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HIGH-FREQUENCY BACKSCATTERING FROM A FINITE CONE
+
T.B.A, Senior+ and P.L.E, Uslenghi

Abstract

The high-frequency backscattered field produced by a plane electromag-
netic wave at oblique incidence on a perfectly conducting, right circular cone
with a flat base is considered. The first two terms of the asymptotic expan-
sion are obtained by applying the geometrical theory of diffraction and these re-
duce to previously-derived results in the particular case of a circular disk.

Due to the axial caustic, functions must be introduced to match the wide-
angle i‘éfﬁlTJIB:é to the known results for nose-on incidence. This matching is
effected by employing Bessel functions and Fresnel integrals for the first and
second-order terms, respectively. The resulting expressions are valid for
all cone angles and for a wide range of aspect angles about nose-on, and are

found to be in good agreement with experimental data.

‘1, Introduction

Over the last dozen years the problem of the backscattering of electromag-
netic waves by alfﬂat—lééigggr right circular cone of finite length has excited a
great deal of interest. On the practical side, this shape is often used as a pro-
totype for missiles and re-entry vehicles and this fact has stimulated a number
of theoretical investigations of the scattering. On the theoretical side, the shape
is of sufficient complexity to pose a problem that is challenging, yet simple

enough to hold out the lure of accurate estimates of the scattering.
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We shall consider here the case of a perfectly conducting cone of half
angle v, and ‘s_gé@ expréssion for the backscattered field for large ka,
where a is the base radius. The first effective estimate of the base contri-
bution to the scattering was provided by Siegel (1958) using circular wedge
theory in which each portion of the rim is assumed to scatter as would an
element of the corresponding wedge. Siegel considered only axial incidence,
but shortly afterwards Keller (1960) applied his geometrical theory of diffrac-
tion to the cone and produced first order estimates of the backscattered field

for all incidence angles bounded away from the caustic diréétions. No attempt

was made to provide caustic matching functions to smooth the transitions from
one angular range to another, but in th(ie’i;);r{icﬁlar case of incidence along the
axis (which is itself a caustic), Keller carried through his theory to the second
order by including the contribution of waves which have traversed the rear of
the cone once. A rather limited comparison of theoretical and measured data
for the axial cross section has been given by Keller (1961).

A more extensive comparison of theory with experiment has been provided
by Bechtel (1965), who also corrects errors in Keller's original expressions,
Using Keller's first order expressions with no attempt at caustic matching,
Bechtel observes that for angles near to nose-on incidence the agreement with
experiment is quite good for horizontal polarization but very poor for vertical
polarization;

In order to remove this discrepancy, it is essential to provide some form
of matching of the 'wide angle' expressions into the axial caustic, This problem
has been explored by Ross (1969) who has produced a matching of the first order
expressions for both vertical and horizontal polarizations that incorporates
Bessel functions of the first three orders and is similar to that given by Ufimtsev

(1958) for a disk. 'Ryan and Peters (1969, but see 1970) have also tried to produce



résﬁlis_&@@?udla be valid in the vicinity of the axial caustic, using postulated

distributions for the surface field components near to the rim of the base, How-
ever, the expressions that they obtain appear theoretically Aifh}%ﬁébler," and are
not supported by experimental data. -

T;e prééent paper is also concerned with the high frequency backscattering
from a cone at angles from axial incidence ( (f = 0) out to, and just beyond, the
backward cone angle, @ =y. For @ bounded away from zero, the geometrical
theory of diffraction is used to obtain the first and second order terms in the
scattered field, The latter are here obtained for the first time, and in the
case of E polarization, are of particular interes't because of the unusual ray
paths across the base of the cone that permit this second order contribution to
be observed even for q) >v . It is shown that the matching of both the first and
second order terms into the axial caustic is directly analogous to the problem
previously considered (Knott et al, 1970) for a disk. Indeed, the same matching
functions occur, leading to a 'uniform' asymptotic expansion for 0 < 1) <7.

The agreement with experiment is superior ff& any previously obtained,

2. The Second-Order Backscattered Field

The scattering body is a perfectly conducting right circular cone with semi-
aperture angle v and base radius a, immersed in free space. The geometry
is illustrated in Figure 1, where the cone is viewed both along its axis, z, of
symmetry and in a direction perpendicular to it (i.e. along the x-axis), An
incident[;}iraﬁiém electromagnetic wave with wave number k propagates in the
direction of the unit vector 7 parallel to the (y, z) plane and forming the angle

@ with the negative z-axis and the angle (7 /2 - @) with the negative y-axis:

’i\=-?sin§)—/z\cos§. (1)



We consider the two cases of E-polarization, in which the incident

electric field is

E'- Qexp{- ik (y sin § + z cos Q))}, (2)

and H-polarization, in which the incident magnetic field is

§i=§exp{- ik (y sin § + z cos (I)} R (3)

the time-dependence factor exp(-iwt) is omitted throughout, In the former case

the far backscattered electric field may be written as

b. s Aeikr
,E_..=X kr SE) (4)

whereas in the latter the far backscattered magnetic field is
b.s /\eikr ‘
B =X51 Sp | (5)

where r is the distance of the observation point from the center O of the

cone base. Interms of the quantity S, the backscattering cross section is
2
A 2
o2 s, (6)

where X = 27 [k is the wavelength, When the characteristic dimensions of the
scatterer are large compared with the wavelength (ka > > 1), the far-field
coefficients SE and SH can be expanded asymptotically in series of inverse

(fractional) powers of ka. In the following, the first two terms of these series

are derived.

To obtain the backscattered field via the geometrical theory of diffraction
(see, for example, Keller 1957, 1962; Keller and Hansen, 1965), we must
determine the paths of all reflected and diffracted rays which pass through the



observation point, the divergence factors along these rays, and the diffraction
coefficients at each point of diffraction. The field along a ray diffracted at a
tip or at an edge is therefore the product of four factors: the diffraction co-
efficient, the incident field at the point of diffraction, the divergence factor,
and a phase delay proportional to the distance from the point of diffraction,

The ray paths are discussed i mzrl_,t_hg\idivergence factors and diffrac-

tion coefficients are determined in sections 2.2 and 2.3, and the [second-order

backscattered field is obtained in section| 34

2.1 Ray Tracing

The first-order terms in the asymptotic expansions of SE and SH are
produced by singly diffracted rays backscattered from the circular edge at the
base of the cone. For é = 0, all points of the edge contribute, whereas for
oblique incidence within the}b}i_{:ﬁ@:ﬁr cone (i, e, for 0 <@ <) there are only
two first-order rays, and these are backscattered from the flash points P1 and
P2 at which the edge intersects the plane (y, z) of incidence (Figure 1), For
v <@ < 7 /2, the flash point P2 is not illuminated by the primary wave, so that

only the ray backscattered from P_ is td‘r__bﬁe* taken into account,

The determination of the secolnd—order terms in the expansions of SE and
SH is more complicated., For @ = 0, these terms originate from the cylindrical
surface of backscattered rays which have been doubly diffracted at any two
opposite points of the circular rim of the cone,

For @ 4= 0, the contributions to the second-order terms come from the
ray singly diffracted at the tip and from the rays doubly diffracted at the base
of the cone. The latter can be determined by recalling that, according to the

geometrical theory, the incident and diffracted rays lie on opposite sides of the

plane normal to the edge, and the diffracted rays are the generators of a cone
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whose axis is tangent to the edge at the diffraction point andﬁv;ﬁégé" half angle

is the angle between the incident ray and the tangent. If these rulés are applied
to two successive edge diffractions of the same ray, four doubly diffracted rays
are found. Two such rays are those incident at P1 (or Pz), diffracted toward

P, (or Pl) and backscattered from P, (orr‘l?;‘l). The other two are 'migrating'
3 and P 4 symmetrically located with

respect to the (y, z) plane (see Figure 1), and which were noted for the first time

rays which strike the edge at points P

by Knott et al (1970) in connection with a disk. The distance of P3 and P 4 from

the x-axis is

asin@ V1+sin2q> i

and the azimuth § of P, (taken as positive) is

¢ = arccos L , (7)
01 + sin Q

implying that 0 <@ <7 /4,
The rays doubly diffracted at P1 and P2 occur only within the backward

cone (i.e, for (I <), but the migrating rays doubly diffracted at P3 and P 4

occur for all @5 Qmax » Where Qmax >v. At Q = Qmax’ the points P3
and P 4 are on the shadow boundary, and for (} >@ max they lie within the
shadow region, The value of Qmax is found by observing that the outward unit

normal to the conical surface is
'1\1=§cos'ycos¢—'y\cos'ysint//+?sin'y, (8)

and that the equation of the shadow boundary is Y.4- 0, with o given by (1).

The shadow boundary is therefore a generator whose azimuth i (taken as positive)



is

¥ = arcsin (tan vy cot@t) , (9)

and if P3 and P 4 are to lie within the illuminated region, i.e. P <y, it follows

from (7) and (9) that

ﬁmax = arcsin \/sin v . (10)

A plot of Qmax as a function of v is shown in Figure 2, Observe that Qmax

exceeds the angle (7 /2 - ) of the specular flash if y > 38,2 degrees.

2.2 Divergence Factors

The divergence factor r;lj ’ at a point PZ along a ray diffracted at the edge
point Pj‘ and corresponding to an incident ray coming from Ph’ is (see, for

example, Keller 1962);

.
rhvz ﬂ/(—?ljz)_ ’ (11)
N 'Phje T S50’ Sy

where sj " is the distance between Pj and Pl’ while phj r is the distance from
the edge point Pj to the caustic of the diffracted rays, measured negatively in the
direction of propagation, The radius of curvature, p, of the diffracted wave-

front may be written in the two equivalent forms:

. 2 2
-a sin B _ a sin B

p: =
asinB-aé%+cosé (ﬁ—ﬁ)-'ﬂ+a?-%— , (12)

where 7 is the arclength along the edge, B is the angle between the incident

unit vector € and the tangent unit vector ’?, and 6 is the angle between the



principal normal to the edge (i.e. the normal pointing toward the center of

curvature) and a unit vector ﬁ\ oriented in the direction of the diffracted}ray.

The quantity p remains unchanged when the dii‘ection of increasing arclength
7 is reversed. Observe that in the second of the above expressions for p, the
term Ou/ 97 is zero only when the field incident on the edge is a locally plane
wave,

It is found that for the singly diffracted rays

a
i1r” " Pi2r 2sin  ° (13)

whereas for the doubly diffracted rays

p :—-_a—_ p _—5‘1—28111
il2 1-sin® t2r © , .2

-3
_ ) 2 /2
p134-pi43—-a(1+sm @) (14)
. 2 -3
0 - =_al+2s1n Q (1+sin2§) /2
34r 43r . 2
2sm§

in which the subscripts "i" and "r" indicate the incident and backscattered
directions, respectively. Since there is a phase delay of 7 /2 in crossing a

A . . . . 2
caustic line, our time convention requires us to take J-_l = -i wheneverr' >0.

2.3 Diffraction Coefficients

For the diffraction coefficients D we adgf)fn the same notation involving

——

three subscripts used for the divergence factors, If the incident wave is either

E or H polarized, D can be considered a scalar for the rays diffracted at P1



and P2; by using the wedge diffraction coefficients of Keller (1960; footnote

15), we obtain:

B
_ 21 (s con 202 D) ] —
D11 r Ao [(COS n 1) + (cos n cos, n | ? _.(_lf)
7 -1
- 2Ay - e
D, = A [(cos —--1) " 3 (cos — - cos —(L—q)-)) :] , : (16)
i2r 0 n —_
-1 -1
T 37-2 T 31 -2 T —
D, 1,74, Kcos L - 008 - ) z (cos - €08 T ) .]{_’_ (17)
r -1 '1]
_ o 37r+2Q s 31+ 2 | e
D121 = A0 cos cos — ) I (cos L~ Cos T o ) N (}8)7
_ -1 -1
_ L 3T - 2@ s 37 -2 ]
D21r—Ao COS — - COS 5 ) _T_(cosn-cos 5 ) ’(19)
r % -
+
D = A cos = - cos M) - { cos I cos 3Tt 2 ] (20)
12r o) 2n + n 2n )
where
i
! 4. T
—__e  sin o

A =——— s (21)
Y n|/2 Tk

3.
n-2+7r ’ (22)

and the upper (lower) sign refers to E (H) polarization.




Observe that the diffraction coefficients of formulas (17) - (20) are zero

for E‘ﬁpblarization‘:: Thus, the rays through the flash points P1 and P2 con-

tribute to the second-order term in the expansion of S__ only, and the contri-

H

bution of the edge-diffracted rays to the second-order term in S_ arises solely

E

from the rays doubly diffracted at the migrating points P3 and P 4 In reality,

the diffraction coefficients are asymptotic expansions in inverse fractional powers

of k of which we here consider only the leading term (see:V f;);éxample, Buchal

and Keller, 1960). Although the complete diffraction coefficienfs are not exactly
zero for E polarization, they only contribute to terms higher than the second in
the expansions of the far-field coefficients.

For the rays obliquely incident at P3 and P 4 the diffraction coefficient is
a 3 x 3 matrix which, in the limiting case of a screen of zero thickness (y = 7/2),
has been given explicitly by Keller (1957). Keller's matrix is easily generalized
to a wedge of arbitrary_ gﬁgle; however, it is not unique and, in its original form,
it is not suited to the casemin Which the incident or diffracted rays graze one of the
faces of the wedge. This defect can be remedied, and since the resulting matrix
should prove useful in a variety of problems, its derivation is presented in the
Appendix, The fundamental result is given in Eq. (A-13), and the matrix
elements axze specified in Eqs. (A-9). The diffraction matrix multiplies the
incident electric field at the point of diffraction, expressed as a column vector
in terms of its components along the axes of a local, right-handed Cartesian

AN A
coordinate system whose unit veetors T, N, B are described in the Appendix.

2.4 Backscattered Field .

For a large cone base (ka >> 1) and oblique incidence ( @ # 0), the far-

field coefficients may be expanded in the form

10



1
I I - /2
SE,HN SE,H +SE,H+O [(ka) ] s (23)

where the first-order terms SIE H are proportional to ‘/ka' and the second-

order terms SIEI: g are of order unity.
L

The first-order terms are

. . N
ikr d.o r' 1k(zp1+ Slr)+D 1k(r,[/2 S2r) o0
kr itr 'i1r® i2r 'i2r © g

where kwl and kgﬁz are the phases of the incident field at P, and P_, respectively.

1 2’
Hence,
¥ s
1 - . -
" =+33m§ ) Slr =r+ asin@ . (25)
2 2r

By using the results of sections 2.2 and 2,3, it is found that

T BE— T
sin = ! Zikasiné-i—
-1 _ -
SI= = ka. cos = - 1 T cosz—cos-z—(w) e 4+
E 2n szm@ n , n ~n /.

- \-1] -2ikasin §+i~
+ [GOS f - )_liyéosg- cosz—(%i@> ]e 4 , (26)

which is valid under the condition

a
2sin§ ’

r>> (27

11



i.e. § bounded away from zero as r tends to infinity. Result (27) agrees with
that of Bechtel (1965).

The contributions to the second-order terms arise from the ray singly
diffracted at the tip and from the four rays doubly diffracted at the base of the
cone. When the calculations are performed for the doubly diffracted rays, it is
found that the two rays diffracted at P, and P, contribute only for H polariza-

1 2

tion, whereas the two rays diffracted at P3 and P 4 contribute only for E polar-

ization. In the former case

i ik(u. +2a+
‘ﬁrsH:D o, [T elk('ﬂza Szr)+
kr H il2712r il12 "12r
ik(y t2ats, )
2 Ir
*Dig1Do1rtin1 21r @ : (28)
By using the results of sections 2.2 and 2.3, and invoking the condition that
+9 ai
r>>a 1___252i§2 , (29)
2sin” §
equation (28) becomes
2ika
o 2e
Sy * 7 sin G(Q) : (30)
where
1 .7 2
@ psino o
G(Q)= . [(31)
- + ,

12



In particular, for a disk (v =7/2, n =2), equation (30) reduces to
2ika

S]II{ = ——ﬁ s (32)
disk 7 sIn QP cos

in agreement with the result obtained by Knott et al (1970),

In the case of E polarization

1kr pray

ik (U_+ : +s,
SH I_, r elk((//3 2acosy {D Eg}
kr ~E "i34 34r

ik(y +2acos://+s )
4
+|-1'4:3 r;Sr {D143 Ey (33)
where
a sm2
%1/3 ¢/4 % s (34)
1+sin Q
SSr:S4r\,= r+¢3 ) (35)
—_—

—_—

and § is given by (7). The incident fields IE; and 1;:1 are the field of eq. (2),
expressed as column vectors in terms of the local bases T, Q ﬁ at the
points P3 \and P 40 respectively, The column vectors {D 34 3} and

{D 43 4}must also be expressed in terms of the local bases at P 4 and P3
When the results of sections 2.2 and 2.3 and of the Appendix are taken into
account, and the appropriate coordinate transformations are performed, it is

found that with the condition

r>>'p34r|, (36)

13
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equation (33) becomes

. l/ . 2
m _2icos @V1+sm 2ika Y1 + sin” §

E 7 sin § E ( )e s (37)
where T 2
R 1 .7
’ 1 sin o -
\ E(Q)_ 3T+2a ? (?E)__
cos < - cos ———=>
‘\; n 2n
~_
with T -
@ = arcsin(sin2 @) . (39)
In particular, for a disk ('Y 2, n=2),
1
E(@) f g E— (40)
IdlSk o1 + sz ‘})

and equation (37) therefore yields

.2 . I/ 2
icos e21ka 1+sin” § (41)

I
Elaisk 7 sin@)1+sin°§ ’

S

which is a previously-derived result (Knott et al, 1970).

As noted earlier, the tip also provides a contribution to the scattered field

that is the same order in k as the contribution of the doubly diffracted edge rays
at oblique incidence. Using the known solution for the scattering of a plane wave
by a semi-infinite cone, expressions for the tip contribution, Stip , can be derived
for either large or small y. In particular, Felsen (1957) has shown that
. sinz(l'y) .
Stépgé _i 2 (1- 1 smz (I’) e21ka cot vy cos (I) ) (42)

3 4
cos

14



valid for y<<1and 0 < @ < -72-r - v, where the phase factor has been included to
transfer the phase origin to the center of the base, Higher order terms in vy

have been given by Bowman et al (1969, pp. 675 et seq), who also show that

'c1ph,i _ 2 (1 _ %sin2§) e21ka cot v cos Q’
Zln(sm —'y)cosi (43)

validﬂ under the same conditions. Both expressions are increasing functlons of

@ and are consistent with the physical optics result (which is mdependent of

polarization) only for § = 0.

Although mathematical completeness would require the inclusion of the

above tip contributions in any second-order treatment of cone scattermg, the

magnitude of SEpH is such that it is negligible compared with the base con-
tributions that are present. For example, with y =15, StEp H is less than

-35dB for @ =0, increasing by less than 5dB as Q increases to 30 We

shall therefore ignore this contribution throughout the subsequent discussion.

The resultlng second-order approx1mat10n to the high-frequency back-

scattered field for oblique incidence is represented by formulae (23), (26),
(30) and (37). While the first-order expressions (26) are well known, the

second-order results (30) and (37) are given here for the first time.

3. Matching Into the Axial Caustic

For axial incidence the geometrical theory of diffraction gives (Keller,
1960)

I -
=+
Sp. - tkaB (44)

15



I _; /[ka 821ka—17r/4E(0> ’ (45)
E,H T
where
B = S (46)
o . 2T
2nsm?

and E(0) is given by (38) with Q = 0, Because of the axial caustic, these results
cannot be obtained merely by putting @ = 0 in Eqgs. (26), (30) and (37), and we
must now introduce caustic matching functions which will serve to interpolate
between the wide-angle and on-axis formulae,

In a purely mathematical sense, such 'smoothing' is only important in the
immediate V1cm1t;r of Q =0, i.e., in an angular range which tends to zero as
ka — o . In practice, however, we often require to compute the scattering
when ka is as small as 10 (or less). The expressions for the scattered field
incorporating the matching functions may then differ from the wide angle formulae
throughout the entire backward cone @ <) and beyond, and the choice of match-
ing function is no longer an academic matter.

Although the geometric theory does not provide a unique specification of the
matching functions, the matching problem is identical to that which arises in
scattering from a disk. In their study of disk scattering, Knott et al (1970)
obtained a match which was supported ¢&i¢€§{d£1fy and experimentally, and the
requirement that the caustically-correcfed cone solution degenerate to the disk
solution when v = 7/2 can be used to specify\.@é matching functions in the pre-
sent case, |

Let us start by considering the first order terms. Bearing in mind the

asymptotic expansion of the Bessel function for large argument, Eq. (26) is

16



consistent with

JL

i

where

1 1
1 v
séH -ka{(-1) ~ AJ,, €)X(-1) 2B(@)J21 (§) #i(-1) 3/c(CB)JM (&) ) 47
1 2 2+1
1
25
A= , (48)
1—cos7-r
n
. T
B( ) f”‘ﬁL 1 + L ] (49)
C(P) 20 | 71 _ 32T ST
n n n n
E=2kasin . (50)

can have any integer values, and Eq. (26) follows frgmﬁ @T\

. (47,0, {
In Eq. (4 ?-, P 2and 3
on inserting the leading term in the asymptotic expansion of each Bessel function.

In the limiting case of a disk (n = 2), Egs. (48) and (49) give

1
2 sin §
is consistent with the disk solution (see Knott

,B(9)=0,c(d)-=

[\

A:

3

and the resulting expression for S

et al, 1970) if and only if

Moreover, for axial incidence ( @ = 0) with n # 2, we have

B(0)=B,C=0,
0
and the result now agrees with Eq. (44) only if 122 =0 . The caustically-corrected

is therefore

. I
expression for SE H

17



I _ T T
St 1 -ka{qJ2<s>+B<€f>Jo<§>+1c@>Jl <§}, (51)

where A, B @) and C@) are given in Eqs. (48) and (49). It can be verified that
this reduces to the disk result when n = 2,

The general form of (51) is identical to that arrived at by Ross (1969) using

somewhat different‘ reasoning, and hias_—é;(press@( for B @) and C@) differ

from those given here only in being replaced by theii'mﬁrst order approximations
for small @ . Because of the non-uniformity of the small @ expansions accord-

ingas n 3(= 2 orn =2, it is not possible to recover the disk solution from Ross'

result, and it therefore appears desirable to retain the more complicated forms

for B(J) and C @) given in Eq. (49) even though our prima.:fy interest is in

cones of small angle.
Turning now to the second-order terms, we observe that on the axial caustic
S];[-I is given by‘(élg): and since G(0) = E (0), the caustically-corrected expression
is
. . T
I Ta 2ika - i

_ [ia 4
SR ¢ (P 1D , (52)

where fH( I)) is a function having the properties

fH@) =1, $-o
i T
2 e1 ‘
~ m s @ bounded away from zero. (53)

This is precisely the matching problem encountered in disk scattering, and

following the reasoning given by Knott et al (1970), we take

18



@ -M(/ka snd) (54)

where M(x) is related to the Fresnel integral F(x) by

[00)

.2 .7 .
-1X -1 -1

4F(x)=/%e

Sy

2 iy°-x)
M(x) =f7_' e ey X dy . (55)

Hence
T
2ika - i—
o |k 4 1 .
SH =J—7;a- e G@) M(E Jka sin @ ). (56)

The procedure for E polarization is very similar, and leads to the

2ika | + sin® Q--”

SH =-/'1;3(1+sin2 Q)‘ cos2 @ e 1%@) M*( % JH sin @) )
(57)

where M(x) is as given in Eq. (55) and the asterisk denotes the complex conjugate.

caustically-corrected expression

4, Discussion and Experimental Comparison

The wide angle scattering formulae can be recovered from the caustically-
corrected results of the previous section by replacing the Bessel functions (in the
case of the first order contribution) and the Fresnel integral (second order con-
tribution) by the leading terms in their asymptotic expansions for large argument.
In this connection we note that J 2(x) is approximated by its leading term within

10 percent only if x 3 16 (implying Q 3230 for ka = 20), and F(x) is approxi-

mated by its leading term within 10% in phase (7 percent in amplitude) only if

19



x >1.42 (implying @> 39° for ka = 20). Thus, even for ka as large as 20
it is desirable to retain the more general expressions given in Egs. ~(51), (56)
and (57) over an extended range of Q , and certainly throughout the entire back-
ward cone if v < 200.

The results derived so far are applicable for 0 < §< v, where all the

. . . ) < ) .
flash points Pl’ P2, P3 and P4 are illuminated. For v Q < Qmax. P2 is

shadowed by the slant surface of the cone, and for @max < Q s P3 and P 4 are

also shadowed. In a purely asymptotic sense, a flash point can no longer con-

I
trlbute once 1t is shadowed. Consequently, for v< Q < Q max’ SH must be

taken zero and SE, H replaced by the direct contribution attributable to P1 alone
(i.e. the terms involving exp(-2ika sin Q) in Eq. (26)), thereby creating a dis-
continuity in S at § = v. Although this is the precedure that will be followed, in
practice there is no such abrupt change in the contribution of a flash point on

passing into the shadow since energy can still reach it by "creeping' over the

curved surface of the cone.

In order to test the theory, a‘@eéof cw backscatter measurements was
carried out using a cone with base radiuisﬂi 968 inches and half angle v = 15° (for
which § = 30,6 ) The patterns were recorded for -30° < Q < 30° as the fre-
quency was increased in steps of 0.1 GHz _f}'qr_n 8 0 to 11.0 GHz. The corres-
ponding values of| ka\_spanned the range 8.383 <ka < 11,527 and both E and H
polarizations wer_é%e;nployed.

A comparison of the theoretical and experimental data for the backscattering
cross section at axial incidence as a function of ka is shown in Figure 3. Whereas
the first order theory (Egs. (6), (23) and (445) displays no resonance at all, the
second order theory (Egs. (6), (23), (44) and (455) is qualitatively correct but

exaggerates the resonance., It would therefore appear that for a precise estimate
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of cone scattering, ka must be substantially greater than the values considered
in Figure 3 or, alternatively, that the theory must be revised still further by the
inclusion of third (and perhaps higher) order effects. Figure 3 also suggests the
type of agreement to be expected at oblique angles: though we can look for the
second order theory to reproduce the qualitative features of the angular behavior
better than the first, the quantitative accuracy could be poorer if ka is in the
range from 9.2 to 10.5. This is indeed what is found.

Results for ka = 9,641 are shown in Figures 4 and 5, with the measured
patterns for H and E polarizations being ,;;Viv»eﬁ on the left and right respectively
of each figure. The first order predictidns :;Lre included in Figure 4, and
throughout the entire backward cone the agreement is rather good, particularly
for H polarization. For § >~ , however, the first order estimate for E polar-
ization is much too_;éall, but this defect is remedied on including the second
order term (see Figure 5) at the expense of a worsening of the agreement‘ within
the backward cone. A similar comparison for ka = 11,527 is given in Figures

6 and 7, and as anticipated from Figure 3, the second order theory is now better

both qualitatively and quantitatively.

5. Conclusion

In this paper, two new results have been obtained: the second-order terms
in the high-frequency expansions of the far-field coefficients for oblique back-
scattering from a flat-based cone have been derived, and a match has been pro-
vided between these wide-angle formulae and the known return for axial incidence.
The resulting uniform expansions are valid for all cone angles, and are in good
agreement with experiment at sufficiently high frequencies ( ka greater than 11 or so).
A more accurate theoretical description of the backscattering would requiré

the determination of terms higher than the second in the expansions of the far-field
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coefficients. Specifically, creeping-wave phenomena and higher-order inter-
actions between diffracting elements would have to be considered. While the
former contribution could be determined without difficulty, the latter would
entail laborious calculations because of the increased number of optical rays
and because terms beyond the dominant one would have to be included in the

expansions for the diffraction coefficients.
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Appendix: Diffraction Matrix for a Wedge

To find the contribution to the field resulting from diffraction at the base
of the cone, it is convenient to introduce the concept of a diffraction matrix
appropriate to the local edge geometry, namely, to a wedge of half angle 2,
where 2 Q=g—'y.

To this end, consider a perfectly conducting wedge whose edge coincides
with the z axis of a Cartesian coordinate system (x, y, z) and whose surfaces
are defined by the equations y =+ xtan @, x>0, - w<z<om. The problem
of a plane wave incident in a plane perpendicular to the z axis with either its
electric or magnetic vector parallel to the edge is a classical one, the exact
solution of which is known (see, for example, Bowman et al, 1969, pp 254 et
seq.), and from these two basic results it is a trivial matter to deduce the
corresponding solutions for plane waves incident at an angle 7 - 3 to the z
axis.

Instead of stating these solutions in terms of the original coordinates
(%, y, z), we shall, following Keller (1957), define a ;1ew set of base vectors
?, ﬁ, g, where /% is a unit vector parallel to the edge, f\I\ is a unit vector
'normal' to the edge and pointing away from the wedge, and /]; is the unit
vector 'binormal’ to the edge and pointing into the shadowed half space. The
direction of ? is chosen to make /'I\‘, ﬁ, ]/B\a right-handed system, i.e. |

A A A
T=NxB. Specifically, and for maximum generality, we choose

A

T=-%,

A

N=-Rcosé+ysins, (A.1)
A\

B=—§sm6-§\rcos6 s
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where 6 is arbitrary. Then if the incident electric field is

E1 31 1k1
with
A A A
i=TecospB- NsmBsma+Bschosa,
--§+Q+6<a<% 5, 0<B<7,

(A.2)

(A.3)

the diffracted electric field at points far from the edge and away from all geo-

metrical optics boundaries can be written as

d_ ad[ e4 ik .r

% \sinBy2rks)°

it

with

A
q- TcosB+NsmBsm6 BschosO

Zi0+6<0< T -Q+s, 0<B<7T 4.

In particular, if

i A A —A
g1=TsinB+NcosBsina;—B cosBcosa ,

and if
i A
31=Ncosa+ﬁsina,
then
A A e
=(Ncos6+Bsinf)(X+Y) ,
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A A A |
=-(TsinB-NcosBsinf+BcosBcosh)(X-Y),

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)



where

1 T T 1 -1
X = =gin— {cos——cos—(a-e)}
n n n n
(A.9)
1 T T 1 -1
Y=—sin—¢{cos—+cos=(7+256-a-0)
n n n n
with
n=21-2y:=3,2 (A.10)
T 2 7

These are the asymptotic forms of the two fundamental solutions referred to

earlier, and it will be noted that

A A AN M
i.e=0=s.¢ .
We can cast the above results in the form of a diffraction matrix by writing

- A (A.11)

where ’e\i is now treated as a column vector in the base !1‘\, ﬁ, g and Aisa

3 x 3 matrix (or dyadic). Although a general diffraction matrix is unique,

Egs. (A.7) and (A. 8) yield only 6 equations for the determination of the 9 matrix
elements. The resulting arbitrariness is a consequence of considering only
incident plane waves, and an observation point characterised by the same angle
B as the incident field at large distances from the edge where the diffracted field
is also locally plane. If the matrix elements deduced from Eqs. (A.7) and (A. 8)
are expressed in terms of the elements in the final column, and the latter are

then put equal to zero, we obtain the following matrix:
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-(X-Y 0 0

A= -{Xsm(a-e)+Ysm(a+99%§— (x+y) 88
COS o COS a

—(Xcos(a—@)-Ycos(aH)»M (x+ypSnf
COoS a COS o

(A.12)

This reduces to the diffraction matrix for a half plane on putting Q=0 (n = 2)
and, when 6 =0, is equivalent to the half plane result given by Keller (1957)
provided the elements in the second column of this matrix are reversed in
sign (see Knott et al, 1970),

The above matrix is sufficient and entirely adequate 1f{ cos & -')E 0, but if

a =+ 7/2, a casual inspection of Eqs. (A.7) and (A, 8) shows that the matrix

is no longer correct. This failure is evidenced by three of the matrix elements ]
becoming infinite, and since a knowledge of the result for « =-7/2 is required
for the determination of the second order diffraction term, this particular case
cannot be ignored. Knott et al (1970) overcame the difficulty in their treatment
of disk scattering by considering a slightly curved disk and, having found the
second order term, by taking the limit as the disk became plane., The sub-
te—f—faég is not necessary, however, and can be avoided by a simple modification
of the matrix,

A form which is alternative to (A.12) and consistent with Eqs. (A.7) and
(A.8) for alla is:

-(X-Y 0 0
A= | (X-Y)cotBsinb (X+Y)cos6cosa (X+Y)cos 6 sina
-(X-Y) cot Bcos 0 (X+Y)sinBcosa (X+Y)sin6 sina

(A.13)

27



It is trivial to show that the difference between (A.13) and (A.12) implies a
null field for all incident plane waves having cos @ # 0, but in contrast to
(A.12), (A.13) is in accordance with (A,7) and (é g)t_yvhen cosa =0, The
elements of (A.13) are, moreover, simpler than those of (A.12), and though
(A.13) has additional non-zero elements, its universality more than compen-

sates for this inconvenience.
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Figure 1: Geometry of the scattering problem viewed from (a) the

side and (b) the tip of the cone.
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