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Abstract

Integral equations are developed to deterinine the scattering and absorption of
electromagnetic radiation by thin walled cylinders of arbitrary cross-section and re-
fractive index. Numerical data are presented at wavelengths in the infrared for hollow,
circular and hexagonal cross-section cylinders which simulate columnar sheath ice
crystals. The numericzal procedures are economical for cylinders whose perimeters

are less than about 15 free-space wavelengths.
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The veflection, transmission and aksorption of visible and infrared radiation by
clouds and by polluted atmospheres are of considerable practical importance. Cirrus
clouds, in particular, are found all over the globe and have a profound effect on the
atmospheric heat balance. The ice crystals which compose them scatter and
absorh the predominantly ir radiation emanating from the earth and the lower regions
of the atmosphere, as well as the mainly shorter wavelength solar radiation incident
from above. The difference in the scattering and absorption properties of ice crystals
in these two wavelength regions play 2 major part in the atmospheric heat balance which
governs the global location of energy sources and sinks and, hence, the atmospheric

H

circulation patterns.

Techriques for calculating the trensfer of electromagnetic radiation through
clcuds of particles huve been summarized by Plass et al.3 All of them require a know-
ledge of the scattering and absorption properties of the individual particles either for
single scattering or, in the case of optically thick clouds, multiple scattering. Since
each scattering event can affect the polarization by producing an electric field or-
thogonal to the incident field as well as paraliel to it, an accurate treatment of the
transfer problem must involve the complete scattering and absorption matrices for a

single particle.

When the cloud particles are roughly spherical as they are for water droplets,
it is not unreasonable to model them as spheres, and results obtained from the classical
Mie theory4 are then in good agreement with measured data. With ice crystals, how-
ever, a wide variety of shapes and sizes have been observed in clouds (see, for exam-
ple, Aufm Kampe and Weickmans; Ono6), Plate crystals, i.e., cylinders of length
much less than their diameter, and coiumnar (long thin) crystais, hollow as well as
solid and of hexagonal cross-section, are quite commonly found, and for shapes as
varied as these a sphere cannot provide an accurate simulation of the scattering.
Nevertheless, for lack of any other applicable method, it has been customary to model

these crystals using spheres of some equivalent radius, thereby introducing unknown
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and noesibly laree errors in the vaiues for the radiation transfer, which are the end
& % > ’

-

producis of exiensive and expensive computations .

The importance of using the proper scattering matrix when the particles are
irregular is clear from the data presented by Holland and Gagne’8. They measured the
matriz elements for cleuds of irregularly shaped, randomly oriented silicon flakes,
and found results quite different from those predicted by Mie thecry, particularly for

back and forward scatter.

The last few years have seen several attempts at calculating the scattering from
more realistically-shaped crystals, and it is appropriate to mzantion here the work of
Jacobowitz9 and Lioulo—12 directed at the scattering properties of columnar ice
crystals. Jacobowitz's data were obtained for infinitely long hexagonal crystals using
ray tracing. Diffraction produced, for example, by the six longitudinal edges of the
cylinder, was necessarily omitted, as well as the effect of polarization, and the calcu-
lations were limited to cylinders not less than 40 yum in diameter (at a wavelength of
0.55 pm) with the apparent objective of assuring the reasonable validity of geometrical
optics. Finally, no account was taken of internal abseorption by the ice in spite of the
fact that the appreciable imaginary part of the refractive index at some infrared wave-

lengths suggests that absorption may not be negligible.

Liou's analyses are based on the assumpticn that the crystal can be modelled
by an infinitely long homogeneous dielectric cylinder of circular cross section. Al-
though this obviously suppresses those features of the scattering which are peculiar to
the hexagonal cross section of an actual ice crystal, there is now a mathematically
exact expression for the scattered field as a sum over orthogonal functicns analogous
to the Mie series for a sphere. It is therefore possible to compute the scattering pre-

cisely with all polarization information present and internal absorption taken into

account.

The retention of the hexagonal geometry is a key feature of the present work,
and in contrast to a circular cylinder, there is no exact expansion available for this

shape. However, an integral equation approach has been developed with which to compute

2



RL-(37

the scattering from thin cylinarical dielcciric shells of arbitrary cross section when
irradiated by a plane wave of any polarization incident in 2 plane perpendicular to the
generators. By applying the method to infiniicly long hexagonal cylinders, scattering
-and absorption data have been generated applicable to hollow eolumnar (sheath) ice
crystals in the inirared. To display the role played by the hexagenal geometry, these
data have also been compared with the analogous results for hollow circular cylinders

of equivalert dimensions.

2. Analvsis

The methoed that we shall use originated from a study13 of the scattering by
dielectric and absorbing layers in which the layers were approximated by impedance
sheets or memibraces of infinitesimal thickness. According to this approximation, a
layer of thickness 7 composed of a material whose complex relative permittivity is
er and whose permeability is the same as that of the sorrounding free space medium

is represented as ap infinitesimally thin merabrane having complex impedance

oo dZx v
n- (er - 1277 (1)

ohms per square, where Z is the intrinsic impedance of free space and X is the free
space wavelength. Mks units are employed and a time factor enlwt suppressed. The

resulting membrane is just an electric current sheet subject to the conditions

-t

[ﬁ/\g =0
.
-+ N
[ﬁ/\ Hi =d
v-—J.-
ﬁ)\(ﬁ/\E) =-nd (2)

at its surface, where 0 is a unit vector (outward) normal to the side indicated by the

plus sign and J is the total electric current supported.
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This type of sheet has proved useful in 2 variety of problems, but it is only
an approximation to a iayer of non-zero thickness., It ignoresM componeots of volume
currents perpendicular to a layer as well as variations of the tangential components
within the layey, but from analytical and numerical comparison of the results obtained
with those for specific layers of non-zero thickness, it has been found accurate pro-
vided 7% 0.03x and the sheet is located at the middle of the layer. Its great merit
is that it allows us to simulate the scattering from a layer using a single surface current

distribution, therehy making the problem of a sheath crystal relatively straightforward.,

For generality, we consider a cylindrical membrane of infinite length with
generators parallel to the z axis of a cylindrical polar coordinate system. The mem-
brane has complex impedance n ohms per square and is illuminated by a plane electro-
magnetic wave incident in a plane perpendicular to the z axis. Since there is no
dependence on the 7 coordinate, the scattering problem is fwo dimeasional and can be
expressed as two scalar ones for the field components EZ and Hz' 1t is therefore
convenient to consider separately the cases of E and H polarizations in which the inci-

dert electric or magnetic field respectively is in the z direction.

Since the membrane supports no magnetic current, the scattered electric =

field can be represented in terms of the electric Hertz vector

oz (1) ,
1 =-=% fc asmm Pumyas (3)
as E%p) = Vv, 1(0), (4)

where ds' is an element of arclength on the closed contour C constituting the perimeter
of the cylinder in the plane z = 0. R is the distance between the field point and the

(1)

point of integration, k = 27 /X and H0 (kR) is the zero order Hankel function of the

first kind.

/ i
For E polarization E = zEZ implying J = zJZ, and when the vector differentiations

are performed, it is found that



R}‘J—Gk‘;

Zf (1)

8 k:
: (r‘ I e e . v _-}l‘ -7 t
Iiz, ~.l) 4 jc JZ(S )1 o (kR)ds'. (5)

The total field is then }“ + E ® and on allowing p to lie on C and applying the boundary
condition (2), we have

(1)
o

i
E (s)=nJ (s) Jfk—zj 3 (s
Z Z 4 c A

(kR)ds'. (6)

This is a singuwlar integral equation from which J ( s) can be obtained numerically by
15
the moment method . As always the comrlbutlon from the self cell containing the

field point must be determined analytically, so that in effect (6) is replaced by

i kZL\ L2i, A '
E_(s) - [n + 28 0y Ln + 0.028798. )}J 1 (s)

+E2 0 5 (snm

4 C-AZ.

D kRyast 7

where Ais the self cell of sizeA. Having found J ( , (5) can be used to compute the

scattered field at any point in the plane z = 0.

The case of H polarization (H = QHZ) is more complicated because the current

is now circumferential (3 = ng)’ but by a process similar to the above we find
kZ 1
2@ = - 2 5 o880 - g (o0 e Domae. @
44, '8 12 0s' s 3s [ o

i
The total circumferential electric field is then ES + E: and in the limit when the field

point lies on the surface application of the boundary condition gives

E; () = 9 (s) + 5L ) {Js(s')(é: §')Ho(1)(kR) )
L —3— N (8. ﬁ \ ds' (9)
k ds'

A
where R is a unit vector directed from the point of integration to the field point. This

is a valid integral equation for the circumferential current J s(s) but is complicated by
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the presence of the surface cerivative of ite current. On the other hand, by a process

equivalent to an integration by parts, (&) can be wyilien as

s KZ f A A 1% ()
E (p) =- —-~—[ I (s" {(o s") +=—s —=H " (kR)ds' . (10)
s - 4 de 8 12 Js'2j o

leading to the irtegral equation

El (8) =nd (s)+ké , T( A 1 (1)(kR)ds'
s S 4 C o

Z lim A B O ,
4 ->c,f J( d ,{s RJH i (x&R)}ds (11)

in which only the uniknown current J S( S) appears.

This simplification has its price. Because of the high order singularity of the
second integrand in (11), it is no longer possible to reverse the order of the limit and
integral operations unlezs we segment the range of integraticn prior to taking the limit
and then maintain the segment or cell size A5 0. This is, of course, no restriction

as regards a numerical solution. If A is the self cell, an analytical evaluation then

shows
lim ds' = 8L - 1+—?--1— I ,\+O 528798 + . J (s).
p>C A. o Tk A S
and
s' = sj+A/2
o [ ... .ds'= 2 3 m[(s ) 1‘”(1&1)]
2C C”A : s! =S.—A2
£ Jfl j /

where we have assumed the current constant over each of the N cells into which the
profile C has been divided. By also evaluating the self cell contribution of the first

integral in (11) in the same manner as we did for (6), our integral equation becomes



4 A {1
L RN L
4 3 o
C-r.
N s'=s, +4/2
7 _ : 1 ;
+--74- L3 () (éﬁ)ﬂl( )(mﬂ J (12)
s L s =5, -0/
it J

Although the coefficient of JS(s) in the first term on the right hand side becomes
infinite as /o 0, the equation is quite amenable to numerical solution, and the results
obtained are (perhaps surprisingly) insensiiive to 2 for a wide range of cell sizes.
We have, in fact, used this equation in a number of applications, and it will alsc be

used here.
For ar. E-polarized incident plane wave,
i . .
Co= -1 + vsi
E = exp { k(xcos¢0 7 m¢o)} (13)
where 7 + ¢o is the angle which the directior of propagation makes with respect to the

x axis. Once Jz(s) has been found from (7), the scattered electric field in the far zone

of the cylinder is

s _ [27 ik ~7/4)
E, = 1kp © Ae(fé’ ¢o)

where the complex scattering amplitude Ae is given by

_ k2 -Hpept
Ae(¢: ¢0) - = 4 éJZ(S')e ds ’ (14-)

and

f = Reosf + Psing

RI-602
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is a wnit vector in the direction of observaiicn. The backscattering direction is there-

fore = . Interms of Ac,tlw two dimensional bistatic scattering cross section or phase
0

i b

Jf the incident plane wave is H-polarized, t; now has the form shown in (13), and

function is

2 ,
( . 15
.5} (15)

7;‘}»—

olf,$ ) =

having obtained & () from (12), the scattercd magnetic field in the far zone is given by
s

s 2 ilko- T/4)
H = [—— ! 4
z Tkp © Ah(’(" ¢o?_
where
~i "“e !
AL B %f (03 (sne KL ger (16)
C (=)

The H-polarized cross section can b2 found using (15) with A, replacing Ae

h

Two quantities of particular interest are the total (integrated) scattering cross

section O and the absorption cross section o

A The former is given by

2T

‘ 1
!, = — 5{ 4 ] 7
ch(yio) Dy o(f, ¢O)d¢ (17)
0
and if this integral is confined to the ranges 0 -7 or 7 - 27 we have the forward or back=-

ward power fluxes, From the foward scattering theorem, the absorption cross section
is
o, (f) =0 (f)-—Re. Alr+§ , §) . ' (18)
Ao T "o o "o

k

The extinction cross section is then the sum
=g +
GE(¢0) oT(¢o) o (¢o) (19)

We remark that for a cylinder of finite length MM, each three-dimensional cross

. 3) . : .
section 0( ) for incidence in a plane perpendicular to the length, computed on the
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assumption that the surface field is the same as for the infinite cylinder, is related to

the corresponding two-dimensional cross section ¢ by

2L (20)

3. Computed Data

Computer programs have been written to solve the integral equations (7) and

(12) respectively and, hence, determine the various cross sections for any cylindrical
membrane whose profile is made up of straight line and circular arc segments. Data
have been generated for circular and hexagonal cylindrical shells having a variety of
dimensions (including thickness) and for the refractive index of ice over a wide range
of frequencies in the infrared. In the case of the hexagon, two directions of plane wave
incidence were considered: edge-on and face-on, i.e., along a bisector of the angle étﬁ
an edge and normal to a face respectively. The majority of the data were for a hexagon
3um on a face with a wall thickness 0.1um and we present only these data here. The

- number N of sampling points used in the computer program ranged from 96 at the shoiter

- wavelengths to 30 at the longer. The program is described in Weil and Senior16 where

| additional data can be found.

We have also used the program to generate results for hollow circular cylinders
of the same thickness 7= 0, 1um and with radii equal to (i) 3um, the length of a face of
the hexagon, and (ii) 9/7 um, so that the hexagonal and circular cylinders have the same
circumference. At the wavelengths A=3.1 and 12, 5um the data for the circular cylinder
have been compared with those for a cylindrical shell of outer and inner radii 9/7 £ 0.05um
computed using the orthogonal function (or Mie series) expansion of the scattered field.
For the refractive indices used, the bistatic scattering cross sections agreed to within
0.2 dB for E-polarization, but showed somewhat larger (~1.0 dB) discrepancies for

H-polarization,

17
The refractive indices were taken from Irvine and Pollgck (IP) and Schaaf
18
and Williams (SW), and are plotted in Figure 1. There are noticable differences at
certain wavelengths and to see the effect that they produce, computations at A = 2,25

and 3.0um were carried out for the refractive indices from both references.
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Angular cross section data for X = 3.1 and 12.5 pim ave presented in Figure 2.
As expected, the number of maxima and minima in 0 / f £ increases with decreasing
A, and at wavelengths which are much longer than the face length of the hexagon, e. g.,
AR8um, the cross section has almost no angular siructure., Changing the incidence
from edge-on to face-on has most effect in directions close to backscattering, and we
note the substantial differences between the results for & and H polarizations. The
results for corresponding circular cylinders have been included in the figures to demon-
strate the importance of using the exact ¢ross sectional shape. The locations and
magnitudes of the extrema differ for the two types of body, and though the curves are
similar in certain angular ranges, they are far apart in others.

The values of Opr Op and % for the cases shown in Figure 2 are listed in
Table 1. For a fixed wavelength, it weuld appear that the absorption is primarily
volume rather than shape dependent.,

Spectral data for the cross sections o/{0), o{7), O and o A of the hexagonai
cylinder are given in Figures 3 and 4, Each figure has two parts covering the ranges
1.6to 3.5um and 8 to 12.5um. Separate curves are shown wherever the results for
edge-on and face-on are clearly distinguishable. TFor the most part this is only true

of the backscattering cross section 0(0), and in the other figures the differences are

confined to the immediate vicinity of local maxima and minima.

In the longer wavelength range the SW values for thé refractive index were
employed, but most of the data at the shorier wavelengths were computed using the IP
values. The latter range spans the main absorption band centered on X = 3 pm and the
secondary one at A = 2um. These wavelengths show the main discrepancies between
the IP and SW values and here we ran the data for both sets of refractive index. As
Figures 3 and 4 show, the discrenancies do produce substantial differences in the cross

sections.,

The geometrical effecis are particularly pronounced for A € 3.5 pm. This is
not surprising since the dimensions of the cylinder ure now comparable to a wavelength,

or a low multiple thereof, and this is the region where resonance effects and other

10



interactions between the various contribuicrs to the scatiering are most important.
As ap example, while o A has a strong local maximum near the maximum in ni at

A = 3.075um, the shape and overall width of the maximum in o A are apparently
affccted by the fact that the side length of the hoxagon is now almost a wavelength.,
o{0) and of{7) both show a corresponding drop in this absorption region. The behavior
is quite different near the secondary maximum in ni at A = 2um. For H-polarization
but not for E, o, is large as expected, while o{0) and o(7) have local maxima for X

A
just above 2 um with both polarizatiocas.

Further evidence for the way in which a geometrical effect can dominate a
material absorption effect can be found by comparing the absorption cross sections at
2.25m computed from the IP and SW data. At this wavelength the SW value for n,
is rcughly five timeSthe IP value, with nr almost equal in both sets of data, but the SW
value produces an absorption cross section which is an order of magnitude less than
that giveu by the IP value. It is therefore obvious that predictions of absorption and
scattering based only on the properties of the material of which the scatterer is com-

posed may be ccnsiderably in error.
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Figure 1.

Figure 2.

Figure 3.

Moure Captions

Refractive index of ice in the infrared. The solid line represents data
o T ,

from Irvine aund Poll{:ck , the O poivte represent data from Schaff and

Williams™ ¢ (a) real part of refractive index minus one vs. wavelength;

(b) imaginary part of refractive index vs. wavelength.

Angular distribution of the normalized scattering cross section of f, ¢0)/A

vs. P for fixed incidence angle 950: hexagonal shell cylinder 3um on
a side irradiated edge-on; -— = = ~— same cylinder irradiated edge-on;

- - - - circular shell cylinder of radius equal to the side length of the hex-
agon; — — — circular shell cylinder of same perimeter length as the
hexagon. Each cylinder has a simulated 0.1 um wall thickness. (a) wave-
length A = 3,1 um, E-polarization; (b)A = 3.1 /m, H-polarization;

(e)x = 12.5um, E-polarization; ()X = 12.5um, H-polarization. The

1
refractive index values used are n = 1,280 + i0. 3252 for 7 A=3.1, and

n = 1,387 +i0. 422 for187\ =12.5.

Scattering cross sections of hexagonal shell cylinders vs. wavelength,
wall thickness 0.1 um; - edge-on, © face-on irradiation for Irvine and
Pollatckl'7 refractive index data; x edge-on, @ face-on irradiation for
Schaaf and Williams18 refractive index data: (a) baclgscatter, E-polari-
zation; (b) backscatter, H-polarization; (c) forward scatter, E-polarization;

(d) forward scatter, H-polarization.
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Figure 4.

Figuve Captions {Continuad)

Total absorption cross sections of hexagonal shell cylinders for data of
Figure 3. (a) total scattering, E-polarization; (b) total scattering,
H-polarization; (¢) absorption, E-polarization, (d) absorption, H-

polarization.
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