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Abstract

The leading terms in the low frequency expansions for acoustically
soft and nard bodies are examined and the relevance of the magnetic polari-
zability tensor is discussed. For a hard, rotationally symmetric body, two
tensor elcments, functions only of the geometry, are now sufficient to
specify the entire low frequency scattering behavior in just the same way as
the electrostatic capacity suffices for a soft body. 'Even these quantities are
subject to known constraints and computed data for a variety of bodies are

presented.
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Introduction
]

When a body is illuminated by an acoustic plane wave whose wave number
k is sufficiently small, the scattered field at large distances can be expanded
in a series of increasing positive powers of k. If the body is soft, it is well
known that the leading term is O( ko) and proportional to the electrostatic
capacity, which can be found by solving a potential problem for the geometry
in question.'_ For a hard body, on the other hand, the leading term is propor-
tional to k2 and is a function of the directions of incidénce and scattering,
but these dependences can be separated out by introducing the concept of the
magnetic polarizability tensor ﬁ This is related to the virtual mass tensor
W and, like the c}apacity, is a function only of the geometry of the body.

For a rotationally symmetric shape, the tensor ﬁ naturally diagonalises
and just two of its elements are independent. These are sufficient to specify
the low frequency scattering from a hard body for any directions of incidence
and observation, and play the same role as the electrostatic capacity, C/ €
in scattering from a soft body. Like the capacity, the elements M11 and
M33 are subject to known constraints in terms of the geometry, and these can
serve to establish bounds on the scattering. Moreover, for a variety of bodies,
the variations in M11 , M3é and C/¢ canbe reduced by appropriate normali-
sation. This is illustrated using exact data computed for prolate and oblate
spheroids, lenses and ogives, finite cones of acute and obtuse angles, and
right-circular and capped cylinders. | It would now appear that for many
practical purposes sufficient accuracy can be achieved using, for example, the

spheroid as a model. o



1. ANALYSIS

Consider a finite, closed acoustically soft or hard body B illuminated
(1)

by a plane acoustic wave having velocity potential
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where

to B,

r is the radius vector to an arbitrary point in the domain ) exterior
~ .

k is a unit vector in the direction of propagation and k is the wave
number. A time factor e ! ig assumed and suppressed. For k sufficiently

small, Ul( r) at points in the vicinity of B can be expanded as

®
vl(z) - zuk)mUl;(_r,) : (2)
! m=0
and in particular,
vl =1, vlo=kr . (3)

Since the scattered field Us( r) can be similarly expanded, so can the total
field U(x), viz. |

(0 0]
- m )
U(r) = 2““’ U_(x) (4)
m=0

and Uo( r) and U, (r) both satisfy Laplace's equation. The task is to find
the leading term in the low frequency expansion of Us(r) at large distances
from the body, and this requires the solution of the near field problem, followed
by its continuation into the far zone.

Let us treat first the case in which B is a soft body for which the boundary

condition is

U(r)=0 , ronB . | (5)
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When this is inserted into the Helmholtz representation for the field at a point
r near B and the lowest order (in k) terms extracted, it is found that in

the limit as r approaches B
L L2 yir)as' = "
ar fRan'Uo('I"' yast=1, (6)
B ' :

where R=|r-r'| and n' is in the direction of the unit outward normal at

r'. The integral equation (6) is identical to the equati;m for the surface charge
distribution on a metallic conductor raised to unit potential. Indeed, if ¢ is
the permittivity of the surrounding medium, the surface charge density is

oy |
p=e€ 5= '. (7)
and I
fan,Uo(_l;)dS " (8)
B

where C is the electrostatic capacity.
In the far zone (r— ), the Helmholtz representation leads to an expres-
sion for US( r) as an integral over B, and when the boundary condition (5)

is applied and the expansion (4) inserted, we have

U®(r)~ f— U (r')dS'+ikf[A r' %,Uo(_x;')
B
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Hence 5 eikr C
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which is a well known result. Using reciprocity, Van Bladel '~ has also shown
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so that a knowledge of ?l-:-’- is sufficient to specify two terms in the far zone:
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+ o(kz) (11)
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The integral term is absent in the forward scattering direction (f=k) andin
addition the integral itself vanishes if the origin of coordinates is chosen at the

center of gravity of the charge distribution — a location which is obvious for

au

a symmetric body, but which in general can be found only when —a;lq has been

determined. In either case,

ikr
8 e c ik C 2
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and the electrostatic capacity alone now specifies two terms in the expansion.

For the hard body the analysis is a little more involved. The boundary

condition on U(r) is
-;U(_I;)=0, ronB , (13)

leading to similar conditions on the partial fields Um( r ), and from these it
can be shown that Uos( r) is zero everywhere, implying UN$ )=1. For

the field U, (r) an integral equation can be obtained in the same manner as
for a soft body, and is



U (x) = 2k.z+ 2—1—f (r' EQ— -)dS' , (14)
B

r on B, where the bar across the integral sign indicates a Cauchy principal

value. If we now write

A XU SEAEY (15)
j=1

where (xl' Xo» x3) are Cartesian coordinates, the integral equation for

Ulj(g) is
v, (r)- 2x +——fU (z') —(Ili)dS' . (16)

In the far zone (r—m), the Hélmholtz representation ylelds

8 eikr 2 A A, A
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(17)

where we have used the boundary condition (13), the low frequency expansion
(4) and the fact that Uo(_x_-_) =1, But

I(?.;')(G'.'x‘-)ds'-v (18)
B

from the divergence theorem, where V is the volume enclosed by B. Also



ful(_r_')(ﬁ'.%)ds' - k.F.2 (19)
B

where ﬁ is a tensor with elements

= Ay A ' ' | ,
Mij fn .inlj(g_ ) ds . (20)
B
and hence ’
5 eikr ofn = A
U (x)~ m—k k.M.r-V+0(k)} . (21)

(2) has shown that a knowledge of the

As in the case of a soft body, Van Bladel
potential function appropriate to the leading term 1is sufficient to specify the
next term in the expansion as well. In our notation, the term proportional to
ik3 on the right hand side of (17) 18(3)
3
ik ‘g‘ o EY {(?.Qj)(ﬁ.ﬁ'nﬁ.y) -k A )} ast |
B j=1
(22)
~ which vanishes in the forward scattering direction, but not for any simple choice
of the origin of coordinates. The somewhat more compact form of the k3 term
vis-a-vis Van Bladel's is a consequence of using the total field potential U1 .
From eq. (20) the tensor elements M can be written alternatively as

M - V6 f {U“(r) x}dS (23)

where § i is the Kronecker delta function, and by application of the divergence

theorem,



Mij= V‘Sn +fV{U“(g)-xi}V@”(};)—xj}dv | (24)
V

showing that M is a real symmetric tensor. M is identical to the magnetic
polarizability tensor(4) for a perfectly conducting surface B. It is related to

a tensor W having elements
Wij = ! n.xi{U“(g) xj}ds (25)

by the equation

=2vI+ W (26)

=l

where T is the identity tensor. W arises in the study of the irrotational flow
of an incompressible inviscid fluid past the rigid surface B, where it is termed
the added or virtual mass tensor(' 5 6).

The particular advantage of the representation (21) is that M is a function
only of the geometry of B, M 1is therefore the counterpart of the electrostatic
capacity for a hard body. As shown by Keller et al. (4), an alternative expres-

sion for Mi' is

J
=3 - 12 -
Mij =3 {Véij in. V@lj(g) xj}ds} (27)
\'

where 6§V is the volume exterior to B but interior to the smallest sphere

surrounding B. Thus, if B is a sphere,

M=<vT . | . (28)

0o Joo

For bodies of more general shape, application of Schwarz's inequality to
eq. (24) yields
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(M“-V)(M i)

-V)> M (29)
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for fixed i and j, where repeated suffices do not imply summation. Also,
M..>V (30)

and other inequalities involving the diagonal elements of the tensor ﬁ are quoted
by Payne(G).

There are numerous inequalities satisfied by the capacity, and these can serve
to establish upper and lower bo(t;t;ds. One of the most well known is Poincaré's con~-

jecture, since proved by Szego °, that of all bodies of given volume the sphere has

the least capacity:

Y
: 3
C 3V
4re€ 2 47 ’ (31)
and for all convex bodies at least(s)
2
C S
<
4re — 127V (32)

where § is the surface area. All of the inequalities (29) through (32) are

optimal in the sense that equality holds for a sphere.

2. ROTATIONALLY SYMMETRIC BODIES

We shall henceforth confine our,attentijoin to bodies which are rotationally

symmetric about the x, axis. It now follows that

3

M, =0 , 1¢j) ,
(33)



9
so that just two quantities( ), M,, and M

. 11 33’
are sufficient to specify the low.frequency (Rayleigh) scattering behavior of

functions only of the geometry,

a hard body. In terms of these,

S eikr
U (r)~v
- 4rr

K2 {Mn(ﬁ. 3)+(M33-M )(k. %) (R, 23)+o<k)} . (34)

11 3

For a soft body,

5 eikr C ;
U (r)™v yp (- ?){1+0(k)} (35) |

showing that the one quantity, C/., suffices.

Even these three quantities, when normalised appropriately, are relatively
slowly varying functions of the geometry. To illustrate this fact, consider a
spheroid for which analytical expressions for Mll’ M33 and C/€ are avail-
dble in the form of ratios of Legendre functions of the first and second kinds.

By inserting the expressions for these functions, we have

-1
3 2
8 -
M, = 7r3d %“ggti' g22
E(8-1)
3 -1
g oo Amd )i oEe g |
33 3 2 Bl T 2
£“-1
Cogrgdli EL YT
e  ma(y 8

for a prolate spheroid, where § (1< § < ) is the radial spheroidal variable
and 2d is the interfocal distance. The formulae for an oblate spheroid differ



only in having § replacedby 1§ and d by -id. Moreover,

(
:4?7’- d3§(§2-1) (prolate)

V= (
4—3£d3 §(§2+1) (oblate)

.

and since M11 and M33 have dimensions ( length )3, it is not unnatural to
normalise them with respect to V. The resulting normalised quantities are
functions of £ alone and this parameter in turn is directly related to the ratio
of the body length £ in the axial direction to the body width w in a direction

perpendicular thereto. Since C/ ¢ has dimensions of length, a possible nor-

malisation factor for thisis 4= (‘—:B:-) . From Poincaré's conjecture, the
capacity so normalised has a lower bound of unity and is, in fact, just the
(normalised) equivalent radius & of the capacitor, i.e., the ratio of the rad-
ius of a sphere having the same capacity as the body to the radius of the sphere
having the same volume as B.

For prolate and oblate spheroids, the above normalised quantities are
plotted as functions of 1/ w in Fig. 1. It is seen that M11 /V varies from
1 in the disk limit (4/y=0), through 1.5 for a sphere (/g =1), to 2 fora
long thin prolate spheroid (‘/w = o). In contrast, M33 /v and 3 both tend
to infinity as l/w—> 0, but this is due to the vanishing of the normalisation fac-
and C/.. For M_, an

33 33
alternative factor having the appropriate dimensions and producing a variation

tors rather than to any intrinsic property of M
bounded above and below is the weighted surface integral

Y.l 2/ 0\ |
S=-2- pdSItfp 1*(883) dxa (36)
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where p ={x12 + x22 is the transverse radial distance. Clearly, s >V with

equality in the thin body limit 365- = 01,4 and in the particular case of the
3
spheroid, M33/§ increases from the value 4/ o for a thin disk to a maxi-

mum of 1,42 for !/w = 0,27, and then decreases monotonically through 4/ T
for a sphere (!/W =1),to 1 for a long thinbody (/y = ).
since C/. becomes infinite (logarithmically) as /=, there is no
| simple geometric quantity with which to normalise this to produce a variation
within finite non-zero bounds. Nevertheless, a normalising factor which has
been found convenient is one proportional to the average of the length and width
of the body. Specifically, we take the factor as

L=x ({+w) (37)

and consider the dimensionless quantity C/eL . For a spheroid, this is a
monotonic function of 4/y, , decreasing from 4/, for a thin disk l/w = 0),
through 1 for a sphere (l/w = 1), to 0 for a long thin spheroid (1/W = ).
One of the main reasons for choosing the particular normalisation (37) is

pointed out in the next Section,

3. NUMERICAL RESULTS

The manner in which the dimensionless quantities M11/y,, M33/§, and
C/c1, vary as functions of the length~to-width ratio 1., has been examined for

a variety of rotationally symmetric bodies. Given any particular shape, M11 ,

M33 and C/,E can be computed by solving the integral equations (6) and (16)

satisfied by the respective potehtial functions. A computer program has been

(3)

written” " to solve the equations by the moment method. The only restriction
on the body profile is that it be made up of not more than 15 linear or circular

arc segments, and for a typical profile, the time required to calculate M1 1

M,, and C/c to an accuracy of better than one~half percent is about 3 seconds

on an IBM 360/67 computer.
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Data for four generic shapes are shown in Figs. 2 through 4 and the curves
for a spheroid are included for comparison. The shapes are:

(i) a rounded cone formed by the intersection of a cone of interior half
angle 6 and a sphere centered on the apex of the cone. For 6 < 900,

I/w = % cosec 6 with the value 6 =90° corresponding to a hemisphere.

For 6> 900, however, the cone is a re-entrant one for which I/W = ';- (1-cosb),
and this change in definition of l/ w 18 responsible for the discontinuities in

the slope of the plotted curves at 0 = 900.

(ii) ogives (‘/W >1) and symmetric lenses (1/W < 1) obtained, respectively,
by rotating an arc of a circle about its chord, and by rotating two identical arcs
about their common bisector. The transitional shape is a sphere.

(iii) a right circular cylinder of length £ and radius W/, .

‘ (iv) a spherically-capped cylinder. For l/w >1 the cylinder is a right
circular one of length £-w and radius Y/2 capped by two hemispheres of
radius W/g, thereby forming a 'cigar'. For l/w <1 the caps are placed on
the longitudinal sides, producing a body whose profile is a rectangle of length £
and width w-{ with semi circles of radius l/ 2 top and bottom. The transitional
shape, when l/w =1, is again a sphere.

When Figs. 2 through 4 are examined, the impression gained is that the
behavior of the three normalised quantities as functions of £/ w 18 very similar

for all of the bodies. Thus, in Fig. 2, the greatest departure(lo)

from the
corresponding value for a spheroid is less than 10 percent, suggesting that as
regards Mll / v the spheroid provides an accurate means of estimating the
variation as a function of !/ w- This is true even for an asymmetric body
(the rounded cone ), including cases where the body is a re-entrant one, e.g.
the cone with half-angle 8 >90°. Of course, V and /y, are not sufficient

to uniquely specify a body, and Mll /v can display greater departures from
the spheroidal norm for shapes other and more complicated than those we have

examined. Consider, for example, two hemispheres face to face which may

12



or may not be joined by a wire of infinitesimal thickness. For this body V

is constant regardless of l/w and as the separation between the hemispheres
is increased from zero (l/w =1), M [y decreases from the value 1.50
appropriate to a sphere, becoming 1. 46 for l/w =1.,1, 1.40 for l/w =1.5
and 1. 38 for l/w =2.5. Ultimately, as ‘/w—) ™, Mll/v—§1.37, the value
for a hemisphere in isolation.

Similar conclusions apply to M33 / g, where the normalisation S con-
fines the maximum variation within finite non-zero bounds for at least the
class of shapes considered here. Once again the spheroid provides a reasonable
basis for estimation even for asymmetric bodies. |

For C/. , the normalisat:o;l with respect to L produces an upper limit

8 .

on the irariation. Indeed, since

C
41reSD

where D is the maximum separation of any two points on the surface, and

D < l+w ,
it follows that

C

— <

eL 2

but because of the logarithmic decrease in the capacity of any body as l/ w0,
C/é L approaches zero in the limit. There is also more spread about the cor-
responding spheroid value than was the case in Figs. 2 and 3 and this could have
been reduced by choosing a normalising factor based on either the surface area
of the body or its profile length. Such normalisations have a major drawback,
however. For a body which is re-entrant or has an aperture, the capacity is
continuous even in the limit as the aperture size is decreased to zero. Since

the surface area and profile length are discontinuous in this 1imit, either leads

13



to a discontinuity in the normalised capacity, and the disadvantage of using the

. |
volume (which is continuous) is evident from Fig. 1.

4. CONCLUSIONS

In low frequency (Rayleigh) scattering by acoustically hard bodies there
are considerable advantages in introducing the concept of the magnetic polariz-
ability ten',sor M which is a function only of the geometry of the body. In the
particular case of rotational symmetry the tensox; naturally diagonalises and
just two of its elements are independent. A knowledge of the elements M

11

and M33 is then sufficient to specify the entire low frequency scattering

behavior in just the same way as the electrostatic capacity C/€ specifies the
low frequency scattering by an acoustically soft body. Even these quantities
are subject to known constraints in terms of the geometrical properties of the
body.

We have shown that for a variety of shapes of interest in acoustic scat-

tering, appropriate normalisation of M M,, and C/e reduces their

11’ 733

variation to such an extent that the spheroid, prolate and oblate, can serve

as a means of estimating these quantities to an accuracy sufficient for many
C

11’ Mgg and /e canbe calculated

exactly using an efficient computer program constructed for this purpose.

practical objectives. Alternatively, M

14
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Legends for Figures

Mll M33 ~
Fig. 1: v TV and a for oblate and prolate spheroids,
My !
Fig. 2: v versus o for spheroids (—), rounded cones (---),

ogives and lenses (A A), right circular cylinders (@ @) and

capped cylinders (mm).

M
. 1
Fig. 3: —fv—SBs versus — : the symbols are as in Fig. 2.

Fig. 4: %L versus ;lv: the symbols are as in Fig, 2,



