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ABSTRACT

THE ELECTROMAGNETIC THEORY OF THREE-DIMENSIONAL
INHOMOGENEOUS LENSES AND THE DYADIC
GREEN'S FUNCTIONS FOR CAVITIES

by
Pawel Rozenfeld

Co-Chairmen: Chen-To Tai, Chiao-Min Chu

In this thesis the dyadic Green's functions of a number of cavities
have been derived and the characteristics of some inhomogeneous lenses
have been investigated.

To facilitate the treatment of problems involving‘cavitie’s we have
found the expressions for the dyadic Green's functions perta1mng to rec-
tangular, cylindrical and spherical cavities. Expressions for the electric
and magnetic field involving‘ the Green's functions are presented. An example

of the application of the dyadic Green's function technique to the computations

of the input admittance of the rectangular cavity is given.
The lenses covered in our work include: the Luneburg, Eaton-Lipp-

mann and Eaton. The dyadic Green's functions for electric and magnetic
dipoles in the presence of these lenses are found. The expressions for the
electric field of an Huygens source in the presence of an inhomogeneous lens
are constructed. Radiation patterns and the bistatic scattering cross sections
for the small-diameter lenses and the directivity and the distribution of the
energy around the geometrical focus of the Luneburg lenses are examined

in detail.
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I
INTRODUCTION

The aim of the present work is the application of the dyadic Green's
function technique to two classes of problems of electromagnetid theory: the
interior problem and the exterior problem,

The interior problem is represented by the study of electromagnetic
fields in the interior of the cavity when the cavity is excited by some source
of energy either inside or at an aperture. Three types of cavities are con-
sidered: rectangular, cylindrical and spherical.

The problem of the cavity is treated in almost every book on electro-
magnetic theory with varying degrees of mathematical difficulty. In many of
them the cavity is treated as a particular case of waveguide.r VHowefler, from
the mathematical point of view, the problems of a waveguide and a cavity are
quite distinct, because in the latter the spectrum of the vector wave operator
is completely discrete while in the former it is not.

The exterior problem is represented by the study of propagation through
and scattering by inhomogeneous spherical lenses. The Luneburg, Eaton-
Lippmann and Eaton are in{}estigafed. All of their properties are known from
geometrical optics, and brief reviews of these properties and published works
related to the lenses are found in their respective sections. However, the
exact electromagnetic formulation of the properties of these lenses is far
from being complete.

The Luneburg lens is the most studied among all the lenses; the reasdﬁ
for this is that it allows us to scan the beam in a 360° region without any
distortion. The Eaton-Lippmann lens has also been thoroughly investigated
because, from geometrical optics, it should work like an i_sbtx;;)i)ic reflector.

Among less studied lenées is the Eaton lens, which should behayg

like a divergent lens according to geometrical optics.



In the process of studying propagation of electromagnetic waves in
inhomogeneous media, we are faced with the problem of solving sometimes
rather difficult differential equations. The difficulty lies in finding some
convenient change of variables which allows us to cast them in the form of
some standard differential equation. In this respect works by Heading (1965),
Westcott (1968a,b) and Sharaf (1969a,b) deserve our attention. The basic idea
of these works is to start from standard differential equations, and find all the
possible relative permittivity distributions which can be fitted into them by
means of suitable change of variables. A review of other techniques used in the
electromagnetic formulation of the scattering by the inhomogeneous lenses can
be found in Kerker's (1969) book.

The outline of the present work is as follows. In Chapter II dyadic
Green's functions for the electric dipole excitation for the cavities are con-
structed. The method used is the one described recently by Tai (1973). However,
it has not been applied before to find the dyadic Green's function in the cavities.
Besides the dyadic Green's functions for the electric dipole excitation intro-
duced previously by Tai, a new type of Green's functions is introduced here.
These are the dyadic Green's functions for the magnetic dipole excitatioﬁ and
they are used mainly in the formulation involving a Huygens source. The appli-
cation of the dyadic Green's functions technique to cavities is illustrated by an
example.

In Chapter II, it is shown that the duality between the free-space dyadic
Green's functions of electric and magnetic types for the electric and magnetic
dipole excitation does not hold in an inhomogeneous medium.

By the method of scattering superposition, the dyadic Green's functions
for the electric and magnetic dipole excitations in the presence of the lens are
constructed. Electric fields of the electric and magnetic dipoles in the presence
of the lens are found. Dyadic Green's functions for the magnetic dipole exci-

tation as well as the corresponding electric and magnetic fields in the presence



of the lens have not been previously discussed by Tai (1971) in his book.
For completeness, we present here as an extension of his work.

In Chapter IV, we present a review and a more detailed discussjon of
the theory of the Luneburg and Eaton lenses originally discussed by Tai
(1971). The exact electromagnetic theory of the Eaton-Lippmann lens is
worked out. The numerical computations of the radiation patterns, the
bistatic scattering cross-sections of all lenses, and the directivity and
distribution ot ehe energy around the geometrical optics focus of the Lune-
burg lenses are included. This reprgéeﬁfg one of the main contributions
of this thesis. “

In Chapter V, the conclusions and the recommendations for future work
are presented. In conclusion, we summarize below the important results
contained in this thesis: for small Luneburg lenses we found that the loca-
tion of the focal point of the lenses is displaced from the rim. As the radius
of the lens increases the focal point tends to move to the rim. For the Eaton-
Lippmann lens the backscattering cross-section of the lens approaches its
geometrical cross-section as the radius of the lens increases and, finally,
the radiation patterns and the bistatic scattering cross-sections of the Eaton
lens are presented to show some of its characteristics from the electro-

magnetic theory point of view.



II
CAVITIES

2.1 Introduction

One method of attacking the interior problem is by‘exbéﬁfg the electro-
magnetic field in the cavity in terms of a complete set of o;thogonal functions
so that the problem of solving the Maxwell's equations in the cavity is reduced
to the determination of the expansion coefficients.

Slater (1950) expanded the electric field in terms of solenoidal and irro-

tat/irdnfal’ modes while the magnetic field was expanded iin terms of solenoidal

modes only. The reason for this is that the magnetic field is itself solenoidal.

Using these expansions Slater determined the input‘ﬁimpedance of the cavity.

The expression for the impedance obtained by Slater was later found out to be

incomplete.

T'eichmanri and Wigner (1953) found that the set of solenoidal modes of a
completely closed cavity used in the expansion of the magnetic field in the
cavities excited through holes is incomplete., They completed the set by adcrl:
ing an irrotational term to the set of solenoidal modes. This irrotational term
corresponds to zero eigenfrequency of the solenoidal modes of a completely
closed cavity and it contributes a term inversely proportional to the frequency
in the expression for the input admittance.

Kurokawa (1958) presented a method which is more convenient for a gen-
eral discussion. He started with a set of functions which is known to be com-
plete for a cavity with holes. This set is composed of solenoidal modes which
are the same as that of completely closed cavity and a set of irrotational modes.
He expanded the electric and the magnetic fields in terms of these solenoidal
and irrotational modes. Expanding all the terms which appear in the Maxwell's
equations, Kurokawa was able to find the expansion coefficients and conse-
quently the input admittance of the cavity. He gave an example in which if the
irrotational terms are not considered in the expansion of the magnetic field,

the result would be wrong.



As it will be shown in this thesis, the use of the dyadic Green's function
technique allows us to determine the expansion of the electric and magnetic
fields in a cavity in a direct and elegant manner; the irrotational terms which
appeared in the previous works are inherently contained in the expansion of
the magnetic field based on the present method.

In order to solve the vector wave equations in a cavity, two dyadic
Green's functions are introduced, one of them, designated by Em, is solenoidal
and the other, designated by (=Se, is non-solenoidal. The function ﬁm is expand-
ed in terms of solenoidal vector wave functions while Ge is expanded in terms
of irrotational as well as solenoidal vector wave functions. The electric and
magnetic fields are given by integrals involving the dyadic Green's functions
and the source functions. An example using the dyadic Green's function tech-

nique will be given and the result thus obtained agrees with that of Kurokawa.

2.2 Electric and Magnetic Fields for Electric and Magnetic Dipole
Sources -

The electromagnetic field in the interior of a cavity with current source

J is described by the Maxwell's equations

V x E=1wuoH

vXH=5-iweoﬁ

where the time dependence of the type e—lwt is assumed. By eliminating

E or H from these two equations, we get

- 92 -

Vx Vx E-k E=iwud (2.2)
and

Vx Vx B-K H=VxJ (2.3)

In order to integrate these equations, we introduce two types of dyadic Green's

functions: Ee’ (electric) and Em’ (magnetic). They satisfy the dyadic version



of Maxwell's equations excited by the infinitesimal current sources

and

where T is the idemfactor and 6 (R - R') is the three-dimensional Dirac

delta function.

The above equations are coupled in the sense that Gm and Ee appear in
both of them. By taking the curl of every one of them and substituting one in

another, we obtain the uncoupled equations, namely

O
ol

e=T6(I_1-R') (2.6)

and I e
= 2
Vx Vx G -k

m

VXVXE -k
e

N A

G =Vx[Ta(R—R')] . (2.7)

Now, the reason for introducing beforehand two different dyadic Green's
functions, Ee and ém, is apparent: the equations which Ee and Em satisfy
differ by the inhomogeneous term. Also,

= 1 = = = 1 - - =
V.G =-—7 V.I6(R-R')=- =Vé&(R-RY

e k2 k2 -

and

Therefore, G_ is solenoidal dyadic while Ee is non-solenoidal.

In Tai's (1971) book, dyadic Green's functions of the first and second
kinds are defined only for the electric type; equation (2. 7) was not mentioned.
In a recent report (Tai, 1973), a more refined classification of various dyadic

Green's functions is given. In this work, we follow closely the revised version

of Tai's treatment.



The dyadic Green's functions are classified according to the boundary
conditions which they satisfy. In this chapter we will be using two kinds of
the dyadic Green's functions. The first satisfies the Dirichlet boundary con-

ditions

5>
Qill

X =0 (2.8)

el

s>
Qll
|

X =0 (2.9)

ml

on the interface of two media where 3 is the normal to the surface, the sub-
script indicating the kind of dyadic Green's function. The second satisfies the

Neumann boundary conditions, i.e.,

5>
b
9l]|
i
()

xV (2.10)

B>

Qll
1

o

x Vx (2.11)

m2

These dyadic Green's functions are related to perfectly conducting bodies and
are of interest in the problem involving cavities. In the problems involving
inhomogeneous lenses, we will be studying two media, neither of which is per-
fectly conducting. We will then define dyadic Green's functions of a third kind.

There is an interdependence between ﬁe 1 and Em and between Ee and

2 2

G because they satisfy (2.4) and (2.5). Specifically |

ml’
AR .12
Vx G . =16@-F)+k° G (2.13)
m2 el :
Vv x Ge2 = Gml (2.14)
vxG =T6(E—R')+k2§ (2.15)



The integration of equations (2.2) and (2. 3) is made, now, with the help
of the dyadic identity (Van Bladel, 1964).

f[(Vx V x a) A -3 Vx Vx K:ldv= I[(ﬁxa)-VxXHﬁx Vx 3)
vV

S

>l

]ds s

(2.16)

A
where n is normal to the surface.

Identify @ with E and A with Eel' Then,

f[( VXVXE).EGI-E'.erixa I AxE) VXG +(nxVx E) G 1] ds
v S (2.17)

The second term in the surface integral can be wrltten as

f(ﬁxVxE) 'Eel ds:—I(Vxﬁ)- (ﬁXEel) ds
S S

and it vanishes due to the boundary conditions (2. 8) on the surface. On the
other hand, the volume integral, with the help of (2.6) and (2.2), can be put in

the form

| B T ' \

| s

- = - = 2 — = - = 2 - = ‘\

. ~E. = . +1i . - . -

’ I[(VXVXE) Gel E. Vx Vx Gel] dv=k fE Geldv 1wu0{1 Geldv k ﬁ: Geldv |

v \ v
-ff 16(R-R'") dv.

\'

Cancelling out similar terms and substituting in (2. 17), we obtain

-IE-Té(ﬁ-f{ dv+1wu I:TE =f 1ds.

A

G)ll

The first volume integral due to properties of the delta function‘givesiuds_



e]]
=
Iy

JE
S
Xe)

& .
@

— A —
-G, dv —f(n xE). Vx Gel ds
\"

S

By interchanging the variables R and R' and making use of the symmetrical

property of Gel

QN
o

, ®IR)=G_ (R|RY)
and

~ -
'y RIUR) = a RIR!
v'x G, (R'|R) vxG,, (R|R")

where "~u'" denote the transpose of the dyadic, we obtain

E (R) = iwu f R®IRY) . HR®Y) av’ -va G (R[R")- (A x
0 e2
A

S

=l
=

(R")) ds' .

Recalling (2. 14) we finally have

E<§)=iwof6 ®[R") - IR v -le<ﬁlﬁ').<ﬁxﬁ<ﬁ')) ds' .

\'

S (2.18)
Identifying, now a with H and A with 5e2 in (2. 16) we have
- .= = . = ) + =
[(VX Vx ) G_,-H . Vx Vx Gez] dv [(an) Vx G @ x vx )G 2:'
(2.19)

This time the first term in the surface integral can be written as

A= -_ Iz (A =
fan-Vx ezds— HV-(nxVxGez)ds

S

Qll

and it vanishes due to the boundary condition(2. 10) on the surface
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The volume integral due to (2.6) and (2. 3) becomes

Canceling out similar terms and substituting in (2. 19) we obtain

“H®RY=-0vxT-C _av+ JBxvxH -G _ds
e2 e2

\Y S

fﬁ. 16(R-R)dv= 0@ .

\Y

where

Recalling that
Vx H=7J- iweo E

2

the expression for H (R') becomes

—ﬁ(I_{')=- Vx3~E dv + ﬁxE-C_—; ds - i we ’I;XE-G
e2 e2 o

A S S

It can be proved (see Appendix A-3) that

so that

=

e2

ds
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By interchanging, again, the variables R and R' and making use of the

symmetrical properties of 5e2

and

we have

HR =§ vxG . (RIR). TR dv'+ iwe f& R[R) . 4 x E(R") ds’
el o) e2
S

which, in view of (2. 12) becomes

HR = G (R®IR) - JR) dv'+ iwe fé ®RIR) -OxE®)) ds'.  (2.20)
m2 0 e2

For sake of completeness of the discussion, and because we will be using
the infinitesimal magnetic dipole excitation in the problem of inhomogeneous
lenses, we will find the dyadic Green's function for this case. This version of
dyadics was not previously introduced by Tai.

Consider Maxwell's equation with an infinitesimal magnetic current

J as a source
m

(2.21)

=3 i
and introduce again two types of dyadic Green's functions: Ge , the new electric
type and E’in » the new magnetic type. (The asterisk does not mean complex
conjugation).

The dyadic versions of Maxwell's equations in this case are
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= 2 =% = -
VxG =k G +I6(R-R"
e m
and
=% =%
VxG =G
m e

= =

v x VXE;"n-kz G* =15(R - R")

B

and

VXVXE*—kZG*Wx[T;(f{—_R')] .
e e

The dyadics of the first kind satisﬂf the boundary conditions

N =
nxG* =0
el

A =i
nxG* =0
ml

while those of the second kind satisfy the boundary condition

ﬁxVx(—_}* =0
e2

and

ﬁxVx 5" =0
m2

=% =
The relationship between Ge and Gm

1 2 1

=% =
and G _ and G in this case is
e2 m }

(2.22)

(2.23)

(2.24)

(2.25)
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The vector wave equations for electric and magnetic fields are

Proceeding in exactly the same way as in the case of electric current excita-

tion we find

and

- -— .—:,‘ _ - - - =% - = _ -
E R:=-JG . [RIRY-T ®)av'-iwu | G (RIR)vnxH R ds' .
m e2 m 0 m2 m

v S

Because é; and ée satisfy the same differential equations and é:nl and

éel obey the same boundary conditions, they are dual. The same can be said
of Gm2 and Ge2' 1 and Gml and Ge2 and

Em2’ Therefore the expressions for the electric and magnetic fields gener-

ated by the magnetic current :fm and the tangential component of H on the

-

Also, there is duality between é:

surface can be stated as

-—
=

A R)=ive |G (RIRY.T @Yav' - & (RIR) -AxH (R ds'
m 0 el m ml m
A% S (2. 26)

and
E ®R)=-JG .®RIR).T R)dv'-iwp § G _-BxH ds' .  (2.27)
m m2 m 0 e2 m
v S

Now that we have the expressions of electric and magnetic fields in terms of

the appropriate dyadic Green's functions, we will go on to derive the expressions
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for these Green's functions.
Because the dyadic V x[i §(R - ﬁ')]is solenoidal, it can be expanded in

terms of two solenoidal vector wave functions; M and N, defined by

M(K)=VX[¢ '8] v(2.28)

and

N (K) = kl- Vx Vx [w é‘], (2. 29)
which are the eigenfunctions of the homogeneous vector wave equation

2

i

Vx Vx F-K =0 .

¥ , the generating function, is the solution of the scalar wave equation

vig+kiy=0 (2. 30)

. . TA) . A A -
The piloting vector, c \ is a vector such as X, vy, E\, or R,

depending on the type of problem to be considered. It is easy to show that

M (K) and N (K) are related by

Vx M(K)=K N (K) (2.31)

and
Vx N(K)=KM (K) . (2.32)

Because the dyadic I6(R - R') is not solenoidal, it has to be expanded in
terms of three sets of vector wave functions; the previously defined M and N
functions plus a set of irrotational vector wave functions, denoted by L and

defined by
L=Vy . (2.33)

The boundary conditions for L - functions are:

¥ = 0 on the surface if the dyadic Green's function is of the first kind,
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—g%z 0 on the surface if the dyadic Green's functionis of the second kind.

Once the expansion of the exciting function is completed, the expansion
of (=3m or (=}e is done in terms of the same functions used to expand the exciting
functions in such a way that the equations (2.6) and (2. 7) are satisfied. This
completes the general discussion of the derivation of the expression of the
dyadic Green's functions.

In what follows, we will construct the dyadic Green's functions with the
electric source of excitation for the rectangular, the cylindrical and the

spherical cavities.

2.3 Dyadic Green's Functions for Rectangular Cavities

Rectangular Cavity.
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The piloting vector in this case can most conveniently be chosen as /z\ The
partial differential equation (2. 30) for the generating function, when solved in

the rectangular coordinate system by the method of seﬁéi‘ation of variables,
gives

Y=(Acosk Xx+Bsink x)(Ccosk y+Dsink y)(Ecosk z+F sink z)
X X y y z 7

(2.34)

where the constants A, B, C, D, E, F and separation constants kx’ ky, kZ

are determined by the excitation conditions and the boundary conditions and

K2=k2+k2+k2 .
X y z

The expressions for M, Nand L functions, become

M=Vx (y2)=k (A cosk x+B\'sink x)(-Csink y+Dcosk y)E cosk z+Fsink z) %
y X X y y z z

-k (-A sink x+Bcosk x)(Ccosk y+tDsink y(E cosk z+F sink z) S‘r
X X X y y R/ z
o , , (2.35)
-1 a1
== V - - 1
N % VX Vx () z)= Ké‘xky( A sin kxx+B cos kxx) B

7

(Ccosk y+Dsink y) (-E sin k z+Fcoskz)>?
y y z z

+k k (Acosk x+Bsink x)(-Csink ytDcosk y)(-E sink z+F cosk z)gr\
zy X X y y z z

2,.2
+Hk +k“)(A cos k_x+B sink x)(Ccosk y+Dsink y)NEcosk z+Fsink z) 2
Xy X X y y z z
(2.36

L=W=k (-Asink x+B cosk +Dsi +F si X
v x( sink x+B cos Xx)(C coskyy Dsmkyy)(E coskzz Fsszz)x

+k (A cosk x+Bsink x)(-Csink ytDcosk y)(Ecosk z+F sink z) 9
y x X y y z z

+k (A cosk xtBsink x)(Ccosk y+Dsink y)-Esink z+F cosk z) 2
z X X y y z. " 2 (2.37)
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The expansion of (=3m is made in terms of M and N-function only, be-

2

=

cause G is solenoidal.

m2
Using the boundary conditions (2.11) at x=0, a;y=0, bandz=0, ¢
l !
we findthat A=C=F=0and k =—a7£3k =r%g and k = =¥ where the running
X y z C
indices, !, m and n assume the values 0, 1, 2,.... Therefore,
= mm A7 mg 0T A
Moe(K) =T, Sin - xcos Tcos =z X
- £icos -l—ﬂx sin =2y cos—=% 7 § (2.38)
a a b Y c 2V )

and

~

- 1) ! 1
N (K ==8- T 2 sin =T x cos =X y cos 7 %
eo K a ¢ a b c

—mﬂﬂcosgxsinr—nj cos =F zy
b ¢ a b Y c y

+

L7
a

2 2
mv L7 nm ng A
+ — —_— — 3 —
( b )}cos o X cos 1=y sin czz} . (2.39)

In the expressions of M and N functions, the first subscript represents the
function used in the transversal direction of the generating function ¢ , while
the second subscript represents the function used in the longitudinal direction;
o stands for odd and e stands for even function.

The functions ﬁoe(K) and NeO(K) are orthogonal
Meo (K) - Neo (K)dv=0

as can be easily checked because of the trigonometric functions involved.

The normalization constants are
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( /
0 K# K!
- ' i}
M (K) Moe(K)dv < TGP, 1
ST H T ] [a+e )=—K=K'
8 a 6 C
. N
and (2. 40)
_ _ 0 K%;{'_
N (K):N_ (K")dv= -
eo eo abe |[La] 2 mrm 2 1
A A + 1+ —— K=K'
\Y 3 a1 Y (1 6om)( 60£)=C K=K
(2.41)
where
6 1 a=0
= =/ .
oa {O o=0 for o , m, n
‘l\‘ The expansion of Vx [Té (f{-ﬁ')]takes the form
\\ e - - — -— - -
" v - R")= ¥ 2.42
x[fsh R zMoe(K)A LN (KB . (2.42)

The set of unknown vectors A and B is found by pre-multiplying (2. 42) by
1\_/Ioe(K) and ﬁeo(K) respectively and integrating through the volume of the

cavity. Due to the orthogonality properties stated above, we find that

A=C KN' and B=C
oe

vl
N K Meo

M

where the prime means that the functions are computed at point R' and

fl\'f(oe(K) .V x[fa (R - ﬁ')]dv = V' x ﬁ:)e(K) =K N'Oe (K).

v

The final form of the expansion of V x [f 6(R - ﬁ')]becomes

\V/ [= "_-t]= M N 4+ N M .
Vx|ls(R - R) Ye kM W +Tc, KN W
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The expansion of the c";mz can be written in the form

Rl = M N' O+ N
2(RIR) zQ'CNKMoe Noe 2:‘BCMKNeoMeo

where o« and 3 are unknown coefficients.

Substituting the expansion of EmZ and Vx [i §(R - l.’-»')]in equation (2. 7)

we find that

1
a=B= .
K2 - k2
Therefore

CNK C. K
- -— —-— M -— —
1) = —— 1 + 1

2(R|R) 2 2-k2 Moe Noe ZKz—kZ NeoMeo ’ (2.43)

The expansion of ée | involves the three functions M, N and L because Eel

is non-solenoidal.
Applying the boundary conditions (2.8) at x=0, a; y=0, b; z=0, c we
get B=D=E=0 inthe expressions of M and N. Therefore

— L
M (K)=- Tcos L x sin 'y sin = z 2+
eo b a b c
+£1s1n1—7£xcosm sin 2 2 § (2.44)
a a b V° c y '
and
N ()=t tzom  tm w7 o om A _mror tr mg . oOT
Noe(K)—K{ S o 08 xsm bysmc zX= 3 —s S Xcos y sin . zy
Lz 2 mw iz nw
+{l— |+|=||sin — xsm g y cos — z 2 (2. 45)
a b a b c

where this time the subscripts are reversed as comparedto the case of émz.

Again, the functions Meo(K) and N K) are orthogonal,
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M (K)-N (K)dv=0 , (2.46)
eo (6,5

due to the trigonometric function involved. The normalization constants are

0 K= K'
M (K).-M_(K')dv= (2.47)
€0 €0 1
—C— K=K'
M
and
0 K # K'
i . 1 -
fNoe(K) Noe(K)dv- 1 (2. 48)
vV E_ K=K'
N

where CM and CN are defined by (2.40) and (2.41). The boundary conditions

for the L-functlon is ¢/ 0 on S Therefore A =C =E =0 and all the elemen-

function be comes:

- Lz nr A ma ., la maw nw
L K)——cos—xsm-— sm—zx+—-sm—xcos— sm—z +
oo( a b y c b b y y
ng Ly ma nE A
+ —sin— xsin =" ycos —zz . (2.49)
c a b c

The L (K)-function is orthogonalto M (K) and N (K),
00 €o oe

LOO(K): MeO(K) dv=0 (2.50)
LK) -N_(K)dv=0, (2.51)

due to trigonometric functions involved.. The normalization constant is
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0 K=#K'
iOO(K) -LOO(K') dv =
—@9}{2 =-:—1— K=K' .
8 cLO
(2.52)

Now, we can expand I16(R - R') in terms of the eigenfunctions as follows:

Ts(R-R=L 1 _(KA+TM_(KB+L N (K C .

Using the orthogonality relations (2.46) through (2.52) we determine the un-

known vectors A, B, C.

= _ -, -
A CLo Leo » B
or

=it

. M=y
6R-R) L, T (ML (K440 M (KM (K)FC,N (KN (K) |

(2.53)
and the expansion of Ee

1 has the form

G, Y a c,, L (K) i'oo(K) +z‘ G M (KIM! (K) DY N e(K)AN"’ JK).

Substituting the expansions of Eel and 1 6 (R-R') in equation (2. 6) and remem-

bering that i'oo is irrotational function, we determine the unknown coefficients
a, B, and v:

de-Loasd gy

2 22
Finally, e
¢ C C o
= =)= Lo - - M - - N - -
=) —— 1 + 1 1
G,,(Rlgn=-f 2 L (KL (K) ZKz-kz M, (KM O(K)+ZK2-k2N (KN (K).

e {289
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By eliminating ioo(K) i'OO(K) between (2.53) and (2.54), and collecting

similar terms, we have

2
& (IR -2 TsR-BN+L Cu M (K (K)+
G ,(R|R'E - = 15(R-R' — '
el k2 k2(K2-k2) €o €o
2
C\K _ _
+Yy —— N (RN (K . (2.55)
k2(K2-k2) oe oe

Let us direct our attention to the function éml(ﬁ\ﬁ'). Because ael

and Em satisfy the same boundary conditions (see equations (2. 8) and (2. 9)),

1
the vector wave function which are used in this case are lT/IeO(K) and ﬁoe(K) ,

i.e., the same used in expansion of Eel(ﬁ}ﬁ'). Therefore

V x [Ta(R-R')]= Y Meo(K)A+Z N, (K)B.

Pre-multiplying the above equation by Meo( K) and Noe( K), integrating through
the volume of the cavity, and making use of orthogonality relations (2. 46)

through (2. 48) we get

A N1 R Nt
A= CMK Neo and B =‘CNK Moe

where
flVI 'V x [fa(ﬁ-ﬁ')] dv=K N
eo eo
\Y%
and
R ,-vx [To-Rolove kT
oe oe
Thus,

v x [ia (ﬁ—ﬁ')]= ZCMKMeO ﬁ'eo+z CNK'ﬁoe n'/i'oe.

The éi(béﬁéion of Eml can be written as
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3 Za CM K Meo N;ao +z B CNK Noe M;e

where o« and B are constants yet to be determined.

and Vx [-f §(R - R')] in equation

Substituting the expressions for Em 1

(2.7), we find that

1
a= B = .
22
Finally, /é K C K
(‘;ml(R]R')=Z > 5 M, (KN (K)+£ SN (KM (K) .
K -k KoK (2. 56)

Let us write an expression of G (RIR') which involves the L-function.
The boundary condition for the 1- functlon is %' 0 on the surface, where,
the derivative is taken in the direction normal to the surface S. This boundary
condition makes B =D =F =0 in expression (2. 34) and, thérefore; the gener-
ating function  is formed by the even functions only. Wﬁe;cgthe expression

for the i—function is

L = t-isml—ﬂx cos X cosﬂzg m-"—”cos-!ir smmﬂ cos nle
ee a a b y c b a by c y
nwT Lr m7 nTr A
-~ =—cos —xX cos—ysm'— zZ2Z . (2.57)
c a b c

The solenoidal vector wave functions in this case are Moe(K) and ﬁeo(K) be-
cause of the boundary conditions for :é

N (K).
(10]

9" Lee( K) is orthogonal to Moe(K) and

Lee(K) . Mee( K)dv=0

Neo(K) . Lee(K) dv=0

Sy oy

because of the trigonometric functions involved. The normalization constant is
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0 . K#K

+ + - =
N1 éon)(l %m)=c K=K'

abe
3 K (1+501
Le
(2.58)

and the expaﬁﬂsioﬁ o‘f 16(R - R') becomes

=

6(R-R)=L L _A+L M B+LN _C .

Pre-multiplying this expansionhby iee’ Moe’ ﬁeo and integrating through the
volume of the cavity with the help of orthogonality relations (2. 40), (2.41) and
(2.58), we determine the unknown A, B and C respectively. Thus,

2 = T = V1] =0 N!
A CLeL (K), B CMMoe(K), C CNNeO(K)

and

-\

R _ B = M' + N N!
6(R - R) z Le ee ee z C M Moe szNeoNeo ’

whence the expansion of G_, (R|R') can be written as

e2

RfR' ZaC L L' ZBCM M' }:70 N N'0

where o, [ and v are the unknown coefficients.
Substituting the expansions of G R‘R’) and 16 ( R‘R') in equation (2.6),
we find that

Q/=—-L B: v= 1

2 22
or _ C, o LK) L K C —
G,, ®IRN= - Lo +L S M (K) W (K)+
K K™ -k

Cyv _ «

+ 1

r , N (RN (K) . (2.59)
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Eliminating iee i:ae between (2. 59) and the expansion of 1 6 (R - R') we find

that
= 1 = CNK2
G _=-—1I6(R-R)V+) —— M (K)M' (K)+
e2 k2 k2(K2—k2) oe oe
CM K2
+y N (KN (K). (2.60)
k2(K2—k2) €eo €0

The results of this section are summarized in Table I.

2.4 Dyadic Green's Functions for the Cylindrical Cavity

Figure 2 shows the geometry of the cylindrical cavity under consideration.

Figure 2: Cylindrical Cavity.



Table I: Dyadic Green's Functions for Rectangular Cavity.
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el(RIR')

Qi
—
=
&

- Q mC)ll
=
<

e2 o )
e (ljlri{')
ml‘P“R')

RIRY
m2

G Q@

Eqn.
Eqn.
Eqn.,
Eqn.
Eqn.
Eqn.

tr 2

a

abe
8

abc
8

abe
8

(2.54)
(2.55)
(2.59)
(2.60)
(2. 56)
(2.43)
2

m7
b

+

|
Iz

K2

l7r2

a

2
+

abec_ 2
- 1+ + +

Eqn.
Eqn.
Eqn.
Eqn.
Eqn.
Eqn.

(2.38)
(2.44)
(2. 45)
(2.39)
(2.49)
(2.57)

o7
C

+

g8

o

2

I‘H’
_+( b )1(1+6om) (1+ 601)

JH<1+6 )
on




27

The differential equation for the generating function ¢ (2.30) in cylindrical

coordinate system is

2
+8d/

2
+Ky=0 (2.61)
or] T 2,2 2 5,2

1 9 ( 9 1y oty
- — + = +

r or

The method of separation of variables can be used in this system of coordinates.

Thus, let ¢ = R@)_Z ; substituting into (2. 61) and dividing by R @ Z, we get

2 2 2

R .2 rR dr r2® d¢2 Z dZ2

dr

Solving for Z component, we obtain

Z=A cos|/K2—kiz+B sin,/K2 —kiz s

where kr is a separation constant still to be determined. The equation we

are left with is of the form

22 2 S 2
rd§+rR %R+kir2+l§rd d
Rdr‘ T @ o a¢

]
o

and allows us to solve for the # component,

$=Ccos k¢¢+Dsink¢¢ .

In order to ensure the uniqueness of the @ function, the function must be
single-valued for 0 <@ < 27. This condition gives a value of k ¢ which

cannot be arbitrary but has to be an integer and therefore

k,=n n=0,1, 2, ....
¢ -

whence



28

§=Ccosnf+Dsinng .

The differential equation for the r~component,

dR

has for its solution the cylindrical Bessel functions Jn (krr) and the Neumann

functions Yn(krr). The second solution is rejected because we need a finite

solution at the origin.

Finally, the generating function has the form

v= Jn(krr) (C cos n f + D sin n¢)(A cos]/K2 - k2r z+B sin]/K2- ki z).
—

The piloting vector in this case is again chosen to be 2 . The vector wave

function for the cylindrical cavity are

M= Vx (¢ 2)=-Illj Jn(krr)(—C sinn P+ Dgginib)(A cos,/Kz—k2rz + Bsin Kz-kiz)?

) Jn(krr) 53 53 A
B—r( Gcos n § + Dsin nf)) (A cosy K -kr z + Bsin/K —kr z) @,

A 1 2 .2 9 Jn(krr)
Vx V; == - —
x Vx (¢ z) X K kr o

(-A sm@z+B cos ‘/Kz - ka) 2+
+ /@ 15 (x r) (- C sinn @+ D cos n )
rraonr
(-Asin@z+Bcos /KZ—TEZ) 8
+<kiJ1‘1( krr)( C cc7>sxn ¢+D sin n ¢)(A co;@ .-z‘;];sin@ @

=1
N=% (Ccosn@+Dsinnf)
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and
oJ (k r)

I=vys= ——— (Ccosnf + Dsinnf) (A cosl/K -k z + Bsin/K --k z) %
n / 2 2 AN
+ ;Jn(krr)(-Csinn¢+ Dcosnf) (A cos/K -k z+B sin/K —krz) )

2
+/ K2-kiJn(krr)(C cosn@ + Dsinn @)(-A sinI/ K2~kiz+Bcos¢/é2—-kr z) 2.

Starting again with the (z}mz(ﬁlf{'), and using the boundary conditions (2. 11),

we find that kr for the M-function is equal to A, where \= pnr/a and pn§ is
the root of the equation Jn(x) =0, pn§ represents the §th root of the

cylindrical Bessel function of the nth order. The eigenvalues in the z-direction
I
are represented by — b ,1=0,1,2,... and B=0,

The M-functions for G are, therefore,

m2
n n A aJn(h‘) Lg A

Mee(li)= - Jn(kr) sinn @ cos HiT" T cosn f cos 5 ? P (2.62)
and

- n I A aJn(>t r) gy A .

Moe(K/\) 29 (A\r) cos n @ cos - zr-—p—sinn @ cos -h—z¢ (2.63)

2 2 I 2 o L

where K f X+ }T ) , the first subscript represents the (~component of the

generating function, and the second subscript rébi‘ééents the z-component of .
Applying the boundary conditions (2.11), this time for the N-function, we
find that kr is equal to u where u = qh g / a and q . is the root of the equation

dJ (x)
n

n€

=0. q nE represents the Sth root of the derivative of the cylmdrlcal

th order. The e1genvalue in the z-direction is repre~-

dx
Bessel function of the n

sented by I-IIIT” , m=0,1, 2,... and A=0, The N-functions for the sz are,

therefore,
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1 |mgz 8Jn'J r) mT A myn my a
N z—|— — - ——— i — +
Neo(Ku) Ku Y or cosnf cos b oy rJn(“r)Sm nf cos h 2
2 my A
+ s et .
u Jn(ur) cos n { sin n 2 z] (2.64)
and
(K )y BT n(“r) sinnfcos 2220+ 272 5 (1 )cos nfcos—r 2 5/2)\ +
00 W Ku h or h hr n“r h
2 g mx A
+ 3 : i
U Jn (ur) sin n @} sin n Z z] . (2.65)
2
2 2 my
- + e
where KM M h ) .

The orthogonality of the M- and N-functions is shown as follows.

Iﬁee (Kx) -Mw(g) dv=0 (2.66)

\

because of trigonometric functions of § ;

fMee (KA) . Neo(Ku) dv=0 (2.67)

\'

by the same reason.

Mee(Kh). Noo(Ku)dV =0

because of trigonometric functions of z, if Lm. If £=m, we have
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- - 1 n my aJn(ur) 2 2 mmw
Mee(KA) ‘N (Ku) dv=r—10-7% % (Ar) 5 SiD 0 cos B2
v

A%
ma n aJn Or) I
- — = —_ d =
W T °n (ur) ar 008 f cos il I
2 oJ (ur) aJ (r)
1 mz)§ n 1 =
- (J_(xr) 5 +Jn\(ur) P )r dr
H 0
a
l mnax
- = =0 . )
% 5 Jn (A1) Jnur) (2.68)
H 0
because Jn(ha) =0,
fﬁ (K).N (K)dv=0 (2.69)
€0 U 00 M
A%
because of trigonometric functions of ¢ .
M ‘N =0 7
IMoe (Kl) Neo (Ku) dv (2.70)

because of trigonometric functions of z , if £#m. If L=m, the proof runs
as for (2.68). The normalization constants are:

M X - 7h 2.
fMee (Kl)-Mee (KA) dv—(1+6on) (1+601) 5 X ]l_l/CNe (2.71)

2

a . 2| 83 (r)

a n

11= Jn (Ar) r dr =-—2 R ; (2.72)
2X r

0 r=a
and
oy = = 7h 2. _
fMoe(Kl)-Moe (Kl)dv—(l-}-éol) 5 X IK—I/CNO. (2.73)
\Y
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— - 7h 2
. =(1+ — I =1/C 2.
Neo (B) N, (K)dv=(1+5 )7= u ’ [Cpe ¢
where a a2 ) n2 .
I=fJ wr)rde=— W -=5)J3 @) ; (2.
7 n 2 2 'n a
21 a
0
and
= = 7h 2
. = — =1 2.
N, (KH) N, (Ku) dv="2 1 /cMO . (
IMee (Kk) 'Mee (Kk') dv=0 (2.
\Y
and
{Moe (KX) 'Moe (Kl‘) dv=0 (2.
because of the orthogonality of the cylindrical Bessel functions, namely
fJ(Xr)-J (X'r) rdr=0 . (2
n n
0
f’ﬁ (K)-N_ (K )dv=0 (2.
eo U €0
0
and
fﬁ (K)-N_(K,)dv=0 .
00 U 00 U
Vv
because of the orthogonality of the cylindrical Bessel functions, namely
) . ! =
Jn (ur) I (u'R) rdr=0 . (2.

0

74)

75)

76)

77)

78)

.79)

80)

81)

82)
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The expansion of V x[i 5(R - f{’)] is written as
Ts (R-R)|=YM A+Y M B+Y N C+) N D
Vx [Ia(R R )] LM (KJAEM_(K)B ZNeo(K”)c ZNOO(KM) D,
where A, B, C and D are four sets of unknown vectors. Pre-multiplying this
expansion by Mee(KA)’ Moe(Kl)’ Neo(Ku) and Noo(Ku)’ respectively, inte-

grating through the volume of the cavity, and using the orthogonality relations

(2. 66) through (2. 80), we find

= 1 R = Nt
A C KhNee(Kl)’ B CNoKlNoe(Kl)

and
= ! = 1
C CMeKuM 0(K ), D CMO KMMOO(KIJ)
where
by . T B _ Bt = N1
fMee (Kx) Vx[Ié(R R)]dv I?kNee(Kl)
\Y
M . T (R _ R = N!
fMoe(KA) VX[Ia(R R)]dv KANOe (Kl)
\Y
- . = o =t = =
fNeO (Ku) VX[IG(R R )]dv Ku Meo (Ku)
\Y
and

f’ﬁ (K)-v [Ta(R R')]dv-*-K M' (K)
00 U M 00 U
\'

was used. Therefore,

vX[i —R'J Zc KM (KN (K)‘)+ZCN KAMOe(KAN' (K)

+ ZCMeKMNeO(Ku)M'e O(Ku) +z CmOKHNOO(K )M' (Ku) , (2.83)
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whence, the expansion of émZ (R|R") can be written as

"

sz(ﬁlﬁ') ._:za, CNerﬁee(E)\)ﬁ'ee(Kl) +£ B CNoKXMoe(Kl)N'oe(KX)

+ N M! + N M .
L Cp1eK, Neo K ML (K ) L5C,, K Noo( M (K)
Substituting the expansion of Emz(ﬁlf{') and (2. 83) in (2.7), we find the un-

known coefficients «, B, Yand §:

1 1
a:Bx and vY=6=
K2_k2 Kz-k2
A
Hence,
Ne 7\ NoK).
mo @R L5 M (K )R ( )+L S M (KN (k) +
K —k Kh K —k Kh’ KA

A - A

C. K
___ﬂ 1 Mo u = 1
Z 2 Neo(K )M Ku) +z 2 2 Noo( K M eo(Ku)
K -k
U (2.84)

Boundary conditions (2. 8) for G (RIR' ) require the followmg sets of functions

- n mwr A oJ (ur) maw
Meo(Ku =-;Jn(ux_')s1nn¢sm 5 2T ar cosn f smi- z ¢ (2. 85)
0J (ur) A
= oD .mr A Tnt L omg
Moo(Ku =2 Jn(/.zr)cosn¢s1n h 2T o sinnf sin 2 ¢ (2.86)
8J (Ar)
Lz Il A tmn Im A,
{ cosnf?)smh 2T+ 7 J()\r)sm n¢sm L Zgt

+X 2 Jn (Ar) cos n @ cos l—hﬂ- z /z\} (2.87)
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oJ_(xr)
n

3 1) - . Mx 4 lan .
Noe(Kh)—KK "% or smn¢s1nhzr . rJn(Ar)coan)smh
2 . Ir A
+ X' J () sinn §f cos Tz z
n h
6J (i)
< LD o dr oA n , N
L., (K)= ™ cosn(?)smh zr=-_J Or) s1nn¢rsmh z§ +
Iz Lr A
+ — —
Y Jn(kr)cosnfﬁcos L 22
= BJn(hr) Ir A n Iz
- A oAroAn . S
Loo(K»\) or smnf?jsmh zr+ ~J () cosn¢s1nhz¢
Lz Ir A
+ = i =
th(J\r)smn¢coshzz .

The orthogonality relations are checked as follows:

€0 u

€o

(K )M (K)dv=0
00 W

(KM) . Leo(Kk) dv=0

IMOO(KM) . Noe(K)\) dv=0

IMOO (Ku) . L00 (l%) dv=0

)
z¢+

(2. 88)

(2.89)

(2.90)

(2.91)
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N, (KQ . ieo(la) dv=0

£Leo“%\) "Loo (KA) dv =0
because of trigonometric functions of @, and

Meo(K,u) . Noe(Kk) dv=0
Meo (KIJ) . L00 (}S) dv=0

Moo (K#) . Nee(KA) dv=0

Sy, S,

00 (KM) . Leo (Kh) dv=0

=

which can be proved as (2.68). The proof of
Nee(K).) " Leo (Kk) dv=0

" is slightly different. We have

(2.92)

(2.93)
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0
(145 ) tr? 03 () 2 o s o
2 - + (2 3°00) [rdr + 27 | 7°0x) rdr
2K N or r n n
0 0
=0
2
& m)® 0’ 3% 0w ,
because + rdr= f§ X JZ (\r) rdr performing
or 2 n
0
the integration by parts.
Noe(KA) . Loo(KA) dv=0 (2.94)

is proved by the same token. The normalization constants are:

M (K )dv = Cl (2.95)
Me

M K )dv = C (2.96)
u Mo
1
£ ) Nee (KA) dv = (2.97)
Ne
- 1
Nee(K)t) . Noe (Kh) dv =6;0 (2.98)
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. . ion (2. 74), .76), 1
where CMe is defined by expression (2. 74) CMOby (2.76) CNe by (2.71)

and C o by (2.73). The normalization constants for the L functions are given

N
by
= T = 7h 2 o
fLeo (KA). L., (Kh) dv-(1+60n) 5 Ky Ih—l/CLxe (2.99)
%
and
T (k)L (k)av=" g2 =1/C (2.100)
ooKA ooKX 2 )\IK Lo ' ’

M (K)'M (K )dv=0
eo U €0 M

<:'—.

M (K)'M (K, )dv=0
00 W 00 U

¥ N

—

Nee(Kl) Nee (KA') av=0

==

(2.101)
Nogli) +Nog (1) 4v =0

e

Leo(KA) ._I—’eo (KX') av=0

<:"'.

fioo (KK) .ioo (K)\') dv=0

A%
due to the orthogonality properties of the cylindrical Bessel functions (2. 79)

and (2.82). The expansion of I6(R - R') is written as

16(R-R)<LL (K)A+LL (K)B+LM__ (k) C+L M, (K ) D+

+EN, (K)E+L N (K)F .
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The unknown vectors A, B, C, D, E and F are found by pre-multipl&_ﬁ;é |
the above expansion by L (K)‘) L (K)\ M (K) ) N (Kk and

-

Noe(KX)’ respectively, 1ntegrat1ng through the volume of the cavity, and
making use of the orthogonality relations (2. 91) through (2.101). Thus

A = ! = T C = M!
A=Cp e Lo &) B Clrokoo Ky €= Cppe Moy (Ku)

- —

= E = N! F = N!
D CMOMOO(KM), E CNeNee(KA), F cNO Noe(KX)
and

via(ﬁ-ﬁ'){cmieoxkv (KW):C L (K)L ) HLCy M (K T JK )+

o +ZCMOMOO(K“)M'OO(KMHZCNeNee(Kl LKL Cy (KA)
(2.102)
Write the expansion of ée 1(§l§') as

G'el(R’R') =za CL)\e Leo(KA) Lé/o (Kl) +ZBCL710 LoocKl) L'oo(K).) *

+ZYCMeMe (K)Mr (K)+z<sc M (K)M (K)+

L€ € N ee(K){) N, (K N Ly oNoe KN k )

>\
Substituting this expansion and (2. 102) into (2.6), we find that
1 1
a=[3=-—2, y=6=—2—2 and e€=¢= 21 2 .
k K -k K X k

Therefore,
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CMe =
2

- C]’_AO - -
L) Lt (K) —Z—kz—— LJK)L (K) +

G, (RIR" = -

2 .2 7e0 U

C o
L Me % (x )ﬁ'eo(K)+Z 1;/10 :
K -k o=k x

u u

M (K )M' (K)+
00 M 00 WM

C
N N N!
+Z 2 2 Nee KA (KA)+ _ 2 Noe(K)\) Nee(KA) . (2.103)
?\ A

By eliminating}7 €.\ T (Kl) Loy “f C “%)L (Kx L (Kx between (2103) and\x
(2.102), we get the second form of expansion of G (R‘R' S

C K2
Gy (RIRY = - 515 (ReRY) +F Mo § (k) it (K )+

K (K2 -1

:Miﬁ (K ) (K)+ZE&K—;L?— NN (K
2,.2 o M o 2, 2 2 ee ee
k(K 9 K2 -i)
NOKA

ZkZ(Kz & N o (KN (K) . (2. 104)

In a similar manner, we find that

C, K ,
1 ___L 1 Mo p = N
i RIR )—Z 2 M, (K N (K Y L MoK ) N (K )+

K" -k
“ M
) 2Ne?Nee(Kh) (I&H[ N°K>‘ (KA)M' (K) (2.105)
K-k
)

and
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c C
g (Rla = - € T T ! - Lyo = !
G, ,(BIR) [—Lf‘——kz Lo K )T o) )} —Lk2 Lo (KL (K ) +

C
N !
Ly 5 M (KM (KXHZ 2 7 MooV M o (K +

Kl k l ~k
Z——-N JE N K)+): N, KN oK)
S fu” (2.106)
where
_ 8J (rar) 0 A
Lee(Ku)= 5 e cosnfcos = F zr-;Jn(ur) sinnf cos = z¢
m7 mr A
- — 17 —— 7
h Jn(ur) cos n P sin n 22 (2.107)
and
aJ (ur) A
- n m7T A, n mr
= i —zT+- ar -
Loe(Ku) o sinn @ cos h 2T Jn(ur) cosn f cos 2 )
mr . . mm A
oy Jn(ur) sin n @ sin L 22 (2.108)

The orthogonality relations between L (K ) and L (K ) and other
ee U oe ' u
functions involved run as follows.

(K)-L (K)dav=0
ee X ee

=l

(K).L (K)dv=0
oe oe U
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vV
fi (K).-L (K)dv=0
ee M o€ Y

vV

because of the trigonometric functions of @,

Mee(Kl) . Loe (Ku) dv=0

IM (K,).L (K)dv=0
oe X “ee u

are proved in the same way as (2. 68),

[N (K): L (K)dv=0
€eo u ee U

N k)L
00 W
V

follow the proof of relation (2.93).

and

The normalization constants are

- - 7h
. = + —_—
Lee(K“) Lee(Ku) dv=(1 aon) 5

fi (K)-L (K)dv=
oe U oe " u
Vv

oe

(K )dv=0

~

2

7h 2

2

K1 =1/C
MM

K I =1/C
[T /Lue

Luo

(2.109)

(2,110)

(2,111)

(2.112)

(2.113)
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fi (K)-L (K,)dv=0
ee 4 ‘ee u
v

and _ _
L (K)-L (K )dv=0
K e H

oe

because of the orthogonality properties of the cylindrical Bessel functions

(2.79) and (2. 82).

The second form of the expansion of éez (R|R") is given by

G (RJR! =-i‘1‘5(ﬁ-ﬁ')+zc—1‘lﬂli—1\’a o (K) M (K)+
e2 K k2(K2 2)
c sz | 2
No Me 7}
+zk2 ~k) M_ (KM (K)+T 20 eo(Kﬂ) o (K
u
c. k?
; —2M9—25—5 N K)N (K) (2.114)
k(K“-k) 00 U 00 U

i . 7 . 7
where the constants CNe’ CNo’ CMe’ and CMo are given by (2.71), (2,73),
(2.74), and (2.76), respectively.

The results of this section are summarized in Table II,

2.5 Dyadic Green's Functions for Spherical Cavity

The spherical cavity of interest is shown in Figure 3. The origin of
coordinates coincide with the center of the sphere. The radius of the sphere
is a. The generating function of  (equation (2.30)) in spherical coordinates

is

2
1-2811(23]15{/) 21 SE(SIH%H 212 a¢2+sz=0_
R R” sin 6 Rsin“6 0f

(2.115)



Table II: Dyadic Green's Functions for Cylindrical Cavity

44

Luo

Eqn. (2.103)
Eqn. (2.104)
Eqn. (2.106)
Eqn. (2.114)
Eqn. (2.105)
Eqn. (2.84)

iy 2

h

22+

u2+

2
T

h

7h 2
+ —
(1 6on‘) 2 M Iy

Uod 2 »

(1+ 6on)

2

(145 )0 %7
on 2 [T

2 M
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Table II: continued

Mee(Kk) Eqn. (2.62)
M (K,) Eqn. (2.63)
‘MeO(K“) Eqn. (2.85)
'MOO(K“) Eqn. (2. 86)
ﬁeo(K“) Eqn. (2.64)

oo(KM) Eqn. (2.65)
N (K) Eqn. (2. 87)
N (K)) Eqn. (2. 88)
feo(K)\) Eqn. (2.89)
foo (Kk) Eqn. (2.90)
Tjee (K“) Eqn. (2.107)
Tjoe (K”) Eqn. (2,108)
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Figure 3: Spherical Cavity.

Let

¢=F1 F2 F3

and we will make a separation of variables., Equation (2.115) becomes

2
oF oF oF S
1 0 ,.2 1 1 0 2 1 3 2 .2
— — (R )+ — —(sin 6 )+ +K R =0 .,
F1 oR oR sin 6 F2 00 26 sinz 0 F3 8¢2
(2.116)
The radial part of (2, 116) is
dF
d, 2 1 22 2.
-—-dR(R dR)+(KR-kR)F1—O (2.117)

where sz is a separation constant. This equation can be reduced to the

standard form of Bessel equation if we make



with the solutions J (KR) and Y (KR). The second solution
/ k2R+1/4 Vk2R+1 /4

is rejected because we require a solution which is finite at the origin. There-
fore

g ——(KR)
Kgtl [4

1 \‘t\.‘ /R

The angular part of equation (2.116) is

oF oF
sin 0 8(1 6—')+k2 s1n26+—1— ___3=0 ,

\F/z 96 R F, a¢2

and after a new separation of variables we obtain two differential equations, in

§ and in 6, The first one,

d2F3 9
—2 4k By =0

3 3

d ¢ f

has solutions sin k ¢ ¢ and cos k¢¢ and the condition of periodicity determines
the value of the separation constant k ¢ as equal to an integer m, m=0, 1, 2,,.

The second one,

d dF3 9
Slne — — =
30 (sme )+(KRs1n 0 - m)F 0,

after change of variable cos 6 =t, takes the form
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dF dF 2

m
~ot—= + (k- B—)F =0
dt2 dt kR 1~t2 2

of a Legendre equation if kli = n(nt+l), with two solutions PLn(t) and Qzl(t).
The second solution is rejected because it is infinite at t =+ 1(6=0, 7).

Finally, the generating function ¥ is written as

Y =jn(KR) P;n(cos 6) S?Sm g, (2.118)

e
Omn

where

: L
R =/ I /o (KR

is the so-called spherical Bessel function and Pgl(cos 0) is the associated
Legendre function of the first kind. The above notation is a compact form of

writing the even and odd y~functions

: m
U, =1 (KR) P (cos 6) cos m )
and

v =i, (KR) P;n(cos 6) sihnm § .

The piloting vector, unlike in the previous cases, is chosen tobe R. The

expressions of M, N and L for the spherical cavity are:

m .
sin9J

M (K)=Vx (z//e R)=+ n(KR) P:ln(cose) g‘i)% m @ 3—
émn

e
omn

aPm( cosb) A

- D cos
(KR ——— P mp g, (2.119)
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n(ntl) .
KR

- ) _
N(e)mn(K) = RVX Vx (l[/(;qnnR) e —— (KR) P (COSG) COS m ¢ R +

oPcos 6)

1 9 . n cos r sin A
+ — — P —— N +
e [R]n(KR)] [ o cinm 6 i (cos6) oo P9,

(2.120)

and _ BJn(KR)
L =V, =——-——-P (cosh) cosm ) R+

e or
0mn 0mn

j (KR) apm(cose) o

TR 50 Stn m¢9+

i KR)Pm(cose) Sin m ¢ 9
(2.121)

6

which is the compact form of writing the even and odd IVI, N and L-functions.

Starting with the dyadic Green's function f_}mz

(2.11), we find for the M-function that K =, where u is the root of the

and using boundary conditions

equation 88R (R jn(/uR)) =0 , For the N-function, K =) where X is
R=a

the root of the eguation jn(l a) = 0. Therefore, the expressions for M and N-

functions are

v =7 : m sin A
=F -
Mgmn(u) 5in 6 n (UR) P (cos 6) 5% m § 6
SPLn (cos A
-, (WR) — QB mpp (2.122)
and
- +1
N (W= uztl) ) ()R)P (cos ) cosm¢R+
€mn 9R
1 s 8P:](cos 6) ] A
9 _ Ip; _h co
R o6 [R ]n(mi 96 sinm 0

- m _m . A
I sin
- Pn (cos 6) S m ) ¢] ) (2.123)

sin 6
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Before studying the orthogonality properties of M and N functions, it is
necessary to study the orthogonality properties of the spherical Bessel function.

The differential equation for the spherical Bessel function is

dj (KR)
d [RZ n

22 . _
=y R }+ [K R —n(n+l)] Jn(KR)—O ,

w hich can also be written as

d

d(Rjn(KR))
R dr

- Rj_(KR)|+ K2 R? - n(ntl) | j (KR)=0
n n

because

djn(KR) q d(Rjn(KR))
= dR R _—

d 2 .
m {R R R - R]n (KR)}
Consider two spherical Bessel functions jn( ar) and jn (Br) which satisfy,

respectively, the differential equations:

d(Rj (aR))

1 1

b i |+ -2
R R

and

d(Rj (BR))

1l 4 n o 2 n(ntl) | . _
2 dR B = R, (FR) +[B 22 }’n(BR)"O'

Multiply the first of these equations by jn (BR) and the second by jn(aR), and

subtract the second from the first. We obtain

y . d(Rj (BR))
(a -B)jn (aR) jn(BR)=‘—2' J'n(ozR) ey T -Rjn(BR) -

R
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d d(Rjn(aR))
-]n(BR)d—R' R —m -RJn(aR) .

Integrate with respect to R dR from zero to a:

a a
d(Rj_(BR))
(az—Bz)f jn(aR)jn(BR)deR = I jn(aR) ‘ZR [R fm -Rij (BRJ -
0 0

d(R j (R))
R dr

-y (BR) —

& —Rjn(aR)} dr .

The right hand side of this expression is the derivative of

d(R j (BR)) d(R jn(aR))J
[R iy (eR) I -Rjn(BR)T ,
and therefore
) o b . d(Rj_(BR)) dR j (@R)]|*
e )I j (@R) j (BR)R”dR=R [jn‘“R’T - i (BR) TJ -
0 (2.124)

The right hand side of the above expression is always zero for the lower limit
of integration. The value of the expression at its upper limit is also zero if

a=Xx and =X for jn()la) = jn(l'a) =0, orif@=pand B = u' for

dR R=a dR R=a
Therefore, for o %
a
f iy (AR) jn (X'R) R2 dR=0 (2. 125)
0

and
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a

. C 2 _
fJn(uR) Jn(u R)R"dR=0 . (2.126)
0

Consider, now o and 3=a +Afor o — 0. In this case

A 2 lim . , [ ] 2
= = +A
Iar Jn (¢R) R” dR 0 ]n(a/R) ]n (o )R |R” dR ,

0 0
which by (2. 124) is

[ d(Rj (BR)) d (Rj (oR)) ] ?
nm PR N )

a A0 2 2

a -B

2 2 ~
Buta - S = a2 - (a+A)2\ =a2 - a2 - B Ad —AZQ'- 2 A, where A2 was neglected;
conseqi ently

a
l1a-=- 1 lim 1 (aR) ’ [RJD((OJTLA)\R)] - j ((a+AR) d—"[RJn(aR):ﬂ}
% A—s dR I dR -

Taking the limit, we get

1
Io = - 20{

Ia is zero at the lower limit of integration,

R] (@R) 2 (ox) ARj (@R 2
i 3R J}o

4R j@R) 8 (oR) B(Rj (aR))
% OR o 9R

-2
Iar "7 20 jn(aR)

In the brackets, we have

3J'n(aR) (R jn(aR))
%@  oeR)
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and

84 R jeR) [B(Rjn(aR)):' O(Rj (aR)) 4R j_(aR)
St Sl _

%oR 3(aR) Som)  TOR R’

(2.127)

From differential equation for spherical Bessel function, we have

q | dRjfeRN 2 2 .
R R R - RJn(aR) +‘:a R" - n(n+l)] i (@R) =0,
or
2 .
d” (Rj (oR)) 9 9 \
R — +[a R —n(n+l)] jn(ozR)=0 ,
dR

which can be written as

2 dz(Rjn(aR))

@R 5 = —[a R2 - n(n+1)] j (eR) .
d(R) .
Therefore
2
d"(Rj (aR)) 2.2
oR n : o [a R —n(n+1j i (aR) ,
d(aR) * .

and (2.127) becomes

o® (R j@R) AR j (aR)) [Q2R2 - n(n +1i
& oR 9 (R) a I @R)
Also,
9 (R jeR) 8(Rjn(aR))
XoR)  «a R’

so the expression for Ia becomes
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ARj (aR)) [ 2.2 J] [B(Rj (oR))
_a |, n o R -n(ntl)|. 1 n
Ia " 2a {Jn(aR) [ o R a JJn(aR) Ta JdR J
=3
When o =X, | 9
3 (R j _(oR))
Ik:sz(KR)deR= 2 [ = J , (2.128)
n 2 oR _
0 2 R=a

and when o = u

2

i2 ur) B R =2 [/42 az-n<n+1>] o) . (2.129
2u

1
7

The orthogonality of M and N-functions for sz runs as follows:

fl'\’/l (W) - N '(A)dv=0 (2.130)

emn 8m'n

because of the trigonometric functions if we are considering the integration of
the functions {corresponding to the upper subscripts or to the lower subscripts.
The integral is zero if we are considering the product of the functions corres-
ponding to the upper subscript of one of them and lower subscript of the other

/ because P;n (1) = P;n(-l) = 0(m =* 0). The normalization constants are

0 m7#m} o '
fﬁe (“)'Me , (W)dv =
omn omn' 2n(n+1) (n+tm)! 1
+ - == =m! n=n! u=u'
A (1 éom)t o0t1 (nom) ! I“ C“m m, n=n) u=u
(2.131)
and 0 m#m] nFn) X
NoO.N (W)dv= ,
\ G gm'n’ (1+6 )= zontl){otm)s | 1 m=m/ n=n} y=p'

om 2n+l (n-m)! Ck

(2.132)
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In the computation of the normalization constants it is understood that the inte-
gration involve the functions corresponding to the upper subscripts or to the
lower subscripts. The integration involving the product of the functions corres-
ponding to the upper subscript of one of them and the lower sub/écript of the
other is always zero because of the trigonometric functions, In the above, the

following relations were used:
(de
n
de
7

m 2 _ 2  (ntm)!
f [Pn (cos 6)] sin 6 d@ = 5ol (oom)! °
0

sin & do

p
+ mE : 2n(n+1) (n+m)!
sinf 2n+tl  (n-m)! °’

and

d . . .
L[ 0] 2 [ 5, 00010,

i =55 [jn_l(X) *iy (X)] .

The expansion of V x [f §(R - I—{')]is written as

Cox|fo®-R)-IW, @ F+IN 003
gmn (e)mn

Pre-multiplying this expression by IVIe (u) and I\I-e (X), integrating through
omn on

the volume of the sphere and using the orthogonality relations (2.130) through
(2.132), we find that

m

A=C uN and B=C, A M' ()
WM gmn(u) N 81m( )
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In the above

and
IN‘ (h)-Vx[ié(ﬁ—f{')]dv=>\IVI' ()

e e
Smn omn

was used. Therefore,

vV x [Ta(ﬁ-ﬁ')] =Zcuu M, N ()+ZC, K

WM ())
Smn Smn mn s

omn

and the expansion of sz (RIR") is written as

G . -YeCuM (WN (@WTBC AN V)M O .
m2 L K €mn  §mn L A emn €mn

Substituting the expansions of Em and Vx [fé (ﬁ—ﬁ')] into (2.7) we get

2

1
and B =—7"—7 .
“2 _ k2 k2_k2

- . Cu _ _ C\A
GoaRlR) L= M, N W+ 58 M o).
u -k~ omn omn -k~ omn omn

(2.133)
For éel(ﬁ’fi'), we use the M, N and L functions

aPm(cose)

= . 1.m . m sin A -0 cos o
Mgmn(x) * i I MR P (cos6) S5 m § 6 jOR) — coompg,

—_—

(2.134)
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n(n+1)

- A
u (uR) P M cosh) 5 m pR+
gmn MR

5 <'3P111n(cose)coS R m
"R ﬁ(Rj (uR) 55 sin ™ fo - i5ma P (cosG COS m § ¢
(2.135)
and | o
aj (LN j (L)) 9P (cos6)
7 m cos A ‘n n cos A
= : +
Lemn(h) R Pn (cose)smm¢ R R R sin O po
0
F—=2— j (R) P (cos 6) SIM p ¢ ;3\ (2,136)
R sin6é "n n cos ‘ *
The orthogonality relations are
M (AN (Wdv=0,
Smn gm'n’
(2.137)

fﬁ (ML, (nav=0,
A Smn Sm'n' -

because of the observations valid for (2.130) and the orthogonality relations

(2.125) of the spherical Bessel functions. The relation

. ‘dv = OW
emn ém'n' (\) ‘ (2,1398)

needs a more detailed analysis which is given below,



T 2%

_ - _ n(n+l) . m cos

Nemn(”) ) Lemln:(M v —fff { uR Jn(MR) Pn (cost) sin m¢
° ° 0% %

8j_(R)
oR

t

p
n (cos 6) © cin Sm' $+ (R] (uR))

RBR

- '(?LR) aP (cos 6) o8 5
- 9 ; _ sin
R % sin m o+ iR R R ]n(’“‘R)) sind Pn (cosO)Z i mp

2
sin ;
R sin 6 i OR) P P (COSG) n ¢} R” sin® dR d6 df .

The integrations of the trigonometric functions and associated Legendre
functions are straightforward, and after performing them we find that m=m’,

n=n' and the expression takes the form:

j_(uR) 9j_(AR)
- T 2n(n+1) (n+m)! In n 2
N8 () LSm'nl(K)d ot (o)t 1ol ‘ R R R @’

The integral on the right hand side can be written as

j (uR) 8] (XR) ] i OR)
1] = L giqR+ %f (Rj (WR) “5— R%dR =
0

M R oR R2

a
3 (\R)
[ f Rj (WR) +jn(m)§—R(Rjn(uR»] dR ,

0

1
u
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and its integrand is equal to

d ) .
&[R Jn(#R) iy (kR)] .

Therefore,
a
1 j 9j_(AR) j (LR)
= n(uR) “n 2 1 ) . n 2
+= — —_ =
H R o N RN or RIWR) = R dR
R
0
a
=S Ry GR (R R-1R R OR) | <0
M dR n n 4 ‘n n
0
because jn (Aa) =0,
The normalization constants are
0 m #m! n#n A FEX
fﬁ \) .M (") dv = (2.139)
gmn - §m'n' 1
\Y = n=m, n=n) A =)'
C
- A
- 0 m #m', n#n', X F!
fﬁ (W) N (u)dv-= (2.140)
Smn Sm'n! 1
c m=m!n=n/x=)
and H
0 C m#m!nFnaky
ﬁe ()o.ie () dv= (2.141)
omn om'n' 2 2 (ntm)! 1

\ -
(1rl-60m)7r>t o1 (nom)! IX— Cm m=m! n=n' ¥\'

where C)L and Cu are defined by (2.131) and (2.132).
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The expansion of .‘i[é (R - fi')] , in this case, becomes

Is@R)YT MWA+YM WB+YN (W C.

Z 8mn Z gmn Z gmn“

Pre-multiplying theMessionﬂby T (), M (MandN (),
-« — 7 Smn €mn émn

integrating through the volume of the cavity, and using the orthogonality

relation (2,137) through (2.141), we get

A=Cc.. T W), ﬁ=ck

M' (), and C=C N' (u)
LA gmn Smn ’

e
H Smn

or

@®R-RY=Yc.. I WL wW+Yc M M
Z Lx gmn 8mn z A gmn 8

The expansion of Eel (RJR") then can be written as

_HTBOM, (M, () +

G @®R)=Yec..L L
el | 2 LA “emn g omn  gmn

= (WN (w) .
"’Z'Y C“ Nemn €mn
0

Substituting the expansions of 16 (R-R") and Eel (R|R") in (2.6), we obtain

Q= - —1 B = — v =
F) - ) - H
2 12,2 22

therefore

o ZCuNgmn(“) N

L V7) I
Smn
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= - CL)\ = = Z C -
G (RIR)=-Y—=-1L (ML M)+ M )M ()+
. Z Tom Cgm 32,E g g
C e —-—
LSS N WR W, (2.142)
u-k® §mn  §mn
Eliminating T () L' (\) between the expansion of 16(R -R") and (2. 142)
€mn €mn
- ot 0

we obtain the second form f‘of (=}el(§ |7,

= -l- 1 = CK )\2 =
G (RIRN =-=Te6(R-RV) -5 M MM M+
el K Ko%k) §mn §mn
C “2 _ _
+£—2f“‘——2——2 N (N ). (2.143)
k' (u -k") omn o
In a similar manner, we find that
_ C )\ C u _ _
G_,(RIR Z SN IR ) ¥ 22 N, (WM () (2.149)
2,2 emn  §mn Kk Smn Smn
and
_ c, _
G BR) =TT () L' S +z SM, (WM (u)+
e k¢ Smn Smn Smn
CA _ _
+) — N (AN () . (2,145
Z)‘Z_kz gmn gmn )
where L (u) is given by
emn

o
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. 8P cos@
8] (HR) m A Jn( KR) ( )cos
1 = co +
Lgmn(u) R Fu (cosd)S25mp R + R " ¢e
T sin A
+
= o p I R) P (cosf) S5 mp§p . (2.146)
The orthogonality relations in this case are
fﬁ W-L  (Wav=0 (2.147)
Smn Sm'n'

because of the observations valid for (2.130) and the orthogonality relations

(2.126) .

N 0.L (Wdv=0 . (2.148)
gmn gm'n'

The proof follows exactly the same steps as in the case of
N (W.L Madv.

e e B
omn Omn -

The normalization constant is

0 m #m} n #a) u Fu'
- - ' -
fLem :f“) L ('u )av (2. 149)
e om'' (146 )7 2 =2 _2 ()i L e
om M 2 +1 (n m)l 7 CLIJ ) s =M

The second form of expansion of Eez (R|RY is
C uz
£ MM )+

K(2k?) Smn §mn

R = L

2

o2 ) I15(R-R") +
2

C)\h

+Y 5= N N ). (2.150)
k202-k% Smn  Smn

Table III summarizes the results of this section.
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Table II: Dyadic Green's Functions for the Spherical Cavity

'G'el (RIR") Eqn. (2,142)
(=;el (RIR") Eqn. (2.143)
ﬁez (RIRY) Eqn. (2.145)
Eez (RIRY) Eqn. (2.150)
s RID!
Eml (RIRY Eqn. (2.144)
ol BIp!
G . (RIR") Eqn, (2.133)
K A
K M
-1 2n(n+1) (n+m)'
C
7 (1+6om) T Ton+l (n-m)! “u
-1 2n(n+1) (n+m)!
C?L (H(Som)’r 2n+l1 (np-m)' "X
-1 2 (ntm)'.2
CL). (1+60m) T 2n+1 (n—m)!x I)\
-1 ' 2 (ntm)! 2
CLu (1+60m) d 2n+1 (n-m)'.“ Iu
M (W Eqn. (2.122)
6mn
M ) Eqn, (2,134)
€mn
(0]
N (w Eqn. (2.135)
&mn
N () Eqn. (2.123)
Smn S
L Eqn. (2.136)
€mn —
L (u Eqn. (2.146)
gmn
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2.6 Application
Let us now compute the input admittance of a rectangular cavity formed by

a short-circuited rectangular waveguide‘ of dimensions a xb at a distance ¢
from the shorted end. We do this by imposing an arbitrary electric field at
the input and finding the transverse magnetic field generated by the electric

field there. The ratio of the tangent component of the rhagnetic field to the

imposed electric field will give the admittance.

Assume the cavity is excited by TE. = mode in the waveguide. The tangential

10
component Ey of this mode is

E=Z-s' x 9
y /ab in ="y .

It is assumed that all the current sources are zero. The magnetic field is

given by (2.20) which in this case is
T(R) = 3 & =lRn . A F (R 1
H (R) iwe fGe2 (RR) * nx E (R ds'
S

or using explicit expressions for éez (ﬁlﬁ'), we get
C | ' o
== Le 7 = C
H(R) = iwe [—- —L L' A == N —~ B A ==
ee . 1 t !
0 2 ‘ ee -nxE(R')ds'+Y 5 M ‘M;e-an(R')ds

S K2-k S [

C
M = = A = =
+ ———— LA '
z 2 2 NeoINeo nx E (R') ds':l.
S

In this case, the normal to the surface is ﬁ\ =+7 » Whence

A= [2_ . & A
nxE=-/——sin=- x x .
ab a
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Let us perform every one of the integrals in the expressmn of H(R) separately

a

f M .ﬁxﬁdxdy=
oe

0 %0

= -nibw—sm—xcos—ycos—z(l)/ sin = xdxdy 0
070

because in this case £=1and m =0,

0
1tz nz . 12 mz 07 2 .7 _
= (-1)Ka cs1naxcos bycoscz(l) b sm;xdxdy
0
=l’LE7L/§_B_COSD_” .
K acVy?2

o fr omr o onr /_?_ T ]
:fﬁ-l)asm—a—xcos bycoscz(—l) absmaxdxdy—
0%0

ab

7 nw
= /—cos — z ,
ay 2 c

|
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Again, in this integration £=1and m =0. At the distance z = ¢ from the

shorted end, the magnetic field is

- = CLe 7 ® @ [ab
H(R) = iwe | - Z ——(-1) =sin—x—,/— +
0 2 a a ay 2
n=0,1 k

Substituting the expressions for CLe and CM in the above expression,

separating the term corresponding to n = 0 in the first summation and

grouping the two summations into one, we get

- 2 = 2 ()’
RENCI N S I }/E;m

1
abCak2 (T/a)z n:l,zabc k2 K2 K2(K2—k2)

H(R)=iwe [
0

Simplifying the expression for i{-, it becomes

(00)
2 2
2 _L 1+2Z(—L—~”2"‘)2'k sin%x:’é.

ﬁ(ﬁ) = iweo b
ck n=l K -k

Let (7 / a)2 = kc2 , the cutoff wavenumber of the waveguide. Then

- - 1 2 kc2-k2 A
HR) = - = — absin-gx 1+2Z,2 5
%o n=lK”-k

Finally, the expression of the input admittance becomes

H ® 2 2 © 22

x 1 Z c _ 1 c
Y% "o |12 2 2 | “iwue 122:22
y Ho 1 K-k Ho n=1w_wn

(2.151)
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2 2 2 2 2
where k =w € p; k =w26 4 andK =w € u was used.
oo ¢ ¢ oo n oo

Consider, now, a short-circuited waveguide of 1engfh <; propagatlng a

TE1 0 mode. Let the waveguide be short-circuited at z = 0, The y-component

of the electric field in this waveguide is
rx | 7l Bgz ‘ 1Bgz

E ~E sin— | e -e
y a

where Bg is constant of propagation in the waveguide,

_ /2 2
Bg—/uoeo wo-w, .

The x-component of the magnetic field is given by

oE -ip -if z iB z
H".l y_.gE.ﬂx[eg+ng

sln —
(o) a

n, 8 [ 48]
Y= T - [ —IB S '13 :l “0 cotB c (2.152)

From Abramovitz and Stegun (1968) we know that the cotangent function

can be expanded as

@
cot z = —+2z Z 1
k1l 2 2 2 (z# 0, +7, +27,....)
z -k 7
which in our case becomes
@
COth=B_10 +—Bz—cz mrl >
g g n=1 1—(6—0)
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7S<1'1bﬁstirtuting in (2,152), we get

2 2
€ )
c

00
¥e- 1 ey
uo iwe /uoeo é 2""(2,

1

1

- n7 — 9
ic /uoeo/{:-w

and after some simplifications, we obtain

ue (w-w)

Y=-' 22 2 mr)2

ue(w—w)(c

or

w w
Y-=- ZE
1wuc

n=1 w - w
2 2 n7 |2 C s .
where woTw + uoeo( -5-) , Which is the same as (2.151), obtained by

using dyadic Green's functions. This result thus found is identical to that of
Kurokawa (1953) who derived it by an entirely different approach.
The dyadic Green's functions derived herein for the cavities can be used

to formulate various boundary value problems involving these cavities.
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DYADIC GREEN'S FUNCTIONS IN THE PRESENCE OF A
SPHERICALLY INHOMOGENEOUS SCATTERER

3.1 Introduction

We consider now the exterior problem, i.e., the scattering of the elec-
tromagnetic field by inhomogeneous spherical lenses. The geometry of the
problem will always be the same and it is represented in Figure 4. It is
assumed that the medium I is always free space and medium II is the in-
terior of the lens whose relative permittivity varies only in the radial direc-
tion. The relative permeability of the lens is assumed constant and equal to 1.

The center of the lens is at the origin of the spherical coordinates and the

radius is a.

Figure 4: Geometry of Electric and Magnetic Dipoles in
Front of an Inhomogeneous Lens.

69
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Following the recent work of Tai (1973), we shall review the eigen-
function expansion of the free space Dyadic Green's functions in terms of the
spherical vector wave functions because the original expression found in his
book (Tai, 1971), has a missing singular term for Eeo'

The electric and magnetic dipoles which are referred to in this work

are always infinitesimal,

3.2 Duality Between the Free Space Dyadic Green's Functions

To facilitate the discussion of the field originated by a Huygens source
we would like to elaborate the duality principle from the point of view of
dyadic Green's function technique.

We recall equations (2. 1) and (2.21) which describe the Maxwell's

equation for electric and magnetic dipoles as a source:

VxE =iwu H

and

where the subscripts e and m stand for the electric and magnétic’ sources
respectively.

Two types of dyadic Green's functions, defined by (2.4), (2.5) and
(2.22) and (2.23), this time take the form
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where the additional subscript o is used to indicate that they are related to

free space and the asterisk is used here to distinguish ' the functions per-

\

taining to a magnetic current source from that of electric current source.

It should not be confused with the notation normally used for complex conju-

gation. The differential equations for these functions are written as:

G =Is(R-R"

All of these dyadic Green's functions satisfy the radiation condition, namely

lim
R—>m®

R [VX & (RR) - kRxG (R[R')]= 0
o (0]

where G _stands for G , G 7, G* .
0 eo’ mo’ eo mo

From the above, we infer that G" isdualtoG while a — is dual
- ‘mo €o mo

to G;‘O. It is necessary, therefore, to compute only one set of these dyadics
for free space, the other set following by duality. Start with the §mo, which
is solenoidal and needs only two functions, M and N, in its expansic;n. From
section 2.5 we know that the expressions for these functions are

Mgmn {K) = jn (KR) mgmn (3.1)



12

and
3 __n(otl), cos . 4 _1__3_[ - ]-
N, K="tR I (KRIP, (cos6) S miR +17 o[RS, (<R B’ 2P
) . - . i . . 0 n
where  — Peose)  , 9P (cosO) A
—_ i _ CoSs 3.3
Pemn sng  cos™ PO 55 sm™?? (3.3)
and
- A -
n =Rxm . (3.4)
gmn gmn
The orthogonal properties in this case are
M (K.N (K)dv=0 (3.5)
€mn  Sm'n'
\'
because of trigonometric functions of §
(0 . m#m nfn
— ) T N
fMemn< 2Mem'n'(K )dv < (146 )wzn(n+1)(n+m)!
0 0 om —
\Y 5 6 (K-K') m=m' n=n'
K"(2n+1) (n-m)! (3.6
and
(0 m fm' n fn'
- - N
f N, N (K {(m o 2a(at 1) )
o 0 om , o
V 2/ : 6 (K—K ) ‘m‘m )
_  K/(2n+1) (n-m)! : ~ n=n'

(3.7

00

7 _K!
where R2 j_ (KR) j_ (K'R) dR = T 8(K-K') was used.
n n 2 2
: =

K
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Eventually, the expression for the dyadic Vx [Té (R - ﬁ')]in terms of M and
N functions becomes

a0
(0] n
v[‘ '-ﬁ']= dK [M K)A+N KE]
x|16(R - R f Yy ¥ gmn( ) gmn( )
0 (3.8)

where A and B are the set of vectors yet unknown. By taking the anterior

scalar product of (3. 8) with '1\716 (K") and integrating it through the entire
€& mn

space, we obtain, due to (3.5) through (3.7)

2-6

0(@nt) (e-m)! 3=
emn o 2 (n?n+;)21111+$;' K Nt'a (K).
0 2 ) omn

A

In the same way, using N, (K') instead of M (K") we obtain -Be

mn

o :
0 omn onn

2-6
- + -m) ! -
B o5 (121?11:3)((1:1::111))" SRUNCSE
o™ of ' omn
therefore
- X 3°° n -
Vx [T&E-R'i= kK'Y Y c [M (K)N'  (K)+N_ (KM’ (Kﬂ
n=1 m=0 | &mp  gmn omn Smn
(3.9)
where 95
c - 0(2n+1) (n-m)!
mn 27r2 n(n+1) (n+tm)!

The dyadic Green's function Emd is written, then, as

- @ 3 00 n _ -
G (RIR') =f K° dK Z Z Cmn [a(K) Me (K) N' ' (K) +
, ) .

e
n=1 m=0 omn omn

+b(K)N  (K) M' (K)
Smn €mn
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and the unknown coefficients a (K) and b (K) are determined as in the case of

the spherical cavity:

The expression for the free space dyadic Green's function Emo (R| R") be-

comes:
_ ‘ 0 K3 (00} n T T
g ®|Ry f ® ¥ L «© [1‘_4 KN, K+
mo 0 K2 _ k(z) n=1m=0 mn gmn gmn i
N (KT (K) (3.10)
€mn Smn

In order to perform above integration, we recall that

(1)

(koR) 5 aR[ﬁJ (k R] R>R
(1)

R aR' [ (k Rﬂ R <R/,

or by writing the dyadic M (K) N'  (K) in an operational form
€mn €mn
0 0

M (K) N’ (K) =T [j (KR) —=(j (KR'))]

em e KR' BR'
om Smn Smn

we have
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© rIVI(el) (k) ﬁé Ak ) R>R'
3 irk omn omn
K'dk = N B
2 2 Temn[ (KR)KR'BR'(J (KR »]' 2 <1\71 ('k)T\I"(l) (k) R<R'’
OK k 0 gmn o gmn o o
.
where
T (k ) = Vx [: (1)(k R) P cos 6) cos m R]
€mn ©
and
B )= vxm )
Smn. 0 omn ©

Finally, the expression for Erﬁb (R|R") becomes

(#Y) 6O (k)+
€mn O &mn O

- iko © Do, (2n+1)(n—m)!ﬁ
GmO(RlR')=—7I 21 z; o n(n+1)(n+m)! T )ﬁv(l) (k )+
' n=1 m=0 L €mn © Smn ©
+ 7Y )i ) R >R

- — (1
+ 8 o) P R< R . (3.11)
gmn o gmn o

sk

Because of duality, the expression for G;O(ﬁlﬁv> is the same. Our next step

will be to find Eeo In order to do this we take the curl of equation (3. 10)

- - n -.—/ —
V x G z C K dK M_ (KM (K)+
mn smn &mn

n=1 m=0

+N (KN (K):I . (3.12)
émn Smn

This expression has a singular part in the integration with respect to K

represented by
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Because

fKZJR“(ICR)J (K:R')dK=M ,
n n -2
; . ) 2R

(3.13) becomes

z zlsn - TR - R
S(RIRY == F
2R n=

Cmn 'rﬁe Eé .
gmn  smn

%Mu

[y

0

Having recognized the singular part of (3.12), we can evaluate the remaining

part by contour integration. Thus, we obtain

|
o+ FlmE0 mos == M (KM - (KM ZKZN (KN (K)| dK
| K°-k” omn WD -
0 o) —
or
3
itk o n

vxG_(R|R)=S(RIRY+—> F T Cmn
n=1 m=0

. . e
Yoo kR ) ® )
< omn © Gmn © §mn O Emp ©

7 o) g5 o) k)

€mn © €mn © €mn © gmn 0 .
L © 0 0
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Finally, recalling that

we have

G (®lRn=- =
eo k2 1 - n=1m=0
0
rﬁ(l) (k) M' (k )+N(l) (k)N' (k) R>R'
< Smn © Smn © émn O ©emp
7 )Py« Y &) R<r
L Smn © §mn émn © mn ©

GF (RIR) =G_(R|R) by duality .

3.3 Vector Wave Functions for a Spherically Inhomogeneous Medium

The Maxwell's equations for a harmonically oscillating field in a

spherically inhomogeneous medium are

for electric dipole excitations, and

/
i
| VxH =-ive € (RN E (3.16)
(0] I“ m -

- for magnetic dipole excitation, where €. (R) is the relative permittivity of

the medium.
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The dyadic Green's functions in this case satisfy the equations

v -G 1
* Minh Gminh (3,17)

= = - = 2
Vx G =16(R - R)+k € (R)

p—7 . 1
minh r Greinh (3.18)
for electric dipole excitation, and
Vxd. K& . +16(R-R) (3.19)
einh o minh
VxG .. =e(RG. (3.20)
minh r einh

for magnetic dipole excitation, where the subscript "inh" means that the

medium is inhomogeneous.

Again, by eliminating Gminh or Geinh between (3.17) and (3.18) and

G* _ orG" . between (3.19) and (3.20) we get
minh einh »
Vx VxG .. -Ke(RG. =T5(§-E') (3.21)
einh o r ein
1 =
\Y v —_— .22
X[er(R) X G'minhil o mmh (R) Ié(R R)] (3.22)
and
vd—— vxG . | -k &, . -16(R- R (3.23)
er(R) minh o minh h '
=k 9 =k [= - - ]
Vx V - = - R!
x Vx Geinh ko er(R) Geinh Vx|I6 (R - RY)| . (3.24)

This time there is no duality between G ., and G ., and between G :
einh minh minh
)]

(R) Ié(R R

is st111 solenoidal and it can be expanded in terms of the elgenfunctlons of the

and ép'< inh 28 in the case of free space dyadics. However,Vx

homogeneous vector wave equation
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1 - 2 =
\Y \Y% -k F=0.
X{ﬁr(R) XF} o

(e)

These are the inhomogeneoué spherical vector wave functions IVIee (ko) and
®™ (k ) defined by
émn O
0
% (k)-vx(dR)
€mn ©
and
N () =L vxvxwR).
émn O ko

Vx [fé (R - F')] is solenoidal too and can be expanded in terms of the eigen-

functions of the homogeneous vector wave equation
Vx Vx F-k’e (R) F = 0.
or

These are the inhomogeneous spherical vector wave functions IVI(m) (k ) and

€mn ©
S(e) )
N (k ) defined by
emn ©O
)
—(m) ~ -
M (k)=Vx (y/R)
8mn o
and
_(e) 1 -
N ™ (k)= Vx Vx (Q R) .
€mn © koer(R) é
Y and 4) satisfy the scalar equations
2 2
Vi +k e (R)Y=0 (3.25)

and
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5 ) dGr(R) 13@®J) 2

"e¢(R) R R B8R  o'r

v R) §=0 .

The functions M(m) , Fo , I\—II(e) and N(e)
gmn Smn

satisfy the following

symmetrical relations: !

p'e I\_/I(e) (k)

8 (k)= L
8mn 0

€mn © koer(R)

7 )= vxN® ()
emn o ko €mn ©

and

L oo™ )
k0 e

N‘(m)(k ) =
Smn °

€mn O
(0] R

—(m) 1 =(m)
Mgmn (kO) ko€r(R) VX N

(k)

(3] (o)
Omn

Consider equation (3.25) in spherical coordinates

2

1 9
S R G e (e Sy AL
R R® sin 6 R® sin’0 o

9

+K e R)Y =0
or
Let
v=F F,F,

(3.26)

(3.27)

and we will perform a separation of variables. The above equation becomes

1 92 (Rz aFl ) + 1 1 a—(sinG ilj— ) +
R2 Fl oR oR R® sin 6 F2 06 06
2
F—t :——3-8 s kj er(R) =0

R2 sin2 8 3 ¢2



2 (& aF1)+k2€(R) 1 (smeanu 11 08
10 _1 L e )+ 1
| oR sinf F2 o0 00 sin29 ]3‘3 8;62

The angular part is the same as in the case of spherical cavityy(see sec. 2.5).

Therefore, its solution is
cos
P/:l(cos 6) £fn m g .

The radial part of this equation becomes

1 0 2 1 2 2
—_ — —_—) + = +1
F, R (R R )‘ k0 er(R)R n (n+1)
or
sz dF
RZ 1+ZR—i+k26()Rz—n(n+1) F, =0 .
2 dR r 1
dR
Let

-RrY
F1 R Sn (kOR)
where < is an arbitrary constant and Sn(kOR) is a new dependent variable.

Making the change of dependent variable, we get
RS (k R)+2(y+1)RS' (k R)+[’yz+v+k2€ (R)Rz—n(n+l)] S (k R) = 0
n o n o or _ n o_

Taking + = -1, the above differential equation assumes its normal form
(Rainville, 1964)

n (nt+1)

2

Sx'n'(koR)‘ +[ € (R) -
R

]S (k R) =0 . (3.28)
n o |

Finally, the solution of equation (3.25) can be written as
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1 m Ccos
5 R S (k R) P (}COS 9) sin m ¢ (3 )

where Sn(koR) satisfies equation (3.28).

Consider, now, equation (3.26). In spherical coordinates it has the

form

19 ,.209 1 3 2

— — (R ) - — — (sin6—") +

2 R 9R 2ene P 0

1 ' I de Ry, 2 i
UNCENE 5 @ d& ROR %o €r(R@_O'
R”sin’ 6 of r

Let

b-F FFy

and the separation of variables yields

2
12 2 aF1)+ L3 (o aFz)+ 0T 1
F1R2 R OR" pliig F, % % F3R251n6 a2 F1eW®)

dge (r) °F1 . de (R)
T e m) - == =0
dR oR %o “r < ®R dr

or

_ia_(R2 BFl)_ A,RZ de (R) Ef‘l L2 g2 (R)_R der(R) )

F, 4R R'“Fe(R) dR R o Cr e (R) dR )

2
) i s 9% ;9%
= | Tome @™o )t 2 T2
2 : F.sing 9

The angular part gives us, again, the spherical harmonics P;n(cose) gggmyj .
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The radial part becomes

1 zaF1 ] Rz der(R) BFl +k2R2€ @ R der(R):n(..n:B\\
Fler(R) dR OR o r Er(R) dR ’

_nY
F1 =R Tn(koR)

where v is an arbitrary constant and Tn(koR) is a new dependent variable.

The above equation then becomes

5 1 2 de (R)] [ R der(R)
R Tn(.koR)Jr [2 (_'Y+ DR - Er(R) dR T; (koR)+ hy‘(ﬁrﬂt})f er(R) R
- ef(R) dZ’iR) ke (RIR® -+ 1)j T (kR) =0
Taking + = -1, the equation becomes
R2 T"{k R) - E?:— fk—r(lj—)' T'(k R) + [kz € (R) R2 - n(n+1)] T (k R)=0
n o er(R) dR n o or n o
or
T (k R)- 1R) ded;R) T! (k R} [k(z)er(R) - “(DR;”] T(kR=0.  (3.30)
Therefore, the solution of equation (3.26) is
b, (k) == T (kR Pcos ) 3 mg (3.31)

omn

where Tn(kOR) satisfies equation (3. 30).
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Instead of continuing with the usual process of determination of the

dyadic Green's functions in an inhomogeneous medium, we will use a short cut

11) <(11)

: o=l =)
to find out the dyadics GeB and Gm3

, Which are necessary to determine the

electric and magnetic fields of electric and magnetic dipoles in the presence of

inhomogeneous lenses. ‘This method is explained in the next section.

3.4 Construction of the Dyadic Green's Functions in the Presence
of a Lens

In the case of the presence of two dielectric media, we have to define
a new kind of dyadic Green's functions which we will call the dyadic Green's

functions of the third kind. They solve equations (2.6) and (2.7) with the

boundary conditions

A 3 _ A 3
(nxGeSS_—(nx e3)s+

1 = =

= (ﬁxVxG ) =1—(nx xG )

u ed's- u ed' st

1 2

1 1 =

—@xG ) =—(@xG )

7] 3s- m3’ st

1 2

1 A = 1 A =

— @xvV = —=@=xV

2(nx XGmS)s- 2(nx XGmS)S-*-

k1 k2

for electric dipole excitation, and equation (2.24) and (2. 25) with the boundary

conditions %
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for magnetic dipole excitation., Here s- and s+ denote, respectively, the
surface approached from opposite sides of a boundary separating the isotropic

media with constitutive constants, “l’ € and “2’ 62 .

Each of the dyadic Green's functions of the third kind is made up of
two components: the dyadic Green's function interior to the scatterer, in-
dicated by superscript (21), and the dyadic Green's function exterior to the
scatterer, indicated by superscript (11). The first superscript in this nota-
tion indicates the medium in which the observer is located and the second in-
dicates the medium in which the source is located. The equations relating the

dyadics of electric and magnetic types are

vx 60D S Ts@® - RY) + K 2 &1
m3 el
=(11) _ =(11)
VX Gre3 GmS
vxalt o ¢ (m) G2V
m3 or e3
=(21) _ =(21)
VX Ge3 - Gm3

for electric dipole excitation and

(11) - #(11)

VxG. -16(R- R')+k G
e3 m3
L =x(11) =% (11)
-\V,XGm3 Ge3

m3 o m3
=%(21) _ =%(21)
G g - ( )GeS

for magnetic dipole excitation.
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In what follows we will be interested only in —G-eB and G g SO only
their expressions will be stated explicitly. The method used to construct the
dyadic Green's functions in the presence of the lens is that of scattering
superposition, which says that the dyadic Green's functions exterior to the
scatterer comprise two parts: one corresponding to the dyadic Green's

function in free space, and the otke r corresponding to the scattered dyadic

Green's function. Stated explicitly:

_(11 SRS ) .
e3 (RI R') = eo(_RIR )+ Gfeé_s (>R le R2a
=(21) =3, _ =(21) =,
G, (RIR) =8  (RIR) R<a
and
o U (g®lRy - & ®IRy+&1Y (R|R) R>a
m3 mo m3s =
=20 £ 1=0 .50 5 15
G, (R]R) G 5 ®RIRY, R<a

where the subscript s means 'scattered’ and o} refers to free space

The construction of the scattered and transmitted dyadic Green's
function is governed by the following rules:

= 11 =3
1) G(ll) nd G ( g (1) and G (21)) have similar forms as
e3s 3 m3s m3s .

Eeo(ﬁlﬁ') (G;rkno (R F'))for R <R' with two unknown constants which are
given by the boundary conditions.

2) By definition, any dyadic D is formed by two vectors,"‘ namel;
:15 = AB, where A is called the anterior element and B the posterior eierrlent.
In the case of a dyadic Green's function, the anterior element represents the
field and the posterior element represents the source. Therefore, in the
constructions of the scattered dyadic Green's function, only the anterior

element (the field) differs from the anterior element of the corresponding

free space dyadic Green's function, while the posterior element (the source)
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is the same as that of the corresponding free space dyadic Green's function.

3) The choice of the anterior element in the scattered dyadic Green's
11) == =¥
function (Ge(3s ) (RIR') Gm(3 (RIR') is governed by the radiation condition.

21
The choice of the anterior element in the interior dyadic (G (2 )( l R') or

E;;zsl)(fdﬁ'))is governed by the condition of the finiteness of the dyadic at the

| origin and involves the inhomogeneous vector wave functions.
(11)

Having these rules in mind, the expressions for G o3

R|R)

(EL (R'R'))'md G( < (R]R' m21) (R]R )become

OOIl

_ 1k -
G( R[RY= z Z (2-¢ ) 2tL_(n-m): kMe (k A M (k ))M'(l) (ko)+
m

o n(n+1 (n+m) o e
omn on o™

N —(1) -I(l) _1_ To(B _ B g (ol
+<Ne (k B N, (ko»NSmn(kO]— [Ié(R—R)—S (R|R )]

n emn k 1
0 o o o (3.32)
_ 1k0§) 2 (2-5 )2BEL _(nom)t | () 1)y
Ge RIR F I o %) n(nt1) (n+m) ! n &mn © Emn ©

=(e) (1)

+ N
%0 S Smn(k°)]
and
A1) - k_°° omt_ (n- ) )V
G (R 47 é o) n(n+1)(n+m (k HE M&msko))Mgmn(koH
+<'ﬁe (k)+F, ﬁ(l) “) Ié(R—R')S(RIR']
mn on Smn ° L (3.33)

Gﬁ”(RlR')—— Z Z(z 5)2““ (n-mt “‘e) ) e )+

n(n+1) (ntm)' | e e o e o
o} omn omn

-

+H Nm )(k)N'(l) (k ) .
on  §mn omn  © |
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The boundary conditions for 58 are

3
A =(11) A =(21)
(RxG,q )SS_- (Rx G "),
A =(11), _ A =(21)
(Rx Wx Ge3 )s_—(RxVxGe3 )s+

.
and for G s
| m3

A =*(11), A 2¥(21)
(Rx(’?m3 )s_—(RxGm3 )s+

A =;"11) YA =;"21)
€r(R X ¥x Gm3 )s- =(Rx Vx Gm3 )s+
with My =y = 1 and €r=€2/€1.

Applying the first boundary conditions to (3.32) at R=a (i.e., on the

rim of the lens) and assuming that the source is located at a distance b > a,

(1)

we have for the M' (ko) component

8mn
A — —(1 A -
{Rx [M (k )+A M() (k )]=Rx[c M(m)(kﬂ ]
5} o o 0 0 R=a

which simplifies to

S (p)
(o )=C A oa

(1)

jn(pa) * Aen h
0
(1)

!
e
omn

ﬁx[ﬁ k)+B NV (k )]=ﬁx[n ﬁ@‘(kﬂ. ,
gun 0 ga gmn o] 'gn gmaolf

which after simplification becomes

where P, = k0 a. The N (ko) component gives

s ! (1) [ o '
[pa In (pa)] * Bgn I:pa hn (pa)]'—— Dgn €r(a) T (pa)



89

where the prime over the function indicates the derivative

0 Tn (kOR)
T, lg)= alk_R)

R=a

(1)

€mn
0

The second boundary condition applied to the M (ko) component gives

{ﬁx Vx [NI (k )+A 1\_4(1) (ko)]=ﬁx Vx [c Nl(m)(koﬂ}

e o ep e en €
omn o omn ol omn

R=a

which, after some simplifications, becomes

t
. (1) v '
[pa i (pa)] +Agn [pah (pa)] =C_k_S (pa)

n € o n
ol

where

o 0 Sn(koR)
n (pa) ) (koR) R=a
Finally, for the ﬁ'(l) (k) component,
gm0
(1) Tn(pa)

. + -
‘n (pa) Bgnhn (pa) Dgn a

Thus, the unknowns A, B, C and D are determined from the system

— S(p)
Yo )+, 2
on

-A h(1
n

gn ) Jn (pa)

a, I T '
B Agn [pa hn (pa)} * an ko Sn(pa) B [pa In (pa)]

T (p_)
(1) a_ _.
_Bgn hn (pa) + Dgn = Jn (pa)
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(1) ko

B [pa . (pa)] DT Taley)” (b, 1, 0,

and are given by

A = PS' - P'S
en Q'S -QS'
0
PT' - €r(a) P'T
B

g; er(a) Q'T - QT' -

i

an= kO|Q'S - Qs']

and . \
1 i er(a)
Pe,” k€@ QT-QT
d[ko Rij_ (kOR)]
where P-= e, jn (pa) ; P'= i §)
° R=a
and d [k rnH(k R]
Q- h(l)( ), Qe—0 D0
Pa My Py 5 d (k R)
° R=a

In the above relation PQ' - P'Q =i was used (see Appendix Al).

Proceeding in the same fashion we find that the unknown coefficients for dyadic

Green's function of the third kind with magnetic dipole excitation 5:;3 (RIR")

are PT' - er(a) P'T
Egn - . (a) Q'T - QT"

_P'S - P§'

an —st - Q'S

, i er(a)

G = 1 - 1
€n k0 er(a)QT QT
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i

k (@S- Qs')

He=
gn

where P, Q, T and S and their derivatives were defined previously.

Except the missing singular term contained in éeo the formulation for

-ée3 contained in this section follows closely the work of Tai (1971). We review

it here mainly for completeness. The formulation for G* m3’ however, is not

found there.

3.5 Electric Field of the Electric and Magnetic Dipoles in the
Presence of a Lens e L

3.5.1 Electric Field of an Electrlc D1pole in the Presence of a Lens

Consider an infinitesimal electric dipole with current moment Cq
oriented in the + x-direction at a distance b from the origin (see Fig. 4).

The expression for the current of the dipole in spherical coordinates is

5(R'-b) 6(6'-7) 5 ( ¢')

- - A
Je(R')=-ce 5 0 .
b sin6' __

The expression for the electric field radiated by such a dipole is

L—:e(ﬁ) - iwof i (R,R' :fe (R') ;d‘," } ﬁ*

v

The dyadic Green's function in this case is given by

‘E(ll) G(ll)
e3

(R 1;.')=(=; (R>R') + (R‘R‘ ,
eo

where G ( R >R') means that we should use the expression for the free-space
dyadic Green s function which corresponds to R>R'. Inthe present work,

our concern is only with the region exterior to the source. Therefore, the

=(11)

singular term which appears in the expression for Ge3 and which is
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important only in the source region, will be dropped from the expression for the
Green's function. Substituting the expression for the dyadic in the expression

for the field, we have

kT e _ (1)
Ee(ﬁ)z g 0 Z Z c (M (k )-ﬁMémr(lko) +Agn Mlom (k) -

TR 1 =(1) N :(1)
J(RYav'+N " (k) J(N (kHB N (k) R)dv
€ €mn © €mn © S § |
\
Let us compute each component of the electric field separately.
T
M (k)T (Rav'= (] (k R')P (cose' m¢'e -
€mn e sin6 n
0
X 0%0%0
SPLn(cos 6') A
3 1 — . COS 1 .
‘]n(koRz- 06 Sinm¢¢)

: [- c, S1ILh) {0’ o(§" )]R‘ sin 6' dR' d9' df"

b sin 6'

After performing the integrations and simplifications, we find that

! T (R! 1= a3 h+1 .IL(EL) .
ff f Mgmn(ko) . Je(R ) dv Ce]n(kob) (-1) 9 , (3.34)
0 ®0 0

Pl (cos 7)

where
i} (_1)n+1 n(n+1)
sin 7 2

(1)

was used (see Appendix A2). By replacng (k R) by h (k R) in (3. 34),

we have
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(1) (1)

M (k) T (R av' =-c_h “(kb) (- o+l “%Jr—l).
n

0 Y% ° (3. 35)
=(1)
For the N ' component, we have

27 (0] -
~ n+l n(n+l)

T (¢} -
N T m ) € . _ MAarv-;
f f N kTR av = [kob ]n(kob)] (1) B
0 0 0 (3.36)

where
1
0P (cos 6)
_n
06

n n(n+1)

=(-1)
o=m

(1)

was used (see Appendix A2). By replacmgj (k R) by h (k R) in (3. 36), we

have

T
C

=,(1) ==, e el n(nt+1)
Ngmn(ko) -Je(R)dv = [k bh (k b)] (-1) 5

0 909 (3.31)

(1)

W‘

Substituting expressions from (3. 34) through (3. 37) in the expression for the

electric field we obtain:

wu k

(0 0]
E ®) =5 % % ont+l ntl) =(1) (1)
e e ey (-1) {  (k )[ (k pya_ b b)]

o 1,
_(1) [kob iy (kob)]\ + Ben[kob h (kob)] } (3. 38)

eln (ko) kb
o

By bringing the dipole to the rim of the lens (i.e., b —» a), some simplifica-
tions are possible:

(1)

. r-ps' (1 iS
i )+A h PS'-PS' (1), . i
n a en n

(bg) =3y (pa)j Qs - qs' M (py) —5; (Q'S - QS)

and
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\1/€ (a) PT' = P'T
o] +B [o 8] e e =2 Q=
[pa In*Pa ] en|Pa™ P’ ’_“Q'T - 1/€r(a) QT!

-

- iT' — —1
er(a) Q'T - QT",

Therefore, (3. 38) becomes

-
wu k e

‘ [00]
__ooe 2ntl  n+lf (1) i _s (1), i __ T
PN S 1 {Moln(ko) o @55 Nerd oo er(a)Q'T-QT}'

e ——

Simplifying again we obtain

iwu e 2
IJO e) 2ntl ,

ot 8 (1) T (1)
47a =) n(n+1) (-1) {‘Q'S"QS' M(Oln(ko)-lh'er(a) Q|T_QT,Neln(ko§.

EéRF

(3.39)

3.5.2 Electric Field of a Magnetic Dipole in the Presence of a Lens

Ther expression for the electric field of an electric dipole elaborated
in the previous section is found in Tai's (1971) book and was presented in this
work mainly for completeness because our goal is to find the expression for
the electric field of the Huygens source. The expression for the electric field
of éf—rfriégg‘“ﬁétic dipole which will be constructed in this section is not found in

Tai's book.

11)
m3
the magnetic field of an infinitesimal magnetic dipole located at a distance

l

Knowing the expression for G from section 3.4, we can compute

b > a from the origin. We assume that the dipole is oriented in the + y-di-

rection (see Fig. 4), and the expression of the magnetic current of this dipole

in spherical coordinates, takes the form,

5 (R'-b) 6(6'-7) & ( @' 3

jm(R‘) =c_ 5
b sin 6'

where cm is the moment of the magnetic dipole.
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The magnetic field radiated by the dipole is given by

H_(R)=ive_ I MU @R -5 @) e

v

The expression for the dyadic Green's function in this case is

G*(ll) >:<(11)

(R[R") = G JEB>R)+GE &[RY

As in the previous section, because we are not interested in the source region,

=#(11)

the singular term in the expression for G

=4(11) 3
m3 in the expression for the magnetic field, we obtain

wu k 7 = — (1) -
o z Z + ! . '
i (R)=- —22 Con Sm (k )ﬁMgmn(kO) Egn M?, (ko)) dev

m T2 el me0 J mn
v

will be dropped. Substituting

1) < ) =
k k HF k R') dv'
gmn( O)f( gmn( o) 8}}7 b ( o) I, (R dv
'

Integrating each component of the above expression separately, we get

f ff (k).E (Rl)dvl__J (k b)( 1)nn(n+1)’
€mn 5

and replacing j_ (k R) by h (k R) in the above,

jffm'“ (k)T _(R) av ——h( ) ) (-1 “(n“) . (3.41)
0 %0

The N component of the expression for H (R) gives

: _1 , ' o+l n(ntl)
fff (k) J (R)dv kb[kob Jn(kob)] (-1) 5

(3.42)

(3.40)
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1(1) 1 ! m— ( ) n+l n(n+l)
fff (k) J (R)dv kb[kbh (kb)] (-1) —y

(3.43)
Substituting (3. 40) through (3. 43) in the expression for the magnetic field, we
obtain
we k ¢ - 2ntl ntl ) =(1) (1)
A_(R)=-"%%n T (-1) M—&)[&bHEh mbﬂ
47r = n(nt+1) eln o

(kaka+F<kb#%kmr
+N,(1) 0
oln kb

We can now make more simplifications for the magnetic dipole on the rim of

the lens. Thus

PT' - € (a) P'T | ier(a)T

P+ Een Q=P+ er(a) Q'T - QT' Q= er(a) Q'T - QT
and
! = I_)'—S.__l—)g'— 1 = "'_i_S'___
P! + FonQ Qs - Q'S Q ®s'qs

and considering these simplifications|the expression for the magnetic field

becomes
. =(1) \ (1)
ﬁm(ﬁ): —1wéocm f( 1)n+1 ontl |€ (a)T M (k) +S oln
dra L2 n(n+1)| € (a)Q’ T -Q T' Qs -Q S,

(3.44)

Now, because

E (R)=—-—VxH (R) ,
m b)fo m
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we can calculate the electric field radiated by the magnetic dipole. By taking
the curl of (3. 44) we get

ke
0

E (Rr 2
m 4ra

, € _(a)T
(_1)n+1 2n+1 [Q S =(1) (k p—2=

(1)
n(w)| Q'5-Q8' Moln Yo er(a)Q'T—QT'_I?/Ifal‘n\(\ko)jl'

5.8

(3. 45)
Therefore, the final expression for the electric field radiated by a magnetic

dipole with the moment given by " o e is

@ we o € (a)T
= = 0 mHlontl | st o), et A1)
E (RF 4ra ngl -1 n(n+1)[Q'S—QS’ Moln(ko)_'-er(a)Q'T'QT' Neln(k ):'
(3. 46)
where

IJO "\‘

“n = [ ——
0"/6
(o)

The case in which the moment of thelmaghetic dipole and the moment

of the electric dipole are related by

c =1 c , (3.47)
0 :
representing a Huygen's source, will be considered in the next section.

3.5.3 Huygens Source

Sometimes it is desirable to study the radiation of the aperture of an
open-ended waveguide illuminating a microwave lens. A rigorous study of
such a setup is very dlfflcult and so we have to consider an approximate
model for it. One such mbdel is Huygens source.

}Huygens gource is formed by crossing two dipoles, one electric and
the othe;_;z;nretic, at 90° in space, with the moment of the magnetic dipole
related to the moment of the electric dipole by (3.47). The far-zone electric

field radiated by such a device is given by Jordan and Balmain (1968).
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-iw ¢ ikr A
- oe e A
= + si 1+ .
E. =7 = (cos @ 6+ sin @ P) (1+cos 6)

The radiation field of such a source has a cardioid pattern. It has a maximum
in the forward (6= 0°) and a zero in the backward (6 = 180°) direction. This
model could represent, in first approximation, the radiation pattern of an
open-ended waveguide.

In order to study the effect of a microwave lens on the radiation pattern
of an open-ended waveguide, we will combine the expression (3. 39) and (3. 46)
for elréétric fields radiated by electric and magnetic dipoles presented in the

previous sections. The expression for the electric field radiated by Huygens

source, here denoted by EH’ is
©
(R) ntl 2nt+l | i S+8' 1)
+ = Z -1
E R)=E R +E_(R)= =2 L "= [Q'S 5 ﬁ

€ (a) T-iT!

r (1)

¢ (a) QT - QT' Nern (K )] (3.48)

In the far-zone field the following approximations (Stratton, 1941) are valid:

otn ~ k& Toln
and ikR
eLn\ kR “eln
here 1 apl
wher P (cos 6) A 9P (cos 6)
m =—n'——cos¢6-L——sin¢¢
oln sin 6 06
d 1
an _ 9P (cos 6) A Prl1 (cos 6) A
Yeln™ "~ a9 cos 6 - sin 0 sinf 9 .
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Thus, the expression for the electric field becomes

ik R o -
+
E (ﬁ)= Liﬁigie- e__o._ Z( )D+1 2ntl |— iS +S! _ + T 1€r(a)T _
o n(n+D| Q'S-@S' “oln’ € (a)QT-QT" eln

(3.49)
Up to this point, it was assumed that the relative permittivity of the

lens at the rim has some constant value €r(a) which means that the lens is

not matched to free-space. Henceforth, all the Ienses we e will conS1der W111 \

have er(a) =1, i.e., the lenses are matched to free-space, and we can
simplify expression (3. 49) for the field:

ol C ik R (04}
= = Yo% © ol 2ntl| iS¥S' - . T T-
E_(R)=—= kR ( ) $——

H 4»7ra n(nt+1)| Q'S-QS!' M51n Q'T—QT'neTn '
(3.50)

Substituting the values of molg and nei into (3 50) ylelds

—_—

k R ® 1 | 1
P
E (- WHo% Z( jutlantl || ists' *ple0st) L THT 9P (cos6)
H k R (ot )|Q'S—QS'  sin 6 QT-QT' 96

i S+S! aP (cosG) T+ i T\P (cosb) /\}
[Co8 M]Q's -Qs' % +Q'T~QT' sin 0>Sm po| - (.51

The expressions for the field in the vertical (¢=0) and horizontal (f=r /2) planes

become . s

1k 1
= _wuoce e Z( e o 2ntl (IS+S' n(cos())+ THT a})ﬁ(cose))

¢=o 4ra kRn‘ n(n+l1) [Q'S-QS' sin 6 Q'T-QT' 96

(3.52)
and
ik R o , 1 1
_ TR G o O pt120tl [ S 48" _8Pn(cos6) T T ABH(COSG)
E = — ) (i)
f=m/2 47a kR - n(n+1)\ Q'S-QS’ 9 Q'T-QT' sin @

(3.53)
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In order to make computations easier, we will transform the above ex-

pressions into a more convenient form. By grouping the terms and using the

relation
(1) (1) ml (1)
(P) h (a) 5 hn (pa)
a
we get, finally
o,
we e lkR CE( nt+l 2n+l i+8'/s an(cos o)
ER) g™ Trap SR & o) B0 ) (yﬁln— p{t) sin®
a 0 n-1"a S pa n
1
i+ T /T BPh( cos 6)
+ D 0 6 (3.54)
h " (p ) (— L )n
n-1'° P n
a
an d
1koR 0
B -To% e (pytl 2ntl i+8'/s
=
G /2 4x ap, kR n(n+1) h(l)( )_(§+n_ h(l)(p)
n-1"a" |8 pa n - a
1 . 1
0P (cos 6) 1+T'/T P (cos 0)
! + 2 . (3.55)

o6 (1), T n}) (1) sin 6
hn—l( pg) _( T +pa) h;(pa)

Expressions (3.54) and (3. 55) will be used in section 4.5 to numerically
compute the radiation patterns of the lenses whose effect is built into the terms

S’/S and T'/T. :

3.5.4 Plane Wave Incident on an Inhomogeneous Lens

In order to study the behavior of an inhomogeneous lens as a scatterer,
plane wave 1n01dence will now be considered. The method of computation of

plane wave scattering by an inhomogeneous lens will be that of calculating the



scattered field of an electric dipole in the presence of a lens when the dipole
recedes to infinity.

Starting with the dyadic Green s function of the third kind, we take
Ee (R <R') in the expression of G R[R‘) and neglect in it the singular

term. Thus,
G, 11) (R[R") = ikoozo f:‘ 2wl (nem) e,
1
4nr =1 10 o ‘n(n+1) (ntm)! émn ©
1 1 - —(1 |
ra, 0 - aomEcops 8D aoi M|
on gmn O fmn O gmn 0 en emn 0 &mp 0|’ |
(3.56)
and the expression for the electric field becomes
n

n=1 m=0 n(n+1) (n+m)!

w,u k \
lwufG( (R]R) I (B vt = ——>2 Z Y (2-6 ) 20+l (n-m)!

- =(1) ~ (1) =
KMgmn(kOHAgnMemn(kO)}.fMgmn(ko)' TR av! +
Y

+® kB K (k ))f - J(R’)va

e o e
€mn \‘\ on Smn / o

Performing the integration as before, we find

-wuokoce o) on+l

47k b n(n+1)
o n7l

E(R) ) (@ (k p)+

<1>“+1[< (kA M(

< (1 )
+ (Ne,,lp(ko) B, N

(k ) Q' (k b)]
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Taking the limit as b — o and remembering that
ik b

+1
lim  Qkp)=(-D" e °

b—

and kb
lim Q' (kob)=(-i)‘ e

b—

the expression for the f1e1d becomgs_ B
T kb o

-wu k c 0
I Y et 2““[1(N krB FY )-

47 kb & n(nt+1) eln o “en eln 0
o n=l

-(M (k)+A M(l) ))J

—

After some simplifications, we obtain

_— ——

= (1)
- .57
(Neln(k HB en Neln (ko)) (3.57)
ik b
uoce e °
where EO = I b is called the amplitude of the plane wave. The

expression for the electric field in two principal planes now become

1
9P (cosh)
—n

00

@

nt+l 2n+l 1 9 (1), /™

R)l¢= Z 9 (n+1)£<R8R [R( (kRIB by koR,»]
n=1

1
P (cosH)
i gy . 2 ]3 +
n o no

+i (jn( kOR)+A onh
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n(ntl) . (1) 1 A
+ [_l;;—R_ (Jn(koR) + Benhn (kOR)) Pn(cose)J R (3.58)

and

8P1(cos9)
n+l 2n+1 L. (1) n
E(R)’¢= I5 =E Z( i) oot D) {1 (]n(koR)+Aonhn (kogz) —

Pl(cose)
RS (1) n A
+kOR BR[R (j(k RHB_ b (koR/))] oD };6 : (3.59)

Equations (3. 58) and (3. 59) allow us to derive the expressions for the bistatic
scattering cross-section of the lenses in the next section and that for the field

around the geometrical optics focus of the Luneburg lens in section 4. 1. 5.

3.5.5 Bistatic Scattering Cross-Sections

From (3.58) and (3.59), the expressions for the scattered field of a

plane wave incident on a lens are

oP (cos@)
nt+l 2n+l 9 (1)
R)l¢="E Z(l) (n+1)[k R or B, KRN —FH— +
P1 (cosB)
ria B’k R). -2 ]A
o on n o néb
and
1
0P (cosb)
n+l 2n+l (1) ‘n
E(R)|¢=/ EZ() (+1)[A h (k R) ———+

n=1

Ben (1) P1 (cosB)
kR aR (Rh (k R)) —-———Sme ¢

where the superscript s means the scattered field. Recalling that
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ik R

h;l)(koR) : ‘(fi)n+1 . 0

k R

(0]
and

0 [k R Mk R)] ik R

0 n 0 - (_i)n
kR Ak R) k R

(o) (o] (o]

as R — o, the expressions for the far-zone scattered field in the principal

planes are
_l\ ikOR [00) “1 I
S, = . € 2n+1 P (cosh) 0P (cosh)
E (R)l =-iE —— A _n “n
+ +B —— i
al ° koR n=1n({1~ 1)‘[ " Tsing Ben 26 (3.60)
and
i 1 1
" elkoR & on+l aPn(cose) P (cosh)
E (R = + .(3.61
£ (R)IQ&W/Z'~1 Eo kR T n(n+1) |“on 6 en  sind (3.61)
Bistatic scattering cross-sections in the principal planes are defined
as ,
i 2 IEZ<9’ O)' i
- lim
OE(G, 0) R 47 R -—liz-,'g—
and

ES (6, 7r/2),2

GH(B,W/2) = Enlooo 47 B IJ_IE)—T_

Substituting (3. 60) and (3. 61) in the above definitions, we have

[0 0]
47 I 2nt+1
k 2, n(n+1)
o |[p=1

Pl(cose) 813,1(0059)
2 — (3.62)
on

= +
cTE(G’ 0 sin 6 Ben a0

and
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+
00 Ben sin 6

~ n(n+1) A

1 1
4r X ontl aPn(cose) ‘En(cos 0) 2
aH(e,yr/zﬁkoz v 2 ——||. (3.63)

The bistatic scattering cross-sections normalized to the geometrical cross-

sections of the lenses are

o -
. (6,0) X P (cos6) 5P (cost) | |2
E - i 2_ni* _n +B ~n__ (3.64)
2|4 n(n+1) on sin 6 en 00 '
Ta p_ |l T
a
and
® 1 1 2
O‘H(9,7I‘/2) oy omt1 B‘Pn(cose) rPh(cose) )
= -. +B ———————
7ra2 0 2 - n(n+1) on 06 en sin @
a (3.65)

-~

These expressions will be used in the numerical computations of the bistatic

scattering cross-sections of the lenses.



LENSES

4.1 Luneburg Lens

|4; 1.1 Introduction and Review of the Literature

The Luneburg lens is a dielectric lens with relative permittivity

varying according to the law

‘er(R)=2—R2/a2 ,  0<R<a, (4.1)

where a is the radius of the lens and R is the radial distance measured
from the center of the lens. R.K. Luneburg (1944), using geometrical optics,

showed that such a lens transforms the rays of a point source on the rim of

the lens into a collimated beam, as shown in Figure 5.

Figure 5: Luneburg Lens,

106
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Several possible modifications of Luneburg's work, the so-called
generalized Luneburg lenses, have been reported. Morgan (1958, 1959),

Kay (1956, 1959), Brown (1953), Gutman (1954), Huynen (1958) and Uslenghi
(1969) describe the geometrical optics behavior of generalized Luneburg lenses
when the source is located inside and outside the lens 7'

Robinson (1954), Peeler and Coleman (1958) and Horst (1963) describe
the method of fabrication of the Luneburg lens and present the measured
radiation patterns of the prototypes. All of those lenses are of large diameter.
Schrank (1967) discusses the method of fabrication of precision Luneburg
lenses for microwave antennas.

Gunderson and Holmes (1968) and Gunderson and Kauffman (1968)
present the radiation patterns of two and tﬁrree\‘dimensional Luneburg lenses
made from foam glass, which has the advantaée:f bigger power-handling
capability than the plastic lenses described earlier. Webster (1958) presents
the radiation patterns of large diameter Luneburg lenses when fed by different
sources, and Jones (1966) reported the behavior of a two-dimensional wire
grid Luneburg Lens. Peeler and Coleman (1958), and Mikulski and Murphy
(1963) discuss the effect of discontinuity in the refractive index, which occurs
in the fabrication of the Luneburg lenses, on the radiation patterns. Lerner
(1964) by an approximation method, computed the temperature distribution
within the lens and found that the hottest point is at the feed. o 7

Garbacz (1962) by means of thé method of surface impedance, deter-
mined the bistatic scattering cross-section of the Luneburg lens of small dia-
meter. This method requires that the end condition, i.e., a given surface im-
pedance (or admittance) at a given radius, be specified. bebeﬁdﬂié on the type
of the variation of the permittivity, Garbacz used different‘ a;[;;;';)ximat express-
ions for the end condition. This method fails if the permittivity has a zero in the
interval of the sphere radius. The functions which represent the imedance and ad-

mittance as a function of the radial distance become very large in the region
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of resonance and anti-resonance and the numerical computations of these
functions become very difficult. The transformation from impedance function
to admittance function and vice-versa is made so that this difficulty is over-
come. A more convenient method from the computational point of view is de-

scribed by Shafai (1972). This is the method of amplitude and phase functions.

The scattered field is descriibé»di bythe phase functions and they were found to b

relatively smooth and well behaved. Therefore, their computation is more
efficient than that of the impedance and admittance functions used by Garbacz.
This method is also approximate because the initial phase shift must be
assumed. Hizal and Tosun (1973) used the state-space formulation for the
same purpose. This forrﬁulétion was applied to a model of the Luneburg dis-
tribution represented by a spherical shell with interior radius of 0.2 where
€r = (0 and exterior radius of 3,5, 6 Ac;. In between, er varies according to
the Luneburg lens law.  Their results are in very good agreement with
those of Shafai. B -
The comparison of the radiation patterns of a Luneburg lens and a homo- a
geneous sphere of small diameter using the geone trical optics is reported by Ryan |
and Cain (1971). They found that the homogeneous lens compares‘favoraffly with

the Luneburg lens when qomparing their directivities, beamwidths and sidelobes.

The exact electromagnetic treatment of the two-dimensional Luneburg
lens is given by Jasik (1954) and the three-dimensional Luneburg lens is treated
by Tai (1958a) and Sharaf (1962). Sharaf defined S- and T-functions which are
proportional to those of Tai. The final results of both works are the same.

A survey of applications of the Luneburg lens is given by Rudduck and
Walter (1960) while Rudduck and Walter (1962) and Dorge (1971) describe the
use of the lens in communica&&n satellites. o

glaofé and Levin (1967) made an exact electromagnetic fo;mulgﬁigﬁ '

of the scattering of plane waves by a lens Wh}cil is a generalization of Luneburg

lens. Its relative permittivity varies according to the parabolic law:
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n(R) = m2;f(1 - 2,62112/a2)

2
where m and € are parameters and Luneburg distribution holds for m =2
and € =1/4.  Our treatment of the Luneburg lens is that of Tai, though our

method of solving the differential equations involved is different.

4.1.2 S-Function for the Luneburg Lens

Ih order to compute the field of the Huygens source in the presence of
the lens, we have to find the expressions for the vector wave functions involv=
ing the S- and T-functions, which in turn depend on the permittivity of each
lens.

Recalling equation (3. 28) and substituting in it equation (4. 1), we have

2

d”S_(k R) 2

—2 +[k2<2-R—)-n—(n+l)}s (k R)=0.
2 n o

dR 2 2

a R

By changing the variable p = kOR and defining the constant P, = koa, this

differential equation is transformed into

2
d’s (p) 2
o7 [2 2 %] 5. (o= 42
dp Py p

This is the so-called normal form of the differential equation (Rainville, 1964)
and its solution can be found by the polynomial method of Sommerfeld (Kemble,
1937). The method consists in finding three functions such that their product
is the exact solution of the differentialgquation. Thesé functions are chosen
vin‘such a way that one of them describes the behavior of the solution around

the origin, another determines the behavior at infinity and the third determines

the nature of the solution in the intermediate region.
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When p — m, the differential equation (4.2) can be approximated by

&s 2
S
2 n

2
dp p

a

2
to /2,
which has as an asymptotic solution function proportional to e , i.e.,

2
o /2%,
S e
n

We choose the negative sign to ensure that the function vanishes at infinity.

At the origin, the Frobenius method (Rainville, 1964) gives that the solution

is a polynomial with exponent (n + 1) or =n. We use the first exponent be-
cause we need a solution finite at the origin. Whence, we can write the
solution of (4.2) as
2
-0 /2p
_ ntl a
Sn—p e Un(p) (4.3)
where Un(p) describes the behavior of Sn in the intermediate region.
Differentiating (4. 3) twice and substituting it into (4.2), we find that Un(p)

satisfies differential equation

" nfl _p o _2n#3 -
Un(p)+2(p ; )Un(p)+(2 ) )Un(p) 0.

a a

By making change of variable z = p2 /pa’ we find that Un(z) satisfies a stan-
dard differential equation, namely, the confluent hypergeometric differential
equation

2
d"U (z) du (z)
n Tz n 1 . _
z e * [n+_3/2 } z] dz 2 l:n +3/2 pa] U,(z)=0.
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The solution of this differential equation is the confluent hypergeometric

(Kummer's ) function, i.e.,

U(Z)— F (01 v; 2)

where -1/2(n+3/2 p)
v=n+3/2
and
2
z=p /o,

[The second solution of the confluent hypergeometric equation z vlF1

(2 - vtl, 2—&; z) is rejected because it is not finite at the originJ
The confluent hypergeometric function (Abramovitz and Stegun,

1968) is given by the series

(a)2 (oz)n
1F (a, v; z)= 1+——z+(V) o1 z+..... +(V)nn£ +..._

where (@) =a (at] )a+2) . ... (a+n-1) and @ =1 Hvh ~nando # - m

where m and n are po;;tlve 1nté—g;;g; 1 l(a-' v;z)is a convergent series

for all values of @, v and z. In our case @=1/2 ( n+3/v2 Py )and v=n+ 3/2
withn=1, 2, 3.... Therefore, v#-n, but o canZésTL;me negative integer
values. When ¢ is negative the function exhibits an osc111atory behav10r\ and
when o is a negative integer the series terminates and becoiﬁés an oscﬂlatory
polynomial. When o is po>s13;ive 1F1 (@, v; z) niéfeases monotomcally
Therefore, the confluent hypergeometnc function is always well-behaved in
our case. The derivative of the confluent hypergeometric function is given

by

d lF1 (o, v;z)
dz h

+ .
F1 (@+1, v+1;2z)

<R
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[More about confluent hypergeometric functions can be found in Slater's (1960)

work]. Finally, the expression of the S-function is

-92/29
nt+l a 2
Sn (p)=p " e 1F1 (e, v; p /pa) (4.4)

4,.1.3 T-Function for the Luneburg Lens

Récalling equation (3. 30) and substituting in it (4.1), we get

. J—
d“T(k R) dT(k R) - e
® (2D SR dTh

which, after making a change of variable p =h1>«ioR and defining the constant

p '=k a, takes the form
a_o

2
d Tn(p)+ 2p dTn(p)+ 5 _.L2__ n(nt+1) T (o) =0
2 2 2 do 2 2 nP' 7
dp 2p, - P p, P

We can transform it into the normal form by making the foilowing change of

dependent variable (Rainville, 1964).

1 —_
Tn-Wnexp(—zfpd p),

where p is the coefficient of the first derivative in the differential equation.

In this case p= 2%-——2 , and after performing the integration and taking
2p, =P
a

the exponential we find that

AR
Tn(p)- 2, =P Wn(p).
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The differential equation for the new dependent variable Wn(p) becomes

2 2
2 200" +p")
W"+(2—L _n(n+l)_ a )W =0,
n 2 2 (2 2_ 2)2 n
a P Pap

wﬂm‘h is the normal form of the differential equation. Applying again the

polynomial method of Sommerfeld (Kemble, 1937), we find that

—p2/2p
- +1
W (0)=e a o Vn(p)

where Vn satisfies the differential equation

S22
2(p +p)
+ +
vgm)+2(1—l-£—)vh+ p - 23 | V, =0
p pa pa (2pa -p%
The change of independent variable z = p2 /pa reduces it to
d2 vV (z) dv (z) |a 20 2a_ «a
—L2 Ty 22223y (g0
2 1z dz / zZ-a n
dz 2 (z-a)
2
where
y=n+3/2
= +3/2-p +1/(4p ]
a=1/2 (n+3/2 P, 1/( R)
a, == 1/(16pa)
ag = - 3/(16pa)
3,=2p,

and this equation cannot be cast in the form of any standard differential equation.
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Tai (1958a) called it a "generalized" confluent hypergeometric equation. The

only possible solution of this equation is the series solution. We expand the
solution around zero which has exponents 0 and - (n+1/2). Then two possible

series solutions around zero are (Rainville, 1964),

s m
Vn= z Amz
m=0

and

= —
v = /A7, meedlf2)
n m=1 m

The second solution is rejected because it is not finite at the origin. Substitu-
ting the first solution in the differential equation and equating the coefficients of
the terms of the same power to zero, we find a four term recurrence relation
between the coefficients. This recurrence relation can be further reduced to
the relation between the first coefficient, which is arbitrary and any subsequent

term. The relations are of the following form:

A L4
0 Y
+
_‘ig= l _al(al 1) _ a/2+a3
+
o 2 v(y+l) a2('y+1)
* +
ﬁ:_l_a’l(a’lﬂ) (ar2+2) 1 20(1(02 0/3)+ (2+al)(afz+ar3)+ 2(012 2a3)
Ay 3tArl)  (v+2) 3(v+2) 3,y a2(y+1) g .

2

For m >3, the relation between the first coefficient and subsequent coefficients
becomes very cumbersome, so it is more convenient to use the recurrence

relation,
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a?) (m + 1) (ytm) A T8 [az(m+al)+‘2/1;1(m+'y-1):|Am +

+ [(m- 1)(’Y+m—2)+232(0!1+a'2+0f3+m"1)] Am— 1-(a1+2a2+m~2)Am_2=0.

0 =1, The series solution for Vn converges

absolutely and uniformlyfor\\\ z < a2 orp </?| pa. Because our lens is of radius

Py the series for Vn always converges, including ;)n‘the rim of the lens.
It is readily apparent that the differential equation for Vn is very
similar to that for the confluent hypergeometric function except that it has

another regular singular point at z=a_. When pa is very large, the co-

9°

efficient of the pole at z =a_ becomes very small and the effect of the pole on

2
the behavior of the "generalized" confluent hypergeometric function in the region

0<p< Py is negligible. The coefficient «, of the pole at z =0 of this function

is nearly the same as the coefficient o of %che pole at z =0 of the confluent
hypergeometric function. Consequently the ""generalized' confluent hyper-
geometric function becomes very similar to the confluent hypergeometric
function in this region. The same does not happen when pa is very small. In

this case the coefficient of the pole at z = a_ of the "generalized" confluent

2
hypergeometric function becomes very large and its effect on the behavior of

this function is not negligible in the region 0 <p < Py Also, the dominant term
in o, is l/(jlpa). @
of the "generalized" confluent hypergeometric function differs considerably from

and o are, then, completely different and the behavior

that of confluent hypergeometric function.

Returning now to the T-function, we see that it has the form

/20, L 2
2 2 ntl m
T (p) = l/2p -p pn e a Z A (&), (as)
n a - “m " p
m=0 a

Looking back at the equations (3. 54) and (3. 55), we see that the expressions for
—— \
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- — Q1
the electric field contain terms_ Sg

1
ndT—

. a » and we can compute
PP, Tl

them readily. Thus, from (4.4) we have

and

-p_/2 .
‘g = " (n+1- 0 M +1;
‘ n,(Pa) € Pa [(n pa) lFl<a’v’pa) 2afy Pa lFl(aﬂ’v l’pa)] ’

where tiléi relation

2
d,F (@, v;p’/p

o 2
1Fy (etl, 415 /pa)

2 v
dlp /pa)
was used.
Consequently,
Sl .
n _ntl a lFl(aﬂ’ vt pa)
3 —T-1+2; F (@vn) (4.6)
n p=pa a 171'% ViR,
From (4.5), for the T-function, we have
T (p)= n+26_pa/200 A m
n Py’ 7P m Pa
- m=0 e
and
oo}
2 /2
P,/ +2 P -
T'(p )=(n-p )p" e 2 Z A p 4 9p" 22 ZmA o ! ;
0 ma m a

therefore ,
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% mA m-1
TI; n m=0 m Pa
— = — - 142 =— . (4.7)
Tn P pa 2
a Z \Am Py
m=0

Expressions (4.6) and (4. 7) are needed for all numerical computations which

involve the Luneburg lenses.

4.1.4 Directivity
One means of comparing the performance of the Luneburg lens with

other lenses is to compare their directivities. The directivity in the forward

direction relative to an isotropic source is defined by

47 (radiation intensity in 6 = 0° direction)

D= total power radiated .

Equation (3. 50) for the electric field of the Huygens source can be written as

Wy C

- oee ° n+1-—
EH(R)= 4ra kR Z() n

where

K=2n+1 iS+8§! = +T'+1T -
n n(ntl)| Q'S-QS' "oln Q'T-QT' Qein [ -

First we compute the total power radiated by the source:

2T T
1
= 2 ff EH R%sin 0 d9 df
0%

where the asterisk indicates the complex conjugation. Thus,
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wy e ® ® . 11 o ‘
W= 1—< > T ¥ \(1)n (-1)" A A sin6dodp.
21 n m ,
0 9 n=1 m=l\ 0 |
The double integral can be performed separately.
T 21
_ (2nt1) (2m+1)
I= 7 A A sin6 d6 df= - ) n(n+1) m(m+1) [n oln" n eln]
070
* *
. m - + 7 :
[am By anelm] sinf d6 d¢
where
o _i8+§8' and B T'+iT
n Q'S QS! Q'T-QT'

After substituting the values of Eoln and He In and performing the scalar pro-

duct, the integral becomes

T 1 1
1 =L2ntl) (2m+1) ( P (cos 6) ‘g 9P (cos6) )
n(n+1) m(m+1) @ " sin6 n T o0 .
0®0

1
e Pm(cos )

apl (cos 0)
m
00

#

+Bm

o N cos +
m sin6 ) ¢

1
OP (cos 6) Pl (cos 6)
+ (an n + B n
. 00 n sin 6

. aplln (cos ) P (cos 0)
c(gf — 4 B )sin“d|sin6dod
(am 00 Bm sin 6 ) ¢ ¢

the @ integration is immediate, the expression then becomes
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1 1 1 1
P (cos®) 9P (cosd) P (cosd) 8P (cos)

= + : +
I n(n+1)m(m+l)7r (an sin 0 Bn 06 )(am sinf Bm 00 )sin6dd
1 1 1 1

aPn(cose) Pn(cose) " aPm(cose) _*Pm(cose)
N (an o0 +Bn sinf )(am o0 t8 m sinf )Eme dé 1.
0

Performing the multiplication and rearranging the terms we get

_(20+1) (2m+1) # .
(0 BB (o S T oo sing |sinodo+

1
. api(cose) 8P (cos6) P i(cos@) P(cos6)
Fantl) mm+1)" “n%m Potm

0

" y aPlll(cosB) P:n(cose) BPlll(cose) Plln(cose)
+ + + i .
(an‘8 m B nam)j- ( 06 sin 6 06 sin 0 ) sing d6
0

It is known (Stratton, 1941) that

. aPrll(cose) BPrln(cose) Plll(cose) P:r(lcose) 0 .
( + )sin 6 d6 =
00 00 . :
0 sin 0 Z——nz(n+1)2 n=m
2n+l
and
1 1
BPn(COSG) 9P (cosb) ]
o ———————— + =
( " Pm(cose) 5 Pn(cose)) de=0 .
0
Using these relations, we find
0 n¥m

T
— —*
A A sin6dod@s=
n m

- #
0 0 + A + =
27 (2n+1) (an @ Bn Bm ) n=m.

—
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The total power radiated by the source is

wuc
W = 1( oe2

o @ ka Z 27r(2n+1)(| ‘+|Bn|2)

or
w=nl (w;°kz 2 [ (20+1) (o | +|8 | (4.8)
(o)

2

The radiation intensity in the 6= 0° direction is given by 1;—- EH EH

6=0]'

60’

+B8. 1

E - v uoce e Z( )n+1 2n+1 o m
Hl k R i n(n+1) “n oln =0 n “eln

g0 472

But

n(n 1 (os¢6-sm¢¢)

oln

and

n
eln

=l-1%i-l—)(cos¢a~sin¢8) .

6=0

Thus, the field in the 6= 0° direction is

ik R
0

Z(i)
6=0 o n=1

nt+l

A N
(2n+1) ( @ + Bn) [cos p6-sinfp@ ]

and the expression for the radiation intensity in the 6 = 0° direction becomes

2 2 WU C X 2
- =X +
= EHEH, e O i Y ™ em 8] (oos 2frsin’g)
o o=0 “"o Ta kOR n=1

or
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2 wu ¢ (03]
R = =% 1 0€,2 nt+l 2
— -_—( — i 2ntl + . 4.9
o PwFa| T B Tk Y @7 (2mtD) (o, B (4.9)
© 6=0 e
Dividing 47 times (4. 8) by (4.9) we obtain the directivity
o)
ntl 2
i + +
z (0" @ntl) () Bn)
D= 1 n=1 ’
2 03] 9 9
Z(2n+l) (e |"+[8,| )
n=1
which expressed in dB becomes
—~ - -
+1 2
Y @7 () (o +8)
1 =l
= .~ .10
D|sp 10log 5 "o X ) (4.10)
Z (20rt1) (e | +|Bn| )

The directivity of the Huygens source without a lens is known to be

equal to 3 or 4. 77dB. The numerical calculation based on (4. 10) will be

compared with this figure in evaluating the focussing capability of a Luneburg

lens.

4,1.5 Electric Field Around the Geometric Optics Focus

4.1.5.1 Field Exterior to the Lens

From the expressions (3.58) and (3. 59) we can write the square of the

gbsolute value of the field near and on the rim of the lens in two principal

planes.
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Vertical plane:

ntl 2ntl
IERP ,E , Z (i) n<n+1) |:k R R (R(J (k R) +
2
(1) aP (cos6) (1) P (cose)
+ B, h (k R)))_——-i-l(_] (k R)+A h (kR)) s1n6 +
2

[0 0)
)3 (1)n+1 2n+l( (k R)+B h( (kR))P (cos 6)

kRno

n=1

Horizontal plane: )

E (R) BP (cosh)
_I_ljﬁL ] 2n+1 [ (5 RHA_ h (k R)) B

2 00
0
||
] 8> (1) P (cose)\
+ -1;.1% Ri(R @j (k R)+ B h (k )))m

After some simplifications, we obtain

- =2 _
[E ®)} }:( o 121?;11) [(j (k RMHB_ h(l) (k R) _
IE I2 n=1
0
| 5P (cos 6)
o U gy —2
—kOR ik R)+B_h’ (koR)>‘ o
P (cose)]
(1)
+1 (5 (k R)+A_ b (kR)) —

+1 2n+ . '
pntt 2" 1 j(k R) +B 2 ik RY)PL (cos 0)| 2
0 en n o0 'n

(4.11)
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and

) c')Pl (cos 6)

|E ®) w2l | (1), = n
,Lb 7/2 Zm Sy |1 Gk RMA Bk R) =55
’ n=1
0

P (cosG) 2
(kR)))

sin 6

(1) (1)

+(j (k R)+B h (k R) - (3 (k R)+B h

(4.12)

where Aon and Ben are given by

and

This is a more convenient form for computation.

14.1.5.2 TField Interior to the Lens

The interior field is given by

E (R) =iwuof(=}gl) (R|R") - J_ (R dv! (4. 13)
v

where
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( )(ko) M'(l) (k )

—(21) no 1 o n: _.y2ntl  (n-m)! gmn omn ©
Ces (RlR )= 47rn§1 mgd( 60) n(ntl) (ntm)! | Q' (pa) S (pa)-Q(pa)S'(p'é)” ¥
(e) ,(1)
(k ) NL " (k )

gmn O &mn

Q (p )T(p ) - (pa) T'(pa)

and

§(R -b)6(6' =7)s( @ A

J®R)=-c¢
€ b2 sin 6"

Substituting in (4. 13) and integrating, we find

i e Q(k b)
B (R) = 8 Z e (™ {Q,(p ] s, ™) -

" M
,)S(p,)-Qlp )S'p ) “oln"o" -

4k b n( +1

Q'(k b)
§ 5 k)
Q(p T(p )- Q(p )T'(p ) “eln "0’ | -

Taking again the limit when b — ©, we have

k o n(n+1) Q'(pa)S(pa) Q(pa)S'(pa) Q'(pa)T(pa)-Q(p a)T'(p a)
(4. 14)
where
m) SR Plcosd)  , S (kR) aP (cos 0)
oln( o) R sin 6 cos § 6 - R a6 sin ¢ ¢

and
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_(e) 1 an(k R) 1 A
= + +
Neln(ko) rem® | T2 * (n+1) P (cos6) cos ?)R
or R
aT (k R) aPl(cose) P (cosb)
i B0 2 cos¢6- 2 sm¢¢
R R 00 sin

Now substituting the above expressions in (4. 14) and taking #=0and f=7/2,

we have the expressions for the field in the principal planes:

T(R)

| g2 n+1 2n+1 "i 1
- FWg0, Z” ot D) Qo _TT(p_1QNp 1) € (F)

n(n+1)P (cosB) R+
(k R)? 1

-

S (k R) Picos®)
n 0] n

1
+
Q (pa) S(pa) - Q(pa) S'(pa) k R sin

. aT (k R) apl
i 1 n o n

Qe )T(p )-Qlp ) T'(p)) € (RIKR Ok R) 96
(4.15)

and

1
S (k R) 8P (cos#h)
R nt+l 2n+l 1 n o n _
(R)|¢=7r/2 Eo Z(l) n(nt+1) Q'(pa)S(pa)'-Q( pa)S'(pa) koR 96

1
_ i 1 a'Tn(koR) 1:'n 8
Q'(pa)T(pa)-Q(pa)T'(pa) er(R)koR 8(koR) sinf
(4.16)

Obviously, these expressions check against those of the external field at R=a.

The intensity of the interior field is given by
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E| » ® T (k R) 2
il 7|2 ((i’sn;(l‘?Q'T-QT') T, (cose)l !
IE | =l p (k R)
(0] ) (0]
L —————
1 1\]2
oo(.)n_}_l ontl 1 Sn(koR) Pn ) i aT(k R)ap
L n(n+1)| Q'S-QS' - kR sind « I{R)kOR(Q'T—QT')ia(kOR) sme
(41T —
and
1 172
'EI Q—w[2 Z( n+1 2n+1 1 Sn(koR) aPn _ i‘ _ E}Tn(koR) Pn
’E ! =1 n(n+1)|Q'S-QS! kOR 00 er(R)koR\(Q',TTQTf) a(koR) sinf
(4.18)

Expressions (4. 17), (4. 18) together with (4 11) and (4. 12) will be numerically

computed for the Luneburg lenses of diameters 1. 27>L0 and 4. 12A0.

4.2 Eaton-Lippmann Lens

4,2.1 Introduction

The Eaton-Lippmann lens is also known as the Eaton lens or isotropic

lens. It has relative permittivity given by
er(R)=(2a-R)/R 0<R<a (4.19)

where R is the radial distance from the origin and a is the radius of the lens.
By using geometrical optics, Eaton (1952) showed that the path of the rays inside
the lens is elliptical and that the emerging wavefront is I;i;ar (gé;Flguré 65
It can be proved that this lens has the property of imaging an incoming
plane wave into an outgoing plane wave with a 180° reversal of direction of
propagation. Lippmann (1954), as cited by Rheinstein (1962), prodicted that
this property of the lens should make it an excellent omnidirectional radar

reflector. Kay (1958), again as cited by Rheinstein (1962), observed that in

prior considerations of the Eaton-Lippmann lens as|a reflectof, scalar theory
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Plane Wavefront |

Figure 6: Eaton-Lippmann Lens.

only had been employed, Taking the vector nature of the electromagnetic field
into account, Kay (1958) showed, by using geometrical optics, that the back-
scatter from a spherical Eaton-Lippmann lens should actually be zero. A
simple proof of this effect is given, for example, in Appendix C of Rheinstein's
(1962) work.

Garbacz (1962) used the surface impedance technique to compute the
bistatic scattering cross-sections of an Eaton-Lippmann lens of pa=5' In this
case he used the initial surface impedance of value zero which corresponds to
the perfectly conducting{ core. This core has a radius equal to one tenth of the
radius of the lens. Rheinstein (1962) described the effect of the discontinuity
in refraétive index on the scattering cross~section of the lens. He considered
perfectly condlicilﬁg and dielectric cores at the center of large diameter spheres,

and noted that the effect of different cores is unnoticeable on forward scattering,
but appears for scattering at other angles.
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Shafai (1972) used the method of amplitude and phase function in order
to compute the scattering cross-sections of the Eaton~Lippmann lenses. He
considered a conducting core of radius 0. 05 for the lenses of radius 3 and 5.
Hizal and Tosrun\\ (1973) used the state-space formulation with the same purpose.
They assufné& zero permittivity for the distance from the center up to 0. 2,
| logéfighwnzic variation of the permittivity with the distance up to 0.4, and the
Eaton-Lippmann law thereafter. They studied lenses of radii 3, 5 and|7 ){;7.
Their results agree well with those of Shafai, with the exception that they“fpund !
smaller backscattering. However, their results for backscattering agreed well
with those of Mikulski and Murphy (1963). Mikulsld and Murphy used a layered
model for the Eaton-Lippmann lenses with perfectly conducting cores odcﬁpﬁﬁé
the‘innerrhost 5 percent of the lenses.

There is so far no report in the literature on the exact electromagnetic
formulation of the properties of the Eaton-Lippmann lenses. This is under-

taken in the present work.

4.2.2 S and T-Functions for the Eaton~Lippmann Lens

Recalling the differential equation (3. 28) for the S-function and substi-

tuting the expression for er in it, we have

2
d S (k R)
n o +[k2 2a-R _ n(n+1

d )]
R2 R R2 n o

By changing the variable p = koR and defining p,= koa, the above differential

equation becomes

2
Sl L IR e
2 P 2

S (p)=0 .
dp P .

Applying the polynomial method of Sommerfeld (Kemble, 1937), we find that



129

_ P mtl
Sn(p) e p Vn(2p)

where Vn satisfies the following differential equation

p
1
p V" (29) + (nr1-p) V! (29) - (= -2V (20) =0 .

Calling x =2p, the differential equation turns out to be
x V" (x) + [2(n+1)—x] Vi(x) - [n+1-p ]V (x)=0 ,
n n aJ n
which is the confluent hypergeometric equation with the solution

Vn(x)= lFl(nﬂ-pa’ 2(nt1), x)

finite at the origin. The expression for the S-function becomes

<P ntl .
Sn(p) e’ p lFl(a,v,2p) (4. 20)
where
=n+1-~-
a=n pa1
and
v =2 (nt+l)

Substituting the expression for er(R) in differential equation (3. 30)

for T, we have

2
d Tn(koR) 2a dTn(koR) 2 2a-R  n(n+l)

+
dRz R(2a-R) dr o R Rz

By changing the independent variable p=k0R and taking pa=koa, we have



130

2
d'T (p) dT (p) 20
'; +(l+2 L ) gp + _1+__a____n(n2+l) T (p)=0 ,
do P 2,7P p 0
and by changing the dependent variable
2p_-p
Tn(p) = Wn(p) >
we obtain the differential equation in the normal form
- l —— E—
2 1 — 1 2 3]
4 W) %2y, %o aT% %
—-—2———+ -1+ a "% - + 5 " — 5 W (p)=0
dp p a p (2pa-p)

where 02 =n(ntl). Applying again the polynomial method of Sommerfeld
(Kemkle, 1937), we have

Wn(p) =¢ P p1/2+a Vn(2p) ,

where Vn(2p) satisfies the differential equation

: 1 1
&V & |20t |av e |2 (2pa g A 2))
n 2 n 2 ~a
2 * X -1 dx * X -
dx
L 3
8p Z
—t V (x)=0 (4.21)
4p =x n
a / (4pa~x)

with x=2p. Therefore,

T (o) =]/2pa =5 e P v_(20) . (4.22)
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Equation (4.21) can be rewrittéﬂ\\\as

a2 v ()
S +(

[\)

dx
where
v=2(a+ 1/2)

- 1
@ = 1/2 (2(a+1/2) + Zi - Zpa)

az=4p

a

=1/t

ag == 3/(32pa)
We see that we are again in the presence of the 'generalized' confluent

hypergeometric equation which we met before in the study of the T-function of

the Luneburg lens. Thus, the solution of this equation is represented by the

same power series described in the study of the T-function of the Luneburg

lens.
From (4.20) the expression for Sn(p) and S;1(p) at p= p, are
"'Pa n+l
Sn(pa) =e "oy 1Fl(a, v;2pa)
and

-p -p
an a ntl
! =(n+l- . -+ . .
Sn(pa) (n pa) e “p, Fq (a, v; 2pa) 2afve p, 1F1(a+l, v+l 2pa) ;

thus,
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1 .
Sn(pa) 1 (Fplatl, v 2pa)

o
x—— 142~ . (4.23)
Sn(p a) pa v 1F1(a, v; 2p a)

From (4. 22), the expressions for Tn(p) and TI; (p) atp = p, are

“p
_ Ta otl/2
Tn(pa) B V (20 )
n " a
and
=P P 1 9
T! (p )=§a+p ~1/2)e apa/—l/ZV (20 H2e apa+ /2 an( o)
n'a a a na
d(2p)
a
Therefore,
an (2p)
T'(p ) dzp)___I°7a
na el/2 . ., V () (4.24)
T (p) n"a
n'a a

(4.23) and (4. 23) are fundamental in numerical computation involving the Eaton-

Lippmann lenses.

4.3 Eaton Lens
4.3.1 Introduction

The relative permittivity of the Eaton lens is given by
2,2
er(R)=R/a ' 0<R<a . (4. 25)

This lens may be considered as a particular case of Nomura-Takaku (1955,

1956) distribution because the relative permittivity of the latter is

€ (R) ==‘R2q/ 224

whence we see that by taking q=1 we have permittivity corresponding to the

Eaton lens. Eaton (1952) showed, using geometrical optics, that the emerging
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phase front of such a lens is cylindrical and the ray path through the lens is
described by an equilateral hyperbola. The lens, therefore, corresponds to a

divergent lens in optics. The exact electromagnetic formulation of this lens

is found in Tai's (1971) work,‘\ but aparf fforﬁ Vtrh'ese, there are no studies of the \

properties of this lens in the literature.

4,3,2 S- and T-Functions for the Eaton Lens

Substituting (4. 25) into the differential equation for the S-function, we

have

2
d’S (k R) L2 BE _nlar+1)
2 0 a2 2

Sn(koR) =0 .
R

dR

Making the usual change of variable (i.e., p = koR and P,* koa), we obtain

2
d Sn(p) N i n(n+1) =0
2 9 2 Sn(p)- ‘
dp Py p

We know (Jahnke-Emde, 1945) that the solution to this equation is

2

R
S( = J e ,
P Je o| 2,

with p = ntl/2

3 . The equation for the T-function in this case is

2 f
T (k R T

d (0 ) d\n(kOR) N k2 B_z_n(n'*‘l)

2 dR o 2 2

a R

L - % T (k R)=0
dr (0]

and making the same change of variable, we get
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2
d Tn(p) 2 dTn(p) p? n(n+1)
- - + - T (p) =0 ,
2 p 2 2 n
dp P, p

which solution is again known (Jahnke-Emde, 1945)

2
L3k p_
T (p)=p Jp' %

a
‘/ (n+1/2)2 +2

.
with p 5

The expressions for the S- and T-functions, and their derivatives at
the rim of the lens are

P e
a.
L‘ = T 2
.~ Sfp) /Ea'lJp(z) dJ( )
= . (pa) P |20,
- S )= It e T
! na 2 2 a 2
| . %,
2p -
al fp=p,
and ) - o ﬁ—'iim_ B
<30, |la
T (p,)=p I |3
2
a | B—
o)== 5 g [Pa) . 3 PU%,
na 2y a p'|\/—/—|+ —
2 a 2
)
2p, P,

From Dettman (1969), or NBS (1948),- we have

1 = A
Iy =3 x)-2 &),

which in our case takes the form



135

and

" :
1 a a)
S = = (1/2-2p)J (— + ra
p (o) o (1/2 - 2p) ol3 /@Jp_l(z
and N —
T'(p )= (3/2 ~2p") J ‘_)2)_1_ 3 P g&)
npa /—p—a' P p' 2 pa pi-1| 2
and finally
p
a
' —
sn(pa) 20, P, Jp (-p—a )
2
and
Ir*‘r p
T'(p ) A (__a)
Tn(a)= 23 _ 2, pl-d g o
nPa Py Py 3. ["a

(3

which will be used in numerical computations of the Eaton lenses.
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'4,4 Numerical Computatlons and Results

The expressions for the far-zone electric field radiated by the Huygens
source in two principal planes are given by equations (3.54) and (3.55). The
expressions for S'/S and T!/T for all lenses are summarized in Table IV.
The expressions (3. 54) and (3. 55) are valid for any kind of lens, the effect of
the lens being built into the S- and T~functions and their derivatives.

The radiation patterns which appear in the following figures corres—-
ponds to the sum of the terms of equations (3. 54) and (3.55). The constant
t;m which appears in front of the summation, is not taken 1nto account be~
cause the radiation patterns are given in dB above the value at 0°,

The problem of infinite summation is solved by the following considera-
tions. The behavior of the sphericalrltﬁemssel function is oscillatory for order

of the function less than its argument, and monotonic for order of the function

greater than the argument so, the number of terms of the summatmn should

/ “ Table IV: S'/S and T'/T for all the Lenses
Lenses s'/s T'/T
m-1
Z mA p
ntl o lFl(MI’Wl’pa) n o ma
Luneburg — -1+2 = F.@vo) = - 1+2 o
Pa VoF\®viey Pa Z Ampa
m=0
m~1
mA (2p)
Eaton- F_(otl,vt+1; 2p ) Z m ' a
+1 1 -1
Lippmann R 1 F @220 g—L-1+2
pa v 171 sV pa ZA (2p )
oy 2
o o1 (pa/2) 3 op Jp,_l(pa/ )
Faton 2 o J (p /2) 2  p J (p /2
a 'a p a'— a a p'a
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be at least of the order of the argument of the Bessel function, pa. The
behavior of the confluent hypergeometric function is similar, as explained in

section 4 1 2. The behav1or of the ”generahzed" confluent hypergeometnc

funct1on is of the same sort So by taking the summation up to two t1mes p o’
we are sure of being in the region in which all the functions involved are
monotonic and the error committed by neglecting the terms of higher order

is always of the same sign. Also, all the functions which appear as S- and T~

functions for the lenses which we are studying, are dominated by the spherical

Bessel functions which have large 1mag1nary part and therefore, the error

—-

|

of truncation of the series is small.

A program has been written which computes the radlﬁatil& pattern of
the Huygens source in the presence of the lenses. In this program only the
calculations of the S~ and T-functions change from lens to lens, and the
radiation patterns are given in 2° steps. The S~ and T-functions are calcula=
ted in subroutines by summing the respective series and the computation stops
when the absolute value of the nth term over the absolute value of the sum of
the series becomes less than 10-7.

The subroutine for the Bessel fun ctions was checked against NBS(1948).
The subroutine for the confluent hypergeometric function was checked against
tables by McDonald (1949), Webb and Airey(1918), Nath (1951) and Rushton and

Lang (1954). The values of the ""generalized' confluent hypergeiometnc functlon

were compared w1th those of the confluent hypergeometrlc function and it was

found that in the monotonic region they compare quite closely. They subroutme 4
for associated Legendre functions was checked against NBS (1945),

The values .for the diameters of the lenses were chosen equal to those
used in Mason's (19727)— work, which deal with homogeneous lenses, in order
to make a comparison of homogeneous and inhomogeneous lenses of the same
physical dimensions.

Figure 7 shows the relative permittivities of all the lenses discussed

here. The range of the permittivities is fairly representstive, giving one
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€ r(R)

6 -

Eaton~Lippmann

5 ] / €r=(2a—R)/R

f

Luneburg

€. =2- (R/a)2

Eaton €.° (R/a)2

T T T T T

1 .2°.3 .4 5 .6 .7 .8 .9 1.0 R/a

Figure 7: Relative Permittivities of the Lenses
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permittivity which is finite at the origin and two which present extremal
behavior of the origin. Figures 8 through 11 show the radiation pattern of

Luneburg lenses in two principal planes. Their main features are shown in

Table V.
Table V: Characteristics of the Radiation Patterns
of the Luneburg Lenses
3dB bandwidth Slde lobe level (dB) Backward
Diameter (lO)E-plane H-plane E~plane H-plane power (dB) |
1.27 25° 250 - - -25.5
2.12 14° 14° -14  -14.5  -30.8
3.39 9° 9° -16  ~16 -56.3
4.23 8° 7° -16.5 =16.5  -46.0

We see that the pattern becomes more and more directive as the radius of
the sphere increases, which is predicted by geometrical optics. The radiation
in the backward direction decreases.

Figures|12 through 15 show the radiation patterns of the Eaton~

Lippmann lenses, The1r charactenstlcs are listed in Table VI.

Table VI: Characteristics of the Radiation Patterns
of the Eaton-Lippmann Lenses
Direction of the\ Broadsid Backward
broadside lo adsi epqwer(dJ_B) ackwar
]_)_f?eter(l) plane “"H-p ane E-plane H-plane power (dB)

1,27 102° 102” -4.0 =3.0 ~12

2.12 118° 116° 3.5 =3.0 =17
3.39 128° 142° -3.0 =2.2 -24
4,93 132° 148° ~3.5 =2.8 -21
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Source

E-Plane H-Plane

90

Relative Power (dB)

Figure 8: Radiation Pattern for Luneburg Lens (D = 1,27 7\0).
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- Le“ns
E-Plane V' H-Plane

180

90°

90

Figure 9: Radiation Pattern for Luneburg Lens (D = 2,12 )to)
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E-Plane : 4 H-Plane

Figure 10: Radiation Pattern for Luneburg Lens
(D=3.39 Ao).
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Source

— Lens

E-Plane H-Plane

D>

Relative Power (dB)

Figure 11: Radiation Pattern for Luneburg Lens
(D=4.23 Ao).
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4~ Lens

N> ‘
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Figure 12: Radiation Pattern for Eaton-Lippmann Lens
i (D=IJ7AJ.
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P Lens

E-Plane H-Plane
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Figure 13: Radiation Pattern for Eaton-Lippmann Lens
(D=2.12 xo).
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Figure 14: Radiation Pattern for Eaton-Lippmann Lens
(D=339AJ.
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Figure 15: Radiation Pattern for Eaton-Lippmann Lens
(D=4.23 xo).

90
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— - _ e [ — _ |

We see that there are broadside lobes which tend to the backward direction l\
when the diameter of the lens increases. Figures 16 through 19 show the

radiation patterns of the Eaton lens, whose characteristics are summarized

in Table VII. The main lobes are broadside oriented in this type of the lens,

which agrees with the behavior predicted by geometrical optics.

———— —— .

Ta‘t;l;“\rlhII: Cﬁair'acfé'xi'i'sﬁbéiofr tﬁérﬁadiation Patterns
of the Eaton Lenses\

'Direction of ° Forward Backward
Diameter the mainlobe  power = power
) B ~play “(dB) — (dR)
1,27 98 86 ~7.0 -13.0
2.12  100° 88° -14.0 -15.0
3.3 04° 90°  -20.5  ~-24.0
4,23 94° 90° -217.0 -22.5

The bistatic scattering cross—-sections of all the lenses normalized

to their geometrical cross-section, as given by expressions (3. 64) and

(3.65), are shown in Figures|20 and 21. The p, of the lenses|are 5 and 10,

The bistatic scattering cross-sections of the Luneburg lens with pa=5," as
computed here, agree very well with those computed by Garbacz (1962), |

while those of the Eaton~Lippmann lens with Py = 5 agree with those of
Garbacz (1962) only in the forward direction. This is explained by the fact
that in Garbacz' (1962) work, the central portion of the lelilgwas substituted
by a perfectly conducting core with radius equal to one tenth of the radius
of the lens. The influence of the core on the bistatic scattering cross-
sections was a1s§?6§§£§éd by Rheinstein (1962).

The characteristics of the bistatic scattering cross-sections of the

lenses with Py equals to 5 and 10, are summed up in Table VIII.

\
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Figure 16: Radiation Pattern for Eaton Lens (D= 1,27 ?to).
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Figure 17: Radiation Pattern for Eaton Lens (D =2.12 Xo).
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0
Figure 18: Radiation Pattern for Eaton Lens (D = 3. 39 lo).



90

152

Source

v

«— lLens
E-Plane H-Plane

D>

—>
A
z

80°

3

o

2 1~10

o

¥

-~

=

Q

o]
t 0
0

Figure 19: Radiation Pattern for Eaton Lens (D = 4. 23 lo).
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H-Plane

Incident Plane Wave

\\ Direction of the

Figure 20: Bistatic Scattering Cross Section of the Lenses
Normalized to their Geometrical Cross-Sections

(p, =5),
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Figure 21: Bistatic Scattering Cross-Section of the Lenses

Normalized to their Geometrical Cross-Sections
(pa = 10).
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Table VIII: Characteristics of the Bistatic Scattering
Cross-Sections of the Lenses

p =5 p =10
a a e

T Forward Backward  Forward Backward

Lenses Scattering  Scattering  Scattering Scattering

(dB) (dB) (dB) (dB)

Luneburg 15.3 -13.3 20.8 -10.5

Faton= 43 -1.8 19.4 !

Lippmann — ,

Eaton 11,2 -8.3 18.5 ~15.1

P ———— —

The Luneburg lens has the highest and the two Eaton lenses the lowest for-
ward bistatic scattering cross section. The backward bistatic scattering
cross-section of the Luneburg lens for Py = 5 and Eaton for P, = 10 are the
lowest followed by the Eaton- Lippmann lens, in tyis 7(371:c71§r.\ The Eaton-Lipp-
mann lens has the highest backscattering cross-section and it tends to the
value of its geometric cross-section as the diameter of the lens.increases.
The forward bistatic scattering cross-sections of all lenses becomes nearly

equal and the scattering at the angles close to the backward direction in the

T )y

case of the Eaton-Lippmann lens increases, as the diameter of "the lenses

| increases ,

The directivity of the Luneburg lens as given by (4.“‘10) is shown in

Figure 22, along with the directivities of two homogeneous spheres with
€~ 3.00 and €.° 1,667, as computed using Mason's (1972) program. The
directivities are computed in 0, 1)\0 steps. All the curves in Figure 22 start
from point 4.77dB, the directivity of the Huygens source without any lens,
It is seen that the directivity of the Luneburg lens of small_rd'ia;ﬁ_{:e;fez\ is not

better than that of the homogeneous spheres. However, the Luneburg lens

does not present the problem of resonance which occurs in homogeneous lenses.
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In order to see how well the Luneburg lens performs as a focusing

device, the distribution of the energy around its geometrical optics focus,

was computed.\'i‘ie;;f)}-é’ségﬂéﬁ (4.11) andn(.4.1§)w\rfior lenses with diameters

o T |

1,27 AO and 4. 23, were computed and are plotted on Figures 23 and 2%,

respectively. The square of the absolute value of the field was normalized

to the square of the absolute value of the field at point R=a, =0, =0

which is the geometric optics focﬁg of the lens.MIVti was observed that the

concentration of the energy afc;tix;& the geometrical optics focus increases

as the diameter of the lens increases. For the 1.27 )\o lens the 3-dB contour

line is located as far as 41° in|the E-plane from the focus while for the

4, 23>L0 lens the same line is only 12° from the focus. o T
The plot of the field on the interior of the lens given by (4. 17) and

(4.18) for 1, 27)to lens is shown in Figure 28, and an enlarged vie;v ‘c:f it is

given in Figure 25. We see from the figures that, actually, the focus is lo-

cated inside the lens and not on the rim, because the intensity of the field

inside the lens is greater than at the focus. It was found that for the lens of

diameter 1. 277&0 the focus is located at 0, 12>L0 inside the lens and 0. 11k0

inside for that of diameter 2.7 12>t0; the lens of diameter 3. 397L0 has its focus

located 0. 10){() inside and that of diameter 4. 23>t0 has it 0. OQAO inside. The

location of the focus moves to the rim of the lens as its diameter increases.

This could account for the lower directivity of the Luneburg lens when com-

pared to the homogeneous lens when the diameter is small. In other words,

when we put a source on the rim of the Luneburg lens of small diameter, we

do not put it at the focus of the lens, losing in the process some of its

effectiveness.
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Figure 23: Field Around Focus of the Luneburg Lens
(D=1.27 ho).
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Figure 24: Field Around Focus of the Luneburg Lens
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A
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

In the first part of this work, dyadic Green's functions for electric
dipole excitation for rectangular, cylindrical and spherical cavities are con-
structed. They can be used to formulate various boundary value problems

involving these cavities. The dyadic Green's functions for magnetic dipole

excitation are introduced later, The‘eex;struction of solenoidal dyadic

Green's function involves the solenoidal vector wave functions, wh11e the

construction of non-solenoidal dyadic Green's functions involves 1rrotat1ona1

as well as solenoidal vector wave functions. Expressions for the electnc

and magnetic flelds inside the cavity using dyadic Green's functlons are pre-
sented and an example of the application of the formulas for the case of input
admittance of the rectangular waveguide is shown.

In the second part of the work, we deal with inhomogeneous spherical

lenses including the Luneburg, Eaton—-Llppmann{ and the Eaton lenses I

/ It is shown th;t the duahty between the dyadic Green's functlons of o \\\

the electnc and magnetic types for the electric and magnetic dipole excita-

tions which exists in free-space does not hold in an inhomogeneous medium.
By the method of scattering superposition, the dyadic Green's functions for
electric and magnetic dipole excitation in the presence of an inhomogeneous
scatterer are constructed. An expression for the electric field generated

by the Huygens source in the presence of the lenses is found. The complete

electromagnetic theory of the Eaton-Lippmann lens is worked out. Itis

shown that the S- and T-functions for the Eaton~L1ppmann lens, 11ke those
of the Luneburg lens, are represented byf the confluent hypergeometric and
the "generalized" confluent hypergeometric functions. Some of the properties
of these functions are carefully examined.

The radiation patterns for small-diameter lenses excited by a
Huygens source are computed and plotted. Bistatic scattering cross—sections

of the lenses with plane wave incidence are shown 7fhor p&1 =5 and pa =10,

! 1761
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It is observed that as the diameter of the lenses increases the forward bistatic
scattering cross-section of the different lenses tends to the same value. The
backward bistatic scattering cross-section of the Eaton-Lippmann lens tends

to its geometric cross-section.

An investigation of the field around the geometrical optics focus of N
the Luneburg lens is made. It is found that for small-diameter lenses, the
focal point is inside the lens and it tends to the rim of the lens as its diameter
increases.

The directivity of the Luneburg lens is computed and compared to the
directivity of the homogeneous lens. It is found that the directivity of small-
diameter Luneburg lenses is in general lower than that of the homogeneous
lenses. The directivity of the homogeneous lenses deteriorates while the
directivity of the Luneburg lenses improves as their diameter increases. Also,
the Luneburg lens does not present the phenomenon of resonance which is
present in the homogeneous lenses and, therefore, the Luneburg lens is a
more frequency-independent antenna than the homogeneous lens.

The low directivity of the Luneburg lens as compared to the homogeneous
sphere could be accounted for by the fact that its "focus" is located insidewfhéw‘
lens and not on the rim. Thus, when the source is located away from the focal
point the lens‘éertainly will not function properly from the point of view of
geometrical optics. |

Our recommendations for the future work would be:

1, Find the dyadic Green's functions in a spherlcally inhomogeneous
medium; ” o

2. Study the characteristics, including the directivity of the generalized
small-diameter Luneburg lens designed to have its focus outside the lens. The

source shoulrd ]Qe located on the rim;
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3. Study the characteristics, including the directivity, of the
small-diameter Luneburg lens with the source located inside the lens;

4. Develop the asymptotic theory of Luneburg lens.
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APPENDIX

A.1 Computation of PQ! - QP!

PQ' -QP"'pa Jn(pa) [p h( )(p ):I'—p h(l)(p )[p j (p )]' Perform-
the terms, we have

PQ'-QP'=ipz[J (p )y' (p) -yn(p )it (p ):l

a n a

But

i, (o))" /T w1z @)
and

¥ (Py) 27r Yorrye g)
Therefore, -
} - ,
1\ PQ'"QP'zipi /g:pa'Jn+l/2(pa) \/z—;f nt1/2 Py)

1

[T - (p,) '
20, n+1/2 (p )( o J+1/2 J .

Performing a new differentiation and collecting the terms, we have

| - l:i_w - 1
PQQP=ilp [3 100 Yhyn 1 6 Ty 00 T o)) -

From Dettman (1969), we have

X [J' x)Y (x)-Y' (x)J (x)j,=-—
m m m m

which, when applied to our case, gives
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PQ' - QP' =i

A.2 Legendre Functions at 6=0and 6 =7

From Jahnke and Emde (1945), we have

P (x) Anmk +

2,m/o (n-m) (ntm+1) [ 1x
(1-x) 1- 1 (mtD) (2

o™ m! I(n-m)!

+ (n-m) (n-m-1) (n+m+1) (n+m+2) ( 1~X\2+

1, 2, (m+1) (m+2) 2 |

where x =cos 0.

For m =1, we obtain

1 (o) 2.12)  (n-1) (n+2) (1-%]
P, 1. (n—l)!(l"‘) T ( 2 | "

, (0-1) (n-2) (@r2) (@3) [L-xf’ |
SL2.2.3 2

For 6 =0, x =cos 6 = 1; therefore,

1 1
P x) P (cosf) nntl) ), (a-L)(m+2) |

_x2)1/2 sinf |5 2 2
x=1

+
(1

(n-1) (n-2) (n+2) (nt+3)
+ 12 2,3 0O+.....

or

1
Pn (cos 6) _ a(nt1) o

: : (A.1)
sin 6 9=0 2 1

Also, we know (see Jahnke and Emde,1945) that

ntm _m
P

Pff(-x) = (-1) (%)



1

which in the case of m=1, becomes

+
Pl ()= (1" Pl ()
n n
. Therefore,
+ ' T
P1 (cos 180) = (—1)n 1 P1 (cos0)
n n
or
P1 (cos 6) P1 (cos 6)
0 S =(_1)n+1 U
sin 6 =1 sin 6 0=0

Substituting in it (A. 1), we finally get

1
P (cos0)
n = (-1t nlotl) (A.2)

sin 6 0=1 2

From Stratton (1941), we have

P (x)
ax

( l-xz)

(x)

m m
=(pt+1) x Pn (x) -(n-m+1) Pn+l

where x=cos 6 ;

or
dP'm(cose) m m
i —_— = (pnt -(n -
sin” 6 Acos0) (n+1) cos 6 Pn (cos @) =-(n-m+1) Pn_l_l(cose) )
For m=1,
1
9 dPn (cos6) 1 1
i —_— = (n+ -
sin” 6 (cos0) (n+1) cos@ Pn(cos(-)) n Pn+1 (cosb) ,



or 1
dP” (cos6)

] n
-smO-'——d9

Thus,

d P (cose) P
n _ nt
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(cosH)

0 0 Sin 6

At 7 =0, we have

- (n+1) cos 6 L -
si

dP1 (cosh) Pl (cos0) P1 (cos)b)
n ntl n
40 ) in 0 - (ot) =5
6=0 ST a0 27 e
Substituting (A. 1) in the above, we get
1
dpP
n - n(nt+1) (n+2) _ (n+1) (n+1) n
dée 00 2 2
or, finally,
dPl (cosh)
n__ _n(ntl) .
dé 60 2
At 6 =7, we have
1 1 1
dP (cos@) P" (cos 6) ] P~ (cos6)
e T T i ey I ( p a
de _ sin 6 _ sin 6
6= =7

and substituting (A.2) in it, we get

P1 (cosh)
no

1 1
=(nt+1) cos 6 Pn (cos 6) =n Pn+1 (cosB) .

(A.3)

O=m
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1
dP" (cosb) -
_n =(_1)n n(nt1) _ (A.4)
de N 2
G=m

A.3 Simplification of —!vX3.= dv+fﬁx3.(=; as .

G
v e2 S e2
To prove
- Fvx7.G av+t F8xT7.G _ds=- f7-v%G _dv.
el el e2
VvV S

Consider the surface integral in the above. The mixed product can be changed

(see Van Bladel, 1964) such that

The right hand side of this equality can be transformed into a volume integral
(Van Bladel, 1964)

A - = - -
In- (Fx Gy) ds = ! V. (%G, dv

v
or
£x7.G _ds= v (jxa ) d
! e2 l ’ e2’ WV
s vV
Therefore,
- V- ._.: + A —.: = - —.= AT g
! %J.G_ydv ]nxJ G, ds vaJ G, dv +]v (7xG_,) av .
Vv S Vv

But,



174

!V' (Jx Gez)dv=!<VxJ. 02
v Vv

@l
g
1

< Sy
ey

and substituting in the above, we have

- ij-a dv+ ﬁxj-f}: ds=- ij-é dv + [ vx J.
e2 e2 e2
v

\Y S

I ey



