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HIGH- FREQUENCY ELECTROMAGNETIC SCATTERING
FROM A FINITE CIRCULAR CYLINDER

E.F. Knott, T.B.A. Senior and P. L. E. Uslenghi

The problem of the diffraction of a plane wave by a solid, right circular
metallic cylinder is almost a classical one. The physical optics expression for
the scattered field has been available for many years and for many practical
purposes this constitutes an adequate approximation at high frequencies. More
refined approximations taking into account single (or first order) diffraction at
the edges have been obtained by Ufimtsev using his physical (or fringe wave)
theory of diffraction, and by Bechtel (and others) using the ray techniques of
the geometrical theory of diffraction. The results are in rather good agreement
with CW measurements of, for example, the backscattered field, but nevertheless
there are circumstances when some of the second order effects become important,

and these present a number of interesting practical and theoretical problems.

For simplicity, I will consider only backscattering, and will use primarily
GTD, through I will make some use of the derived method of equivalent currents

as well.

The geometry is shown here:

- cylinder of radius a and length £ , both large compared
with the wavelength.

- plane wave incident at angle 6 to axis. Sufficient to assume 6
between 0 and 7 /2 inclusive.

- will consider the two principal polarizations: that in which the
electric vector is in the y direction, and which I will call
E-polarization; and that in which the magnetic vector is in the
y direction, called H-polarization.
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At wide angles — 6 bounded away from 0 and 7/2 — get first order
diffraction at the flash points Pl’ P2 and P3 on the illuminated portions
of the edges. In addition, we may have a creeping wave which is diffracted at
the rear edge, and which is a pseudo first order term in the sense that it undergoes
a single edge diffraction.  And in the directions 6 = 0 and 7/2 we also have the
contributions from the rays specularly reflected from the front face and side

of the cylinder.

The second order ray paths at wide angles are as shown in this lower

diagram:

- along the generator P2 P3 of the illuminated side;

- across the diameter P1 P2 of the front face;

- and along a perpendicular line P5 P6 whose location depends

on the angle of incidence — leading to the term 'migratory path'.

Each path is, of course, described in both directions. We could also have
creeping waves diffracted at both front and rear edges, but their contribution

is insignificant.

Let us look now at the first order contribution from Pl’ P2 and P3.

At wide angles, it is a trivial matter to write this down:

1 -
- 5 (X +Y) are local wedge diffraction coefficients as defined by Keller.

Upper and lower sign for E or H polarization respectively; suffix
indicates point from which contribution arises.



- X, Y are just ratios of trig functions, X being constant and

Y depending on 6. You should note that Y1 and Y2 are

infinite when 6 = 0, because this is a caustic of the geometrical
optics rays and implies diffraction along the reflected wave

boundary. Similarly, Y, and Y, are infinite when 6 = 7/2.

- phase factors are explicitly displayed, and here you see the
divergence factor which also becomes infinite when 6 = 0.
Since the whole edge now contributes, the axis is a caustic
of the diffracted rays.

- the quantity S is a complex far field amplitude, i.e., the

ikR
coefficient of ekR in the far field, the time factor being
e—]wt. In terms of S, the scattering cross section is as shown.

To obtain a uniform expression valid for all 6 from 0 to 7 /2 it is necessary
to match this into the finite values at the caustics. There are several techniques
for doing so, but the one that we have found most convenient is the method of
equivalent currents in which the wide angle contributions are used to define
equivalent filamentary electric and magnetic currents coincident with the edge.

In the case of the front edge, the known behavior of Y1 and Y2 as functions of

6 as well as of angular position around the edge leads to a specific integral
expression for the field which can be evaluated analytically to produce an expression
involving the Bessel functions\ J 0’ J 1 and J 9 of argument £.

The matching of the rear edge contribution into the axial caustic is just a
little bit more tricky, but if we follow Ufimtsev's argument, we are led to introduce

the matching functions J 1 and J 91 which are zero on axis.



The result is this, finite for all 0:

- in the axial direction, the result is independent of £ and
just the physical optics contribution from the front face;

- at broadside we have the physical optics contribution from

the side, plus diffraction contributions from P2 and P3

and (as indicated by the phase factor) from Pl'

It differs only insignificantly from that obtained by Ufimtsev and the agreement

with CW measured data is illustrated here

using Bechtel's data for a cylinder about 2 A in radius and 9 A in length.

The only discrepancies are of order 2 or 3 dB at the intermediate aspects.

This agreement is mainly due to the dominating influence of the physical
optics returns from the front and side. If, in the experiment, short pulses are
used instead, short enough to resolve individual contributors to the scattering,
the limitations of the first order theory are more apparent. For example, the
rear edge is actually quite a strong source of scattering even at axial incidence,
and, in addition, a number of apparent sources are seen whose position in space
varies with 6. Because of the growing use of short pulse techniques in inverse

scattering, it is important to be able to understand and interpret such results.

So let's look at some of the other types of contribution.



Taking first the edge-diffracted creeping wave, there are two points of
theoretical interest. As you can see from the geometry, and I show here the

unrolled cylinder on which the creeping wave paths are straight lines:

- for all 6 for which these paths exist, the backscattering
direction is a caustic for these rays,

- and if creeping waves are diffracted, it would appear to be the
surface field which is required and not the field in some boundary
layer as is usual in GTD.

Fortunately, for a cylinder it is easy enough to work with the surface fields.

For typical ray shown

creeping wave excitation of the edge;

- specification of the local strength of equivalent (magnetic) edge
current;

- using known expression for the field of an azimuthal magnetic
dipole on the cylinder, get the far field contribution;

- integrate over the angular extent of the excited edge

- factor 2 for 2-way path.

The result is as shown, where ¢2 -§  is zero for small 6, then rises linearly

to 7, and is constant thereafter.

This contribution has apparently been detected by Liang at General Dynamics

using short pulses, but its magnitude is rather small.



For the second order contributions, the wide angle expressions can be obtained
by repeated application of first order edge diffraction. For the migratory path, the

result is this top one where G is a product of diffraction coefficients. Observe

5,6
that the axis is a caustic, but the required caustic matching function can be obtained
using the equivalent current method and is a finite-range Fresnel integral. The result

is then finite for all 6.

For the path across the diameter we again have an axial caustic and the required
matching function is just the complex conjugate of the previous one. But there is an
additional complication: one of the diffraction coefficients embodied in Gl 9 becomes

infinite at @ = 7/2, since we then have forward diffraction from (say) P2 to Pl’
and within a transition region about 7 = 7/2 a modified diffraction coefficient

must be employed.

As 6 approaches zero, the sum of these two contributions for E and H polarization
become equal in magnitude and opposite in sign, as required. On axis the result

—1/2 2
is O (ka / ) , which is (ka)3/ smaller than the physical optics value. It is,

moreover, the third — not the second — order term in the axial expansion.

The remaining second order path is along a generator and its contribution is of
particular interest. One of the diffraction coefficients in G2 3 is now infinite at
# = 0 — again, because of forward diffraction — and since’ we also have an axial
caustic, it is by no means evident how to derive the caustic matching functions,

though the (sin 6)_1/ 2 behavior suggests some form of circular function.

To see how to proceed, let's look at the magnitudes of the various contributions

compared with the first order ones



These are for the same size cylinder as before (here is the creeping wave contribution,
for example), but I want to concentrate on the rear edge contributions for H polarization.
For small 6 , the first and second order returns are of similar magnitude,

suggesting that they must be treated jointly to produce the matching into the axial caustic.

This you can do by considering the field close to the surface of the local
wedge at P2' The net field incident at P3 is then as shown, embodying a
uniform diffraction coefficient Y1 , and remaining valid as 6 —» 0. You can

then multiply by the diffraction coefficient at P_, and repeat this combined

treatment to find the backscattered field. Whaf we are really doing is including
terms through third order in the wide angle expression, but as 6 —» 0 each second
order term becomes --% x first, cancelling it, and leaving the third order (say) term,
which is (—-;—)2 x first. When this net contribution is matched into the axial caustic
using, for example, the equivalent current method, the result is as shown. The
second part is what we previously had in our first order uniform expression, and

the first part, remaining non-zero on axis, is the result of including second and third
order terms at wide angles. This is actually the second order term in the axial

expansion, which points up the re-ordering of terms that can occur between wide

angle and caustic.

You can, of course, put all these pieces of the theory together, but my

interest has been rather to focus on the key features involved:
- caustic matching, particularly of the higher order terms
- creeping wave diffraction at the edges, and
- transitional effects for near-grazing incidence.
They all have their challenges theoretically and the results are of some practical

interest as well inasmuch as most, if not all, of these sources have been detected

experimentally.
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Uniform Expression
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EDGE - DIFFRACTED CREEPING WAVE
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SecOND ORDER
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TRANSITION EFFECT
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