RADIATION FROM SOURCES IN THE PRESENCE OF A
MOVING DIELECTRIC COLUMN

by

Carl Irederick Stubearauch

A dissertation submitted in partial fulfillment
of the requirements for the dcgree of
Doctor of Pailoscnhiy
(Electrical Engincering)
in The University of Michigan
1972

Doctoral Committee:

Professor Chen-To Tai, Chairman
Professor Chiao-Min Chu
Professor Dale M. Grimes
Associate Professor Peter J. Khan
Professor Vi-Cheng Liu

RL-544 = RL-544



RADIATION FROM SOURCES IN THE PRESENCE OF A
MOVING DIELECTRIC COLUMN
Ph.D. Thesis -~ Abstract
by
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Chaiman: Chen-To Tai

Using Minkowski's theory of moving media this work discusses a class of
boundary value problems in which the medium moves in a direction parallel to
the boundary. Equations are developed for a set of auxiliary fields which are
valid in the frame of the observer. These equations are then solved with the
aid of a dyadic Green's function.

Symmetry conditions for the Green's function are derived and subsequently
used to develop the Rayleigh-Carson reciprocity theorem. It is found that the
direction of the velocity of the moving medium must be reversed when the source
and observation position are interchanged.

The mathematical form for the radiation condition has heen determined.
This condition has been used in previous work but its explicit form has not been
previously stated.

The problem of a moving cylindrical column is treated using the theory
developed for the above class of boundary value problems. The dyadic Green's
functions for the case of a cylinder bounded by a perfect conductor (waveguide)
and by free space with both interior and exterior sources are derived. Plane
wave scattering by the dielectric column and radiation by dipole sources in the
vicinity of the column are discussed. The radiation fields for a constant cur-
rent loop encircling the column are derived and curves for several examples of

loop and column parameters are presented.
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CHAPTER I

INTRODUCTION

The study of the electrodynamics of moving media is one which Las
been of considerable interest in recent years. With its beginning in Ein-
stein's Special Theory of Relativity and further refinement by Minkowski
in the early twentieth century, the basis of modern studies was essentially
complete.

Many aspects of the problem of moving bodies have been explored.
Because of the invariance of Maxwell's equations under Lorentz transfor-
mation, problems involving moving media may be solved in either the frame
of the moving medium or in the frame of the stationary source depending on
which is most convenient. Nag and Sayied (1956) exploited this property when
they solved the problem of Cerenkov radiation by considering the charged
particle as stationary and the medium as sweeping past the particle.

Problems involving scattering by moving bodies are often solved by
transforming the incident fields into the inertial frame of the moving body
and solving the problem of the stationary scatterer and then transforming the
scattered fields back into the original reference frame. This approach has
been used, for example, by Lee and Mittra (1967) who studied a conducting
cylinder moving perpendicular to its axis, by Restrick (1967) who studied
the problem of scattering by a moving sphere, and by Soper (1969) who
studied the problem of a moving wedge.

Certain problems involving a dielectric scatterer lend themselves to an
alternative approach. Here the solution of the boundary value problem is
carried out in the frame of the source using the constitutive relations for the
moving medium. Such an approach is useful where the boundary between the
moving and stationary media is constant in time such as a half-space moving

parallel to its surface or an axially translating cylindrical column. Dipole



sources radiating over a moving half-space have been considered by Pyati
(1966) using this approach. The problem of plane wave scattering by a plasma
column moving parallel to its axis has been considered by Yeh (1969) using
both of the above approaches.

In this work we consider the solution of the general class of problems in
which the medium is moving with constant velocity parallel to the boundary.

In the second chapter we use the constitutive relations derived from the
Maxwell-Minkowski theory and presented in a compact form by Tai (1965,
1967) and introduce a set of auxiliary fields in the moving medium which sat-
isfy a modified vector wave equation. This equation is solved with the aid of
the dyadic Green's function. An investigation is made of the mathematical
form of the radiation condition in a moving medium. This condition may be
assumed to exist from physical reasoning and is in fact assumed in any solu-
tion of radiation problems in moving media, whether implicitly as in the work
of Lee and Papas (1964) or explicitly as in the work of Tai (1971). It is be-
lieved that this work contains the first presentation of the explicit form for
this condition.

Next we consider the formulation of a problem involving a boundary be-
tween moving and stationary media. Using various symmetry properties
derived for the appropriate dyadic Green's functions we have generalized the
Rayleigh-Carson reciprocity theorem to moving media.

In chapter three the dyadic Green's functions pertaining to a dielectric
column in free space are developed. We consider both interior and exterior
sources.

Chapter four presents the development of the dyadic Green's function
for a cylindrical waveguide containing a moving dielectric. While the solution
for the modes in such a waveguide is well known and has been discussed by
many authors such as Collier and Tai (1965), Du and Compton (1966), Berger

and Griemsmann (1968) and others, the dyadic Green's function for



this case has not found such widesprcad prescntation despite its uscfulness
for problems involving sources. Scto (1967) has obtained the dyadic Green's
function for this problem but the derivation given here is more compact and
it appears that the results are more explicit than those of Seto. This work
has already been published (Stubenrauch and Tai, 1971).

In chapter five, the Green's functions developed in chapter three are used
to find expressions for the scattering of a plane wave by the moving column.,
The field radiation patterns for various dipole and loop sources in the presence
of the column have also been investigated. Several patterns for the loop in the
presence of a moving cylinder are presented in this chapter.

The final chapter summarizes the work presented and suggests some

areas for further study.



CHAPTER II

GENERAL THEORY

2,1 Maxwell-Minkowski Theory

Consider two inertial frames S and S' onc of which is stationary and the
other moving with constant velocity. According to the special theory of rela-
tivity, the relationship between the two coordinate systems is given by the

Lorentz transformation.

x'=x x =x'

y' =y y=y'

z' =y (z-vt) z =y (z'+vth)

t'=7(t-12Z) t='¥(t'+‘Y'§Z')
c e

where we have assumed that the frame S' is moving with respect to S with

. - A
velocity v = v z, and

Ry
c= (,uo eo) 2 velocity of light in free space,
EO permittivity of free space,
H permeability of free space
0 -1
2
v=(1-87)
B=" -

Minkowski in 1908 (Sommerfeld, 1952) reasoned from the theory of rela-
tivity that physical laws arc invariant in all incrtial frames, thus Maxwell's

equations will have the same form in either S or S'. Hence we may write



ot at!
- = 0D - '
Vixll=T+58 (2,20 v xII'=J'+%§g— (2.2b)
T__90 . tLTr = 9p'
VOJ‘ at ? V J at,

Using the Lorentz transformation (2.1) on Egs. (2.2a) we can put the transformed
equations in the form of (2.2b) and thus arrive at a relationship between the fields

expressed in S' in terms of those in S. The result is

E'=y.(E+vxB)

ﬁ=$-®+ia§xm
e (2.3)
H'=%.(H-vxD)
§,=;§-0(§--i2-‘—7 E)
where
F=v(R+§H+22 .

Equations (2.2a) or (2.2b) may be termed Maxwell's equations in the indefinite
form, since without knowledge of the relationship of D to E and B to H (the con-
stitutive relations) we do not have enough information to solve a problem.

In free space the needed relationships are simply D - 60 E and B = “O ﬁ,
which are true in any frame. However, when material media are introduced,
the effect of the relative motion manifests itself in a change in form for the con-

stitutive parameters u, €, and 0. We can write for =0



Substitution of Eqs.(2.3) into (2.4) yiclds

D+—vxH=€(E+vxB) (2.5a)

(¢

o]

ﬁ-—l—z-?zxﬁ - 4 (-7 xD) . (2.5b)
C

Elimination of B from (2.5a) and D from (2.5b) gives the constitutive relations

in frame S
D=ea-E+QxH (2.6a)
B=pa-H-QxE (2. 6b)

where

We now substitute the constitutive relations (2.6) into (2.2a) to obtain

(assuming e-mt time dependence)

=l

- OxE)

asi}

VxE=iw(u a -

VxH=J-iv(ea.E+Q xH) . (2.7

It is understood that the field quantities E , and H in (2.7) and in the remainder

of this thesis are complex vectors with e-u‘)t omitted.



We now introduce two auxiliary ficlds ¢ and h defined by

E-e 0925 3 (2.8)
= -iw Q zg'}—l
where

foal]]

Rn
"

(11

S=§(§§+§§)+22 or

Vx(t:)-e)=iw/.zl_1 (2.9)
-iwee . (2.10)

Elimination of h from (2.9) gives

vV x [5 . Vx (b .5)]—1{2 e= iwujelwﬂz

(2.11)

2 2
Kk =w ue.

This is the wave equation for the auxiliary field e. Just as in the case of station-
ary media, we can solve for e subject to the proper boundary conditions except

that the wave equation for e is more complicated than the ordinary wave equation.

2.2 Integration of the Equation for e

The solution of (2.11) can be obtained by several methods. In this work we
will use the dyadic Green's function to integrate the equation. We introduce a

dyadic Green's function which satisfies the equation

vxb .{vX[ﬁ . éo(ﬁlﬁ')]} -2 g (RR) =T 8 (B- R, (2.12)



In order to integrate (2.11) by means of the dyadic Green's function tech-
nique, we need a proper vector Green's thcorem which can be derived by apply-

ing Gauss' thcorem to the following function:

= = __'1
= (b )x[b vx (b . V)} -(b. V)x[b vx (b .T)] . (2.13)
Then
VX =[5 vx(5.D)] - Vx5 D)= (5.0) - vx [E - vx (5. W)
-[S-Vx(l:).-fl)] Vx (b« V) +(b.V Vx[lz).Vx(lz).ﬁ)](Z.M)

R

But the first and third terms cancel because tz) =b where the tilde ‘(~.) indicates

a transpose. Integrating (2.13) over a closed surface and as a result of the Gauss

theorem we obtain the desired vector Green's theorem.

fﬂ&g-V)'V){[E.VK(E- D) - (5.7 . vx[5. VX(E.V)]}dV
v
[ - = o= = _
=jijb{b-U)x[b-Vx(f)°V)]-(b.V)x[b.Vx(boU)]}.’ﬁ ds.
S

(2.15)

Using the modified vector Green's theorem (2. 15) let

where c¢ is an arbitrary constant vector we get



\Y
+#ﬁ-{8. D x[b v Eo(ﬁlﬁ')]-é] (2.16)
S
ciowli | x[B |ﬁ')]-c}ds

In section 2.5 we will st at the ¢ Green's function E possesses the

symmetrical propertics

(2.17)

b §-O<ﬁ|§'> = (R|R)
b -Vxb 'O(ﬁ L = B.VXB.{;C;ﬁ'iﬁ). (2.18)

Replacing R with I.' and R' with R and : :ing the above symmetrical prop-
erties as well as del...ng the common poste..sr product - c gives

- ]
j” 2 2 e — —_— i !
j 5.8, ®|R) - T@® V0% gy

~

b +e (R) = iwpy

4

+ iwu [lzr;‘i(ﬁiﬁ')] .oxb- B(I—x')} d s.

‘Vxb.g ®|RY)] (2.19)

T'n

In terms of the actual fields we get
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F o
ER) -iwn bz ®[R). TR gy
Vo 0
\%
+ff{[=-Vx1§. go(ﬁlﬁ')]-ﬁxﬁ(f{') (2.20)
SVl

The closed surface in (2.19) may be thought of as consisting of two sur-
faces, and infinite surface S00 and a finite one Sl' The integral over the in-
finite surface vanishes because of the radiation condition which will be developed
in section 2,.3. The surface integral thus remaining in (2.20) is over the finite
surface.

The dyadic Green's function used in the above development is termed the
unbounded Green's function because it involves only the radiation condition at
infinity. In addition to satisfying the radiation condition, Green's functions
may be derived which satisfy various other boundary conditions on finite sur-
faces. There are also Green's functions (e.g. for cavities) which do not involve
the radiation condition. In this study all Green's functions used satisfy the
radiation condition as well as some additional boundary condition. Listed in
the table below are the boundary conditions and the classification of the corres-

ponding Green's function.



- Table

Classification of G on's Functions

Green's Fu ' ion Corresponding .eld  Boundary Condition
E—o EorH Radiation Condition
G E 1xG (R |R) =0
1 1™b
=z — = . -
G, H nx Vx G, (R |R") =0

of
ol

ol
o]l

where I_{b denotes a point on the boundary and the square bracket indicates
the discontinuity of the enclosed function across the boundary.
In this work we need the Green's functions of the first and third kind for

moving cylindrical columns which will be derived in subsequent chapters.

2.3 Radiation Condition

In the case of stationary media, the boundary condition at infinity is the

well known Sommerfeld radiation condition.

- A = '
lim  R|[VxE-ikRxE]=0 (2.21)
R—

The same condition also applies to the H-field. Physically this tells us that

waves which are emitted from a source into a space free of diffracting bodies

continues to travel outward and never returns to the source and that the field
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strength varies as -Il{ in the far zone.

In the case of a moving medium, such a situation can also be assumed to
exist, however, the mathematical form for such a condition has not been pre-
viously stated. We wish to give a specific statement of this condition.

We examine the surface integral in (2.16) and investigate the conditions
under which it may be made to vanish on the infinite surface. Rewriting this

surface integral and deleting the posterior product with c gives
ﬁ'{[ﬁxﬁ.é(")] LB v g ®IR)
S

[5.vx(.s@)]- [axz.go (ﬁlﬁ')]}ds (2.22)

It is observed that if e and 50 satisfy the relation that

lim R{S.Vx[ﬁ.éo(ﬁlﬁl)} -K~'ﬁx[i.§ (ﬁlﬁ')]}w (2.232)

R—o®
and

= = - - = A = - —-—
lim R{b-Vx[b-e(R)} -A-Rxb-e(R)}=O (2.23Db)
R—

then the surface integral will vanish as R — o , In terms of the actual fields

(2.23b) can be written as:

= i —_ - = A i - -
lim R{b- vk [ "EE®) - A RxerZE(R)} =0.  (2.24)
R—>w

The factor A isa dyadic quantity which can be determined by substitution of
known fields into the radiation condition. The expressions for the fields are

given by Tai (1971) for Hertz dipoles oriented parallel or perpendicular to the



LU

direction of motion. For a dipole parallel to the direction of motion i.e.

A

J@R') =co6(R'-0) 2

1
idale ei(ka/ZfR-sz) i
= 1+
ER 5 12 5 1/2 cos 0
27 kafR ka/“fR
. k2 2 i(ka1/2ﬂ{-w Qz) ; i 5
E6= Nk a ¢ el 3 1+ 1/ 1+ 1 [1-2(a-1)cos 6] sin 6
s7ka 2R ka2 \ ka/2R
1
2.3 i(kal2fRwQz) .
H¢=_1ka co - 1+ ; )sin@ (2.25)
s PR ka /2R
where
1o

f= [1 + (a-1) 00526]

‘ 1
R=td 4y +2) /2

n= (u/os)l/2

¢ = current moment.,

For the dipole perpendicular to the direction of motion, i.e. J(R"=cdR'-0) %

9 i(ka1/2fR—w Qz) )
nk®ace i .
ER = 3 5 T > sin 8 cos §
27k afZR ka/?‘fR
1ea 1

. .2 2 i(ka/2fR -wQz) . :

E =mk a ce 1+ i 1+ i

o srka? PR ka'Rtr ka¥2iR

. [1 +2(1 --i-.) sinze] cos 0 cos §
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S 2 i(ka2R - wQ2) .
E _-ink ac ¢ 1 4 i _ 1 sm¢
’ 47 ka2 R k2R KR/
o1
_ ik2a3/2c e1(ka 2R Qz) ; A A
H= I 1+— sinf 6 + cos 6 cos § ¢ |.
47 ka /2f2R ka /ZfR

(2.26)

Substitution of (2.25) and (2. 26) into (2.24) show that A is indeed a dyadic

function and takes the form

(2.27)

Assuming that the radiation condition holds for the electric field dueto avolume

distribution of current, J (R"), is given by

T . -
E(R) = iwp ;5.§0<§[§').3<ﬁ>e'“*’ a2l qw (2.28)
A

Substituting this expression into (2.24) gives

1/2 M
lim leufff@ vxb. g (R!R')-1k<—-— ) ¢ +-—-— )
R—-w®

‘Rxb - Eo (ﬁlﬁ')}-f(ﬁ') ¢ W 4 2 g (2.29)

Thus if condition (2,23a) is satisfied, then so is (2.24). We now must show
that the free space dyadic Green's function satisfies (2,23a). The free space

dyadic Green's function can be shown to be (Tai, 1965)



= . = 1 =
;,O—d[l-i- 55 @ \YAY gO (2.30)
ka
where
1 1
.02 ..
) :31/2811\.1/ fR ] a1/2 elka /2 Ry
20 47 fR 47 Ra

R - \/(x-xv)z +(y-y")? + a(z-2)% =fR

for

a>0 ie v<c¢/n .

It can be shown, after much algebraic manipulation, that the function g:; 0 indeed
satisfies (2.23a). This completes our detailed derivation of the radiation con-

dition in a moving medium.,

2.4 Boundary Value Problems

We consider now a class of boundary value problems involving moving
media. We will include only problems where the boundary is parallel to the
direction of motion or alternatively stated the boundary remains constant with
time. In this thesis we consider that one of the media is either free space or
a perfect conductor and the remaining medium is a moving lossless isotropic
medium characterized by constant € and u when at rest.

The boundary condition to be satisfied in this case is the continuity of the
tangential components of E and H, where E and H are the fields measured
in the frame of the observer as described in section 2.1 (Sommerfeld, 1952,
p. 287 ff),

If medium 1 is free space and medium 2 is the moving dielectric, then

in region 1 the ordinary Maxwell equations hold, while in region 2 we may
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use the modified cquations for the auxiliary fields given by (2.9) and (2.10).

The boundary conditions thus take the form

A == A = = A =Qz= - = .
n x I:.l(RO) —nhEz(RO) =nxe b eZ(RO) (2.31)
and
A = =y A_= =\ _A_ =wQz= - =
anl(Ro)—anz(RO)-nxe hZ(RO)
or
- 1 - = - _ -
l'x‘xxVxE(R)=—-'r\1xe1wgzb-Vx{b-e(R) (2.32)
#0 170 #2 270

where 10 - unit outward normal to boundary (also normal to V)

RO - position vector defined on the boundary surface.

If the boundary value problem under consideration involves an interface between

a moving medium and a perfect conductor, the only necessary condition is that

A -iwQz
nxe

b- e, (RO) =0 (2,33)
which is equivalent to
fixe (R)=0 : (2.34)

In considering problems involving two dielectrics, it is necessary to keep
track of the location of source and field points. For this purpose we introduce
a double superscript notation. The first superscript denotes the location of
the field point and the second the location of the source point. For example
(:}(321) indicates a Green's function of the electric type or third kind for the

field in region 2 with a source in region 1.
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For the general class of problems discussed here, we consider region 1 to
be the space which is stationary with respect to the observer, which we will
consider to be free space, and region 2 to be the moving medium. Two cases
may be considered, depending on whether the source lies within medium 1 or 2,

For the source lying within region 1 we scek the dyadic Green's functions
*( 2 (RIR') and G(3 )(RIR’ . As was done previously, we choose to work

w1th the auxiliary fields in the region of the moving dielectric. Hence define

=(21),=|= -z =(21
Gg YRIRY = 90 5P pypn, (2.35)
=(11) =(21) : .

The dyadic Green's functions G and g 3 then satisfy respectively the
equations

v v S0 HEIRD - 18 B R RY =T o IR (2.36)

= = = == 2 21

Vx{b' Vx[b -gézl)(RIR‘)]} '( ) (R[R) =0 (2.37)

where
2 2 2
ko—wuoeo, kz—w [.12 62

To express El (ﬁ) and E_(R) in terms of J and the G's we need the relations

2
Vx Vx E,(R) - kg E,(8) = wou J(R) (2.38)
v x{i . Vx [f) -62 (ﬁ)]}- ; é2(ﬁ) =0 (2.39)

First apply the ordinary vector Green's theorem, namely
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PR ep
TS </
j’ H(P.-VxVx Q- Q.Vx Vx P) dV f(Qx Vx P- Px Vx Q) -1 dS
JoJ
s (2.40)
with
P = EL (R)
- -(11)

where Eé“’ (R If{ '; - v) indicates that the function 53 is for a situation

where the medium is moving with velocity - v rather than ¥ and ¢ denotes

an arbitrary constant vector. This gives

!j E (R VkVX[Gs (RIR;-¥ *} |:( )(RlR' -9). } vaXEl(ﬁ) dv

j—f [(11)(R|R' V) C]xVxE(ﬁ)-E(ﬁ)xVx[aé N . ] R

(2.41)

In view of (2.36) and (2. 38) we obtain

n
B (R) - T = g j:g 3m® - (V&R -5 - 8] o
\Y4

(RIR' =y ]XVXHR) ER)xVx |G [——( (RIR‘ -v)- c:’ .dds

(2.42)

Applying the modified vector Green's theorem (2.15) with
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Ve, ®REs-9).¢

gives
fﬂﬂ@ & R[R-)- c] : Vx[ﬁ.v:c(f‘) -éz(ﬁ))]
\Y
—[1:)-52(1—{)]-\7)([‘;.Vx<t:>-—(21)(R‘R'-) c> dv
éj“? - 2(21) B
= iﬂf (b-ez(R) [b Vx(b -85 (RIR;-v)- c)
S
- - _ A
-[B. (21)(R|R', v). c] x[B . Vx(b .EZ(R)) Aas (2.43)

Application of (2.37) and (2.39) shows that the volume integral vanishes.
We will now show that if the dyadic Green's function obeys the same boun-

dary conditions asthe electric field then the surface integral in (2.42) vanishes.

These conditions are

1 x (11)(R lR‘ -7) = x P [b ;221) IR‘ ] (2.44)

L4 x vx (11)(3 o B9 = Axe “"Qz{b Vx [13 22 g lR'—v)]}
o He

(2.43)

Note that because we are dealing with the Green's function defined for a nega-

tive velocity, the sign in the exponential must be reversed since Q is

proportional to v.



oo
—~
S

The surface integral over the closed surface in (2.42) and (2,43) can be
separated into a surface integral on the infinite surface Soo and one on the

boundary surface S The integral over the infinite surface vanishes because

1
of the radiation condition. It can easily be shown by use of the boundary con-
ditions (2.31), (2.32), (2.44) and (2.45) that (2.43) is equal to the surface

integral portion of (2.42) on S.. Further if we invoke the symmetry relation

L
for 5311) (to be proved in section 2.5), namely

=(11) = 1= -, =(11)= |= -

Gy 'R R, V=8, ® [R,-V) (2.46)

and replace R with R'and vice versa, the expression for El(ﬁ) becomes

cpn

—_ - . H=(11) =|— =~ — -

E,(R)= iwn {?@G(S V&R, 7)- T(®) avr (2.47)
A%

To solve for ﬁz(ﬁ), we use equations (2,38) and (2.39) in addition to the

equations for the dyadic Green's function for sources in region 2, namely

=(12)

Vx Vx G <12)

O Gy “(R[RY = 0 (2.48)

(R|R" -

VX{E : vX[ﬁ g:,rzz)(RlR']} - k2 222 &|&y = 15 (&R (2.49)

We apply the vector Green's theorem with
P= El(R)
Q = G(lz)(R -v). ¢

which yields,



%‘{"',” ( r 12)___ - - _____\
{ (R)- v\v\[ (R R', -v). ] [ 5 (RlR',—v)-c]-VxVx El(R)J dv

J ’16

JJ (R) - G RlR',-V)-c av

T WO UU
\Y
B ARIR: 95 x v E (R)- B (R x vx B ARR, -9) .-}.ﬁ és.
Sl+S
® (2.50)

The modified vector Green's theorem with
U = e(R)
V= g(322(R|§',-\—r) .c

gives

igﬁ}"{[ 2[R, -0.3] - vx[5 - v G2, @)

@] vx[B - vxG £ 2R, -0 c)]} av

2
=-b 52 (R)-c
e
3F (Bl a0
|

5 P27, 3 5[5 v -EZ(R))]}- Ras
| (2.51)



Again we require that the dyadic Green's functions satisfy the same boundary

conditions as the electric field, Hence

e(19) —— 3 > = = _
Ax Gg*“)(RlR', L (22)(RIR' (2.52)
1oy vx 2R, 0 - L x5 vx b 5 2RIR, )
Ho 3 Hy 3

(2.53)

Use of boundary conditions (2,31), (2.32), (2.52), and (2.53) shows that

a2y
1;.402

where I1 denotes the surface integral in (2,51) and I2 denotes the surface

integral of (2.50), hence

ﬁ-'ég(ﬁ') =mp2}§:@,; (R) G(lz)(RIR' -v)dv . (2.54)

\'

Interchange of R for R' and vice versa together with the application of the

symmetry relation

(21)

1—(12)(3 le b.g (RblR ) (2.55)

1
Mo

to be proved in the following section, gives the final result expressed in terms

of the actual field E

E,(R) —woﬁj it ’(21 (B[R, V) - F®) av, - (2.56)

Formulas for the fields with a source in the interior of the moving medium

can be derived in similar manner. The results for a source in region 2 are



_ Ce12) —1e - ==
E (R) = iy ;f;;j}ijélz)(RIR',v) TR M gy (2.57)
N2
- - {Hil= = - - —_— -1 Al
@ -un, 05 522[R 5 TR o BXe gy, (2.58)
2 2 Jo o3
\%
=(12) =(22) .. L
where G3 and 84 satisfy (2.48) and (2.49) and boundary conditions

(2.52) and (2.53).

2.5 Symmetrical Properties of the Dyadic Green's Functions

In the previous section, we stated some symmetrical properties of the
dyadic Green's functions. In this section, we give a detailed discussion of
some of these properties. We will finally derive the Rayleigh-Carson reci-
procity theorem as applied to a boundary value problem involving a moving
medium using these symmetrical properties.

We begin by proving the relation between 5;12) and gg 1 as given in
(2.53). Consider the following Green’s functions defined by

2 (11)

v x V}.G (R]R )=k G

&R, =Ts(®R) (2.59)

Vx VxG (RIR -9) - zzglz)(R,Rd,-;r) =0 (2.61
Vx{b Vx[b g3 (RIR kg 2222)(1’{ R " V) =16(R-R g (2.62)

We note that ﬁc is in region 1 while R d is in region 2,



o]
NN

These Green's functions satis{y the boundary conditions

Ax G HEIR L = x5 YRR L) (2.63)

= 1x Vx E(ll)(l_{lf{ ,V) = i x e-waz b . Vx[g -E(ZI)(ﬁlﬁ ,\_/)]
“0 3 c u2 3 C

(2.64)

=12),=1= -, A wQz< "(22)

V) =hxe b gy R|R (2. 65)

L ﬁx Vx E(lz)(l—{lﬁ ,-V) = L ixe L2z b v x[g é( (Rll_{ ,—W_I)] .
Hy : : Mo 3 d
(2.66)

and apply the vector Green's theorem together with (2.59) and (2. 61) to yield

=(12)

c e G R IR . d
f}{ uz)(R]Rd,—v) d:| xVx[ ! )<R]R V) c}
5,75 _

[ ul)(R]R v)- JxVx[ (12 )(RlR a}} Aas. (2.67)

Similarly, using the modified vector Green's theorem and (2.60) and (2. 62)
with



I—J=—(2 (R!R . d
V-5, ARIR )G
gives
i[5 S20R R 9. G
{? b '(22)<R|R v a] [b.vX(E.Es(ﬁlﬁc,G).E)]

-[‘ '(21)(3[3 ] [b x (b g( 2)(Rlﬁd,-\_/)-a);l} ‘Dds  (2.68)

As a consequence of the boundary conditions (2, 63) through (2, 66) and the radia-

tion condition we obtain

M

0
I =—
1 /.1.2 2

where I1 is the surface integral in (2.67) and 12 is the surface integral in

(2.68). The final result is

- = - = --__i— ==(21)
i, ¢ -G, (Rcle,-v) d-#2 d [b g5 (Rle, ):l .o
or
~ .
L& lR, -0 = L B E PR R (2.69)



Similarly it can be shown that

v 2
(RIR",v) = 63 DR, -9) (2.70)
and
/'\/ 22
b. égzz)(ﬁlﬁ'»;’) = b. )(R'|R -v) (2,71)
For an unbounded moving medium, the symmetry conditions are given by
T
b -é‘o(ﬁlfi’) =b. éo(ﬁ'lﬁ) (2.72)
and /‘\___/
b.Vx § R®IR) =b- Vxg (EIB (2.73)

We note that the velocity does not appear in these relations because the sur-
face integral vanishes due to the radiation condition. In like manner for a

medium moving parallel to a perfect conductor the conditions are

- ~

b g, (RIR) =D -gl(ﬁllﬁ) (2. 74)
/\/

b.Vx g (RIRY = . vxg ®IR) (2.75)

We will now derive the Rayleigh-Carson reciprocity theorem for the case
where the two points in question lie in different regions. For this derivation
we need the symmetrical property (2.69). The development for other situations
is similar,

We begin by forming the double volume integral and noting from (2.56) that



R fﬁp 1) Q

n - == (2l)= 1= - = ,=, -wQz

H k") £ vivi . ofr . ]
i g ; av, ﬁ?d‘wz Jl(Rl) b g, (R1 Rz,v) J2( 2) e

[~ <4 é],
V
= j}jivl J,(R)) "Ey(R;, V) (2.76)
Vv
where
J 1(_Rl) a current in region 1
39(1—{2) a current in region 2
Ez(ﬁl) electric field in region 1 due to 32
El(l—{z) electric field in region 2 due to u:l
ﬁl point in region 1
I—{z point in region 2
Z z-coordinate of the point in region1 .
Substituting (2. 69) in the left hand side of (2, 76) gives
1 dV1 Jl(Rl) . E2(R1,V)
:n {'ﬁ[ R ) __/_(\1';)_ _ . _ -lQuz
- LKy, "{fjdvl J v, J(R,) [;; Gy (R2IR1’ V) J)(R)) e
Vv

, £ e 212 = - ==~z
= oy, w@‘jﬁ"’l f ﬁvz Io(Ro)- Gy (R2IRL‘-V)°J1(R1)e '
i v

' (2.77)



Substituting (2,57) in (2. 77) yiclds the Rayleigh-Carson thcorem,

j}jdv J (R ) E (Rl,v) }jjjwz Jz(Rz) -E (RZ‘ -v) (2,78)



CHAPTER IO

DYADIC GREEN'S FUNCTIONS FOR A DIELECTRIC CYLINDER
MOVING IN FREE SPACE

3.1 Introduction

In this chapter, we derive from the theory of Chapter II the expressions
for the dyadic Green's functions of the third kind for a cylindrical column of
radius I, moving along its axis which is coincident with the z-axis, The

geometry of the problem is illustrated in Fig. 3-1.

<l

FIG. 3-1: Dielectric Column Moving in z-direction,

The Green's functions which we are seeking satisfy the following

differential equations discussed in section'2.4.

29
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Vx Vx G(u(RlR’ - g gun (RIR' =15 (R- R" (3.1)

(5. vx [ P @(R])- 2 B R [R0 <o (3.2)
for a source lying in free space, and

w{b - Vx [1"3 ggzz)(RIﬁ']} k, Egzz)(Rlﬁ') =Ts(R- R (3.3)

Vx Vx G (12)(R|R') K (12)(R|R') = (3.4)

for the source lying within the cylinder.,

3.2 Source Lying in Frece Space

We seek the dyadic Green's functions Gé 2(321) (32 )

(3.1) and (3.2). In addition these functions satisfy the boundary conditions as
listed in equations (2.31) and (2.32). They are

A ‘(11) =(21)

n x (R {R' =1 erZ [’E

(R ]R‘] (3.5)

- , - - N
L axvx GINER R =L dx R Vx[b- P IR'] (3.6)
4 3 ol 0

and we have assumed region 1 to be free space which surrounds region 2, the

moving column,

and g or G which satisfy
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We will use the method of scattering suporposition to determine the ex-

pressions for G,. We let
J

=(11) _= _ =(11)
G3 'G0+G3s (3.7
=(21) _=(21)_ -wQz = =(21)
G3 B GBS e b 83s (3.8)
: = . : =(11) =(21) |
where GO is the unbounded dyadic Green's function and GBS and G3S give

the fields scattered as a result of the column, The portion of the Green's
functions corresponding to the scattered fields satisfy the homogeneous wave

equation. The fields El(ﬁ) and Ez(ﬁ) are given by (2.47) and (2.56) re-

spectively.
To determine E‘O we use the Ohm-Rayleigh method of expansion de-
scribed by Sommerfeld(1949, p.179) extended to the vector case. G. is

0
expanded in terms of vector wave functions which are solutions of (Tai, 1971,

pp. 69-71)

Vx Vx F-x2F=0 . (3.9)

As is well known, the proper solutions to (3.9) are

M = Vx (y2) (3.10)

'VxM=£- vV x Vx(dz'z‘) (3.11)

Z1

Rl

where ¢ satisfies

Py+kly=0 . (3.12)

Note that M and N satisfy the mutual relationships

VxM=x N
Vx N=«k M .



In cylindrical coordinates a characteristic solution for ¢ is given by
ihz .
Vo f=a ) Gitng o (3.13)
R

2 2 2
A =k -h

where ‘etor'o' refer to even or odd trigonometric functions and Jn(kr) are

Bessel functions. The expressions for _Me (h) and N-em(h) are

oA 0
on sin A BJn(Xr) S
M = —_ - CO
Mgnk(h) . Jn(kr) eos B P T 5 sin ) ¢ (3.14)

0J_(Ar)
_ 1 A
N% (h) == [ gr cosn¢ +—J ()r) s ngp

2 () 950 ¢ 2] o102 (3.15)
These vector wave functions have the following orthogonal properties

A . N (-hnav=o0 (3.16)

o
Jig s s

[

FIIM (- M (-h0) av = 20146, ) 720 dA-A) 6(b-h) 6, (3.17)
‘gj 811)" ennt On nn
RN ?

N h) *N -h*) dV = 2(1+§ AEA-AT) 6(h-h') 6 3.18
[t Sy e s perintens,, o

where the volume integral is over the entire space. These relationships are

proven in Appendix A.
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To proceed with the Ohm-Rayleigh method we expand the dyadic delta

function in terms of the vector wave functions M and N. Thus we let

g) 00)
R | _ X [ _ } _
I6(R-R") = § dl dx M h) A h)+ N h) B h
( )j 1f ngo SCEUL SCEANE
© (3.19)

where A (h) and B (h) are vector coefficients to be determined and
6 m oA

- M 4 . .
M8 nAASn)\ indicates the sum emh Ae ~ Mo m Ao o Taking the anterior

product of (3.19) with M (-h") and performing a volume integration through

€ n\!
. 0
the entire space, we get

M (-h) = (14 ye A ()
ce)nlkl n 811')\.'

where the ' on M indicates that it has become a function of the primed spatial

coordinates as a result of the integration with the dyadic delta function. Hence

) 2 - aOn _
Ae (h) = — Mé (-n) . (3.20)
onk 47 A oA
Similarly
_ 2 - Son -
B (h)y=————N (-h). (3.21)

omy 47 X 6o\

Q0
oo} 2-60n _ _
dnfl A ) — {M () M (-h) +
, =0 Sy Smu

+N (h) N (-h)} ' (3.22)
en\



s . ati 1\_ 1 an 1\1 M .
where the notation IOMI\ Con means N o M o n)\ on)t on\
0

We now expand G in the same fashion, i.e.

1 w 2- 6 _ _
== fdnf Z N a M_ (h)M; (-n) +
Sod Smd  &m

omA Gmd

+8 N (h) N'enx(—h)} ) (3.23)
[0}

Since 5(3151) satisfies the homogeneous vector wave equation, G. will satisfy

(3.1). Substituting (3.22) and (3.23) into (3.1) we find

0

o = B = = . (3'24)
St S (2 f a2l
= -l 1 3 & 2néOn
Thus G (RR) =— § dn § 2_: s
47 =0 XA ~(k.-h")
~ 0 0 0
AM (WM (- +N () N' (-h) (3.25)
ooA  gmA omA  §m

The integration on A may be performed by noting that a typical term in the

integrand is of the form

0 QO _
{ M0 J ) g (kr')]
i 5 dx = dr (3.26)
0 A (A7 - n 0 k(K -n )
9 =
where n2 6 - h and Te ~ is a dyadic spatial operator which is an even
function of A '



To perform the integral (3.26) we consider an integral of the form

f(rr)ﬁ —S(i—Jn(xr)meax. 3L

This type of integral has been discussed by Sommerfeld (1949, p, 197) and
Tai (1971, p. 14). Since

3 () - [ 1) ) + 12 )(xr')]

we may write

Q0
a\) J (\r)
n ol 2 D (2 3 .
f{x, r') = 5 j kz - nz [Hn (Ar") +Hn (\r )] d\ = f1+f2 . (3.28)
0

Now for f2 we can write by changing from A to xe 7

=%Jfgi——’Jn(x “(x"m :
0]

Sommerfeld (1949, p314) gives the circulation relations for Bessel functions,

namely

Jn(Kre-m) S

Jn(Kr) (3.29)
Hiz)().re_m) = _e-imr Hil)(kr)

We make the further restriction that g(\) is an odd function. Thus



£, =% § —23(/\7)—3- J (A\x) I ( )(h') dA . (3.31)
- J, X —(ka—h)
We can then write
fr, r') = ) —8 1 () H(D()\r') . (3.32)
-(1\2 2 n n
0

Performing the same routine using the J n()\l‘) factor gives

f(r, r") =% s ( )().r) J (Kr‘) dr . (3.33)

xz (k2 e o

Since HS)(Z) — 0 for lzl— o with 0 <argz <7 and is regular throughout
the z-plane cut along the negative real axis, we may evaluate (3.32) or (3,33)
by completing the contour of integration along a semi-circular, infinite path

in the upper half of the A plane.

The result is
izg(n) (1), ;
o Jn(nr) Hn (nry) , r<r
f(r, ') = (3.34)

i__g_rzlrrz :) Hﬁl)(nr) Jn(nr'), r>r!

where

2 2
I\O-h

In view of (3.34), (3.26) may be written as s
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Q0

P ;:‘ >\1)J (Ar") ]

da
)\(K

J n(nr) Hfll)(nr')

i =
B 27’)2 Tenn
Hgll)(nr) J lnr')
i ,(U
_ir Me (h) M
2112
(1) \
( h) M n(-h)

r<r'

r>r'

r<rf

r>rt . (3.353)

The superscript (1) attached to the vector wave function indicates that a

Hankel function of the first kind rather than a Bessel function is used in

its formation. The same procedure follows for the N N'term. The result

for EO may now be stated.

’ (0 0]
= (BBt =_i Z
GO(RIR) >
n=0

MM (neRD @& (n e
on” 60N 6 nn 5
Mo, w8 e (3.36)
o o o
=(11) =(1) =(1) .
We now form G °s by using as anterior elements M" " and N7 to satisfy the
g (1) (1)

radiation condition and M!'

and N as posterior elements to match the



38

posterior elements in the expression for G which is valid for r < r'., Thus

0
S X 2-6
(11)(1th' - U Z 20” E\ M<)(h)+B N(l)(h{]\l' (-h)
rjoo n=0 7 on onn en gnn on
C \I( )(h)-i-D M( )(1 &“(1) (-h) (3.37)
on Gan cn gnnJ  Gon

The terms B N( ) (h) and D M( )(h) are included because of the

9n  Znn n gnn
presence of cross polarlzed field in the scattered fields as noted by Wait(1955),

For the region inside the column we will deal with dyadic Green's function

corresponding to the auxiliary fields, thus the eigenfunctions must satisfy

v x [E. vx (b -'f)]- k§f=0 : (3.38)
The solutions to (3. 38) are

p=Vx <w22> (3.39)

Vx (b.Vx v, ) (3.40)

2 2
/

18 &)Liﬁhl T2 0y -0

ror or 2 85252 a az2 2 2

or
o2 1 829”2 2
I 4= == = 11}

[ Yy *7 5 Thyayy, =0 . (3.41)



Solving (3.41) we get

ih,z

g™y G €00 S ¢ (.42
where 9
h
2 2 2
Sookpany

Thus (3.39) and (3.40) become

- - R oJ (‘31‘) cos 1h22
pgng’(h?-) = [+ 2 (&x) 2;’; nfr - __ar oo n ¢¢ (3.43)
ih, oJ (gr) ih n A
q } _2_n> cos Az __?:_ sin
qgng(n2) kza dr sin n¢ . k2 J (S )cos ngp
52 A 1h22
s cos
kzaJn(gr) nfzle ~. (3.44)

=(21 . . . . .
We construct ggs ) from these eigenfunctions using posterior elements like

those for GO when r <r'. Thus

u

onn

2-6
=(21) i fm iy On - - =(1)
g = — dh h)+Db h -h
2oL Qém T — {ag P+, Ty 2)} 0 )

- - —{(l) y =
-+ [ce nq (h2) +d8np8n§(h2)} N “(<h) (3.45)

e
60§ onn

We now apply boundary conditions (3.5) and (3.6) to get the following equa-

tions for the unknown coefficients, and also note that

=h+
h2th'

The results for A, B, C, D, a, b, ¢, and d are given next.
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These equations reduce to those obtained by Tai (1971, p.99) in the
zero veloeity limit, An additional check on the corrcctness of the equations
may be had by applying the redundant boundary conditions of normal D and B
recalling the constitutive relations within the moving medium (2.6a,b). For

the region r <r_, we have

0-’

I—)=€23.E+ QxH (3.48)

1_3=u25-f{-§x§ . (3.49)
Thus

A —: -

r-D ezaEr QH¢ . (3.50)
Now from (2.7)

- 1 = - 12 = =

H==—b :VXE+—=Db:- QxE

Lo IIJ

or

H, =——(VxE), + —QE . (3.51)

¢ iua § ma r

The boundary condition for D can thus be written as

- 92 - 0 - :
= LS, -—(V x 5
€ Ep Ry = lega ,uza) Ey (R iwuza( XEplg (3.52)
Since
VxE=iwB

the second boundary condition simply requires

[( VxE)) r] = [(Vx E,) r] (3.53)

r=r0 r=r0 .

Equations (3.46) and (3.47) are consistent with these boundary conditions.
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3.3 Source Lying Inside the Moving Column

The dyadic Green's functions §(§2> and (-}212) satisfy (3.3) and (3.4)

and may again be found by the method of a scattering superposition. They

satisfy the boundary conditions

A (12)<R

ALl A sz[ =(22

|R') =0xe \& |R')] (3.54)

x Vx G(lz)(R lﬁ') =;}-ﬁx e“]mQ {b Vx [= (22)(R Iﬁ')]}
2

u
0 (3.55)
To apply the method of scattering superposition we let
=(22) =  =(22) .
g3 =g0+g38 (3.5‘3)
=(12) ‘(12)
G3 3S (3.57)

=(22) -z = _(2)

where G3 e b. 85 and §0 is the unbounded dyadic Green's function
for fields in a moving medium satisfying the radiation condition. E is found

0
in the same way as GO in the previous section, only we use the eigenfunctions

p and q given in (3.43) and (3.44) where k, is replaced by k. The orthog-

2
onal properties for pand q are

PPp
ﬂj }-)em(hz) qen N (h'2) dv =0 (3.58)
J O

ref- _ |
j Pgm(hz) en'w(hz} dv =2(1+ 6 )7r A&(h ) s\ )6rm'

(3.59)
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poo 12452
2
Eg (hy)dv=2(1+5 Jm “ b, -hy) A1) 6,
ﬁ;em 2 onK' h§+a>\2 22

(3.60)
as discussed in Appendix A.

The dyadic delta function is then represcnted as

Q
Is(R-R")= | da p (h)A (h)+g (h)B (h
I5(R-R") 2 L Pop 2 2" 9 (b)) gm( 2)}

(3.61)
We solve for A and B as in the previous section to obtain
2—60n
A (h)= p' _ (-h,) (3.62)
oA 2 47r2>\ g 2
_ hz + a)\
B (h,) = q (-h,) (3.63)
Son 2 47r2k hg 2 S 2
The function éo(ﬁlﬁ') is expanded in the same fashion
_’_ 2 o 2—6011 _
g(RR) = [ dhy gax ¥ {a p. (b)p' (-h,)
0 n=04riy L S gax 2 TSmn 2
(04) 0
2 2
h+ax |-
+8, |27 g (b 5ty (3.64)
oA T2 2 | om
h +A
2
Substitution of (3.61) and (3.64) into (3.3) gives
= B a (3. 63)

a =
g T8 )f. [k; a- hé/a]



= =] ® 2 6()n a
go(\in)lg- dh, go ot 2 Za i :
0 0 n 77 2a— 2
_ _ a)x2+h§ _ _
.(p (h)p' (-h)+ q_ (h)q" (-h)) . (3.66)
gn 2 gmh 2 A2+h§ S 2 gmd 2

The operational method used to evaluate (3.25) can again be employed. We
note that a pole now exists A =+ ih2 in the second term of (3. 66) in addition
to the poles at A =+ \/k% a- h%/ a . When the integration is performed as in
(3.32), the poles at + 1112 give rise to modified Bessel functions. The pole at
+ ih2 must be excluded from the contour of integration because such a function
will not be a valid expression for the dyadic delta function since it does not

vanish for r # r'. Thus the contour of integration must be modified as shown

in Fig. 3-2.

C+

Re A

S

FIG. 3-2: Contour of Intcgration for zo(ﬁ[ﬁ').



The result after intcgration with respect to A is
- (1)

Cp @ 2 peng(hz) pém,_,('h?
z RIR')-— joan, ¥ oa—( ° ©
0 87 2 L 2\ - e
j n=0 § p (h2> ) (- h, )
" 6ng ong
3.2
+ 2a 5 w a(l) (hy) q' (-h,) r >r'
hz(a—l)—a k2 ons oné
agkg - - (1)
T3 7 7 Y B dp (b)) r<r
b, (a-1) - a” K, ons ong (3.67)
where
ag —k2 az-hg .
We now let o
2- 5 —(1) =(1) -
—<12 , & M ' (h+b N "'(h) |p' (-h,)
(RIRY= = j dn, z_:oa On [agn NI e :]pgn5 by
Q0 n=
( ) =(1) )
+ h)+d M h) |q' (- 3.68
[cgn MICRTRO )] ) (3.68)
and

‘(22> Do o - . ;
R[R') = dh A h,)+B L
“RIRY = 5 2 L @ [gnpens< ) gnqgns(hﬂpgng( h,)

(o)

C q (n : .69
+[8nqon( )+an°n (h2] (3.69)

Application of the boundary conditions (3.54) and (3.55) to the expression
222) nd Gg )frives the following linear equations for the unknown

coefficients A, B, a, b, and C, D, ¢, and d.

for g
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CHAPTER IV
CYLINDRICAL WAVEGUIDE

4,1 Introduction
In this chapter, we derive the eigenfunction expansion for the dyadic

Green's function for a cylindrical waveguide of radius r,, filled with a loss~

OJ
less dielectric moving along the waveguide axis coincident with the z-axis,

The Green's function for the auxiliary field satisfies

Vx{g - Vx [g .

subject to the boundary condition

aan

1(131@)]} - kg 21 (®|R) = Is(R- RY) (4.1)

A - = — —
rxb. gl(ROIR') =0 (4.2)
where
- A A A
= a + +
Rper)I p p+z z

4,2 Eigenfunction Expansion for gfl

The eigenfunction expansion for the problem will be obtained as before

using the Ohm-Rayleigh method. The eigenfunctions are solutions of the

homogeneous equations
= T - 2 -
VX[b-VX(b-f)]-K =0 (4.3)

where k will be determined by the boundary condition.

The solutions to (4. 3) are

P, M(h) = Vx[z//g(h) %] _ C(4.4)

(o]
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- 1 = - 1 A
qg  (h)=- Vx[b . p (h)} = — Vx Vx h) 7 . 4.5)
SnA K S n ka wgnk( ) (
We note that
Vx[b-pe]=xqe (4.6)
) )
V b . q = D .
x[b qe] kD, . (4.7)
0 )
As in section 3.2 the scalar potential function is given by
ihz
Ve (h) =3 (r) Snde (4.8)
onA
where
2 22 2

The vector wave functions are given by (3.43) and (3.44) with £ replaced by X.
In the case of the waveguide the spectrum of eigenvalues is not continuous but
discrete as would be expected. The spectrum of X is found by applying the
boundary condition to p and q .

Inspection of the expressions for f) and c_1 reveals that the condition

{
A

rxlg-;—) (hﬂ=0 at r=r
L "¢nnx 0

is equivalent to

) Jn()x rO)

ar

=0
0 .



while

¢ [
r X

is equivalent to

il

lon

. q (hﬂ=0 at r=r
on A 0

Jn (Kro) =0

Clearly the p and c-l functions require different eigenvalues to satisfy the

boundary condition, We will denote these eigenvalues by Enm and M

where
p
nm I
0
q
n == (4.10)
nm rO

and p is the m-th root of
nm
J(x)=0 (4.11)
n
while qQ, is the m~-th root of
m

dJ (x)
n
dx

=0 (4.12)
Hence the vector eigenfunctions for this problem are Be (h) and ae .,(h)'
onn ols

The orthogonality conditions between p and q are given by

¢ ; 3 (h) on (-h") dv =0 (4.13)
gg.Jpgm qgn's'



o2

o
jc%;‘.%gnn(m'pgn,n,(—h')dv = 7r2(1+6On)(n2r§-n2)Ji(nrO)<Xh—h')émm,6m,
(4.14)
2 /63 (ex )\
fjjq c-1 ( h')dv= 7r2r0(1+<‘50n)hz+€ 5 gr 2 8 ot
ong on h +a§ 0
(4.15)

where the volume integral is over the entire volume of the waveguide extending
from - to .
Using the same method as in the previous chapter, we obtain the expan-

sion for the dyadic delta function

- AN
= _ _ 1 - -
16(R-R9= dh 2, U & p (h)p' (-h)
n 27r n=n (n2r2-n2) J2(nr ) §nn 8“77
C orC nm 0 n "0

T .2, 2 _
* & hfﬁ : 29, (®Wal -y (416
g=5 W4g"  fog (er)\" o€ gng
0 aro

The coefficient of the second term in (4.16) has poles at h = +i Snm' If these
poles are included in the integration path when the integral on h is performed,
they would give rise to a term of the form f (x,y) e § |z-z' which would be
unacceptable for the expansion of the dyadic delta function. Thus we delete
them as we deleted the poles at + ihz in section 3.3, by choosing a proper con-

tour of integration, shown in Fig. 4-1.
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/ Reh

FIG. 4-1: Contour of Integration for I16(R-R').

The dyadic Green's function is now written as

= = ) 2-6,_ 1 = =0
(RR" = dh . (n)p' (-h)
gy l f Z Z a4, n (n2 2 2)J2(Tl ) onn San

C orC o 27f 77=nn ©
h +a 1 - -
Z st a, W (b (4.17)
b +§ 2<3Jn( r>2 ong _§n€
O r
0
Substitution of (4,17) into (4.1) gives for « and B
&n 6n
1 a2
a =B = = (4.18)
o 80 Zad w2 Paon%a)

where A is replaced by n or £ as is appropriate. The integration of (4¢.17)

can be performed by noting that p and c-i each have the common factor elhz



Thus, tor example

p(h)p (-1 =() ih (z-2")

With this in mind, we can use the Cauchy residue theorem for (4.17) which

gives
1 - -
(RIR' o), (25 p, (tk)p  (3k )
n nz}’-’{l k (r§n2 n2)J2(nr yoan T gan M
2.2
) ok : 1 3 ()T (k)
§€ K Eazk2+(l-a)§2] o| 89 (§rp) 12 sng S ng €
%o aro

(4.19)



CHAPTER V
APPLICATION TO VARIOUS SOURCE CONFIGURATIONS

9.1 Introduction

In this chapter, expressions are devoloped for the fields arising from threce
types of source configurations. The first, a plane wave, is treated as arising
from a dipole which is allowed to recede to infinity. Both 8 and fb\ polarized
incident waves are discussed. The far field expressions for infinitesimal
dipoles at a finite distance from the cylinder oriented axially, radially, and
azimuthally are developed in the following sections. Finally, the far field of
a circular loop antenna coaxial with the column and having constant current is
developed. The last example was chosen because the resulting expression con-
tains only one term, hence the numerical calculation is relatively simple.
Computed patterns for several combinations of loop and column parameters

are presented.

5.2 Plane Wave Incidence

The incident plane wave is obtained by postulating a dipole of the desired
polarization and allowing the dipole to recede to infinity. Asymptotic express-
ions for the remaining integral are obtained using the saddle-point method of

integration.

5.2.1 ¢ Polarization

Let a dipole having a current moment C lie in the § =0 plane and be

AN
oriented in the § direction as shown in Figure 5-1.
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N
FIG. 5-1: §-Directed Dipole in §§ = 0 Plane.

Thus

F(RY) = —=
R' sin 6!

A
5 (R -R) 60" -0) s(pr) g

A
e o) e s o) (5.1)

The expression for El(l—i) as given in (2,47) is

{

D5
T (R) =i fsﬁ—(ll)_ R! T (R! 1 5
EI(R) = Loy fJGB (RlR) - J (RY) dV . (5.2)
\Y

(11)

3 and (5.1) for J we have, after performing

Using (3.36) and (3.37) for G

the volume integration,



wu . C 2-6
= = 0 On
E () = - = j‘“ >
Y o =

_() _ aH(l)(nr ) -ihz
l:w (h)+A M (0B N (h)J 25 . 5
on onn ars
-ihz
+ [ﬁ (B+C__ N )(h)+ T (h)] “)( r)e
onn E.n en Ors
(5.3)

To produce a plane wave, we allow the dipole to recede to infinity in such
a fashion that rs/zS =tan 6  remains constant. Forlarge r, the

asymptotic form for the Hankel function may be employed. Thus let

+1/2 i
B e ) 2 (P22 2 s e 331 (5.4)
ﬂnrs s
from which
1 inr
ot e ) w2 2 fpot] s
— 2 (-}) Tnr 2r nr >>1  (5.5) -
or s s s
+ Inr
ac (P2 2 s
T

Thus for large R (5.3) becomes

wu /_—‘ 1(nr ~hz ) On ( 1)“'*'1/2
anr &

0 n

l’fjl

- in [1\’4 (h) + A M(l) (h) + (l) (h)] (5.6)

enn en enn on onr;



The infinite integral in (5.6) may be cvaluated using the saddle-point method.
The saddle-point method is useful for the evaluation of certain integrals

of the form
(0]

Flp) = ‘g £ (n) oPPR) g . (5.7)

-

To apply the method we require that p >>1 and f(h) must be an analytic
function of h and have an extremum at a certain point hO’ such that

0’ f (h) must be slowly varying. Under
these conditions it may be shown that (Tai, 1971)

g (ho) = 0. In the neighborhood of h

1/2 i[opny - £+Z
2% ] f(ho) o [ 0 2 4:‘ (5. 8)

o | lf
£ l_p TN
where J =arg §" (ho)

This expression is valid as long as there is no pole or branch point of f(h) near
hO' For higher order expansions one may employ the methods of van der
Waerden (1951), Feynberg (1961), or Jones (1964).

To evaluate (5.6) we note that the exponential function can be rewritten
as

. , 2 2
el(nrs-hzs) ] el( kO -h r - hzS )

Changing the cylindrical variables to spherical variables by letting

n=kosmB h=kocosB

r.=R _sin8 z =R cos6_,
0 S S ] S S



gives for the exponential function

-ik 5 +
. il ORS cos (OS B)

Thus we have

p §(h) = -k R cos (GS +3)

0

and
i +
Rssm (Qs B)

p $'(h) = -

sin (3

The saddle-point h  is that point at which the derivative 5{5' (h) vanishes.

0
This may occur for GS +3=0 or Os +B8 =7z, We choose the second
alternative as this gives a wave originating from the source which satisfies

the radiation condition. Hence

p (h(.)) = ko RS (5.9)
-Rs Rs ir
p B (h) = = e (5.10)
0 . 2 , 2
k. sin 6 ©- k_ sin 6
0 S 0 S
hO = -ko cos GS . (5.11)
g = ko sin GS . (5,12)
Thus, the expression for ﬁl(R) has the asymptotic form
N S CD
- = ‘M“OC lkORs 2-6
E.(R)= - e On A0+l
1 47R Tomo (-1)
S n=0 0 S
[Iv"x (h)+A T (h)+B N (h) ] (5.13)
enr;0 0 en enno 0 on onn, 0

Now the far-field of a short dipole of current moment C is given by (Kraus,
1950),



GO

ikR
iquC o1 A
— o 5.14
47 R smaa (5.14)

=
5
1}

where « is the angle between the axis of the dipole and the direction of ob-

servation ( = r/ 2 for this case). We thus define the amplitude of the plane

wave by
ikR
iquC [
EO i -——ZwR (5.15)
S
Hence we may write (5.13) as
o0
E
[ p— 0 A0+l
E\R) = -1 5ing 2 (2 - g (-0
0 S -
n=0
l:ﬁ my+a MY @my+s ¥ @ )} (5.16)
enn, 0 en enn, 0 on onn, 0

5.2.2 H-Polarization

The desired plane wave is obtained from a dipole having current
A
moment C, oriented inthe 6 direction and lying in the ¢ = 0 plane as

shown in Fig. 5-2.  The current density function is then given by

TR = —=
R' sin '

A
(R'-RJ 60" -0) s(g) 6

;;._g_. t_ 1 S [Au B G ]
- 6(r rs)6(¢) 6(z' - 2)| X cos O - %' sin0 (5.17)

The expression for the electric field is given using (5.17) for the source in

(5.2). After evaluating the volume integral, we have
l .
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FIG. 5-2: §-Directed Dipole in §§ = 0 Plane.

n

- - prC 3 2_60n
EI(R)=-—8W jdhf T
n=20
=0

Ve

—(1)

_ -1 ]
{[’V{ (hy+A M ' (h)+B N )(h)
onn on onn en enn | r

+ [Sr (h)+C N(l)
enn en €

[ (1)(an) 2

nn

., OH
ko ars S ko

\

(h+D M
on

(l) (h)- R
onn

-

(1) -'ihzS
Hn (nrs) sin GS} e

(5.18)

The saddle-point method may again Be employed to obtain the final

result.
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(0]

B
E (n) =2 (2-50 ) (=)™ [ﬁ (h )+C FI(I) (h
n enno

)
0 en en 0
nO

ksxrf)
U n=20

—(1) .
+
DOn Monn (h()) (5.19)
0
where ho, no and EO are the same as defined in (5.11), (5.12) and (5.15).

5.3 Diyole Sources

In this section, we derive expressions for the far field patterns due to
Hertz dipoles oriented in the radial, axial, and azimuthal directions. The
saddle-point method of integration will again be employed to develop the
asymptotic fields. Since the moving column is infinite in extent we can,
without loss of generality, allow the dipoles to be located at the point (rs, 0,0).

5.3.1 Axial Dipole

A dipole having current moment C is located at (rs, 0,0) and oriented

in the z-direction. Thus

6(r'-r) 6(f1) 6(z) 2 . (5.20)

Using this current distribution in (5.2) we find

wu, C 26
E®) - - 0 dhf — ”(h)J(nr)

A (1) —(1) (1) .
+ l:c'en Nenn<h) + Don Monn(h)J Hn (r)rs) | (5.21)

To find the far-field pattern for the dipole we allow r and z, corresponding

to the observation point, to become large. Using large argument approxi-



mation for the Hankel function. The resulting expression for E 1(1_2), after

. : -1/2 .
neglecting terms of higher order than r / is given by

(00)

©
wu . C .
= = _ 0 \nt1/2 [ 2 i(prthz)
El(R) ey dh (2 - éon) (-i) _zrnr e .

- n=20

. (1)
'{1_?;)003 o f [' hr+m 2] [Jn (nrs) * Cean (an)]

n

-inD sinn¢H(1)(r)8 (5.22)
T Yon My ) '

This integral may be evaluated using the saddle-point method as in the pre-

vious section with the results expressed in spherical coordinates, namely

ik R 00
- - e 0 nt+l
El(R) =prC 7R sin 0 (-i) (2 - 6On) .
n=0
' [J (nr)+cC H(l)(n r )]cos n¢6+iD H(l)(n r) sinnjé;g'
n'g s en’'n gs on n' gs
(5.23)
where no = kO sin 6
and kOR >>1

5.3.2 Radial Dipolc

The excitation for this case is described by a current density function

J(R") = i 6(r' - r) 5(f") 6(z) o (5.24)
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Omitting the details, we find that the far-zone ficld is given by

ik R o

wu C 0
-, = 0 e ntl
EI(R) " T k.sind 47R Z(Z - 60n) (-3)
0
n=20
1
8H( )(nors) A
—L -5 lcosn{fh
or

or
S

o7 (nyr.)
) 0's’ n (1) .
._—— — +
{[1 cos 6 rsBean (nors) i Cencose
(1)

n . in (1) n 0s|.
- -_— ) + ———————————————
[r g+ oA H “(nor )+ D cos6 o }sm npp
S s S
(5.25)

5.3.3 Azimuthal Dipole
The last excitation to be considered corresponds to an azimuthal dipole

with a current density function described by

—_—— N A
TR) = 2 6l -x) 6(§) 62§ (5.26)

The asymptotic expression for large values of R is

1kRoo

= = w“() e
E/(R) = - k sind 4WRZ(2 % )(1)

Tink cos6 (1)(n0r ) ink cosd ), A
. . + ——— I :
i r Jn(nors) Bon ars +Con I Hn (”ors) sinn 6

(1)
aJ (n.r) oH "'(n.r ) nk cosf
n 0's n 0's 0 (1) A
[ A D~ H (nors)] cosnpf

or en or
5 S S
(5.

7)

U |
l\')

The expressions for the fields due to short dipoles have been included

for the sake of completeness. Because of the complicated nature of these

expressions, especially when we observe the expressions for A, B,C, and D,
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it was felt that interpretation of thesce results in a physical sense was not
possible. For this reason the ring source was studied as discussed in the
following scction.
0.4 Ring Source

Because of the complexity of the expressions for the dipole ficlds — in

particular the expressions for A , B , C , D are quite complicated —
ey’ ¢y ©Cn  €p
0 0 0 0

the far field pattern produced by a constant current ring source located with
its axis parallel to the cylinder axis was chosen for numerical investigation

since the resulting field expression involves only one term. Thus we choose
a current density function of the form:

T@n =<
Ir

A
§(x' - rs) 6(z") ¢ (5.30)

Substitution of (5.30) into (5.2) gives, after evaluation of the volume integral,

wu . C (1+A ) aJ (nr )
— 0 e0’ —(1) 0'Ms
E\(R) = - — — Meon(h) ——o dn (5.31)
n S
Q0
since ﬁil())n £(0. For R>>1(5.31) becomes
We C A(1+A ) OH.(nr) 8J (nr)
5 (R - 9 et! 0 FoM ihe dhz (5.32)
1T T 2 2 or or o
k. -h S
fo O .

As in the previous sections this integral may be performed using the saddle-
point method. The result is
ik R
+ ) .
o o 0 [1 Aeo(ho)] aJ (kyr_ sind)
EI(R) = - quC 2

TR k sin 6 or ¢
0 s

(5.33)

\

-
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We have written A0 as Aeo(ho) to emphasize its functional dependence on h.

0
The solution for the unknown cocfficients is given in Appendix B. The

factor 1 + A after some simplification can be written in the form

el’
5 BJO('; X )Y e e 3 (6 )BYO(nrO)
n# ar, O M!™s Koo'ty or
L+a =1 0 (5.34)
' oJ (Er,) oH {(nr.)
2 070" (1) 2 0
n K ——'—aro H 0 (nro) - £ uOJO(SrO) ————-arO

where Y denotes the Neumann function. Combining (5.33) and (5.34) and using

the recursion relation for solutions of Bessel's equation

d Zo(x)

o o %) ~ (5.35)

where Z may be a Bessel, Hankel or Neumann function, we obtain

_ C.ikR
El(R) = - iquC ey Jl(kors sin 9) .
SOJO (EOrO) Yl(noro) = KL T I, (SO ro) Y, (noro) }
§0710%0 ot S0t 1 T (g, € g iFoYl(”oro)Jo(Eoro) T YT ‘Eoro)]

(5.36)

where “r = 5— . Equation (5. 36) was programmed on the digital computer
for cylinders and loops of different dimensions in order to see the effect of
the motion on the radiated fields.

Curves of the radiation pattern for various cases are plotted in Figs.
5-4 to 5-7, The effect of thé motion of the column on the radiation pattern

is quite noticeable. However, we cannot offer a simple "physical" explanation



for these caanges.  Like many dilfraction problems of this type, the gco-
metrical theory of optics cannot be used to interpret the wave phenomena. It
does appear that the effective dielectric constant is increased by the motion
as evidenced by the increasing number of lobes present for higher values of
‘3.

The situation is no doubt complicated by the fact that in addition to
velocity cffects, the radiation patterns are affected by resonances within
the column which are themselves affected by the motion. To investigate the
effect of the motion without taking into consideration the resonance effects we
may consider the case of a dipole over a moving half space as was considered
by Pyati (1966). A wave reaching any point in space consists of a wave which
travels direct from the dipole plus a wave reflected from the moving surface,

as shown in Fig. 5-3.

(/)
A Q)
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\
6 /&
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)
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8 18 /&
I
I —_ Yy
Vv

FIG. 5-3: Waves Originating from Dipole over Moving Half-Space.

The x-directed dipole is located on the z-axis and located at height h
above the half space which is mowing in y direction. We consider the far field
at a point in the y-z plane. Pyati has shown that the angle of incidence and
reflection are equal just as inthe stationafy case. Because of this, the far

field may be represented as the sum of the fields from the dipole and its image
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which has a magntiude equal to R, the reflection coefficient, Thus the

field is written as

Eol + R el2k0hCOS 0

(5.37)
The reflection coefficient given by Pyati is a complicated function for arbi-
trary angles of incidence, however, the functional form is greatly simplified
if we restrict oursclves to waves incident in the y=-z plane. Under these
restrictions the reflection cocfficient is given by

cos 6 -F
cos 6+ F (5.38)

. 2 1/2
F= [cos"& g Ml S (1-8 sin 6)2:]

=

182

where the incident wave propagation vector has a component parallel to the
velocity. The case where the incident wave propagates in a direction anti-
parallel to the medium velocity the sign of 8 may be reversed. Further,

. dR | . . C e
since —— is negative, we sce that the reflection coefficient for a forward

dr
traveling wave is greater than for a reverse wave. Consequently, the radia-
tion pattern foxr the dipole over a moving half-space has forward lobes which
are accentuated with respect to those in the reverse direction. This effect
is also evident in the patterns obtained for a half wavelength diameter

column and a half wavelength diameter loop (Fig. 5-4).
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FIG. 5-4a: Radiation Pattern for a Half Wavelength Diameter Column,
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FIG. 5-4c: Radiation Pattern for a Half Wavelength Diameter Column.
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I'IG. 5-4d: Radiation Pattern for a Half Wavelength Diameter Column.,
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CHAPTER VI

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

The class of boundary value problems involving a medium which
moves in a direction parallel to the boundary is discussed using the approp-
riate dyadic Green's functions. The symmetrical properties of these Green's
functions have been investigated. It was found that the direction of the velocity
of the medium must be reversed when source and field position are inter-
changed. These symmetry conditions are used to develop the Rayleigh-Carson
reciprocity theorem.

The mathematical form for the radiation condition has been determined.
The condition is dyadic in nature and reduces to the well known Sommerfeld
condition when the velocity approaches zero.

The theory for the type of boundary value problem discussed has been
applied to the case of a moving cylindrical column. Expressions for plane wave
scattering as well as the radiation fields for dipole sources have been pre-
sented. A constant current loop encircling the column was chosen for further
study. The results were complicated by the resonance effect in the large
diameter columns.

Further investigation could be carried out concerning the behavior of
the large diameter column. A possible approach would be to consider a res-
onant system with a simpler geometry. One possibility would be to consider
a moving dielectric slab with a line source above the slab oriented perpen-
dicular to the direction of motion.

Another approach which might lead to some enlightenment concerning
the radiation pattern is to find the interior fields in the column and study their
behavior. Such a study would necessarily be done numerically since the inte-

gration can no longer be approximated by the saddle-point method.
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APPENDIX A

ORTHOGONAL PROPERTIES OF THE VECTOR
WAVE FFUNCTIONS

The orthogonal relationships between the vector wave functions M and N
have been discussed by scveral authors including Stratton (1941) and Tai (1971).
It is our purpose here to derive the relationships (3.58) through (3.60) which
apply to the functions 1-) and q in an unbounded region and relationships (4.13)
through (4.15) which apply on the interior of a cylindrical waveguide.

We begin by considering the functions p and q in the unbounded region.
These functions are given by (3.43) and (3.44) with k2 replaced by k and

are repeated below for reference.

i . ) A7 ihyz
pgng(hz) = I}; Jn(Sr) (S:g; nfr- P coS n pole (A.1)
_ 1112 aJn(Er) A _ihn _ A

= | —= cos — sin
qgng(h2) ka or SO n¢r+KarJn(€r) cos 29 P

2 ih_z

A 2
+f-éJn(€r) gci)lfngb z]e (A.2)
where

h§=xza2—ak2 .

The integrals to be investigated are of the form

foo w 27
' a.b rdfdrdz

1

where a and b are any of the p and q functions. We observe immediately
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that because of the orthogonality properties of the trigonometric functions that

all integrals with integrands of the form pe *Py 4 .qo orp - qe are zero.

We first investigate the integral
c-m.;

ewj P, E(h) p 'gt(-h'z) dv

o 27

) ‘g’r j j[ni J (Sr)J (& r)cos n ¢ cos 0'f +
r

- (0]

+ sin sin

or or

aJn(gr) aJri‘(glr) cosn ¢ cos n,¢:] (hz"h"?‘) rd¢dZdr' (A.3)

We comment here that our notation implies that we are considering the inte-

grands I-)e . 5e or 1-)0 . 1-)0 . The integration on { and z may be performed
immediately to give

f£rr

- 2
9“‘ (h,) - (-h)) av =277 (1+6 )é(hs-hl)s | .
jgjpgnghz Po gt 2 0n’ 22" i

o 2 97 (Er) 0J (')
. [—2‘ Jn('é’r) Jn(E'r) + oy Py rdr (A.4)
0

Integration by parts of the second term together with the application of Bessel's

equation gives for the r integral

§ ¢ J (Er) J_(§'r) rdr = £ 6(E - &Y
n n



Thus the result is
P r

-

i -
ER . -h'
jé}? pSHE(hz) pS n'E'( ) &V

-~ 2 ! ' 5
=278 (146, ) 6(h,-hy) AE-E0 6, (A.5)

The normalization factor for the Zl functions is found in similar fashion, After

integration on § and z, we have

2
27 (1+¢ ) &(h,-hl)6 |
ﬁa Oy
j oné on's KK'a
(00)

ff'"z 23 (Ex) 87 (E'r) hz 02 -
" d [h‘z o ar |2 °F J (En) J (€'7) | rar
0

(A.6)

Integration by parts of the first term and the use of Bessel's equation gives

for the r integral

(0 0]
2
2 .2 g : o2, 2 ,
B, § 1+a}:2— jJn(Er)Jn(Er)rdr—E(h2+E)6(%-5) :
2
0

Hence the normalization factor is

_ 2,2
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We will consider the case where p is cven and ¢ odd, as the reverse case

is very similar. The integral is, after r and { integration

fr

(b - q 1 = 92 1

jjjpens(h2) ' qon'S'(—h2) dv = 2z <S(112'-}12) 6nn' K'a
o

aJn(E'r)_ BJn(Sr)
T (1)~ —- Jn(’g"r)] dr

inh
2
K'a

@
= 2n% slhy-h) 6 (5.0 3 &n] =0 (A.8)
0

In the case where p and q are the vector wave functions for the closed
region, the functions f) and El as noted in Chapter V have different discrete
eigenvalues as dictated by the boundary conditions. The integration in the r
direction must be carried out between 0 and ro, the inside diameter of the
waveguide. Since the P and z integrations remain the same, we need only
consider the integration on r.

The r integral in (A.4) thus has the form

fr 0 2 83 (n_1) 8 (n 1) |
l [;_2- Jn(nnmr) Jn (nnm'r)+ or or rdr
0

Integration by parts then gives

r

0
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0

2
r 2
0 2
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The integration is discussed in detail by Tai (1971, pp.85-88). The normal-

ization of f) is then

i
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For the bounded case, the r integration in (A.6) becomes

£
hzg

This can be integrated by parts to give
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Jn(Snmr) Jn(Enm,r}rdr

(A.11)



In (A, 8) after replacing the infinite upper limit by r, we sec that the

0
integral is proportional to the factor

o

n [Jn(nmnro) Jn(g‘nm,ro)j] =0
0

which proves that p and q are orthogonal in the waveguide.

(A.12)



APPENDIX B
COEFFICIENTS OF THE DYADIC GREEN'S FUNCTIONS

In this scction, we present the results of the solution to equations

(3.46 and (3.47). We have solved for the coefficients Ae , B , C() , and
on ot of

D since these coefficients appear in the expressions for the exterior flelds
Sn
due to a source outside the moving column. The results are

s =Ll L2 OH, (nx,) 5 er) -1 2 H ¢ r)aJn(gro)
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and we have let Hn indicate Hﬁll).



