Hertz vectors,
by Flammer (1953) in terms of oblate spheroidal wave functions, by Nomura and
Katsura (1955) in terms of hypergeometric polynomials, and Luré (1960) using
sets of paired integral equations.

Except for the special case of the direction of incidence normal to the plane
of the disk, few calculations have been done using any of the above solutions.
During the course of this work a means of carrying out some calculations of radar
cross sections using one of the exact solutions to the disk scattering problem be-
came desirable. The solution ggformulated by Flammer was chosen for this work
because it is given directly in terms of oblate spheroidal wave functions, Chapter
IT is concerned with this computational effort and provides the theoretical develop-
ment necessary to calculate the scattering cross sections of the disk as a function
of aspect angle. Actual computations, however, are carried out only for, back-
scattering.

The exact solution considered above is useful only for frequencies near or

below resonance due to é_dﬁverge_ﬁéfe properties of the functions involved, limita-

tions of the existing tables of oblate spheroidal functions, and computer time
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limitations. Consequently, it is desirable to obtain a solution or approximation
that is valid and easily applied at high frequencies. Hence an asymptotic ex-

pansion of the solution is des1rab1e

Jones ‘(1965)‘ ‘(Helns and Jones (1967)) has developed and apphed to the

problem of electromagneuc scattering by a d1sk of a plane wave incident at

normal incidence a systemat1c process which yields as many terms of the

asymptotic development of the solutlon for high frequencies as one is willing

to calculate. An intention to apply the process to the problem of oblique
incidence has been indicated. Other asymptotic solutions have also been con-
sidered. These generally are basedm the principle that the edge of the disk

behaves locally like a half-plane. Different degrees of approximation can be

assumed. In the Geometrical Theory of D1ffract10n an edge d1ffract10n

mechanism, in Wthh each po1nt on the edge dlffracts a cone of rays with the
cone half angle equal to the smaller angle between the direction of incidence

and the tangent to the edge is assumed. This means that the scattered field

at any point in space will generally be the superposition of the scattered fields 7
from a finite number of points on the disk edge. Situations where all points
on the disk edge contribute must be considered separately. An exposition of
the éeometrical\\Theory of Diffraction has been given by Keller'(1962).

Another approach has been suggested and {nvesﬁgated by ﬁfidhfsev( 1958).
This method approximates the local disk edge currents by those that would be
found on a half-plane tangential to the disk at the given edge point. The
scattered fields are then found from the resulting current distribution. The
method, of course, is approximate as it fails to account for perturbations in

the assumed current distribution that arise because of the finite dimensions

of the disk. Ufimtsev has found only the fi?féffe}ni'ini&ch of the asymptotic |

expansions for the far-zone scattered fields. Also, his results are valid only

- for small angles. An investigation of this method is undertaken in Chapter III.

| The solutlon is formally extended to obtam another term in each asymptotic




series and to improve the description of the dependence on aspect angle for
the case of backscattering.
Mention should be made of the fact that solutions for scattering problems

involving the disk may be applied to scattering by a éif’ciﬂér aperture by proper

application of the rigorous form of Babmet's pr1nc1ple (Bouwkamp (1954)) Con—

sequently, an exact solution to plane wave scattering by a circular aperture may

| be found. Conversely, approx1mate solutions to problems of scattering by
| a circular aperture may be applied to problems of disk scattering. In any

case, only disk scattermg w1ll be cons1dered here.

1.2 The Scattering Problem

Figure 1-1 defines the geometry of the problem to be considered. A

plane wave F is 1nc1dent in the yz- plane W1th an angle 0 between the neg—

ative z-axis and the direction of incidence. Fi , which may be either the

incident electric or magnetic field, can be resolved into components in the 6 -
direction and the ¢—direction. Hence any incident plane wave f‘i can be

expressed in terms of the following two incident fields:

L. e—1k(ys1n9+zcos0) (1.1)
1 0 -
R e—1k(ys1n6+zcos0) (1.2)
2 0

. Eg=TpHy

The constants n(r)ﬁz;ﬁdllg appearing in these equations are the character-

istic impedance of free spaoe and the wave number of the incident field

A
respectively. The unit vector 2 has been used in place of - ¢ to indicate

that the direction of incidence is confined to the yz plane An e_]wt time-

dependence has been suppressed here, and will continue to be suppressed

throughout this work.
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Disk of radius a

FIG. 1-1: The Geometry of the General Disk Scattering
Problem. P is the Point of Observation.



The incident field of equation (1.1), which has the electric field parallel to the
plane of the disk is said to be E-polarized. Similarly, the incident field of
equation (1. 2) is said to be H-polarized.

In order to keep the computational effort tractable only the far-zone

scattered field will be considered. ATS?), consideration will be further re-

stricted to only the backscattered far-zone field in order to make comparisons

with experimental data, even though several of the techniques used can be
applied to the case of bistatic-scattering in the far-zone. The behavior of both
direct and cross-polarized components of the far-zone backscattered field will
be investigated. It can be shown that the cross-polarized component of the
backscattered field will depend on the polarization angle ¢ as sin 2y when ¢
varies and all other asﬁééfs of the incident field remain unchanged. In par-
ticular, when ¢ is equal to zero or ninety degrees there will be no cross-
polarized component of the backscattered field. Because of this, the cross-
polarized component of the backscattered field can be expressed in terms of
the backscattered fields due to the incident fields of equations (1. 1) and (1.2).
Since the cross-polarized component of the backscattered field attains its
greatest value for a polarization angle of forty—flve degrees, all measurements
and theoretical calculations involving that“co“n;)(_ment will be done only for this
polarization angle.

Calculation of the cross-polarized component of the far-zone back-

scattered field is straightforward for that polarization angle. Let the incident

electric field be written as

E 3 (1.3)

QII -
=>

E
\/_____

The total backscattefed field is just the vector sum of the scattered fields

due to each cornponent of the mmdent field. Neither component of equatlon




(1.3) will give rise to a cross-polarized term. In any case the backscattered

field may be written as

=s_ 1 sA _sh |
E = (E69+E¢¢) . (1.4)

Ve

Then the magnitude of the cross-polarized component of the backscattered field

may be found from

ol E..L. E (1.5)
where
A A
i, 04
=T (1.6)
1 V 2
If either sign is tak(;; 1n;q;1t1~onﬁ 6)“, eq_lli;.t_ll)IT(I 5) yiglds
s|_1l|.s _s
El= 3 EG-E¢ (1.7)

This simple result will be used in Chapters II and III to find expressions

for the cross-polarized radar cross section of a disk.



Chapter II
EXACT DISK SCATTERING

2.1 The Curvilinear Coordinate System

An ideal conducting disk of radius a may be modeled by the focal circle,

€ = 0, of the oblate coordinate system of which a cut in the fyz—pléﬁéqig shown

in Fig. 2-1. The system of confocal hyperbolae and ellipses shown is rotationaﬁy
symmetric about the z-axis. Only two oblate coordinates, the angular co-
ordinate n and the radial coordinate £ are indicated, as the third oblate co-
ordinate v is simply equal to cos @, § being the angle of rotation about the z-
axis measured in the xy-plane relative to the x-axis. For this reason it is con-

venient to adopt a hybrid coordinate system and use §f instead of v. Relation-

,h,andh
g My O

g

FIG. 2-1: THE OBLATE SPHEROIDAL COORDINATE SYSTEM



The scalar Helmholz equation,

(vZex)y -0, (2.1

is separable in oblate spheroidal coordinates, and its eigenfunctions are

expressible as

cos mf
sin m¢ﬂ )

Ve Pmep=s_Piie,nr Vi, i%’){ 2.2

The functions S 1) m(—ic, i€) are respectively the angular

m/ m/
oblate spheroidal functions of the first kind and the radial functions of the ith

(-ic, ) and R

kind, i=1, 2, 3,4, following the definition used by Flammer (1953) except

that the subscript £ used here is ‘his sﬁbs'crip{n. The quanﬁﬁf c is

.. equal to the product of the wave number k = 27r/>t and the radius of the disk

(c = ka).

(1)
m{
associated Legendre functions by

The angular functions S (-ic, n) can be expressed in terms of

Sm(l)(—ic, " = i: a™p ™ (2.3)

n m+n o
n=0,1

The prime indicates the sum is to be taken over even or odd values of n

‘ {
according as (£ -m) is even or odd. Quite extensive tables of the d[:n have
been published by Stratton, et al (1956).

The angular functions are orthogonal over the interval (-1,1) in n. That

is,
1, ,
N & = S(—l)(—ic )s(l)(-' ) d (2.4)
ml Er ; mr J n mj lc’ n r, J 7:- -
with =
[0 02

2
S (o 2m) ! (@)

Nne =2 Z n!(2n+2m+1) (2.9
n=0,1




Further properties of the angular and radial functions will be developed as

needed. In general the notation used here will be that used by Flammer in

Spheroidal Wave Functions (1957), which gives a comprehensive discussion of

the properties of the oblate spheroidal functions, Numerical values for the
functions are given for some values of ¢, n, and & ; and tables for the co-
efficients in the series expansions of both angular and radial functions are listed.

2.2 Solution to the Scattering Problem

If the field f‘ in Fig. 1-1 is either the electric fleld E or magnetlc field
, then both T and the scattered field F satisfy the wave equation,

thVx F‘- k2f‘=0 , (2.6)

which is a special case of the vector Helmholz equation, The bounddry con-

dition on the tota.l field I«‘t = I‘l + —f‘ S on the disk surface is then either the

Dirichlet (nx F 0) or Neumann ﬁ X ( Vx F ) 0) condition for F equal to the

incident electrlc or magnetm f1e1d respect1ve1y The scattered ff1e1d F° must,

in either case, satlsfy Sommerfeld's radiation condition as the distance from the
disk becomes infinite (£—» o ).

No vector function that is a solution of equation (2. 6) and that also satisfies

either the Dirichlet or Neumann conditionon the disk is known, or is one likely

to be found (Morse and Feshbach; Sec. 13.1, 1953). In spite of this, Flammer
(1953) has shown that it is possible to solve exactly the problem of scattering
of plane electromagnetic waves by a perfectly conducting disk in terms of

even wave functions of the M and N type given by

! u(l) (1)

em (n, &, 0 - 2 | (2.7a)

s &, ¢)‘V¢/m£

_ . - _ ] : N
Nem Eu(l)(n, g, B)=k VXMemZ u(l)(r;, £, ¢) oo 12(2 7b)

u=Xx,¥y5,z,
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‘where' | "bemll(i)(n’ €, @) is given by the part of equation (2. 2) that is even with
respect to the angle §.

B The solutions to the scattering problems as given by Flammer are com-
pletely general and give the scattered fields everywhere in space for any angles
of incidence and observation in Fig. 1-1. However, considerable simplifica-
tion results if the point of observation is restricted to the far-zone and only
terms of order (R)_1 are retained. This will be done here, and calculations
will be carried out only for the case of baokscattering at arbitrary angles of in-
cidence in order to compare with experimental data and various approximate
methods for describing the far-zone fields of the disk for plane wave incidence.
This restriction is not as severe as it might appear for all the essential fea-
tures of the computational problem are preserved, the major differences being

that fewer values of the radial functions need be found and that fewer terms are\

needed, All of the quantities dependent on ¢ and 6 compufed for this special
scettermg problem are also needed for the general one. Expressions for far-
zone b1sf'atlo scattering by the disk for the two incident fields F'of Fig. 1-1
given by equations (1.1) and (1. 2) have been relegated to Appendix 2-B. Only
backscattering will be considered in the following, and the far-zone scattered

fields will be given in terms of spherical cooi‘dlnates

The far-zone backscattered electric field due to the incident field of

' equation (1.1) has a component only in the $-direction, E; , given by
| E ;
| ‘

| 2
! ES¢ = —no E kR Z( 1m 2(2- 6 B ( G)Z mf (S(l) (-ic, cos 9)
‘ E

g (
l +2a (c 6)[ i —M (S(1 (-ic, cos 6)
1 [=mt2 Nm+1 { mtl, 4 )
|
(1—60 ) z ’J m-1, ,le (S(l) )) (2.8)
m 1 l( ic,cos 9 )

mll
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where

6. = 0, m + 01 Kroneker delta function,
Om 1, m=0

c = ka,

= € = impedance of free space,
no uO/ 0 p p

and R is the dlstance from the disk at Wthh the f1elds are measured

()

The angular function S - = (-ic, cos ) and normalization constant

N have been discussed in section 2.1. The J- -, (c) and J' . (c) are

mi m ml
"joining'" factors defined in terms of values of radial functions (or derivatives
of) of first and third kinds on the surface of the disk. The « (c 6) and
B (c 6) are "weighting" factors that determine the contributions of terms in
the various vector wave functions to the scattered fields. A prime on a
summation sign in this chapter indicates that the sum is to be taken over alter-
nate values of the index.

The joining factors J m)a(c) and J' _ (c) are defined by :

m/

rR(nl& (-ic, i0)
—()—'— (£ -m) even

3,0 X R (-ic, 10 (2.92)
L0 (¢-m) odd
(0 (£-m) even

J' (C)‘- . (2.9b)

mf iRS&(—ic,iO} S

—(—')T——- (£-m) odd
LR (-ic,i0)

It is also necessary to consider four other joining factors that relate

the angular functions for cos 6 =0 to the radial functions of the first and
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third kinds. These are defined by the following expressions:

s (-ic,0)
m £
( ) ( o (£-m) even
-ic, i I
K(rlx)l ,0) = s Aﬁloa)
0 (£-m) odd
(1) ( -ic, 0)
—(—)'——— (£-m) odd
' R (e, i0) | __
KD (= ™! (2. 10b)
m! S T
- i 0 (£ _—m) even
;1)1(—10, 0)
( 3 (£ -m) even
—— (-ic, 10) —
(3) (4o ‘mi
K@= ™ | (2.11a)
0 (£ -m) odd
0 (£ -m) even
K(?i)’l ()= ¢ ot (21’%_)
m. W' (e, 0
_(r%____ (£-m) odd
~ ( -ie, i0)
\.

The primes on the angular and radial functions indicate differentiation with

respect to the angular (1) and radial (E) varlables respectlvely The varlous

kinds of joining factors are not/ 1ndependent but are related by

K‘Sl §0 27400 K( v (2.12a)

C I T
KD (=30 ,(0 K(ﬁ-i-f(c). (2.120)
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The weighting factors afl(c,e) and Bfl(c,e) have not yet been considered

in detail. These are complex functions of 6 and c given by

BEc.0)=1-2%(c,0), (2.13a)

m m -

a)l
(3)
Z bop(c,0) Ko (@)
E n=0
a (C 9) = / o . )

0 (3) 1 (3)! o Ty
2 bon(c,e) Kon(c)- 5 aln(c,e) K1n (c) 7(2. 13b?
n=0 n=
Y /
zb (.0 k0

1 1n
a (C 6) @D , 1 s
(3 (3) (3)
z b (c B)K (c) z a (c G)K (c) Zazn(c,B)Kzn(c)
B n=1 " Wn=1 n=3
Lo - (2 iv3Ac-)
z b (c,G)K(S) (c) o
mn mn
@ (c,60)- o — :
3) 3)! (3 N
z (c O)K‘ (c)—— z (c G)K( +1 l(c) 22 ( G)Km In (c)
n=m n=m+2 n=m
L Ty
where
b (e,0) = 22-6, )i" "N (sin 0) 'Y (cic, cos o) (2.142)
8 (€0 = -202-8 )i“'lN;n(cos 9)'181(1111-)1-_(—ic,cos 6) . (2.14b).

This completes the /e t{pressmns for far -zone backscattermg for E-

polarization. For H-polarization the s1tuat1on is entirely similar. The incident

magnetic field is now that of equation (1.2), for which the far-zone backscattered

electric field will have only a 6-component.
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It is
-E /e11_iB [00) (c) ) .
E;‘ = Z( = 22, )B (c 9) z ( (-ic, cose))
H 0\ H,, -
| £=) n!if_l;,
|o
— J (c) 2
H mt+l1,4 (1) .
+2a (c,0) z —_— (-ic, cos 0)
m e Nm+1,£ ( m+ 1,1 )

2 (i 15)

+(1_6 Z m-1, £ (1) (-ic, cos 9))
f=m-1 mli m-1,4

All quantities are as defined before,except for the weighting factors, which are

given by
Blc,6) = 1-ali(c,0) (2.16a)
ib (c, G)K( )(c)
a% - “a; 1 — ; (2. 16b)
! 3)! 1 & 3)
z by (<. e)x( (0 +1 Zaln(c,e) K(ln(c)
n=1 n=1
Q 1 '
b (c G)K(S)

c(: -00 ’ (ZI&T
Zb (c 9)1<(1)(c)+ aOn(ce}{(3)(c)+—za (c, 6)]{( )(c)
= n:

n=2
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Q / 3)'
b (e, 0K (o

H _n= m+l1
m o , 3)' 1 ’ ) 3)
Z bmn(c,G)K(mn(c)+-2- am_l,n(c,G)K( (c)+—z Lfed I<(m+l (c)
n=mt1 n=m-1 n=m+1
m > 1: ',_ .
(2. 16d7)ﬂ

with b (0,9) and a_ (c 6) as given by é(iuauons (2 14a b)

2. 3 Calculatlons Necessary to Implement Equations (2.8) and (2 15) \

In principle, equations (2.8) and (2.15) allow computation ‘of the far-zone

* backscattered fielNds for a{h | arbitrary incident plane wave for any disk. Actual
computAatmhs however, are limited by the tables used and by convergence
propertr1esn of the various series as c is varied. For this work the tables of
Stratton, et al (1956) have been used. These contain the coefficients dn m! for
0<m, £<8 and varying orders of n up to 23 for a range of c (g in the tables)
from ,1 to 8 in increments inc of .1 or .2, The coefficients are given to
seven significant digits, which is less than modern computers can utilize, but
which is ample for the computations done here. The tables do not contain values
of the normalization constants or of the joining factors, so these must be cal-

culated from known propert1es of the oblate sphero1da1 functions.

Equations (2 3) and (2 5) allow computation of the angular functions

and normalization constants in a straightforward manner given a program to

calculate the associated Legendre functions needed in equation ( 2; 3) A Ezﬁc;_r 7

lation of the joining factors presents the greatest challenge and requires some
further development of the properties of the angular functions. The angular

2
functions may be expressed in power series expansions of (1 - 1)

moo

()( -ic,n) = (1 77) Cm(l - 2k, (£ -m) even 2277;)
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‘m
S(l) (-ic,m =n(1-n )2— ijz (1—?72)k , (£ -m) odd (2.17)
m{ 2k et
k=0
{ -
The Cgll{ 's are related to the dI;w coefficients by
m! | 2 (2mt2r)! ms
C, = ~(-1) (m+r+—) d , (£ -m) even,
2K ™ () 2r: 2’k 2 S
) ‘rTk | (2 18a)

®
ml __.L.__ (2m+2r+1)!

¢ 2 k‘(m+k)‘z (2I‘+1)l ( )( +I‘+—) 21"*‘1"( m) odd,

\F ek (2. 18b)

2k

. where
(n) =1, (n)’k = n(nt+1)....(n+tk-1) .

The Cg]l'f enter into the calculation of all the joining factors. For the
(c) and J n‘w(c) the equations are
1
(c) = - , (£-m) even, - (2.19a)
- QT (-0 -
2 mf
5o =— L @-m)odd ,
1-— Q" (-ic) (2439!&*

where the function Q (-ic) has different expressions when (£-m) is even and

odd Briefly,

- 1
(2m-2r) ! (2 m) eveu,

()™ %Lﬂ(-m)k L,
Q. (iey=— o (e
mt ¢ r r![m r(m r)]2

r=0

(2 20a)
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(1! L
Y [mf( w)] 5 me .y (2m-2rr1) BN
r

5K s - _ 1- d’
le( ic) c Za (-ic) m-r 2’ (-~m)_(,)gf
r! |2 (m-r)!
r=0 T
(2. 20b)
and a;nl(—ic) is defined as
r [00) .
osz(-ic) g/ — sz xk -2 (2 21)
T T 2k . -
dx k=0
x=0

The calculation of a;nf(—lc) is straightforward, but requlres tedlous

m/
differentiation The series for a/;nﬂ(—m) in terms of the CZk will consist of a

finite number of terms and is g; given for 0 <t < 8 in Appendix 2-C in terms

of the normalized coefficients 021?11 defined by

'mf_ m¢ [ me T
Co =Co [Cy - . - (2.22)

By v1rtue of equations (2 20a b) and (2.12a, b) it is only necessary to
e LD (1)!

determine a means of finding values for the K !

be able to calculate all of the joining factors. Reference to equations

(c) and K' "’ (c) in order to

(2.10a,b) 1ndlcates that only angular functions and radial functions of the

first kind are involved. The radial function of the first kind and its derivative

at & =0 are easily found from

Z:m
(1)

R (-ic,i0)=(-1) 2 ™ (t-m)t m!2™ me

(£+m)! (2m+1) 0 (-ic),(£-m) even, SZ,@
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f-m-1

SO T2 mel (fem)! me2™ (o o
R p(He,i0=(-) = ™ e g (1c) (¢-m) odd. gﬁz@

Values of the angular function of the first kind and its derivative at ;7 = 0 may

be obtained either from equation (2 3) or equations (2 17a b). For the com-

putations done here it was decided to use the latter equations, since the

Cgllf 's must be found in anycase, and since the resulting expressions are quite

sirrlple. For the angular function and its derivative at n= 0, equations (2. 17a ,b)

‘y1eld
(0.0) 1 ' R
Viie, 0 = o > o (f-m) even,  (2.242)
k=0
o
mﬂ 1
Sirl,}(‘ic’o):Co z 02‘;{’1 , (£-m) odd. (2.24b)
K=0

Test values of the angular function at TI = 0 computed from equations

(2.24a) and (2 3) were found to be in excellent agreement. / ' The ser1es in

eqiuat1ons (2. 24a b) however 'sometimes converge rather slowly to small

values, espec1ally for large values of, c. This results in an effective loss in

the number of significant digits in the summatmns g1ven by equat1ons (2. 24a, b)

compared with the input data. For the range of c cons1dered tlus loss 1sl

oonﬁs;dered to be no more than 3 digits. In any case, computatmn of the
0121113 's was done as carefully as poss1b1e‘~Th1s effort appears to have been

successful in keeping propagation of round-off and other errors to a minimum.

2.4 Numerical Computations and Comparison with Experimental Data

Let the scattered fields of equations (2 8) and (2 15) be written as

ikR
S EOe E T ot
b Mo T PO, 2.8)

E
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ikR

S s _EOe _ i Iy y
= N —————— s 2.1 1

Fo " Mot T Tim Pe.6) (2159,

where P;' (c,0) and PH(c 0) are complex quantities equal to the entire sum-

mations over m in eduatmns (2.8) and (2/ 15) respect1ve1y In terms of these

quantities the radar cross-section (Rcs-normahzed to a square wavelength)

( can be found by means of the expressmn

[El aw

2

i

_ij_zhm 47rR
2 B xz IEO

For the incident field of equation (1. 1) the radar cross-section in dB is,

e\ /1
10 log. .| —= 20 log P (c,0) (2 26)
0\ .2 |
& (r
S1mllar1y, for the incident field given by equation (1.2) the result is
P"(c,0) (2.20)

Iy 1
10 loglo ;2— =20 10g10<{7f—

Fmally, for the cross-polanzed scattered f1eld for a polarlzatlon angle y = 45°

e

—_—

the radar cross-section in dB is found from equatlon (1 7 to be

P(c,6) - P, 6)

—

%\ '
10 log1 5 = 20 loglo p—
A 2 \/ T

A program has been written to compute the direct and cross—polarlzed

radar cross- sectlons for any value ofl ¢ for which mput data are avallable for

The restrlctlon on 6 isnecessary be-

an angular range in 6 of 0< 6 <I 9 -
cause the program would attempt to divide by 0 at either 0'or 7, even

| though the actual solutions to the scattering problems have well behaved 11m1ts \
The input data consist of the value of ¢, a l1sf_c§ the -

at these points.
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{
d;n (-ic)'s , and the angular range to be considered. In addition to the various

radar cross-sections, the program also returns the real and imaginary parts of

PE(c,B) and PH(c,O), the normalization constants N (¢) and J' (c),

mlm,@

m/!
. . e .
Km ﬂ(c) and Km Z(C)’ and the C2k s. A complete listing and explanation of the

program is given in Appendix D. Also included are illustrative tables of the

N gD

mi
! -
mt’ K I J ﬂ(c), J ?(c), and C,, for c =4.0.

2k

Values of computed direct and cross-polarized radar cross sections
given by equations (2.26) through (2. 28) are compared with experimental re-
sults obtained at the University of Michigan Radiation Laboratory experimental
facility at Willow Run for values of ¢ of 1 (1) 7 and values of 6 of 20(20) 88°
in Figs. (2-2a) through (2-8¢c). The experimental data are Vgive;b'y>two sets ef‘\
solid lines which reproduce the data obtained as the incident field w;e swebt -
through a 180° scan from edge-on incidence through normal incidence (6 = 00)
and on to edge-on incidence. The two 90° segments were thgerili plotted one upon
the other as a function of 8. The computed values are indicated as points
every two degrees. On the whole agreement between the experimental and
computed data is quite good for the values of ¢ that are used. There are,
however, several types of discrepancies between the experimental and computed
data that require explanation. For 1nstance the cross-polarized radar cross

sections tend to show greater differences than the corresponding direct radar

cross sections, Th1s behavior is not very surprlsmg 1n hght of the

fact that the cross polarized return 1s, generally much weaker than the two direct

returns. Indeed, a difference in peak magnitudes between the two types of

cross sections of 20dB or more occurs several times. Consequently, the

cross—polarlzedWreturn is more likely to be affected by stray returns and

equipment limitations. The stray returns would generally be small and would
manifest themselves principally by displacing the locations and changmg B

the amplitudes of the nulls in the experimental patterns. Evidence of thls type
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of behavior is found in all returns for ¢ = 1.0 where the experimental data are

consistently highér than the computed values. Again, in Fig. 2-3a similar
behavior is found for the E-polarized return for 6 near 900. The behavior

of the computed return is more consistent with the observed behavior of the
cross-polarized return than the experimental data'i?é: Both cases cited are
for low values of ¢, and consequently low amplitude }Efu/i'ﬁs, which are, of
course, juSt the situations where stray returns would cause the greatest errors.

Becausé o£ ;he symmetry inherent in a disk, the cross-polarized return
for avpliane rwave;f- n(;rmai (;;0) iﬁci&égc; ShOIli(i bérzérfro. In practice, how-
ever, it prorves very difficult toro‘gtairn this condition with the equipment avail -
able. The major limitation is the degree of isolation available in the receiving
antenna for signals ninety degrees out of space phase with respect to the
desired signal. The direct return at normal incidence is so strong that the
receiving antenna will pick up a slight error signal. This error signal will
increase with increasing ¢, an effé& that is actually observed in the strength
of thepro?sf—polarized return at zero aspect angle.

For large values of ¢ and 6 there occur large discrepancies between
the measured and computed returns for E-polarization and cross-polarization.
These are lbél;eve;i\ to reflect errors in the computed returns due to poor con-
vergence of the va‘r—ious series used in computing the radaig cross sections.
This effect must be observed eventually, because of the limitations inherent
in the tables of Stratton, et al (1956) that were used to compute the oblate
spheroidal functions. The actual differences do become worse with increasing
c, which is consistent with this view. The given data then can be used to
determine in a qualitative way the limits of convergence of the exact solution
as programmed.

The success of the programming effort a—gldutlin'é-c_i in this section implies
that there now exists a gfia-nrdard, the computed retﬁrns, ;clgainst which both

experimental results and results due to approximate theories can be judged.

Such a procedure will, for instance, be used in Chapter IV.
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FIG. 2-2a: RCS of a Disk for E-Polarization; ¢ = 1.0.
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FIG. 2-6a: RCS of a Disk for E-Polarization; ¢ = 5.0.
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Chapter II

HALF PLANE APPROXIMATION TO DISK CURRENTS

3.1 The Basic Assumptions

One usually assumes for a first order approximation that the surface
currents on a disk are given by those of physical optics; namely 28 x H' on the
top surface and zero on the bottom surface. This approximation gives reason-

able results only for large disks for near normal incidence (the angle 6 in Fig.

1-1 srﬂall) and can predict no cross-polarized return for any value of 6. The

presence of edges on the diffracting body is neglected and edge conditions

(Béu@a?p(l%él)) for the surface current density are violated. These edge

conditionrs require that the component of surface current density normal to

the edge remain finite at the edge while the component tangential to
the edge become finite as the reciprocal of the square root of the

distance to the edge. A better approximation that can satisfy the

edge conditions is based upon the observation that for a disk of radius much
larger than a wavelength the edge appears locally to have the properties of a
half-plane tangential to the edge at the given edge point. We may then add to

the physical optics current density a perturbation term that gives at the edge of
the disk the current density that would exist on the tangential half-plane. Since
for distances greater than a wavelength from the edge the half-plane current "
density approaches that of physical 6pﬁcs, the perturbation current density alon;grr o
a ray proceeding from the given edge point tﬁlixiqggg‘the center of the disk may

be taken to be the difference of the associated half-plane current density and

that of physical optics. This approach was followed by Uflﬁgtgv (1958) and

will be used here to extend his results formally to greater values of § | and

inverse powers of (ka).

43
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3.2 The Half-Plane Currents

Figure 3-1 gives the statement of the half-plane scattering problem. The
incident field is a plane wave directed obliquely to the half-plane as shown.
Because of our interest in finding the surface current density along a ray normal
to the edge, the observation point P is restricted to lie in the x'y'-plane. The
incident field F will be restricted to lie in a plane parallel to the half—plane

and may elther be ‘the incident electric field or the incident magnetic| f1eld

For Fi = HH (H-polarization), the incident fields may be written

-ikS
H [—'(6 (cose Q —cos«%sm 96 ) e , (3.1a)

2
- (cos 90+cos2 a sm2 6 ) y' +\

=i 0 . L2
EH —l._,———-——(e_ 2) [sm @ cos « sin %Q
0,: )

+ sin @ cos 60 sin 60 7 '] e—lkS . (3.1b)

Similarly, for f‘i = P._I]; (E-polarization) the incident fields are given by

EE l—-,(e (cos 60 x - cos @ sin 60 2) e: -ikS s (3. 2a)

2 2
- 1
E l—-,(e [smacosasm Gox (cos 9 + cos asm 6 )y +

+ sin @ cos 6 sin 66‘ ] o TIKS , (3. 2b)
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‘where in the above equations

- 2 2 L2,
l—l(eO,a),' \/cos 60+ cos cff sin 90 E

+2z'cos 6.,

S =x'cosasinf +y'sinasin60 0

0

Eq = Mgfto- A

The exact solutions to the three-dimensional diffraction problems for
a half-plane may be obtained in a straightforward manner from those for the
two-dimensional diffraction problems (Born and Wolf (1964)). The three

dimensional solutions are given in terms of the following incident unit plane

waves:
Aj L
E. = (-cos @ cos O %' - sin @ cos §_ J' + sin 0 Aye ik (3.3a)
1 B 0 0 0%7°%

Ai S .

Hl1 = (-sin « Mt cosa g‘")\e ikS (3. 3b)
L

A -

E, = (sina ' - cos ofry eIk (3. 4a)

Ai B

H, = (-cos @ cos 6 &' - sin @ cos 6 §‘ + sin 6 Q‘)!e ikS (3. 4b)

The fields of equations (3. 1a,b) and (3. 2a,b) can be expressed in terms of those

of equations (3. 3a,b) and (3.4a,b). For H-polarization we have:

i * H0 i Ai Aj
HH= I-v'—(e—&) hsm o cos 60 H1+ cos « H2, (3.5a)
0, :
+E.
=i 0 [ . Ai i
EH —’—,————(60 @) L-sm @ cos 90 E1+ cos C'Y ﬁz‘ (3.5b)
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For E-polarization the expressions are:

+E -
—i 0 Al il o
EE = r,(e ) [cos a/E1 sin a cos 60 ﬁz | (3.6a)

0 J

+H

=i 0 Ad Ai]
—— - §i .6

HE r(%a“) [cos a/H1 sin a cos 60H2 (3.6b)

The solution to the two-dimensional diffraction problem corresponding

Al .
to El is given by

*// Y
| Al
E ="Vz"~‘= [U(z ’1% cos——) -U(2‘/kr cos?)] gl , (3.7)
vivvl_lereﬁ Z\F{i cos‘lé 7
T 2
4 |
. \ ir 2 -
U2 YEE cos ¥) = o Tkrcosy [ A0 2 © 4 (3.8)
T 9 9
_ [ i - - 00
w1’2=¢;‘a3

and r is the distance of the po1nt of observatlon from the edge Of interest

here is the tangential value of H1

along the half plane for arb1trary

forming

values o 0

0 This value is found by

: S
V' = V(k sin Go)l_e tkz' cos 9,

3

\

\‘\\ ( 3 . 9)

where the function V(k sin 6 ) is obtained by replacing the wave number k

in V of equation (3.7) by k s1n 90
and Wolf (1964) the desired value of H

- -1 1
70 @

8V'
a}{Y

y)
¢=0, 2r; 2z

Utlhzmg equatlon (11. 6 4) of Born

1 ~is given by

(3.10)

0
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The components of ﬁ 1 that are tangential to the half-plane surface are

(1)

fp p=0, 21 0 (3.11a)
- ! qf
|¢ . = -2sinaF (kx' s1n6 ) ikx s1n60 cosa
& a — i(kx' sin 6 + I
- i sin 6, S“‘zf 0 4 (3.11b)
(1) = i 1o a, -ikx'sin 6 cos «
HX,¢=27[—-2smaF(kx sin 0, 7{_2)9‘ 0 _

, 5 o i(kx'sin @ +I
" Vi sime. S22 ° , 0 4‘ . (3.11c)

0

The function F(kr sin 6 a) is a Fresnel integral defined as follows:

|
\

r sin 60 ‘ ‘\} kr sin 60
————cosa \\ cosa

17r 2 -
F(krsm@ Q) = (-1 ,2 dT"‘+f(_1 (3.12)

The solution to the two-dimensional diffraction problem corresponding to the

incident magnetic field ﬁlz

- ¥
H=W% [U(ZJE—COS—)+U(2FCOS—)]Z‘ , (3.13)

where the function U(2 JE cos Sé) and gbl o, are as glven in equatlon (3 8).

) e

is given by

In a fashion analogous to equatlon (3.9), we form

-1 !
W =W (ksing) e 4 %% (3.14)

The des1red solution to the three dimensional diffraction problem due to

the incident magnetic field H may be written with the help of equation

2
(11.6.5) of Born and Wolf (1964) as
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ﬁl(z) -

(3.15)

Only the x'- and z'-components of H (2)along the x'-axis are needed. They are:

(2) ~ -ik x' cos @ sin 60 o
H =2sinf e (F(kx' sin @, —)) (3.16a)
Z ¢=0 O - 0 2
~ -ik x' cos @ sin O
H(z,) = 2sinf_e | 0 (F(kx' sin 6, 7 - %)) (3. 16b)
z p=27 -
~ -ikx' cos @ sin O
H(z,) =-2cosacosf_e 0 (F(kx‘ sin 90, C_l’)) -
X ¢=0 » 0~ 2
A
—M—L— cosf _cos = e ! sin 90 ' 4 ) / (3.16¢)
7kx' sin 60 0 2 - “! :
], = e e, \
! -ikx' cos o sin 6 \
f H(2,) =-cos§,( 2cosae 0 (F(kx' sin 6, 7 —‘—;-)) -
'( X g =on

T
+4)

i(kx' sin 6
—2——— COSQ € 0
Y rkx'sing, T2 (3.16d)

The total surface current densities incrlucierdr 7(7)n th_eﬂ_hglfr—glane alo;g };he x'fa{xis
by the incident fields of equations (3. 3) and (3. 4) may easily be found from
equations (3.11) and (3. 16) respectively. We wish, however, to find those non-
uniform current densities that are defined as the difference between the total
current densities and the current densities assumed by the method of physical
optics for the two types of incident fields. The physical optics current density
is simply given by 23 X ffi on the illuminated side of the half plane and by 2 on

the shadow side. If we limit o to the range 0 La<lm, 2 becomes 9‘, and the

two physical optics current densities are given by
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-ikx' cos @ sin 9

=(1) _ A_AL_ A,
p_o.—2y’xH1 2%' sinae s (3.17
. . -ikx' cos @ sin 6
— Ai | Lt
K(z) 2ny1 = 2 (sin6 X'+ cosacos z')ef s 0
p. O. 2 OA ' 0" "~ (3.18)

for § = 0,and by zero for @ =27r

Subtracting thése cﬁrrent densities from the total current densities
obtained from equations (3. 11) and (3. 16) one easily finds the desired non-
uniform current densities to be’

(1 ' - -ikx' cos @ sin 90
=Ky )L ={2sinaje [F(kx' sin 6, —) 1]
2w

= (1)
KN

p=0

3 1
. 5 -n_e\I(kX s1n90+4) A,
Tkx! sinGO St 5 3 Z

(3.19)

-ikx' cos @ sin 6 ~
(m =2e O I ruext sing, %) 1]
0’2
=20 i

=(2)
N

b-0

+0y

1
-1(kx s1n60 n A

son M A 2
sinf_x+ J =
X [1 gX+cos acosBO z]+ T’ oin eocos 90 cos 3 Te
: (3.20)

where use was made of the easily proven relationship:

F(kr sinf,, 7+a) =1 - F (kr sin 6

% o @

The non-uniform surface current densities, unlike the total surface
current densities, are the same on both sides of the half-plane. Since an
approximation to the non-uniform surface current densities on the disk is
going to be obtained from equations (3. 19) and (3. 20) by purely geometrical
means, the same can be said of the approximate non-uniform surface current

densities on the disk. Also, since an idealized half-plane has no thickness, it
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 may be replaced formally by an open current sheet having a total surface

current density of K D o + 2K without changing any field quantities. The

N
same may also be said for a disk with respect to the surface current densities
obtained from the approximations used here. Such a replacement will be
implicit in all that follows for both the half-plane and the disk.

We are now in a position to write down the half-plane non-uniform sur-
face current densities that result for the incident plane waves of equations

(3.1) and (3.2). According to equations (3. 5a, b)and (3.”6a,b) these are

2H
= __ 70 . =(1) =(2)
KH = ————r,(%’ 2 [sm @ cos 60 KN + cos aKN ] s (3.21)
= +2H
R_- 2 ) —(2)]
E ["(90»“) [cosc?zKN sin @ cos GOKN . (3.22)

|
3.3 The Non-Uniform Currents on the Disk

Figure 3-2 shows how the half-plane geometry of Fig. 3-1 is to be used

in approximating the non-uniform currents for the disk. The y-axis is parallel
to the z-axis of the disk. The x'-axis is in the plane of the disk in the —f)\ -

A
direction, and the z'-axis is in the plane of the disk in the ¢-direction. Hence,

A
we may immediately write fr‘ = é, §' = —f)‘, Q‘ = ¢, and x'=a-p. The half-

plane angles 6, and « are related to the angles 6 and § of the unprimed

0
coordinate system by

cos 60 = sin 6 cos §, (3.23a)

sin 90 = I—'(e,y) + er-) = ‘Losz 6 + sin2 ] sin2 [/ (3. 23b)
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—— 6 Wave

FIG. 3-2: The Edge Geometry Used to Approximate the
Disk Surface Current Density.
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-sin 6 sin @ (3. 24a)
Co.p+2)

cos 0
(3. 24Db)
Ce.p+0

cos a =

sin @ =

Equations (3.19) and (3. 20) also involve cos g
expressed directly in terms of 6 and § . It provehs”('3_(4)}‘1;/"énienti however, for

o -
later usage to express sin»% and cos -2- in terms of two functions T (6, ¢) and

. a .
and sin =, which can be

Q(6, §) which are defined by

T(6,¢)=r(6,¢+g)-sin6sin¢ , (3. 25a)
Q6,9 =r‘(9,¢ + g) +sinf sinf . (3. 25b)
Then cos %and sing- are
1/2
cos %= T (6. §) , (3. 26a)
2[%0, 9+ 1)
- 1/2
@ |__Q(. ¢) (3. 26D)

2[ e, ¢+12T-)

The phase reference for the disk diffraction problem will be taken to be
the center of the disk while the phase center for the half-plane diffraction prob-

lem has been taken:to be the origin of the primed coordinate system, a point

F that is on the edge of the disk. Hence, the phase of (3.21) and (3,22) must be
shifted by [ka sin 0 sin ¢] radians before the equations can be used to approx-

imate the non-uniform currents on the disk. With this addition and the substi-

tutions indicated by equations (3.23a, b), (3.24a,b) and (3.26a, b) equations (3, 21)

and (3.22) give the following for the disk non-uniform currents;
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2H
KHz__O—_w [COSOCOS¢K§\II)(B,¢ - sin ¢K (2)(6 ¢)] -ika sin 6 sin f ’
F(9,¢+5)
(3.27)
|-2m J
R 0. [ ¢K(1 . ) +cosecos¢K( )(9 ¢)] -ika sinf s1n¢
E
0,$+2)
(3.28)
Finally, application of equations (3. 19) and (3. 20) allows these complex
appearing relations to be rewritten after some man1pulat1on as
= A k(a-p) T(6, §) e
Ky = 2Hy 2y [F( y o] -1 le ikpsinfsinf
6 cos¢ T (6,9) [kaT(G ) -kprle ¢+—)+ ]
r(e ¢+ mk(a-p)
(3.29)

E 0

R o= -om |- chose[F(k(a—egT (9!@’0) _l]é—ikp sin @ sin § +

T
sin @ + sin r'(e, + ) . T, T
A $ f 2 - . 1[kaT(e,¢)—-ka6,¢+§)+ Z] .
Y mia-0) 0, ) [0, p+ ) -
(3.30)
Note that since p cannot be negative these choices of surface current
densitiesArequire that the half-plane approximations be arbitrarily ternhinéﬁed

at the center of the disk. These expressions complete 'the approximate descrip-

tions of the non-uniform surface current dens1t1es on the disk.
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Because of the restrictions placed on the f’half-planz problem these current
densities are the _@@—uniform surface current den‘s;i?ti(;s-_omn the disk current
sheet that result when the incident electromagnetic field is a plane wave with
either the electric vector or the magnetic vector constrained to be parallel to
the plane of the disk. However, these are just the incident fields given by
equations (1. 1) and (1. 2) respectively. The total surface current density on
the disk current sheet may then be written in terms of the above surface current

densities ;ndV ﬂthe corresponding physical optics current densities as

K_ = +K_ , (3.31)

for the incident field of equation (1.1) and ,

- + 3.32
K T K p.o. K H ’ - ( )
for the incident field of equation (1.2). These surface current densities will
be used in the next section to find the far-zone backscattered fields for the

two problems.

3.4 The Far-Zone Backscattered Fields

The previous sections of this chapter were devoted enﬁrely to finding an
approximate description of the surface current densities iinguced on a disk by
the incident fields of equations (1.1) and (1.2). With such a description
available the task then becomes that of finding the scaftered fields. The
scattered electric and magnetic fields in free space are rewléfcedv by Maxwell's

equaﬁdr;s, soonly One; need be considered here. A natural choice is the

scattered Eagnetic field, which for the scattering problems of equations

"‘(17. 1) and (1.2) determined by the equation%/

=S _1 I _=E, '
H -4ﬁf(v bxip™ ast, (3.33)
s
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where the surface of integration S is the open surface bounded by the ld}sk rim
that has a unit normal vector ﬁ = {z\ .  The surface current densities I_{- g and

K,;{ are given by equations (3. 31) and (3, 32) and are used for the incident

fields of equations (1.1) and (1.2) respectively. The function q) is the free

space Green's function given by

@:‘i_,iplﬁ-ﬁrl , (3.39)

where R and R' are respectively position vectors from the center of the disk
to the point of observation (OP of Fig. 1-1) and the point of integration. The
prime over the V - operator in equation (3. 3?) denotes that the operation is to

be taken with respect to the coordinates of integration.

Equation (3. 33) gives the magnetic field anywhere in space Only the
far-zone backscattered field is of interest here. For this case r"’tf—{l
and the integral of equation (3. 33) may be written in terms of the p'- and ¢'-

components of the surface current dens1ty as

21 a —_—

oS kel -ik p sin @ sin § , H E,HA
| B =2 K

| 47R ff { [ p g "]
1

+ sin 6 [sm ) KE - cos § K Q} pd pdf , (3.35)

where the primes have been dropped for clarity. The contributions of the

physical optics surface current densities to equation (3. 35) will be considered

first. The two physical optics current’ dens1t1es are defined as 20 x H1 EH
and are:
g H %o e -iky sin 6 (3. 36a)

p. O. 0
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Izj o N9l cospe kY SID 6

0 e (3. 36b)

Determination of the two scattered magnetic fields from equation (3. 35) is

straightforward. The results, expressed in spherical coordinates, are

g AiaHo cos O'e iR Jl(2ka sin 6)
H' w-§-

p.o. ' 2R sin 6 ’ (3.37a)
and
iaH cosbe B I (2 a sin6)
ASE, 40 ! (3. 37b)
p.o. 2R sin 6

’ Both fields have the same 6-dependence, a result that is not unexpected for the

1 scattered physical optics fields from a regular body. Also, both fields have been

in finding the scattered far-zone magnetic fields due to the non-uniform com-
ponents of current. Instead an attempt will be made to expand the integrals for
these fields asymptotically in inverse powers of the wave number k. This will
be the primary approximation. A secondary approximation will consist, where
appropriate, of expanding the resulting functions in ascending powers of sin 6.

The objective is to seek a solution that is most accurate for aspect angles near

normal incidence. 7 - L -

When the nor;—unifo;r;l sﬁrface current densities given by equations (3. 29)
and (3. 30) are substituted into equation (3. 35) the resulting expressions may be
written as

-i2k p sin 6 sin §

ikH"eikR T . - R
=S 0 A [ k(a-p) T(6, P)
[} S, A — i -
HHN - f 2X cos 66\ F( 5 ,0]-1} +
070 b =

found in closed form. This is a fortuitous state of affairs that will not be repeated
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__L Mi [kaT 6,9 —ka(9,¢)+Z_] “
[e.gem) ek T ey
r2

cos 6 (cos ):»‘c+ sin ’3‘7) _ sin0 sin ¢ 2 pd pdp , (3.398)
X

e — S R — -

I{ IkHO/e el A -i2kpsind sinf | fk(a-p) T (6, f)
H  N——— -20 cosO e P ! [F( 9 . ,0) —1]
0 %0

EN 27R

sm¢+ sin OF(G ¢+—) _i[kaT(9,¢)—ka(9,¢)+£] o
le iy
k-0 Q@ Pl @, p+7) - ”

+

X[— cos 6 (cos 2+ sin p P+ sin 6 sin ¢/z\] pd pdf . (3.39)

A
The unit vectors 9{, 9, Q, and 6 are all constant with respect to the variables of
integration. This mixed system was chosen to make similarities between the
two equations evident and to keep the equations as compact as possible Both

equatmns/ contain a term that is bounded for every value of p and an unbounded

term that becomes infinite as (a-p) 1/2 . Furthermore the bounded terms

will give scattered fields of equal magnitude for the two polarlzatlons, thereby \

never contributing to the cross polarized scattered far-zone fields. The un-
bounded terms have the same p-dependence for the two polarizations but
different 6 - and ¢-dependencies, so that they will contribute to the cross-polar-
ized scattered far-zone fields. Thén, since the physical optics scattered _
fields given in equations (3. 37a,b) cannot give any cross-polarized component,

it is only necessary to compute the contributions to the far-zone scattered fields

in equations (3.38) and (3.39) from the unbounded terms if only the Cross-
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polarized far-zone backscattered f1eld is des1red Otherw1se all the terms must

be 1ncluded

3.5 The Far-Zone Backscattered Fields Due to the Unbounded Component

The contributions to the far-zone fields from the unbounded terms in
equations (3. 38) and (3. 39) will be considered first. Both have the same p-

dependence, which may be written

a
I (ka, 0,f) - J- o keQO.f) pdp (3. 40)
> =
0

This may be evaluated in terms of Fresnel integrals. Let t =a-p. Then,

;" a a
Il(ka’e,m___EglkaQ(e,m »?\ith(e,;b) ;Tit_ _feith(e,;b) ol . G
0

Integrating the second integral by parts to bring it into the same form as the

first integral and recognizing that the result is a Fresnel integral we obtain

Y3 -ikaQ(o, ¢)( 1 ( kaQ(o, Io’))
fy k.0, =S, e 1i2kQ(e, ¢)) Vka@, B (3.42)

where the Fresnel integral is given by
W irl. W Er‘_rz
1 2 - 2
£ (VW) —Ef EI:f e” dr . (3.43)

VT
0 %

Inspection of equations (3.23b) and (3. 25b) reveals that Q(6, ) is non-zero for
all values of¢ as long as 6 is not equal to ninety degrees. This means that
the argument of the Fresnel integral in equation (3. 42) will be of the order of

(ka).
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Hence the asymptotic expansion of the Fresnel integral may be used in this

angular range of 6. The first few terms of that asymptotic expansion are

yLW ® _i172

1+ e 2 1 3 15 27 dr

W) = 5 iz yw i 'W2W2)+“3fe, 6
W

B

(3.44)

The remaining integral in equation (3. 44) is of the order of (W) 2 , Which is
the order of the last term in the series. Substituting equation (3. 44) into

(3. 42), that equation can be written

32 ”’/ ( ) -ikaQ(e, )
10,0, f=a */ @ T Vi@ ) 12kaQ(6 12kaQ(6, )

ikaQ(6, ) i2kaQ(6, f)

3 o 1 - -3 !
- 4i7r(kaQ(9,¢))o (1 + i2kaQ(6,¢))+ 0 [(ka) ] , (6 <§) . (3.45)

Inspection of this equation reveals that the first term is canceled by another,

so that Il(ka,9,¢) may be written as

35~ /"_' 1 -ikaQ(6, §)
ke, 6.0) =2 e o6 | omae )¢ +

+Q((ka)-2) , (6 <§) . (3. 46)

Keeping terms to (ka) /2 the expressions for the components of the far-zone

backscattered magnetlc fields for the two polarlzatlons due to the unbounded

surface current dens1ty are glven by
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e
75 o~ O cos 6 cos § (1+ 1 o -12ka sin@ sinf

)
HN, 27R A Q6. f) r(e ¢+ ) i2kaQ(6, M) "

x[cose (cos f %+ sinf §) - sin sin¢2]d¢, (6 <§) , (3.47)
- ikR 27 . 7T ,
- s —aHO.e f sin f+sinf r(6,¢+ 2)(1 N 1 o -i2ka sin6 sin .
i2ka — -
EN, 2R A Q6, f) I'"(e,¢+§) i2kaQ(6, f)

x[—cos0(cos¢§+sin¢§)+sin6 sin¢'z\]d¢ , (6<%) ,  (3.49)

where use has been made of the easily proven relationships

[T6.9) a6, $) = cos 6, \(3.49)

Q(6,#) - T(6,) =2 sinh sinf . (3.50)

Both integrals are well behaved for the allowed ranges of 6 and ¢ In order

to obtain an approximate solution to the integrals, the integrands will be

expanded in ascending powers of sin . Two functions need to be considered,
[T, ¢+ ) and Q(6, f)). [, f+ —) is given by equatmn (3.23b), which can
be rewritten in terms of only sin 6 by replacmg cos26 by 1- sm26 When thls

is done ( r'(e ¢+ —))—vvomes\

(F(e,¢+§)

-1 -1/2
=(1 - sinZ 0 cos” #)

='i+sin2900s2[l_5+§

.4 4
5 g sin” 6 cos p+....,

C <125 . (3.51)
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-1
The function (Q(6,f)) ~ may also be expanded in powers of sin 6. The

result is

.2
[Q (9,¢)] o1 sin6 sin g+ s1r21 9(1 + sin2¢) _sin°0 sin p+... ,
(0<3) . (3.52)

The limit on 6 follows from the fact that 1 - sin 6 < Q(G,¢)g 1+ sin 0 for
any value of .
When the expansions given by equations (3.51) and (3.52) are used to
find the scattered magnetic fields from equations (3.47) and (3. 48), some terms

will give zero contributions when integrated. These are of the form

2" _i%ka sin 0 sin ) ' ,
fe : (sinf) cospap=o0 , (3.53)
A ,

which is easily shown to be 0 for any positive integer value of £. Since equations

(3.51) and(3.52) as given either are, or may be, written entirely interms of powers of

sin ﬁévénwé-llAésh;i;lvO,Monlsvz the x—éoﬁib&négg Bf EIS{N ) and the y- and E:Eompoﬁents.
p— S e
of H E

. . - ' I, S .
N1 will be non-zero. In fact, since 6 = cos 6 y - sin 6 z, HENl will
have a component only in the 6 -direction. By virtue of the above observations
the far-zone scattered magnetic fields may be written in powers of sin 6 to

the order of sin29 as R

“ikR T

aH e . . .
HEN{V ——207r_R— cos2 oR| ?leka sind sinf {cosz¢(1+sin29 - sinf sinf)
0

[cos2¢ (1+ g— sin0 - 2sind sin +g—sin29 sin’ M} dp, (3.59
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ikR 27 . | |
- AL -i2kasi i
VR ef ‘9\‘1 A sind sinf sin f {sin P+ sin6 (1—sin2¢) +

0 o

L2, —
+ -ﬁt [sin¢+ sinf (1-2 sin2¢) +&§_§mﬂ (-1+3 sin? ¢)]} ag .

(3.55)
All of the integrals over § are of the form
2w —
_| —-i%ka sin@sinf, L .
I¢ —f e (sin )" dp . (3. 563)
0
If £ =0, the value of the integral is a Bessel function:
27
21 J (0 =f Texsmpug (3. 56h)
0

Both sides of this equation may be differentiated with respect to x to give
27
27 J(') (x) = -27 Jl(x) - _if ei_flx sin § sinf dff , (3.57a)
D o

as both integrands are continuous within the given limits. Continued differentia-
tion followed by application of the recursion formulas for Bessel functions yields
s
. -ixsin@ . 2
T Jo(x) - Jz(x) ={ e’ sin” @ ag , (3.57h)
|

0
T

w[-g- 3,0 - %Js(x)] S| e ixsinf 8 pag ,
b (3.57¢c)
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T .
71[% To(®) = I, + iJ 4().()] =+] | %e»'i’r‘ sin P gin? pag .

0 (3.57d)

The components of the far-zone scattered magnetic fields of equations (3. 47)

and (3. 48) are then given in terms of Bessel functions of the argument

2ka sin 6 by

s aH e R

0 - 2 2 [ _ , ]
N — + :
HHNl R cos 6 {(1+ sin"0) J0(2ka sin 6) J2 (2ka sin 0)] +

J.(2ka sin 6)
+i-2 - [(1 P2 sin29) JO(2ka sin 6) +

ka 2ika 8

+(1+ 3 sin2 0) J2(2ka sin 8) - % sin26 J4(2ka sin 6) +

2
i2J2(2ka sin 6)
+—— D¢ (3.58)
ka
S aHOVe kR
N o ; - ; -
HENl R J 0(2ka. sin 6) - J 2(2ka. sin 6)
J.(2ka sin 8)
. 2 1 9 .2 .
- T + 3 1k [(1 + g sin 0) J0(2ka sin 0) -

-(1+ sinze) J2(2ka sin 0) + %sinze J4(2ka sin ) +
.. . A
+isin6 [Jl(Zka sin 0) - J3(2ka sin 6)]] 6 . (3.59)

While use of the recursion relations for the Bessel functions has resulted in

the inclusion in equations (3.58) and (3.59) of terms that are of the order of

(ka) _2, no claim can be made that the equations are accurate to that order, for \
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the approximations that were made earlier to the asymptotic series involved
only the first two orders.

The bounded integrals of equations (3. 38) and (3. 39) must now be con-
sidered. Again, the integrals over p are identical for both polarizations, so

only one need be considered. It is

a0, if_e_izkp sin6 sing [F(kL%'L(Q,_@O) _1] . 5,60

0

Comparison of equations (3, 12) and (3. 43) reveals that this may be'rewritten as

a - A
L, (ks,6,9 iﬁ/e\—ika sind sinf {1;) f(/Zk(a;Tp)T(GL@)_% o, (361
0

which is the form that will be considered here. This integral can also be solved
exactly in terms of Fresnel integrals. The solution, however, is complicated
and expansion of it in terms of inverse powers of (ka) and ascending powers of
sin 6 is at best very difficult. Direct expansion of the integral in inverse
powers of (ka) appears to be a better procedure. As before, the integral must

be transformed. To this end let a variable W be defined by

we 2k (aj;) T (6.f)

Then in terms of W, L (ka, 6, ) may be written as

-i2ka sin6 sin § 2ka’7Ir'(6, f) i7W sin6 sing
o e TO.H

2kT(6, f) j(: \

X [(-1—;—‘-) t(y) - %—]‘a -2—’1’(‘%’(—9’—’6))dw . (3.62)

Iz(ka, 0, #)=
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This will be written as the sum of two integrals, the first and simplest of

which is
~_~ -i2%ka sinf sinf 2kaT(6,@) inW sin6 sin§
(ma)e T - T, 14 1
1,(ka, 6, f)=5 0 5 f e [( 5 )f(v/V—V)-z]dW
—— 0
— -i2ka sinf sin § oo i7W sinf sin@
_(ra)e | - T(6, ) 1-i 21
" 2kT(0,9) fe [( 3 ) £ (AW 2] aw -
A 0
(00} iTW sinf sin@
-f e TO.P [(l;—) £( VW) -%] awp | (3.63)
2kaT(6,Q)
T

When the integral from zero to infinity in equation (3. 63) is integrated by

parts the result is

o i7W sinf sinQ
(6, f) [(1_;i)f(m -%]dw ___T(6,9) <

2 " irsin 6 sinf)

1o9) 00 ierQ(G,Q) A
6.0y o e\, 2e.H aw
[@f(ﬁ)-%} 2f(2)e N2 B

0 0

(3.64)

i7W sin@ sin

By virtue of equations (3. 43),(3.44) and (3.50) this is ~e;ipressible\ as

J—
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- i7W sinf sin@

—  T(6,§) :
e l;]: l _ 2T (9 ,ﬁ)

1.1 fre,P\_. 7,0 fre, f) -1
¥94272 e, p” T inQ(e, P (1+qQ(9,¢)\’ : (3.65)

Evaluation of the second integral in equation (3. 63) can be done asymptotically

by applying equation (3.44). This yields

® ~ i7W sinf sin

T(6, ) 1-i 1
f o TP [ qm - Law
2kaT(6, f)
T
Cin Q(b, Q)W’
J 1-i, e 2746, §) 1 3
:f (2—) Ly (1+ﬁ-—'—2;-2-)dw+
2kaT(0, 0) N
T
(00} iTW sinf sin@ [00) —i-zi'rz
N IO | CE A S
' JokaT(6, §) VW T
T

where the second integral, which will be neglected, is of the order of (ka) —3/ 2.
Asymptotic evaluation of the first integral is straightforward. The lowest

order terms of the resulting series may be written as

Q iTW sinf sinQ .
f e (. §) [(g—l)f(m -%]dW =

2kaT(6, Q)

T
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—i7r/4
‘/T«) D ikt f T06,9), [, -1]
77Q(6 B [1+(1+ Q(0,¢)) [12kaT(e,¢ﬂ

I 3
+{o[(ka) ) 5] : (3.67)

Then Ia(ka,G, @) is given by

o i2kasindsinfr cos 6
Ia(ka, 6, ¢)= - 2kQ(9, ¢) .\1 (1 + Q(e ¢))
N .;é‘“i”/ 4 1kaQ(6 ¢) + 0[ (ka) 5/ 2] . (3.68)
+
7kaT(0, o

The second part of equation (3.62) must now be considered. This is an

integral given by

2kaT(0,8) inW sin6 sinf
_ ., ~i2kasinf sinf T
pka,0,0) =e ( 2KTY6, ¢))

2 4 i
f T, 16,
' O -

[[1—;) f (VW) --21-]de : (3.69)

This integral does not converge when the upper limit becomes infinite. Hence

J

it must be evaluated by somewhat different means than L (ka, 6, )

Integrating the exponential term by parts transforms th1s integral to a sum of

integrals that can be expanded asymptotically. The resulting expression is
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~-12ka sin 6 sin §

1 (ka, 6, ) =— X
i2k2 (6, B) (Q(6, 9) -T(6, §)
i7W sin 6 sin @ '2ka T(6, §)
e (6, f) [(%)f(m) _%]W T
' 0
2ka T(0, )

R e R

2kaT(6 jﬂ) i7W sind sinf}

iTWQ(6, §)

w -
0 o

(. §) [(E-l)f YW - %] aw

s (3.70)

where use has been made of equation (3.50). Of the two remaining integrals

the first is further reducible to a Fresnel integral while the second is

proportional to Ia(ka,6,¢). So lb(ka,6,¢) reduces to

: ‘—12ka sinf sin §

I (ka 6, ¢)—

i2k T(G A (Q(e, p)-T(8, ¢)) _

o i2ka sinf sm¢ 1< . [2kaT(6,0) 1
=)f - =X
2 s 2

X 2kaT(6, ) (1 i, 21(6, ) ‘,2kaT(9 B, ikaQ(e,f) .
T

imQ(6, f) _

.
P -1) (6, ¢) T(6,
{ wQ(9,¢) Q(e,

(I(ka9¢)

00 .| [aed
: (J )

“ika 2 (Q, f) - T, )

(3.71)

The asymptotlc expans1ons of all of the functlons contamed in thls equation

have been cons1dered before.

allows Ib(ka,e, f) to be written

Substitution of the appropriate expansions

as
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T o
_ . -i%ka sinf sinf | ae & 1 -, ika Q(6, §)
Ib(ka,6,¢) ¢ 2kQ(6,) /rka T(6, ) ° *
. cos
1+2Q(9,¢) [2] . (3.72).
¥ 22[ ]2 cos § 2 +9 (ka)
k™ [ Q.0 " (1 +Q__(9,7¢>)7)

The first term in this equation is identical to the second term in equation
(3.68). Therefore, when the two equations are combined to give Iz(Ea, 0, ¢),
those terms will cancel. From equation (3.62) Iz(ka,9,¢) is found to be

;¢ ~12ka sinf sinf
L(ka,0,f) = 1 (ka,0,f) - I (ka,0,f) = - o

cosb

| 42088 -\

i 2Q(0, ) ‘ [ -5/]

X + +0| (ka) /2 (3.73)
P(G’ ¢>+°°Sﬂ ka [Q(e,¢) ¥ cos6]2

This is the desired expression for the integral over p of the bounded term in

equations (3. 38) and (3: 39). In order to carry out the indicated integrations
over § in those equations, it is necessary to expand Iz(ka,6,¢) in powers of
sin 6 . Both terms in equation‘(3. 73),contain inverse powers of the expression
G(9,¢) = Q(G,?S) +cosf. If 0 is required to lie in the interval|containing

zero and ninety degrees, it is easy to verify that the maximum and minimum
3n

9 respectively and are

values of G(0, ) occur for @ = % and

G(e,ﬁ)=1+cose+sin9=2(1+°°Sé’2+5m9'1) , (3. T4a)
G(e,‘%”) =1+cosf -sind = 2 (1 + °°S29 -sinf -1, (3.74b)

The particular form of these expressions was chosen to correspond to a

general form which will be used in obtaining expansions for:'t'h‘e two inverse
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powers of G(0, ) in question. The function G(6, ) may be written explicitly as

G(6,0) = sinf sinf+ /I—sinzé cosz¢+ Jl -sin’0 . (3.75)

Both radicals may be replaced by their power series expansions for 6 <£2 .

Hence,

G(0,f) = 2 + sin6 sinf - 32L-sin2 6‘(2-sin2¢) - %sin49(1+(1-sin2 ¢)2) +o..

-

= 2(1+%ﬂg 2 sin 6 (2-sin ¢)— sin 9(1+(1 -sin ¢) ..... ), 6 <§ .
(3.76)

This has the form 2(1+(6, ¢)). By virtue of equations (3. 74a,b) and the condition

is always less than unity. Therefore, convergent expansions for

[G(9,¢)] and [G(G,jﬁ)] can be found. They are

2 3 9/
_1 1 : . . N . +
[ate.)] =§[1 _sin sinf, sin § _sin'0 sind (1 + 3 cos §)

5 2 8 *
T, , 0 <g , (3.77a)
and 9 3
[G(9,¢)]-2= 211- 1 - sinf sinf + sin’0 (1+ SZI . y -2 Sm46 Sln¢(1+c052?5) +
+onnn ] L8 <§ i (3.77b)

An expansion is also needed for 1 + 23%8-(-:—%, the determination of which is

straightforward, since (Q(6, {Iﬁ))_1 has been found before and is given by equa-
tion (3.52). If cos 6 is replaced by its power series expansion in powers of

sin 6 and the two series multiplied, the desired expansion is found to be
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4086 _3 _sind sinf) N sin’0 sinzﬂ ) sin° 6 sig@+

2Q6, %) 2 2 4 4

., 0< (3.78)

CF

Straightforward multiplication yields the desired expansion for Iz(ka,O, ¢),
which is just the integrand of the remaining integral over ¢ ot the bounded
terms in equations (3. 38) and (3.39). Taking terms only to sin26 the desired
approximation to that integral becomes

7T ;"

— e/ 2
_-a -i2ka sind sinf Ji [, sinf sinf _ sin 6]
Lika,0) =5 ¢ 2 [{‘ 5 T g )7
s :

1 o . 2 3 2
+—k—a [3-4s1n6s1n¢+3sm9(1+zsm¢)] dag,

6 <

\CEES]

(3.79)

Unlike the mtegrals over ¢ in equatlons (3.47) and (3.48) every term in the

ﬂ mtegrand will give a non-zero contribution to the mtegral as none of them

has the form of the 1ntegral in equation (3.53). Indeed all terms are of the

form of equat1on (3. 56a) and hence the mtegral can be evaluated as combm; _

ations of Bessel funct1ons. For th1s 1ntegral only equations (3.57a, b) and

(3. 56b) apply. The result is

I (ka 0)= i (1 Sin 6 J (2ka sinf) +

1 3. 33
+ ™ [(4 3 sin 6) J (2ka sinf) -

392 sin 6 J (2ka sinf) + i sin9 J (2ka sin 6)] ¥ (3. 80)

T
9<2
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The components of the far-zone scattered magnetic field due to the
bounded components in equations (3. 38) and (3. 39) are expressible in terms

of IS(ka, 0) as

_g A1kH0/ ikR

P S— 3'
HHNz -0 R cos 6 IB(ka, 0), (3.81)
—g ikHOe/lkR
HEN{V-GTR—— cosGI3 (ka, 0) . (3.82)

When these scattered fields are added to the physical optics scattered fields
of equations (3.37a) and (3. 37b) respectively and the scattered fields due to

the unbounded currents of equatlons (3. 58) and (3. 59) respectlvely, the

desired approximations to the two total backscattered far-zone magnetic f1e1dsr

are obtained. The resulting expressions can be s1mp11f1ed somewhat by

making use of the series expans1on of cos 6 in powers ‘of sin & where
appropriate and by applying the recursion relations for the Bessel functions
in order to @hbin‘e‘ terms. The resulting approximate expressions, again

valid to the orders of sinze and (ka)-l, may be written as

55 H ae & i 7(2ka sin 6) e
HHN __IZ—R—_— cos 6 -—S—i'r—l—é'———+(1+—)J2(2ka sinf) +
isin6 1 11 2 e
, 1siné I SR Y S .
5 J (2ka sinf) + o k [ (2 + 1g Sin 6) J0(2ka sin 6) +

25 2 3 2. .
+(1+ T sin”6) J2(2ka sinf) - g sin 6 J4(2ka sin 6)

-1isin@ [J1(2ka sind) - J,(2ka sin 6)] ] , 6 <§ ) (3. 83)
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»
s A aHOe/‘kR i cos 0 J, (2ka sin6)
HE"‘-G —Ef{_ + prn +J2(2ka sin ) +
J. (2ka sin 6) )
. 2 sin 6 .
+ i [ A + 5 J1 (2ka sin 9)] +
= (L v Gn%0) 5 (2kasing) +
2ika 2 " 16 o \eka s

7 .2 3 .2 .
+ (1 +16 sin”6) J2 (2ka sinf) - g sin 6 J4 (2ka sin 8) +

2i : T |
+ = J2 (2ka sin 0)] , 0 < 5 - (3.84)

3.6 A Note on Extending Equations (3. 83) and (3. 84)

It may, at some time, become desirable to extend equationé (3.83) and
(3. 84) to higher powers of sin 6 and (ka)—1 by using the methods considered in
this chapter. The extension to higher powers of sin 6 is straightforward and
requires nothing fundamentally different than was done here. The extension to
higher powers of (ka)—l, however, will introduce an integral over § that has
not been considered heretofore. This integral arises when the asymptotic ex-
pansions of the various integrals over p are taken to greater powers of (1«:.21)_1

than was done in deriving equations (3. 83) and (3.84). It has the general form

T
Ic(ka,e) _| eikaT (©.9) cosm¢ sinlz pag, (3. 85)
0

where m may be restricted to be either zero or one with no loss in generality

and £ may assume any non-negative integer value (consider for instance the

consequence of retaining more terms in expanding equation (3.42)).
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When m = 1 this expression, like equation (3.53), can be shown to be identically

zero. When m =0, howéver, the integral is in general non-zero and is a
function of both 6 and (ka).

Because of the nature of the solutions to the scattering problems that
were obtained in this chapter it would be desirable to expand Ic (ka, 6) in a
series of Bessel functions of the argument (2ka sin 6) and inverse powers of
(ka). It is not obvious how to proceed, nor has this been done in this work,

since, fortunately, the integral did not arise in the (ie}ivations of equations

(3.83) and (3.84). Any attempt to extend the results of this chapter to higher

orders of (ka)—1 will necessitate either an exact or approximate evaluation of

I (ka,0).
c




Chapter IV
SOME FURTHER CONSIDERATIONS

4,1 A Comparison Involving the Exact Solution

In Chapter I it was found that for ¢ =ka =1.0 all computed radar cross ‘
sections were consistently lower than the corresponding ones obtained experi- |
mentally. The regularity of this phenomenon indicates that some effect other
than stray radar returns may be predominant, In particular, the computed
values may be in error. Consequently, an independent verification of the accu-

racy of the/programmed formulation of the exact solution for small values of ¢

would be most helpful. This can be done by applying a solution to the p—roblem
of electromagnetic scattering by a disk of a unit incident plane wave for’siﬁar,i—lﬁ
values of ¢ that was developed by Eggimann (1961). His solutions to the far-
zone scattered _f1éﬁ§ are given as power series in c¢. For the case of back-

scattering they may be written as

- ikR 3 2
s s e 2c_ . 2 c_ . 2 4
E¢ —.nOHGN———kR <3ﬂ> 2 + sin 6+15 [:16 15 sin 6 - 5 sin (;] ,
E E
(4.1)
-ikR 3 2 2
S s e 2c_cos 6 (¢ 2
= ~ + — - i
EGH ny H¢H = < 3. 2+ 77 [16 9 sin e] . (4.2)

The dependence on c¢ in these two expressions is quite simple, for even
thouéh th(i solutions have been carried out to the order of cSL only two terms
in each of the resulting power series have non-zero coefficients. For small
¢ both backscattered fields behave like cS, which implies that the measure-

ment problem will become quite acute for small values of c, in accordance

with actual experience.
In order to compare equations (4.1) and (4.2) with the exact solutions
considered in Chapter II'" it is necessary to choose a suitable value of ¢ for

which to compute the various radar cross sections. What is a reasonable
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choice depends on the anticipated effect of those terms in the power series

expansions for the far-zone backscattered fields that have not been taken into

account in equations (4.1) and (4.2). Qiearly, the choice of ¢ =1.0would not be

expected to yield good results. Choice of ¢ = 0.5 might be acceptable, how-
ever, as the first missing term 1n the series, which is of the order of ¢,
would be of the order of 1/8 as large as the first term. On this basis it was
decided to calculate the three radar cross sections as a function of aspect
angle using the exact solution and equations (4.1) and (4.2) for ¢ = 0.5. The
agreement between the two solutions was 'é’xtremevlyr good, as is shown by the
comparisons given in Table 4-1. The slight differences in cross section
encountered in that table can be attributed to neglect of terms of the order
of 06 or higher in equations (4.1) and (4.2).

On thé strength of Table 4-1 it is reasonable to conclude that the dis-

crepancies found in Chapter II bétween the experimental and calculated cross
sections for ¢ =1,0 reflect effects other than errors in the computational effort.
A possible effect not mentioned before would be differences in the measured

scattering cross sections due to the finite thickness of the actual disk.

4,2 Comparison Between the Exact and Approximate Solutions

In this section some radar cross sections for the disk as predicted by
equations (3. 83) and (3, 84) will be compared with the same cross sections
as predié:é/cri\‘\by the exact solution. Since the exact solution gives best results
for iow frequencies (low values of ¢ = ka), while equations (3.83) and (3. 84)
are by nature high frequency solutions, a compromise in the choice of ¢
must be effected so that both solutions can be expected to give reasonable
results, Choice of ¢ = 6 appears to be good, for the exact solution agrees
very well with the experimental data for aspect angles as large as seventy
degrees. Also, the terms of highest order in (ka) -1 in equations (3. 83) and
(3. 84) will be quite smallicompared to the leading terms (except perhaps near

minima of the scattered fields) so that these equations may also be expected
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TABLE 4-1

Some Radar Cross Sections forrzg} 0.5 as Computed Using
Eggimann's Solution and the Exact Solution due to Flammer
(in dB per square wavelength).

Radar Cross Sections Frc2>m
The Exact Solution (dB/1")

Radar Cross Sections From
Egs. (4.1) and (4.2) (dB/2%)

E-Pol, H-Pol. X-Pol. E-Pol. H-Pol, X-Pol,

2°  -29.32  -29,33  -90.78  -29.39  -29.40  -90.79
10°  -29.24  -29.61  -62.91  -29.30  -29.67  -62.94
20°  -29.01  -30.47  -51.19  -29.06  -30.54  -51.22
30°  -28.67 -31.98  -44.68, -28.72  -32.03  -44,71
40°  -28.29  -34.21  -40.43  -28.33  -34.26  -40.45
50°  -27.91  -37.37  -37.50  -27.94  -37.41  -37.52
60°  -27.58  -41.84  -35,48  -27.61  -41.87  -35.50
70°  -27.33  -48.52  -34.15  -27.36  -48.55  -34.17
80° -27.18  -60.35  -33.39  -27.20  -60.38  -33.42
88°  -27,13  -88.24  -33.16 -27.15  -88.27  -33.18
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to perform well, particularly for small aspect angles. Computed radar cross
sections using both methods are shown in Figs. 4-1a through 4-1c for E-polar-
ization, H-polarization, and cross-polarization respectively. Qualitative
agreement is good throughout, and quantitative agreement is generally good
for aspect angles that are _1355 than thirty degrees. Oddly, agreement is best

for the cross-f)bi'a:r;i"z'édzcase with the two methods predicting practically the

same radar cross section for aspect angles as large as “f‘dﬁ&:t’\ifia dé}grees.
The case of E-polarization shows the best agreement of iii‘eﬁt\;\}gii_ii:&:?returns
with equation (3. 84) and the exact solution predicting very nearly the same
radar cross section for aspect angles as large as thirty-four degrees. Only
the minimum at nineteen degrees shows any sizeable discrepancy between the
two methods for this angular range. Finally, equation (3.83) and the exact
solution agree well only to aspect angles of twenty degrees for H-polarization.
While it is expected that equations (3. 83) and (3. 84) will perform poorly for
large aspect angles because of the approximations made in their derivations,
it is odd that equation (3. 83) would fail for such low aspect angles. Since
Fig. 2-Tb indicates that the exact solution is valid in this case, equation (3. 83)
must be in error, or must fail to account for some effect.

Some deliberation reveals that both equations (3. 83) and (3. 84) were
derived without taking into account the possibility of multiple diffraction by
the disk. Furthermore, the effects of multiple diffraction will be greater for
H-polarization than for E-polarization. This view is consistent with the actual
behavior of equations (3.83) and (3.84). Introduction of the effects of multiple
diffraction, which will not be considered in this work, is one means by which
one can seek to improve the performance of the approximate solution. Another
would be to keep still higher powers of sin 6 in equations (3.83) and (3.84). It
would be ex1:reme1yi difficult to predict how successful these undertakings would
be, but there is cerfz_;iZIy reason to expect at least partial success, as equa-
tions (3. 83) and (3. 84) already predict the proper qualitative b_gliavior for the

radar cross-sections for large aspect angles. |

- — |
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FIG. 4-1b; Computed RCS of a Disk for H-Polarization,
c=6.0.



82

| (@)
i (o)}
E
)
—(
o]
! a !
y o«
—)
Ammmm.
=, 2
.|u._~em o
g ©
P
.
<P
40
M
_. | 1 1 1 10
o m 0 (@) wn (@)
_ _ D 3 :

¥ /0, 301 01

Aspect Angle 0 (degrees)
FIG. 4-1c: Computed Cross-Polarized RCS of a Disk;

c=6,0.



83

4.3 An Application of the Geometrical Theory of Diffraction in Light
of the Results of Chapter I

The important question of how the approximate solutions developed in
this work agree with or differ from other approximate solutions to the problem
of backscattering from a disk will be considered in this section. The approxi-
mate solutions that will form the basis for discussion will be those obtained by
application of the Geometrical Theory of Diffraction, which was mentioned in
Chapter I, and which can be expected to give reasonable results for disks of
large c for aspect angles away from normal incidence. Since equations (3. 83)
and (3. 84) purport to be most accurate for normal incidence, a non-rigorous

procedure will be developed to obtain a continuation to normal incidence of the

range of validity of the solutions obtained from the Geometrical Theory of
Diffraction, -

Different arguments have been advanced in order to continue the results
of the Geometrical Theory of Diffraction into the caustic region that occurs
in the disk or cone backscattering problems for 6 equal to zero. The argument
which is probably of most use here is that given by R.A. Ross in "Investigation
of Scattering Center Theory'" (1967), as his treatment attempts to account for

depolarizing effects. Ross considers backscattering by a perfectly conducting

flat-backed cone of arbitrary cone half angle, which problem, in principle,

includes the disk problem, for the disk can be considered to be the limiting
case of amﬂat backed cone as the cone half angle approaches ninety degrees.
As itilﬂppens, Ross' results are at variance with equations (3. 83) and
(3.84). In fact his results, given by his equation (B-10), become infinite for
the limiting case of the disk. This not very satisfactory state of affairs may

be eliminated by modifying Ross' analysis, which is not valid for the case of

the disk. His analysis begins with his equations (B-3) and (B-4), which are

reproduced below,
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-1
- _sin7z/n [ a Ae R { [ oo™ _ oog 37220
He1” 2nR Tksinf Sn" %

—1 . T .
+[°°S£'1jl o1 0R+ - 2kasin6) (4.3)
-1
.~ _sin7/n a AoKR / |oos T - gos 27120
“e2 " " onR V7 ksimo °° COS Ty
~ r |7 iR-Trokasing) N
+ |cos =-1 e 4 ' (4.4)

These are the fields singly diffracted from two edge scattering centers on the

base of the cone. The upper signs are to be used for E-polarization and the

Ae represents the incident plane wave by a different convention '

than used previously,

n =-g- +% , Where v is the cone half angle,

k is the wave number.

The total far-zone backscattered fields for 6 <+ are just the algebraic sum

2 \

—_—t

. . T
., _sin7/n \/_a_ A 2R e i(2ka sin 6 - )
He1 THe2™ TonR Tksing % 7 31420
n

— (cos — - cos
n

of %1 and ﬁe’]‘and may be written as

o-i(2kasing-7/4) | _ o i(2ka sin 6 - 7 [4) 4+ o ~i(2ka sin 6-7/4)

+

+
BW—Z% (cos%—l)

(cos 7{;'- cos ——
(4.5)
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Ross seeks continuations of these expressions that are valid for values

+ 90, - -
_37r__29) ! for 6 near zero and n#2,

~

of O near zero by expanding (cos 7-:-1 - CcOoS
which makes his results invalid for the disk. One could also take the point

of view that since these expressions are valid for large 6, continuations could

. T 3r+20 _
be found by expanding (cos LS —) ! for sin 6 large and n close to

two, Actuall_y: either expansion encounters difficulties since both terms in

37ri'29)—1
n

T .
(cos; - cos go to zero for certain values of n and 6. Conse-

quently, an alternate approach which requires no troublesome expansions will

be used here. The total backscattered fields may be rewritten as

a A sin %g .
u .+ = - X
‘“el“ ‘ler- n R
(cosz—cos 3_7700329)6 —isin§—7rsin2—9-C C3
X n n n_ 1 n n_ 2 .
2(73 Vs 37 260 2(37r) . 2(26) (cos =-1)("
cos |=]- 2 cos —cos —cos— + cos |—}- sin {— n
n n n n n
(4.6)
where

. . T P oo
c -c - 5 [—el(Zkasme- 4)+1’,,é i (2ka sin 6 4)]
1- 73 Ve ka§1ﬁ9 2 ’
" i(2kasin®-L)  -i(2kasinf- %)
s Vorasmo o : (4.7)
2 27ka sin 6 21 .

The term C1 can be recognized as the large argument expansion of the

. = S
Bessel function (-1) J2£(2ka sin@), where £=0, 1,2 ... Similarly, 02 is the
i i

large argument expansion of (-1) " J tual ch

149 I(Zka sin 8). The actual choice of the

Bessel functions must be made such that the resulting expressions for the back-

scattered fields be well behaved as functions of 6 for each value of £. Consider
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first the coefficient multiplying Cl' For any permissible value of n it can be
shown to be finite. Hence the lowest order Bessel function corresponding to

Cl’ J 0(2ka sin 6), is the appropriate choice for that term. Note that for
n = 2 the coefficient of C1 is identically zero and that| the term disappears

from consideration, a feature that will also appear in the final expressions
for the back-scattered fields. Next consider the coefficjent multiplying 02 .
The lowest order Bessel function corresponding to CZ’ ?‘ Jl(2ka sin 6) s will
suffice to keep its contribution finite, Indeed, the forms of equations (3. 83)
and (3. 84) dictate this choice, Finally,_‘chli;i‘iéégsei function corresponding
to C3 is taken toie‘i_;;T 2(»2ka sin 6) so that théW;i);iari‘zation dependent term
will behave in agreement with equations (3.83) and (3.84). The final form

for the total backscattered fields is

(cosl-cosalcosz—e)J (2kasin6)—isin8irsinEJ (2ka sin 6)
n n n 0 n n 1

2(n) T 37 26 2(37r) ) 2(29)
cos |—)- 2 cos —cos— cos—+cos | —]- sin {—
n n n n n n

* (cos - 1) 7, (2ka sin ) , (4. 8)

where again the upper sign is to be used for E-polarization and the lower sign
is to be used for H-polarization. This equation is valid only for 6 less than
the cone half angle v . For n = 2 the coefficient of J 0 (2ka sin 6) becomes
identically equal to zero and the expression reduces to a form which is in
agreement with the leading terms of equations (3. 83) and (3. 84) for 6 near

zero, the desired result. The method of approximation used in Chapter III
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is seen to be in agreement with the Geometrical Theory of Diffraction. In
fact, consideration of the results of Chapter III has resulted in a new form
for expressions for backscattering by a finite cone for aspect angles near
nose-on which differs radically from that obtained by Ross. The simplicity
of this result suggests the possibility of applying the method of Chapter III
to cone scattering in the same manner as was done for the disk. Such an

undertaking certainly bears consideration.
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APPENDIX A

SOME PROPERTIES OF THE OBLATE SPHEROIDAL
COORDINATE SYSTEM

The variables x, y, z of thel"Cg;riﬂegigh coordinate system are express-

ible in terms of g, n andji of the oblate spheroidal coordinate system of Fig, 2-1
by )

x=a (1 - 1) (1+ £ cos §, (A.1.2)
y=a j(1 %) (1+ &) sin f, (A.1.b)
z=anég, (A.1.c)

The gradient in the oblate spheroidal coordinate system can be written

U (A.2)

= -1 9y D, . -13Y A -1
vom g g ) gy g gy

where h., ;hn, andié are the metrical coefficients given by

2, 2
hg—a §+T)2 , (A.3.a)
! o
s (A.3.b)
hy = 2 o -ad . (A.3.¢)
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Expressions relating the unit vectors in the ‘Cartes1an and oblate

spheroidal coordinate systems can easily be obtained with the help of equation

(A. 2) by taking the gradient of both sides of equations (A.la, b, ¢). The results

A 1+§2 2
X == [== ncos¢n+§ 2 cos¢§ - sin ¢ ¢ (A.4.a)
§+n £%+n

are

F=-n 118 sin¢7'7‘+§’ 1-1 s1n¢§’+cos¢¢ (A.4.Db)
2 2 2
€ +n ‘s"+n
2 2
1- A 1+8A
2= & 5 n2 n+n 5 528 (A.4.c)
€ +n E+n

As & becomes large, the surfaces of constant & lapproach spheres and the

hyperbolae of constant n asymptotically approach lines of constant 6, where

6 is the spherical angle defined with respect to the z-axis. We may write,

|

af~R |, - (A.5.a)

|

I

nacos 6 . (A.5.b)

where ~ is to indicate "in the limit as & becomes infinite". Because of this
asymptotic behavior of the coordinate system for large values of the radial
argument, the radial functions behave asymptotically like the corresponding
spherical Bessel or Hankel functions, For instance, for the normalization
used by Flammer (1957) or Stratton, et al (1956), the radial function of the
third kind behaves identically with the sphierical Hankel function of the first
kind for very large £, That is, -
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R(3)
m

i n+1
(ic, iE)v é ‘efl(kR '( 2 )”) :

(A.6)

The components of the curl operator in the oblate spheroidal coordinate system

are given in terms of the components of a vector A by

1 B(hn An) 8(h¢ Aﬂ)

(VXX) = -
£ hn h¢ Y on |
- b, A) d(h_A.)
- 1 pg £E
(Vx A) = - —
n hg\\h 33 of .
a(h,A) o(h A)
= £ €& n
VX8 "hn | Ton " eE

£€n

——

(A.7.2)
(A.7.b)

(A.7.c)



APPENDIX B

THE FAR-ZONE BISTATIC SCATTERED FIELDS

For the incident field f‘i of Fig. 1-1 given by equation (1.1) the far-zone
scattered fields may be written:
v.—'/ - E
elkR (00 B

: E (c, 8) sin
S S -0 j T m
= - N —— + = — _ -
E¢E nOHGE IR E cos m (f 2) o E 2(2 60 ) x

m=0 m

ml() (1)

(1c cosv)S (1c cose)

mf

E !/ 11
2a_(c,6) cosy J_Iril_,i sV (-ic, cos7) S__
mtl, 4"
cos 6 Pty Nm+1:1 1,

(1 )

1( -ic,cos0)+

0
r (1) (1)
+(16 z mll(lc cosv)SmlJ(—lc,cose
ml!Z

RN (B.1)
E elkR, 2 ZQ/E (c,0)
S =n Bw- 2— —2— sinm (f+ 1) x
b 0 95 ikR cos 6 2
m=0
v T ) 1)
X -lI\IIl-—'—— Sm+1 ’ (-ic, cos ) Sm+1 ' (-ic, cos 6) -
L =mt2 "mtl, ! ? ' !
- 1 d!
m-1,£ (1) . (GO
(1 60m) Z ———-—N Sm-l,l (-ic, cos ) Sm-l,l( ic, cos 6)
- m-1,4
£ =m
(B.2)
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For the incident field fi given by equation (1. 2) the far-zone scattered

fields are
< ; _Edelkﬂ’ [00) ] Bm (c,0) siny o ,
= = S~ —— + = i -
EeH nOH¢H~A =R Z cos m (¢ 2) sin @ 2(2 6Om)x
m=0 L =mtl
Jl
i
X ﬁ_m_ S( ) ( -ic, cos v) S( ) (-ic, cos 6) +
m/!

aH (c,0) cosy 12 (1) (1)
+9 =2 Z RS (-ic, cos v) S (-ic, cosf)+

cos 6 mt1, 4 mtl,{
2y Tme1,0 (1) (1)
- __J_ . _‘
+ (1 6Om) ) N " 1S 1,0 (-ic, cos v) Sm-l,!l( ic, cos 6)
L=m-1 2
— |
B. 3
5 e 0 Za/ (c, 0) . ( )
oAl — + 0_ + =
oy ”OHeH” ikR Z cos g SmmPry) x

iy
mtl, 4 (1)

X ,,,\ +1,4
4 Nm+1’g mtl,
m

(1)

] 4 (-ic, cos 6) -

(-ic, cos v) S

@, ;
(1 - m-1,¢ (1) 1 .
(-6, Z N Sm—l,ﬁ( ic, cos %) Sm-l,l( ic, cos )

(B.4)

All quantities in equations (B. 1) through (B. 4) have been discussed and
defined in Chapter II. Equations (B.4) and (B. 2) give field components that
are orthogonal to the respective incident fields, These cross polarized com-

ponents become identically zero when a’ lies in the yz-plane (§ =+ % ), and,
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for the special case of backscattering, equations (B. 1) and (B. 2) reduce to
equations (2. 2. 3) and (2. 2. 10) respectively with (B. 2) and (B. 4) both giving
zero contributions.

The program for calculating the backscattered fields can easily be ex-
tended to give these bistatic fields. It is only necessary to compute products
of angular functions for two different values of the argument instead of for
single values of the argument and to introduce the @ dependence in the sum
over m in equations (B, 1) and (B.3). Computation of equations (B.2) and (B.4)
will then be a trivial extension, as the summations over { in them are also

found in the respective direct returns, The apparent singularities due to cos 6

and sin 6 in equations (B.1 - B.4) can be eliminated by consideﬁhé af)ﬁl:op-

riate limits. In some cases ratios of the weighting factors and the singular
function will be well behaved, while in other cases the angular functions will

cancel the singularity.



APPENDIX C

2
THE a’f (-ic)

Series representations of the coefficients a/r ( ic) as defined in equation

m/f
(2.3.5) are given below in terms of C_.  and the normalized coefficients

-0
'm{_ mf, ml ) — e .
Cop = CZb /06 for a range in theﬁ;]_dgic r of 0<r<8. Series for the

ﬂ R
a:l (-ic) forfO <r <4 have also been derived by Flammer (1957) and agree
with those given here with a slight change in notation, The argument (-ic) has

been omitted here for brevity.

ml .
ml=(c -2

'1“‘ 2(0’“‘) 20'2““

o™ 21 (™2 [3c™ 2o 04 g
a, =2!(C Ex(c' -2, ]

;nls -2 (3')(cm‘ 2[2(c'm‘ 3 3C;m1%m1 'ml‘]
?1-4! (Cm ? E’(C'w 12 C'm(c ) +3(C'm‘)2+sc' zc'ml]
.:11-—3(5:)(0 ) E(Céml)s 100‘ (c&m’)sw(c;m’)zc'm‘
+6c} (C.ml)ﬂ ;m! C;m!- 3 anlc'zmlw,;;u
?"5' (€ ) 2 fie™-s0c™ ™ sone™ o™ P-acyh +
sa00™ (™3 2a0p™ e e 48 (0™ -
et weplehasmteacs’]
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m‘---z('z')(cml 2[4(0' )? 2104 (c; )+30(c;m’)2(c'm“

‘-lo(c:lml)3czgml+15cs (C.ml 4_3océml ;ml( |m1)2

5 (™ ao™ (e ™)-10c! ("’“‘)3

-3C

ml_ ml_ ml  ,mt mf  ml ml2
+J.208 C4 C2 3 CG +BCIO (C2 ) -

mi ml o ml mf md
3C10 4 Cp G+

a -8'(0 [s';(c",;’“l)8 -56C' " (c )+105(c;m1)2(c'm'£)4-60(0' -)’(cém’)zj +:

+5(c4 )+4zc' (c'm’)s-lzoc;m‘ c, (c'm“

+80C (C;mI)Z c! md, 2" ,ml 2

6 +30(06 ) (C mtl 2 |ml

12(C6 ) C

- | - -30c; ('m’)4+soc;m’ ":”‘(c'xm 2-120 (c;m‘)z-'

st 'ml 'ml3_ m! _ ml_ mt |

24C 6 +3(C )+200m (C 24010 04 C2 +
ml_ml mt. 2 mi_ml ymf cm.l

+6(210 CB‘ --12012 (C )-l-GC12 04 ~I'GC14 C2 2016

+
.
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