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A widely used method for the solution of scattering problems
is to formulate an integral equation for the current or some
appropriate component of the field at the surface of the body and-
to solve the equation numerically. In some instances, however,
even the formulation of a valid and effective integral equation is
a non-trivial task, and this is so for a resistive plate of
infinitesimal thickness and finite transverse dimensions i1Tumin-
ated by an electromagnetic wave.

A number of integral equation formulations are considered,
based either on the standard boundary conditions
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where fi is the unit outward normal to the upper face (+ sign), R is
the resistivity of the plate in ohms per square, and J is the total
induced electric current, or on the alternative conditions
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valid for a planar sheet, where Z is the intrinsic impedance of
free space. We remark that
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The case R = 0 corresponds to perfect conductivity, but the
simplified approach that Y. Rahmat-Samii and R. Mittra (IEEE Trans.
AP-22, 608-610, 1974) have developed for a perfectly conducting
plate has no analogue when R # 0. Various integral equations
resulting from the application of the above conditions are
presented, and their properties discussed.
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SCATTERING BY A FINITE RESISTIVE PLATE*

by

Thomas B.A. Senior

At the last 3 U.S. URSI meetings I spoke about the scattering by
imperfectly conducting strips, either resistive or ones having an
impedance boundary condition imposed at the two faces, and derived
asymptotic expressions for the bistatic scattered field which are
uniform in angle and remarkably accurate even for strip widths down
to a quarter of a wavelength.

The motivation for these studies was the need to develop cross
section reduction techniques that are applicable to electrically thin
and roughly planar structures like the tail fin of an aircraft. Such
Structures are, of course, finite in dimension, and in the case of a
perfectly conducting plate it is well known that a segment of a strip
provides at best a rather so-so means for estimating the scattering
from the plate. We can see this in the case of backscattering from a
rectangular plate in a plane perpendicular to two of the edges. The
plate shown has a length 1.653 A, a width 1.446 x, and the field is
polarized with electric vector parallel to the surface. The solid line
is a measured cross section and the broken Tine is that obtained using
a strip as a model. As the incidence approaches grazing, the
discrepancies become more evident, and the fact is that we can no longer

simply ignore the side edges and the currents they support. For
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incidence and/or observation out of the symmetry plane for a rectangular
plate, and for a general polygonal plate under all conditions of
incidence and observation, the strip approximation is largely irrelevant.
We would expect the same to be true for an imperfectly conducting
plate, but there is a point to be noted here. Because imperfect
conductivity reduces the edge currents and their scattering, there are
instances where a strip provides a better approximation than it did for
perfect conductivity, for example, the case of a rectangular plate with
incidence and observation in a principal plane. The figure shows the
backscattered field for a plate of resistivity 210 o/square under the same
conditions as before. The agreement between the measured values and
the strip approximation is better at near-grazing angles, but it is
still true that for general angles of incidence and observation the
strip solution is of no help.
We now turn to the actual problem of a finite plate which,
for simplicity, I will assume to be resistive. Our objective is to
find a formulation amenable to a numerical solution, and this
naturally suggests an integral equation approach. It is realized
that in practice we may be limited to plates no more than about a
square wavelength in area, but even for plates of this size the
solution could be helpful in the development of analytic approximations.
Consider first the boundary conditions for a plate of
infinitesimal thickness having a resistivity R 2/sq., possibly
nonuniform over the plate. Since the plate supports only an electric

current,



across the plate. It now follows trivially that

where En’ Hn are the normal components. The only components whose
discontinuities are not yet established are those of the tangential

magnetic field and, of course,

where J is the total electric current.
The tangential derivatives of J are related to the normal
components of the field. From Maxwell's equations and the

definition of J




where Z is the free space impedance and vs + is the surface
divergence.

So far we have used no information about the plate other than
that it supports only a planar electric current. The above results
are therefore satisfied automatically by any representation of the
field in terms of an electric current alone. The additional boundary

condition which defines a resistive plate is

If R = constant, it can be shown that the condition implies
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These are scalar boundary conditions in the sense of involving one

field component each, and are equivalent but alternative to the
original ones
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In the special case of perfect conductivity (R = 0), the first

pair give



in place of the more common ones

The boundary conditions involving the normal components of the
field are attractive in holding out the possibility of producing
uncoupled integral equations for a plate. Unfortunately, it does not

work out this way. In addition, if R # constant, the conditions become
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and are no longer scalar. Because of our interest in nonuniform
resistivities, the standard boundary conditions turn out to be the
more convenient ones to use.

We now develop some integral equation formulations for the
problem. Since the plate can support only an electric current,
the Franz method Teads immediately to the following expressions for

the scattered field:
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is the free space Green's function. Of the six possible integral
equations corresponding to the 6 field components, those resulting
from En and Htan are merely identities. The obvious and usable
integral equations then follow from a consideration of the tangential

electric field components and are

o 2 2
RI = E' +ikZ ﬂa o dx'dy' + 1% ff (J 30 4 g L‘L)dx'dy'
X X X Xax2 Y axay
: 2 2
RJ =E‘+1szfaq>dx'dy'+ilff(a”+J“’)dx'dy'
y y y k X axay Y ay?

where Xx,y,z are Cartesian coordinates with z normal to the plate.
These are two coupled integral equations for the current components.
The kernels are far from attractive, and because of the derivatives
involved, the integrals require special consideration either in terms
of distribution theory or functions of high order continuity, the
numerical implications of which are not obvious. Moreover, as Rahmat-
Samii and Mittra (1974) have noted, in at least the special case R =0
the equations are numerically unstable.

We still have available the normal component of the magnetic
field and by differentiating this tangentially we can combine
it with the representations for the tangential electric field to

obtain the following integral equations:
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The derivation is directly analogous to that used by Rahmat-Samii and
Mittra and, in the case of a perfectly conducting plate (R = 0), the
results are very advantageous. The right-hand sides then involve
only the incident field, and we can therefore integrate out the
derivatives on the left at the expense of introducing a solution of
the homogeneous differential equation. Unfortunately, this is not
possible if R # 0, and since the equations in their present form are

integro-differential, they offer no advantages over (I).

Nevertheless, the form of the differential operator on the left

and the fact that it is just -(82/3z%2) off the plate, suggests that it

could be fruitful to follow the procedure that led to the above prior

to going down to the plate. The task is rather straightforward and gives
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We have now reduced the singularity somewhat and made it the same for
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both equations at the expense of having integro-differential equations



involving the second derivatives of the unknowns. These terms provide
the coupling and do so explicitly rather than via the integrals.

To try reducing the singularities still further, one way is to
seek integral equations for some components of the fields rather than
the current. The only components for which this is feasible are the
normal ones, and equations can be obtained for HZ and aEZ/az in which
the coupling is provided by line integrals of the currents (or,
alternatively, the field components) around the perimeter of the
plate. However, these equations have some difficulties associated with
them and I will not discuss them further.

Each of the above pairs I and II of equations has its own
advantages and disadvantages. The first pair are pure integral equations
and because the currents are finite everywhere if R # 0, it could be
that the numerical instability previously found does not now occur.

The second pair have somewhat more attractive kernels, but are integro-
differential equations, and for this reason our initial tendency was

to concentrate on the first. In both cases, however, the correct
interpretation of the integrals is still a matter of debate, particularly
as regards a numerical treatment.

To provide an interpretation, one method is to regularize the
equations in a manner similar to what Kleinman and others have used

over the last 10 years or so; in other words, to write



where KO is the static limit of the kernel K. The problem of
interpretation is now concentrated in the last integral, and has been
reduced to its simplest form. This suggests that some insight could be
gained by considering the Tow frequency (or Rayleigh) scattering
problem for the plate.

In the Timit when the wavenumber k -~ 0 a resistive plate becomes
perfectly conducting. The scattered field is attributable to induced
electric and magnetic dipoles whose components (or, if you prefer, the
elements of the polarizability tensors) are expressible as weighted
integrals of certain potential functions. The only components of
concern are the tangential components of the electric dipole moment
and the normal component of the magnetic dipole. For the electric
dipole the potential problems are entirely standard, and the resulting
integral equations have a simple 1/R kernel. For the magnetic
dipole, however, the straightforward approach requires the determination

of a potential y satisfying
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Using a simple segmentation procedure, programs have been written

for solving these integral equations for a number of plate geometries,
and from the results obtained there seems Tittle doubt that the
procedures are adequate and effective. However, I'11 talk about these
results at a later time.

We have not yet tackled the non-static problem, but it is of
interest to note that the static problem leads naturally to the
singularity possessed by the second pair of integral equations. In
fact, we have not yet found any straightforward approach to the potential
problem producing kernels having second tangential derivatives, and
for this reason out intent now is to focus on the second pair of

integral equations rather than the first.
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