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For resistive strips of large electrical width kw illuminated by
E- or H-polarized plane waves, the geometrical theory of diffraction is
used to obtain expressions for the far zone scattered field through
second order terms, valid for directions of incidence and observation
away from grazing. The results are then cast as products of functions
analogous to those appearing in the known (uniform) expansions for per-
fectly conducting strips. Each function involves the current on the
corresponding half plane, and by invoking this connection, far field
expressions are produced which are uniform in angle. In particular,
for E-polarization the backscattered field at edge-on incidence is shown
to consist of two terms each of which is expressible in terms of the
half plane current, and for all resistivities the resulting values of the
field are in excellent agreement with those found by numerical solution

of the integral equation, even for kw as small as unity.
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1. Introduction

Resistive sheets are important in the design of low radar cross section
targets and a specific configuration which is amenable to analytical and
numerical solution is a strip illuminated by a plane wave incident in a
plane perpendicular to the edges. To replace a metal strip by a resistive
one significantly reduces the scattering even for modest values of the re-
sistivity, and this could be of practical interest in the case of thin struc-
tures at near grazing incidence for E polarization when most cross section
reduction techniques are ineffective. From a study of numerical data for uni-
form resistive strips, Senior (1979a) showed that at grazing (or edge-on)
incidence, the rear edge contribution to the backscattered far field ampli-
tude for E polarization is proportional to the square of the current on the
corresponding half plane, and deduced an empirical expression for the constant
of proportionality valid for a range of (real) resistivities. The desire to
verify this relationship analytically motivated the present investigation.

The scattering of a plane wave by a perfectly conducting strip has been
widely studied and, for strips of large electrical width kw, asymptotic tech-
niques are available for expanding the scattered field in inverse powers of
kw. Although the standard GTD approach (see, for example, Ross, 1966) fails
for angles of incidence or observation close to grazing, these special cases
can be treated by asymptotic solution of the integral equations for the related
problem of a slit (Levine, 1957; Seshadri and Wu, 1960). Using a dual inte-
gral equation approach, Fialkovskiy (1966) and Khaskind and Vainshteyn (1964)
have provided asymptotic expansions of the bistatic scattered fields for E and

H polarizations respectively that are, in fact, uniform in angle.



A key feature of all these methods is the use of Babinet's principle
to convert the strip to a slit which is then analyzed by considering the inter-
action of two half planes whose electrical separation is large. Although
there is a generalization of Babinet's principle for resistive and 'conduc-
tive' strips (Senior, 1977), the Babinet equivalent of an isolated resistive
strip is a conductive insert in a metallic screen, and because the two portions
of the screen are no longer separated by free space, there is no obvious way
to use the integral equation approach. Moreover, the scattered field rep-
resentation which is the basis of Noble's (1959) method for a metallic strip
is not applicable when the strip is resistive.

The purpose of the present paper is to develop asymptotic expressions
for the field scattered by a uniform resistive strip of Targe electrical
width when illuminated by an E- or H-polarized plane wave incident at any
angle including edge-on. Following Bowman (1967), the geometrical theory of
diffraction is used to compute the bistatic scattered field through second order
terms for angles of incidence and observation away from edge-on, and the results
are then cast as products of functions analogous to those in the uniform ex-
pressions of Fialkovskiy (1966) and Khaskind and Vainshteyn (1964) for perfectly
conducting strips. Each function is directly related to the diffracted por-
tion of the current on the corresponding half plane, and by inserting the
representations of the currents valid for all angles of incidence, uniform
expressions are obtained for the far field amplitudes of the strip that hold
even for edge-on incidence and observation. In the particular case of back-
scattering edge-on, the rear edge contribution is indeed proportional to the

square of the half plane current. The constant of proportionality involves



the split function produced by the Wiener-Hopf technique and, in the case of
E polarization, differs by no more than seven percent from the constant
empirically derived by Senior (1979). For numerical purposes, an expression
for the rear edge contribution in terms of the current is far superior to that
in which the current is replaced by the leading term in its high frequency
expansion. Some computed data for the half plane current are presented, and
these are used to determine the edge-on backscattering from strips as a func-
tion of their width. Even for strips as narrow as a sixth of a wavelength,
the results are in excellent agreement with the ones obtained by numerical
solution of the integral equation.

2. Formulation

The problem considered is that of an E- or H-polarized plane wave with

(or H1) i} ge—1k(x oS @0 +y sin ¢0) (1)
respectively incident on a uniform resistive strip of width w and resistivity

R immersed in free space. The strip occupies the region 0 < X < W, - © < Z < ®

of the plane y = 0 of a Cartesian coordinate system (x, y, z), and at large dis-

tances the scattered field can be written as

E (or #) a2 ()12 et g, p )

where o, @ are cylindrical polar coordinates with x=p cos @, y = o sin Q.
Under the assumption that the strip width is Targe (kw >> 1), the task is to
develop asymptotic expressions for the far field amplitudes PE,H for all angles
@ and wo’ but with emphasis on the case of backscattering for edge-on inci-

dence.



For E polarization the boundary conditions are
+ +
[ =0, [HI =-E/R
where the signs refer to the upper (positive) and lower (negative) faces of
the strip. The total electric current supported by the strip is J = EJZ with
JZ = EZ/R. For H polarization the problem is related to that of the E-polarized
plane wave (1) incident on a 'magnetically conductive' strip (Senior, 1977)
at the surfaces of which the boundary conditions are
+ + *
M1 =0, [E1=-H/m
where R* is the conductivity. Such a strip supports only a total magnetic

* *

A~ * *
current J = x JX with JX = HX/R , and the solution for an H-polarized plane

wave incident on a resistive strip then follows on making the transformation

* *

E ~H, H~-E, Jd - -ds R >R.
An impedance strip at whose surfaces the Leontovich (or impedance) boun-
dary condition is imposed is equivalent to the superposition of resistive and
conductive strips (Senior, 1977), and if the strip is planar, the electric
and magnetic currents do not interact with one another. If the normalized
surface impedance is n, the total electric current is the same as for a re-
sistive strip of resistivity R = nZ/2 where Z is the free space impedance,
and the total magnetic current is the same as for a conductive strip of con-
ductivity R* = (2nZ) . We can therefore treat simultaneously the problems
of resistive and conductive strips by considering the impedance strip and
keeping separate the contributions of the two types of current. This is the

procedure we adopt. Since key elements in our solutions are the currents

on an impedance half plane, it is convenient to examine these first.



3. Half Plane Currents

For the E-polarized plane wave (1) incident on an impedance half plane
occupying 0 < x < «, -» < z < =, an exact analytical solution is available

(Senior, 1952). The total induced electric current is given by

25 By ikxcosp i ]f sinfg  K(m-Pgn)  ikxcoss (2)
S( 0)

23, (x) T+nsing  K(B,n) cose+cos¢O dg

z - T4+n sin @O m

where K(g,n) is the split function K, (kcosg) resulting from the application
of a function-theoretic technique and S(0) is the steepest descents path
running from g = - /2 +ie through 0 to B = w/2-i=. The first term in (2)
is the optics contribution and vanishes for edge-on incidence, QO = 1. The

second is the diffracted or edge contribution and will be denoted by j(x,@o,n):

. . 2 K(w-0 ,n) _ikxcosg
3(x,0_,n) = - ‘—[ T o= dg - (3)
0 m JS(0) 1+nsing  K(B,n) cosB+cos(ZJO

In the particular case of perfect conductivity (n = 0), K(8,0) = v2 cos 8/2,
and the integral can be evaluated exactly as

2

. o ?
j(x,QO,O) = - 7&__e-1(kxcos¢0+n/4) sin ﬂo G[[ka]l/ cos 59—] (4)

m

(Bowman et al, 1969) where

6(1) = F(1) - == el®
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is the Fresnel integral. For kx >> 1 and Qo bounded away from m, asymptotic

and

F(r)

expansion of the function G gives
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. 0
. 1/2 . _ S1n —&- _5/2
§(60,,0) = - ok (&) ol (kx=m/4) ]+Cosdi s o] )

whereas for Qo =7

j(X,'ﬂ',O) =2 ("‘—— (5)
for all x.

If n# 0 the integral in (3) cannot be evaluated exactly, but an expression

asymptotic for large kx is easily obtained. For @0 away from r

. (W'@ ’ )
L ]1/2 Jilkx=m/a) K% 0) g 0<[kx]_5/3 (6)

J(X’@o’n) " T kx Gkx kK (0,n) T+cosP

and for QO = q

i(man) = 217 T 0T/ 4oy, (7)
In the latter case the current is the same to the leading order in kx as

that on a perfectly conducting half plane, but if n > 1 (7) does not provide
an accurate estimate of the current unless kx >> nz. By removing only part
of the integrand of (3) at the saddle point 8 = 0, we can also obtain an ex-

pression for the current which is uniform in angle:

0 Q K(TT"Q ’ ) Q
J(x,ﬂo,n)"'-—g-e'1(kxcosgo+”/4) cos 3§~ ——————0——”—-G([ka]l/2 cos 39-). (8)

/r K(0,n)
This matches the wide angle formula (6) into the edge-on value (7), and re-
duces to the exact result (4) when n = 0.

The solution for an impedance half plane also yields the following ex-

pression for the total induced magnetic current:

. Bros-L.
) - - 2nsing ikxcosd 2 nsing K(m=@g.n) cosycos ikecoss,,
X 1+nsinﬁo S(0) T+nsing cosB+cosQ)0

K(8,n)
(9)



the diffracted portion of which is

)

B 0
K i} gi-J[ nsing J#”'go’”) COS5COST™  JkxcosB
J (X,Qo,n) m ZS(0) T+nsing  K(g,n) coss+cos¢O dg. (10)

In the Timit n = » (9) represents the electric current on a perfectly con-
ducting half plane for H polarization, but because of a pole of the integrand
which gets ever closer to the saddle point as n increases, the current for

n = « behaves quite differently from that for finite n.

Indeed,
5 (x,0,pm) = & 7T kxcosBrn/d) F([ka]l/z cos ?22> (1)
v
implying
5 (xomye) = 2 &KX,
whereas for kx >> 1 and QO away from m, Qo
S (x0y0e) = 25 e k) 1—22-3—0 v o(Tod”"?) (12)

*
If n# o] (x,ﬂo,n) vanishes identically for edge-on incidence, and

for other values of QO a steepest descents evaluation of the integral gives

)
2 0
* 2 2 .1/2 i (kx- K(m-@ _,n) n"cos—» _5/2
368, = - = ) i (kx-n/4) K(O?n) 1+cos¢20 +0([kx]""7). (13)

Alternatively, by performing only a partial steepest descents evaluation,

a uniform expression for the current is found to be

. K(m-@ ,n) )
J*(x,ﬂo,n) ~ - 8 gilkxcosfn/4) n2(1+C05¢0) —K('O—c,er)_ G([ZKX]I/ZCOS%)’

™

(14)



which clearly vanishes when QO = 7. We observe that for n # » the same
function G characterizes the behavior of the electric and magnetic currents
on an impedance half plane, as well as the electric current on a perfectly

conducting half plane.

4.  Perfectly Conducting Strips

For an E- or H-polarized plane wave incident on a perfectly conducting
strip of electrically large width, asymptotic expressions for the far field
amplitude are available.

In the case of E polarization

PE(Q,QO) = EB§%£%5§@— {e-ikw(cosﬂ+coswo) A(-cosp) A(-cos@o) - A(cos@) A(coswo)}
0

P 0 (™) (15)

(Fialkovskiy, 1966), where

A = 029 pa) - o 20-01" 1 V) - Doy (16)

we)

—_
1

~
1

- [2(1-&)]1/2 o TkWa g 1/2(]-&2)1/{“” Hé”(t)emt ity (17)

and Hﬁ]) (x) is the Hankel function of the first kind of order n. Consider
first the function B(a). Since kw >> 1 the Hankel function can be expanded
for large argument, and if o # -1 the resulting Fresnel integrals can also be

expanded to give

_ in/4 . 1/2
B(o) = [20-)1"7 T gy L S gikn(1va) (laog Ty
(27kw) ¢
- s/
ﬁW&%+g#+mmwsﬂ, (18)

Similarly, by expanding the Hankel functions in (16),

e-iﬂ/4
)1/2

ikw(1+a) (1-ay /2,1 1
e Y ) G-

Ala) = [2(1+a)]1/2 e_ikwa{ ok (2mk
WL LTKW

_5/2
+0 ([kw] 7 ) (19)



and, in particular,

A(1) = 2¢7 KW
If o = -1, (18) and (19) both fail because of the asymptotic expansion of the
integral in (17), but as evident from (16) and (17)

A1) = -2kt (k) - 308 () (20)
We remark that for backscattering only the leading term in the expansion of

(20) contributes to the order shown in (15).

From (19) with o = cos Qo’

0 . -in/4 . ]
Alcos @) = 2 cos 3§_e-1kwcos¢0 {E ) ___g_____172>e1kw(]+cos¢0) tan3 7?
0 Akw(27kw)

ot (21)

and to obtain an expression uniform in angle it is necessary to retain as
Fresnel integrals the terms resulting from the expansion of the integral in
(17). A form consistent with (20) and (21) is then
s 3 ? 172 P
Alcosf,)~2 cos -2 e K0Sty {} - j%;e A sin® 2 6([2kw] c057§§} (22)
Y1
and we observe that the behavior is precisely that of the diffracted

portion of the electric current on a perfectly conducting half plane. Thus

5 0

~Thcosh, £ §(w.8,,0) (23)

@0 1
A(cosﬂo)va cos 5= e + E-sin

and in particular,

A(-1)~+ 5 3(w,7,0). (24)
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For backscattering (@ = Qo)

PL(0,.0,) = -g—é%@; {21000 [a(-cosp )1 - [A(coswonz} + 0([kw] ™),

and without Toss of generality it can be assumed that =/2 f_@o <.
A(-cos@o) can then be obtained from (21) and if wo is away from =, (21)

also suffices for A(cosQO), in which case

. 1-cosp .
=1 0 -2ikwcosf
P(0,:0,) e 0

; 1+cos(2)0
- -7 77 :
4 cos(bo 4 cos(DO 2kw(27kw) / s1n00

e1n/4 eikw(]—coswo)

+ 0([kw]™?) (25)
At broadside (@O = 1/2) the first two terms on the right hand side become
infinite, but the infinities cancel and

i(kwtm/4)
S 77t 0([kW]-2)- (26)

|\)|_|.

PE(n/Z,w/Z) = -zkw -

No|—

2 kw(2mkw)

For QO > n/2 the first term on the right hand side of (25) is the contribu-
tion of the front edge of the strip as given by GTD. The second term is the
rear edge contribution and vanishes for edge-on incidence, whilst the third
term is the second order contribution whose expression clearly fails when @O =
m. The failure can be overcome by using the uniform expression (22) for

A(cos@o), and hence

w
'\’Io~S

COSQ (ZTTkW) /

. 1-cos@ -in/4 .
P(§ ,0) =1 on . £ - e1kw(1-coswo) cot
E'70°"0 4 0 2k

_h[ —

T+cosP . 2 0 1/2 P 2
0 g 2ikweoshy gy - ot 11/4 303 70 6ok / cos—)
cosf Y- 2 2

0

+0 ([kw]™2)
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valid for =/2 5_90_§ m. At edge-on

Pe(msm) ~ = 5+ 25 (30,003 (27)

where the first and second terms are, respectively, the front and rear
edge contributions.

For an H-polarized incident plane wave the far field amplitude is

PH(go’Qo) - _ 1 sgnlsind) e—ikw(cos¢+cos¢o) B(-cosQ)B(-cost)

4 cosﬂ+cos¢0

- B(cos@)B(cos@o)} + O([kw]'1) (28)

(Khaskind and Vainshteyn, 1964), where B(a) is defined by (17). In

accordance with the order term in (28),

/2 s ir/a . 172 .
B(a)=[z(1-a>]”e‘kw°‘{ o 5 }+0([kw] & (29)

2rkw) Tta:

valid for o # -1, and the corresponding uniform expression is

B(a)~ [2(1-a)]1/z o~ Tkwa {} 1 %_(]_a)]l/Z e-in/4F([kw(]+a)]1/2)},

(30)
which vanishes as required when o = + 1. We remark that (29) and (30) are
consistent with

) i P &
B(cos@o)rv sin 7;-{2e 1kwcos¢o - sin 7§-j (W,Qo,m)} (31)

*
where j (x,@o,w) is the diffracted portion of the electric current (11) on a
perfectly conducting half plane.

In the particular case of backscattering

(0 .0,) = - gc-—o-;—gz {e‘z"kwcc’sﬂo [B(-cosp, )12 - [B(coswon?} + 0([ku]™)

where we have again assumed that /2 5_¢0 < m. From (29)
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D . in/d o ) _3/2
B(-cos(bo) = 2<:os—2(1 g 1kwcosp { - —e—i;q-fz e1kw(] COS@o) cot—zg} + 0([kw]™ ),
(2mkw

and if Qo is away from 7, B(cos@o) has a similar expression. The far field

amplitude then is

0 (0.0 - i ]+COSQO . i ]'COS@O e-ZikWCOSQ i _2_1/281”/4 eikW(]'-COSQO)
H'" 0’0 4 cos(Z)O 4 cos@o Tkw s1nwo
+ 0([kw]™) (32)
and at broadside
. 1/2 _
Pa(n/2,1/2) = Jkw - & - ey TR /8) L oy (33)

For QO > /2, the first and second terms on the right hand side of (32) are
the contributions of the front and rear edges respectively, with the former
vanishing for edge-on incidence. The third term is the second order contri-
bution and clearly fails when QO = m, but the failure can be overcome by using

the uniform expression (30) for B(cos@o), in which case

1+cos(ZJ0 { ] (_g_) 12 ein/4 + 1‘kw(1-cos¢0) / }

0
cos@o mkw cot 2

) = -

_h!_a.

P (0

o’go

. 1-cosp . s p 1/2 /I
+ ] 0 g-Zikwcosd {}— 2 -in/d sin -2 F([2kw] / cos —2)

4 cos@O e 2 2

+ 0([kw]™ )

valid for =/2 5_90 < m, and implying

P, (m,m) = 0.

!
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5.  Impedance Strips

An impedance strip now occupies the region 0 < x <w, -» < z < » of the
plane y = 0 and is illuminated by the E-polarized plane wave (1). The boundary
conditions at the strip are

oy

. _1.n
E. =+ nZH + o

z X (34)

with the upper and lower signs for y = 0+ and y = 0- respectively. For non-
grazing angles of incidence and observation, the diffracted field through
second order terms can be obtained using the method described by Bowman (1967)
for the particular case of backscattering at normal incidence.

To the desired order in kw, the far field amplitude PE(G ) has four

o’wo
contributions: the field p](QO,QO) diffracted by the front edge of the strip

at x = 0; the field pz(wo,ﬂo) of the rear edge at x = w; the field p12(QO,QO)
which reaches the observation point only after diffraction first by the front
edge and then the rear; and the field pz](wo,ﬂo) for which diffraction takes
place in the reverse sequence. Expressions for the p's can be deduced from the
solution for an impedance half plane in 0 < x < ». As shown by Senior (1975),

if @ is bounded away from the geometrical optics directions = + ﬂo, the far

field amplitude of the edge-diffracted component is

Qo
11-2 ncosg'COS 5

P(Qggo) = ?

K(m-@,n)K(r-@ ,n) (35)
cosp + cos@0

where the first and second terms in the numerator are generated by the induced
electric and magnetic currents respectively. This is clearly the contribution

of the front edge of the strip and hence
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b (8,8,) = P(8.8,).

Apart from a phase factor, the contribution of the rear edge differs only in

having @,QO replaced by =-0, w-@o respectively, and therefore

py(8,0,) = P(n-p - ) o TKW(cOsPreosh),

We remark that

K(B,n) = sin@ {(1+nsing)K(m-@,n)}""

implying K(m,n) = 0 for all finite n.
Consider now the rediffracted contribution p]z(ﬂ,ﬂo). From (35) and (36),

the diffracted field of the half plane at a distance p from the edge is

)
121 cos cos -2

i K(W'Q 9”)
2 cos(D+cos(2)0

sind 0
]+T}S'inw K(Qan)

d 2 12 §(ko-n/4)
EZ N(}R) e

which vanishes on the half plane. However, from (34),

" BEZ
b7 T 30 (37)
for @ = 0, and when the differentiation is performed, the field proves
to be non-zero to the next higher order. Thus, on the upper surface of the

half plane,

E

z " \akp 2kp 1+COSQO K(0,n)

9
0
d (297 gilkomnya) | o 1720€0s 77 K(nfon)
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which can be attributed to a source at the edge. The source strength can

be found by considering a Tine source of strength y and free space field

E =+vH (M (ko) ™~y | 2 11/2 e (ko-7/4)

z 0 mkp-

Tocated above an impedance plane at a distance p and angle § relative

to coordinates in the plane. The field on the surface is

P3L41/2 o1 (ko=1/4)  2nsing

I-:ZAJY mkp- T+nsing

and, to this order in kp, is zero when # = 0, but to the next higher order

the field of a source in the plane is, from (37),

(29177 gilko-n/4) 2in’y

E,~ ko ko

z

Comparison with (38) now shows that the field diffracted across the upper

face of the strip is equivalent to that of a line source of strength

2

) _11-27] COS”S‘ K(ﬂ"wo,ﬂ)
LA T+cosf_ K(0,n)

(39)

Tocated at the front edge.

To determine the field diffracted by the rear edge when illuminated by
this source, it is convenient to invoke reciprocity and examine instead the
diffracted field at the front edge due to a source of strength y at the ob-
servation point. The field incident on the rear edge is

G£L41/2 o1 (ko=1/4) _-ikucosp

i
~J
EZ ¥ mkp-

(40)

and, from (38) with ¢o replaced by n-@, the field which reaches the front

edge after diffraction across the upper face of the strip is then
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. P
gl (2912 gilkun/a) [ 120817 K (g,n)
z z  ‘rkw 2kw 1-cos@ K(0,n)

where E; is given by (40). This is likewise the field at the observa-
tion point due to diffraction by the rear edge of the field of a source of
strength y at the front. On inserting the expression (39) for y and doubling

to take into account diffraction across the lower face of the strip, we have

)
Jiku(1-cosp)+in/4 1—2nsing- (@) 1-21c0s7 K(1-9on)

K(0,n) Trcosd,  K(0,n)

p (Qag)=' 1
12770 2k (2rku) 1-cosp

The other second order contribution can be determined in a similar

manner, and when the analysis is performed, it is found that

pz](wswo) = p]z(gosg)-

The net far field amplitude of the strip through second order terms is there-

fore
. )
Pe(0.9,) - EaééﬁEzﬁxﬁ; [(1—2ncos%-cos 52 ) K(m-P,n)K(n-g_,n)
/] .
- (]-Znsin%sin—%) e-1kw(cos¢+coswo) K(Q,n)K(QO,n)
et (ki=1/4) (' siucosp ]'ZHSin%'K(Q n)
- (cosptcosd ) (2] 2 {e T-cosp  K(0,n)
1-2 T]COS?Q K("T'Qoan)
T+cosp K(0,n)
0
2, P
. e—ikwcosw ]-2nsin7§— K(Qo,n) 1—2ncos§-K(n-@,n)
T-cosP, K(0,n) T+cos @ K(0,n)

+ 0([kw]™%) (41)

and embodies the solution for a resistive strip.
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6. Resistive Strips

A resistive strip supports only an electric current whose strength is
the same as that on an impedance strip of normalized surface impedance n = 2R/Z.
We can therefore deduce the far field amplitude for a resistive strip with E
polarization by suppressing that part of (41) contributed by the magnetic

current. The result is

. i/2 -ikw(cos@+cosp )
Pe(0.0,) = EEE@IEBE@;' [%(w-ﬂ,n)K(w-Qo,n) - e o) K(Bn)K(D ,n)
i(kw-m/4) .
- (cosf+cosp ) S— {e"kwcosw (1-cosp) ™! K{fn)
kw(zwkw)v2 K(0,n)
- K('IT—Q 9“)
(1+cos¢0) 1 % O,no

. K(P_,n)
4 ¢~ kweosp, (1-cos¢0)'] —Rz%jgj-(1+cos@)_] E&%ﬁ%ﬁ%l‘}] + 0([kw] ™)

which can be written as

PE(Q,QO) _ _C'O_S—(.ID—%W" {e-ikW(COSQ'l'COSQO) A(-COS@ n)A(-COSQO,n)
0
-AlcosmA(costyun) } + o[kl ™) (32)
where
. ~in/b .
A(coswo,n) - /E-e—1kwcos¢0 '{%(Q ) - ___g__j;sz_ e1kw(1+cos¢0)
0 kw(2mkw)

K(r-9,n) : 1
[K(0,n)1° T¥cosh, _a)J
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and a is independent of V)o. The choice a = 1/2 makes A(cos(l)o,O) identical

to the perfectly conducting function (21), and comparison with (6) then shows

0
.2 %0
Sin 7—

AlcosBsn)e /Z K(@ o) e <C0Pg 4 (w,8,5n) (44)

/2 K(0,n)

(cf 23) where j(w,wo,n) is the diffracted portion of the electric current
on a half plane, the uniform expression for which is given in (8). Using

this or, alternatively, the uniform representation (22) for A(cos(&o), we have

iy 0 K(n-0 ,n)
) - 2 in/d sind_ sin _go_ 0

= ~ikwcos@
A(cos@ ,n) ~ V7 e 0 {K((D
o”" V= 0 [K(0,n) T2

1/2 ?_0_
G([2kw] cos 2) (45)
valid for all Qo' For edge-on incidence

A(-T,n)~2 (;‘i‘w‘)l/z ei(kW+ﬂ/4) /—-—?KIO :
s N

which differs from the corresponding result for perfect conductivity by the

factor on the right, and in terms of the current
A=1,n) ~ /Z K03 Glwymen) (46)

In the particular case of backscattering

Pe00:0,) = 5eoeg {e'mwcoswo [A(-cosf,n)1° - [A(cosp_,n)12t+ 0([ku™2)
0
(47)
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and we shall again restrict attention to /2 < Qo_f m. For incidence away

from edge-on, substitution of (43) into (47) gives

_ i 2 | -2ikwcosf 2
PE(QO,QO) = ZEBE@;' [K(ﬂ-ﬂo,n)] - ZEBE@;_ e 0 [K(ﬁo,n)]
in/4 ikw(1-cos@ ) K(m-@ ,n) K(P ,n)
_ e e 0 0 0 + O([kw]z). (48)
kw(2'nkw)l/2 sinzﬂo K(0,n)  K(0,n)

At broadside the first two terms on the right hand side are infinite, but
since the infinities cancel, the result can be found by a limiting process.

From the expression for the split function (Senior, 1975)

K( 3+ ean) = K( g,n)'{ FEE )40 <82>}

TSiny

where cos x = 1/n, and by treating similarly the other factors in the first
two terms and then taking the 1imit as ¢ -~ 0, we have
ei(kw+ﬂ/4)

T 1 1 1 i 2
Pt ,a )= J-=kw-= (1 - —£X ) .
E' 2°2 T+n 2 2 mSiny kw (27w )

) [K(o,n>1'2}+ 0([kw]™%)

(49)

_1/2
where we have used the fact that K( %,n) = (1+n) / . Equation (49) contains

every term present in the corresponding result (26) for a perfectly conduct-
ing strip, but with a reduced amplitude.

In the expression (48) for PE(Q ) the first and second terms on the

o’wo
right hand side are, respectively, the contributions from the front and rear
edges of the strip. The third term is the doubly diffracted contribution

and its formula clearly breaks down at edge-on incidence. The failure can be
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overcome by using the uniform expression (45) for A(coswo,n), in which case

i -in/4 . 2
P(B 0 )= JK(n- ,n)]% - —E8 ikw(1-cos@ ) 2%
E*0"0 4cos(2)0 { m™=¥gen W e o) cot”
K(“"@Osn) K(go,n)
K(O,n)  k(0,n)
. . | )
- 4CO;QO o-2ikwcos '{%(ﬁo,n) __é% o in/4 sing, Sin«??
K(m--n) 1/2 p 12
0 G([ZkW] cos _O)} + 0(Tk -2
[K(0,n)1° 2 ([w]™),

valid for =/2 :§¢04§ 7. In particular,

. 2ikw
Pe(mam) = - 3 IK(0,m1° - S [K(0,m) 1% + 0([ku1 ™). (50)

That part of the far field amplitude (41) attributable to the induced
magnetic current corresponds via duality (implying n > 1/n) to the solution
for a resistive strip illuminated by the H-polarized plane wave (1). Thus
e-ikw(cosw+coswo)

P(0,8,) = - T [K(ﬂ—wJ/n)K(Tr-QO,]/n) -

cos¢+cos§b0

i(kw-m/4)
K(D,1/n)K(@51/n) + (cosp+cosP ) < om (ﬂiw)l/z

)

. . 0
] ikucoss sinz K(g,1/n) €O 3?- K(w-ﬁo,l/n)
1-cos@ K(O,T/ﬁ7f1+COS¢O K(0,1/n)

9

. 0 Q
ikwcosp  Sin o KB ,1/n) . 7 K(r-0.,1/ -
T-cos, K(0,T/n) T+cosd K(g,]/n)n) + 0([kw]™%)

te
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which can be written as

i/4 : {%-ikw(cos®+cos®0) B(

PH(Q,@O) = - Eag@;Eagag -COS@,H)B(-COSQO,H)

- B(cosw,n)B(coswo,n)} +0 ([kw]™?) (51)
where
; ) -in/4 1/2
B(cosfn) = = 7 1K10H, {;m DK, 1/n) + 8 &)
/n nkw
ik(1ecosp ) Py K(rBg,1/n) 1 }
e o’ cos & - b) (52)
2 [K(0,1/m)12 Treoshy

and b is some constant. As in the case of A(coswo,n) the constant is chosen
to produce agreement with the function for a perfectly conducting strip when
n = 0, but because of the discontinuity in behavior as n -~ 0, we cannot
simply put n = 0 in (52). For n # 0, however, comparison of (52) with the

expression (13) for the magnetic current on a half plane shows

@ .
Blcosgn~ 2 sin 2 KBy, 1/n) €0 -/ Te(o,1/m)])”
n

q - b(1+cos®0)} j*(w,¢0,1/n)-

-1/2

As n -~ 0, n K(¢0,1/n) + 1, and in the 1imit the current is that given in

(12). Hence

0 .
B(cosﬂo,o)’“ 2 sin zg_e-1kwcos¢0 - { - b(1+cos¢0)} j*(w,Qo,w)

in agreement with (31) if b = 1/2.
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Equation (52) then becomes

: 0 -in/4 .
B(cosd ,n) = = omikweosy oy 3§?{F(¢ /) + ___g_____177_e1kw(1+cos¢0)
° /n 0 nkw (27kw)
@ K(W'Q s]/n)
tan 7?-———Jl———7? }. (53)
[K(0,1/n)]

implying
. ) : ) ;
B(cos@o,n)rvlq 1/ sin 7?-'{%K(¢0,1/n) e-1kwcos¢0 - n sin 3§-[K(0,1/n)] 1

J'*(W,@OJ/n)}. (54)

*
From the uniform representation (14) for j (w,¢0,1/n) or, alternatively,
by employing the matching function appropriate to A(coswo,n), we can now
derive an expression for B(coswo,n) which is uniform in angle, and if n # 0

the result is

. 0 . )
B(cos@o,n)f\’;%;e'1kwcoswo sin 7?- {}(Qo,l/n) + ;f%f e'w/4 sin@o cos —él

K(m-@ ,1/n) i
NP G([ka]1/2 cos —29)} (55)

[K(0,1/n)1°
which vanishes for wo = 0,m.
For backscattering
- i ).-2ikwcosP _ 2 2 )
P,(0,:0,) = - Beosd, % o [B(-cos@,,n)]" - [B(cosd sn)] }+ 0([kw]™ )

(56)

and if QO is bounded away from m, (53) can be used to give
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1-cos@

2 i 0 2
[Kr-0y1 /)T + 45> K91/

; T+cos@
)= -2

PH(Q 4n cos(b0

o’wo

4 1/2 eikw(1-cos¢o K(m-,,1/n) K(8,51/n)

e pm ST, K(0,1/7) K(0,777)

+ 0([kw] %),

(57)

At broadside an analysis similar to that for E polarization shows

p Glﬂq -1 J—kw __ix ( 2 )1/2 ei(kW+ﬂ/4)
H \2°2 T+n 2 TTS'inX nkw wkw [K(O ]/n)]z

}+ 0 ([kw]?)  (58)

where now cos x = n. As @0 approaches m, the expression for the doubly
diffracted contribution in (57) fails, but by using the uniform representation

(55) for B(cos@o,n) in place of (53) we obtain

. T+cosf -in/4 /2 ;
_ i 0 2 e 2 ikw(1-cos@ )
PH(@O,QO) pll = ——Eaggg* {EK(W-¢0,1/n)] T ﬁﬂaﬂ e 0
P K(ﬂ-¢0,1/n) K(B,21/n)
Ot 5 X(0,1/m) K(0,177)
j 1-cosp 9, K-, ,1/n)

dn cos(b0

4 -in/4 . 0
KB ,1/n) + — e sind cos— ————
{ ° i O 2 1k(0,1/n) 12

) 2
G([ka]l/2 cos 7? {} + O([kw]_z)

valid for /2 < ﬂo_j m. As expected, this vanishes for QO = 7 regardless
of n, but in order to handle the limiting case n = 0 it is necessary to

express B(coswo,n) in terms of the half plane current (see 54) and then employ

the known behavior of the current for perfect conductivity.
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7.  Discussion
In contrast to the case of H polarization, the backscattering for E
polarization is non-zero at edge-on incidence and, as evident from (50),

the front and rear edges of the strip both contribute to PE(n,n). Thus,

Pe(mom) = pf 4 pr (59)

where the first term on the right hand side is the front edge contribution

and is proportional to the square of the current at the edge of a half plane:

P = - 1 L5(0,mn) TP (60)

(Senior, 1979a). The second term is the rear edge contribution and, from
(7) and (50),

P" = iy[i(wyman) 12 (61)

with

2

y = [4K(0,n)] ", (62)

A dependence of P" on the square of the half plane current was observed by
Senior (1979a), and from an examination of computed data for strips having

1 <n <10 it was concluded that
y=20.0313 + n0.0663 .

The agreement with the analytical expression (62) is remarkably good. For
all real n the maximum discrepancy is only seven percent, and as n

increases, the ratio of the approximate and exact values of y decreases from
1 atn =0 to 0.93 at na2 0.18, increasing thereafter to 1 at n = 2, on up to

1.06 for n = o,
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At edge-on incidence j(x,m,n) is identical to the total induced electric
current ZJZ(x). The computation of the half plane current as a function of
kx for any n real or complex has been discussed by Senior (1979b), and a pro-
gram written to carry out numerically the integrations, explicit and implicit,
involved in (3). For n =1, 4 and 10 the amplitudes and normalized phases
of j(x,m,n) as functions of x/x are shown in Figures 1 and 2, along with the
corresponding curves for a perfectly conducting half plane obtained using
(5). Since y = [2 /ﬁ'j(o,w,n)]Z, such data are sufficient to determine the
backscattering from a strip as a function of its width, and in Figures 3 and
4 the resulting values of PE(w,w) are compared with those found by a numerical
solution of the integral equation for a strip (Senior, 1979a). The agreement
is excellent and even for kw as small as unity the discrepancy is only a few
degrees in phase and less than 0.3 dB in amplitude.

For n << 1 the expression for PE(n,n) shown in (50), i.e., with j(w,m,n)
replaced by the Teading term in its asymptotic expansion for large kw, provides
the same accuracy, but as n increases, the superiority of using (61) in con-
junction with computed values for the half plane current becomes apparent.

One reason for this is the nature of the asymptotic expansion of j(w,m,n).

For sufficiently large kw,

j(w,T,yn) ~ 2 fjlgl/z o i (kutn/4) J} I §_+ %

- L K [xSinx+COSx])

and if n > 1 it is necessary that kw >> n2 for the leading term (which is
independent of n and is the exact value of j(w,r,0)) to provide a good approxi-
mation to the current. This is otherwise evident from Figure 1. The fact

that for all values of n (59) is accurate even for kw as small as unity
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or less suggests that the expression (61) for P" is valid beyond just the

leading term in the asymptotic expansion of j(w,m,n) for kw >> 1.

Acknowledgement: This work was supported by the Air Force Office of Scien-

tific Research under Grant 77-3188.
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Legends for Figures

Fig.

Fig.

Fig.

Fig.

1. Amplitude of the half plane current computed from (5) for n =10
( ) and from (3) with wo =g forn=1, 4 and 10 (OO O).

2. Normalized phase of the half plane current computed from (5)

for n =0 ( ) and from (3) with @0 =q forn=1, 4 and 10

(® 06 0).

3. Amplitude of the edge-on backscattered field for strips of width

w computed from the integral equation ( ) (Senior, 1979a) and

using (59) (@ @ Q).

4, Phase of the edge-on backscattered field for a strip of width w
with n = 4 computed from the integral equation ( ) (Senior, 1979a)
and using (59) (@ & @).
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