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THE DIFFRACTION MATRIX FOR A DISCONTINUITY IN CURVATURE ™

T. B. A. Senior, Senior Member, [EEE**

Abstract— To enlarge the scope of the geometrical theory of diffraction,
the diffraction matrix for a surface singularity where the curvature but not the
slope is discontinuous is rigorously derived. The model that is employed con-
sists of two parabolic cylinders of different latus recta joined together at the
front, thereby creating a line discontinuity of the required form. For each of
the two principal polarizations, asymptotic developments of the surface fields in
the vicinity of the join are calculated, from which the diffraction coefficients are
then obtained by integration. The results differ significantly from the physical
optics estimates and are analogous to those for a wedge-like singularity. This

analogy permits a trivial deduction of the complete diffraction matrix.

I INTRODUCTION

When a metallic object is illuminated by an electromagnetic wave, a
powerful method for | estlmatmg its high frequency scattering behavior is the
geometrléal fheory of diffraction, originated by Keller [1 2] The theory is
basically an extension of ray techniques to include the concept of diffracted rays
which arise from surface singularities of the body. The strength of each such
ray contribution to the scattering is proportional to a diffraction coefficient

which is determined, to the first order at least, by the local surface geometry
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at the point of diffraction. In those cases where the diffraction coefficients
are known, their expressions have been obtained from exact solutions of selected
canonical problems displaying the geometry in question, and thus it is that the

coefficients for an edge or wedge-like singularity (slope discontinuity) are deduced
from the solution of the two-dimensional problem of plélil_e;:}{é};;s—cgt;ring by \

a half-plane or wedge.

The diffraction coefficients are the key to the GTD method and one par-
ticular but important case where they are not yet known is when the surface slope
(first derivative) is continuous, but the curvature (involving the second derivative)
is discontinuous. Their derivation for this geometrical feature is vital for an
adequate treatment of scattering by bodies such as a cone-sphere or hemispherically-
capped cylinder, and in the absence of any exact canonical solution from which to
deduce them, it has been necessary to rely (see, for example, [3] ) on the crude
estimates offered by physical optics. Automatically, therefore, the polarization
dependence has been suppressed [4] .

Although an exact canonical solution would be desirable, it is not, in fact,
essential to the determination of a diffraction coefficient, and an adequate des-
cription of the surface field in a vicinity of the geometric feature can suffice. For
a discontinuity in curvature, we can obtain such a surface field description using
the model that was employed by Weston [5, 6] in studying the creeping waves
launched by the discontinuity. Weston considered only the case of a plane wave
incident with its magnetic vector parallel to the line discontinuity (H polarization).
This is treated in Section III and the initial part of the analysis follows closely
that given in [ 5] . The analogous case of a plane wave incident with its electric
vector parallel to the discontinuity (E polarization) is discussed in Section IV.

The corresponding diffraction coefficients for H and E polarized waves are
derived in Sections V and VI respectively, and the general diffraction matrix is
constructed in Section VII. The results differ from the physical optics estimates
for almost all angles of incidence and diffraction, and some of the consequences

of these new and rigorous formulae are explored.
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II PRELIMINARY CONSIDERATIONS

We consider a two-dimensional perfectly conducting surface consisting
of two half parabolic cylinders of different latus recta joined at the front. In
terms of the Cartesian coordinates ( x, y, z ) with the z axis coincident with

the join, the surface is defined as:

2 1 2
azY: y>0: X—-éaIY:y<0: (1)

so that the positive x axis is in the direction of the outward normal to the sur-

face at the join. For pﬁ()p_'\;é_hriér/licé we shall henceforth write (1) as

12
X=-zay , (2)

where a = a, (y>0), a= a, (y<0). Itis easily verified that the surface slope
is continuous at the join (it is infinite there), and that the curvature is discontinuous
at y = 0 unless 2,7 a, .

A plane electromagnetic wave is incident with its propagation vector lying

B S

in the xy plane and making an angle o with the yﬁ axis, where - 7:

0 <a <t (see Fig. 1). If the wave has its magnetic vector in the z direction

(H polarization), we can write

i ge-ik(x sin @ +y cos @)

==
|

kG s (3)
- +
Z()Qcosa-grsina)elk(xsma ycosa),

]

E1

where Z = 1/Y is the intrinsic impedance of free space and a time factor e_lwt has

"In the derivation of the surface field about the join it is, in fact, necessary to
assume that @ is bounded away from zero and 7 to ensure that the shadow boundary
is sufficiently far removed from the z axis; however, see|Section VII.



been assumed and suppressed. Due to the presence of the perfectly conducting
surface, a scattered field (ES, I_IS ) will be generated satisfying the boundary

condition

at the surface, where ﬁ is a unit vector normal in the outwards direction. The
initial task is to find the total (incident plus scattered) magnetic field at the
surface, with particular reference to a region about the join.

Since the problem is two-dimensional ( being 1ndgge_ljgl_gnt“ of the coor-
dinate z), it can be expressed as a scalar problem for the total magnetic field
component, H, = u, which is required to satisfy the Neumann boundary condition
(du/on) = 0 at the surface, with u-u, obeying the radiation condition, where

L -
uO:H;=e1k(xsmoz ycosa). @)

This is a hard-body problem and is treated in Section III.
If, on the other hand, the incident plane wave has its electric vector in

the z direction, then

i /Z\e-ik(x sin @ +y cos @)

|t
Ii

i -ik(x sin @ +y cos ) (5)
=-Y ()?cosa-ysina)e

=N

The task is again to find the total magnetic field at the surface, and since the
problem is two-dimensional, it can be expressed as a scalar one for the total
electric field component E,=u. This is required to satisfy the Dirichlet boundary

condition u=0 at the surface, with u-u, obeying the radiation condition, where

i=e-ik(x sin ¢ +y cos «)

(6)

The resulting soft-body problem is treated in Section IV.



~ field point.

I SURFACE FIELD, H POLARIZATION

Maue's integral equation for the field on a two-dimensional acoustically

hard surface at a point specified by the coordinate y is

i 0 1)
=91 + - —
u(y) 2uo(y) 5 fu(yl) 8n1 Ho (kR)ds1 (7
where
2 KL
R = (X--X )+ (y-y )
and H( ) (kR) 1s the Hankel function of the first kind of order m. For the particular

surface defmed by (2), it is convenient to take yj as the variable of integration.

The line element dsl then becomes I

where 2 = az(yi">{0 ), a= a](ylv;JO ), and the integral equation takes the form

(00)
. dy
u(y)=2u0(y)-%< f u(yl)H;l)(kR){gly1 b, 9)- 5 (ay 12 &y ) R1 ®
-
with

12
{(y yl) +-(ay ayl)} 2 (9)

Note that a has the value a, Or a, depending on the sign of the variable of integration

Yy whereas a has the value a, or a, depending on the sign of the coordinate y of the

Although an exact solution of eq. (8) is impossible, an asymptotic ex-
pansion of u(y) for large k/a can be found by making use of the particular character
of the surface. To this end, we note that if the incident field (3) were to impinge
on the complete and uniform parabolic surface x = - é ay2 , an asymptotic expansion
of the surface field could be obtained by the Luneberg-Kline method, and is

uy) = Uy, 8) e -2 (10)



with [7]
=

Uly, a) = 2- 1Tj-l(sin o+ ay cos o )_3 + O(k"z) , (11)
1 2
f(y,a) = -y cos a +§ ay sina. (12)

Equation (10) reduces to the result given in [8] for the special case of normal
incidence, @ =7/, and is valid only over the illuminated region of the surface.
This includes the join by virtue of the restriction on o .

Following Weston [5] , the field on the conjoint surface of eq. (2) is now
written as the sum of two parts: that which would exist on the section in question

were the whole surface a continuation of it, plus a perturbation created by the join.

Thus
uly)=U(y, a)eikf(y’ 2) +£ Iy, a)eiks(y’ a) (13)
where
19 1
s(y, a)=f (1+a272) /2d7 X (14)

0

The only unknown quantity in (13) is I(y, a), and since the discontinuity in Uy, a)
is O(k~1) at y=0, it is clear that I(y,a) must be O(k®) for small y.

On substituting the expression for u(y) into (8) and using the fact that the
first part of (13) is, by definition, the field on a single parabolic cylinder formed

by continuing that portion on which the field point lies, the integral equation reduces

to
(o) -
. . iks(y,, a) o2
1y, a)elk's (y,a) _ %{j I(yl’ e K(Vl’y’ a, Q)dyl- 13_ Q (15)
2.
—a) ‘
where
_ 1= 9 Hfl) (kR)
Kly,. s a,ﬁ)={ ayl(yl-y)- 5 @y, -ay )} —R (16)
@ _ ikf(y;,3) ikf(y;, a)
Q=f {U(yl, a)e K(yl, v, a, 'é.)-Uv(yl, a)e K(yl,y, a, a)} dyl.
- (17)



Although the integrand in (17) is a known function, so that in principle at
least a precise evaluation of the integral is feasible, an asymptotic development
suffices. Taking first the case y < 0, we note that the integrand vanishes for y1<0,

and hence

@ ik(y,, a,) ikf(y,, a,)
Q=] U(yl, a2)e K(yl, ys 2, a2)—U(y1, al)e K(yl, Y2y, al) dy1 .
0

But

i (1) ¢“ 1 | )
K(yl,y,a1 az) 2k 1 (€ 4{){ (C l:)+(a1 a2) § §} {1+O(k )}

where ¢ ky1 = ky, and since

U(yl, a2)=2 +o(k™ )= U(yl, al),

ikf(y.,a.)  -if cosa ikf(y., a.)
e L2 =e 1 {1+O(k_1)}=e i ,

we have

[0 6]
a.-a -i(§,H)cosa
Q- f e U H;D(fl) - E—){Ho(k"l)} d, (18)
k 1

A similar result holds for y> 0 and this can be combined with (18) to give

2974 -icosa -1
a7 = &L oay] (19
where
+ 1§ cosa (1) 2
L@- | e (€061 ), (20)
¢
and the upper (lower) signs apply according as y> 0 (<0) . In addition,
© iks (yl, a)
f I(yl,ﬁ)e K(yl,y, a, 5)dy1=0(k'2)
-0

since K=0(k™1) and I=0(k©), and the final expression for I(y, a) is therefore



-ik{s(y, a)ty cos a}

Iy, a)=% 5 (a,-a)e L(¢) + o™} . (21)

[\V] S
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The perturbation field is all that is needed to specify the total surface field
u(y). From eq.(13),

2
. ia =— sina ;
a=e N U e X Lo (a,ma)LE)OKD) (22)

and this proves adequate for determining the diffraction coefficient to the leading

| order in Afi{{j:”We note in passing that expansion of the right hand side of (22) for

{ << 1 shows that for H polarization a discontinuity in curvature is characterized

2

by a surface field 'singularity' of the form y“ log |y| .

IV SURFACE FIELD, E POLARIZATION

The problem of finding the surface field is now a soft body one but the basic
character of the analysis is unchanged.

The appropriate form of Maue's integral equation is
) o 0O i ) o _.(1)
8—1’1 U.(Y)'s_z a—n U.O(V)-éfgl u(yl) 5?1 HO (kR) dSl (23)

where uo(y) and R are given in eqs. (6) and (9) respectively, and if we define

v Gy 12 2y, (24)
1\
v = 13D L) (25)

the equation can be written as
00
. dy
_ ik (1) 1. 2 2 1
viy)= 2xo(y) 5 f V(yl)H1 (kR) ay(yl-y)- 5 (a v, -2y ) = - (26)
-0
We again postulate a representation of the surface field as the sum of that

which would exist on a complete parabolic cylinder and a perturbation created by

the join, viz.



viy)= -ik {V(y, a)eikf(y’ a)+ 11( T(y, a)eiks v, 2) } (27)

where f(y, a) and s(y,a) are given in egs. (12) and (14) respectively. The first term
in (27) is the solution for a uniform parabolic cylinder of latus rectum 1/ a, and by

application of the Luneberg-Kline method we have [7]

V(y,a)=(sin o + ay cos q) {2+ %l (sin o + ay cos af)-3 +O(k-2)§ , (28)

which reduces to the result obtained by Keller et al [8] in the particular case of
normal incidence, a = 7T/ 2!f}£ second term in (27) is due to the join, and it is
evident that the unknown quantity, Af(y, a) is O(k©) for small y.

On substituting (27) into (26) and‘linygflqnjgk the fact that the first term in
(27) is the solution for a uniform cylinder, the integral equation becomes

@

N . iks(y.,a) ., ik
~ iks(y,a) ik ~ oo I’
I(y, a)e =-3 I(yl, a)e K(yl, y,a, a)dyl- —2
-00
where _ , (1) (kR)
K(y,,y,a,3)={ay(y,-y)- (a y2 ayz) 0
1: 2 G4y 1 1 R

~d
and 5 is as shown in (17) but with U and K replaced by V and K. An asymptotic

o~
expansion of the expression for Q is

~ a2-a1 1§’cosa
Q=1 - 5 sinac e M(§) 1+O(k‘1)} (29)
k
with 9
© 1§’ cos o A(l)] lfl )
M(8)= e (C) ___t— d§’1 s (30)
l¢] :

where §1 and ¥ are as before, and the upper(lower) sign again holds according
as y >0 (<0). In addition

ood iks(y.,a),
f I(yl, a)e K(yl,y,a a )dy1 ok-2)

-



JJIN

and hence

- i -ik {‘s (y,a)+y cos a}
Iy,a)= 5 (az-al)sin ae M(£)+0k™)) . (31)

The total field v(y) on the surface is therefore
2

ia = cos«a
2k

v(y)=-ike'i§°°s"{v< E,a)e +2'k<a -a,)cose M(§)+O(k'2)} (32)

and expansion of the right hand side for |¢| << 1 shows that for E polarization

the join is characterized by a surface field 'singularity' of the form y log | y| .
V DIFFRACTION COEFFICIENT, H POLARIZATION

For a two dimensional geometry such as that shown in Fig. 1, the scat-

tered magnetic field at a point r' is

() - 4 1 f H, @ = B Gl r'-r s, (33)

S
and in the far zone

. 5 ikr'-i 4
1 —
Hz r )~\/ wkr! © PH ’

A
_k A A -ikr' - r
L :lfn r Hz(g)e ds

where

S
is the far fleld ‘amplitude. For the specific geometry of Fig. 21,
K ! -iky cosf +ika %—sin@
PH(Q, )= 7 (sinb+ay cos H)u(yle dy
-1

in which the integration has been limited to a region about the join since our con-
cern is only with the scattering originating there. In terms of the variable ¢,

however, the rangre of integration extends from ~-kf to kf, and because k is large

it is sufficient to replace the limits by .,. ®. Hence
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2

1 . ¢ -i cos0+ia2—ksin6
PH(a, 6)= I f (sinf +a = cosG)u(E)e dg (34)

(00]
k
-
and this is the integral to be evaluated.
An expansion for u (lg ) accurate to two orders in k was given in eq. (22).
When this is inserted into (34), expansion of U ( E ,a) as well as both quadratic

exponentials in powers of k-1 yields

00
_ sinf -ip¢ ia 3 o 2, . .
PH(a/, ) 5 e 1-§E cosec a+2i{ cotb-¢ (s1na/+s1n0zl
—m i
+ 2 (4 - -2
* o (ara) LK) p de (35)
where
p =cos a+cos 0,
and since
(04)
. Lo
f §m elT§d§=(;1.)m lml ’
0
0
§m elT§ de = - (a_l_ )m+1 m'
-0

it follows that

(00] 0
a~-a a_-a
_ 271 l4cos(e-6)---"271 . J2i 3 -ip¢
PH(a,G) 5 p3 . +i o sin6 -Bcosec oz+(f —f )e
0 -

L(g)de Y+ok™2) . (36)

The first term in (36) is contributed by the leading term in the expansion of

u(lg) and is the physical optics result:

aZ;al 1+cos(a~0)

2k 3
1Y

PP (0, 0) = - (37)

H

To produce an explicit expression for ]?H(a, 9)/(~a£¢uféte to the first order
in k, it is necessary to evaluate precisely the integrals containing L({). This is
accomplished as follows. We first note that

11



100 0

. 1§ cosa
( f - f )le%(ts)dc { it 1)L
1

0 -0

(0]
and since

—1§ coso 2
_elPS f HUO ()& - )dclJ & (39)
¢ 1
(0 0]

i’itlcosoz )
' = 3 +1+
f e H1 (§1)§1d§’1 cosec a{l_ r
0

integration by parts applied to the ¢ integral in (38) changes the right hand side into

®© © 1§ cosa © -i¢.cosa
_a cosecSa + 2 e-1p§’ e (1)( ) Lt elp§ e !
p P St §
¢ 9

0

31

(sinacosa -oz)}

dg,

(§)§_1 €d¢ .

g0

Each of the double 1ntegra1s can now be reduced by a further 1ntegrat10n by partSA

(see [7]) Thus -

1§’ cosa
f 'lp’;f )<§) S gear
1" ¢ 1
0 1

€
i} _éf {uﬁpg)e-ifcose_eitcosa} Hfl)@) (_ig
P

with an analogous result for the other and when these are inserted into (38) and

thence (36), we obtain

a52y 1+cos(a+6)

2k 3
1Y

-2) |

P, (a,6)= P§'°' (@, 6)- + 0k (39)

12



where we have used the formulae

(00

f sin(€ cosy )Hfl)(f)d§= cot v
0

(00}
sin(¢ cos v,)-sin(€ cos vs) H(l)(f) « . i(sin y,-sin¥, )
1 2™ 3 2 1’
0
deduced from the discontinuous integrals of Weber and Schafheitlin [9] . The
difference between P__ and its physical optics estimate is ev1dej1§ from eq. (39).

H

VI DIFFRACTION COEFFICIENT, E POLARIZATION

The derivation follows closely that in Section V, and only a brief description

will suffice. In place of eq. (33) we now have

(o)

B - 43 f 2 & @k |r'x])as (40)
S

and in the far zone

S /‘5‘! ikr'r-iﬂ/4
! _
Ez(£ )~ mkr! © PE

i aEz e_ik{h "I 4e
on o
S

where

k-
E 4

For the specific geometry of Fig. 1,
2

i £ -i cosf +ia g—k sinf
PE(a,e)= - Tk viz)e d¢ (41)

-0
where v(y) is defined in eq. (24), and when the expression (32) for v(y) is substituted

into (41), expansion in powers of k-1 gives

13



00 0
a-a a-a
21 l+cos(et9) . 271 . }2i 3 -ip¢
= + —_— + -
PE(a,G) o 3 i =g sine] = cosec’a (f f )e
0 -0

M(§)d§}+0(k’2) . (42)

The first term is the physical optics approximation:

a-a
p.o., n_ 2 1 l+cos(e+6)
Pr (@, 6) R 7 (43)
p
and comparison with eq. (37) shows that
p.o. _ _pP.o.
PE (a, 6) PH (2, 0) , | (44)

as expected [4] .

The integrals involving M(§) in (42) can be evaluated precisely using
successive integrations by parts. The procedure is similar to that for H polari-
zation, and when the results are inserted into eq. (42), we have

a2—al 1+cos(a+6)

2k p3

+0(k™2) . (45)

p.o.
=P -
L (o, 6) E (e, )
The shortcoming of the physical optics approximation is again evident.

VII THE DIFFRACTION MATRIX

A derivation of the diffraction matrix associated with a discontinuity in
curvature is essential for the incorporation of our results within the general
framework of the geometrical theory of diffraction. For this purpose, it is con-
venient to collect together the results obtained so far.

Using the model illustrated in Fig. 1 it has been shown that if

i_4a -ik(xsine+y cos a)

E =ze
then C - i(kr,_ﬂ/4)
Ew~ JT‘ ¢ P
with -
P.=F-G; (46)

14



whereas if

i Qe-ik(x sin o +y cos a)

H )

implying
s -- . +

1‘3_1 - (}?cos a-;’r\sina) o ik(x sin @ +y cos a) ’
then . - i(kr'-”/4)

HazZ == e Py
implying (k' 7,/4 )

E~n -7 (>'} cos 6-7 sin 6) 2 e P

- ‘ y 7kr' H
with

PH= F+G.
In (46) and (47)

a

74 1+ +
P2 1 1+cos («a 6)_}0(1{_2),

2k
‘ (cos a+cos 6)

a,,-a
) + -
G=__2 1 ltcos (e 49:)3 3(c-2)

2k
(cos a +cos 0)

(47)

(48)

(49)

As demanded by the reciprocity condition concerning the interchange of receiver

and transmitter, the expressions for F and G are unaffected if o and 6 are inter-

changed.

The terms shown on the right hand sides of (48) and (49) are the leading

terms in high frequency asymptotic developments of F and G, and are valid provided

o (: +a)\,i,5:bc,"}fl§,ed away from zero (to separate the contribution of the specular point

from that of the discontinuity). In the expansion of the surface field it was fgmg

necessary to assume that @ is bounded away from O and 7 (to ensure that the dis-

continuity is fully illuminated), and on physical grounds it would also appear

necessary to have 6 similarly bounded so that the discontinuity will be directly

visible to the field point. However, the expressions for F and G are finite and

continuous in the limits @, 6 > 0, ‘ 7r, 6 +a 7& 7 , allowing us to replace the con-

ditions on « and 6 individually by the less restrictive onesl a-72 | ,l6-72} <7,

15



Equations (46) and (47) can be written more compactly as

PE,H=F+G' (50)

The physical optics approximation is

p.o. _ .
PEH +G

and under many circumstances F is small compared with G : for example, in the

particular case of backscattering (6 = a),

_ | -2
F-——'—8k—S€CQ’+O(k )
) a -a 3 _9
G—-—S—k—sec Q/+O<k )

and F is less than G by a factor 10 or more for incidence within 18° of normal.
Nevertheless, F is the sole source of polarization dependence in the scattering.
Its inclusion is therefore important in any analysis which seeks to reproduce the
polarization characteristics, and is vital in any study aimed at the cross polarized
components [4_1_ 71@ of the backscattered field.

It is instructive to compare the scattering from a discontinuity in curvature
with that from a wedge-like singularity involving a discontinuity in slope. For

the metallic wedge of half angle 2 shown in Fig. 2, the diffraction coefficients

are [i]

.y
PE,H 73

x =Yg E{ s T o l(a_g)}
n n n n
1

- sin ~ {cos - + cos - (ﬁ-a-e)} -1

(X+7), (51)

where

Y

withn = 2 (1- 2 /7). On comparing (50) and (51), it is seen that the diffracted field
produced by a discontinuity in second derivative is obtainable from that created by

a first derivative discontinuity by replacing

16



2 =0

a_-a sec ——
N 21 2
X by -21F = - 2ik cosatcos6
and . Secz o0 (52)
Y by -2iG= - 2_1 2

2ik  cosatcos®

This analogy between the two diffracted fields is rather interesting. In
a physical sense a discontinuity in the second derivative is like a very 'subdued'’
version of a first derivative discontinuity, and the latter may occur in the form
of a surface klnka insufficient care is taken in the fabrication of a model. From
an examination of the surface in the immediate vicinity of the discontinuity, it
could be hard to tell whether the discontinuity was in the second derivative (as,
perhaps, intended) or was instead in the first derivative. Such a slight kink
corresponds to a wedge of half angle close to 7r/ 2, and if the expressions for X
and Y are particularized to this case, the resulting diffracted field is identical to

that produced by a discontinuity in curvature if

a-a
Q= E{l- 2. ! (cosoz+cos€)-1 .
3 k0%

In addition to the expected dependence on ik, we observe that the effective wedge
angle is also a function of o and 6.

A further consequence of the analogy between the two types of surface
discontinuity is that we can write down immediately the complete diffraction
matrix for a discontinuity in curvature by making the substitution (52) in the known
matrix for a wedge-like discontinuity. For this purpose we introduce a set of
base vectors ’?‘, 11\?, ﬁ, where these are parallel, normal and 'binormal’ to the
discontinuity respectively, with ﬁ pointed into the shadowed half space. The

A A A A
direction of T is chosen to make T, N, B a right-handed system, and in terms

of the Cartesian coordinate system of Fig. 1,

A A A A A A
T = -z, N=x, B=-y .

Following Keller [1] , we consider an incident plane wave having electric vector
A
i i iki-r

A
E =e e =

17



A

where
A A A
=T cos B - N sin 8 sin o + Bsin 3 cos

A
i
with 0 < B <7 . At points far from the discontinuity in curvature and in a direction
satisfying the previously"mentioned restrictions on « and 6, the diffracted electric

field can be written as

.
d_ad < el/4 ) k8- r
E =e -—— ) e -
R sinBy2rkr

where

A_A A — A
s =T cos B+ N sin S sin 6 - B sin 3 cos 6,

) A A A
and if 8 1 is treated as a column vector in the base T, N, B, then

RN

in which Ais a 3 x 3 matrix. An adequate expression for Anow follows by making

the substitution (52) ip Eq. (A. 13) of [12] and is

 21(F-G) 0 0
A={ -2i(F-G)cotBsin®@ -2i(F+G)cosbcosa  -2i(F+G3)coshsina (53)

z’l(F:G)ggﬂ cosf -2i(F+G)sinfcosa  -2i(F+G)sinfsina
where F and G are given in eqs. (48) and (49) respectively.

VI CONCLUSION

The derivation of a valid diffraction matrix for a discontinuity in curvature
enlarges the scope of geometrical diffraction theory and permits the application of
GTD to surface singularities other than the wedge-type to which it was restricted
heretofore. Two particular targets for which more complete treatments are now
possible are the hemispherically-capped cylinder and the cone-sphere, and in the
latter case some experimental confirmation of our analysis has already been

obtained.
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Fig. 2. The geometry for a“fi‘r:éf derivative (wedge-like) discontinuity



FIGURE CAPTIONS
1. The diffraction coefficient model for a discontinuity in curvature.

2. The geometry for a first derivative (wedge-like) discontinuity.



