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Abstract

The significance of the electric and magnetic polarizability tensors
in low frequency scattering is emphasized. In the particular case of veriectly
conducting, rotationally symmetric bodies with plane wave illumination, it is
shown how tae entire Rayleigh scattered field can be expressed in terms of just
three tensor elemeats, functions only of the geometry of the body. Inequalities
satisiied by these elements are used to establish optimum lower bounds on the
scattering cross sections émd, in addition, the elements themselves are examinec
aralytically and computationally for a variety of shapes. Some of the implica-

tions of these results are discussed.

Introduction

The usefulness of the electric and magnetic polarizability tensors hos
long been recognized in statics, but it has only recently been pointed out (Kelier
et al, 1972) that they are also appiicable in scattering. For arbitrary siane wiave
lilumination, these same tensors specify the Rayleigh scattered field in its entirely,
and since they are characteristic of the body, they provide a convenient means .. -
describing low frequency scattering. Moreover, for a metallic body of revolution
all but six of the tensor elements are zero and only three :ire independent (Keller

et al, 1972).
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In the present paper the radar cross sections of perfectly conducting
bodies of revolution arc considered in the light of these findings. Inequalities
satistied by the three independent tensor elements are used to generate lower
bounds on the cross sections in such cases as backscattering for arbitrary inci-
dence, bistatic scattering for axial incidence and total (integrated) scattering.
Each bound is an optimum in the sense that at least one body is known for which
the bound is achieved. The tensor elements themselves are examined analytically
and computationally for a variety of shapes, and results are presented for spheroids
(prolate and oblate), ogives, lenses and spherically-capped (oxj rounded) cones.
Particular attention is given to the dependence of the elements on the length-to-
width ratio of the body, and from this it is apparent that Rayleigh cross section
measurements can be used to deduce more about the geometry of a body than its

volume alone.

Dipole Moments

Consider a finite, closed, perfectly conducting body illuminated by a
linearly polarized, plane electromagnetic wave. The incident electric and mag-

netic fields can be written as
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where Kk, a, b are unit vectors specifying the direction of incidence, the electric

field direction (or polarization) and the magnetic field direction, respectively. All

three are mutually perpendicular and
A A A A A
b=kpa, a‘k=0.
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The propagation constant is k and Y = Z = is the intrinsic admittance of the free

space medium (whose permittivity is €) exterior to the body. Mks units are em-

-1 t
pioyed and a time factor e W s suppressed.



For k sufficiently small, the field vectors of the incident and scattered
fields can be expanded as power series in k. As regards the scattered field, it
is well known that the leading term can be attributed to the field of electric and
magnetic dipoles located at the origin of coordinates (within the body), and in the

far zone (r = )
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where p and m are the electric and magnetic dipole moments respectively, and
T is a unit vector in the direction of the point of observation.
The moment p is a function of the polarization vector a as well as of

the geometry of the body. As shown by Keller et al (1972), however,
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where P is a real symmetric tensor of rank 2 whose elements Pij are independent

of 3. P is the electric polarizability tensor and is related to the pdlarization

tensor 6 for an isolated body (Schiffer and Szego, 1949) by the equation

1=> =Q+V (4)
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where V is the volume of the body and 1 is the identity tensor. In like manner,
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where M is also a real symmetric tensor of rank 2 whose elements M_j are
i

A =
independent of b. M is the magnetic polarizability tensor and can be written as

+VI . (6)

=l
=



where W is equivalent to the added or virtual mass tensor (Schiffer and Szego,
1949; Payne, 1967) for the irrotational flow of an incompressible inviscid fluid
past a rigid body.

The elements Pij and Mij (or Qij and Wij) can be expressed as either
volume or surface integrals over exterior potential functions (Keller et al, 1972)
whose determination is usually required for the solution of low frequency scatter-

ing problems. There are, however, certain inequalities which these elements

satisfy. Thus
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(Schiffer and Szego, 1949), where i,j = 1,2,3, and repeated suffices do not imply

summation. Also
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and still other inequalities are quoted by Payne (1967), but more striking are the
results that obtain when the body has an axis of symmetry.

For bodies which are roll symmetric about (say) the Xq ( = z) axis of

a Cartesian coordinate system (x_, x x3) it can be shown that
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(Ketler et al, 1972), provided the body is not ring-shaped (toroidal). We are now
teft with just three independent quantitics, namely, the axial component of the
clectrie dipole moment and a transversce component of each of the clectric and
magnetic dipole moments, and these are sufficient to specify the Rayleigh scat-
tering behavior of the body in its entirety.

In addition, there are certain limitations on these three tensor elements
that follow immediately from the above. Since Qii and Wii are not-negative,
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and hence, from the last of (9),

P> 2V. (11)

Also, from the last of (7),
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which serve to establish lower bounds on Mll and P33 once Pll is determined;

and other inequalities which can be deduced are (Payne, 1956):
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(M. -V){M. +2M..-3V) > §V2
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Ad of these are optimum in the sense that equality holds for at least one vody
(a sphere), and they are required for the deduction of lower bounds on the radar

CTross section.



There are two more incqualitics which are important in the scquel.
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Consideration of (Pll t \I“) shows that

2
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(P FM )7 > 4P M (14)

which, in conjunction with the first of (12), yields
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P tM ) >4V (15)

Similarly,

P,,+M,, > 4V (16)
33 =
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and though these bounds are optimum, the optimum shape is no longer a sphere.

In (16) equality obtains for an oblate spheroid having ¢/w = 0.5 where £ is the
body length in the direction of the symmetry axis and w is the maximum dimension
in a perpendicular dircction; whereas in (14) and (15) equality is approached by a

prolate spheroid as {/w — .

Radar Cross Section Bounds

For axially symmetric bodies it is a trivial matter to express the
scattered fields (2) in terms of the remaining tensor elements, and the results
in various special cases have been listed by Keller et al (1972). We now examine
these and, by making use of the inequalities (10) through (16), deduce lower bounds
on the radar cross sections. In almost all instances the bounds are optimal since
bodies are known for which the limits are achieved.

From equations (2), (3), (5) and (9) the scattered electric field in the

far zone is




in terms of which the radar cross scction o is

o= 47rr2 lEsl 2 . (18)
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For axial incidence the cross section is obtained by putting k = 2

(implying a'2=0-2=0) and is
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When T = Z (backscattering):
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and (15) now shows that
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which is an optimum bound approached, for example, by a prolate spheroid as

£/w—>m. When T=-2 (forward scattering):

k4 2
o= (Pn—Mn) (22)

and here the optimum bound is simply

>0, (23)

attained by the above-mentioned shape. For reception perpendicular to the axis

of symmetry, there are two cases to consider depending on the polarization. If

N A
r=a,
4
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which, on using (10), yields
o> = ke, (25)
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while if r = b,
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and on using (11),
o> %k‘lv2 : (27)

The bounds in (25) and (27) are both optimal and are approached, respectively,

by an oblate spheroid as £/w —>0, i.e. a disk, and a prolate spheroid as £/w —> .
In the case of backscattering for arbitrary incidence, the radar cross

section is obtained from eqs. (17) and (18) by putting T = -k (sothat a-T = b-T = 0)

and is
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When 2% = 0 (vertical polarization) :
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o= I P11+M11+(M33 Mll)(b z) } . (29)
If M33-M11 > 0, then, from (15),
l‘4 2 4 4V2
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which is the same as the optimum bound (21) for axial incidence. On the other
hand, if M33-M11 < 0 (which can occur with long thin bodies), a lower bound is
obtained by taking b-Z = 1 in (29), giving

k4 3 2
2 (5 Pn) . (31)



A
This is an equality at broadside incidence: k-Z=0. Using (11), it now follows

that
g> —k'V (32)

which is an optimum bound achieved by a vanishingly thin prolate spheroid viewed
broadside. ‘

When ?)2 = 0 (horizontal polarization):

k4 A N2
o= P11+Mll+(P33-P11)(a z) } (33)
Since P33—Pll may vary in sign, the procedure is the same as before. If
Pog-P 20, then
k4 2_ 4 42
ag> o (P11+M11) Z;r-kV , (34)
c.f. (30), whereas if P33-P11 <0,
4
k 2
o> o (P33+M11) . (35)

Equality obtains at broadside incidence and hence, from (10), an optimum bound

is
o> % Ky (36)

achieved also by a vanishingly thin prolate spheroid.

The total scattering cross section GT is

1
g =

T- Ir odQ2 (37)

where dS2 is an element of solid angle. By inserting the expression for ¢ deduced

from eq. (17) and carrying out the integration, we find
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valid for all angles of incidence. Two cases are of special interest. The first

. . . . AN .
is vertical polarization, a+z =0, for which
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Hence, using (10) and (11),
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which is an optimum bound achieved by a vanishingly thin prolate spheroid when

b-2 = 1, implying broadside incidence. Similarly, for horizontal polarization,

L
Z= eq. (38) becomes

o = -—{ 11[ Q- ")]+P (a- '2)2+M21} (41)
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which yields

o> = {5-3(&-%)2} e (42)
T — 67 ‘

Altnough this is not an optimum for all a-z, nevertheless, when 2:2=1 (imply-

ing broadside incidence), (42) reduces to
1 2
0> KV (43)

which is an optimum bound achieved by a disk.

In our earlier discussion of back and forward scattering, the only cases
considered were those for which there is no cross polarized component of the scat-
tered field. In general, however, some depolarization will occur, and in the back
scattering direction the cross polarized cross section deduced from (17) and (138)

is
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As expected, this is zervo for a+z2 =0 and h-z =0, corresponding to vertical
and horizontal polarization respectively, but in addition O will be zero if

«

[= +M, . - 3 45
P33 Mll 2Pll (45)

is zero. The possibility of using " as a shape discriminant for a radar target

is just one of the questions that we now explore.

Tensor Elements

Exact analytical expressions for PM, P3 and Ml are known for only

3 1
a restricted class of rotationally symmetric bodies, and some of these results are
listed by Schiffer and Szego (1949). In particular, for a spheroid, prolate or oblate,
the tensor elements can be expressed as ratios of Legendre functions of the {irst

nd second Linds. To get some feeling for how the elements vary with tae axial
ratio of the spheroid, Figures 1 through 3 show Pll/v’ P33/V and MM/V

plotted as functions of ¢/w. The length-to-width ratio £/w therefore varies from
zevo for a disx, through unity for a sphere, to infinity for a vanishingly thin pro-
late spheroid, i.e. a ''rod". Because of the normalization with respect to volume,
a normalized tensor element can be infinite, and indeed, Pll/v —>w as the
(oblate) spaeroid approaches a disk, whereas P33/V —> as the (prolate) spneroid
approaches a rod.

The spheroid is peculiar in that equality holds in both of (12). Thus, there
is only one independent tensor eiement for a prolate or oblate spheroid, and since
1)1 . > 2V it follows that V < Mll
restriction on M . seems more generally valid. An example is provided by tne

1.

< 2V. This is evident in Figure 3, but such a
rounded cone consisting of the intersection of a cone of (interior) nalf angle

6 (-2 7/2) with a sphere centered on the apex of the cone. Numerical data for the

dipole moments were obtained by Senior (1971) using a mode matching method, and
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the resulting values of the normalized tensor elements are plotted as functions

of {/w =7 cosccO in Figures 1 through 3. Iere again PB"/V —mw as {[/w—>w
2

-

and M, < 2V and it would apvear that for all rotationally symmetric bodies:
11 =

P P M M,

2) — S L z —2 (implying S —> i)
v vV °
as (/w —>oo;
D

D) IH > Q0 PBB M“ —>1 (implyin M33 —> )
v v v PyIng 7y
as /w —=0;

and c) VXM <2V,

11 =
Most of these properties are only conjectural at the moment. In particular,
it has not yet been proved that Mll < 2V though it can be shown that for convex
surfaces with equation r = r(6) in spherical polar coordinates, MH/V does have
an upper vbound in contrast to the other normalized tensor quantities. From the

definition of Mll (Keller et al, 1972),

where ¢ is an exterior Neumann potential which is bounded on S and has the same
R A A . ) .. N

0 dependence as n-x. Using these facts and the explicit formulae for the outward
N . . O .

normal n and the surface element dS, it follows that there exists a finite constant

A such that

g'\ﬂ'
N ¢
AIll < Aj
0

For convex surfaces, however,

. . dr
rsm@‘rsm@—d—e- cosf|do . (40)
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wiere ¢ is a turther finite constant, and since

nT
27 3
V= TNT sin6do

0
the boundedness of MH/V is verified.

To test the conjectures a) through c) when the body is not convex, the
normalized tensor elements were computed for a rounded cone with half angle
0> 7/2, i.c. a sphere with a conical part removed. Instead of the mode matching
method previously employed, the integral equations for the appropriate potential
functions were now solved numerically using the moment method and, in some
cases. independently by an iterative procedure. The computed results\tz are
included in Figures 1 through 3, and it will be observed that the conjectures are
still supported. We also note the reasonably close agreement between the normal-
ized tensor elements for the rounded cone and those for a spheroid having tae same
value of {/w.

The above computer programs have been used to calculate tie tensor
elements for a wide variety of rotationally symmetric shapes with special empiasis
on missile-like geometries. In all cases the normalized elements are similar in
value to those for a spheroid with the same {/w, the agreement being particularly
close for bodies having a plane of symmetry perpendicular to the axis of rotation.
This is illustrated by the results for an ogive (£/w > 1) and its analogue for ¢/w <1,
namely, a lens, which are included in Figures 1 tarough 3. In view of this agree-

ment, it is hardly surprising that a method such as that of Siegel (1959). which

Thae discontinuity in slope of the curves when £/w = 1/2, i.e. when the cone is
S

o]

a nemisphere, stems from the definition of 2/w: for 6 > 7/2, (/w (1-cosb).



Lees e sphweroid as a model, has proved so effective in estimating tae Rayleigh
scattering cross scctions of rotationally symmetric targets.

Uis also of interest to examine the element combination 7 (cq. 43),
which is a measure of the cross polarized contribution to the back scattered
return.  As evident {from the Figures, [ is zero for a sphere (?/w = 1), butit
is also zero for a rounded cone of half angle 6 =99° (¢/w = 1.03). Morcover,
for all shapes that have been examined so far, it has been found that M > 0 if
/w1, bur (<0 if {/w< 1, suggesting that the magnitude of the cross
polarized return could serve as a means of estimating the value of ¢/w for a
target. Tuis is similar to the situation at high frequencies where the cross polar-
ized component is also a potential source of width information (Knott and Senior,

1971).

Conclusions

For any rotationally symmetric, perfectly conducting body there arc just
three independent tensor elements that serve to specify the Rayleigh scattering in
its entirety. and since these are functions only of the gecometry of the body. they
provide a‘convement means for categorizing low frequency scattering. Waen
normalized to the volume of the body even these elements are subject to constfa’ints
from whaica lower bounds on the scatterng cross sections have peen deduced. Wita
this normaiization, no finite upper bounds are possible, nor has any other normal-
ization yet been found for which such bounds do exist.

The oehavior of the normalized tensor elements has been examined as a
function of the length-to-width ratio, ﬂ/w, of the body, and for all of the geometries
considered, a wide degree of uniformity is observed. Nevertheless, V and {/w
are insuflicient to specify the body uniquely, and to better understand tiae remaining
variations in the tensor elements, their dependence on other geometrical para-

meters such as surface area is now under investigation.
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Legends for IMisures

Normalized tensor clement PH/V as a function of the length-to-width

ratio of the body for prolate and oblate spheroids (—); rounded cones

3

of hall angle 6 < 7/ (---) and 0 > /2 (— =), and ogives and lcnses

(OOO),

Normalized tensor element I)BB/V as a function of the length-to-width
ratio of the body for prolate and oblate spheroids (—); rounded cones
of half angle 6 < /2 (---) and 6 > 7/2 (— —), and ogives and lenses
(000).

Normalized tensor element MM/V as a function of the length-to-width
ratio of the body for prolate and oblate spheroids (—); rounded cones
of half angle 6 < 7/2 (---) and 6 > 7/2 (— —), and ogives and lenses

(0 00).
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