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Abstract

Two integrals that arise in scattering theory are discussed. 1In
contrast to recent statements in the literature it is shown that the
correct interpretation is not as a Hadamard finite part, and this has

implications conceptually as well as numerically.
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I. Introduction

In the application of integral equation methods in scattering
theory it is necessary to determine the boundary limits of the integrals
involved, and in some cases this requires special care. Factors that
can influence the limits are the kernel itself, the smoothness of the
boundary geometry, and the smoothness of the density function whose
values can be obtained only by solution of the integral equation. For
a density function in a particular space, the boundary 1limit may or
may not exist depending on the kernel and the boundary, but since the
kernel is given, it is the interplay of the smoothness of the boundary
and the density function that we are concerned with. As a general rule,
the smoother the boundary, the Tess stringent the conditions on the
density function.

Two integrals of interest are
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body, R = ]r - r'| witn ro,r' e T, nO = ﬁ(?&) and ' = A(r') are unit

vector normals to I directed into the exterior region @, J(r') is a

1kR0/(47rR ) is the free space

tangential vector function, and G(kRo) =
Green's function. The first integral was used by Davis and Mittra [1]

in the analysis of a thin scatterer problem, and the two-dimensional



analogue of (2) was considered by Bolomey and Tabbara [2] and Mautz
and Harrington [3]. 1In all cases the integrals were interpreted in
the sense of a Hadamard finite part, but this is incorrect practically
as well as on strictly formal grounds. The Hadamard finite part integral
is a singular integral of a specific type in which the integrand is
known and has a fixed singular point. With (1) and (2), however,
the singularities are not fixed, but spread over the entire domain of
integration, and in addition the integrands are unknown, since they
contain the density function whose determination is the objective of
the integral equation technique.

The purpose of this note is to show the circumstances under which
(1) and (2) exist and to give the meaning that the integrals then have.
The main results are contained in the theorems of the next two sections,
and we then examine the two-dimensional analogues of the integrals for

which the 'self cell' contributions are trivially obtainable.

IT. The Integral I(r )

The integral is the normal derivative of a (generalized) double-
layer potential in scattering theory and its properties can be deduced
from those of the corresponding one in potential theory [4,5,6]. In
particular, if the exterior limit of the integral exists, so does the
interior one, and both Timits are equal. In other words, if the
integral exists, it iS continuous across I'. Schauder [4] has shown
that for T € Cy3y(0 <v <1) the integral operator in potential

theory corresponding to that in (1) maps C into Cu’ 0 <u <1.
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Henceforth we assume thatT is closed and in C,. This assumption
is more restrictive than Schauder's and implies that the curvature is
defined everywhere onT. Let w(Q), Q € T, denote the direct value*

of the double-layer potential

w(Q) = ff%;ﬁ(krpo)f(P)dSP (3)
T

where the integral is not a principled-valued one as frequently supposed,

but one defined in the Riemann sense.

Theorem 1: Ifr & C,, the integral operator M(Q,P;k) such that

W@ = @ = [ S sk eeles, = M@0 (o

maps C; into C; for all1 Q & T.
Omitting details which are a direct extension of those in [4],
an outline of the proof is as follows. Divider into ' and Pe where FE

is a sufficiently small open surface about a fixed point Q; e PE.

For Q, & FS

* —

A double-Tayer potential defined at r € @ yields an exterior Timit
which is the sum of 1/2f(Q) and w(Q). The integral (3) is called the
direct value in potential theory.
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Since f is in C;, the terms in square brackets tend to zero as Q, » Q;.

The integrals over r_are
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where A and B are some constants independent of Q; and Q,, but dependent

on the smoothness of I and f. The integrals over the open surface I'' are

similarly bounded, and from these estimates it follows that I;(Q) is in C;.
It is easily shown that if the density function is merely continuous

on a boundary of class Cy ., 0 <v <1, I,(Q) is unbounded and hence does

not exist. In particular, the theorem fails if I has a surface singularity,

but if T is in C,, I,(Q) is in C;, at variance with a Hadamard finite part

interpretation.

I1I. The Integral '1“2(?0)

Theorem 2: IfT & C, the integral operator N(Q,P;k) defined by

I,(Q) = v['Jf Y G(krPQ) = §QN(Q,P;k) - J(P) (7)

maps C1+u into Cu’ 0 <u <1, where S, is a unit tangent vector at Q € T.

Q
The proof is trivial. For Q € o and R = |QP|

ff AN G(kR) SP = - fvaG(kR)VP . j(P)dSP
r
provided, of course, J € C;(r). Hence, forQe r,
1,(Q) = -ﬁQx ff Tq8(krpg) 7, J(P)S, (8)
r

which is simply the tangential derivative of a single layer potential

with density function §QVP - J(P). From the fact well known in potential



theory that this is continuous across a boundary T &€ C, and is in Cu

on the boundary if the density function is in Cu’ 0 <u < 1, the

theorem follows. Here again, therefore, the interpretation as a Hadamard
finite part is incorrect.

In the numerical solution of an integral equation containing
either of the integrals (1) or (2), the error affects the self cell
contribution and, as a result, the diagonal terms in the matrix. The
determination of the self cell contributions is most easily considered
in two dimensions where (1) is directly related to an integral similar

in form to (2).

IV. Two-Dimensional Case

The two-dimensional analogue of (8) and, hence, (2) is
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where s is arclength along a smooth closed boundary v, Hél) is the

Hankel function of the first kind of zero order, and the density

function J(sP) = sPJ(sP). If (nQ,sQ,zQ) is a right-handed rectangular
coordinate system at Q « vy, the scalar product of (9) with 2Q yields
_1 fg 3 9(s.) ﬁ——-H(l)(kr )ds (10)
4 35P P BSQ PQ" 7P ‘
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By a tedious but straightforward analysis, it can also be shown that
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and this not only relates the two-dimensional versions of (1) and (2)
explicitly, but can serve to give a proper interpretation of the integral
on the left.
In particular, in any numerical evaluation of the integrals on
the two sides of (11), the self cell contributions must be equal. The first

integral on the right-hand side poses no problem and its contribution is

aJ(sQ) where o tends to zero with the cell size A, assumed small compared
with the wavelength. The second integral produces (-4/2)( #/zss)d(so)

which also tends to zero with A, but when, in the moment method, the
second derivative is expressed in terms of J via finite differencing, we

obtain a contribution proportional to (1/7A)d(s,). This is therefore

Q
the dominant term in the expressions for the self cell contributions of
the integrals on both the left- and right-hand sides of (11). It is a
term which would be omitted were the first and third integrals treated
as Hadamard finite parts, but one whose retention is implied by our
stricter interpretation.

It must be admitted that the retention of these terms does not

seem to have a major impact on a numerical solution of an integral equation

in which either of the integrals appears. Mathematically the self cell



contributions do tend to zero with decreasing cell size, and the solution
does remain stable as A decreases. At most, therefore, the omission

of the terms 0(1/4) would produce some loss of efficiency in the program
by forcing a smaller cell size than otherwise necessary to achieve

the same accuracy of solution.
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