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Abstract

For a plane wave incident on a resistive plate, the first two
terms in the low frequency expansion of the far field are determined.
Since the magnetic dipole is not excited if the resistivity is non-zero,
the leading term is simply the electric dipole contribution, and is
identical to that for a perfectly conducting plate. The resistivity
appears explicitly in the next term, and it is shown that this can be
expressed in terms of potentials analogous to the zeroth-order ones.

Some implications of the results are discussed.
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Introduction

Resistive sheet materials find many applications, not least for
purposes of cross section reduction. To replace a thin metallic plate
by a plate made of a composite or other material that can be
represented as a resistive sheet can significantly reduce the radar
cross section, and analyses and computations for the two-dimensional
analogue of a strip have demonstrated [1-3] the advantages at
frequencies in the resonance region and above. To see if these
advantages persist as the frequency is lowered, we here examine the
Tow frequency behavior of a resistive plate of finite dimensions.

When an electromagnetic wave illuminates a body whose dimensions
are small compared to the wavelength, the far zone scattered field can
be expanded as a power series in kL where k is the wavenumber and L
is a characteristic dimension of the body. The leading (Rayleigh)
terms in the expansion are attributable to induced electric and/or
magnetic dipoles. For a plate of resistivity K , the boundary conditions
imply that the electric dipole is identical to that for a perfectly
conducting plate, and that the magnetic dipole contribution is zero.
The Tow frequency expansion is therefore discontinuous in the perfectly
conducting 1imit X = 0, and to see how the scattering depends on }{,
it is necessary to include higher order terms in the expansion.

The next (first order) contribution is considered and expressed
in terms of potentials analogous to the static ones. Some implications

of the results are presented.



Formulation

An infinitesimally thin resistive plate B of finite dimensions
Ties in the plane z = 0 or a Cartesian coordinate system (x,y,z) whose
origin is in the vicinity of the plate. It is illuminated by a plane

Tinearly polarized electromagnetic wave whose electric and magnetic

vectors are
ikker Hinc = b e1kk-r (1)

where ﬁ, a and b are unit vectors specifying the directions of incidence,
the electric field (or polarization) and the magnetic field respectively.
The three vectors are mutually perpendicular and form a right-handed
system. The permittivity and intrinsic admittance of the surrounding free
space region are e and Y(=1/Z), and a time factor e tut 4o suppressed.
Since the plate can support only an electric current, the
scattered field can be expressed in terms of an electric Hertz vector,

and in the far zone [4]
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where a vertical line denotes the discontinuity across the plate. In

the near zone (including the surface) the fields can be expanded as
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and when these are inserted into (2), we have
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where

. H P (2| as' (6)

is the magnetic dipole moment. Clearly 5 has components only parallel
to the plate and m has just the single component normal to the plate.
The next step is to invoke the properties of the plate itself.
To appreciate the concept of a resistive sheet, consider a thin layer
of conducting material whose permeability is that of free space. If

o is the conductivity andt is the thickness, a surface resistivity can



be defined as ]{ = (cm)'1 ohms, and as t is decreased we can imagine
o increased in such a manner that X is finite in the limit r = 0.
The result is an infinitesimally thin sheet whose electromagnetic
properties are specified by the quantity f{. Thin layers of many
types of material can be simulated in this manner, and sheets are
commercially available with a wide variety of resistivities. 7{ is
typically measured at dc by applying a voltage between two electrodes
on the sheet, and since the resistivity remains constant over a broad
range of frequencies, it can be assumed to be independent of k at

low frequencies at least.

Zeroth Order Terms

Mathematically a resistive sheet is simply an electric current
sheet whose current is proportional to the tangential electric field
at its surface [6]. For a sheet lying in the plane z = 0, the boundary
conditions on the total (incident plus scattered) fields are
2 BT = 0 (7)
and
2BV = nzz(zH]) (8)
where n = R/Z, and these are sufficient to ensure a unique solution
at all frequencies including, as a limiting case, zero.

To see the implications when k = 0 we have only to recall that

the permeability does not differ from that of the surrounding medium.



The sheet is therefore invisible as regards the static magnetic field,
i.e., Ho = 0, and (8) then implies that for all n Eo is the same as if
n = 0. Thus, for a resistive plate, m = 0 and the electric dipole
moment p is the same as for a perfectly conducting plate.

The computation of p is discussed in [4]. If xl,xz,x3 are

Cartesian coordinates with x3 =z,

2
<), G
=1

¢; is an exterior potential satisfying the boundary condition

b = X, + Cy (9)

on B, where the constant c; is chosen to give zero induced charge, i.e.,

i
36+
-0 =
[3 & - o

B

In terms of ¢;,

r' ds' (10)
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and an integral equation from which to determine 529- is
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where R = |F - ¥#'|. Its solution by the moment method is a relatively

simple task [4].

First Order Terms

To see how the low frequency scattered field depends on n, it
is necessary to examine the first order terms in the far zone
expansion (3).

Since Ho = 0, the third term in the expression (4) for E(?) is
zero. To evaluate the second term, we remark that on the plate
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with lelf = 0. From Maxwell's equations we also have
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showing that the quantity on the left is continuous across the plate.



The Cartesian components of H1 are themselves exterior

potentials, and therefore
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and hence, on the plate,
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Using (12), (13) and the fact that EAEO = -QAQ on B, the left-hand
side of (14) can be evaluated, and the solution of (14) can then be

written as
A + A A +
zaly o = -Yza(zaa 3]+

where u is a tangential vector satisfying the integral equation
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with the Tine integral taken around the perimeter C of the plate, and

wglf satisfies
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¢§ is proportional to the magnetostatic potential for a perfectly
conducting plate [4], and a program has been written to solve (17)
by the moment method. Only a simple modification is necessary to

solve (16), and knowing wg[f and u, we have
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The next step is to compute the first term on the right-hand

side of (4). SinceH =0, E

is the gradient of an exterior potential

0 1
[7], i.e., E, = -4, with
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and from (9) and the reciprocity theorem for exterior potentials,
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The zeroth order potential ¢; is associated with an incident
field having a = 21' If the corresponding first order scattered
magnetic field is H:, Maxwell's equations imply

§-v¢;|f = ZQ-VAQIIT ,

and when this is substituted into (19), the vector relation in

[8, p. 531] can be used to give

From the boundary condition (8)

A ~ =in AN =t
ZAV¢1 = zAE1 . nZzA(zAHil_)
= 2. ¢alker) - ad|” - dbe2)y

and hence
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Finally, from (15)

(21)

and we observe that this has components only parallel to the plate.

As expected, F is a function of n, and the presence of terms

inversely proportional to n makes explicit the discontinuous behavior

as n > 0. For any given n # 0, there is a frequency (which depends

on the plate dimensions) below which F no Tonger represents a

valid correction to the zeroth order contribution.



-12-

A case of some interest is that in which the incident magnetic
AN ~ A A
vector is parallel to the plate, so that bez = 0. Then 2Ak = -(a-E)b

and

+J]—B(§-§) f{?«f“' - Wilf}ﬁ-ﬁ ds' . (22)

If, in addition, 3-2 = 0 implying normal incidence on the plate, the
second integral in (22) vanishes. The first two order terms in the
Tow frequency expansion then go over smoothly into the result for

a perfectly conducting plate [4] as n +~ 0. On the other hand,

if ko2 =0 corresponding to grazing (edge-on) incidence, 2 is in

the z direction (and perpendicular to u) and ?(?) = 0. This is

consistent with the fact that any electric current sheet is invisible

to a plane wave at grazing incidence for perpendicular polarization.

Concluding Remarks

The fact that E(?) can be expressed in terms of potentials
analogous to the zeroth order ones is not surprising. Similar
results have been obtained for acoustically soft and hard bodies [9]
and for a dielectric body of non-zero volume [10], but all involve
double integrals over the surface of the body. The simpler expression
(21) is made possible by our ability to determine the first order
magnetic field in terms of zeroth order potentials, but the result
is still 'heavier' than for a perfectly conducting plate [4], not

least because of the presence of the function u.
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If bz = 0, the scattered field approaches that of a
perfectly conducting plate as the frequency decreases, and the cross
reduction which the resistivity provides progressively diminishes.
If B-; # 0, however, the limiting values differ, and we can expect
that, in general, the resistive plate will have a Tower cross section
at all frequencies. At any given frequency, the solution goes over
smoothly to the perfectly conducting one as n + 0 only if
B-; = 3'; = 0, i.e., for normal incidence on the plate.

The results obtained are also applicable to the scattering

of mm and infrared radiation by the atmosphere, where many species

of particles resemble dielectric platelets.
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