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Abstract

For a resistive half plane illuminated by an E-polarized plane

wave at edge-on incidence, an exact expression is available for the
total induced current as a function of the electrical distance kx
from the edge. The expression is cast in a form that is amenable to
computation for any complex 'resistivity'. The results of such a

computation are presented, and it is shown how the data can be used

to predict the backscattered field of a strip.
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1. Introduction

In a recent study (Senior, 1979a) of scattering by resistive
and impedance strips, it was shown that for a strip of large
electrical width kw illuminated by a plane electromagnetic wave, the
bistatic far field can be expressed in terms of the current induced
in the corresponding half plane. The required values of the current
are those at locations appropriate to the front and rear edges of the
strip, and by using the known expressions for these currents, the
resulting formulas for the far field of the strip are uniform in angle.
In the particular case of a plane wave at edge-on incidence on a strip
of uniform (real) resistivity R, the current is that supported by a
half plane with surface impedance nZ = 2R when illuminated by an E-
polarized plane wave incident edge-on. An exact expression for this
is available and some values have been computed. It is found that if
these are used in preference to asymptotic expressions for the current,
the values obtained for the backscattered far field of a strip are
accurate even for kw as small as unity. The ability to compute the
half plane current is therefore helpful in the selection of a strip
material for low radar cross section.

To produce a viable structure it is necessary to rigidize the
resistive sheet material, for example, by encasing it in plastic or
fiberglass, thereby producing a complex 'resistivity'. The computation
of the half plane current is more difficult if n is complex, and the
purpose of this paper is to deve]qp a formuTation which is valid for all
n, |arg n| < n/2, and is amenable to computation. Some numerical results

are presented, and their application is described.



2. Expression for the Current

A half plane having resistivity R = nZ/2, where Z is the
intrinsic impedance of free space, occupies the region x > 0, - < Z < =
of the plane y = 0 of the Cartesian coordinate system (x,y,z), and
is illuminated by an E-polarized plane wave at edge-on incidence.

If gﬁ = 7 exp(ik«) where a time factor exp(-iwt) is assumed and
suppressed, the total induced electric current is in the z direction

and is
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(Senior, 1979a). The path C (see Fig. 1) consists of the straight line
segments g = i» + ¢ t0 e, ¢ t0 m-e and 7-e to 1-c-jo with € > 0. The
function g(g) is expressible in terms of the split functions resulting

from the solution of the diffraction problem by the Wiener-Hopf technique,

and as shown by Senior (1952),
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where K+(g) is defined in (21) of that reference. Writing £ = k cos 8

we have, after some manipulation,
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which is more conveniently written as
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where cos x = 1/n. Equations with which to compute x knowing n are
given in the Appendix. As evident from (2), g(g) is an even
function of 8 and is finite at g8 = ¥(n/2 - ).

To evaluate the integral in (2) it is advantageous to deform C
into the steepest descent path S(0) through g= 0 (see Fig. 1). The
path is such that

cos g = 1+ it? (3)
implying
sin %? = L in/A
/2

where t runs from -» to =, and in the complex g plane
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Ing = -2 tanh_] {:tan (%—Re B>:§ . (4)

In the deformation of the path the pole at 8 = - n/2 + x may be
captured. The manner in which Re x and Im x vary with In| and arg n is
illustrated in Figs. 2 and 3. Since |arg n| < n/2 corresponding

to a passive impedance, 0 < Re x < w/2, and capture cannot occur
unless arg n > 0. In fact, from an examination of the pole

location relative to the path defined by (4), the condition for

capture is found to be

Re ie'iﬂ/zl cos ;—(g— + x)} < 0, (5)

and the resulting values of |n| and arg n are shown in Fig. 4.

Deformation of C into S(0) then gives

ikx sin x , 2i f COS% ikx cos B
ZJ(_X) = 8rA e + . g(B) m—s e dr
S(0)
(6)
where
A = _;_g(--g-+x> cotxcos-]z-(%-x) (7)

and T =1 if the pole is captured, but zero otherwise.
The first term on the right-hand side of (6) is the surface
wave contribution. The second (integral) term must be evaluated

numerically and to avoid the complication caused by the pole, we

write it as



B
cos o A ikx cos B
‘j° {F(B) T+nsing 1, « } ¢ de
5(0) cos (8 - 5 - x)
eikx cos B
+ A f 1 - ds . (8)
cos 5 (8 - 5 - x)
5(0)

The integrand of the first integral in (8) is now finite at

B = -m/2 + x and the second integral can be evaluated exactly as

s e (KCSTCE ) e cos L (0] (9)
where N
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is the Fresnel integral. The upper (lower) signs in (9) must be
chosen according as the condition (5) is violated (satisfied). When

(9) and (8) are used in (6), the residue contribution can be absorbed,

and using also the symmetry of the path S(0) about 8 = 0, we have
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The final step is to change the variable of integration from g

to t as shown in (3). The expression for the current then becomes
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1. Also, from (7) and (2) with the substitution
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valid for all y #0, i.e., n #1. Ifn =1 the pole is neither
captured nor lies close to the path of integration, and A can
be put equal to zero.

The above results are exact and (12) through (14) enable
ZJ(x) to be computed as a function of kx for any n. The Fresnel
integral was introduced to handle the special case when the pole
Ties on the path. For other values of n it is mathematically
permissible to put A = 0 in the integral in (12) and to replace
the Fresnel integral by v ei"/l+ or 0 depending on whether the pole
is or is not captured in the deformation of the path. Numerically,
however, it is desirable to retain the more complicated form (12)
whenever the pole lies close to the path. The pole contribution
represents a surface wave of amplitude 8A and its presence has a
major effect on the current, particularly for small values of kx.
The only case in which the surface wave is unattenuated is when the

sheet is purely reactive (arg n = =/2), and (14) then implies
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3. The Program and Its Application

A program designated SURFCOM has been written to compute ZJ(x)
as a function of kx for any given n and is available from the author.
The numerical integration required to compute A, h(t) and, finally,
ZJ(x) from (12) is performed by a fifth-order Runge-Kutta method
as described, for example, by Lambert (1973). The Fresnel integral
is evaluated using series expansions, and, for simplicity, is
retained regardless of n. The input parameters are n in modulus and
argument, and the initial, incremental and final values of kx. As the
program is presently written the maximum value of t used in

1/2

evaluating the integral in (12) is (18/kx) < 30, which therefore

requires that kx > 0.02. We remark that

-1/2

23(0) = 2n K, (k) (16)

+
[ts computation has been discussed by Senior (1975, 1979b), and
asymptotic approximations are available which are valid for small
and large |n|. In particular, ZJ(0) = 0.4645 and 0.4968 exp (-0.47571)
for n = 4 and 4i respectively.

To illustrate the results obtained from the program, the
amplitude and phase of the current ZJ(x) as functions of kx are

plotted in Figs. 5 and 6 for n = 4 exp(is) with & = 0,30,45,60 and 90°.



As evident from Fig. 4, 8 = 45° is a case when the pole lies almost
precisely on the path and the inclusion of the Fresnel integral
is then vital. For 6 > 45° the pole is captured and the surface
wave contribution is responsible for the initial increase in ZJ(x)
with x. When 8 = 90° the surface wave is unattenuated and [ZJ(x)I
approaches the surface wave amplitude 8A(=1.016) as x increases.
For 8 < 0 the current amplitude is similar to that for ¢ = 0, but
slightly less except within a fraction of a wavelength of the edge.
For all values of 8 the dominant part of the phase is that of the
incident field, viz. kx.

Senior (1979a) showed that for a resistive strip of width w
illuminated by an E-polarized plane wave at edge-on incidence,

the backscattered far field can be written as

s _ [ 2 _ilkr-1/4)
E \/ﬂkre p

with
_ f r
P = P +P , (17)
where Pf = - %%—{ZJ(O)}2 - (18)
and
r i ) Z2d(w) 2

are the front and rear edge contributions respectively, and the current

is that on a half plane of the same resistivity. Although this is a
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high frequency approximation, the resulting values of P are
remarkably accurate even for small values of w. This is illustrated
in Fig. 7 where the values of |P| computed using the half plane
currents for n = 4 and 4i are compared with those obtained from

a numerical solution of the integral equation for a strip (Senior,
1979b). The agreement is excellent even for kw as small as 0.3

(w/x = 0.05), though for smaller values of |n| discrepancies are

evident for kw 5 1.

4. Concluding Remarks

A problem of some practical importance is to reduce the radar
scattering cross section of a planar structure such as the wing or
fin of an aircraft. The scattering can often be approximated by that
of a strip or ribbon, and this leads to a consideration of a strip
composed of a composite and, perhaps, multilayer material. In
many instances a material of this type can be simulated by a
resistive sheet of possibly complex resistivity. If the resistivity
is reasonably large, the reduction in the backscattering cross section
for edge-on incidence is typical of that achieved at all angles
(Senior, 1979b), and the ability to compute the half plane current

for any resistivity then constitutes a valuable design tool.
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Appendix A
By definition cos x = 1/n. Let n = [n[eie where 6 = arg n

and [o| < n/2. Then if y = x. + iy; with 0 < x. < w/2, we have

2
oo sin” {%ﬂ%%ﬁf [ In]? -1+ ({’nlz -1+ 4|2 sin? %1/j;§1/2

(A.1)

and

- sinh-l sin 8 _ h-l © C0S 6 (A.2)
X Tlsinx, ) = M (Talcos ;) -

Clearly

Values of X, and X; @s functions of n, 0.1 < |n| <10 and 0 < 8 < 7/2,

are shown in Figs. 2 and 3 respectively.



Legends for Figures

Fig. 1:

Fig. 2:

Fig. 3:
Fig. 4:

Fig. 6:

Fig. 7:

The paths of integration in the complex g plane. The pole
at 8 = x - n/2 is captured if it lies in the shaded region.
Curves of constant x . computed from (A.1).

Curves of constant y; computed from (A.2).

Arg n as a function of |n| for which the pole at 8 = x - 7/2
Ties on the path S(0). For all larger values of arg n the
pole is captured.

Current amplitude for |n| = 4 and arg n = 0,30,45,60 and

90 degrees.

0,30,45,60 and 90

Current phase for [n| =4 and arg n
degrees.

4 (—) and 4i (---)

|P| for a strip of width w having n
computed using (17) through (19) and data for the half plane
currents. The circled points are values obtained by

numerical solution of the integral equation for a strip.
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figure 1
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figure 3
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figure 5
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