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For a plane electromagnetic wave incident on a perfectly
conducting body, the first two sets of terms in the low frequency
expansion of the far zone scattered field are derived. The first
set are dipole contributions which can be expressed in terms of
the electro- and magneto-static potentials, and the next set can be

obtained from these same potentials plus one other.
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Introduction

When an electromagnetic wave illuminates a body whose dimensions
are small compared to the wavelength, the far zone scattered field can
be expanded in a series of powers of kL where k is the wavenumber and
L is a characteristic di%ension of the body. The leading terms are
attributable to induced electric and/or magnetic dipoles and are only
weakly dependent on the body's shape. Although these are sufficient for
many purposes, there are applications such as remoﬁe sensing where it
is important to obtain more information about the body, and this leads
naturally to a consideration of higher order terms in the expansion.

We consider here the problem of a small closed perfectly
conducting body, and derive the first two sets of terms in the expansion
for the far field. The first terms are dipole contributions and are
expressed in terms of polarizability tensors whose elements are weighted
integrals of certain potentials. Integral equations are developed from
which the potentials can be found. The next terms are defined by these
same potentials plus one other, and their contribution to the far field

expansion is obtained.

Formulation
A finite closed perfectly conducting body B is illuminated by a

plane Tinearly polarized electromagnetic wave whose electric and

magnetic vectors are
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where @, a and b are unit vectors specifying the directions of
incidence, the electric field (or polarization) and the magnetic field,
respectively. The three vectors are mutually perpendicular and, in

particular,

The propagation constant, permittivity and intrinsic admittance of the
surrounding medium are k, € and Y(=1/Z) respectively, and a time
factor e"imt has been assumed and suppressed.

Since the surface can support only an electric current, the
scattered field can be expressed in terms of the electric Hertz

vector
. ikR
s, iz ~ -t e1
H(ro) = Tk anH T—dS (2)
B

where n is an outward unit normal to the surface B, the superscript t

denotes the total (incident plus scattered) field, and R = {Fo -r.

The scattered electric field is then

E(F) = (v, +k2) n(f)

and in the far zone
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At Tow frequencies the exponential can be expanded in powers of ik,

and using the identity
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The final step is to expand the fields themselves in powers of

ik, i.e.,
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To the first two orders in k, (3) then becomes
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is the electric dipole moment, and
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(Kleinman, 1973) is the magnetic dipole moment. Simil 1y, fo the
scattered magnetic field, we have
o)
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Dipole Moments

The static fields Eo and ﬁo can be obtainac 1rcm the <31 tiors

of certain potential problems. In the case of éo WE C@ ne

E, = -vp, where ¢ is an exterior potential. The co-recvonciig 1uider

potential is -a-r, and from the boundary conditicn nAE} : -h\.;r

on the surface, it follows that
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where ¢ is a constant chosen to satisfy the zero induced charge
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condition )

for an isolated body.

Because of the form of (9), it is convenient to write

3
o = ) (Al - (10)
i=1
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where the Xi’ i=1,2,3, are Cartesian coordinates. Thus

bg = X§ tCy on B (1

and an integral equation from which to determine 3¢;/an is

e s L% (12)
i i 4y R an' ?
B .
where ¢;t is the total (incident plus scattered) potential. On

substituting (10) into (6) we have
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(Keller et al., 1972), where ; is the electric polarizability tensor

with elements
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which are functions only of the geometry of B. The tensor is real

and symmetric, i.e., Pij = Pji'
The procedure for the magnetic field is similar. We define

Ho = -qu;O where v, is again an exterior potential, and since the

corresponding incident field potential is -b+r, the boundary condition

~ - nc s
n'HO = -n~HO on the surface implies
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the condition (13) becomes
i
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and an integral equation with which to compute the total potential
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In terms of this potential

nos o-YMeb
(Keller et al., 1972), where M is the magnetic polarizability tensor

with elements

_ ~ it
Mij v[‘n xjwo dS
B
These also are functions only of the geometry of B, and the tensor is
ij = M5
Programs have been written to solve the integral equations

real and symmetric, i.e., M

(12) and (16) by the moment method and, hence, compute the tensor
elements for any rotationally symmetric body whose profile is made
up of straight line and circular arc segments (Senior and Ahlgren,
1973). Computed data for some aerospace configurations have been
given by Kleinman and Senior (1975). In addition, a variety of
isoperimetric and other bounds on the tensor elements have been
developed (Payne, 1967; Kleinman and Senior, 1972), and these

could serve to adequately approximate the elements.

First Order Terms

The first order contribution to the far zone scattered field

is given by the function N(ro), and the third term in the expression

(15) is easily evaluated.
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from Stokes' theorem. Also
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on using the lemma in Kleinman (1967a), and
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Hence
- A B '] A A A - 2 d ~ A A -
B - B
r+r) dS (17)

We observe that the first term is known and vanishes in the forward
scattering direction }0 = @, and that the second term is known once
the zeroth order potential wo has been determined. Unfortunately,

the two remaining terms are more complex.

Since

vH = -YE0 £0 ,

Hl is not the gradient of a potential, but we can write H as

H = Y6-yYw

. 3 (18)
(Kleinman, 1967b) where wl is an exterior potential. Clearly

ABENET (19)

and as shown by Stevenson (1954),

PR 1o '
G = ZhrvAva%dv
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where the volume integration is carried out over all space. It is
therefore necessary to introduce an interior potential @o corresponding

to ¢o and such that ﬁ-v¢o = H-VQO on B. Since

i ] il g ) 85
G - vﬂfn (¢0 @0) 2 (20)
B
with (of course) ¢, = a-r'+ ¢ on B. By analogy with (10) it is
‘convenient to write
3
G = (5-x1.)é’ : (21)
i=1
where
AR P TP B
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and @é is the interior potential appropriate to ¢;. The determination
of ¢; is a simple Neumann problem in potential theory, and an integral

equation from which to obtain ¢; - ¢; is
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The evaluation of the term involving H1 in (17) is now

straightforward. We have

Z\Jﬂ nAHl(ro~r)dS = Jfn,\G(ro-r)dS - vfn,\vwl(,ro-r)ds
B B B
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where we have used in succession the vector relations in Kleinman
(1973), the boundary condition (15), and the reciprocity theorem for
exterior potentials. The boundary condition n’ﬁf = 0 at the surface

implies

Y ~

n-pr1 = n-(ZFl:nC + G) (24)

on B, and hence
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The only remaining task is to evaluate the term involving El in

(17). As shown by Kleinman (1967b),

E = F-v |,
1 1

where ¢1 is an exterior potential and

S L [oegineds L a6t
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and by using the boundary condition (11) on ¢; and the reciprocity
theorem, the second term on the right-hand side of (27) can be

written as

3
i - v oo i
fquon v dS z X f¢1n-V¢o s . (28)
B i=1 B

)—l
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It might seem that we are now home, but unfortunately the

boundary condition BAE? =0 implies

and specifies the tangential derivatives of ¢1 on B rather than ¢l
itself. This difficulty can be overcome at the expense of introducing

the function G'. From (19) and (21)

Ceusl de = fev gl
fq>ln Vo, 45 = fcbln V.G dS
B B
= -‘]ﬂ é]~nAV¢1 ds

B

from Stokes' theorem, and the boundary condition (29) can now be

inserted to give

The last term can be simplified as follows:
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where v is the volume exterior to B, and

NIRRT N v¢;
Hence
Uf‘é1 . Fds = b[‘{v-(?q;; ¥ éiwo) - ¢;v-? - wov-éi} v,
B v

and since both vectors have zero divergence,

Janre - - [h e o
B B |

When this is substituted into (30) and thence into (28) and (27), .
application of the boundary condition on ¢; shows that the first term
on the right-hand side of (31) cancels the corresponding term in (27),

and thus

3
IEXTEN f{;.a@*(a.m +;..awo} s . )

From (31), (25) and (17) the resulting expression for the

first order contribution is
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This involves the zeroth order magnetostatic potential v, and,
through G, the zeroth order potentials ¢ and @O as well. It is
easily verified that Q-N(Q) = 0 as required by the forward scattering

theorem for a Tossliess body.

Concluding Remarks

The fact that N(?O) can be expressed in terms of zeroth order
potentials is not surprising. Van Bladel (1968) showed that this is
true in acoustic scattering by hard and soft bodies and Jones (1980)
obtained a similar result for a dielectric body illuminated by an
electromagnetic wave. In each instance the expression involves
double integrals over the surface, and we remark that Jones' result
fails in the limiting case of perfect conductivity.

The scattering problem for a perfectly conducting body is a
true boundary value problem anc we had hoped that its simpler nature
would lead to a simpler expression for the first order contribution.
In fact, (33) is comparable to the result for a dielectric body, and

in one respect it is less desirable. Whereas for a dielectric body
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9 specifies immediately the boundary values of the interior potential

9., for perfect conductivity the determination of 9, constitutes a

0
potential problem additional to those for b and Vo The potential

2, enters via the function G, and though it seems illogical that the
solution of (19) in the region outside and on B should entail the
solution of an interior problem, we have found no satisfactory way to
avoid it except in the special case of a flat plate of infinitesimal
thickness. Alternatively, if (29) could be integrated to yield the
value of ¢1 on the surface (a process which is certainly feasible in
the context of a numerical solution), (28) could be evaluated

directly to provide the weighted integral (27) of 3~E1. It would

then be possible to evaluate the left-hand side of (25) without
introducing G by using the counterpart of the procedure which we

have here applied to the electric field. Unfortunately, integration
of (29) is tantamount to the expression of a gradient as a curl, which
brings us back full circle. This topic will be addressed in a future

article.
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