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ABSTRACT

TRANSIENT RADIATION FROM RESISTIVELY LOADED TRANSMISSION
LINES AND THIN BICONICAL ANTENNAS

by
Harold Edwin Foster

Co-Chairmen: Chen-To Tai, Ralph E. Hiatt

This dissertation presents a theoretical analysis of the radiation and
reception of tfa{oéient electromagnetic signals by resistively loaded transe~
mission lines and thin biconical antennas. The resistively loaded transmission
line analysis, in addition to providing an advance in its own r1ght supplies a
basis for the study of transients in antennas. Transmission 11ne theory and
mechanisms apply to the modeling of a variety of antennas and to the detailed
understanding of their performance,

The transient analysis is attacked by the Fourier transform chproach

to make use of established concepts such as that of impedance. Invostlgatlogs
are performed first in the frequency domain and then transformed into the
time domain for inspection of transient results. The Fast Fourier Transform
technique o;? truncating series of sinusoids provides some economy where
numerical computations are needed for the transformations.

General transmission line equations are developed to account for
time-dependent and position-dependent transmission line parameters. These
equations are then specialized to accommodate the case under investigation
which is that of an open-circuited transmission line loaded with series resis-
tance. Several functional distributions of resistance along the transmission
line are considered. For a resistive loading that varies linearly with position
along the line, a closed form expression for the resulting current on the

lme 1s found in terms of A1ry functlons w1th complex arguments. For

resmtance d1str1but1ons other than linear, the transmission line equation does



not in general possess a closed form functional solution. These problems are
solved by a numerical analysis which is implemented digitally on a computer.

An examination is made of the control which the different resistance
distributions exert over the transmission line's input impedance, current dis-
tribution, radiated transient waveform and received transient waveform. It
is shown that an inverse functional form of resistance loading is optimum,
based on criteria of maximizing current on the transmission line while mini-
mizing reflections.

Discretely lumped resistance loadings as well as continuous resistance
distributions are analyzed. Results of the discrete and continuous analyses
are in excellent agreement when the discrete resistances are sufficiently
close together. -

The concept of a position-dependent characteristic impedance is developed
for the resistively loaded transmission line. In addition to varying with position
along the line, thié quantity also differs in the forward and backward directions.
Such characteristic impedances are formulated in general and for the several
resistance loading functions that are treated in this dissertation.

An approximate step function voltage source is considered to energize
the loaded transmission lines. The resulting current waveforms at positions
along the line and the resulting transient radiated fields are computed. The
different shapes of the transient waveforms that are radiated in different
directions from the loaded transmission line are shown. The radiation patterns
which change shape with time are also computed and shown. The maximum
amplitude of radiation, over all time, is shown to be in an off—broadéide %
direction that is consistent with a predomingg'qy traveling wave. This occurs
for the optimally loaded transmission line in which reflected waves are mini-
mized.

Reception of transient signals by a resistively loaded transmission line
is formulated in terms of the vector effective height function. Transient radia-

tion coupling between different loaded transmission lines is also formulated



in this way.

The conical transmission line fields associated with a thin biconical
antenna are used in an analysis of the transient behavior of this antenna. De-
termination of transient currents on the antenna takes account of internal
complementary fields. Radiation of transient waveforms is analyzed. Tran-

sient reception is analyzed via the vector effective height function of the

antenna,
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Chapter 1 '\
INTRODUCTION

The research undertaken in this dissertation is intended to add to the
knowledge about transmission, radiation and reception of transient electro-
magnetic signals by basic types of wave guiding and launching structures.
Transmission lines are emphasized due to their direct applicability to the
understanding and physical modeling of transient waves on basic types of
antennas. Dipoles, loops, spirals, helices, surface wave antennas and vari-
ous endfire antennas are included among the types that employ transmission
line concepts in their transient analyses.

Prior work on the subject of transient phenomena associated with trans-
mission lines has concentrated on lines which have a uniform resistance load-
ingl’ 2035000 18. Even in the uniform resistance case, solutions have been
primarily in the form of small loss approximations or for the distortionless
constraint R = g

L C
study gives exact closed form analytic solutions for uniform series resistance

on the usual transmission line parameters. The present

loading of any magnitude and for resistance loading which varies linearly with
distance along the transmission line. For nonlinear distributions of resistance,
numerical solution of the general transmission line equation is possible.

In the past several years, some attention has been given to the related

19, 20, 21,....,33

problem of resistively loaded linear antennas To date,

the number of different resistance distributions which has been reported is
small. The present study, which includes several nonlinear functional distri-
butions of resistance along transmission lines, may be useful in providing a

model and representative data for the linear antenna problem. In particular,

the results of the present transmission linéwirnrvéstigation may be a,ppliéable to
the optimization of resistance loading functions to produce a desired transient

antenna current and thereby a desired radiated or received transient waveform.

The adequacy of modeling a linear antenna by a transmission line should be




improved by the presence of resistive loading in both. This is due to the re-
duction in the influence of terminal end effects by the attenuation of waves on the

structures.
A thin biconical antenna can be treated from a conical transmission line
point of view and also can be considered as an approximation to a linear antenna.

4,35, ....,4
Prior work on the biconical antenna has been extensive3 »35 »48

although
concentrated in the frequency domain. A transient analysis of biconical antennas
has been conducted49 but only for wide angle antennas. A wide angle biconical
antenna is not amenable to accurate field matching as is a thin biconical antenna.
Published analyses have suffered from not including interior complementary
modes in matching fields at the hypothetical spherical surface which bounds the
antenna. This caused some uncertainties in the determination of an effective
terminating admittance which in turn was responsible for uncertainties in the
antenna current and thereby in the radiated field. This also led to limitations

in the antenna effective height function which describes the antenna's receiving
properties. By dealing with a biconical antenna of small cone angle, the present
dissertation is able to use an exact closed expression for the terminating ad-
mittance and the quantities that it effects.

The present investigation has been stimulated by current interest in
electromagnetic pulse problems. The electromagnetic pulse radiated from a
thermonuclear explosion can produce harmful transient field intensities or un-
desirable transient signals in structures or equipment upon which the radiation
is incident. Antennas which radiate transient signals of the same shape as this
electromagnetic pulse are needed for performing tests on the vulnerability of
equipment and the effectiveness of shields. Resistively loaded antennas, of
basic types which may be modeled as resistively loaded transmission lines,
are expected to be used for radiating simulated electromagnetic pulses. The
pulse shape can be controlled by selection of appropriate resistance loading
functions.

The formulation techniques employed in this dissertation include the

dyadic Green's function formulation50 of radiated field in terms of surface



current density. Another is the vector effective height function59 which is

used to express the receiving and radiation coupling properties of the trans-
mission lines and biconical antennas. These techniques afford a measure of
generality and conciseness to the treatment. Fast Fourier Transform tech-
niques are used for economy in transforming quantities between the time and

frequency domains.



Chapter I
RESISTIVELY LOADED TRANSMISSION LINES

2.1 Transmission Line Equations

~ The differential equations relating voltage v and current i ona trans-
mission line whose parameters R, G, L, C are position-dependent and time-

dependent are

%‘—Q=~R(z,t)i(z,t)—L(z,t)-E%‘t—) , (2.1)
E’i—a‘?t—)=-G(Z,t)v(z,t)-c<z,t)§"—a‘t5~Q , (2.2)

where =z =the linear dimension along the transmission line,
t = time,
R (z,t) = series resistance per unit length,
G (z,t) = shunt conductance per unit length,
L (z,t) = series inductance per unit length,

C (z,t) = shunt capacitance per unit length.

Performing the operations

9(2.1) 9 (2.2)
o ﬂ(z.z)ﬂ-————\8t L

9(2.2) 9(2.1
TR N @.1) ﬂ———lat

yields the transmission line equations



2
9 v(z,t) - L(z,1) Clz,8) 9 viz,t)
2 2
0z ot

+|R (z,t) C(z,t) + G(z,t) L (z,t) + L(z,t) ot

] aC(z,t) | av (z,t)
i ot

e

+|R (z,t) G (z, t)+L( t)?-(i(-z"'g]v(z,t)
L B - - -

BR(z,t) i (z,t) 9 L(z,t) 81(zt)
9z Y ot ’

(2.3)

2. 2.
971 (22,1:)= L (z,1) C (z,t) 971 (zz,t)
0z ot

+{R (z,t) C(z,t) + G (z,t) L (z,t) + C (z,t)
s ot dt

+|R(z,8) G (z,8) + C (z, t)—a—B-(—z'i)] i (z,1)

[ | 5L (z,t)] 91 (z, 1)

ot
9 G(z,t) 9C(z,t) dviz,t)
T ¥ vizt) -—5, 5t . (2.4)

A special case of these general transmission line equations which is used in
the present research embodies only constant inductance per unit length L
and capacitance pe;r unit length C as well as a resistance per unit leng'th

R (z) which varies with position along the line but is time-invariant, The
arrangement of a balanced two-wire transmission line is sketched in Fig.2-1.

Under these special conditions, the transmission line equations reduce to

8v(z t) Bv(z t) ov (z,t) dR(z) .
SR 10 o+ R (2) € 5, iz, (2.5)
oz ot
8% (z,8) L 5% (2, g () ¢ 2za) 2.6
2 2 z ot y y

0z ot



Both v and i appear in the first of these transmission line equations, making
it less convenient to use than the second equation. Due to the absence of non-
uniform shunt conductance or‘capaéitahhc?a in the transmission line considered
here, the second transmission line equation contains only i. An additional
advantage to the second equation is that its solution directly gives i which
will be used in determining the radiation field of the transmission line by the

dyadic Green's function formulationsg.

A boundary condition to be imposed on on (2, 6) is
i(h, t) =0, (2.7

where h is the length of the transmission line. This condition at the terminal
end of the line z = h describes an open-circuited transmission line which is

chosen for study because of its applicability to the modeling of a linear antenna.



The Fourier transform method is applied to the problem of solving

jwt

(2.5) and (2.6) for the transient voltage and current. With an e dependence
(2.5) and (2.6) are transformed to
8°V(z,w) 2 ] dR (z)
— = |k, -JR(z) C |V (z,uw) - I(z,w), (2.8)
2 0 dz
oz -
821 (z,w) 2 )
——===1k -jR(z) C| I(z,w) , (2.9)
2 0
0z J
where W = the Fourier transform radian frequency variable,
kO = w./L Cc ,
'V = voltage in the frequency domain,
I = current in the frequency domain.
The boundary condition is
I(h,w)=0. (2.10)

I (z,w) will be examined for various resistance distributions R (z).

2.2 Uniform Resistance Distribution

The transmission line equation (2,9) subject to (2.10) has a conven-
tional exponential form of solution for the current I (z,w) in the case where
R is constant, that is, where the resistance loading is uniformly distributed

along the line.

I(z,w) 211_(_011%)@ [e_%w)z— T'(w) ey(w)z] ) (2.11)



where arctan wli arctan R R \2 1/4
Yw) =| sin\——— |+ j cos wlL 1 +(—> k
2 — w 0

is a complex propagation factor separated into real and imaginary parts for

convenient reference,

. = 1
|

3215 ) Tk | o
Tw) =e - is a complex reflection c;oeffiﬁcf:ient.

—

For R <<wL, w) is approximately j kO the propagation factor of a loss-
less transmission line, For R>>w L, < (w) is approximately (—‘%3-9- )1/2
(1 +j) which is recognized as the propagation factor of a very lossy trans-
mission line. Figure 2-2 shows the transition of v (w) between the low loss
and high loss cases. More interesting results are obtained from non-uniform

resistance loading distributions.

2.3 Linear Resistance Distribution

A type of resistance distribution R (z) for which the transmission line
'equation (2.9) possesses a solution in closed functional form is a function

which varies linearly along the line:

i

R(z)=R_+r, 2z, (2.12)

0 1

where R_ and r. are real coefficients whose units are, respectively,

0 1
resistance resistance
length and 2
(length)

The key step in solving (2.9) for I(z,w) with this resistance distribu-
tion is the introduction of the variable
13

r(z,t«J)J—‘i’—C (R.+r
r1 0

lz+ij)_, (2.13)



Imaginary Part of

"
k

100

1 2
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0

FIG. 2-2: COMPLEX PROPAGATION FACTOR v
FOR UNIFORM RESISTANCE-LOADED
TRANSMISSION LINE.

.
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which reduces (2.9) to the standard form of Stokes' differential equation,

namely,

2
d I(g) =§I(§) . (2.14)
dg¢

The solution of (2, 14) may be expressed in terms of Airy functions with com-

61
plex arguments  as

I(€)=aAi()+bBi(f) . (2.15)

The coefficients a and b are determined by the boundary conditions imposed

on the current at the terminals of the transmission line.

1{¢ (0,0
. , . =, (2.16)
ai feow)] -1 [t 0,u) g; g:: 3
. 1 [¢ (0,w)]

] _ . (2.17)
) : Bi[¢(huwl
B i [§ (O.w)] -Ad [§ (Oa“’)] A i[¢ (h,w)

Calculation of the current I(z,w) thus requires only stipulation of the

transmission line parameters R L, C and access to a table of Airy

r
01
functions of complex argument . Alternatives to the use of the tabulated

functions are numerical computations of the Airy functions from their integral

representations53
_ ) (30)113 3 1/3
Ai(f = Y cos [cu + (3e) §u] du, (2.18)
0
B i(¢) = (30)1/3-[00 {e-cu3+(30)1/3§u+ sin [cu3+ (30)1é§|;;]}du,
g (2719)

0
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or from their relation to Bessel functions of fiactional order ﬁ

12 3 3
AL = [11 (%tlz)—z (3¢ /2)} , (2.20)
= -5 s
1 3 3
Bi(D)=(3 )/2[ 2ePyer (2 /2>], (2.21)
-1 /s
. .93
or from an ascending series ™ -
(0 0]
Ai<§>=z (%—) [Al(ou—) +A1(0) (3 S—SIJ
n
n=0 (2.22)
= n §3n
Bi(§)=ZB o [Bl(o)(-) Bi (0) (3) 3+1]
n
n=0 (2.23)

where c¢ is an arbitrary constant,

1
(c +’3') =1,
0

(c+3) = —1-(3¢+1) (3c+4)--—--(3c+3n-2) ,
3 3n

and the primes denote differentiation.

2.4 Nonlinear Resistance Distributions

Except for the uniform and linear resistance distributions, the trans-
mission line equation (2.9) does not in general possess a closed form function-
al solution for the current I(z,w). A numerical solution is required when

the resistance distribution functlbn R (z) is a nonhnear form To make the

problem amenable to numerical solution, the second order differential equa~

tion with a variable complex coefficient (2.9) is reduced to a set of four
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simultaneous first order equations with real coefficients by the substitutions

1(z,w) = Il(z,w) +j Iz(z,w),

9 Il(z,w)

glzw) =—5,—,
9 I2 (z,w)
I, (z,w) = oz

The resulting set of equations in matrix notation is

T (z,0) = A (z,0) T (z,0) (2. 24)

9z —11(2’ wﬂ
Iz(z,w)

here T' = T(zu) -
where T' (z,w) | ) (z,) 13(z,w)

I(z,w)
0z ;4(

r'- -
0 0 1 0
= 0 0 0 1
A (z,w) = B
[-koz -wCR(z) 0 0

)

wCR(z) -k 0 0

- J

The boundary conditions become

I(hw) =R (2.25)

wi
Qll

1(0,w)+
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—
1 0 0 0'-1
- |0 1 0 0
where B = 0 0 0 0 ,
LO 0 0 0
)
~ ~
0 0 0 0
= 0
G- 0 0 0 ,
1 0 0 0
0 1 0 0
_ -
— A
1(0,w)
_ 0
R= 0
0
— J

This reduced problem can be solved numerically even when the resistance
distribution R (z) has a general functional form or is specified by quantized
data.

In the numerical solution, the current amplitude |I (z)l and phase
¥ (z) are sampled at discrete values of z. Values of z which are separ-
ated by increments d that are no larger than 512- of a free space wave-
length AO are used to produce accurate solutions with reasonable computa-
tional economy. For computational economy, the current is sampled at

equidistant intervals at each frequency. For each frequency in the input

waveform spectrum, the computer program provides a g:l_i_fférent increment

d=—— (2.26)

such that

N-1=4£ i, g. t. <T> , (2.27)
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where h = the transmission line length,

N = the number of sampling positions.

The integer index n in the range 1<n <N identifies the location along the
transmission line's linear dimension where 0 <z <h. Thus,

jv_w)

I (nd-d,w) = |In(w) e . (2.28)

A subroutine of the computer program makes an additional provision of
multiply subdividing d in regions where the current varies rapidly so that
the accuracy to which the current is computed is everywhere better than a
selectable parameter which is set at 1 percent for computations that are per-
formed here. Other parameters that are readily Yg?iiab_lg in the computer pro-
gram are : a'description of the Fourier frequency spectrum of the source
waveform, h, R (z) and the characteristic impedance ZO of the associated
unloaded transmission line.

Without loss of generality, the input boundary condition is normalized
to

I(0,w)=1+30 (2.29)
in the program. This is done for convenience to allow the computed and stored
complex I(z,w) to be weighted subsequently by the complex Fourier coefficients
of various input current waveforms.

The computer program employs the numerical method of adjoint
equations which generates, successively, adjoint initial value problems from
the given set of boundary value problems. Solutions to the resulting simultan-
eous initial value problems are then obtained by Gauss elimination and
Hamming's predictor-corrector method. The program provides for the com-
putation e;nds—foﬁgé in a file of I(z,w) and -Qla—(zz'ﬂ . In addition, these

data are provided on computer printed output in tabular and graphical forms.

A detailed listing of the program appears in Appendix A.
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2.5 Transmission Line Currents

Markedly different current distributions I (z,w) are produced by the
uniform, linear and nonlinear resistance loading functions R (z). To illustrate,
the program of Appendix A has computed the monochromatic complex current
distributions along transmission lines which are loaded by the following re-

sistance distributions:

UNIFORM 22 g (2.30a)
z, 0
+
LOGARITHMIC RZ(Z) = ¢, 1—"5(2—;) , (2.30b)
0 log 1'§
LINEAR Rlz) .o 22 (2. 30¢c)
zZ, 08
INVERSE Rz) o 1 (L__qy . (2.30d)
Z0 08 '1-2z
Z
EXPONENTIAL 1;(2) = ¢, b-1 (2.30e)
0 pdo -1
IMPULSE R _g 5(z-8), (2.30f)
Z, 0 9

where w6 (z - g ) is the Dirac delta function and b is an exponential base

which may be varied as a parameter. C0 is a parameter which establishes

the magnitude of the resistance distribution. The resistance distributions are

normalized to. ,Zo = F , the characteristic impedance of a transmission line

without loading. The above resistance loading functions are adjusted such

that they all equal zero at Z = 0 and rise ﬁbtgnicgliy to the value CO’ at a

distance of 1 free-space wavelength from the source end of the line., In

these examples, the free-space wavelength is g meter and the transmission

line length is 1 meter. These resistance distributions are graphed in Fig. 2-3.
Figures 2-4 through 2-15 are plo‘ﬁhof the amplitudes III”;EE phases ¢

of the currents as functions of position along transmission lines which are loaded
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FIG. 2-4: AMPLITUDE OF CURRENT ALONG TRANS-
MISSION LINE PRODUCED BY CONTINUOUS
UNIFORM RESISTANCE LOADING.
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FIG. 2-6: AMPLITUDE OF CURRENT ALONG TRANS-
MISSION LINE PRODUCED BY CONTINUOUS
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1
5

Relative Phase of Current y

-27

20

R(z) _ o Log (z+1)

0 Log 1-3

\ ————C,2.7

] | 1 \l 1

L2 .4 .6 .8 1.0
Transmission Line Position z
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RESISTANCE LOADING.
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FIG. 2-8: AMPLITUDE OF CURRENT ALONG TRANS-
MISSION LINE PRODUCED BY CONTINUOUS
LINEAR RESISTANCE LOADING.
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FIG. 2-10: AMPLITUDE OF CURRENT ALONG TRANS-
MISSION LINE PRODUCED BY CONTINUOUS
INVERSE RESISTANCE LOADING.
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RESISTANCE LOADING.
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by the resistance distributions (2.30). For the sake of visibility in these
plots, the maximum values of |I| have been normalized to unity and the
range of ¥ has been translatedto 1 0 >¢ >-2 7.

Each figure shows the effects of varying the magnitudes of the resis-

tive loadings by the parameter C The small resistive loadings attenuate

traveling current waves only sm;)ll amounts so that the transmission line
terminations reflect appreciable current waves. The resulting current dis-
tributions are observed to contain appreciable standing wave components. In
an extreme case of CO = 0, a pure standing wave would result. The current
amplitude would be a sinusoidal function of z and the phase would be constant.
In the cases of large CO’ the large resistive loadings attenuate traveling
current waves to the extent that no appreciable current waves reach the ends
of the transmission lines to be reflected. In these cases, the current distri-
butions are seen to be essentially damped we}mg waves. With extremely
large CO' ]Il would be an exponentially decreasing curve and ¥ would be

a linear curve. The values of CO for which curves are presented here are
intermediate values which reveal the details of the transition between the ex-
treme small and large vm\a}m jof each functional form of resistance distri-

bution.

resistance distribution, based on »'Vc_:;jjferia which can be postulated for the

resulting complex current distribution., Where it is desired to ng}g;’;mize.raa;é:\\\

tion from the transmission line, optimization criteria would be to maximize

h
f |I| dz and simultaneously to require a predominently traveling wave. The
0 -

latter requirement may be interpreted as requiring that the ¥ versus z
variation be linear to within some established tolerance, for example + ;T—G .
These criteria can be applied to the transmission line which is used as an

illustration here. Examination of the curves in Figs. 2-4 through 2-15 and
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intermediate curves which have been omitted for clarity shows the following

optimum values of the magnitude coefficient C

o
Functional Form of Continuous Optimum Magnitude
Resistance Distribution Coefficient C 0
UNIFORM 3.6
LOGARITHMIC 8.3
LINEAR 7.2
INVERSE 18.0
EXPONENTIAL 18.0
IMPULSE 1.4

TABLE 2-1: OPTIMUM MAGNITUDE COEFFICIENTS
FOR VARIOUS CONTINUOUS RESISTANCE
DISTRIBUTIONS.

The ]I|and ¥ plots resulting from the optimum C_ in each of the Figs. 2-4

0
through 2-15 have been drawn as solid curves.
The best of the individually optimized resistance distribution functions

can now be selected. Applying the same optimization criteria to the sequence

of Figs. 2-4 through 2-15 leads to the Table 2-2 list of resistance loading

functions in order of decreasing effectiveness.
Thus the best of all the resistance loading functions which have been
examined here is the inverse function

(_iz" 1) ohms/meter (2.31)

9
R(z) =572, (7

and the resulting opﬁﬁ complex current distribution is that which appears

as the solid curves in Figs. 2-10 and 2-11.
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1 1 1
INVERSE Rz _15dy¢ -1)
Z 8 '1-2
0
( 38.4%-1 |
EXPONENTIAL Rz 2) .18 9 |
0 38,4771 |
| LINEAR + Rl o, 9z ‘
| z 8
0 |
| |
+1 |
| LOGARITHMIC RZ(Z) = 8.3 ﬁg—(—%—l l
0 :Iog 15 |
|
UNIFORM R(z) _54 |
Z
0 |
IMPULSE Rlz) _y 4 5(:-8)
Z, , !
e e e _— 17_‘

- r

TABLE 2-2: PREFERENTIAL ORDER OF VARIOUS CON-
TINUOUS RESISTANCE DISTRIBUTIONS.

The exponential form of resistance distribution,

is nearly as effective as the inverse form. Figure 2-3 shows graphically
how little qual‘l%ititaiii/é difference exists between the two resistance dis-
tributions. The two resulting current distributions are similar as has been
observed in Figs. 2-10 through 2-13. Two parameters, the magnitude
coefficient CO and the exponential base b, have been optimized for the
exponential distribution. Optimization of CO to the value CO =18.0 re-
sulted from data which includes that in Figs. 2-12 and 2-13. The optimum

value of b = 38.4 was determined similarly by computing sets ‘gE kIl and y

curves with C0 =18 and b variable.
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Uniform resistance loading, which is most commonly encountered
due to its analytic tractability, is seen to be relatively poor in its ability to
produce a current distribution that will enhance radiation.

The impulse resistance loading is perhaps the simplest to fabricate
as it consists of a single lumped resistor in an otherwise lossless trans-
mission line. Its performance is the worst of all the loading functions that
have been considered here.

Properties of resistance distributions which are responsible for pro-
ducing the desirable features in a current distribution are evident. High
resistance near the end of the transmission line is needed to reduce the re-
flected current wave. Low resistance loading over the rest of the line is
necessary to retain a large amplitude of the outward E'gveling ' éurrent wave.
The proper smooth transition between low and high resistance regions is

needed to reduce reflections from the transition.

2.6 Transmission Line Impedances

The impedance Z (z) at any position z along a loaded transmission
line can be computed readily in terms of the current and the spatial derivative

of current at that position. The transmission line relation

9 1I(z)
0z

=-jwCV(z)

is employed in the expression for this impedance

9 1(z)
Z (z) ’ oz (2.32)
CI(z) )
. 9 I(z)
The computer program of Appendix A solves (2.9) for both I(z) and 52
The various resistance distribution functions produce quite different
transmission line impedances Z (z). Smith chart plots of Z (z) produced

Z
by each of the optimized resistance loadings of Table 2-2 appeaor in Figs. 2-16
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through 2-21. These plots verify the expectation that the best input impedance
match and the most direct transition from an open circuit termination to a well-
matched impedance is produced by the inverse resistance loading (2.31). The
good impedance match along the transmission line that has the inverse loading

allows the maximum value of f h III dz and essentially an outward travel‘fné 7
0 5

current wave with minimum net reflections. This is the same conclusion that
had been reached from another point of view: that of current distributed along
the transmission line. In fact, the impedance plots show that the relative
effectiveness of the various resistance loading functions in producing matched
impedances along the transmission line is the same as was indicated in Table
2-2,

At the input terminals of the transmission line, the reflection coefficient

related to ” Z is

0
wC Z,1(0) - j —————8;;0)

I - 51(0) : (2.33)
©C 2y 1(0) +j =5 —

Minimization of input reflection coefficient can be used as a criterion for selec-
ting a value of C 0 for each resistance loading function and for selecting the
best function. Figure 2-22 is a display of data computed for these purposes.

The same set of optimum values of C 0 (Table 2-1) and the same relative

ranking of the loading functions (Table 2-2) are found as in the case of optimi-
zation based on current distribution considerations. The most effective

resistance distribution function is the inverse form (2.31)

2.7 Position-Dependent Characteristic Impedance

In the frequency domain, a transmission line loaded with position-de-

pendent resistance may be considered to possess a characteristic impedance

(+)

which is also position dependent. The characteristic impedance Zo (z)

encountered by waves traveling away from the source differs from the N



{los

34

(AEEY
T

e
-
A

).LNSNOdINOD IDNVLSISIH 1]
—t

(74
H

o
(%) TN3R0aWE> 3oNvioNANGS (
popnoanos 3 b

0.2
)

70

N

1

26

\&

Normalized Impedance

FIG. 2-16; IMPEDANCES ALONG TRANSMISSION LINE WITH
UNIFORM CONTINUOUS RESISTANCE LOADING

—RZ(Z) = 3.6.
] |



35

.

LN3NOJWOD 2DONVLISISIY
i

/S
Lr4

T)A. :
Sl T1T 1o

0D IDNVLDONANOD HO'(
re N

0.9

<l )IﬁEN
N

0.2,
0.4
0

!
pry
o,

9.4,
€,

Q6
@,

\A

20

7(z)
ZO

Normalized Impedance

FIG. 2-17: IMPEDANCES ALONG TRANSMISSION LINE WITH
LOGARITHMIC CONTINUOUS RESISTANCE LOAD-
ING R(z)_ g 5 log (z+1)
> : :

0 log lg



36

g .
S
x NDyC
en s \Ve\' t Tive € e
o ] Acr,
0 ] due,
%s v"‘p cc‘m Z
< i D~€ '~
o o } ) X
& p BN
S @ /N
oy 3] 3¢
3 z ] T
\o’ X a ‘70,) \
D\
0
'\){? 2 A
-?k 4 (2
& olas A
& 2 %
d T 0,
s Z VIR
o é :F‘ 1(;\ o \
7/ éi'“ L < :
Y \3
& 3 -
x, o] Z 1
& 2]os 2
22 . g o
C
g g &%
£ 3 |osl L
z
& 8\,
m
0g Y
1%} (2}
o fo.
2
Z 10.8
0.9 \ E
J
0.9
1.0
J)
o
y ] . ¥
N X > 12 3
©,
@} d \;
o )
$ 2 14 & %
\.2 o
oo Xo
S 16
18
\‘h
X ||
A ‘6 -
A\
\
\\
\ 0
W2 |
\ 4.0
h X
K
]
>
», \o
20 s
¢
(> O

7{z)

ZO

FIG. 2-18: IMPEDANCES ALONG TRANSMISSION LINE WITH
LINEAR CONTINUOQUS RESISTANCE LOADING

R(z)_,,92
ZO 7.2 3 -

Normalized Impedance



37

[=)

\
|

[
O,
£

El
SEL.EuNREEN

1

LNINOJIWOD IONVYLSISIY [T ]

)i

4l

(]

TAL4
o

0,
5-) TR3N0AWG> 3ONVLINANGS 10 '
N A i
(o

108

Jog]

o

0.9

©
0

0.2
0.4,
O.6
|
q-O
O
k3
~
0.9,
&
350
v'O

Lo

20, \ <

Z{z)
ZO

Normalized Impedance

FIG. 2-19: IMPEDANCES ALONG TRANSMISSION LINE WITH
INVERSE CONTINUOUS RESISTANCE LOADING

R(z) 18 1

ZO 8§ '1-2z



38

Q'
-
)
O
[=

—tt

)ININOUWOD 2ONVLSISIY H
. TVt
1

o
)TRINGINGD 3oNwLONaNGS ¥o (F
st 115
H a

o
0

1
o
R D

1.0

0.2
Q.4
o
v O
£3
|
~

2,

\4

&

20

O,

Normalized Impedance

NDucylv‘_
Ac,
ey X
Cop
QY
%
»
17/’°‘9
S
Je,
2
Lﬁ‘ +)
T,
&,
<,
5,
% o
«
o
o,
3
’?\ ol
1A
2
%
—
0.9
1
°
N
o/ °
© »
9 o
\e
% s L2
A
L
__.1»__1 Le |
e
)
»
)
S
2
z(
z(z)

%

FIG. 2-20: IMPEDANCES ALONG TRANSMISSION LINE WITH
EXPONENTIAL CONTINUOUS RESISTANCE LOADING

R(z)_ g 38.4%-1

v/ 8/9_

0 38.4 1



39

0 ~
Bl ]
& NDUC
‘\i"ﬂ K“\ + 1 Tll/;
"
(<) T
A
Q <M
v
650 »
m
<‘4 K T
3 S HH
& 2]
& 2"9—‘
S\ D
A n
2 g
& 3
& H
q [
K %]
& =N
. s
v L
v
5 n]
o & 2 1o !
Y g
2 a4
o 2 los
J 6
08 I n
L o
o lo.
2-
v
8 2 Tos
Z lo
3 1
b X
B
*
) o
) L
. () 4 v
©} ™ > 2 o,
© & \)
P 3 Y
o
2 14
1.2 g
é
TN 16
1 18
A\ )
\
\
\\,s
\ 0
o
4.0
X
5
]
»
S >
20 %
e
O,

Normalized Impedance z
0
FIG. 2-21;: IMPEDANCES ALONG TRANSMISSION LINE WITH

IMPULSE CONTINUOUS RESISTANCE LOADING

R(z)_ 8
Z -1.46(z—-9-).

0



D
e
.
9
O
o
Y
)]
3

g .1
(o]
.5
(é]
(O]
tra]
(]
~
ey
=

Q, .05
=}
Qud
o
2
=1
=
[«
B
(]
p=

.01

. 005

40

p—

e

IMPULSE

N UNIFORM

-
i LOGARITHMIC
B LINEAR
-
EXPONENTIAL

- INVERSE

] ] | T I A e 1 |
1 4 10 40

Magnitude Coefficient C 0

FIG. 2-22: INPUT REFLECTION COEFFICIENTS PRODUCED BY
VARIOUS CONTINUOUS RESISTANCE DISTRIBUTIONS.



41

(-)
C
source. To obtain expressions for these quantities, an invariant imbedding

characteristic impedance Z_ "(z) seen by waves ffavql_irig toward the
approach is applied. The analysis avoids reflections from the ends of the
transmission line by considering a line that is infinitely long or terminated
in reflection-less impedances. The transmission line is characterized by
the parameters R (z), L, C as was shown in Fig. 2-1,

The impedances, looking away from the source end of the line, at two

positions separated by the infinitesimal distance| d are

2z - ZS-)(Z) ) (2.34)
2 q) = ZS-)(Z) _ zf:’)'(z) d, (2.35)

where the prime indicates differentiation of a function with respect to its
argument. Relating (2.34) and (2.35) through the parameters of the trans-

mission line cell yields

Z(:)(z) _ zf:’) (2)d=R(z)d+jwld + L . (2.36)

1
jWCd +————
Z(+) (2)

(4]

Equation (2.36) can be rearranged algebraically, including division by d,

to the form

2 Z(+)'(Z)
(+>(Z)] (e Yd-wLe 207 o

G [zc —a al- zf:"(z)=jwcmz) zg'
Zc z)

+R(z)+jwL. (2.3

Letting d —e 0 in (2,37) leads to an expression for the position-dependent

characteristic impedance
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L R()+ 20 (2)
)( ) = 1-j oL . (2.38)

If Z(:)l(z) = - R (z), then |R (z) + Z?)'(z)l <<wL and

(+)
z(+)(z)m\/? [1 - Rl 7, (Z)] (2.39)
¢ cl 7 20L ' '

Treated as a linear first order differential equation in the standard form

77 (+)

(z)—JZkOZ (z)+R(z)+j2wL=0,

-j2k z
(2.39) is seen to possess the integrating factor e and the solution

32k z

(+) \/_‘ j2k ZfR( ) e dz (2. 40)

where k0=w;/LC .

The impedances, looking toward the source, at two positions separated

by the infinitesimal distance d are:

I Z(')(Z) = Z(c_)(Z) . (2.41)

)

(-)*

(z+d) = zf}')(z)+ 2 (2)d. . (2.42)

Again using the parameters of the infinitesimal section of transmission lme to

relate (2.41) and (2.42) yields

1

Z(c-)(z)+ZE;)'d=R (z)d+jwLd+ {(2.4”3*7)_

jwcd+

-) _

(c (z)
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Algebraic rearrangement of (2,43), including division by d, produces the

form
()11 2, (2 ()
ij[:Z (Z)] 1+_(—5——d +7Z (z)
c 27(2) c
c
=jwCR(z) Zf:_)(z) d —'kﬁ Z(c—)(z) d+R(z)+jwlL
which becomes
(-)
R(z)-2" " (z)
(=) v L, . c
Z, (z) = c|t] wL
as d — 0. If Zg)('z)z R (z), then|R(z) - Z(c-)'(z) <<w L and
_— R(z) - 2 (2)
Ze (Z)MEI'—J‘ 2wL
In the standard form
Z(;)'(z) +j 2k, ZS)(Z) -R(z)-j2wL=0,

. the differential equation has the solution

-j2k z j2k .z
Zi-)(z) = /_Lg+e O.I.R(z)e 0 dz

Equations (2.40)fa1_17§1 (2.47) are the expressions for the position-

(2.44)

(2.45)

(2.46)

(2.47)

dependent characteristic impedances looking in the two directions on a trans-

mission line which is loaded with a non-uniform resistance R (z). In the

special case of uniform resistance loading R (z) = R = constant, the 7
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characteristic impedance is the same in both directions and equations (2. 40)

and (2.47) reduce to the known result

_JL_ s R
Zc— C Jsz . (2.48)

The various resistance distribution functions (2.30) which have been studied

can be substituted into (2.40) and (2,47) to give

|

l 2%)() J;C - |

| UNIFORM ‘¢ 0 10|

| — =1- ETRE (2,49a)
’ 0 0

|
f )
Zc (z)M .Cologe

+j 2
4colog e + ]2k0(z+ ) \
|

| LOGARITHMIC
N ey e
| 0 k,log Ig log1g
|
f +[:j 2k0(z+2)] 2 !
| o+ in(z+2)-i2k (z+42) H——0 I
'! T fn(z+2)-j2Kk )_2‘21 ~
[j2k0(z+2)] 3 o
e T 2.49
| 3-3. = } o (2.4
|
| .
LINEAR ¢ 9 70 1
‘! Z, 1-T6 k, (i 2k, tiz |, (2.4Pc)
2% TG, o) i e
S~ 0 0 5 \
S - [j2k0(z—1) |
L .{i tn (1-2)-2k (o1 % 0 s
N [jzko"('g:_ll] ]
*\\\ - S S + _____
L 3:3¢ —_— }a
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2% c, ‘ Cobz
EXPONENTIAL ———= 1+ TN I
0 2k (b °-1) (b -1)(j2k ¥ tub)
(2.49)
AL ij2k0(z—§ )
IMPULSE =1+C_e . !(2.49f)
ZO 0 o

2.8 Discrete Resistance Loading

Continuous distributions of resistance along transmission lines have
been analyzed in the preceding sections of this chapter. Inthe present section,
a comparable development will be prgrsre;nte?d‘for transmission lines which
are loaded by lumped resistances inserted at a finite number of discrete posi-
tions along the line. Physically constructing a discretely loaded transmission
line would be somewhat simpler than constructing a continuously loaded line.
The two forms of loading may be expected to produce similar results if the
separation of the discrete resistances is sufficiently small in terms of wave-
lengths.

By employing generalized functions or miﬁfpré’fiéa_l tabular functions to
describe the discrete resistance distributions, the pfevious vformulation of the
continuous case can be applied also to the discrete case. However, it is
more economical computationally to reformulate the problem to take advan-
tage of the standard analysis of lossless transmission lines with lumped
discontinuities.

Figure 2-23 shows the configuration of the discretely loadec'lf’grgESt

mission line. A lossless transmission line of length h is loaded by the

insertion in series of N equispaced lumped resistances. The integer n

which has the range 1 <n <N is used to index the consecutive resistances

and associated quantities. The indexing notation employed here should not be
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confused with similar notation which is elsewhere applied to the formulation
of numerical solutions.
For a typical section of the transmission line as in Fig, 2-23b, the

frequency domain voltage and current can be written in the forms

-jk.z jk .z
V(z)=A (e "P.r ¢ 0%, (2.50)
n n n n
A -jk z jk z
_ . n 0On On
In(zn) =g (e +T'ne ), (2.51)

0
where z = linear dimension along the nth section of transmission line,

k0 = the propagation constant of the unloaded line,

y/ 0 the characteristic impedance of the unloaded line,

1"n = the current reflection coefficient at zn =0,

The complex amplitude coefficient An , which is determined from boundary

conditions, can be expressed as

h
ZOIn( N)e
- - " -h |

12k

-

A =

n (2.52)

14+ e
,,,,,n - -

'The transmission line impedance looking toward the termination is

Vn (zn)

Z(z)=—"+
n n In(zn)

Since Rn is a series resistance,

h, _
z (=R +2_(0) . (2.53)
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kOh
ZN (0) =-3j Z0 cot N , (2.56h)
z (3)-jw (2. 56i)
N'N !
.o D
12k N .
PN =-e , (2.56§)

where BN is merely a normalizing coefficient which is set by the amplitude
of the source.

Due to cascade connection of the transmission line sections and loading
resistances, the current distribution, impedances and current reflection co-
efficients along the entire line can be obtained by the usual procedure of start-
ing with the stipulated terminal conditions (2. 56) and proceding toward the
source, Thus repeated application of equations (2.51) through (2.55) provides
the complete solution,

A discretely loaded transmission line analogous to the continuously

loaded example that has been analyzed previously is formed by setting h = 1,

9 .
N-=9, ko =-f-- . In this case, the resistive loading consists of 9 lumped
resistances spaced 1 wavelength apart on an otherwise lossless uniform

8
transmission line.

The discrete resistance loading functions to be considered here are
the quantized analogs of the continuous resistance functions of equation
(2.30). Each discrete resistance function has the properties R

)
9 9
8
R ( 9) =C

=0

R ohms to correspond with the continuous loading properties R(O)=O,

0 ohms/meter. The general relationship between the discrete and

continuous resistance functions is
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. :zO-Rn-zn(o)
- + +
n-1 Z, R +2Z (0)

Continuity of current provides the relation

circuit termination, the voltage, current, impedance and current reflection

On the N

by,
Lo () =5,

coefficient can be stipulated as follows:

h
cos kO(T\I—ZN)

V(z)=-jB K
N N N  gip.0h
k. h
VN(0)=—JBNcot N .
k h
h 0
VN(N)--JB cse —
B.. sink (E—z)
L (zy--N__O NN
NN .k h ?
ZosmO_
N
B
N
I (0)=7— |,
N Z0
h
IN(N)—O:

h
cot k (N-Z ),

ZN(zn) =\-J Z, 0 N

(2.

(2.

(2.

(2.

(2.

(2

(2

(2.

54)

55)

or final section of transmission line adjacent to the open

56a)

56b)

56¢)

.56d)

. Hbe)

56f)

. 56g)
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_h_{(o-1)h
RN ( N >

Thus the discrete resistance distributions are

R11 C0
UNIFORM —=—

Z 9

0

Rn CO logn
LOGARITHMIC —— = — -&&

ZO 9 log?9

R C

n_ 0 n-1

LINEAR Zo— 9 }_—8 .

R C

n 01 9

INVERSE Z, °3 (8)<10 — 1),

Ry G a2l
EXPONENTIAL = R

Z 9 8

0 a -1

Rn 9
IMPULSE — =C.§ _ ,

ZO 0O " n

(2.57)

(2.58a)

(2.58b)

(2.58¢)

(2.58d)

(2.58e)

(2.58f)

9
where 6n = the Kronecker delta function. The exponential base a can

be expressed in terms of the exponential base b that was employed in the

continuous resistance distribution (2. 30e)

a=bhb

(2.59)

Using the procedure developed above, the complex current distribu-

tions produced by each form of resistance function (2.58) have been deter-

mined for a range of the magntiude coefficient CO' Plots of these current

distributions, which were calculated at 1/8 wavelengfﬁ' increments along the
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transmission lines, are presented in Figs. 2-24 through 2-35. By examin-
ing/data of the sort included in these figures, an optimum value of CO can
be determined for each of the forms of resistance loading functions. As was
done with the continuous resistance loading, the opt@migation criterion is

maximum radiation from the transmission line. To maximize radiation,

h
f |I| dz is maximized within the constraint of requiring a nearly linear
0

phase variation ¥ (z) for the current. The optimum values of CO that

are determined in this way are listed in the following table.

Functional Form of Discrete Optimum Magnitude
Resistance Distribution Coefficient CO
UNIFORM 3.6
LOGARITHMIC 8.3
LINEAR 7,2
INVERSE 18.0
EXPONENTIAL 18.0
IMPULSE 1.4

TABLE 2-3: OPTIMUM MAGNITUDE COEFFICIENTS
FOR VARIOUS DISCRETE RESISTANCE
DISTRIBUTIONS.
It is also seen from Figs. 2-24 through 2-35 that the inverse form of
resistance distribution is more effective than the other functional forms
in maximizing radiation. From this data, the set of individually op-
timized resistance loading functions can be ranked in order of decreasing

effectiveness. Table 2-4 gives the ranking.
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Normalized Current Amplitude II

0 1 2 3 4 5 6 7T 8 9
Transmission Line Station n

FIG. 2-24: AMPLITUDE OF CURRENT ALONG TRANS-
MISSION LINE PRODUCED BY DISCRETE
UNIFORM RESISTANCE LOADING.



53

1
N

Relative Phase of Current ¥
n

=v% 3 IR N S R SR SN SUN | NS R
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Transmission Line Station n

FIG. 2-25: PHASE OF CURRENT ALONG TRANSMISSION LINE
PRODUCED BY DISCRETE UNIFORM RESISTANCE
LOADING.
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1,

al

Normalized Current Amplitude |I

0 l l 1 | I L L -,

0 1 2 3 4 5 6 7 8 9
Transmission Line Station n

FIG. 2-26: AMPLITUDE OF CURRENT ALONG TRANSMISSION
LINE PRODUCED BY DISCRETE LOGARITHMIC
RESISTANCE LOADING.
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n

Relative Phase of Current ¢
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FIG, 2-27; PHASE OF CURRENT ALONG TRANSMISSION LINE
PRODUCED BY DISCRETE LOGARITHMIC RESIST-
ANCE LOADING.
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ol

Normalized Current Amplitude II

] ] | ]
0 1 2 3 4 5 6 B 8 9
Transmission Line Station n

FIG. 2-28: AMPLITUDE OF CURRENT ALONG TRANSMISSION
jLINE PRODUCED BY DISCRETE LINEAR
RESISTANCE LOADING.
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FIG. 2-29: PHASE OF CURRENT ALONG TRANSMISSION LINE
PRODUCED BY DISCRETE LINEAR RESISTANCE
LOADING.
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0 1 2 3 4 5 6 7 8 9
Transmission Line Station n

FIG. 2-30: AMPLITUDE OF CURRENT ALONG TRANSMISSION

LINE PRODUCED BY DISCRETE INVERSE
RESISTANCE LOADING.
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Transmission Line Station n

FIG. 2-31: PHASE OF CURRENT ALONG TRANSMISSION LINE
PRODUCED BY DISCRETE INVERSE RESISTANCE
LOADING.
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Normalized Current Amplitude

0 1 2 3 4 5 6 7 8 9
Transmission Line Station n

FIG. 2-32: AMPLITUDE OF CURRENT ALONG TRANSMISSION
LINE PRODUCED BY DISCRETE EXPONENTIAL
RESISTANCE LOADING.
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FIG. 2-33: PHASE OF CURRENT ALONG TRANSMISSION LINE
PRODUCED BY DISCRETE EXPONENTIAL
RESISTANCE LOADING.
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FIG. 2-34: AMPLITUDE OF CURRENT ALONG TRANSMISSION
LINE PRODUCED BY DISCRETE IMPULSE
RESISTANCE LOADING.
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FIG. 2-35: PHASE OF CURRENT ALONG TRANSMISSION LINE

PRODUCED BY DISCRETE IMPULSE RESISTANCE
LOADING.
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Rn ! 9
R n-1
EXPONENTIAL z—n - 18(%) 1.5 - -1
0 1.5 -1
Rn n-1
0
Rn log n
LOGARITHMIC — =8.3 _logn
Zg 9log 9
Rn ]
UNIFORM — =3.6 (<)
Z 9
0
Rn g
IMPULSE — =1.4 §
0 n

TABLE 2-4: PREFERENTIAL ORDER OF VARIOUS
DISCRETE RESISTANCE DISTRIBUTIONS,

The impedance of a discrete resistance loaded transmission line
as a function of position along the line can be calculated by ‘;'gPea{féa use
of equations (2.50) through (2.56). Smith chart plots of such impedances
for each of the individually optimized loading functions are shown in
Figs. 2-36 through 2-41, It is observed from these plots that the re-
lative effectiveness of the various loading functions in producing matched
impedances along the transmission line is given by the same ranking as
in Table 2-4. The transmission line input reflection coefficients I‘Pinl
plotted in Fig. 2-42, also show the same ranking., This figure displays

in addition the dependence of lI"inl on the parameter C, for each of the
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FIG. 2-42: INPUT REFLECTION COEFFICIENTS PRODUCED BY
VARIOUS DISCRETE RESISTANCE DISTRIBUTIONS
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functional forms of discrete resistance loading. The values of C() which
minimize II’mI are seen to be the same as the optimum values of Table 2-3
which maximize radiation from the transmission line.

Throughout this analysis of the discrete {gsrirs”fanc&\loading of trans-
mission lines, the results have been virtually identical to those obtained
previously for continuous resistance loading. The 1 / 8 wavelength spacing
of resistances produces very nearly the same complex current distribution
and transmission line impedances as a continuum of resistance loading,

Detailed conclusions about the results parallel those of the continuous load-

ing case and need not be repeated.

2.9 Excitation Voltage Source

The source of excitation of the resistance-loaded transmission lines
which are investigated here is a transient voltage generator, It is con-
venient to synthesize the source waveform from its frequency spectral com-
ponents and then apply the inverse Fourier transform to the transient analysis.

In the interests of computatlonal efflclency, the Fast Fourler Transform o

/ technique of truncatmg an mfmlte series is employed W1th1n any one

, period of the resulting periodic source voltage waveform, an arbit rarlly

close approx1mat10n to the idealized transient waveform of interest can be
obtained,

A source waveform of particular interest in this study is the step
function u (t—t ). The step function waveform is well suited to a time do-
main analysis of the transient features of tranSmlssmn lines as has been
shown for lossless lines 54, 55, 56. The sharp, locahzed dlscontmmty in an
ideal or approximate step function wave traveling on a transmission line
serves to identify sharply the multiple reflections, Another advantage is
that the step waveform possesses a derivative which is positive only and is

of short duration. As the time variation in a waveform is the cause of

radiation, this simplicity is desirable in analyzing the transient radiation
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field of a transmission line. In these respects, a step function is superior
to an impulse function which has both positive and negative derivatives and a
correspondingly longer duration of its time variation. Ambiguitiesﬁ can arise
through the overlap or merging of transient effects in the case of a non-zero
rise time of an approximate step function. It is therefore desirable that the
rise time of a practical approximate step function be as short as possible
within the constraints of economical computations with the function's trun-
cated series representation.

In the present investigation, it is computationally economical to
approximate a step function waveform by a square wave which is an odd
function of time with the time origin occurring at a step rise as in Fig. 2—43’&1‘.l
In this way, the waveform can be a simple sine series which involves only )

odd harmonics. Thus the voltage source waveform is

K

- 42K-1) . 7(2k1) .
Vg (t) = Z 2 sin o= or 7y (2K-1) sin (2k-1) W, t ‘ (2.60)
k=1

7 (2k-1) 2

where W, is the ‘lfuﬁaamental radian frequency and t is time. Figures

2-43b and 2-43c show the approximate waveforms, including the Gibbs'
phenomenon, that have been computed from (2. 60) for K = 25 and K = 50.

Due to attenuation caused by the resistance loading of the transmission
line, a step function wave ‘traveling on the line will have appreciable ampli-
tude at most for the first few of its multiple reflections from the ends of the
line. For this reason, the duration 7 of each step in the periodic square

wave can be limited to the order of ten transmission line transit times:

-0 L
7=10 palt (2.61)

where h is the transmission line length and ¢ is the propagation velocity

along the line.
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Once the transmission line responses to an approximate step function
are determined, they can be differentiated with respect to time to yield
volved with any general source waveform to produce the transmission line
responses to that general waveform. Numerical time domain convolution of
a source waveform with an approximate impulse response whose features of
interest lie within the short time 7 can be performed efficiently.

The frequency spectral representation of the transient source voltage

v (t)= Z V_(w) It (2.62)

where Vs(w) is the complex amplitude

_ 2
v - 4‘2;‘ D T
T w2 1

(2.63)

In the frequency domain, the Thevenin equivalent circuit of the excitation
source consists of an'ideal voltage source Vs(w) in series with an internal
impedance Zs (w) as indicated in Fig. 2-44, The input impedance of the
resistance-loaded transmission line to which the excitation source is
attached is designated Zin(w). In the frequency domain the inpﬁt current
is designated

V_(w)
Zs(w) + Zin(w) )

I1(0,w) = (2.64)
A representative illustration of these frequency domain quantities is
provided by the case of an approximate step function voltage source Q‘iving

the transmission line which was determined to be optimally loaded (2.31).
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This loaded transmission line's input impedance, computed from (2.32) is

shown in Fig. 2-45. A constant source impedance ,,/ZS(Q)=ZO=BTO]BE;WES‘

used for these calculations inasmuch as it matches the'h'igh—frequency iimit
of Zin(w) and thereby represents an appropriate design goal for a generator.
Figure 2-46 shows the frequency spectrum envelopes of the voltage source
(2.63) and the resulting input current (2.64).  In this illustration, K = 99
so that 50 odd harmonic components synthesize an approximate step function

for the voltage source.

In the time domain, the shapes of the voltage source waveform (2. 62)

and the input current waveform

i (0, t) Z 1(0,1) ™ (2.65)

are not the same. For the present illustration, Fig. 2-47 shows the approx-

Eﬁiﬁfé‘giép function‘soTrmaivoltage waveform and the resulting input current

waveform.
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2.10 Transmission Line Waveforms

The time domain transient waveforms of current i (z, t) and voltage
v (z, t) can be determined at any position along the transmission line in
addition to z = 0, The computer program in Appendix A supplies I (z,w).
. 0I(z,) . .
The same program also supplies 52 which can be converted directly

to V (z,w) by the transmission line relation

=__j_81(z,w)
Vizw) = se T

Both I(z,w) and QI—;ZZ‘L"L) have been computed subject to the normalized

boundary condition I(0,w) =1 and must be adjusted to the input spectral
weighting functions (2.64) and

V W) z. (W)
S 1n

Z W+2zZ, ()
S 1n

Vz,w) =

respectively. Inverse Fourier transformations can then yield i (z, 6 and
v (z,t). To illustrate the results of this procedure, i(-}l , t) on the
optimally-loaded (2, 31) transmission line has been calculated for the case
of the approximate step function voltage source excitation of'Fig".‘rv 2-47,
Figure 2-48 shows this transient current waveform at the midpoint of the
transmission line. Relative to the input current of Fig. 2-47, this wave-
form is observed to be shifted to a later time by [220, to be attenuated

and to be slightly changed in shape by dispersion,
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2.11 Radiation from Transmission Lines

A transient radiated field is produced by the current distribuﬂ;(ri‘ along
a resistance-loaded transmission line which is exc;.\tei by a transient source.
The time waveform of the radiated field is a function of the direction of
radiation. The shape of the radiation pattern changes with time, To de-
termine the transient radiated field, the analysis will first be carried out
in the frequency domain and then be Fourier transformed into the time
domain. The most difficult part of the analysis, that of finding the current
distribution on the resistance loaded transmission line, is performed by

the computer program in Appendix A. The current is renormalized in

accordance with (2, 64),
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Figure 2-49 defines the centered coordinate system.

The vector current density on the balanced two-conductor transmission

line is
sx-2)-o(x+3)| 6 M U(Z-]z))  (2.66)

/ .
J(R,w) = %2 I(z,w)

/
j
where
R = the three-dimensional position vector whose origin is the
center of the section of two-conductor transmission line,

s = the separation distancetlia@l the two parallel conductors
of the transmission line which lies in the xz plane,

(
6(+) = the Dirac delta function,

N
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'U(+) = the unit step function,
-

—

1

a caret ( A) denotes a unit vector.

In terms of the dyadic free space Green's function EO (R l R’ )FO, the far

zone electric field radiated by the transmission line is

E. (R 0= —jwufﬂ‘eo (R|R) - T@RH a v (2.67)
Vl

where 4 is the permeability of the medium which is assumed to be constant,
primes (') identify source coordinates, unprimed coordinates are observation
coordinates, V' is the three-dimensional source volume, The dyadic free

space Green's function can be expressed as
p

-ik|R - Rl
-—] = A 1 eJ

1y = B el 7AN VA J S —
(R|R) = (U0 12 )47r|R—R'|

Qill

0 (2.68)

i
where = the unit dyad,

¢ = velocity of electromagnetic wave propagation in the: mécﬁaﬁi‘:\

ForR >>R/,

R.R
N _ .
~ RVl -2 R
/\ -
~R-R.R"'. (2.69)

The radiation field of the transmission line becomes
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=

~-jkR | A 7 LA =
= = . e ! N, 1 -jk R+ R' A
- ERS vik vii .
ETL(R,w)M jwp R (U kZVV)e 4

T2
I(z',w)dz (2.70)

which can be simplified by a vector identity to

pr— h -1
-jkR 2 A=
_ ) e A A jkR.R'_ | . -
ETL(F,w)s:&J WH TR Rx|Rx2 e I(z',w) dz'|. (2,71)
o "2 y

From the particular geometry of the transmission line in the spherical co-

ordinate system (R, 6, §§),

AN =
R:.R'=2z'cos 0 i-gsinecossﬁ - (2.72)
and
—JkR
- A e ks
e . . ks . .
ETL(R,w),, oWy 57 g Sin 0 sin ( 5 Sin 6 cos )]
h
2 jk' cos 6
f I(z', w) et €Y 4 z', (2.73)
' h
2

Equation (2. 73) describes the far field radiated from a transmission
line which consists of two parallel conductors. The conductors may be thin
'wires or parallel plates provided that the cross-sectional dimensions of the

small in magnitude due to the two opposing currents separated by the
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dimension s which may be small in terms of wavelengths. Radiation from
a generator structure could in general be comparable in magnitude to that
from the two-conductor line. The generatorvrﬂs‘t;rugtufé could be modeled
approximately in simple cases as an electrically small Hertzian diople
carrying the current I(0,w). Its radiation field

-jk (R +12l cos a)

—_ - N e _
N . 3
EG(R, wWaajwpI(0,w s 57 R sin «a (2,74)

could be superimposed on the field.radiated by the transmission line., Here,

o is the polar angle relative to the x axis. The total radiated field is thus
—— — — —— — | e—
E(R, w) = ETL (R, w)+ EG(R, w) . (2.75)

The radiated field's time domain waveform is given by the inverse

Fourier transforms of (2.73) and (2. 74).

_ o)
- -— A i
e (R,t)%—@ﬁs.—mg wsin(—hls—sinecosjﬂ).
TL 2 2¢c
47 R o
7 !
g jw(t—%+%cose)
' hI(z', W) e dz' dw , (2.76)
"2
and then
A in oc 0 j(u(iiif%—gcosw)
5 (R, 1% -’ﬁzi”l—— JLI(0,w) e ‘ dw,
47 R . (2.77)
Tw
(R, t)= 5. (R, t)+5, (R, 1) (2.78)
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Here again for reasons of economy, the Fast Fourier Transform technique
of using a finite number K of discrete frequencies can be employed to
evaluate the radiated transient waveform numerically. Appendix B is a
listing of the computer program which calculates the time domain transient
waveform radiated from a resistance-loaded transmission line, The program
is capable of computing the transient waveform at any far zone distance and
in any direction from the transmission line. The program also allows any
length h and conductor spearation s for the transmission line,

To illustrate the radiation of transient signals, a transmission line
loaded by the optimum resistance distribution (2.31) is considered to be
excited by an approximate step voltage source (2.60) of long duration (2,61).
The transient source voltage waveform was shown in Fig. 2-47, The tran-
sient waveforms radiated in various 6 directions in the xz plane are shown
in Fig. 2-50, The xz plane is the plane of maximum radiation. The time
scale in this figure has been translated to t - % for convenient compar-
ison with the source waveform. .

Each waveform in Fig. 2-50 consists of a positive pulse followed at a
later time by a smaller negative pulse. The larger positive pulse is’ Eﬁm‘-
tion from the positive transient current waveform, Fig. 2-47, as that wave
travels along the transmission line from the generator to the open-circuit
termination. During its transit along the loaded transmission line, the
current waveform undergoes attenuation and} ‘change in shape due to phase
dispersion. For this reason, the shape of the positive radiated pulse would
be difficult to estimate without a detailed computation, The Smallelj ‘r_xgg@‘i_
pulse in the radiated waveform is radiation from the attenuated, dispersed,
negative current waveform which is reflected from the open circuit termin-
ation and travels back along the transmission line to the generator. In this
example, negligible current is re-reflected from the generator because of

transmission line attenuation and the good impedance match (2,47) from the‘
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transmission line to the generator.

Figure 2—56} shows that the time elapsed between positive and negative
pulse grows progressively longer as the radiation direction angle 6 becomes
progressively larger. These time delays from the computed transient wave-

forms are in excellent agreement with the known values

At=%(l—cos@) . (2.79)

Figure 2—50 aisg §hows that the peak of the transient waveform has a

maximum intensity for radiation in a direction near ( 6 = LS . ¢ =0). This
demonstrates that the current on the transmission line contains a large travel-
ing wave component. The traveling wave property was indicated previously
in the monochromatic analysis by the nearly linear phase variation (Fig. 2-11)
of current along the transmission line. In the '@@y domain, the effect

of the current's linear phase progression with distance along the transmission

line is to produce constructive interference for radiation in the direction

6 = cos 1 dy . (2.80)
k dz
0
This angle is different for the different frequency components of the current
waveform so that the direction of maximum radiation in the time domain is

modified, Further, the sin 6 terms in (2, 76) weight broadside radiation

more heavily than endfire radiation. The peak intensity of the radiated

transient waveform as a function of direction is shown in Fig, 2-51. Th1s

plot is perhaps more useful than a radiation pattern. It differs from a radia-

tion pattern in that the plotted field intensities do not occur simultii_ngbﬁgly: \
Here, a radiation pattern is defined as a plot of relative radiated field>£tér;éity
versus angle at one instant of time. Such patterns can be derived from a set
of waveforms of the type illustrated in Fig. 2-50 but including a larger number

of curves for finer increments of the angle /pararhreter. Eacfl value of the



Relative Intensity of Waveform Maximum

1.0

FIG. 2-51:

89

L. l l

7 [4 x/2 37 /4
Radiation Direction 0 ( Radians)
MAXIMUM AMPLITUDE OF RADIATED TRANSIENT

WAVEFORM AS A FUNCTION OF RADIATION
DIRECTION.



90

abscissa in the figure generates a different radiation pattern which is valid

at that time. Thus a time sequence of different radiation patterns character-
izes transient radiation from the transmission line., Some sequential radiation
patterns of the optimally loaded transmission line excited by an approximate
step voltage are shown in Fig. 2-52,

In discussing the temporal and spatial distribution of transient radiation
from a transmission line, attention has been focused on the xz or f =0
plane where the interesting properties are pronounced. In the yz or ¢ = %
plane, radiation vanishes due to cancellation of the effects of the antisymmet-

rical currents in the two conductors of the transmission line., The xy or
- X
T2
and radiation patterns do not provide much new information. The conductor

plane need not receive much attention because the radiated waveforms

separation s as a practical example has been made small relative to all
wavelengths of interest as well as to the transmission line length h., Figure
2-53 shows that the transient waveforms radiated in the xy plane have nearly
the same shape. The amplitudes of these waveforms are nearly proportional
to cos § as seenin '(72\.\76) for s <<k. It is evident that the xy plane
radiation patterns derived from a set of waveforms like Figure &ASSIWHI. have

nearly the same shape for all values of time.

2.12 Reception by Transmission Lines

Transient electromagnetic radiation incident on a resistively loaded trans-

L across a load impedance ZL.

The transmission line considered here is terminated with ZL at one end and

an open circuit at the other end. Figure 2-49 represents the geometry if the

mission line will produce a transient voltage v

The present analysis of reception uses the concept
57,58, 59

source is replaced by ZL'

of the vector effective height function of the loaded transmission line.

This approach takes advantage of the previous determinations of current dis-
tributions and input impedances.

The received signal can be formulated as
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1 z @ E(20) b (20 e
= — d 2.81
vy (50 = 57 Z_ @+ 2Z,_ v (2.81)
L in
~00
where Q represents the two angular dimensions (8, §) of the

incident wave direction,

E. (Q,w) = the Fourier transform of the transient incident
electric field,

h (2, w) = the vector effective height function of the loaded
transmission line.

Expressed in terms of the current density (2. 66),

2 A =,
h (©Q,w) :—I—L(;’—)—fffﬁxj (R',w) xﬁ eJk(R - R )dV' (2.82)
in

V!

where Iin (w) is the input current, Here, as previously, primes identify the
coordinates of a current density which would exist if the transmission line
were excited by Iin (w). The current density J (R',w) is given by (2. 66) so
that

A — - A A
RxJ(R'.w)xR=[(—Qcosﬂ—?sin[b)cos0+Zsin6)]sin9

[6(x—§-)—6(x+§)] 6(y)u(‘g—|ZI)I(Z,w) (2.83)

The quantity ﬁ . R' can again ,}?Ae; expanded in the form (2.72). Thus the tran-
sient received signal can be directly evaluated from (2. 81) with the previously
determined I (z,w) and Zin (w)., The shape of the received transient waveform
will be different for different directions 2 of the incident wave in analogy with
the radiated waveforms.

Due to the geometry of the transmission line, the most pronounced effects

occur in the xz plane. In this plane, an incident plane wave

?E‘i (Q,w) = (-Rcos 6+72 sin6) E, () (2. 84)
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will produce a received signal which can be expressed in the reduced form

o
Ei(w) ZL(w)

_ sin@ . WS, )
v = = f T @ z oz o5, sin 6 cos §)
in L in

=0

h i .

2 jw (t+‘—“g—cose+$)
f I(z',w) e | dz' dw . (2.85)
’h

2

2.13 Transient Coupling of Transmission Lines

A transmission line which is excited by a transient signal source will
cause a different transient signal to be received in the load of a second, distant,
transmission line. The far field coupling of transient signals from one loaded
transmission line to another can be formulated compatibly by using the vector
effective height function. The vector effective height functions of the two trans-
mission lines can differ due to different resistance loading distributions. In
the following expression for the received transient signal, the subscripts tand r

identify quantities associated with the transmitting and receiving structures

respectively.
w ZL(w) Vs(w) h, (2,w) "h (Q,w)
Vr( Q,t) = 5 N
+
87 cR Yo [Zs(w) Zint] [ZL(w) Zinr (w)]

. R

jw (t - Pe '% )

e dw (2.86)
where n = the characteristic impedance of the medium,

the distance between the two transmaission lines,

=
]



Chapter III

BICONICAL ANTENNA

3.1 Antenna Considerations

A transmission line of conical geometry is the basic structure of a bicon-
ical antenna. Analysis of a biconical antenna through its representation as a
conical transmission line is the most accurate analysis available for this
antenna34’ SRS "48. The transmission line approach serves to determine
the current distribution along the antenna and thereby the input impedance as
well as the radiation and reception properties. Figure 3-1 shows the symmet-

rical perfectly conducting biconical antenna with radial length h and cone

half-angle 90. The ends of the cones are terminated in perfectly conducting

spherical caps.

The biconical antenna is well suited to transient analysis because it

possesses a unique determinable input impedance in contrast to cylindrical

antennas which have feed gap problems. Another advantage is that one of its

95
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two dimensions is specified by an angle alone, implying relatively uniform per-:
formance over the wide frequency range required in transient analysis.

The thiﬁ, or small angle 90 —» 0, biconical antenna will be treated here.
For the small angle case, there exists an exact closed anglytiq form that can
be used to express the continuity of fields between the antennas's interior and
exterior regions. In contrast, the lack of a closed form representation in the
wide angle case of 0 < 90 <Z requires a slowly convergent infinite series ’

2
whose truncation would leave uncertainties in the antenna current distribution

3.2 Antenna Fields

Only TM modes are supported by the antenna. Solution of the electromag-
netic wave equation subject to the antenna boundary conditions shows that interior

to the antenna's hypothetical bounding sphere there exists a dominant field

o RN ,

ED(R,w) =6 7 Remd Yt(w) sin k (h-R) - j cos k (h—R)], (3.1)
o A Io(w) -

HD(R,w) =0 S7Reind Lsin k (h-R) - j Zc Yt (w) cos k (h—R)q’, (3.2)

and a complementary field

§ J§J+y2km

27weR~ n=0 )/E J nt+l/2 (kh)

, 1
27TR &, ool /ﬁ T Jo(D)

E (ﬁ,w);ﬁ [P (cosB) - P (-cos 9)]
c n n

ag [P (cos ) - P ( - cos 9)] (3.3)

S oA ® o2 \/FJ+1/2(kR) .
HC(R,w) =~ 7R ng 2ot /H p (h) ?9 P (cose )-P ( cos@)

%(3.{1)_

n+1/2
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External to the boundary sphere, the field solution is

(2)
E |/R H (kR)
m+ 1/2 D (6)
m

E(R,w)
? m h (2)
(2) 2)
Adjn P \/ﬁ Hm+1/2 2k/" S +1j2(kR) b () ,
B + e
2TR odd m m(m+1) /-l; H(2) (kh) o
m+1/2 (3.5)
b /R g2 (k) dp (6)
- = Al m m+1/2 m
H (R,w) = - § —_— (3.6)
27R g m(m+1) /?1 H.(Z) (kh) de
= 'm+1/2
Here, R = the three dimensional coordinates (R, 6, f),
n £ the characteristic impedance of the medium,
W : :
k= s /1 the propagation constant of the medium,
€ = the permittivity and u = the permeability of the medium,
a, a, b__ = constant coefficients to be determined by boundary

conditions.

The above field expressions were established by early investigators of the

9, 40.
biconical antenna37’ 39, .  The transmission line character of the dominant

field is emphasized by the form of (3.1) and (3. 2) where

j2ma
coskh+j Zc Yt (w) sin kh

Io(w) = (3.7

represents a current, Zc represents the characteristic impedance of the
conical transmission line and Yt(w) represents a terminating admittance
produced by the spherical caps which terminate the transmission line. The
total electric and magnetic fields in the interior region of the antenna are

E (R,w) = ED(E,w) +E_(R,w) and H[R,w) = H (R,w) + H JR.0) respectively.
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These fields can be integrated to give voltage and current quantities which are
associated with the transmission line interpretation.

7-6

- 0 A
V (R,w) =f 6-E[R,w RdA6 . (3.8)
6O
_ A
I(R,w)=jg p-HEwRso df . (3.9)

|
1

In (3.8), integration of the Ec(ﬁ, w) component produces zero} idéntically so that
the complementary fields do not contribute to the voltage. In (3.9), the com-

plementary wave contribution to the current vanishes at the bicone apex R =0,

3.3 Antenna Impedances

As the voltage and current at the apex terminal of the biconical trans-
mission line contain only dominant wave terms, the input impedance of the
structure is uniquely determined from (3. 1) and (3.2) to be

1+jZ Y, (w)tan kh
Z. () = V (0,w) c 't

= 7 .
in I(0,w) zc Yt (wW+jtankh ¢

(3.10)

The characteristic impedance experienced by the dominant mode on the
biconical transmission line is gletermiﬁned‘ byip}gking“x‘the cones infinitely long

and taking the quotient of the resulting outwardly traveling voltage and current

waves.
+ )
Z -_-.Y_g_f_{iﬂz ﬂlncot .l. (311)
¢c .t 2
I (R,w)

The terminating admittance

ID( h, w)

Y (W) = o——
t VD (h, w)

(3.12)
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is used to account for reflection of the dominant mode from the spherical caps
that terminate the biconical transmission line. Evaluation of Yt(w) requires
values for the a and bm coefficients of the internal complementary and ex-
ternal fields which in general calls for the solution of an infinite set of linear

equations. However, for the case of the small angle 6

—» 0 biconical antenna,
37, 60 a

0
a closed form expression for Yt(w) exists

¥, (0) - T {2 e [- L (4kh) + L (2kh) + fn 2]
1{41') (1n cot—zQ )
+ g I%kh [L*(2kh) _n 2] . (3.13)
where L(x) = Cin (x} +j Si (x),

Cin(x) =C +In (x) - Ci (%),
C=0. ;5:77215665 is Euler's constant.
The dominant mode impedance at any position R along the thin biconical
antenna is

1+]j Z, Yt(w) tan k (h - R)

Z (R,w) = Zc Yt W+ tank (b~ R Zc . (3.14)

3.4 Transient Currents and Voltages

The thin biconical antenna is considered to be energized by the transient
voltage source depicted in Fig. 2-44. The transient source voltage is given by
(2.60) and (2.63) in the time and frequency domains respectively. For a thin
biconical antenna W@ere 60 = 1 degree and the resulting Zc = 567 ohms, the
antenna's frequency domain input current (2. 64) is plotted in Fig. 3-2. The
input current time domain transient waveform (2. 65) is shown in Fig. 3-3.

The frequency spectral representation of the surface current density dis-

tributed over the 7biconicél antenna due to the dominant interior field is
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A I(R,w)[a(e ~6)-5(0-% +eo)]
J(R,w) =R 5 s (3.15)
27 R sin6

where

I(R,w) = IO (w) {sin k (h-R) - j Zth (w) cos k (h - R)] . (3.16)

As 90 —» 0, an approximation to the surface current density which may be

used to compute the approximate radiated far field is
- = A
JR,WZ Z 1(Z,w) Uth- 1Z]) 6§(x)6(y) (3.17)

where

I(z,w)’;.-’IO (w) [sink (h-]z|)-j Zth(w) cos k (h—lzl )]. (3.18)

3.5 Radiation from Biconical Antenna

Far field radiation from the thin biconical antenna can be formulated in

the frequency domain as

ERuw=-jus JGRIR) - T(F,0) aV'
V'
ik IR - R
l -J (r',w0) d f?‘{‘ (3.19)

2 TR-®T

. [({\\Hl— \ARTLD)
k

Vl

where J (R,w) is the exact form (3.15). Relation (2. 69) in addition to the rela-

tion
ik B.R 2AA ikRE
v VeJkﬁ Rk RReJkﬁ R (3.20)
produces
- = _iwpe R A AA. - 2« N Re
ERuw =2 I (T-RR).T@E 0 FE R gy (3.21)
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The identity

A T/D /5 - -
$- 2% TRW-T®, w-R[R. 3 (@) (5. 22)
leads to
h x
] kR Al i A ./\' 1,
E(ﬁ;w)::m-?‘_—.f I(R’:w)[ﬁ'—(ﬁ'ﬁ')R]eJk(R R)R
8z R b %

-[6(6'-90)—6(6'-t+60)]d¢' do' dr', (3.23)
in which the quantity
N A
R - R'=cos 6'cos 6 +sin8'sin 6 cos (f - §") . (3.24)

Performing the 6' and ¢' integrations and substituting Bessel function relations

yield
s e-ij - jkR' cos 90 cos 6
ERuw:="HE [ 1R,w)e :
47R
=h
A A )
: [(R' - R cos 90 cos 6 ) JO (kR' sin 60 sin )
A
-jRsinf, sin6J, (kR' sin 6, sin e)] dR', (3.25)
where
I(-RLw=-I(R,W . (3.26)

An approximate form for the radiation field may be obtained in the case

60 — 0 from (3.17) and (3.18). The identity

(’f?-ﬁﬁ) - J (R, w) --R x[ﬁ xi(ﬁ',w)] (3.27)

converts (3. 21) to
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E(ﬁ,w)z%%gﬁx(ﬁx/z\)f I(z',w) ejkﬁ ‘R dz! (3.28)
-h
In this case,
ﬁ . f{',ﬁéiz' cos 6 (3.29)
so that
h
E(R,u)=-0 J—é—ﬁ— sin ef I(z,w) e ¥ 59 gu (3.30)
-h

form radiated by the blcomcal antenna.

sin @ Jw(t——+—cos«9+ —)
e(ﬁt)-—GJu—— f I(z',w)e dz' dw.
(4

(3.31)
The Fast Fourier :I‘j'ansform techniques which have been described in Chapter II
can be employed here as well for efficient computation. A computer program to
compute the transient radiation field of the step-excited biconical antenna is
similar in features and complexity to that in Appendix B.

To illustfate the results of calculating the radiated transient field from
the preceding formulation, an example will be selected with parameters similar
to the transmission line calculations of Chapter II. The duration of the source
voltage step is t = 10% and the half length of the thin biconical antenna is h = 1
meter in this example. For the sake of clarity in presenting these radiated

transient waveforms, the source impedance is assumed to be conjugately

matched to the antenna input impedance
Zg (w) = Z. W) . (3.32)

In this way, re-reflection of antenna current waves from the source are avoided

so that the radiated waveform is clearly related to a single outward and a single
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inward traveling current step on each arm of the antenna. No loss in generality
is created by the assumption of (3.32) for the present example. An inbound
current wave on the antenna can experience reflection and distortion by a gen-
eral source impedance and then be analyzed after reflection in exactly the same
way as the initial outbound current wave, The formulation and computation of
the radiated field allow any Zs(w). |

Examples of calculated waveforms which are radiated in different 6
directions are shown in Fig. 3-4. For vriisvibilit'y of details, the maximum field
intensities have been normalized to unity. Trhye” time scale has been translated
to t- % where R is the observation distance from the apex feed point of the
antenna. Marked differences are evident among the waveforms radiated in
different directions. The basis fbr these differences as well as an understanding
of the causal relationship between the transient antenna current and the radiated
field can be supplied by the following rudimentary idealized time domain con-
siderations. 7

Figure 3-5a depicts an idealized step function wave of current traveling
from the source point of the antenna outward along each of the two thin biconical
arms. It is assumed that the wave's velocity is ¢, the Yglocit&i of electro-
magnetic wave propagation in the surrounding medium. Due to the small Valué\
of 6. =1 degree, waves of net antenna currentitrravel very nearly in the + z

0
directions. Hence

T(z,0=2 Aut-]z])ue- ), (3.33)

where A = the amplitude of the current step function. For the purposes of the
present development, it is not necessary to consider attenuation and dispersion
of the current wave. Similarly, Fig. 3-5b represents the inwardly traveling
idealized step function wave of current after reflection from the ends z =+h
of the antenna,

I__(z,t)=—/2 Au(h- |z|)u(t-

2h - 12
T ) (3.34)
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Here, the current reflection coefficient at the ends of the antenna has been
approximated as =-1.

The antenna's radiation field is proportional to the spatial integral over
the antenna of the time derivative of the current distribution on the antenna.
This current distribution, as a function of space and time, consists of the se-
quential superposition of the outward (3.33) and reflected (3. 34) step functions
traveling along the antenna. Thus the idealized radiated waveforms can be
constructed in the manner sketched in Figs. 3-6, 3-7 and 3-8 for the observa-
tion directions 6 =§ and 6 = FZ_ respectively. These idealized radiated
waveforms approximate the computed waveforms of Fig. 3-4 quite well.

The idealized waveform construction aids in identifying the features of
the computed waveforms. The first pulse in the radiated waveforms is caused
by radiation from the abrupt change in current as that change propagates out- ‘
ward on each thin conical arm of the antenna. The far field radiation effects
of both outward traveling current steps begin at t = I—;— . The transit time of
the current step waves from the bicone apex to the cone end caps is % . The
duration of radiation from the two outwardly traveling current steps varies

with the angular position of the far field observation point. It is

T=%(1—cos 0) (3.35)

for the current wave traveling‘v\outwafa on the +z arm and
T=E(1+cos 0) (3.36)

for the current wave traveling outward on the - z arm. As the radiated field

1f2

for 8 = x /10 is mostly attributable to the outwardly traveling current step on

intensity is proportional to T , the first pulse in the radiated waveform
the + z arm. For larger 6, the outwardly traveling current step on the - z
arm makes a greater contribution. For 6 = x/2, both outwardly traveling

current steps contribute equally to the first pulse in the radiated waveform.



109

e (t)
sin 6
h(l—cosl')
c 10 R
0 —t- B
"~'\0 c

(A) Radiation from Current Step Traveling Outward on +z,

e |
sin@ %(l-l-cos _1_7(!)_)

0 = o=
0 tc

(B) Radiation from Current Step Traveling Outward on ~z.,

e(t) ?
sin6 0 - %
2 (1-cos L) 2
¢ €% 70 c
(C) Radiation from Current Step Traveling Inward on +z,
e(t) 2h
sin@ 0 * c t- R
c
h .1
— + —
c(1 cos 10)
(D) Radiation from Current Step Traveling Inward on ~-z.
A
e(t)
sin@ oh
h(1oane-T- £
c (1-cos 10) c R
04 -t-
h T ¢
0 A1+ cos—*
S (1+cos ] 0)

(E) Sum of (A), (B}, (C), (D).

FIG. 3-6: COMPONENT IDEALIZATION OF TRANSIENT
WAVEFORM RADIATED IN 6 = ‘i’% DIRECTION.



110

e(t)
sin 6 A
-}-1-(1 -cosZ)
c 4 R
0 >t ==
0 c
(A) Radiation from Current Step Traveling Outward on +z.
e (t) i g
sin 6
h il
— + —
c(1 cos 4)
0 1 —t-2
O c
(B) Radiation from Current Step Traveling Outward on ~-z.
)
silgt; >t~ R
0 | | " ¢
h T 2h
5 (1-cos 4) S
(C) Radiation from Current Step Traveling Inward on +z,
elt)} h(1+cos%)g§-
sin® c A
0 c
(D) Radiation from Current Step Traveling Inward on -z,
!
e(t)
sin6
-Il(l +cos T b
c 4 c R
0 iR
O Biiocos®) c
c(l-cosy

(E) Sum of (A), (B), (C), (D).
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WAVEFORM RADIATED IN 6 = 471 DIRECTION,
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The second pulse in the radiated waveform is caused by radiation from
the reflected current steps that propagate on the thin cones from the end caps
to the bicone apex where they are assumed to be absorbed in the source imped-
ance. The current of both reflected step waves ié negiativer so that the second
pulse in the waveform is negative,

Radiation due to the inwardly traveling current step on the + z arm first
arrives at the far field observation point at t = -;h- (1 -cos@)+ % and persists
until t = 31_1_}_ % . Radiation due to the inwardly traveling current step on the
-z arm arrives at t = -h;( 1+ cos 0) + R and persists until t = 2c—h +% also.
During the period Lcl( 1 + cos 6) +% <t< % + % , the two radiated fields
add to produce the pulse. For 6 == / 10, most of the pulse is afctr:ibutablé to
the reflected current on the - z arm because the contribution from the reflected
current on the + z arm is smaller in amplitude and is distributed over a longer
time. However, the latter contribution grows with increasing 6 until at 6 = ﬁv/ 2
it is equal to the field radiated by the reflected current step on the - z a;m. In\
the time period between the positive and negative pulses of the waveform,

l—; (1 - cos @)+ 1—2— <t <-g (I _coso)+ % , the positive field radiated from the
outwardly traveling current step on the - z arm of the antenna is cancelled by

the negative field radiated from the inwardly traveling reflected current step

on the + z arm.

Radiated transient waveforms in the directions % <6 <% are related
to the preceding according to
.e’(z_e’t)=—6(9, t) . (3.37)

3.6 Reception by Biconical Antenna

A transient plane electromagnetic wave incident on a biconical antenna
will result in a transient voltage across a load impedance ZL connected to
the antenna terminals (Fig. 3-9). The previous determinations of antenna input

impedance (3.10), current density on the antenna (3.15) and antenna input current
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Incident Plane Wave
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FIG. 3-9: BICONICAL ANTENNA IN RECEPTION,
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I (W) =I(R=0,w)=1(w) [sin kh-j Z Y (w) cos kh] (3.38)
in 0 ct

. are directly applicable to the analysis of reception through use of the vector

effective height function of the antenna

- 1 - ; N = — /\jk(ﬁ'ﬁ')
h (6,w) —_—(B) JIRxJ (R, w)xRe av' , (3.39)

1
in V'

where primes denote the coordinates of the current density J which would

exist if the antenna were driven by Iin (w).. For the small angle 90 — 0

biconical antenna, J (R,w) can be expressed in the form (3.17),

A A— A

RxZxR=-6sio, (3.40)

A - —
and R-R'=2'cos 6 . (3.41)
Thus B

h EE— .

- A 2 si = jkz'
h(6,w) =-6 27 2 sin 0 [Zth(w)c:osk(h—|z'|r‘)+jsink(h—Iz'l)]eJ z cosedz'_

L () E:os kirtjZ Y (1) sinkh|
: -h (3.42)
The received voltage is then o

o0 = T jwt
ZL(w) Ei(e,w) h(0,w) e

ZL(w) + Zin (w)

VL(G,t) = or dw , (3.43)

=00
where Ei(G, w) is the Fourier transform of the transient electric fiel‘d intensity
of the incident plane wave. The form of the integral (3.42) is similar to that

of (3.30). The received transient waveforms will therefore vary with incidence
angle in a manner analogous to the transmitting case which was shown in Fig.
3-4.

3.7 Transient Coupling of Biconical Antennas

The preceding separate analyses!of transmission and reception of transient



115

signals by biconical antennas can be combined. The transient signal received
by one biconical antenna in the radiation field of another biconical antenna that
is driven by a transient source can be formulated in terms of vector effective
height functions. The expression has already been presented as (2. 86) when
applied to transmission lines as the transmitting and receiving structures. The
formulation applies to any transmitting and receiving combination of trans-
mission lines and biconical antennas and to other antenna types for whichh(£, w)

can be determined.



Chapter IV
CONCLUSIONS

The current on a resistively loaded transmission line can be expressed
in an exact closed functional form when the resistance varies linearly with dis-
tance along the line. The expression consists of complex Airy functions. For
nonlinear resistance distributions, a numerical solution for the current can be
obtained.

Materially different current distributions are produced by different re-
sistance functions. Of the resistance distribution functions investigated, the

optimum was found to be

Z
01-2

R(z)=%Z

This resistance loading function produces the best input impedance match as
well as a current traveling wave of maximum amplitude on a transmission line
with an open circuit termination. An exponential function is nearly as effective.
Other functions create a greater input impedance mismatch and produce either
a greater attenuation of current or allow the current to deviate} by more thana
prescribed amount from a traveling wave. Uniform resistance ibgding, which
is the most commonly encountered type due to its analytic tractability, and a
single discrete resistance, which is perhaps the simplest to fabricate, are par-
ticularly poor for impedance matching and minimizing reflections. Properties
of resistance distributions which are responsible for producing the desired
features in a current distribution are evident. High resistance near the end
of the transmission line is needed to reduce the reflected wave. Low resis-
tance loading over the rest of the line is necessary to retain a large amplitude
of the outward traveling current wave. The proper smooth»t_rilnsitioh between
low and high resistance regions is needed to reduce the net reflections from the
transition.

The analysis of transmission lines loaded by continuous resistance dis-

tributions requires a large amount of computer time. Significantly less
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computation is required for analysis of transmission lines loaded by lumped re-
sistances at discrete positions along the lines. The construction cost of a dis-
cretely loaded line should also be lower. Results of the discrete analysis
approach those of the continuous analysis when the separation of the discrete
resistances is on the order of 1/8 of the shortest wavelength of interest.

For nonuniform resistance loadings, a transmission line may be consid-
ered to possess a characteristic impedance which is a function of position along
the line and differs in the two directions. Expressions for this quantity can be
derived by the technique of invariant imbedding.

An improvement in precision over previousry published}’analyses of tran-
sient ‘rédiation from biconical antennas 1s possiblé by concentrating on thin
biconical antennas, Small cone angles allow the use of a closed form expression
for an effective terminating admittance. This improvement over the usual
truncated infinite series improves the accuracy of the expressions for current
distribution and input impedance. These in turn improve the accuracy of ex-
pressions for the radiated field and received signal.

When the resistively loaded transmission lines and thin biconical antennas
investigated here are driven by a transient source, their transient radiated
waveforms are direction-dependent and their radiation patterns are time-depen-
dent. These results, as determined by the Fourier transform approach, agree

with a rudimentary time domain view which ascribes radiation to temporal

variations incurrents that travel on the structures. In the case of a resistively
loaded transmission line, 7attenuation and distortion of current waves as they
traverse the line influence the shape of the radiated waveform and the radiation
pattern. Thus the resistance distribution function is a possible means of _é;?r;

trolling radiated pulse shapes for the electromagentic pulse simulation problem.'



Chapter V
RECOMMENDATIONS

Topics for further research became apparent during the course of this
investigation. Analysis of transient radiation and reception from additional
types of antennas would be valuable. Examples are planar and conical loga-
rithmic or Archimedean Ws’pira?i.antennas which characteristically have broad
bandwidths. For the purpose of determining radiation fields, such antennas

‘might be modeled adequately as spiraled transmission lines. As radiators,
these antennas may have properties of interest to the electromagnetic pulse
simulation problem. As receivers of transient signals, spiral antenna's are

»

interesting due to their “c»o;g;rgon operational use where expos’ure' to én electro-
magnetic pulse is a consideration.

An investigation, using the EMF ;{(}E}fﬁ_fﬁlrod‘ll, of the input impedance of a
resistively loaded linear antenna could be attempted. The resistance can be
in the form of continuous and discrete serieé resistance loading similar to
that of the transmission lines in the present dissertation. If successful, this
investigation could lead to a study of transient radiation and reception by re-
sistively loaded linear antennas that applies the results of the loaded trans-
mission line work.

The transmission line, or perhaps a linear antenna, analysis could be
extended to include resistances that are more complicated than the monoton-
ically increasing functions of distance that have been covered.

There would be some practical value toa catalog of time domain wave-
forms radiated from linear antennas for a range ofigr-ltv;e;;; iengfli; fesistance

distributions and source waveforms. This type of data would be useful to

those involved in electromagnetic pulse simulation.
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Appendix A
COMPUTATION OF CURRENT ON RESISTIVELY
LOADED TRANSMISSION LINES
The amplitude and phase of the current in the frequency domain can be
computed numerically as a function of position along the resistance-loaded
transmission line as described in Chapter II, The FORTRAN program which
was written specifically to compute the current by édlviné equation (2.24) with
boundary conditions (2.25) is listed below, The progrramrhi‘swé;n;ﬁétible with
the Michigan Terminal System at the University of Michigan as of January 1,
1973.

Input data, with the following nomenclature, is required by the program:

KMAX = the number of frequencies for which the current
distribution is to be computed,

F1 = the fundamental frequency,
XMAX = the length of the transmission line,

ZC = the characteristic impedance of the associated unloaded
transmission line,

RR = the resistance distribution function,

FFF = the frequency generating function,

Output data from the computations includes a printed record of the
following quantities:

FF = the individual frequencies,

NNN = the frequency-dependent number of equispaced positions
- along the transmission line for which computed
results are recorded,

RIN = the input resistance of the loaded transmission line at
each frequency,

XIN = the input reactance of the loaded transmission line
at each frequency.
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The input resistance and reactance of the loaded transmission line
for each frequency are also put into file storage for use in subsequent com-
putations of transient waveforms and radiation patterns. In addition, the
amplitude and phase of the current at all frequencies and all positions along
the transmission line are stored in a separate file for use in subsequent com-
putations.

With comments removed for brevity, the program listing is as

follows.
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EXTERNAL AFCT,FCT,DFCT,0UTP
NAMELIST/HAL/KMAX,F1 4XMAX,ZC
COMMON KMAX, F14 FF, ZC, 2(331), YMOD(331), YARG(331),
&NN,DIDZRF(331),DIDZIM(331)
DIMENSION B(444)3C(494)3R(4)+Y(4)yDERY(4),AUX(2044),
EA(4,4) yPRMT (5)yBDUM(4,44),CDUM(4,4) ,RDUM(4),DERYDM(4)
COMPLEX CRNT, DIDZ, ZQUAD
DATA 8/1-74*00910ilo*OC/QC/OUYOO 710’4*0011018*00/9R/10Q
63%04/9DERY/4%]) 4/ +BCD/ %Y/
READ (5,HAL)
WRITE (6,HAL)
WRITE(6420)
20 FORMAT('0!')
WRITE(6,28)
DO 180 K=1,KMAX
FF=FFF(K)
XINC=XMAX/ (1+AINT(10.6666TE-8*FF*XMAX))
PRMT(1)=0.
PRMT(2)=XMAX
PRMT(3)=XINC
PRMT(4)=,01
NDIM=4
NN=0
DO 10 I=1,4
RDUM(TI)=R(TI)
DERYDM(I)=DERY(I)
DO 10 J=1,4
BDUM(TI,J)1=B(1,4J)
COUM(TI,4)=C(I,J)
10 CONTINUE '
CALL LBVP(PRMT, BDUM, CDUM, RDUMy Yy DERYDM, NDIM, IHLF,
EAFCTyFCToDFCTHyDUTP yAUX4A)
NNN=2+AINT(10.6666TE-8%FF*xXMAX)
CRNTRE=YMOD(1)*COS(YARG(1))
CRNTIM=YMOD(1)*SIN(YARG(1))
CRNT=CMPLX(CRNTREZCRNTIM)
DIDZ=CMPLX(DIDZRE(1),DIDZIM(1))
ZQUAD=.,4T7746483E8%*ZC*DIDZ/ (FF*CRNT)
RIN==AIMAG (ZQUAD)
XIN=REAL(ZQUAD)
WRITE(6429) KyFFyNNNyYMOD(NN) yRINyXIN
WRITE(7) RINJXIN
PO 180 I=1,NN
G=ARS(Z(I)=(AINT(Z(I)/(XINC=-.000001)))%XINC)
IF(GeLE«0.00001) WRITE(8) YMOD(I),YARGI(I)
IF(GeLE+0.,00001) WRITE(9) DIDZRE(I),DIDZIM(I)
180 CONTINUE
28 FORMAT('K',T8,y'FREQUENCY',T23,'NNN*',T32,
EYEND CURRENT!' yT54,'RIN'3T69,'XIN')
29 FORMAT(I3¢y3X9E12469y 4X91496XyE10.449XyEllebyaXyEll.4)
END
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SUBROUTINE AFCT (X, A) .
CONMON KMAX, 71, FF, 4C, 4(331), YMCL(331), YARG(331),
6NN, DIDZRE (331),DIDZIM (331)

DIMENSION A(U,4)

A(1,1)=0.

A(1,2) =n,

a(1,3)=1.

A(1,“) =00

A(2,1)=9.

A(2,2) =0,

A(2,3) =0,

A(2,4) =1,

A(3,1)=-,U4386U908E~-15*(FF**2)

A(3,2)=-.20943951E-7T*FF*aR (X) /4C
A (3,3) =0.

A(3,4)=.
A(4,1)=.20943951E-T*FF*RR (X) /2C
A(4,2) ==.4386U908E-15% (FF**2)

A (4,3) =0,

A(Q,U) =0,

RETURN

END

SUBROUTINE FCT(X,F)
DIMENSION F (4)
F(1)=0.

F(2)=9.

F(3) =0,

F (4) =0.

RETURN

END

SUBKOUTINE DFCT (X,DF)
DIMENSION DF (U4)

DF (1) =0.

DF(2) =0.

D7 (3) =0.

DF(“) =0,

RETURN

END
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SU3ROUTINE OUT? (X, Y,LCERY,IHLF,NDIH,PskT)
DIAZNSION PRMT(1),Y(1),DERY (1)

CUMMON KdAAX, F1,

FF, 4C, 2(331), Y40D(331), YARG(331),

&NN,DIDZRE (331),DIDZIM(331)

IF (NN .GT. 497)
NN=NN+1
Z (NY) =X

P&NT (5) =

YMOD (NN) =SQRT (Y (1) **2+Y (2) **2)
YARG (NN)=ATAN2 (¥ (2) ,Y (1))

DIDZRE (NN) =X (3)
DIDZIM(NN)=Y (4)
RETURN

END

V5UJROUTINE LBve (PRNT,8,C,R,Y,DERY,NDIM,IdLF,AFCT,FCT,

1DFCT,OUTP,AUX,A)

DIMEZINSICN PRMT(1),E(1),C(1) R(1),Y(%),DEKL (1),

1AUL (29, 1) ,A(Y)

IF (PRMT (3)* (PRMT (2)-PRNT (1)))2,1,3

IdLF=12
RETURN
IdLF=13
RETURN

8=J

Ic=?

DO 7 K=1,NDIM

AUX (15,K) =DERY (K)

AUX (1,K) =1

S AUX(17,K) =1

9

]

[

KK=KK+NDIM

DO 4 I=1,NDINM
II=KK+I
IF(3(I1))5,4,5
CUNIINUE
I18=IB+1

AUX (1,K)=0.

Do 6 I=1,NDIN
II=KK+I
IF(C(I1))7,6,7
CONTINUE
IC=IC+1

AUK (17,K) =0
CONTINUE
IF(IC-IB)8,11,11
H=PRMT (2)
PRAT (2) =PEMT (1)
PRMT (1) =l

PRMT (3) ==PRMT (3)
DO 9 I=1,NDIN
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AUX (17,1)=AUX(1,I)
II=NDIM*NDIN

DO 10 1=1,1II

=B (I)

B(I)=C(I)

C(I)=H

X=PRMT (2)

CALL FCT(X,Y)

CALL DFCT (X,DERY)

DO 12 I=1,NDIN

AUKX (18,I) =Y (I)

AUX (19, I) =DERY(I)
K=0

KK=9

n=K+1

IF (AUX (17,K)) 108,108,101
X=PRMT (2)

CALL AFCT (X,A)
Su¥=0.

GL=AUX (18 ,K)

DGL=AUX (19,K)

II=K

DO 104 I=1,NDIM
H==A(II)

DERY (I)=H

AUX (20,I)=R(I):

Y (I)=0,
1F(I-K)103,102,1GC3

Y (I)=1.
DGL=DGL+H*AUX (18,1I)
II=II+NDIMN
AEND=PRNT (1)
H=.0625% (XEND=X)
1S54=0

GOTO 400

IF (IHLF=-10)106,106,117
DO 107 I=1,NDIA
KK=KK+1

d=C (KK)
R(I)=AUX(20,I)+H*SUM
II=1

20 107 J=1,NDIA
B(II)=B(II)+H*Y (J)
1I=II+NDIN

GOTO 109

KK=KK+NDIM

IF (K-NDI#) 100,11C, 110
L=PRMT (U)

CALL GBELG(R,B,NDIM,1,X,I)
[e(r)111,112,112
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300
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IHLF=14

RETURN

PRAT (5) =0.

IHLF=-1

X=PRUT (1)

XEND=PRYT (2)

H=PRAT (3)

DO 113 I=1,NDIM

Y(I)=R(I)

I54=1

ISd2=12

GOTO 2C9

ISa3==1

¢O0I0 309

IF(IHLF) 409,400,117
ETURN

CALL AFCT (X,A)

IF (ISH) 201,261, 205

LL=D

DO 203 #=1,NDI#

HS=D,

DO 202 L=1,NDId \

LL=LL#+1

dS=4S=A (LL) *¥ (L)

DZRY (M) =HS

G0T0(502,504,536,407,415,418,608,617,632,034

1ISW2

CALL FCT (X, DERY)
V0 2067 FK=1,NDIM
LL=4-NDIHN

Hs=9,

DO 206 L=1,NDI4
LL=LL+NDIY
AS=HS+A (LL) *Y (L)
DERY (%) =HS+DERY (M)
s0OT0 204

LF ([SA) 301,301,305
CALL FCT (X,R)
csuU=0,

DGU=J.

DO 302 L=1,NDI4
GU=GU+Y (L) *R (L)
DGU=DGU+DERY (L) *R (L)
CALL DFCT (X,R)

DO 303 L=1,NDIH
DGU=DGU+Y (L) *R (L)
SUN=SUMN+,5*Ii% ((GL+GU) +, 1666667 *H* (DGL-DGU) )
eL=GU

DGL=DGU -
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IF(ISW3)116,422,618

CALL OUTP(X,Y,DERY,IHLF,NDIM,PRNMT)
IF (PRAT (5)) 117,304,117

N=1

X3I=X

IHLF=0

DO 461 I=1,NDIA

AUX (16,1I) =0,

AUX (1,I)=Y(I)

AUA (8, I) =DERY (I)

ISW1=1

GOTO 500

X=X+l

DO 493 I=1,NDIM

AUK (2,1)=Y(I)

IHLF=IHLF+1

X=X-H

DU 405 I=1,NDIN

AUX (4, I)=AaUX(2,1I)

id=,5%4

N=1

ISW1=2

GOTO 500

L=X+H

ISW2=4

GOTO 200

N=2

DO 408 I=1,NDIN

AUX (2,I)=Y(I)

AUX (9, I) =CERY (I)

ISd1=3

60TO 509

DO 414 I=1,NDIN

Z=ABS (Y (I))
IF(4=1.)410,411,411

4=1.
DELT=.06666667*ABS (Y (I) ~AUX (4,I))
IF (IS4)4%13,413,412
DELT=AUX(15,I)*DELT

IF (DELT-%%*PRMT (4)) 414,414,429
CONTINUE
X=X+Hd

ISW2=5

G0TO 200

DO 416 I=1,HDIM
AUX (3,I)=Y(I)
AUX (10,I) =DERY (I)
N=3

ISW1=4

_GOTO 500 _



132

417 N=1
X=X+H
ISH2=0b
¢0TO 220
413 X=XST
D0 419 I=1,NDIV
AUX(11,I)=DERY(I)
Il&‘HOi(I)=AUX(1,I)*d*(.375*AUX(8,I)+.7916L67*AUX(9,I)
| 1-.2783333*AUX(10,I) +.74166667*DERY (I))
l“ZJ X=X+H
N=N+1
ISd2=11
GOTO 299
421 ISH3=0
30T0 300
42:. IF(N-4)U23,600,6CC
425 DO 424 I=1,NDIM
AUX (N,I)=Y(I)
424 AUX(N+7,I)=DERY (I)
IF(N=3)u425,427,60C
425 DO 426 I=1,NDIY
ELTI=AUX (9,1)+AUX (9,I)
DELI=DZLT+DELT

420 ¥ (I)=AUX{(1,I)+.3333333%H* (AUX(8,I)+LiLTI+AUX(10,I))

GO0TO 429
427 DO 428 I=1,NDIY
DELI=AUKX (9,I) +AUX(1C,I)
DELI=DELT+DELT+DELT
426 { (I) =AUX(1,I)+.375%d% (AUX(8,I)+DELT+AUX(11,I))
GOTO 420
423 IF (IHLE-10)404,430,430
43y IdLFP=11
X=X+H
IF (ISW¥) 105,105,114
50v 6=4
DO 501 I=1,NDIH
X=H*AUX (N+7,1)
AUZ (5, I) =X
501 Y (L) =AUXK (N,I)+.4%X
X=4+.4%H
ISd2=1
GOTO 200
50« D0 503 I=1,NDINM
X=H*DERY (I)
AUX (6, I) =X
504 Y (I)=AUX(N,I)+. 2969776*AUK(5 I)+.158715%0%(
A=4+,4557372*H
ISW2=2
GOTGC 200
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53+ DU 505 I=1,NDINM
X=d*DERY (I)
AUX (7, I)=X
505 Y (I)=AUX(N,I)+.2181CNU*AUXL(5,I)-3.0509€5*AUX (6,1)
1+43.,8328659%X
ISWZ=3
GOTO 2C0
500 DO 507 I=1,NDIH
5070Y (I)=AUX(N,I)+.,1747603*%A0X(5,I)=.55143L7*aUX (6,1)
141,205536*AUX (7,1I) +.17118UB*H*DEKY (I)
X=4
SOTO (4€2,406,409,417) ,1I541
6Ju ISTEP=3
601 IF (N-8)6C4,0602,6CH
69. DO 603 N=2,7
DO 613 I=1,NDIN
AUX (N=-1,I)=AU0X(N,I)
603 AUXL (N+6,I)=AUL(N+7,I)
N=7
604 N=N+1
DO 5355 I1I=1,NDId
AUX(N=1,I)=Y(I)
6U5 AUX (N+6,1I)=DERY (I)
X=£+H
60o ISTEP=ISTEP+1
DO o007 I=1,NDIX
QJELI=AUX(N~H,I)+1.333333*H*(AUX(N*G,I)*AU&(N*6,I)-AUX
1(N+5,I)+AUX(N+4,I)-AUX(N+Q,I)))
{ (I)=DELT-.9256198*AUX(16,1I)
607 AUX(16,I)=DELT
ISa2=7
s0TO 20N
600 DO 6C9 I=1,NDid
ODELT=.125*(9.*AUX(N-1,I)-AUX(N-3,1)+3.*A*(DERY(IY¥
TAUX (N+6,I)+AUX(N+6,I)=AUX (N+5,I)))
AUX{16,1)=AUX(16,I)-DELT
605 Y(I)=DELT+.C7433C17*aUX(16,1I)
DELT‘:O .
DO 616 I=1,NDIN
4=ABS (Y (I))
IF(4-1.)610,611,611
61y 4=1.
611 4=A3S (AUX (16,1))/%
IF(IS4)613,613,612
612 4=AUX (15,1) *2
613 IF (Z-PRMT (4))614,614,628
61+ IF(DELT-2)615,616,616
61> DELT=2
610 CONTINUE
ISW2=8
G0TO 209
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ISd3=1
60T0 370
IF (d* (X-XEND)) 619,621,621

IF (ABS (X=XEND)=.1*ABS (li)) 621,620,620
IF (DELT-.02*DKAT(4)) 622,622,601
IF(ISwW)105,1C5,117

IF(IHLF) 601,601,623
IF (N=7)6C1,624,624
LF(ISTCEP-4)601,€25,¢€25
IMOD=ISTEP/2

IF (ISIEP-IMOD-INOD)601,626,6GC1
d+ i

1HLE=IHLF-1 .
ISTEP=0

DO 627 1=1,NDIH

AUK (N=1,IL)=AUX(N=-2,1I)
AUL(N=2,1)=AUK(N=U,1I)

AUX (N=3,I)=AUX(N=6,1I)

AUX (N+6,I)=AUX(N+5,I)

AUX {N+5,I) =AUX(N+3,1I)
AUX(N#+4,I)=AUX(N+1,1I)
DELI=AUK(N+6,I) +AUX (N+5,1)
DELT=DELT+DELT+DELT
VAUK (16,1)=8,962G€3*% (Y (I)~AUX(N=3,I))=3.361111*u* -
1DERY(I) +DELT+AUKX (N+4,1))

GOTO 601

IHdLF=IHLF+1
iF(IHLF-10)€30,63(,629

IF(ISA) 105,135,114

) = 5%H

ISTEP=D
DO 631 I=1,NDIA

VY (I)=.0039C625% (8C ., *AUX (N=1,I)+135,%AUx (N=2,I)+40.*AUX

1(N=3,I) +AUX (N=4%,1))=.1171875% (AUX (N+€,1)=6.%AUX (N+5,1)

VAUL (N=4 I)-.L0390623*(12 *AUX (N=1,1) +133.%AUX (N=2,1I)+

1108, %AUX (N-3,I) +AUX (N~4, I))-.023u375*(AUX(N+6 I)+18 *

2aUX (N+5,1) -9.*4UX (N+4,I)) *H
29.*AUX (N+4,I))*H

AUX (N=3,I)=AUX(N=2,1I)
AUX (N#4,I) =AUX(N+5,I)
DELT=X~H

X=DELT~ (d+d)

ISd2=9

GOTO 200

DO 633 I=1,NDId

AUX (N=2,I)=Y (I)

AUKL (N+5,I) =DERY (I)

Y (I)=AUX(N=4,I)

X=X- (d+H)

ISW2=10

GOTO 200
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635
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{=DELI
DO 635 I=1,NDIH

DELI=AUX(N+5,I)+AUX (N+U,I)

DELT=DELT+LCELT+DELT

AUK (N+3,I) =DERY (I)
S0TO 606
ZND

GAUX (16,I) =8.962963* (AUX (N=1,I)=Y (I)
1(N+6,I)+DELT+DSKY (I))

SUBFOUTINE GELS(R,A,M,N,EPS,IER)

DIMENSION A(1),R(1)
IF(M)23,23,1

IER=0

PIV=0,

UN=4*H

NM=N*}

D0 3 L=1,MM
TB=ABS (A (L))
Ir(TB~PIV)3,3,2
PIV=1B

I=L
CONTINUE
TOL=EPS*PIV
LST=1

DO 17 K=1,H4
IF(PIV)23,2
iF(IER) 7,5,
I7(PIV-TOL)
IER=K-1
PIVI=1./A(I)
J=(I-1)/M
[=I-J%M~-K
J=J+71=-K

D0 3 L=K,NM,N
LL=L+I
TB=PIVI*R (LL)
R(LL) =R (L)

a (L) =
IP(K-1)2,18,18
LENC=LST+M=-K
IF(J)12,12,10
II=d%}

20 11 L=LST,LEND
TB=A (L)

LL=L+II

A(L) =A(LL)
A(LL)=TB

3,
7
6,

=3,301111*H* (AUX
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LL=L+I
TB=PIVI*A(LL)

A (LL) =A (L)

A (L) =TB

A (LST) =J

PIV=ﬂ.

LST=LST+1

J=9

DO 16 Ii=LST,LEND
2IVvI==-A(II)
IST=II+¥H

J=J+1

DO 15 L=IST,MH,M
LL=L=J

A (L) =A (L) +PIVI*A (LL)
I'3=ABS (A (L))

IF (TE-PIV) 15,15, 14
PIV=TB

I=

CONTINUE

DO 16 L=K,NM,N
LL=L+J

R(LL) =R (LL) +PIVI*R (L)
LST=LST+4

IF (M-1)23,22,19
IST=rN+Y
LST=H+1

D0 21 I=2,M
II=LST~-I
IST=ISI-LST
L=I57T-Y4

L=A (L) +.5

D0 21 J=II,NM,NM
TB=R (J)

LL=J

DO 25 K=IST,NM,M
LL=LL#1
TB=TB-A(K) *R (LL)
K=J+L

R (J) =R (K)

R(K) =TB

RETURN

IEr==1

LEZTURN

END



Appendix B

COMPUTATION OF TRANSIENT RADIATION FIELD OF
RESISTIVELY LOADED TRANSMISSION LINE

The time domain transient waveform of the electric field radiated by
a resistively loaded transmission line can be computed from equation (2.76).
a FORTRAN program which was written for this purpose is listed here. The
program is compatible with the Michigan Terminal System at The University
of Michigan as of January 1, 1973,

Input data required by the program include the input impedances and
current distributions of the loaded transmission line. This data is available
from a storage file into which it was placed by the program of Appendix A.
The following additional input data, identified by program nomeﬂéléfﬁié, are
also required:

ZS = source impedance,

S = separation between conductors of the transmission line,
expressed in meters,

THETA = the polar observation angle 6,

PHI = the azimuth observation angle § .

Computed output data include a printed record of the discrete Fourier
spectral content of the approximate step function source voltage and the
resulting source current., In addition, the far field radiated transient
waveform is tabulated as well as plotted in a coarse graphical form.,

The computer program is written in two separable parts to allow flex-
ibility in its use. The parts may bewa‘prpilied to the ‘cirﬁputation of transient

waveforms of voltage and current on the transmission line and far field radia-

tion patterns. A listing of the program is as follows:
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DIMENSION RIN(99),XIN(99),A(99)yB(99),D(99),F(99),
£5(99),V(201),C(201)
25=300.
KMAX=99
TINC=.16835E-9
WRITE(6,100)
WRITE(6,110)
DO 10 K=1,KMAX,2
READ(7) RIN(K)yXIN(K)
ALK)=(.B015T*KMAX/K*%2)*SIN{1.5708%K/KMAX)
B(K)=ZS+RIN(K)
DIK)=(B(K)*%2+ (XIN(K))*%2 ) %% 5
FIK)=ATAN2 (B(K)yXIN(K))
S(K)=A(K)/D(K)
F(K)=F(K)=1.5707
WRITE(10) S(K),F(K)
10 WRITE(6,150) KyA(K)yS(K)oFI(K)
WRITE(6,100)
100 FORMAT('0")
110 FORMAT(T12,'HARMONIC',T23,'VOLTAGE AMPLITUDE',
£T44 , "CURRENT AMPLITUDE®,T65, 'CURRENT PHASE+PI')
150 FORMAT(14X,13,8X,E1044413XyE1044+13X,E10.4)
END

NAMELIST/INPUT/KMAX s F13JMAX9sTINCy XMAX Sy THETA,PHI
DIMENSION U(50)'V(50),x14075),Y(4075) E(201).TI(201),
EIMAGE(1500)

DATA E/50%0./+BCD/V%V/
READ(5,INPUT)

WRITE(6,INPUT)

EMAX=.1E~10

L=0

DO 20 K=1,KMAX

READ(10) U(K),yVI(K)

FF=(2%K-1)%F1

W=6,283185%FF
NNN=2+AINT(10.6666TE-8%FF%xXMAX)
XINC=XMAX/ (NNN-1)
C=Wx*XINC*COS(THETA)/«3E9
D=W*TINC
A=WxXXINC*U(K)*SIN(W*S*SIN(THETA)
ExCOS(PHI)/ «6E9)

DO 10 N=1,NNN

READ(8) X(L+N)yY(L+N)
P={N-1)*%C+V(K)+Y (L+N)

B=A%X (L+N)

DO 10 J=1,JMAX

10 E(J)=E(J)+B*COS((J=1)*D+P)
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20 L=L+NNN
DO 30 J=1,JMAX
TIH(J)=J
G=ABRS(E(J))
30 EMAX=AMAX1 (EMAX,G)
H=EMAX®=STIN(THETA)
WRITE(6,110) H
WRITE(6,120)
DO 40 J=1,JMAX
E(JY=E(J)/EMAX
40 WRITE(6,130) LJyE(J)
WRITE(6,100)
WRITE(6,100)
CALL PLOT1(04+341642,48)
CALL PLOTZ(IMAGE,SO-!O.'I.)"].O)
CALL PLOT3(BCD,TIyE450,44)
CALL PLOT4 (264 'NORMALIZED RADIATION FIELD?')
WRITE(6,140)
100 FORMAT('0") ‘
110 FORMAT('*MAXIMUM FIELD MAGNITUDE=',El12.6)
120 FORMAT('TIME INDEX'3T14,'RADIATED FIELD®)
130 FORMAT(3X,y13,10X4F10.4)
140 FORMAT(//T33,'TIME INDEX?')
END



