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Abstract

A curve fitting and pole extraction algorithm has been developed

and applied to exact frequency domain data for the surface fields on a

perfectly conducting sphere. The data are fitted extremely closely

and for at least a handful of the lowest order SEM poles, the extracted
poles and their residues are in good agreement with their known exact
values. Unfortunately, this is not true if the frequency response is
degraded in accuracy. In particular, noise effects are explored, and

it is found that for noise levels typical of the best experimental data,
it is no longer possible to locate more than (at most) the dominant

SEM pole to a reasonable degree of accuracy.
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DETERMINATION OF SEM POLES FROM FREQUENCY RESPONSES

1. Introduction

The singularity expansion method (SEM) is based on the analytic
properties of the electromagnetic response of a body as a function of the
complex frequency s. For a passive body the singularities are confined
to the left half of the complex s plane, and a knowledge of these
singularities can characterize the response to any excitation. If the
body is finite and perfectly conducting, the only singularities in the
finite part of the plane are simple poles, which occur in complex
conjugate pairs [1,2].

It is fundamental to SEM that the poles are a property of the
body alone. The pole Tocations (but not the residues) are unaffected by
a change in illumination, and if a collection of poles is extracted from
computed or measured data for the response, the SEM poles can be
distinguished from numerical artifacts by their positional invariance.
Cataloging the true poles is therefore a simple method of summarizing
information about a body, and their extraction from measured data could
serve as a means of target identification.

Several numerical algorithms exist for determining the SEM poles
from frequency domain data. One of these is an iterative method developed
by Sharpe and Roussi [3] and based on a technique of Levy [4]. It is
essentially a least squares method that fits the data with a rational

function. The iteration linearizes the calculation and also reduces the



excessive weighting of the higher frequencies that a straight

least squares computation normally produces. The program was initially
applied to measured data for the axial current at several locations

on a thick cylinder (for which the SEM poles are unknown) over a
frequency range spanning the first five longitudinal modes. In every
instance the rational function obtained gave an excellent fit to the
measured data curve, but as the illumination changed, all poles except
the dominant one showed substantial movement in the complex plane.

The extent to which the lack of success was due to the program
itself, the selection of such parameters as the sampling interval and
the order of the rational function, or to the noise and other
inaccuracies in the measured data, was not apparent. In the time domain
it is found [5] that pole extraction is quite sensitive to noise.

To see if this same sensitivity exists in the frequency domain and
gain experience in the application of the program, it is helpful to
consider data whose accuracy can be controlled. The only finite body
for which the frequency response, poles and residues can be easily
obtained to any accuracy is the sphere. In the following sections the
determination of the poles and residues from frequency domain data for
the surface fields on a perfectly conducting sphere is discussed.
After a brief description of the numerical algorithm and the computation
of the exact surface fields, poles and residues (Section 2), the
extraction of the poles and residues from the frequency response data
is discussed (Section 3). In Section 4 we then consider the effect

of noise and other data inaccuracies on the pole extraction process.



2. Formulation

Over any finite frequency range the electromagnetic response of
a body can be approximated by a ration function whose poles can be
found. It is assumed that a subset of these approximate the SEM poles
which are dominant in this frequency range and can be distinguished hy
their positional invariance to a change in excitation of the body.

Given a (complex) fregquency response F(wz) where w,, &= 1,2,..,L,

are sampled (real) frequencies, the numerical algorithm employed fits this

with a rational function
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for the coefficients aj and bj' The square of the resulting
denominator is then used as a weighting factor to improve the rational
function fit, giving rise to an iterative procedure. At the kth

stage of iteration, the coefficients are obtained by minimizing



and so on until the error is less than a pre-specified value.

A program has been written to implement this curve fitting
routine. The program has three parameters: the orders of the numerator
and denominator polynomials, M and N respectively, and the maximum
allowed error which terminates the iteration, which must be chosen at
the outset. At the conclusion of the program the poles and residues
of the rational function approximation are computed. The process is
then repeated using other (distinct) data for the response of the same
body, and those poles which are common to most of the results are
identified as SEM poles of the body. To optimize the process, it is
helpful to consider data for a frequency response whose poles and
residues are known precisely. This is true in particular for the
surface field on a perfectly conducting sphere.

A sphere of radius a is illuminated by the plane wave

A LN

where Y is the intrinsic admittance of free space, ¢ is the velocity
of light in vacuo, and the time factor eu”t has been assumed and
suppressed. In spherical coordinates the total tangential magnetic

fields at r = a are [6]
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-as defined by Stratton [7] and

where hﬁz)(x) is the spherical Hankel function of the second kind of

order n.



By appropriate truncation of the infinite series representations,
it is a simple matter to compute T1 and T2 to any desired accuracy.

T and T2 were computed for 6= 0(45)180° and 0.2 < wa/c < 7.0 to
1 iy

six decimal accuracy.

(2);

The functions g(z)(x) and ¢ (x) are proportional to polynomials

n
in x of orders n and n+l respectively whose zeros are the SEM poles.
In terms of the complex frequency s = iwa/c, all zeros lie in the left
half plane, and those which do not lie on the negative real s axis
occur in complex conjugate pairs. As shown, for example, by Martinez
et al. [8], the zeros can be arranged in layers lying successively
further from the imaginary s axis. When ordered from the right, the
odd (even) numbered layers are the electric (magnetic) mode resonances
produced by the zeros of ggz)'(-is) and gﬁZ)(-is) respectively. In
general the dominant SEM poles are those in the first (2 = 1) layer,

and the nth pole numbered up from the negative real s axis is a zero of

(2)’(

N -is).
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where the s, are zeros of either <p (-is) or N (-is), and

RT(O) and RZ(B) are the residues of T1 and T2 respectively at s = S



3. Exact Data Analysis

The curve fitting algorithm was applied to the computed data for
T2 as a function of frequency in an attempt to extract 4 or 5 dominant
pole pairs with sufficient accuracy to allow us to determine the
dependence of their residues. Data were available for 0.2 < wa/c < 7.0
in increments of 0.1 and 0.02. Since the first layer poles within this
frequency range are dominant in determining the response it was
expected that they were the ones most Tikely to be located accurately.

To apply the algorithm there are a number of parameters which
must be chosen, some of which relate to the data and others to the
curve fitting process. Regarding the data, there are the minimum,
maximum and increments of wa/c and, in our case, the choice of phase
reference for the frequency response. Since the lower order poles are of
prime concern, it was natural to choose min wa/c to be the smallest
value for which data was generated, namely 0.2; and to avoid handling
more data than was clearly necessary, max wa/c = 4.0 was selected
with increments of 0.1. The computed data of Section 2 are phase-
referenced to a plane perpendicular to the z axis through the center
of the sphere. For all 6 except n/2, arg T2 varies almost Tinearly
as a function of frequency, and this translates into a roughly
sinusoidal variation of the real and imaginary parts which are the
inputs to the curve fitting process. This variation can be minimized,
by choosing the point where the field is computed as the phase
reference, which results in a numerically easier curve to fit. Once the

curve fitting was accomplished and the poles and residues determined,

the phase reference was returned to the original location.



Three parameters involved in the program itself are the orders
M and N of the numerator and denominator polynomials and the maximum

allowed error El Since the set of SEM poles is infinite in number

nax’
and the response remains finite as wa/c - o, it w5u1d seem that the
accuracy of curve fit should increase with M and N, and that a logical
choice would be M = N. HNumerically, however, problems are experienced
when M and/or N are large whereas if N is small there are too few poles
available to simulate the data. It was therefore anticipated that
there would be an optimum range of H'énd, perhaps, M depending on
the frequency span of the data and the particular characteristics of
the computer.

The error Emax relates to the convergence of the iterative
process and is not directly a measure of the curve Fit or
the accuracy of pole extraction. When running the program, Emax was

set at 10~8

and the iteration was terminated when this value was
achieved, or after 20 iterations, whichever came first. In many
instances the maximum allowed error was not obtained, but the curve

fit was still excellent. As a measure of the curve fit, the mean

square error

1
fit L

bl
i
—i—



was computed, (c.f. (2)), where the polynomials are those obtained
from the final iteration. Due to the Timited precision with which

the data were stored, any value of E Tess than 0.25 x 10'7 was

fit
essentially zero. Since the curve fit was excellent in most cases,
it was not unusual for this to occur.

A1l of the initial runs were carried out for 6 = 0 (for which
T2 = Tl). It was found almost immediately that numerical difficulties
arise if N exceeds (about) 25, and for M = N, if N exceeds (about) 18.
Ii. either instance the exponential range of the computer (Amdahl 470/V8)
was exceeded. We therefore chose M < N, and because of the
restriction on N, limited the frequency span of the data to wa/c < 4.0
to allow for a reasonable number of curve fitting poles in addition to
the SEM poles that were sought.

Since the frequency range considered contains 4 pole pairs in
the first layer, an initial curve was obtained with M = 7 and N = 8.
Although the curve fit was quite good and the iteration converged, the
extracted poles were closer to the imaginary axis, by about a factor
of two. Increasing M and N brought increasing accuracy of both the
curve fit and pole location. For M = 11 and N = 12 the modulus (and
phase) of the simulated response were graphically indistinguishable from
the data within the frequency range spanned by the data, but as seen
from Fig. 1, there are discrepancies outside the range.

Table 1 compares the Tocations of the first four SEM poles with
those of the extfacted poles for 8 = 0, Awa/c = 0.1 and four M and
N combinations. In each case Efit =~ 0 and the agreehent in pole
Tocations improves with increasing order of the polynomials. The best
results are for M = 15 and N = 16 in the sense that a further increase

in M and/or N gives no improvement. Similar comparisons._ for a variety
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of polynomial orders from 8 to 18 have shown that the accuracy of the
extracted poles is best for M = N-1 and diminishes for N > 20.

For given M and N a decrease in the sampling interval from 0.1
to 0.02 has no appreciable effect. Shifting the phase reference
of the data to a plane through the center of the sphere decreased the
accuracy of the pole extraction as expected.

An accurate curve fit does not imply a comparable accuracy in
the extracted pole Tlocations, and when the locations of the true poles
are unknown, it is necessary to vary the illumination conditions, e.qg.,
change 8, and use the positional invariance of the true poles as the
criterion of accuracy. We also comment that Efit is unrelated to Emax’
and for the above cases the specified error 10'8 was never achieved
prior to the completion of the allowed 20 iterations.

The effect of changing 6 is shown in Table 2, which gives the
extracted pole locations for 6 = 0(45)180° with M = 15, N = 16 and
Awa/c = 0.1. The accuracy does not vary significantly with 6, though
it can be seen that at 6 = 90° where the first and third poles are not
excited, the accuracy of the second and fourth poles is better than
before. As an example, the residue Rg(e) of the third pole for T2 is
plotted in Fig. 2.

The fourth pole is fairly close to the upper limit of the
frequencies spanned by the data. To improve its accuracy and to
Tocate the next pole or two, it is natural to increase max wa/c to
5 or 6. The best agreement is obtained with M = 17 and N = 18. Although
the curve fit is again excellent, as it was for M = 15 and N = 16 with

the smaller data set, the first three poles are not quite as accurately
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Tocated, but the fourth through sixth are in reasonable agreement.
Unfortunately, to increase the data span still more and extract further
poles requires the use of polynomials of higher order. An alternative
approach is to retain the same span of data and 'window', i.e.,
shift the span to encompass those poles which are sought. This is
illustrated in Table 3 for three different M and N combinations
applied to the data for 2.0 < wa/c < 6.0. In terms of the accuracy
of the extracted poles, the case M = 15 and N = 16 is best. The fourth
through sixth poles are located more accurately than with the larger
frequency span, but the first pole is not picked up at all, and the
second is considerably in error. This is hardly surprising since the
first two poles are no longer spanned by the data.

As a result of the above investigation, the following conclusions
can be drawn. The data should fully span the imaginary parts of
the poles to be Tocated. If n SEM poles are spanned, N should be in
the range 3n to 4n with M = N-1, but N should not exceed (about) 25
to avoid numerical difficulties. This upper limit decreases with
increasing max wa/c and is almost certainly machine dependent as
well. For a greater span of data and/or to extract more than a
handful of SEM poles, it may be necessary to process the data using

frequency windows.

4., Effect of Noise

In most practical applications of the pole extraction method,
the data for the frequency response have been obtained by measurement or
by the numerical solution of a less than perfect model of the scatterer.
Inevitably such data are subject to noise and other uncertainties, and

it is important to see how the accuracy of both the curve fit and the
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SEM pole extraction are affected. For this purpose, two types of
noise were considered: numerical inaccuracies in the form of data limited
to k decimal places, and added Gaussian white noise of various amplitudes.
For the first study, the real and imaginary parts of TZ(O) which
were originally accurate to six decimal places were rounded to k
decimals with k progressively reduced. The data used spanned
0.2 < wa/c < 4.0 in increments of 0.1 and 0.02, and since a rational
function with M = 15 and N = 16 had proved to be effective in the
absence of noise (i.e., when k = 6), this function was chosen. Because
the accuracy of the extracted poles was slightly better for wa/c = 0.02,
this sample interval was used in all of the noise studies.
As k was reduced down to 1, the extracted poles became increasingly
inaccurate as shown in Table 4, and for k = 2 even the dominant pole
was substantially in error; however, the curve fit remained good.
As k decreases, each pole moves closer to the imaginary s axis,
and the general behavior is similar to that found when fitting the
exact data with rational functions of progressively lower order. This
suggests that by increasing M and N we might be able to overcome some
of the noise effects and thereby improve the accuracy of the extracted
poles. Using M =23 and N = 24 with data having k = 3 and 2 produces
only a slight improvement, primarily for the data with k = 2.
In the second study Gaussian distributed white noise was added
to the exact data for the real and imaginary parts of T?(O), wa/c = |
0.2(0.02)4.0. The noise was produced by a random numbe; generator
for which the mean and standard deviation could be specified. In all

cases the mean was chosen to be zero and the standard deviation varied
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to change the noise level. For noise with standard deviations 107°
and 10 %, the curve fitting and pole extraction results were
comparable, for similar levels of data uncertainty, to those obtained
when the data was rounded.

As a final test the curve fitting and pole extraction algorithm
was applied to measured data for the field component T2 at the front
(6 = 0) of a metallic sphere 6 inches in diameter. The data were
obtained in an anechoic chamber over the frequency range 0.118 to
4.4 GHz, corresponding to 0.2 < wa/c < 7.0, but only the data for
0.2 < wa/c < 4.0 were used. The results of pole extraction with a
rational function having M = 15 and N = 16 are given in Table 5, and
are comparable to those for Gaussian noise with a standard deviation
of 10™%. Although only the magnitudes are shown, Fig. 3 demonstrates

the fit obtained with measured data.

5. Conclusions

Using rational functions a curve fitting and pole extraction
algorithm has been developed and applied to exact frequency domain data
for the surface fields on a sphere. The data are fitted extremely
closely and for at least a handful of the lowest ordef SEM poles, the
extracted poles and their residues are in good agreement with their

known values. It is possible that the method could be further refined
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to yield a few more poles, but the performance is already close to
the Timits of the computer. Overall, the success is comparable to
that achieved by Brittingham et al [9] using a frequency domain
Prony's method.

Unfortunately, the situation is very different if the frequency
response is noisy or degraded in accuracy in a manner typical of
measured data. Although the curve Tit is still good, even a small
amount of noise is sufficient to preduce considerable discrepancies
between-the extracted and true (SEM) poles, and for noise Tevels
characteristic of the best experimental data, it is impossible to locate
more than (at most) the dominant SEM pole to any degree of accuracy.

Since these conclusions have been reached using only a single
algorithm applied to the frequency response of a sphere alone, it cannct
be inferred that all frequency domain methods wil]vbe equally affected
by noise. Nevertheless, the algorithm is « reasonably sophisticated
one and is highly successful in curve fitting the data. Likewise the
sphere, though a less resonant structure than (say) a thin wire, has
a frequency response which is not unlike that of more complicated
targets such as an aircraft. For these reasons, it is probable that

the conclusions have general validity.
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Table t: Comparison of exact and extracted pole locations for 8 = 0,
Awa/c = 0.7 and various M,N
Extracted

Exact

M=12, N=14 M=13, N=14 M=14, N=16 M=15, N=16
-0.500000 -0.5010 -0.5007 -0.5007 -0.5000
$i0.866025 170.8641 190.8659 1i0.8657 140.8658
-0.701964 -0.6964 -0.7052 -0.7027 -0.7025
1i1.80740 +i1.808 1i1.804 +i1.803 1i7.806
-0.842862 -0.8436 -0.8334 -0.8408 -0.8399
i2.75786 112,739 12,762 +i2.766 t.2.760
-0.954230 -1.056 - -0.9309 -0.9199 -0.9439
$13.71478 13,575 113,642 t§3.685 ti3.678




Table 2: Comparison of exact and extracted pole locations for Awa/c = 0.1,
M =15, N =16 and & = 0(45)180°
Extracted
Exact
6 = 0° g = 45° 6 = 90° 6 = 135° 8 = 180°
-0.500000 -0.5000 -0.5000 -0.4997 -0.5001
not excited
+i0.866025 ¥i0.8658 ¥i0.8661 +10.8661 +40.8660
-0.701964 -0.7025 -0.7020 -0.7008
not excited not excited +
*i1.80740 $i1.806 ti1.807 Ti1.808
-0.842862 -0.8399 -0.8418 . -0.8419 -0.8410
not excited .
+i2.75786 *i2.760 +i2.760 ti2.759 *j2.751
-0.954230 -0.9439 -0.9490 -0.9565 -0.9341 -0.9310
+i3.71478 +i3.678 $i3.698 *7.3716 1i3.732 i3.622




Table 3:

Comparison of exact and extracted pole Tlocations for

6 =0, and wa/c = 2.0(0.1)6.C
Extracted
Exact
M =15, N =16 M=17, N =18 M =19, N = 20
-0.500000
not located not located not located

+40.866025

-0.701964 -0.6365 -0.7005 -0.6025
$i1.80740 11,802 191.730 +i1.816
-0.842862 -0.8449 -0.8558 -0.8536
1i2.75786 +i2.746 +i2.765 Ti2.730
-0.954230 -0.9582 -0.9422 -0.9787
+i3.71478 193,714 ti3.728 1i3.738
-1.04764 -1.047 -1.017 -1.011

T4 67641 +i4.656 114 658 tia.708
-1.12891 -1.079 -1.054 -0.9399
1i5.64163 ti5.467 ti5.497 1i5.658
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Table 5 : Comparison of exact and extracted pole locations for measured

data at 8 = 0 with 0.2 < wa/c < 4.0, M=15and N = 16

Extfacted
Exact
Experimental
-0.500000 -0.3920
+10.866025 +40.8575
-0.701964 -0.3530
+11.80740 +{1.927
-0.842862 -0.2764
+i2.75786 : 1i3.066
-0.954230
not located
+93.71478
-1
Eeiy 0.77 x 10
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Comparison of T2(0 ) (——) and the

curve fit (----) obtained

with wa/c = 0.2(0.1)4.0, M = 11 and N = 2.
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Fig. 2 : Comparison of experimental data at 6 = 0 (——) and the

curve fit (----) obtained with 0.2 < wa/c < 4.0, M = 15
and N = 16.



