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Summary
As a part of a general study of the low frequency scattering properties

of atmospheric particles of various shapes, the dipole moments of homo-
geneous dielectric rectangular parallelepipeds have been examined and data
obtained for the special case of a cube. The results are presented and differ
substantially from those previously reported in the literature.
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A knowledge of the scattering of visible and infrared radiation by
high altitude clouds and other aerosol-laden atmospheres is vital in consider-
ing the radiation balance of the earth and is also important at microwave fre-
quencies in connection with radar meteorology from space. This has led to
a study aimed at developing techniques for computing the scattering from
small didlectric particles of shapes known to occur in practice, and in the low
frequency or Rayleigh region where the wavelength is much greater than the
maximum dimensions of the particle the computations are relatively easy
to perform. Among the shapes which have been examined is the rectangular
parallelepiped, and we consider here the scattering of a low frequency electro-
magnetic wave by a single dielectric particle of this configuration, with
particular emphasis on the special case of a cube.

A homogeneous isotropic dielectric body of finite extent is immersed
in free space and illuminated by a linearly polarized plane electromagnetic

wave whose electric and magnetic field vectors are taken as
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where 2, 2 and g are mutually perpendicular unit vectors in the directions
of incidence, the electric fleld and the magnetic field respectively. The per-
mittivity and permeability of free space are € and Mo respectively, ko is
the free space propagation constant and Yo is the intrinsic admittance.

Mks units are employed and a time factor e-m suppressed. For sufficiently
small ko all of the fleld quantities can be expan ded as power series in ko,
and as regards the scattered field it is well known [1] that in the far zone

the leading term can be attributed to induced electric and magnetic dipoles,

of moments p and m respectively, located at the origin of coordinates in
the vicinity of the body.
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where Dand M are the electric and magnetic polarizability tensors [2, 3] .
These are independent of the incident fleld, but functions respectively of the
relative permittivity and permeability Er and M of the dielectric, and of
the geometry of the body. For any given incident plane wave, P and M specify
the dipole moments and, hence, the far zone scattered fleld in the Rayleigh
region. |

The tensor elements Pll and M11 are expressible as weighted sur-
face integrals of electrostatic and magnetostatic potentials, and from the
boundary conditions on the potentials at the surface of the body, it is found [3]
that Band M are merely special cases of a general polarizability tensor
£ (1) in terms of which

P=X(), M=-X(u). (3)

We remark that for a perfectly conducting body e'r = and M= 0, and the
Pand M computed by Kleinman and Senior [4, 5] for a number of metallic
shapes therefore yield i(:(ﬁ* for these two extreme values of 7 .

The general polarizability tensor is a function only of the geometry
and material parameter 7 of the body, and for real 7 the tensor is real
and symmetric, having at most six independent elements. If x ,61=1,2,3

i
are rectangular Cartesian coordinates, the tensor elements are
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where ) is the outward unit vector normal to the (closed) surface B of the
body and ¢ j 18 & total exterior potential satisfying the integral equation (3, 6]
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where r is a position vector terminating on B and the integration is with
respect to the primed variables. The tensor elements X1 j can also be
expressed in terms of the normal derivative of the potential and an integral
equation derived for the normal derivatives, but this formulation proves less
desirable for numerical purposes.
Whereas (5) is in general a weakly singular integral equation, in the

special case of a rectangular parallelepiped occupying (say) the region

|x <8, |x5|< b, |x3| <c, the kernel in (5) is identically zero when the
points r and r'lie onthe same face of the body, therefore removing the
singularity at r =r'. In addition, the symmetry about the three perpendicular
planes X, = 0 produces corresponding symmetries in the potentials which
result in diagonalization of the tensor and also enable us to limit the integration
in (5) to a portion of the total surface B. If lSm, m = 1,2,3 are the sur-
faces Sl: x, "a, 05x25b, 0_<_x350 X 0_<_xl§a, X, =b, 0_<_x3§c;

:0<x, < <x, < =
83. 0 <x <a, 0 <x, <b, X5 =, and I is the position vector of a point

on Sm, the integral eguation (5) can be written as

3
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where
g =t-nd . ()

The tensor elements are then

- (8)
X, -Bf gpi (51) ds
S

i

with X =0, i35 .

Because the kernels Kij are non-singular it follows that the numerical solu-
tion of (6) by the moment method requires no special treatment of the self cells,
and (6) is easily converted to a simultaneous system of linear algebraic equa-
tions in the sampled values of fl . For a parallelepiped having a square cross
section (a =b), X22 =Xu, and foracube (a=b=c), X33 =X22 =X11 s
so that in the latter case the tensor is now specified by a single diagonal element.
A computer program has been written to solve (6) numerically and compute
the tensor elements for a parallelepiped of square cross section, and we present
here the results obtained in the particular case of a cube. Most data were com-
puted using 25 or 36 square cells on each of the three quarter-faces Sm of the
cube and the results are believed accurate to better than one percent. The
normalized tensor element X11 (n/v, whef; v issthe volume of the cube, is
shown in Figure 1as a function of 7 for 10 <7<10 . It is seenthat X, 1('r)/V
is a slowly increasing function of T, ranging from -1.654 at 7 = 0 to 3. 542 at
T = o0 and equal to zero at 7 = 1, We remark that Xu/V is proportional to the
dipole moment per unit volume, and at the extreme values 7=c and 7=0
ylelds respectively the electric and magnetic dipole moments per unit volume

for a perfeotly conducting cube.
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Figure 1 also shows the dipole moments computed by Edwards and
Van Bladel [1, 6] for this same geometry, and a substantial difference is
seen between their data and ours. All tests of our formulation and pro-
gramming support the validity of the present data. Although our formulation
is almost identical to that used by Edwards and Van Bladel [7] , we have noted
that their results show a non-physical distribution of the surface potentials.
From the comparisons which we have been able to carry out, there appears
to be an error in their solution of the system of linear equations in @i by the
matrix inversion method. We also remark that for a perfectly conducting body
of arbitrary convex shape, it has been proved by Schiffer [8] that

3 X (o)

1 Nt

3 z 7 >3 (9)
i=1

with the equality obtained in case of a sphere. For a dielectric cube this inequal-
ity becomes Xu(oo)/ V >3 and is evidently violated by the data of Edwards and
Van Bladel.

The values of XII/ V for a dielectric sphere have been computed using
(9) and are included in Figure 1. It is evident that the new values of the dipole
moments per unit volume for a cube are quite clese to those for a sphere
having the same material parameter 7, and in Figure 2 we have plotted the
cube data normalized to those for the corresponding sphere. The maximum
difference is no more than 18 percent, and for many purposes it may be
sufficient to use a sphere to approximate the dipole moments for & dielectric
cube. This approximation is commonly made in studying the scattering of
atmospheric particles, but we caution that for geometries other than the
cube the dipole moments can differ substantially from the values for a sphere.
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Legends for figures

)
and a cube: present data (x x x), Edwards and Van Bladel [6]
(==-=).

Fig. 1.  The normalized tensor element X, , (1) /V for a sphere (

Fig. 2. The tensor element X11 (7) normalized to that for a sphere of

the same volume and material parameter 7 .



WO0S-££/2-9-Od-0vv86

431L3WNOLISN3 9140 40 % Om

7 OldST= NSS|FF7oE=gur

stethosh /by ‘ULl ML e SCHY roveS P pats el

Q\
|

(S

x|>




- Sk

NOS-£4/2-9-0d-0v+86

d313WNOLISN3d

9140 40 % Q¢

—Z 9l \wﬂmxnmdd@mm_%a

7 5o ULLE L wwinm -4 LRSS + VNU...\L%\l*

1,

Ol

e

Ol

- GO’

Ol'l

arl



