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THE POLARISATION CHARACTERISTICS OF SCATTERED FIELDS

E. F. Knott and T. B. A. Senior™

Waves scattered by all obstacles are depolarised to some degree
except in certain symmetrical situations. Expressions of some
generality are derived that demonstrate this fact and, further-
more , it is shown that the method of physical optics predicts

no depolarisation, even in the absence of symmetry.

The polarisation characteristics of the electromagnetic field \scattered
by an obstacle are strongly dependent on the obstacle geometry. These charac-
teristics are potential sources of information about the body and, in particular,
the cross polariséd component (here defined as the component perpendicular to
that of the incident wave) can be used as a measure of the 'edginess' of the obstacle.
There are many instances, however, in which there is no depolarisation of the
scattered wave, even if there are edges or other 'electrical® sources of depolari-
sation present.

By way of illustration, consider a perfectly conducting object illuminated by
an electromagnetic wave whose field intensities are E_i and _}_I_i . The far zone

s
scattered fields E and ﬂs are given by
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where J = 2 x (_}1i + _Iis) is the surface current density, n is-a unit outward
normal of the surface A, r and r' are the position vectors of the points of
observation and integration, k is the propagation constant, Z = 1/ Y is the
intrinsic impedance of free space, and a time factor e-iwt has been suppressed.

1 and show that

These formulae follow directly from the Stratton-Chu relations
_E_s,li_s, and r are mutually perpendicular in the far zone.

If the body possesses a plane of ‘symmetry, say the plane y = 0 of a
Cartesian coordinate system (x,y, z), two cases may be considered depending
on whether _E_i or Ei is perpendicular to that plane. Let vertical polarisation

be the case in which a plane wave incident in the plane of symmetry has its

electric vector oriented along the y direction:
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Symmetry shows that § » J(r') is an even function about y = 0 whereas

frx J(r') is an odd function, and, if the point of observation lies in the plane

y=0,
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where
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Thus E is parallel to lE_l , implying that no depolarisation occurs.

* Stratton,J. A., Electromagnetic Theery, McGraw-Hill, 1941, p.466.
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Similarly, when the incident electric vector is taken in the plane y = 0 ,

corresponding to horizontal incident polarization,
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the symmetry now shows that § « J(r') is an odd function of y and § x J (r') is

even. The scattered fields in this case are
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Again there is no depolarisation, this time because _Ij_s is parallel to gl .
Passing on to a more general situation in which the electric vector is
inclined at some angle B to the y axis, the polarisation can be expressed in

A A
terms of € andn ,
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and by superposition of the previous two cases,
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For observation in the backscattering directions, r= -l'c\ and the far field ampli-

A
tude of the direct, or parallel, polarized component Es - & becomes
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and that for the cross, or perpendicular, polarised component is
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\ It is cizﬁstgrgary to refer to plots of ISVIZ and 'SHI2 versus angle as principle
plane bistatic patterns, but in the present case they become the principle plane
backscattering patterns. In general Sy and SH differ, implying that some
depolarisation occurs for all B # 0, 77/2 ; when incidence is out of the plane of
symmetry, the backscattered field will almost certainly suffer depolarisation, but
no simple expression for the cross polarised compqnent\,is then obtaiﬁa;tilé.

A common means of estimating scattering by obstacles is physical optics, a

method which approximates the surface current density by
P @=2r @xg)

where I' = 1 over the lit surfaces of the body and I = 0 in the geometric shadow.

For backscattering from a perfectly conducting obstacle of entirely arbitrary shape
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and Eq. (1) now shows that the scattered electric vector is always parallel to that
of the incident plane wave. Thus no depolarisation is predicted by physical optics
and, in fact, for the cases given above it is trivial to verify from Eqs. (5) and (8)
that physical optics implies SV: SH .
The method of physical optics has served as a valuable tool in electromagnetic
scattering but its failure to predict any depolarisation in the scattering by a metallic

object is significant. If, for example, the method is used to estimate any one of

several contributions to the backscattering from a complék iject, the deduced



polarisation characteristics will almost always be in error in spite of (possibly)
more precise procedures used to obrtai{lﬁthe remaining contributions. In the
light of this shortcoming, one also questions the validity of present attempts to
combine numerical methods (based on a direct digital solution of the integral
equation) with \physical optics estimates of the currents over selected regions
of the surface.

We have found it useful to visualize depolarisation as the consequence of
geometrical constraints on the current paths. A sphere offers no such con-
straints to the|currents, those in the equatorial direction having the same
opportunities as those running along polar directions, hence one is willing to
accept that S_= S But a thin wire by contrast permits the currents to flow
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in only one direction, whence SV: 0 and SH #0. The wire offers the clearest

example of the source of depolarisation being a result of geometrical constraints

on the surface current.
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