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ABSTRACT

WIENER-HOPF METHOD APPLIED TO A DIELECTRIC CYLINDER ASYMMETRICALLY
EXCITED BY A CIRCULAR METALLIC WAVEGUIDE

by

Lufs Filipe Ferreira Martins Camelo

Co-chairmen: Thomas B.A. Senior, Dipak L. Sengupta

The problem of an infinite dielectric cylinder, clad by a
semi-infinite metallic circular waveguide, and excited by means of an
azimuthally asymmetric mode propagating down the guide towards its open
end, is formulated using the Viener-Hopf techniaque. The method
introduced by Jones is used, and leads to a pair of coupled
Wiener-Hopf equations, whose solution depends on the factorization
of a second order square matrix, into two square matrices analytic in
the upper and lower half-planes, respectively. That factorization
aprears to be beyond the capabilities of presently known methods.
Instead, a perturbation solution is sought for the case of a dielectric
with relative permittivity close to unity.

The coupled Wiener-Hopf equations are expanded in Taylor series,
in the propagation constant around the free space value. New sets of
coupled Wiener-Hopf equations are found for the zeroth- and the

first-order terms of the series expansions of the unknown



functions. For each one of these sets of equations, a redefinition of
tha unknown functions, as linear combinations of the previous unknown
functions, leads to the uncoupling of the equations. Then, the solutions
for the zeroth- and the first-order terms of the unknown functions are
found by solving, in each case, two independent Wiener-Hopf problems.

These solutions are inverse Fourier transformed, to yield the
zeroth- and the first-order terms of the components of the surface
current density. The zeroth- and first-order terms of the reflection
coefficients inside the metallic guide are then identified, and
computations are carried out for the reflection coefficient of the
dominant mode.

The solutions of the zeroth- and first-order Wiener-Hopf
equations are used to yield the zeroth- and first-order terms of the
Fourier transforms of the components of the electric and magnetic fields
for every point in space. These functions are inverse Fourier
transformed, for points in the far field, by evaluating the integrals
asymptotically, using the method of steepest descents. Expressions for
the zeroth- and first-order terms of the far field components are

found.
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CHAPTER I. INTRODUCTION

1.1 Introductory Remarks and Survey of Previous Work

Dielectric-rod antennas are of considerable interest at
microwave frequencies, and they have been treated by many authors,
of which only a few will be mentioned here. Some early treatments
(Kiely [1]) considered the radiation field to be due to the field
distribution along the surface of the dielectric rod. Later, it was
realized that the radiation originates mainly at the discontinuities.
The strong forward lobe of the radiation pattern can be justified
by considering the surface wave field at the plane where the
dielectric rod ends. This field extends far beyond the cross-
section of the rod, and constitutes a rather enlarged equivalent
aperture, accounting for the improved gain (Brown and Spector [2],
James [3]). More recently, a modal analysis of the radiation field
was carried out by Yaghjian and Kornhauser [4]. The feeding problem,
however, was not adequately addressed by any of the aforementioned
works.

A very complete treatment of this type of antennas was
presented by Andersen [5], who considered the excitation to be an
equivalent magnetic current ring around the rod, and carried out a
rigorous analysis based on that premise. A dipole excitation of a
dielectric cylinder was rigorously treated by Yip [6], with concern
for the waveguiding characteristics of the rod rather than the

antenna characteristics.



It is clear that an exact mathematical treatment of the
junction between a dielectric-filled circular metallic waveguide and
a dielectric cylinder of the same radius, (Fig. 1.1.}, is of great
interest in understanding the properties of a dielectric-rod antenna.

The Fourier transform method of Wiener-Hopf is particularly
suitable for that purpose, and has been used extensively. Very
adequate treatments of this method may be found in [7], [8], [9],
[10] and [11]. Applications of this method to discontinuities inside
cylindrical waveguide regions may be found in [12], [13] and [14].

Acoustical radiation from open-ended cylindrical waveguides
has been treated by Levine and Schwinger [15], Weinstein [16] and
Rawlins [17], among others. The electromagnetic radiation from an
open-ended air-filled cylindrical guide was treated by Weinstein
[16]. The excitation was a mode propagating down the guide toward the
open-end, and he considered both the cases of azimuthally symmetric
(no ¢-variation) and asymmetric (cos m¢ variation) modes. Ledeboer
[18] considered the radiation of an azimuthally symmetric electro-
magnetic mode from a coaxial Tine where the inner conductor is clad
with a dielectric shell, and the outer conductor is terminated at
z = 0. Angulo and Chang [19] studied the case of Fig. 1.1 excited
by an azimuthally symmetric mode from inside the metallic guide.
Pearson [20] treated the scattering of a plane wave by a
semi-infinite air-filled metallic cylindrical guide.

The problem to be treated in this work considers the

structure of Fig. 1.1, and the excitation is an electromagnetic






mode propagating down the metallic guide in the positive z-direction.
This mode will be assumed to have an mth order ¢-variation.

This problem is an extension of [19], in that it considers
an asymmetric mode excitation, instead of a symmetric mode. It is
also an extension of both [20] and Chapter IV of [16], because it
considers an asymmetric excitation, but it includes a dielectric
rod inside the metallic guide, which extends to infinity

The major difficulty of the present problem is that it leads
to two coupled Wiener-Hopf equations. Reference [19] leads to a
single equation; [16] and [20] also Tead to coupled equations, but
it is possible to uncouple them by choosing suitable linear
combinations of the unknown functions (in a manner similar to the
problem treated by Senior, [21], for example).

The factorization of a matrix, which is involved in a coupled
Wiener-Hopf problem, can only be accomplished in very special cases,
(as treated in Section 2.2 of the present work). Heins [22] and,
more recently, Hurd [23], Daniele [24] and Rawlins [25], have
addressed this problem. This is a topic of active research at
present, (see, for example, Heins [26]).

It is known ([1], [5]) that the preferred surface wave mode
of the dielectric cylinder, as far as maximizing the forward radiation
and minimizing the side-lobe levels are concerned, is the hybrid
HE11 mode. This is also the dominant mode of the dielectric rod,

witn zero cutoff frequency, and its field components vary with ¢

as cos ¢ or sin ¢.



The dielectric rod is excited by means of a metallic
waveguide, like in Fig. 1.1. An examination of the field distributions
of the modes of the metallic guide, in a plane normal to the axis,
points to the TE11 and TM11 modes as the most appropriate to excite
an HE11 mode in the dielectric rod. It should be noted further that
the dominant mode in a circular guide is the TE11 and, if a first
order ¢-variation is imposed, the next mode to propagate, for
increasing frequency, is the TMll. If the excitation is achieved
by means of a small electric dipole in a transverse plane, centered
on the axis inside the metallic waveguide, and far enough from the
discontinuity, the only field to reach the open end is a TE11 mode
if 1.84118 < kla < 3.83171. A TM11 mode will also reach the open
end if 3.83171 < kla. Note that an electric dipole on axis will
preferably excite first order ¢-varying modes (similar to Yip [6]).

As a result of the previous considerations, it may be
concluded that an azimuthally asymmetric excitation of the structure
of Fig. 1.1 is of much more relevance, to the study of a real
dieTectric rod antenna, than a symmetrical excitation, (as [19], for
instance). This constitutes the main motivation for this work.

As a last remark, it should be said that much of the
attractiveness of this problem, to the author, was the fact that the
mathematical tools and problems encountered resemble some of the
problems in the field of optical fibers, which have been of

interest to the author in the recent past.



1.2 Qutline of the Problem to be Solved

The structure of Fig. 1.1 will be analyzed, when the
excitation consists of two modes propagating inside the metallic
guide in the positive z-direction. An mth order ¢-variation is
assumed for the field components, and the TEml and TMml modes are
the exciting modes considered. Throughout all this work, the o and
z components of the electric field and the ¢ component of the
magnetic field are assumed to have a ¢ variation given by the factor
sin(mo + ¢,). Similarly, the ¢ component of the electric field
and the ¢ and the z components of the magnetic field have a
¢ variation given by the factor cos(m¢ + ¢O). In that manner, the
p component of the incident electric field, for example, will be
reoresented as sin(m¢ + ¢o) E;(p,z), and analogously for the
remaining field components. In the above, Y% is an arbitrary value
of angle which determines the polarization of the fields. A time-
varying factor e” 19t has been omitted throughout this work.

With A* representing an arbitrary amplitude for the
components of the incident TMm1 mode, and B* for the TEm1 mode,

the incident field components are

. p .Ll VA
E; = A*Jm<—-gl—1p>e mie (1.1)
i z
Hl = B*Jm<q%l >e mil (1.2)

. iu a .
i mil p Mooz, 2 :
Ep = — A*J! <_L"l p) e M1 _ 10HMA" gy, kqml 93e1km112 ,
! 2 m\ a
qmlp



n

- 2 . . .
Twe,Mma p Tu Z 1A a q 1A z
1 11 mll 1 m
- -A*Jm<—g”—p>e MULT L g (L ) o T

m
g P2, P i, 3
(1.4)
i 1um11ma2 pml 1.“muz iwpa i 1Am112
E, = ———AxJ_\ 5 poJe -——B*J {—p) e
b 5 m\ a q m\ a
PP f
(1.5)
and
- iwe,a P iu. oz ix__ ma? q ix .z
1 1 c o my mi1 mil mi mil
D () et (o)
Py 9P
(1.6)
The following notation was used in (1.1) through (1.6):
Pop 1S the nth zero of Jm(x), q s the nth zero of Jm(x), Bon
and Amnl are the guided propagation constants of the Tan and the
TEmn modes, respectively, i.e.,
0 \2 1/2
_ kz_<m) .72
- ; 3 (1.7a)
and

mn1l (1.7b)

>
]
=~
=N
1
—
m,é
-
N———

where k = w/ue . The corresponding notations k0 = queo,
1 1

and

2l 1/2



will be used thoughout this work when ¢ = €,. Actually, as the zero-
subscripted quantities will occur so often, the following simplified

notation will also be used:

Hmn Ymno (1.8a)

and
An = Amno . (1.8b)
Similarly, as all the media considered have the same magnetic
permeability as free space, it is represented by y instead of
s here and in the future.
As will be concluded in Section 2.1, it is more convenient
to use the pair (um,Bm) of arbitrary amplitudes of the modes,

instead of (A*,B*), where the new constants are defined by

B*J (q_ )
O‘m = _mm- (].96)
i2m
and : 9
A*J'(p )a
B, = ———— . (1.9b)
' Y2n Pm1

When A* = By = 0, the only incident mode is the TEml, and when

B* = — 0, the only incident mode is the TMml'



As a last remark, the components of the surface current
density, associated with the incident fields, are easily obtained

from (1.1) through (1.6), namely

J;(z) = H (o = a-2) (1.10a)
and
Nz) - Ho =a-,z) (1.10b)
6

where the ¢-variation has been factored out, and where o = a- refers

to the inside surface of the metallic shell, for z < 0.



CHAPTER II. FORMULATION OF THE PROBLEM

2.1 Formulation of the Coupled Wiener-Hopf Equations

The Wiener-Hopf equations will be formulated by starting with
Maxwell's equations in differential form, and taking their Fourier
transforms with respect to the coordinate z.

An mth order azimuthal variation of the components of the
fields is assumed for the exciting modes, and by symmetry
considerations it is concluded thatall the fields have a variation

in ¢ of that type. Namely, the fields are assumed to be

E = sin(m + g )(E + ) (2.12)

£, = cos(m + s )(EL+ E,) (2.1b)

£, = sinm + )(EL + € ) (2.1¢)
and

Ho = cos(m + ¢o)(H: £ d) (2.2a)

H¢ = sin(my + ¢0)(H; + 3(¢) , (2.2b)

H, = cos(m + ¢0)(Hi + Hfz) . (2.2¢)

In these expressions, all the ¢ variation has been factored
out. The incident field components, after factoring out the

¢-varying parts, are E;(p,Z), E;(p,z), etc.... The remaining

-10-
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fields, Eip(p,z), §i¢(p,z), etc..., will be called the scattered
fields. It is assumed that the incident fields exist for all values
of z and for p < a, being zero for p > a, and that the scattered
fields are the difference between the total fields and the incident
fields.

The components of the scattered fields can be represented

as Fourier transform integrals, as follows:

o)

Eylon2) = [ ™ a2
s
¥ v (nsp) s
E¢ ] /l_ f‘b e (2.4)
™
3{2 i 7%: .Jﬂ Iz(”’p)e-nz dn , (2.5)
™
] y I (n,p) 'iT]Z
H o= L b Mg (2.6)
¢ Vor o

By using these integral representations, and Maxwell's

differential equations, it is concluded that

[o0)

0 .J* [ 0 Iz(n,p) L I (n,p)] Jinz " (2.7

¢

o) /2_1; Twe P Wwe p

-0

P Ven P Wil e

¥ V_(n, V (n, ,
LR fl:ifTu ) M] e dn . (2.8)
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Maxwell's equations further yield the following relations among
the several Fourier transformed functions, in each one of the two

media:

oV_(n,p) >
-z T . _om
Y. = -7 L) =T Line) 0 (2.93)
3V, (n50) I(nso)  p(k2 - 1)
NP NP p -
8 . _om ¢ B
3p S 0 + iwe Iz(rhp) ’ (2.9b)
2 ﬁ)
31 (n4p) V. (n,p) o 2
¢ - _mm ¢ ) p
dp ‘ Wl o Tou Vz(nap) s (29C)
3l (n,p) 2
Y4 _ nm v
p _——_Bp = - il Vz(n p) F _—iwu V¢(n,p) . (2.9d)

where k = w/ue and v2 = k% - 2,

After some simple manipulations, this set of equations

becomes
321 _(n,0) 9I_(nsp) 2
e + l —-—Z—a———- + (\)2 L )Iz(mp) =0, (2.]03)
8p2 o 0 02
32V_(nsp) 3V, (n,p) 2
1 __Z_B_J, Y -m_)vz(n,p) = 0 (2.10b)
’c)p2 p P 02
and )
: ol (nsp
imn 4 Jwu z 2.11
V¢(n,p) " Vz(n,p P % , (2.17a)
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1M 1 (n,0) . (2.11b)

Equations (2.10a) and (2.10b) are of the Bessel type, and their

solutions are

V_(n,a)
Vz(n,o) = 3§K;IET-Jm(v1p) for p < a (2.12a)
' n-2) W) o) £ (2.12b)
= V) or p>a .
H(lj(\) a) m 0
m 0
and
Iz(nsa")
Lnw) = 3 O Jm(vlo) for p< a (2.13a)
m
= v _p or p>a . (2.
Hlli(v a) m 0
m 0
The subscript notation, Vo and vl, refers to the values in
the two different media, for which e = ¢ _ande =¢ , respectively.

0 1
In a similar fashion, the propagation constants will be denoted by

k. and k .
0 1
The expressions (2.12a) and (2.12b) already satisfy the
continuity condition of E»Z(p,z) across the surface p = a. As for
EKZ(p,z), no such condition exists, and hence the limit values
Iz(n,a—) and Iz(n,a+) are different, in principle. Iz(n,a-) and
Iz(n,a+) are the limit values of Iz(n,p) as p + a from values of o

less than a or greater than a, respectively.
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Care was also taken in the choice of the appropriate Bessel
functions, so that the fields remain finite for p = 0, and the
radiation condition is satisfied as p > ». It must be noted here

that the choice of the branch of Vo * (kg - nz)l/2 is such that
Im v >0 (2.14)

and that, within that branch (Fig. 2.1), the physical region is
such that Re Vo > 0, which means outward propagation, and includes
the second and fourth quadrants of the n-plane, plus the areas
between the axes and the branches of the hyperbola Re n x Imn =
Re kO x Im k.

It is assumed that k0 and k1 have small positive imaginary
parts, in order to ensure convergence of all the integrals. For
the final results, however, these imaginary parts are forced to
vanish, yielding the Tossless case. In (2.12) and (2.13), as well as
for the remaining components of the transformed fields, the apparent

branch points at n = ikl are cancelled and do not actually occur.

From (2.11), (2.12) and (2.13), the expressions for V¢(n,p)

and I¢(n,p) can be written as follows:

v (T}sp) = __'——'"—) [%Vz(n,a)dm(vlb)

+ wpv Iz(n,a-)er;](v p):l for p < a (2.15a)
1 1



Fig. 2.1: Choice of branch and branch cuts, such that Im v - 0.
The shaded area represents the physical region, for which

Re Vo 2 0 as well.
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+ wuvoIZ(n,a+)pHé1) (vopﬂ for o > a (2.15b)

and
- i :
I¢(n,p) ————-———vzd o [wellez(n,a)me(vlo)
1 mog
+ mnIZ(n,a-)Jm(vlp)J for p < a (2.16a)

i

] o
= _W[wsovovz(n,a)pHm (VOP)

+m”Iz(”’a+)Hn(11)("op)} for o>a . (2.16b)

Here, and in the future, a prime affecting a Bessel function
represents the derivative with respect to the argument.
Since\é,¢(p,z) must be continuous across the surface p = a,

this condition is now applied to (2.15), resulting in
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It is clear from the previous expressions that the fields
everywhere can be expressed in terms of the three functions
Vz(n,a), Iz(n,a—) and Iz(n,a+). These are not, however, entirely
suitable for the application of the Wiener-Hopf arguments. Instead,

it is convenient to define

of () = L(nsat) - I (nsa-) (2.18a)

tﬁz(n,a) = I¢(n,a+) - I¢(n,a-) , (2.18b)
where I¢(n,a+) and I¢(n,a—) are defined in a manner similar to
Iz{n,a+) and Iz(n,a-). :P¢ and cPZ will turn out to be related

to the Fourier transforms of the ¢ and z components, respectively,

of the surface currents on the metallic wall.

Inverting (2.3), it follows that, for p = a,

1 -inz
V.(n,a) = - — .Ja (a,z)e dz . (2.19)
2" /7 _}Z

Similarly, from (2.4),

00

V.(n,a) = - ;%E .J%3¢(a,z)e'inz dz . (2.20)

-00
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From (2.5), (2.6), (2.18a) and (2.18b), it follows that

N/ (n,a) = > mlzé((am) -X (a-,Z)- e N2 g4, (2.21)
t()q)(n,a) = —/;: f[ﬁ(z(ahz) —Kz(a-,z) e'inz dz . (2.22)

It is now appropriate to use the boundary conditions at p = a.
As both ﬁ (a,z) and 8 (a,z) are zero for z < 0, Vz(n,a) and V¢(n,a)
are functions analytic in a lower half-plane of the complex

variable n. Name]y,\f.Z mui?i¢ will behave as e'élz, §' > 0, as
z >~ +o, where §'> § = min {Im ko’ Im kl}. The inverse transforms
(2.3) and (2.4) can be carried out along a straight line in the
n plane, parallel to the real axis, and such that Imn < §. Hence,
VZ( ,a) and V¢( ,a) will be designated as V;(n) and V;(n),
respectively, the index L standing for lower half-plane. Similarly,
an index U will be used to denote the upper half-plane.

The integrations in (2.21) and (2.22) can be split into
integrations from -= to 0, and integrations from 0 to +». The
first integrations yield functions analytic in upper half-planes,

the second integrations yield functions analytic in lower half-planes,

thus (2.21) and (2.22) can be written as

nsa ‘QU +‘£;(n) , (2.23a)

J, (m.) =< n) cPL . (2.23b)
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For z < 0,'3(¢(a+,z) -‘3(¢(a-,z) is the z component of the
surface current associated with the scattered field, .Jz(a,z), which
is zero for z > 0, and whose Fourier transform istﬂ g(n)/a.
Similarly, J (a,z) 152{ (a-,z) -JZ(Z(a+,d, for z < 0, and its
muﬁertrmmﬂwm1s-ﬂg

For z > 0, the discontinuity of the components of the
field is due solely to the definitions (2.2), in which the incident
part of the fields 1is identically zero for p > a, but not forp < a,
z > 0. Hence, from (2.2), for z > 0, it follows thatZX (at+,z)

f}f ¢(a ,Z) = H¢(a-,z and?K (at+,2) —\aﬁz(a-,z) = Hz(a-,z). Therefore,
using {2.21), (2.22) and (2.23),

N —
—
=3
~—
1

IH (a-,2)e” M2 47 (2.24a)
0

N |
3

-
—
3
~
1

fH (a-,2)e" 2 47 . (2.24b)
0

“"1|~

These functions can now be computed, because the incident
fields are known, and given by (1.1 ) through (1.6 ).
The currents associated with the scattered field will

+§2

decrease, as z - -», at least as fast as e , Where

§ = min{ Imk, Imkl} (2.25)
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and hencebqg(n) and Jg(n) are analytic for Imn > -5. Similarly,
L L .
:;P Z(n) and c9¢(n) are analytic for Imn < 8.
It is now possible to express Iz(n,a-) and Iz(n,a+) in terms
of unknown functions which are analytic in an upper or a low half-

plane, as required for the Wiener-Hopf method. Vz(n,a) = Vé

(n) is
already in that form.
Using (2.17), (2.18a) and (2.23b), the following are

obtained:

1 (na+) = Wl—ﬁy{vgvlJﬂ1(vla)H§11)(voa)[gQ o(n) +GQ;;(TI)}

Line) = gy {vovfdmwlamnﬁ”'(voa)[cPf;(n) +f5in)

where M(n) denotes the function

1 1

M) = VoV, [vOJ&(vla)Hél)(voa) - v Jm(v a)HéI)'(voaﬁ

(2.28)

andt:P;(n) is a known function, given by (2.24b).
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It is now apparent that the knowledge of V;(n) and
\:0|$(n) is sufficient to express the fields everywhere in space.
In order to obtain these two functions, however, it will be
necessary to consider also the unknown functions Vi(n) andci)g(n).
Using (2.16) in (2.18b) and (2.23a), and using (2.26) and
(2.27), it follows that

My + M) = Q) + W) (2.29)

where
N(n) = inm {vldé](vla)Hn(Tl)(\)oa) - Vodm(vla)ngll)l(voa)J , (2.30)
Qn) = -1'wa(eo + el)vovlJrh(vla)Htgll)'(voa) + iwaslvg
RO #(y a) i Jm(vla)[Hrgll)l(voa)]Z
Jm(\)laT 0] Hérl)(voa)
.9 o (v, v \2

L \Tl‘sj“ e, (@)

and

W) = ) ) - D lm . )

It is now necessary to construct a second equation to
complement (2.29). For that purpose, use is made of (2.15a), and

the fact that V¢(n,a) = V;(n). Using (2.27), it is concluded that
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P)dg(n) = Mn)VS(n) = NV (n) + U(n) (2.33)

where
P(n) = iwuavovldr;](vla)Hél)l(voa) (2.34)

and
Un) = -P(n) -t%(n) . (2.35)

Two coupled Wiener-Hopf equations have been derived, (2.29)

and (2.33), and they can be written in matrix form as

ERRSIREES) ) )| [dm)] fun
= +
bQU L
M) NO)J [ ()] | 0 a(n)|]  [V,(n)]  {W(n)
(2.36)

The functions in the square matrices have branch points for

n = iko’ but are analytic in the strip

-5 <Imn < 8 (2.37)

with 6 given by (2.25). The same holds for U(n) and W(n), as will

be seen in the following. The apparent branch points at n = zk do not
1

occur if m is even, and, if m is odd, are cancelled by multiplying

(2.36) by v which does not change the solutions of the problem.
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With the incident fields given by (1.1) through (1.6), (2.24)

may be used to compute:ﬁ ;(n) and~;ﬂg(n).

Integration yields

L %
(n) = , (2.38)
tp¢ " Mg
2 . 2
tplz-(n) - ;:% - ?mu i 1m>‘2111a - i‘m}\ , (2.39)
m11 q, mil
where
B*J (q )
a, = M m_ (2.40a)
iV2n
A% (p_)a?
g, = — L — (2.40b)
Vo Py

and where Pin is the nth zero of Jm(x) and q is the nth zero of

J'(x). A*, B*, Amnland Mo were defined in Chapter I, equations

m nl

(1.1) through (1.7).
U(n) and W(n) are now calculated using (2.35) and (2.32).

2.2 Factorization of the Matrix

The Wiener-Hopf problem (2.36) must now be solved for the
two unknown column matrices. Equation (2.36) is a valid relation
within the strip of analyticity (2.37), and the unknown functions
are analytic in one of the half-planes Imn < & or Imn > -§, so that

this is a valid coupled Wiener-Hopf problem.
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The square matrix on the right-hand side of (2.36) is
inverted, and (2.36) is multiplied, from the left-hand side, by

the inverse matrix. The resultant equation is

) I e | sl [l (B, M)

T WA d26n) V;(n) m%‘f"(m?;gqfﬁ%
= +

CoCA U U

(2.41)

The procedure to follow would be, now, to factorize the square
matrix into the product of a square matrix analytic in a lower
half-plane by a square matrix analytic in an upper half-plane.
Equation (2.41) would then be multiplied, from the left-hand side,
by the inverse of the lower half-plane square matrix, which is
required to be analytic in the lower half-plane. The second column
matrix on the right-hand side, which would then be obtained, would
be split into the sum of a Tower and an upper half-plane column
matrix, and the equation would then be suitable for the application
of Liouville's theorem.

The factorization of the square matrix, however, is not
possible, by any known method, in the general case. Several
authors have treated this factorization for matrices of special

forms, but the matrix in (2.41) is not in any of those forms. The
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Wiener-Hopf-Hilbert method was described by Hurd [23], and it would
be applicable to (2.41) if the only singularities of the square
matrix were pairs of branch points at n = L Cn being arbitrary
complex numbers, and if the singularities of the last column matrix
of (2.41) were all in the lower half-plane. It is clear that
neither of these conditions is satisfied.

In a different paper, Daniele [24] describes a factorization

procedure for a square matrix of the form
, (2.42)

but only provided that the ratio A(n)/B(n) can be expressed as
the ratio of two entire functions of n. This means that A(n)/B(n)
cannot have any branch points, only poles and zeros.

The square matrix of (2.41) can be put in the form (2.42),
as follows:

The function N(n)/Q(n), being analytic in the strip (2.37),

can be factorized as

N(n) _ V) N (n) (2.43)

where the split functions are analytic and nonzero in the respective

half-planes.
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Then, it follows that

‘e

(n)

[N(n)]? + P(n)Q(n)

-—

N
Qn) M(n)Q(n)

M(n)

and (2.41) can be rewritten as

1 IN(n)]2+P(n)Q(n)

—

M(n)N(n)

4V

L
N~(n) 0
QL(n)
NLgn!
0 r
Q~(n) |
NU(n) 0
U
Q (n) ,(2.44)
0 Ngiﬁl
s Q (n)
T N
V¢ (T]) L l + ] U 1
M(n)N"(n) M(n)Q (n
+
Vg*(”) U“Nin%f‘““'
1 [ CmIN()

tn (2.45), ] ¥tn) = 1) oY) 0 n) ama V) -
NU(n) -w:Pg(n)/QU(n), which are the new unknown functions for the

application of the Wiener-Hopf method, and are still analytic in an

upper half-plane. Similarly, V-"(n) = qb(n)

¢

\{hL(n)/NL(n) and
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*
%? (n) = QL(n)V;(n)/NL(n) are still analytic in a lower half-plane, as
required.

In proceeding with the application of Daniele's method the

function

IN(n)]2 + P(n)Q(n) (2.46)
[M(n) 12

must be expressed as the ratio of two entire functions. However,
(2.46) has branch points at n = iko, so it cannot be expressed
as such a ratio.
After the failure of both Hurd's and Daniele's methods
in this case, the alternative would be to find a factorization by
some other method, which the author was not able to accomplish.
It is also possible that, by defining new pairs of unknown
functions, as linear combinations oftpg(n) andcf;kn) and of
L

L
V¢(n) and v

amenable to factorization by known methods. Care would have to be

(n), the ensuing square matrices would be more easily

taken so that the linear combinations of:Q g(”) anclcpg(n) would
still be analytic in an upper half-plane, and the linear combinations

of VL(n) and V;(n) would still be analytic in a Tower half-plane.

Unfortunately, the author was also unsuccessful in this
task, except for the simpler case ¢ = €, as treated in Section
1
2.3, and the exact problem will, therefore, not be solved in this

work. It will remain as a possible area of future research.
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2.3 Simplification for the Case e = e

Problem (2.36) is considerably simplified if the dielectric
rod is omitted, i.e., if € =€, This simpler problem has been
treated before, by Weinstein [16], using a dual integral equation
approach, and by Pearson [20], who considered an incident plane wave
as the excitation, instead of a mode incident on the aperture from
inside the guide.

The simplification of (2.36) is due to the simplification of
the elements of the matrices. Using the subscript zero to denote

the fact that el =€ these functions become

Py(n) = iwuavédt;](voa)Héll) (v,a) (2.47a)
M(n) = -2, (2.47b)
0 Ta o ’
_ 2m
41kg
QO(n) = - ) 1) s (2.47d)
™ wuadm(\)oa)H (\)oa)
“m : 271 (1)
U(n) = = 5 Twav2d (v )i (v a) (2.47e)
mio
ik2g v2 Mo, a2
Wyln) = ﬁ[ o TTa T, (A0 * K3) . (2.47f)
mo g2

In (2.47e) and (2.47f), 2

- 1/2
Lo - [k3 - (py /20217

mo = [6 -0, /81217 anc

Hp
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The uncoupling of (2.36) is due to the following factorization

of the square matrices:

0 P ()] iwnav?x(n)
Mo(n) No(nl : ] 0
and
;40(71> -No(n; —;f—j;

0 Q,(n) 0
where

x(n) =

0 0 1
21 » .
;F.a— -V =Tnm
o hovan o e
0 -vg inm
1,2
41k0 .
r2wpay(n) | |

J&(voa)Hél)l(voa) ,

y(n) = Jm(voa)Hé”(voa)

Equation (2.36), thus modified, can now be written as

1'mua\)gx(n)

0||hY (n)
10
%%J tpg% (n)

2i 0

Ta
4ikg

0 - —————
m2wuay(n)

-

o

-

(2.48)

(2.49)

(2.50)

(2.51)

_ S
n) Uyn)

+

n) Wo(n)
N n J
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where the new unknown functions are defined by

J?O(n) - go(n) ; (2.53a)
go(“) i "’itozuo(“) - "ﬂmtjgo(n) , (2.53b)
Vto(n) = - V;O(n) + inm Vio(n) , (2.53c)

V;o n) = Vto(n) : (2.53d)

The second subscript, zero, of all the functions above,
refers to the fact that e T ey

Clearly, (2.52) is an uncoupled system of two Wiener-Hopf
equations, so that it actually represents two parallel and

independent problems. Explicitly, it may be written in the form

ay? U - 2L

Tunav2x(n) 10(n) = Vlo(n) + U () (2.54a)

. 4ik2

0 ) = - ——2— )+ ) (2.54b)
20 szwlla)’(n) 20

From equations (2.53a) and (2.53b), it is clear that the
newly defined unknown functions are analytic in an upper half-plane,
. . U U ..
provided that is true forcp¢o(n) and t?zo(n). Similarly for

(2.53c) and (2.53d), concerning analyticity in a Tower half-plane.
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By inverting (2.53), it follows that

Z0

MORE 1—2- [inm V) + go(n)] ., (2.55)

and

L _ 1 L . L
V¢O(n) = - ;—2— [Vlo (n) - inm Vzo(n)] . (2.55b)
0

Due to the factor 1/v§, equations (2.55a) and (2.55b) would
seem to indicate thatc@i(n) has a pole at n = +k0, and V;O(n) has
a pole at n = -ko, though that is not consistent with their assigned

regions of analyticity. However, (2,53b) and (2.53c) imply that

U . U
) (k) = 1k0mv,P10(ko) (2.56a)
and
ok ) = -ikm VR (k) (2.56b)
10 O 0 200 O

showing that the aforementioned poles of (2.55) do not actually occur.

A few words are appropriate concerning the physical
meaning of the unknown functions defined by (2.53), and hence of
the factorizatios (2.48) and (2.49).

From (2.9a) and (2.18), it follows that

aV_(nsp)
-vﬁtﬁ (n) - 1nm‘j (n) = iuea i Al

Z90 o
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Using the inverse of (2.3), (2.57) can be written as

-vgtp (n) - inm c>P¢o(n) = - 1oyl

Z0 m
€ (0,2) o, (p,2) ¥
IJB—— -~ e 4z, (2.58)
- Y p=a+ p pza_
and, using (2.23) and (2.53b),
iwe a 0 8}2, (p,2) BE (ps2) .
Yy = - =0 .f. = Lz e”'" dz
20 Zm o et ® Joma-
(2.59)

Then,ty Uo(n) is seen to represent the Fourier transform of
2
the discontinuity, for z < 0, of a?iz(p,z)/ap across p = a.
In a similar fashion, using (2.9d), (2.5), (2.53c) and the

fact that V, (n,a) = VL (n) and Vzo(n,a) = VL (n), it follows that

¢o $o Z0
. r 82( (D,Z) -3
vto(n) = -l f —g—p———— e % 47 . (2.60)
V2r 0 o=a
L

From (2.60), V- (n) is seen to represent the Fourier transform

10
of §9€Z(p,2)/ap|p=a, which is a function that vanishes identically
for z < 0, due to the imposed boundary conditions at the air to

perfect conductor interface.
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It must be noted that, due to their now-clear physical
meaning,:P go(n) and VEO(n) could have been chosen from the very

beginning, instead ofcﬂ go(n) and V;O(n).

The complementary integral of (2.59), i.e., from zero to
+o, can be computed from the knowledge of the incident fields, and

is easily seen to yield

S RO REREE - NCH (2.61)

20 0

whereas the complementary integral of (2.60) vanishes. Hence,

equations (2.54) could have been obtained directly, with no need

go(n).

For the case ¢ # € s however, such a reasoning fails. In
1

to introduce cﬂgo(n) and V

fact, across the boundary between the two dielectrics, p = a,

z >0, aEZ/ap is not continuous, nor is aEZ/ap

multiplied by some function of €. Hence, the complementary integral
of the equivalent of (2.59) would not be a known function, and a
relation corresponding to (2.61) could not be written, rathercf; (n)
would be unknown.

Examining the problem from a more mathematical viewpoint, the
factorizations (2.48) and (2.49) cannot be carried through, for the
case el # €9 in such a manner that the right-hand split-matrix
of (2.48) is analytic in an upper half-plane, and the right-hand
split-matrix of (2.49) is analytic in a lower half-plane. Or, if
such factorizations are possible, the author was not able to find

them. Hence, the uncoupling of (2.36) was not achieved in this work.
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2.4 Simplification for the Symmetrical Case (m = 0)

Another simpler version of (2.36) should be mentioned,
namely the case of an excitation with no ¢-variation, which means
m=0. In (2.1) and (2.2), the TE fields will have a factor
cos ¢0, and the TM fields will have a factor sin ¢0. As ¢O is
totally arbitrary, it is seen that the TE and the TM case are
independent of each other: ¢0 = 0 yields a purely TE problem,
by = /2 yields a purely TM problem, and any linear combination
of these two cases is possible.

This uncoupling of the problem into two independent problems

can be seen in (2.36) as well. In fact, (2.30) shows that N(n) =

0, whence (2.36) becomes a system of two uncoupled equations,

namely
) <fon) = Qn)VE(n) + H(n) (2.62)
and
U _ L
) = M) F Uy, (269)

with m = 0 in each of the functions M(n), Q(n), P(n), W(n) and
U(n). Equation (2.62) represents the TM problem, and W(n) will
only depend on B = B> not on an = @ys Once m is made to be zero.
Equation (2.63) represents the TE problem, and U(n) only depends

on n .
0y ot on 80
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CHAPTER III. TAYLOR SERIES SOLUTION FOR el - gy S

3.1 Wiener-Hopf Equations for the Zeroth- and First-Order Terms

of the Series

As it was not possible to solve (2.36) exactly, an
approximate solution will be sought, for the case of a relative
permittivity of the dielectric which is only slightly different
from one. Every function in the matrices of (2.36) is to be

expanded in a Taylor series in the relative permittivity en * el/e

bl

0
around the point ep = 1. The notation is as follows, for a general

function F(n,k ), withak = k - k_ << k_,
1 1 0 0

F(n,kl) = Fo(n,ko) + Fl(n,ko) Ak + Fz(n,ko)(Ak)2 + ..., (3.1)
where
Folnsky) = F(n,kl)‘kl=ko , (3.2)
3F(n,k1)
F (ﬂ,ko) - 3k K =k ) (3.3)
1 L %o
1 82F(nsk )
Fz(”’ko) =z > , (3.4)
L ko=k
1 0

-35-
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and so on. It is noted that the differentiations are carried out
relative to kl, but considering el to be the only variable, i.e.,
though k1 = w/elu, both w and u are kept constant.

Equation (2.36) can be written, in abbreviated form,

[A] - [d1 = [BI[V]+([z2] . (3.5)

and each one of the matrices in (3.5) will be expanded in a series

as (3.1). It follows that

([AO] + [Al]Ak t..) (Eﬂo] + D&l]Ak t...) = ([BO] + [81]Ak + ..

. ([VO] + [Vl]Ak +...0) 4 ([ZO] + [Zl]Ak +...) . (3.6)

By carrying out the multiplications in (3.6), and equating
the matrices multiplying equal powers of Ak on the left-hand and the

right-hand sides of the equation, it is found that
(A - M1 = [8,Iv,1+(z] , (3.7)
[A,] - [‘?1] = [Bo][Vll + [Bll[vol - [AIJHOJ + [Zl] »  (3.8)

and so on.
Equation (3.7) is just the simplified version of (3.5) when

€

] = €, It can be solved exactly by the Wiener-Hopf method, and

)
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its initial formulation was treated in Section 2.3, where the
problem was shown to uncouple into two independent equations.
After (3.7) has been solved, Eio] and [Vo] will be known,

and then the column matrix
[Zj] = [BIJ[VO] - [AIJE!OJ + [21] (3.9)

is completely known. Hence, (3.8) is seen to be almost identical
to (3.7), except that the known column matrix [Zo] has been
replaced by [ZY]. The unknown matrices are now denoted by EJl] and
[Vlj, and (3.8) is solved in exactly the same manner as (3.7).
The important fact is that the square matrices [Ao] and [BO] are
the same in both (3.7) and (3.8), so that (3.8) will uncouple in
the same way as (3.7) did in Section 2.3.

The zeroth order terms of the expansions of the type (3.1) of
the functions in the matrices of (2.36) are given by expressions
(2.47). As for the first order terms, (3.3) must be used, yielding,

after some manipulations,
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o ms_ (1) . (1)
Nl(n) = inmk a {(vzaz ‘> In(vealty (vga) = dp(vai ™ (va) | s
0
(3.10c)
i [k 3 (v a) K2
QL(n) = - gu [;%‘ I 02 B - (m? - v2a2)_0
0 [Jm(voa)] H (voa) v,a
. (1) (1)
, Jm(voa)Hm (voa) ) Hy (voa)
+ akZv + (g2 + k2)
°0 3 (v (v2) 1 (v5a)
m\Vo@ My " Vpd m Yo
2in2 1
e g (v )iy a)] 100
m 0
iwuak o 2 1
_ om me_ 1)
U](n) = R [Voa (yéaz ;) Jm(voa)Hm (vod)
% (1)’
+ J'(v_a)H (v a) »  (3.10e)
miotn - Mnig) MO 0
and
0 2k3
W) - 21Bmvok0 1 ) Zmamkona n + Amlo
o Tawy 2 A (n - A )
“mlo(” - “mlo) 42, mio mio
: 2 . 2
. 4ikoep vo . ZBmkgvo _21mamkovoxm10a e a)H(l)l(v )
rawk 0= o Jeu(n -u ) mt 0" m 0

2 -
qml (n Xmlo)

B v2k3a ima_k a3 .
FTE— T2 (0 o4 k2) [Jr;](voa)Hnal) (vg2)
wu(n =y o) a7, m10

- <;"%§—z - 1) Jm(voa)Hngl)(voa)] . (3.70f)
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As seen from (3.8) and (3.9), expressions (3.10) are
important for the computation of
U*(n)

4] - : : (3.11)

W*(n)
1

but this computation can only be completed after knowing the
functions [ ] and [Vo]’ which will come from the solution of (3.7).
This solution will be the subject of the next section.

Some attention will now be given to the convergence of the
Taylor series expansions. From (2.28), (2.30), (2.31), (2.32),
(2.34), (2.35), (2.38) and (2.39), it is easily seen that, as
functions of kl, all these functions have branch points at k1 = 1n,
if m is odd, but have no branch points there if m is even. These
singularities are removable, however, for (3.5) may be multiplied
by vl when m is odd, cancelling the branch points at k1 = +n in
all the functions considered. It is easily shown that, when (3.5)
is multiplied by v and expansions like (3.6) are carried out in
the resulting equation, (3.7) and (3.8) are still valid, and the
branch points have then been cancelled.

Other singularities occur, though. Q(n) has simple poles at

= ) 7 - .
k1 +/n? + (pmn/a) , forn=1,2,3,.... Fora TEm1 exciting mode,

o # 0, U(n) and W(n) have branch points for k1 = i(qml/a), and poles
= _2 2 «,
for k1 +/n +(qm1/a) . For a TMml exciting mode, B # 0, W(n)

has branch points for kl = *(p_./a), and poles for k1 =

pml

£/n2 + (py, /2)%
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In the k1 plane, all the above-mentioned singularities are
in the strip |Im kll < |Im n|. On the other hand, n is in the
strip |Im n| < Im ko» SO that it is guaranteed that there will always
exist a circle of finite radius, centered at ko’ in the plane of k1’
such that no singularities fall inside it. Within that circle,
the series expansions performed in this section are valid. It
should be recalled that the imaginary part of kO is being kept
small but positive throughout all of the application of the

Wiener-Hopf method.

3.2 Solution of the Wiener-Hopf Equations for the Zeroth-Order Terms

In this section, a solution for (3.7) will be sought. The
initial steps in this solution have been carried out in Section 2.3,
and the Wiener-Hopf equations which were obtained are (2.54a) and
(2.54b).

The crucial step in solving (2.54) is to factorize the
functions x(n) and y(n), which are analytic and non-vanishing in

the strip

-Imky < Imn < Imk (3.12)

0 9

into the product of the two functions, one analytic and non-
vanishing in the upper half-plane Im n > -Im ko’ and the other
analytic and non-vanishing in the Tower half-plane Im n < Im ko.

These factorizations,

x(n) = xY(n) + x(n) (3.13a)
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and

y(n) = Ym) -yt (3.13b)

were carried out by Weinstein, [16], Sections 22 and 26, and an
account is given in Appendix A of this thesis.

Given (3.13), (2.54) can be written as

L
V> (n) U_(n)
U U _ 2 10 1 0
X (n)Jlo(n) ) ﬂazwu V%XL( ) fwpa % L(n) (3.]43)

Py ey V() oo YO (n)
n+ k m (n + ko)yL( ) 2 n + kO

(3.14b)

Equation (3.14a) will be solved first. Each one of the terms
on the right-hand side is analytic in the strip (3.12), so they must
be split into a sum of upper and lower half-plane functions. It

follows that

Vi) Vko(n) . Vip(n)  Vip(-ky)
vax(n) 2k (k- n)xE(n) 2k (K, +n) [x(n)  x(-k,)
L
V- (-k
+ 100k , (3.15)
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where the first two terms on the right-hand side are analytic
in the lower half-plane, and the last term is analytic in the
upper half-plane.

Similarly, denoting

R RN ) 3.16
oln) = Twpa véxL( ) ’ (3.16)

Ry(n) = Ry(n) +R;(n) (3.17)
with
RY(n) ) - XU(Xm1°) (3.182)
n - -u Y . a
0 m = A
U
x (A )
L m10
Ro(n) = -ap ;":—7%;—“ (3.18b)
mlo
Now, (3.14a) can be written as
L
Vo (-k.)
U U 100 0 1 U
(M- (n) - - R-(n)
‘Qlo ﬂazwukoxL(-ko) n+ kO 0
L L L
o Vlo(n) 1 Vlo(n) VI Gke) | L
T [ * T T ¥ i T Roln)
mafouky x-(n)(n - k) mafwuk, | x"(n) x(-k,) " %
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A1l the left-hand side of (3.19) is analytic in the upper
half-plane Im n > - Im ko’ and all the right-hand side is analytic
in the Tower half-plane Im n < Im ko' Since the two sides are
equal over the strip (3.12), and are analytic there, they actually
represent analytic continuations of each other over the whole
finite complex n-plane, i.e., they are representations, in their
respective half-planes, of the same entire function e(n).

It is now necessary to analyze the behavior of the several
terms of (3.19) as n » ». It is known (Meixner, [27]) that, as
z >0, i.e., at the metal edge, the following order behavior is

physically required.

3,(z) = o(2°) , (3.20a)
J,(2) = o) (3.20b)
¢ (a,2) = o(z7h) (3.20c)
€,(as2) = of2°) (3.20d)

These expressions are also valid for the zeroth order

functions Jzo(z), J (z), fzo(a,z) and E#O(a,z), though they do not

60
represent the strictest behavior which can be imposed, i.e.,

3,(2) = 0027, 3,5(2) = 0%, € (a2 = 027V,

8¢O(a,z) = 0(21/2). For the present purpose, however, imposing

(3.20) 1is sufficient, and that is the behavior which will be

considered.
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This behavior at the origin translates into the following
behavior, as n +- «» in the respective half-planes of analyticity,
of the one-sided Fourier transforms (see, for example, Mittra

and Lee, [11]):

o) = o) . (3.21a)
go(n) = o(n®) (3.21b)
Vo(n) = o(n®) (3.21c)
and
v (n) = o(n) (3.21d)
40 ) ’
Using (3.21) in (2.53), it follows that, as n -+ «,
g () = o) (3.22a)
d; () = olh) (3.22b)
vgom = o(nl) , (3.22¢)
d
o v o= o(n®) (3.22d)
20

Also, from Appendix A, it is known that all of the functions
xU(n), xL(n), yu(n), yL(n) have behavior O(n“l/z) as n -~ » in the
respective half-planes of analyticity. Hence, Rg(n) = O(n-g/z) and

Rg(n) = 0(n" ).
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It is now clear that the left-hand side of (3.19) has
behavior o(n'l/z) as n + «. As for the right-hand side, it may
be rewritten as

VL

L
2 V() ) Vlo('ko) 1

TaZuwy VSXL(n) ﬂazwukOXL(~ko) n+ kO

-1/2

).

Then, the sides of equation (3.19) represent an entire

1/2)

whence it is clear that its behavior as n + « is o(n

function e(n), and their behavior at infinity is o(n , 1.e.,
e(n) is an entire function which vanishes at infinity. By using

Liouville's theorem, it follows that

e(n) = 0 (3.24)

over the entire complex n plane. By equating to zero both sides

of (3.19), it follows that

U V. (-ko) 1 Ro(n)
n) = Lo + (3.25
tho(n ﬂazwukoXL(-k ) (n*k)x(m) x(n) X
and
L V&o(_ko) L mawy o L, ol
Vlo(n) = - ;E;;EETE;; (n - k)x"(n) = =5 w2 (n)R;(n) » (3.25b)

which constitute the solution to (3.14a).
Equation (3.14b) will now be solved in a similar fashion. The
terms on the right-hand side must be additively split into Tower

and upper half-plane functions, as follows:
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Vzo(”) - Vzo(”) Vzo('ko) 1 + VZO(_kO) 1
L L + k L +k
(n + k )y (n) y(n) yk) T o ylek) T o
(3.26)
where the first term on the right-hand side is analytic in the
lTower half-plane, and the second term is analytic in the upper
half-plane. Defining
U
.y (n)W_(n)
_ 1ma 0
Soln) = %5 —% o (3.27)
and using (2.47f), it follows that
s (n) = S2n) * S(n) (3.28)
0 0 o' '
with
ima2o_ A, n + k2 k2g
U - _ 1o o U om
So(n) q2 n +ko y-(n) + Wl
m1
U U 1
: [(T} - ko)y (ﬂ) - (umlo - ko).y (Umlo)] -T]—T_ (3'29a)
mio
and
L kgem(um, o o)yu(“mlo) 1
S,(n) L (3.29b)
Wy n-u
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Now, (3.14b) can be written as

) ) zee (k)

20 + 020 + SU(n)
+
2w | V5o(n)  VE (-k))

The left-hand side of (3.30) is analytic in the upper half-
plane Im n > -Im ko, and the right-hand side is analytic in the
lower half-plane Im n < Im ko' By analytic continuation, each
side is equal to an entire function f(n) in its respective half-
plane of analyticity.

From (3.29), it follows that, as n > =, So(n) = 0(n™/?)
in the upper half-plane, and Sg(n) = O(n'l) in the Tower half-plane.
Using also (3.22), it is concluded that the Teft-hand side of (3.30)
has behavior 0(n"/?), and the right-hand side has behavior o(n~'/?),
i.e., both sides vanish at infinity in their respective half-planes
of analyticity.

Hence, application of Liouville's theorem yields f(n) = 0,
and each side of (3.30) may be equated to zero identically, whence

it follows that

Ju ) e Voo (-kg) (n + kg)Sg(n)
20 -
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and
V7 (-ky)
L L n L L
V. (n) = yﬁ—zz_ko‘)’ Y0 = gz (n * kgly (n)Sg(n) - (3.310)

This is the solution to (3.14b), completing the zeroth-order
solution of the problem.
. . . L L .
A final detail will be to express Vlo(-ko) and vzo( ko) in
terms of more suitable quantities. Using equations (2.56) in

(3.25a) and (3.31a), it follows that

. U 3, U
Tkgmanx™ (A o) i 2k By (1)
(ko=rmio)XU(ky)  wuyU(k,)
VL (k) = 0 "mio 0 0 — (3.32)
20° O Zweo 2

wlyV(k )12 2naZenlx’ (k)12

0

and VEO(_kO) is now obtained by using (2.56b).

. . . U L
Equations (2.53a) and (2.53d) will yield tﬁ¢0(n) and Vzo(n)

immediately. As to :Rgo(n) and Vgo(n), equations (2.55) are

used, together with (3.25) and (3.31), resulting in
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2yt (-k.)
t& go(n) = 2 . U B 1'mumxu(kmlo)
raZupx(ky)  v3(n + ky)x"(n)
L
n + ZNEOVZo('kO)
20 U,
Vo(n Amlo)x (n) ”yU(ko)
a2
L M3 Ao _ we B 1
o U 2 =X om n-y
\)O'y (n) qm1 " mlo mio
U 1
+ wegBnlingg = kol¥ (o) )y () (3.33)
and
vt (k)L L
L o 200 0" x(y) 2,U x(n)
Ve (n) = % 7 o wua?x (A . ) -
0 2xU(k ) n+k, m mio® n - Ao
0
imV> (-k.) nyL(n) L
+ 20 0 + T 8 1'm(u k )yU(U ) ny (n)
yu(ko) 2 Z "m™¥mio ~ oY tmo! To= (0 - k)

(3.33b)
It must be recalled that, due to (2.56), the apparent poles
= U - L .
at n ko, for @on(n), and n ko, for V¢0(n), are actually points
of analyticity, as may be verified by taking the limits as n -~ k0 in

(3.33a) and n » —ko in (3.33b).
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3.3 Solution of the Wiener-Hopf Equations for the First-Order Terms

This section will deal with the solution of (3.8), in a
manner similar to the solution of (3.7), treated in the previous
section. The difference between the two problems is that [ZO] is
replaced by [ZT], i.e., Uo(n) is replaced by Uf(n) and wo(n) by
WT(n). The tﬁ and V functions will also be different, and that

fact will be indicated by replacing the second subscript, zero,
by one.

With those modifications, equations (3.14) are valid, and
so are (3.19) and (3.30). Ro(n) and So(n) are replaced by Rl(n)

and S (n), defined as
1

R (n) ) (3.34a)
n = v s . o4ad
1 Twuad VSXL(U)
and U
ira Y (n)w.f(ﬂ)
Sl(n) = i (3.34b)

R (n) - R?(n)‘lel'(n) : (3.352)
S (n) = SY(n) +stn) . (3.35b)
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Since it can be shown (Appendix B) that the split
functions in the right-hand sides of (3.35) have a similar
behavior, as n + =, as their zeroth order counterparts, and since
(3.20) also imposes the behavior (3.21) on the corresponding first
order unknown functions, the solution of (3.8) will be analogous

to (3.25) and (3.31), namely

. U
Vo) R(n)
‘&?1( - : + Ll,n . (3.36a)
maZwuk X~ (=ko)  (n + k)x"(n)  x (n)
209V, (ko) (n + k)sUn)
‘&21( ) = - 0L21 0 U] M ‘ : | 5360
wy(-kg) ¥ (n) y (n)
X ' "l L a2 Le vk
V11 = ZkllL( ) (n - ko)X (n) - m 2(»}1 v2X (n)Rl(n) . (3.36¢)
x=(-
51 (k) ]
th " s El =) - Jwe_ (n+ K )YL(n)Sll'(n)
y (k) 0

(3.36d)

Equations corresponding to (2.53) and (2.56) are still valid

for the first order functions. This leads to
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RY(k ) sYtk )
ikm Lo, T1tho
] S (O IR (%
V- (-k ) = (3.37a)
21 0 Zweo 2

k)12 2maalx(k )12

and
Vo) = ikt (k) . (3.37b)
11 O S Y
From (3.9), after some manipulations, it follows that
M. (n) 2omP_(n)
1 L 1 L U
* = - - _P +
U¥(n) o e V) = Py ) + b (o)
¢}
(3.38a)
and
L 2amPy (1) qY () I(U)QU () + W (n)
We(n) = Q (n)V_ (n) - 10 b2 0 1
1 1 20 wu(m? - v2a2) .
(3.38b)

where the first order functions are given in (3.10), and the

solution functions of the previous section are used.
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Use of (3.38) and (3.34) Teads to

U
R:(Tl) = A + B f(n)'{'ciﬁLT

1 -
mio (n Amlo)

and

(3.39b)
for n in the strip of analyticity, (3.12), and with the definitions:
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_2n? ;1 Mmoo T 0 (1)
f)(n) k2av2 Yo Jm(voa) 21 v232 Jm(voa)Hm (va)
0 0
ML v ) (v a) + 12 g (v a)nl) (u a) (3.40b)
k2 Yo M © m 0 2 "m0 ' m o ’
0
and
L
k.mV: (-k.)
A s = i‘o—o ; (3.41a)
2wuX (-ko)
ima_k a?x (x )
B = m o ) mo’ (3.41b)
k
Cos ey (3.41¢)
mio
L
2mk V- (-k_)
D= (3.41d)
wuay (-k;)
mmg_k
- m o _u U
- wpa (ky = a0l (umlo) ’ (3.41e)
imk amaZ
6= e o (3.41F)

mi0 ‘m
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2 8,
L = o (3.41q)
‘and
we k B
T = ~2om (3.41h)
“mio

Expressions (3.39) must now be split according to (3.35),
and that task is carried out in Appendix B. By using (B.34) and
(B.35) in (3.36a) and (3.36b), together with the first order

versions of (2.53a) and (2.55a), the following expressions result:

K K
u 0 n
() = ‘D
O AP (0 + 2 X (1)

B S R U TS L L
(n =2 )% x(n)
U
2x (k) u(n) (n) . (n)
P o 4 b v, %E- UE " %E- ua i (3.42a)
x"(n) x"(n) x"(n)

and
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n=1 0
[ 1 2
| Kn . + Im
— (= k) )y () a2
2)2 2}’U(>\ ) 0tk '
G[ mi o mo ; 0, XU G ) Un
9 mo
(Ko 2 ¥ () x"(n)

mio 0 mlo
2 -k )y )
“mio 2 *mo T "o/Y “Ymo 1
v Tyt K U
0 0 0 (n - ko)y (n)
K k(o -k )y )
o 1 .0 “mo T To’Y ‘Mmio 1
U
*mo " T Pmo Hmio (n - umlo)(n - o)y (n)
¥ “k-o_ yU(”mlo) (“mlo B ko)yUl(“mlo) ] U ]
"mio (n - ko)y (M) V"7 Mmo
21me(k ) ) nul(n) m g nuz(n) m . nu3(n)
- + 2 - =
[ S ) B O I 2o O
U
. koay (k) ) u, (n) Ly u(n)
M -k )™ (= k)y )
k2a3 u_(n)
+- 9 F & . (3.42b)
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In these expressions, T /ké - (pmn/a)z, —

vk?2 - (q_/a)?, and the functions u (n), u (n), u (n), u (n),
| 0 mn 1 2 3 4

u (n) and u (n) are defined by equations (B.17) and (B.18). The
s 6
constants hmn’ Kn and K; are given by (B.26) and (B.28), and K0

is

.ol
V) (-k,)
T_Z;I(T(o_ , (3.43)

2
Twpa‘ X ko)

= K* -
K0 K

where K* is defined by (B.22), and Vgl(-ko) by (3.37a).
The functions un(n) are analytic everywhere except for

branch points at n = -ko. The branch cuts were taken to be the

straight Tine from -kO to -kaiw, but they can be deformed as mentioned

b

on pages 124 through 125. At infinity, un(n) = O(n_l)

away from the branch cut.



CHAPTER IV. REFLECTION COEFFICIENTS INSIDE THE METALLIC GUIDE

[

4.1 Inverse Fourier Transformation Qf'tQU (

,(n) and . (n)

The ¢ and z components of the surface currents,

associated with the scattered fields, will be represented by

J.(z) and Jz(z), respectively. They will be the inverse Fourier

¢
U U .
transforms of —:Q¢(n) and cQz(n)/a, i.e.,

8

N U izn
1,(2) = = -°?Q¢(n)e dn (4.7a)
and .
_ 1 U izn
JZ(Z) = ;;%%: \j&ﬁz(n) e dn . (4.7b)

When J¢(z) and Jz(z) are represented as series of type

(3.1), the zeroth order terms are obtained from (4.1) by using
U U . . .
§Q¢O(n) and tho(n) in the integrands, the first order terms are
obtained by using;&g (n) and c&gl(n) in the integrands, and so on.
1
(‘;O(n) is given by (3.25a), (3.18a) and (2.53a). It is
seen that, as n + « (away from the negative side of the Tower half-plane
. . U _ -1/2 U

hyperbolic branch cuts of Fig. 2.]),QQ¢O(H) = 0(n ). tizo(”)
is given by (3.33a), and it has O(n"') behavior as n > = in the

same region. Hence, when z > 0, the path of integration can be

-58-
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jc]osed by a semicircle at infinity in the upper half-plane, and
the result is zero for both (4.7a) and (4.1b), because the
integrands are analytic in the upper half-plane. This simply
means that the surface currents vanish for z > 0, i.e., outside
the metal. When z < 0, the paths of integration may be deformed
to run along both sides of the branch cut, (which will be
considered to be a straight Tine from -kO to -ko-iw), capturing,
along the way, any poles of the integrand. This is similar to
the procedure used in Appendix B, and to Fig. B.2a. MWhen the
path is thus deformed, the functions xU(n) and yU(n) must be
represented by their analytic continuations into the lower half-

plane, i.e.,

XU() ) J'(Voa)Hé]I)l(\)Oa) U _ Jm(voa)Hél)(voa)
n L ’ .Y(ﬂ) L
x (n) y(n)
(4.2)
tho(n) can be rewritten as
Uy = 2 A, B x"(n) o
$0 nazko n* ko 7 Ymio J'(voa)HéI) (voa) no-A

where A and B are defined in (3.41).
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The integration (4.1a) around -k0 does not contribute
anything, because the integrand is of 0(|n + k0|) as n - —ko. Along
the branch cut, from -kO to -i», the integrand will be [ tho+(n) -
(J_go_(n)]eizn. Using (B.10), the contribution of this integral

to J¢0(z) will be

_ 2 21 A B
51(2) ) V/:; n + ko ¥ n - A

xL(n)elzn

. dn . (4.4)
[3: (5, ) P + [¥ (v )

U . _ .
t£¢0(n) has simple poles at -A_, n =1,2,3,..., so their
residues will be captured by the deformation of the path, affected

by a negative sign because the path circles them clockwise. The

result is
® I L .
I (z) - /21 i ZE: amn* (o) A, B e_”mnZ
00 k at A (m? - 42) M ko " T Mo
0 n=1 ‘mn Amn

+s (z) . (4.5)

The same process is to be carried out for (3.33a), with

xU(n) and yU(n) replaced by expressions (4.2), i.e., for



-61-

Ul - . m [ B nx"(n)
o 7 R R S I W w23 (v )it (y a)
0 o“mYo? M Wo
) _kQ_ D . F yL(n) —
mr{n + k n-u
mo | (n - ko)Jm(v a)H (voa)
2
koa "= Mo koa "7 Hmo

where the constants A, B, D, F, G and T are defined in (3.41). It
must be remarked that the apparent poles at n = Mo and n = Amlo
are actually cancelled by combining the term in F with the term

in T and the term in B with the term in G. Also, (4.6) remains
finite as n » -ko, because the apparent infinities of the A and the
[ terms cancel each other. Hence, the integration around -k0
vanishes, and all that is left is the integration, along the branch
cut, of the discontinuity of (4.6), and the residue contributions

from the poles at A (terms A and B) and at M (terms D and F).

The integration along the branch cut yields sz(z) + ss(z), where

_'i°° L
_ 2 2m A B X~ (n
s (z) = -V[% T, a3 Tk i " i :
2 k a 0 mo v
0 -k, 0
izn
dn (4.7a)
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and
K F L
s (z) = _VAZ n_19, v[\ +Dk - § y (E)
3 T ! T T T e[ "7 %
0
eiZn
dn . (4.7b)

[ (0P + DY (v )P

By including the pole contributions, it follows that

o L
2 -
| (2) - V2r m zg:qmnx (A — B . A on?
Y zo 3 2 _ 42 A - + A
koa n=1(m qmn) mn 0 mn mlo
k - p2 yL(—u ) -z
_V[E 0 ZE: mn mn D + F e N
2 2 p o=k oopo o+
ma® (k0 + ”mn)”mn mn o  ‘mn  "mio
+s (z) +s (2) (4.8)

It must be noted that all the integrals sl(n), sz(n) and
53(”) are convergent, and this can be verified by analyzing
the behavior of the integrands as n -+ -k0 and as n ~» -ko -,
The different terms in the expressions for the components

of the surface current density, (4.5) and (4.8), must now be given

some physical interpretation.
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In Appendix C it is shown that the Fourier transforms of the
field components, for o < a, have no branch points in the Tower
half-plane, only poles. In Appendix D, it is shown that, for
¢ > a, they have no poles, only branch points at n = -ko, in
the Tower half-plane. Consider the current densities J O(z) and

¢
J..(z) as being the sum of the densities on the inside (0 = a-)

01

and the outside (o = at+) of the metallic cylindrical shell. The
inside current densities will be the 1imit values of the tangential
magnetic field components as o + a- from values ¢ < a, and the
outside current densities will be the limit values of the tangential
magnetic field components as ¢ -+ at+ from values o > a.

Hence, the parts of (4.5) and (4.8) which resulted from
integration around poles, in the Tower half-plane, are seen to
correspond to the fields inside the metallic waveguide, and
represent, therefore, the current densities on the inside wall of
the metallic cylinder. Thus, the terms in the summation of (4.5)
and in the first summation of (4.8) represent reflected TEmn modes
inside the guide, propagating or evanescent, in the negative
z-direction. Similarly, each term in the second summation of
(14.8) represents a reflected Tan mode inside the guide.

The sn(z) terms in (4.5) and (4.8), on the other hand,
result from integrations along the branch cut in the lower half-
plane, and hence correspond to the fields outside the metallic
guide, for z < 0. They represent the current densities on the

outside wall of the metallic cylinder, and they are not expressed
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as a summation of modes, i.e., they represent a continuous, not

discrete, spectrum.

4.2 Inverse Fourier Transformation of QQ (n) and QQ

Expressions (3.42a) and (3.42b) w1]1 now be inverse
Fourier transformed, by using (4.1) and path deformations similar
to the ones used in Section 4.1. In an analogous manner, (4.2)
will be used to continue xU(n) and yU(n) into the lower half-plane,
when the path of integration is deformed, for z < 0. For z > 0,
the inverse Fourier transforms are zero, as in the previous
section.

From (B.17) and (B.18) it is seen that all the un(n) are

of the form

-j

k (&)
n
f S &, (4.9)

_ko

where the only singularities of Kn(g) are on the branches of
hyperbola of Fig. B.1. The un(n) have branch points at n = —ko,
and are of 0(an(n + ko)) behavior when n - -ko, because Kn(g)

are bounded at -ko, as seen in Appendix B. The branch cuts can

be taken anywhere in the third quadrant of the n plane, connecting
—k to -i»; here, they will be taken as the straight dashed Tlines
of Fig. B.1. The 1limit values of un(n) for the positive side and
the negative side of the branch cut are given by Plemelj formulas

(Pogorzelski [28]), and are
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u ) = ime (1) + By ()] (4.102)
and

() = ing) + Puml L (@100)

n n

@

where the operator ,fn means the principal value at n.
In (3.42), un(n) appears divided by xU(n) or yU(n), and,

using (4.2), the following discontinuities will occur across the

branch cut:
o) | u | et v @) + P (10 a0
Yy o KUy |- Inlvga) 10900520 17+ DY a) 173

(4.17a)
and
w () | w2yt (Y (v a) ¢ ﬁ[un(m-am(voa)}
O ORE J (v @) [ (v, )2 + [¥ (v,2)]2)

(4.11b)
The deformation of the original path, to the path of

Fig. B.2b, is possible because the right-hand sides of (3.42)
vanish at infinity, away from the branch cut. In fact, noting
that un(n) = O(n'l) as n ~ «, the conclusion follows.

As n » -ko, the right-hand side of (3.42a) remains bounded,

and the same holds for the terms on the right-hand side of (3.42b),
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with the exception of the six last terms, the ones including the

un(n), which behave as en(n + ko).

In any case, the integration

around —ko, along a small circle with vanishing radius, is zero.

The only contributions to the inverse Fourier transforms will

come from the integration of the discontinuity along the branch

cut and the residues of the poles captured in the path deformation.

and

The branch cut integrations for J ¢1(z) are
e
= _ 2 f(n) _.izn
Sl(Z) o ’ITKO J' n+k0e d
-k,
- 2 - e
Sz(z) - V[;. ZE: K —fén%——-e]zn d
n=1 % mn
0
-ie [ U u'(rx_. )
x(x ) x ‘““mio .
T 2 n -
-k, (" Mny)” 1~ Ao
U o
2x°(k_)A
= . /2 0  YIRY- izn
(2 = -2 Do Fn)3 ()’ an
-k,
-1
- 7 . -
SN R B ST NS L
5 ™ok 2
0
-
= _ /2 iF - izn
ss(z) = Vé; — - f(n)g3( )e dn ,

(4.12a)

(4.12b)

(4.12¢)

(4.12d)

(4.12e)

(4.12f)
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where

: x"(n)
f(n) = . (4.13a)
[9p(vo2) 12 + [¥ (v a)]?
and, for n in {1,2,3},
_ Y'(v a)
Gy = me (1) 0y Py ()] (4.130)
J'(v_a) n
m o
and the Kn(n) are given by (4.9).
Similarly, for J21(Z)’
s ) V/E- Ko F 21kga2xu(ko) = nf (n)| . izn
s (z) = /= — \jﬂ f(n) - im e dn ,
1 T a - myU(ko) n n ¥k
0
(4.74a)

s (2) I ZKn j A h ﬂﬂ)_+;;nfn) eiann’

2 a mnmn n - K 2
n=1 -k0 0 Yo
o =jo (4.14b)
_ K z izn
z - /2 Z n f(n)e
5 (2) e G2 4 Tk Y (4.14c)
2 G -1 232 2 U(X )
- 5 9 Y
s(2) =2 = oy + k) F(n)
+
a -k, qml(ko ¥ >‘mlo)
U .
| x(r_. ) izn
sx )+ Mot |2y e dn , (4.14d)




¢ =2y
mio
kO
+u—m~10—(“mlo
26(2)
27(2)
Ee(z)
§9<z)
s (2)
10
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KIA T ()3, (n)
0 f 117 iz
\Y]
-ko 0
Sl nf(n)g (n)
2 e1Zn d ,
\)2

(4.14e)

(4.14f)

(4.14q)

(4.14h)

(4.144)

(4.145)
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and
) Ka2F T Fm)a(n) -
= _ 0 6 1Zn
sll(z) = — v[\ —;—:—E;~—-e dn (4.14k)
'ko
where
n) = yL(nlf (4.15a)
[3 (v,2) 1% + [Y_(v,2) T
and
- Y (v a)
g,(n) = me (n) mo_ 4 <3) [u,(n)] (4.15b)
Jm(\)oa) n

for n in {4,5,6}.

Next, the contribution from the poles will be calculated.

U
b1
calculation yields

-»_,n=1,2,3,..., and a residue

(n) has double poles for n m

~I
~H

o . 6
-1\ Z
J¢1(z) : ZE: ( . nz)e UL :E: §Q(z) ,  (4.16)

n=1 2=1

where the §2(z) are given by (4.12), and where
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ol
=
1
:ftq
5
=
5
=
=]
~
1
o
'
3
—
o
-+
>
-+
3
>0 =
o

2 L' 2
) ZE: : K_.A ‘e 3a A , X L( Amn) . 21 . i\
=1 mn' mo " q%n X (-Amn) m m? - q%n
n'#n
ia2x_ (m? - g2 )H(l)(q ) 2xU(k ) i
N mn m’m mn + (o) + By )
3 Y'(q ) ma 1 mn m 2 mn
Yn 'm" Ymn
iF
- u3(—Amn) (4.]73)
and
- g xM(- )
ko= 1/% 2'"" L (4.17b)
a Amn(m B qmn)

From (3.42b), it is seen thatthl(n) has double poles
for n = -an and for n = “Fin® n=1,2,3,.... A calculation of

residues yields

. = =iy Z =
. Z B +52] e ™+ 5,(2) s (4.18)
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where the gz(z) are given by (4.14), and where

rg2 x-(-x_) | imK = K,
- T 'mn mn n
Cn"x/% K -\ +""Zx “x
a(m? - q%n) o “mn s mn' mn
n'#n
. L' (1)
2.9 - 2 2 _ 2
- 127 A ‘i x” xmn) ) a Amn(m qmn)Hm (qmn)
N2 (2 _ 42 Lo 3y
qmﬁm qm) x-( mﬁ qmﬁﬁ%m)
U
2
b + quG xUI(x ) - x| mlo)
2\ a2 (x ) mo®  Anio ¥ Amn
mio mn
21me(ko) m m
b AU (A ) - T Bu (Ap) + Fu (-pg) e
g X (-Xmn)

(4.19a)

(4.19b)
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K oA h K',
- ZE: n'“mn' mn' ZE: - n

n'=1 “mn' " "mn n'=t M mn
n'#n
L . (l)l
2 . 2
_ K a“m1+ 1 +y (‘%M + 1 +1a“mﬁm mmﬂ
nil - 2u L, ky tu
P m oy () o “mnp Y.(p )
> U ] u
. 20 0¥ o) . “mio ) ¥ ﬁ“mlo) Ky E“mlo) ;
U U +tu
(k0 + Amlo)(xmlo + ”mn) 0 0 mio'"mio mn
U u'
. ko? Oty o) . ke?™ (o) [Mmio ™ %o
Mmyomio ~ Ko “mo Mmoo ¥ Mmn
k ay (k,) - 2a?
T 2mr Duq('“mn) T ma Bu5('“mn) T 2m FUG( “mn) (4.19¢)
and
- 7p2 yb (- )
D, = -i/% R (4.19d)
ady (k_ +yu_ )

mn' o mn
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The physical interpretation of the different terms of
(4.16) and (4.18) 1is analogous to the analysis of (4.5) and (4.8),
done at the end of Section 4.1. The results of Appendices C and D
are, again, used, with the conclusion that the infinite summation
of (4.16) and the first summation of (4.18) correspond to the
reflected TEmn modes inside the metallic waveguide; the second
infinite summation of (4.18) corresponds to the reflected Tan
modes inside the metallic waveguide. A1l the mentioned terms
represent current densities on the inside wall of the metallic
shell.

The 52(2) of (4.16) and the s (z) of (4.18) result from

%
the branch cut integrations, and correspond to the fields outside
the metallic cylinder, for z < 0. They represent the current

densities on the outside wall of the metallic shell.

4.3 Reflection Coefficients: Zeroth and First Order Terms

A reflected Tan mode inside the metallic guide will have
a z-directed surface current density, of the general form (the

¢ variation is factored out)

JIM(z) = A (k) e M1 : (4.20)

where

=
]
=
— N
I
—
o
3
=]
S~
[o3)
SN
N

mni
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A reflected TEmn mode will have both components of the current,

of general form

TE '1kmn1z
J.(z) = B (k)e (4.21a)
¢ n
and .
TE L. "M ?
J_"(z) = - ————B(k)e , (4.21b)
z 2 n
9 mn
where
= 2 _ 2
an /kl (qmn/a)

Equations (4.20) and (4.21) must be expanded in series

such as (3.1). Usingw_. = /kg - (p/2)% and A = /kg - (q../2)%,

™ 1 n?

Jzo(z) = An(ko)e , (4.22a)

) = {'mko) -;:}—z‘\n(ko)z} Qe (4.22b)

RGNS Bn(ko)e_nmnz : (4.22¢)

JlE(Z) = { 'n(ko) - ;Eﬁ-Bn(ko)zJ e—ikmnz , (4.22d)

ZE(Z) = - im:';“a Bn(ko)e-nmnz, (4.22e)
mn
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If only a TEm1 mode is incident as the excitation, i.e.,
if o # 0 but Bm = 0, the incident surface current densities will

be (1.10a) and (1.10b), i.e.,

. i .z
J;TE(z) - iVZra e ™ (4.23a)
and
iTE im .2 ixm z
J, (z) = iVora e Mo (4.23b)

2
qml

By comparing to (4.20) and (4.21), the following reflection

coefficients are defined

B
BN (R
Pn =z — (4.24a)
V21 o
m
and
A (k
IR ENCR I
Pn = —_— (4.24b)
iver o

The unprimed coefficients account for the generation of
reflected TE modes from a TE incident mode, whereas the primed
coefficients account for the generation of TM reflected modes
from a TE incident mode. These Tatter coefficients are also

referred to, in the literature, as conversion coefficients.
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Series expansions of (4.24) yield

TE [Bn(ko)]Bm=0
rlE e (4.250)
iV2m a
m
), .,
o, (4.25b)
ivV2n %
"TE [An(ko)]em=o
— (4.25¢c)
iven -
e A (k)]
' A'(k =
rnfE —n" o -fm=0 (4.25d)
iV2nr o

Similarly, if only a TMml mode is incident, i.e., if
Bm # 0 but o, = 0, the incident surface current density will be
(1.10b), i.e.,

2 -
/?EBmkl T4

iTM(Z) mi (4.26)

Iz

iwpa

By comparing with (4.20) and (4.21) the following reflection

coefficients are defined

N — (4.27a)
Vor Bm kl
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and
\ . [Bn(kl)]a =0
rnTM - _wua 2 , (4.27b)
/or By k1

where the unprimed coefficient denotes the generation of a TM
reflected mode by a TM incident mode, and the primed coefficient
(also called a conversion coefficient) denotes the generation of a

TE reflected mode from a TM incident mode. Series expansions of (4.27)

yield:
™ _ jwpa
To — [An(ko)]am=0 , (4.28a)
/2r 8_k?
m o
™ _ jwpa . 2
" {[Anwo)]am:o - [An<ko)1am=0}, (4.280)
/2n Bmko
"™ _ jwua
Tro —_— [Bn(ko)]am=o (4.28¢)
V7 Bk
and
'IM  _ jwpa . _ 2
T {[Bn(ko)]am=o k [Bn(ko)]um=o:% : (4.28d)
/2n g k2 0

Expressions (4.25) and (4.28) completely determine the
zeroth and first order terms of the series expansions of the

different reflection coefficients, as defined by (4.24) and (4.27),
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provided that An(ko), A'(k ), B (k.) and Bﬁ(ko) are known. The

n'-o n‘o
determination of these functions will be the task of the remaining
part of this section.

To determine An(ko), (4.22a) is compared to (4.8), to

yield

(4.29)

As a further check on the validity of (4.29), (4.22b) is
compared to (4.18), with exactly the same result. From this

last comparison, it follows also that

Aﬁ(ko) = D, (4.30)

which is given explicitly by (4.19c).

To obtain Bn(k ), (4.22¢c) is compared to (4.5), with

0
the result
w o Lo
sk = 2w "m) A, 8B . (8.31)
noo ¢ (M - 92 ) ‘mn " %o *m T Amio
0

This result must also be obtained if, instead, (4.22d) is
compared to (4.16), (4.22e) to (4.8), or (4.22f) to (4.18), and
it is indeed obtained, proving the consistency of the expressions

previously reached for the current densities.
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From the comparison of (4.22f) to (4.18), it also ensues

that

c (4.32)

where C. is given by (4.19a).

When using (4.29) through (4.32) in (4.25) and (4.28), either
Bm =0 or o = 0, which cause considerable simpTification. Among
the constants defined by (3.41), for example, F, L and T vanish
if By = 0, and B,C and G vanish if o = 0. In either case, A and
D will simplify, because V;o(-ko) simplifies, as expressed by
(3.32). No one of expressions (4.25) and (4.28) is identically
zero, however, which shows that an incident mode with an mth
order variation in ¢ originates both TE and TM reflected modes
when m > 1. The simpler case of m= 0 only admits TE reflected
modes when the incident mode is TE, and similarly for TM modes,
as was pointed out in Section 2.4.

The zeroth order terms for the several reflection coefficients,
(4.25a), (4.25c), (4.28a) and (4.28c) must agree with the results
arrived at by Weinstein, [16], Section 27. After some laborious

conversion of notation between Weinstein [16] and this work, this

agreement can be proved.
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4.4 Some Numerical Computations for the TE;; Mode

It is assumed, in this section, that Im k0 and Im k; are

zero, and that the structure was dimensioned in such a manner that
the only propagating mode inside the metallic waveguide is the
dominant TE11 mode, all the others being evanescent. The cutoff
for this mode occurs for kla = q11 = 1.84118. Considering only
modes with the same ¢-variation, m = 1, the next lowest cutoff
corresponds to the TM mode, and occurs when k a = p = 3.83171.

11 1 11
Therefore, it is assumed that

1.84118 < kla < 3.83171 . (4.33)

If all possible ¢-variations were allowed, TE would still be
11

dominant, but the right-hand bound of (4.33) would be replaced
With py, = 2.40483, the cutoff of the TM, mode.

The exciting mode is an incident TE11 mode and, since all
other modes are evanescent, the only reflected field inside

the waveguide, far enough away from the open end, will be a reflected

ey
o TE

mode. Therefore, the reflection coefficient of interest is
, With the zeroth and first-order terms given by (4.25a) and

(4.25b), forn =1, i.e.,
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TE _ 1ﬂq;l[xg(xll)]2 1

T
10 )
2A11a(1 q11) 2A11a
U 2
ZkOa[yl(ko)]
- , (4.34)
) 2 or U 2 _ U 2
(llla koa) [4(koa) [Xl(ko)] [yl(ko)] ]
and
TE 2
ros q
NS . . (4.35)
a V21 o A a2 1
111 m=1
B=0

In these expressions, the subscript in xP(n) and yy(n) means
that m = 1 in the functions xU(n) and yU(n), which were defined in
Appendix A. En is given by (4.19a).

For a given koa, and for a given relative permittivity of the

dielectric, ¢ _ = el/ao, which is sufficiently close to unity, the

r

reflection coefficient for the TEll mode is

TE TE 1 _TE
r (kjase.) - rlo(koa) + = Fll(koa) . koa(/E; -1, (4.36)
where the only variation with ey is shown explicitly by the
factor (/_E; - 1).

Numerical computations of expressions (4.34) and (4.35) were

carried out on the University of Michigan's Amdahl 470/V8 computer,

and the results are displayed in Table 4.1 and Fig. 4.1.
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Table 4.1
Numerical Values for FTE = TTE + PTE Ak + ...
1 10 11
koa FIE -% PIE ggégzebound

r
1.842 -0.9125 - i0.0040 15.4501 + i14.1663|1.0009
1.85 -0.7436 - i0.0120 6.0213 + i1.1114 [1.0096
1.9 -0.4634 - i0.0216 3.6548 - 10.4324 |{1.0629
2.0 -0.2811 - i0.0129 2.3994 - i0.7441 |1.1651
2.2 -0.1491 + 10.0041 1.4726 + i0.1639 |1.3528
2.5 -0.0739 + i0.0179 0.8425 + i0.2625 |1.5965
3.0 -0.0258 + 10.0206 0.3944 + i0.1724 |1.6313
3.4 -0.0073 + i0.0199 0.2616 + i0.0901 [1.2701
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Fig. 4.1: Variation with koa of the complex functions FTE and

10
1/a rTE,
11
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These results show that, for koa close to q11’ i.e., near

the cutoff of the TE11 mode, FIE is close to -1, and FTE is
11
quite large. This means an almost total reflection of the mode

for &= 1, and a very large sensitivity of PTE

, (4.36), to a
small increase in e, (which leads to a decrease in IFIEl). However,
as discussed later on in this section and as displayed in the

last column of Table 4.1, even a small increase in e, would

invalidate (4.36).

As kja s increased [FIE] decreases rather fast, indicating
that increasingly more of the incident power will Teave the
waveguide through the open end, and progressively less of it will
be reflected back into the guide. An increase in € will still
Tead to a decrease in |FIE|' The sensitivity of (4.36) to that
increase in & however, becomes progressively less, while at the
same time Targer values of g. are allowed before the validity of
(4.36) is jeopardized.

Therefore, when the structure is to be used as an antenna,
the farther the frequency is from cutoff, the more power is
available outside of the guide. This power will be radiated in

a real antenna, for which the dielectric rod is terminated at a

finite distance from the open end. Another important factor is the

radiation pattern, which will be discussed in Chapter V.
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If koa were to be increased beyond p = 3.83171, the T™™
1

11
mode would also propagate back into the guide. The derivative

1

of FTE(k a) with respect to k a , as k a crossed the value p ,
1 %0 0 0 11

would change abruptly, as was concluded by Weinstein [16],

Section 26, about the zeroth order term FTE. This reflects the

10
fact that TIE(koa’Er) is a function of the propagation constants
of the guided modes, Aln and uln, n=1,2,3,.... Therefore, as
a function of kla, it has branch points at kla =P, and kla = qln,
n=1,2,3,....

This fact establishes the radius of convergence of the
Taylor series for FIE around kla = koa, which is the smallest of
the quantities koa - 1.84118 and 3.83171 - koa. As kl will be
real, positive, and Targer than ko’ this means that kla < min
{(2koa - 1.84118), 3.83171} is the condition for the convergence

of the Taylor series expansion. This imposes an upper bound

on e in expression (4.36), namely

r
2 2
. 1.84118 3.83171
e, < min <2 - koa > , (}—753;——> . (4.37)

This bound for Ep has the numerical values displayed in the

last column of Table 4.1, and should be understood only as a
coarse restriction on the choice of € Clearly, (4.36) will

always be in error, and it will be more accurate the closer e is

to unity. For £ close to the maximum allowable value of (4.37), the

convergence of the Taylor series for FTE
1

will be quite slow, and the
two terms of (4.36) probably will not be sufficient to describe the

whole series with reasonable accuracy.
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The upper bound on the allowable value of €. is one of the
most serious Timitations of the perturbation approach undertaken

in this work.



CHAPTER V. FIELDS OUTSIDE THE METALLIC GUIDE

5.1 Some Properties of the Field Components for z > 0

In Appendices C and D, the transforms of the field components
were analyzed for their behavior in the Tower half-plane, which is
relevant to the behavior of the fields for z < 0. In Chapter IV,
it was then concluded that, for z < 0, the fields inside the guide
are completely described by an infinite summation of reflected modes.
Outside the guide, for z < 0, the fields are described by integrals
along the branch cut in the lower half-plane, representing a
continuous spectrum.

The same transformed functions should now be analyzed in the
upper half-plane, so that conclusions may be reached about the
behavior of the field components for z > 0.

Hence, for o < a, and in the upper half-plane (C.2) and (C.3)

may be written as follows. Using (3.31b), (C.2a) becomes

D F n kg (1)
Vo (nep) = ol +— He' /(v a)d (voo)
Z0 2mkO n + kO LI yU(n) m 0 ‘'m0
(5.1)
From (3.36d), (C.2b) yields
L
V- o(-k.)
0 T L wpa
V. (nsp) [: 21 - S (n)-J Jo(vae) + 50—
Al yL(—k )y + ko) 2we 7 m**o 2mk
D F "tk (1)
+ J (vaw(n,e) H''/(v.a) , (5.2)
(n + k0 N - Wi m yU(n)

-87-
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where SL(n) is given by (B.37), and w(n,p) is given by
1

(C.4).

Using (C.5a), (C.3a) may be written as

Izo(”’p) = i%é. E&go(n) + E_TEXEI;} voHél) (voa)dm(vop) . (5.3)

Expression (C.3b) is also valid in the upper half-plane, with

Izo(n,a—) and I21(”’a') given by (C.5a) and (C.5b).

The zeroth order terms, (5.1) and (5.3), represent physically

the case of having no dielectric rod, i.e., ¢ = €y In agreement
1

with that, it is easily seen that the singularities of Vzo(n,p)
and Izo(n,p) in the upper half-plane are a branch point at n = +k0

and a single pole at n = u orn = Ao respectively. It is

m1o
straightforward to verify that these poles yield contributions to
E;o(p,z) and to TK;o(p,z) which exactly cancel the zeroth order

fields due to the incident modes, E,, and Hyo. The total fields

z0
for z > 0, as given by (2.1) and (2.2), do not have any modal
components in the zeroth order terms, as physically expected.
For the first order terms, these conclusions are not as
easily reached. From (5.2) and (C.3b), it is seen that VZl(n,p)

and Izl(n,p) have a branch point at n = +k0.

For a TMml incident mode, the first order term of the series

expansion of the z-component of E' is, (1.1),
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i /Egikoempnﬁ p . 5.4
21 o 3 (p ) In(Pug 1z expling, 2) . (5.4)
a%Un10Ym\Pm

In (5.2), it is noted that Vzl(n,p) has a double pole at

U, which is in the term multiplied by the constant F. As in

m10
Section 4.2, the double pole will yield for fél(o,z) among others,

a term with z exp(iu_. z) variation in the variable z, and it is

m10

relatively easy to show that, in this case, that term will exactly

cancel (5.4), so that is does not appear in the total field E21’ (2.1c).
It is also straightforward, though Taborious, to show that the

apparent poles at - are actually cancelled among the several

terms of (5.2), and that the residues at Mito of the different terms

cancel each other exactly, except for the part that varies with z

as z exp(ip_..z), which was mentioned before, and which accounts for

mio
the incident field. Hence, the first order term for the z-component
of the total electric field, E21’ has no modal parts for z > 0,

p < a, being given by a branch cut integration alone.

When a TEml mode is incident, the first order term for the

z-component of the incident magnetic field is derived from (1.2),

and is
j /Z—‘T?kootm .
H = - : P ‘ :
Z1 Am]_odm‘qml) Jm(qml a ) VA eXP(1>\m102) . (5-5)

The study of (C.3b) in the upper half-plane is simplified by
the fact that (C.5a) and (C.5b) include tﬁgo(n) and clgl(n), which,

being analytic in the region of interest, require no further analysis.
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It seems that Izl(n,p) has poles at n =p_, n=1,2,3,..., but these

mn
poles are cancelled among the several terms, and hence removed. There
is a double pole at n = Amlo but, upon inverse transforming in
accordance with (2.5), it is seen that its contribution to'3(21(p,z)
exactly cancels (5.5). Thus, the first order term of the total field,

H (as given by (2.2)), has no modal type contributions either, and

z1’°

is expressed as a branch cut integration, for p < a, z > 0. These

arguments can be extended to the po-derivatives of (5.1), (5.2),

(5.3) and C.3b), whence these results also apply to expressions

(C.8). Thus, it is concluded that the zeroth and first order

terms of the total field components for p < a, z > 0, are given by

branch cut integrations. The mode contribution of the scattered

field components is exactly cancelled by the zeroth and first order

terms of the incident fields, and does not appear in the total fields.
A similar analysis must be done for p > a, z > 0, which

means analyzing the functions (D.1) in the upper half-plane.

Using (3.31b), (D.1a) is, in the upper half plane,

k
_wpd D F n¥ 0 (1)
Vzo(ns0) = 2mk | F K - o | yUin) In(vea)Hy * (vge)
(5.6)
From (3.36d) and (D.1b),
L
V= (-k.) N+ ok
_ 1 L (1)
V. (n,o) =222 - 50— S"(n) J (v a)H /(v o),
z1 yL(_kO) n+ kg Zweo 1 yU(n) o'm ‘o
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with Sk(n) given by (B.37). From (D.2) and (D.1c), get

J'(v_a)

1 A B Yo'm"Yo?’ (1)

I (n,p) = k + - H (\) p)
20 oa n + ko n )\mlo XU('{]) m 0

Expressions (D.1d) and (D.3) remain valid for Izl(n,p),
with V= (n) in (D.3) given by (3.31b).

It is clear that none of the functions (5.6), (5.7) or (5.8)
has poles in the upper half-plane, and the respective field
components are represented by integrals along the branch cut from
k, to *+i». The same conclusion is reached concerning IZI(n,o),

because the poles at Am of two of its terms actually cancel each

0
other.

From (D.1), it is clear that differentiation with respect
to p does not change the aforementioned properties. Then, using
the corresponding forms of (C.8) for p > a, and similarly for the
p-components, it follows that all the field components are
represented by branch cut integrations, with no mode-1like parts.

It should be remarked here that, inasmuch as the total field
inside the metallic waveguide is completely described by a
summation of TE and TM reflected modes in addition to the incident
modes, the total fields outside the metallic waveguide display no
modal components. This fact must perforce be attributed to the
nature of the mathematical approach undertaken, namely to the

expansion of all quantities in Taylor series about the permittivity

of free space.
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The exact solution of this problem must display modal
components of the fields, along the dielectric rod outside the
metallic cylinder (see Kiely [1 ] and Andersen [ 5]). If the
complete Taylor series were used (clearly, impossible in practice),
the poles of the Fourier transformed functions would be
reconstituted at the propagation constants of the modes of the
dielectric rod. Since only the first two terms of the series are
used, however, these modes do not appear explicitly. Rather, they
show themselves in the form of a first order perturbation of the
fields of the zeroth order case. The latter case represents the

physical case el = € s which admits no modal components for z > 0.

5.2 Zeroth Order Asymptotic Far Field

It is now convenient to express the fields in a spherical
coordinate system, (r,0,4), such that ¢ is the same as for the

cylindrical system, and where

p = rsine , z = rcoseo . (5.9)

A vector field, for example (ﬁ),§$,EZ), will now be

represented as (Er’Ee’E¢)’ where E _remains unchanged, but

¢

E. = Eysine + E,cos & , Ej = E, cos 6 - EZ sin & . (5.10)

As in Section 2.1, the Fourier transform integrals are

defined:
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?ir(o,z) = - ;%: Uf Vr(n,p)einz dn , (5.11a)
m
& (0s2) = —;—f_f V(nie)e'™ dn (5.11b)
m
R, (p.2) = —;—/_ [ Llne)e™™ ar (5.11c)
m
and .
Bfe(psz) = ~;%: k/, Ie(n,p)einz dn . (5.11d)
m

Then, (2.9a), (2.9d), (2.7), (2.8) and (5.10) give

- 91_(n,p)
_ i z
V¢(n,p) = ;E- wup —S—p— ¥ anZ(n,p) , (5.12a)
i aV_(n»p)
I¢(ﬂ,p) = - ;;' wep ~—_55_——_+ nmIZ(n,p) > (5.]2b)

V (nyp) = AMeR + [Msing Ly
pinep 2y z(n,p) 2 6 30 cos © Vz(n,p) )

(5.12¢)

_ im i .
Ir(nap) = e Vz(n’p) + (L sin g &+ cos o) I_(nsp)
var v2 3p z

(5.12d)
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im i p) .
Ve(n,p) = —=h Iz(n,p) + (—Scos ) Fr e sin 6>Vz(n,p)

and

Ie(n,p)

1
—
=
1S
oM

-
—~
=
©
g
+
TN

in LI
cos © 5y~ Sin %)Iz(n,p)

(5.12f)

where (e,v) are (eo,vo) for o> a and (el,vl) for o < a.

Expressions (5.12) will now be expanded in series Tike (3.1).
The zeroth order terms are obtained from expressions (5.12) by
simply replacing v with v, € with €. Iz(n,p) with Izo(n,p) and
Vz(n,p) with Vzo(n,p). The correct expressions for Izo(h,p) and
Vzo(n,p) must be chosen according to whether p < a or o > a
(Appendices C and D, respectively, or Section 5.1).

In this section, it is assumed that Im ko is made to vanish.
With k0 real and positive, the path of integration for the inverse
Fourier transform integrals will have to be indented to avoid the
branch points, but that does not affect any of the analysis.

The inverse Fourier transformation of the zeroth order terms

of (5.12), for p > a, will now be carried out, asymptotically for

large kor, with 9 away from 0 or =, i.e., with

sine >8>0 , § << 1 . (5.13)

This restriction means that the axial directions of the
structure are avoided, and only the region ¢ > a is considered. The

first component to be treated will be
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" y (n:p) 1
& (0,z) = - ] j~ 20 5 e'™dn . (5.14)

V¢0(n,p) is derived from (5.12a), with Vzo(n,o) and Izo(n,p)

given by (5.6) and (5.8), and hence

v (n,p) J'(v a) 1
$0 = ng é . _BX E 0 H( ) (vor sin 9)
e LT o T Mo [ x¥(n)
u(1)
_dwpa/ D . F ) ndy (vpa) Hy ' (vgr sin ) (5.15)
2k0 n + ko n - Umlo (rl _ ko)yU(ﬂ) r sin o

The following asymptotic expressions for large kor will be

useful (see Watson, [29], Chapter VII):

(1) . ~ 2 1/2 iv_ r sin o
Hm (Vor sin o) ( TV,r Sin 6 e ° exp[-i(2m+1)/(4)n]
S(1+0(r ) (5.16a)
and
1/2 . .
H(1)|( . 2 1V0r Sin 6 ) ]
m . (vor sin 8) ~ ;;;;quﬁ—gw e exp[-i(2m-1)/(4)r]
J
S(1+0(r ), (5.16b)

both valid in region (5.13).
Using (5.16) in (5.15), it is seen that, for large enough
kor, the second half of the right-hand side of (5.15) is negligible,

when compared to the first half, and then
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V (ﬂ,p) 1 7
60 2wy exp[-i(2m-1)/(4)n] A B
0 ~ J:: K n+k TheR
02 , 0 mio
. g
3 (v.a) fv,r sin ]
& a+o(r’h)) . (5.17)
x (n) S rsin 6

0

Expression (5.17) is now used in (5.14), but first it is
convenient to perform a change of variables, as follows
n = k0 Cos a , v, = kO sina ,dn = -k0 sin o do
(5.18)

The asymptotic version of (5.14) can then be written,

. . r
E (rp) ~ Jw expFi(2m-1)/(4)r] .\ A N B
b0 mk a/k r sin o cos o+ 1 * m1o
0 0 CoS o - k
0
J'(k_a sin a) ik r cos(a-6)
. Mo sinao e ° da , (5.19)

xU(kO cos a)

where c is the path of integration in the a-plane, as shown in
Fig. 5.1.

It must be noted that J%(koa sin a)/xU(kO Cos o) is an
appropriate expression in Regions I and II of Fig. 5.1, but it may

be convenient to replace it by xL(ko cos @)/Hél) (koa sin a) for

Regions IIT and IV. It is seen that the only singularities of the

integrand of (5.19) are branch points at o = nm, n = 0,+1,+2,....
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Fig. 5.1:

AN
JL—.-——-—————-————.——-———_———-———

111

—t
—
——

—
g

Paths of integration in the a-plane. The regions
numbered I, II, III, and IV are the images of the

first, second, third and fourth quadrants of the n-plane
through n=k0 cos o, with k0 real. The primed regions are
such that Vo = k0 sim has negative imaginary part, w th

Imvo positive in the unprimed regions.

Red
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Integral (5.19) is in a form convenient for evaluation by the

method of steepest descents, for large kor, and that will now be
carried out. The function cos(a - 6) has a stationary point at o = o,
and the path of steepest descents passes through s and is such that
cos[Re(a - 6)] - cosh[Im(a - 8)] = 1. This path will be denoted c',
and is also depicted in Fig. 5.1, for a given o in (0,m). The

asymptotic expression for (5.19) is thus

_ ik r

~ |2 wuexp[i(3-m)/(2)n] (E .\ e °
&,olrs0) jﬂ s fol®) Sy » (5:202)
where
RE (5) = ( A___,__ B )%(k°a i ) (5.20b)
$0 cos 6 + 1 A U )
cos 6 - MO | x (kO cos 0)

0

Next, attention will be given to the zeroth order version of

(5.11b). Similarly, the use of (5.6) and (5.8) in (5.12%) yields

, 1 .
v (no) ey A B Jm(voa) Hé )(vor sin 8)
nsp) = t —
80 koa n + k0 n Am1o vOXU(n) r tan o
wua D F (n + ko)Jm(V a)
¥ 2mk | n + k ¥ n-u U
0 0 mlo y (n)

1 1
j%ﬁ»cos 0 Hé ) (vor sin 6) - sin o Hél)(vor sing), . (5.21)
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Using (5.16), the following is valid for large r:

wpa exp[-i(2m+1)/(4)7] D F
V¢o(“’p) SR SRR
yon mk0 0 m;0
. g
(n + k )J (\) a) 1\)0}“ S1n i
. Uo L €-cos g +sinb) E—r (1+0(r'h))
y~(n) ° /v rsin e
(5.22)
Using (5.18) in (5.22) and (5.11b) gives
wua expfi(2m+1)/(4)r] D F
olro0) - 2mk VK r sin & cos ¥ 1” “mlo
KKl 1N c cos o - 5=
0
+1)J_(k i ik r cos(a - 6
(cos a ) m( od sin a) coso - 0) o (o ) i (5.23)

U
¥ (ky cos ) J sin g
The only singularities of this integrand are branch points at

o =nm, n=0,+£1,+2,.... The steepest descent evaluation, by

integrating along c', yields

ik.r
i 0
8 (re) . i exeli(Em/(2)n] gE (e (5.24a)
v V21 mk, 60 kor
where |
RE (9) = D + F cos g + 1 Jm(koa sin g)
60 cos 6 + 1 " STh o ]
cos 5 - y-(k, cos o)
) 0
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Using (5.6) and (5.8) in (5.12c), the expression obtained for
Vro(n’p) is very similar to (5.21). The only differences are that
(tan e)'1 does not appear in the first half of the right-hand side
of (5.21) and, inside the brackets, cos 6 is replaced with sin 8,
and -sin 6 with cos 6. Then, (5.22) is valid for Vro(n,p), if
[(n/vo)cos 6 + sin 6] is replaced by [(n/vo)sin 6 - cos 6]. Thus,
in (5.23), the factor cos(a - 6), which appears in the integrand
multiplying the exponential, must be replaced with sin(6 - o). This

factor causes the first term of the asymptotic expansion, of

ik r
o[(e °

)/(kor)] behavior, to vanish. As a consequence,

ikor
& (rn) = of & ) (5.25)

ro (kor)2

as kor increases without bound, and is, therefore, negligible when
compared with (5.20a) and (5.24a). This fact was obviously expected
for the zeroth order radiation field, which corresponds physically
to the case 61 =

The magnetic field components will now be analyzed. Using

(5.6) and (5.8) in (5.12b), and using the asymptotic expressions
(5.16), it follows that, for large kor,

Lo (M:P) . koa exp[-i(2m+1)/(4)x] [ L F
o I m Nt Ky M Mg

(n + k )d (v a) ivor sin o

G e (1+0(rt)) . (5.26)
VoY (n) /vor sin 6
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Following the same procedure that was used for the zeroth
order components of the electric field, the following asymptotic

expression is obtained

Holre) ~ exp[1(3-m)/(2)n] gE (4) & : , (5.27)
21 m ©

where Rgo(e) is given by (5.24b). Comparing (5.24) and (5.27), it

follows that, asymptotically for large kor,

8 s
35?27(% - JE . 120 (ohms) (5.28)

which is an expected result.
In a similar manner, inverse transforming the asymptotic version

of (5.12f), it is concluded that

€,o(rs0) -
RoolT0) = e, (5.29)

as was also expected for large kor.

Following the same procedure for (5.12d), it is concluded
that (5.25) also holds for ero(r,e). Thus, the radial component of
the zeroth order magnetic field is negligible in the far zone,
when compared with the transverse components, again an expected

result.
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5.3 First Order Asymptotic Far Field Outside the Dielectric

For p > a, expressions (5.12) are taken with ¢ = €ys V=V,

The first order terms are simply (5.12) with ¢ = e,» v = v, and
with I.(n,0) and V,(n,e) replaced with I, (n,p) and V,1(ns0).  These
first order functions are given in Appendix D and in Section 5.1 (in
the Tower and the upper half-planes, respectively).

The inverse Fourier transformation of the first order terms
will now be carried out, asymptotically for large kon in a
manner similar to Section 5.2. Restriction (5.13) will hold in this
case as well, and kO is supposed to be real and positive.

It must be remarked that, as was concluded in Appendix D and
in Section 5.1, the Fourier transforms of the zeroth and first order
terms of the components of the fields for o > a have no poles in the
complex n-plane, their only singularities being branch points for
n = tko. This property is not changed by the change of variable
(5.18), and is thus extended to the o-plane. Hence, no poles are
ever captured when the path of integration ¢ (Fig.5.1) is deformed
into the path of steepest descents, c'.

Expressions (5.7) or (D.1b) will be used for Vzl(n,p), and
expressions (D.1d) and (D.3) for Izl(n,p). It is seen that the
p-variation of either of these functions is given by a factor
Hél)(vop), similarly to what happens with the zeroth order
functions.

Using (2.4), (5.12a), (5.16) and (5.18), it follows

that



-103-

2 (r0) o i expli(3-2n)/(4)r] & 1, (na+)
) ﬂko V?;?—Eﬁ?r—7; ) 1)

m (Vod) n=k_ cos o
v =k~ sin a
0 0

ikyr cos(a-9)

.- do , (5.30)
Ysin a

where IZl(n,a+) is given by (D.3).
A steepest descent evaluation, along the path c¢' of

Fig. 5.1, yields

ikor
2w (3- E e
ém(r,e),,Al: , exp[i(3-m)/(2)r] Rd)l(e) o (5.31a)
where
‘ I (n,a+)
Rgl(e) = | 2 . (5.31b)
Hél)(voa) n=k, cos ©

= s 1
o k0 in o

Similarly, from (5.11b), (5.12e), (5.16), (5.18) and a
steepest descent evaluation, it follows that

ik
of

?i 1(r,e) '“;J%j exp[i(3-m)/(2)r] Rgl(e) ek = (5.32a)

0 0

where
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[yl
RE (6) = — ?1) , (5.32b)
1 -
N (voa) n-k0 cos 6
b v =k sin 8
o 0

and th(”) is given by (3.36d), i.e.,

L L

v V5. (- 3y (v

Hzi(z) xi fl( o) .. s (n + kO)S:(n) mﬁ o’ (5.33)
n W Y ('ko) 0 y (n)

with S5(n) as in (8.37).

Conclusion (5.25) is easily reached concerning ?irl(r,e), S0
that this component is negligible in the far field, when compared
with (5.31a) and (5.32a).

Using the same procedure for the first order terms of the
components of the magnetic field, the following conclusions are

reached:

(0 B (5.34)

¢
Xm(}“,@) v o

m |=

(r,6)
éi¢ APV ) (5.35)

K (r,o) £

01 °

and Q(fl(r,e) behaves as (5.25), hence it is negligible in the
far field.



CHAPTER VI. COMMENTS AND CONCLUSIONS

The problem introduced in Section 1.2 has been discussed. The
method of Wiener-Hopf was used and, upon its failure for the general
case, the problem was reformulated for a dielectric rod with relative
permittivity slightly greater than unity. A perturbation analysis was
used, and the zeroth-order (unperturbed) and first-order problems were
treated. Each one of these was solved by the Wiener-Hopf method. The
zeroth and first order terms were found for the surface current
density, the reflection and conversion coefficients inside the
metallic guide, and the off-axis far electromagnetic field.

As was mentioned in Chapter V, the perturbation approach
undertaken does not bring out explicitly any of the dielectric-rod
modes which are known to be excited by the incident fields. The HE11
surface wave mode is the most important constituent of the near-field
of a dielectric-rod antenna. In fact, a cross-section of the field
distribution of that mode shows that this field extends much beyond
the radius of the rod, forming a Targe equivalent aperture to account
for the forward lobe. The field outside the dielectric decreases
exponentially in the radial direction, without changing its phase,
when the HE11 mode is the only contribution to it. Near the junction
with the metallic waveguide, however, the field along the dielectric

rod is not well described by the HE mode, and the contribution from -
11

the space wave ([5], Chapter III) is a major part of the total field.
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For progressively greater distances from the junction, along the rod,
the HE11 mode will become the major part of the field. Only then does
the cross-section field distribution constitute an enlarged equiphase
aperture, smoothly tapered off at the edges, which will produce a
strong forward lobe and ideally no sidelobes. The least distance

from the junction at which this occurs, will represent the smallest
desirable length for a dielectric rod antenna. The optimum length for
the antenna will be determined by studying the phase differences of the
surface wave and the space wave along the rod. A reinforcing inter-
ference of these two contributions is desirable (see [5]). Therefore,
a study of the relative magnitudes of the field constituents along the
rod is of great importance for the design of practical antennas. It
was left out in this work because the perturbation approach undertaken
did not bring out explicitly the modal contribution. Hence, further

work in that direction will be necessary.



APPENDIX A. FACTORIZATION OF x(n) AND y(n)

The factorizations (3.13) are to be performed to the functions
(2.50) and (2.51). This has been done, for instance, by Weinstein
[16], Sections 22 and 26, and the results will be summarized here.

For the function

(va) , (A.1)

the factorization y(n) = yL(n)-yU(n) is given by

-(1/2) 4 (n)
) = gt e (A 22)
and
(1/72)_(n)
Py = gt (v e e (A.2b)
where

b (n) = -2 E d . (A.3)
m 2 2
n=1 £ -n
m(n-1
In (A.3)s oo = /K2 - (p /2)2,n=1,2,3,..., and =k .

The integration is carried out along the branch cut, wnich is the

line Im vk2 - £2 =0, and the function Am(E) is given by

-107-
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J (t a)
A ) = arc tan |- o2 , 0 j_Am(i) <m 5 (A.4)
m {j Ym(Toai

. - 2 . .
with T /k0 £2, Am(g) is continuous for every arc (“m(n-l)’“n)’
increasing there from zero to m, and has a discontinuity of -n

at every point Mop? M = 1,2,3,....

In a similar fashion, the function

has the factorization

| -(1/2)x.(n)
xL(n) = [J%(voa)Hél) (voa)]l/2 e " (A.6a)
and
' (1/2)x,(n)
S I AV IS L (h.6b)
where

A
n o ()
Xg(n) = - %ﬂ :EE:: S i " de . (A.7)

n=1 A
m(n-1)

— 2— 2 — -
In (A.7), Aon /ko (qmn/a) ,n=1,2,3,..., and Ao k .

The integration is carried out along the same line, Im T ° 0, and
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o (£) = arc tan |- s 0<a(e)<r . (A8)
m Y'(Ta) — m
0
Qm(g) has a discontinuity of -7 at every point Aops M = 1,2,
3,..., and is continuous otherwise, increasing from zero to = when &
goes from Mn(n-1) tor »n=23,... Ateg=ky, Qm(g) is m,
then it decreases, has a relative minimum, and increases back to =
for ¢ = Aml.
Both yL(n) and xL(n) have a branch point for n = ko’ and both
yU(n) and xU(n) have a branch point for n = -k,. The following

properties hold:

) = YY) (A.9a)
and

Yn) . (A.9b)

As |n| + =, away from the negative sides of the respective
hyperbolic branct cuts (as in Fig. 2.1), the four split functions

(A.2) and (A.6) have O(n-l/z) behavior.



-110-

APPENDIX B. ADDITIVE DECOMPOSITION OF Rl(n) AND Sl(n)

Expressions (3.39) must be split according to (3.35). Some

of the terms in (3.39) are split by simple extraction of a pole.

Namely,
U
R.(n) = ¢ =2l = Ry e Rk (8.1a)
C (n -2 )2 C C
m1o
where
U U U
Rg(n) _ x(n) = )P o) = (= O Gy ) (5.1b)
(n - Amlo)2

is analytic in the upper half-plane Imn > - Imko, because the

pole at Xnto has been cancelled, and where

mi0 X mio (B.1c)

is analytic in the lower half-plane Im n < Im ko'

Hence, it is only necessary to split the function

for then



Also,

where

and
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In a similar manner,

U
n(n+ )y (n) U L
Sa(n) = ——_—l = Sa(n) + Sc(n)
G (n Ao (n ¥ ko) G G
U , U
- 6n (n + Mn1ol¥ () a 2o’ (Mnyo) 1
(k) n =200 Ko * An1o "= Anto
222y )
SL(T]) G mig mio 1
6 ko * Anto " Ao
iy - L k,)y'(n) Ui+ s
n)o = = n) + n)
L T L L
)y (n) - ( k )y ()
SU(n) - L (n - kg)y (n Pmig T Ko/ \imyo
L T o
(b -k )yU(u )
L mio 0 mio
SL(T]) = L

(B.3a)

(B.3b)

(B.3c)

(B.4a)

(B.4b)

(B.4c)
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Finally,
(n - k,)y
spln) = 1) sin) + S5(n) »  (B.5)
(n = Uy o)?
where
U U .
(n - k)y"(n) - (1o = KoY (“mlo) - (n - .
U u'
S#(n) - [y (g o) + (g = KDY ()] (5.5)
(n = wpy)?
and U
(upyg = KV G + (- )
Ka(CIN IR (R S Lo RO
S(n) = T o~ o o s (B.5¢)
(n - “mlo)z

Hence, all that is left is splitting the function

S¥(n) =S (n) - Sgn) = S.(n) - Sp(n) = s*Un) + sk(n) L (B.6a)
1 1 1

and then

sin) = 55(n) + sgn) + sPn) + s¥n) (8-6b)
and

S(n) = S*H(n) + Sg(n) + S(n) + S5(n) . (8.6c)
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Clearly, both Rr(n) and Sr(n) are analytic in the strip
-Im k0 <Imn<Im k0 , (B.7)
and it is relatively easy to show that they both vanish at

infinity within that strip. Then, the following decomposition

expressions are valid (see, for example, Noble [ 8], Section 1.3,

Theorem B)
RV = e
) n) o F o dc ,  for any n above Y, (B.8a)
"
Rty = R
1 n) 2mi £ - S for any n below Y, o (B.8b)
P

and similarly for S;U(n) and SfL(n), with Sr(n) replacing Rr(g).
Figure B.1 shows the paths of integration Y, and Y,

It is necessary to analyze the singularities of RT(&) and
ST(&) in both the upper and lower half-planes. Either of these

two functions has branch points at ¢ = k0 and £ = -k , and the

0
branch cuts will be taken to be the dashed lines of Fig. B.1. Note

that, here and in the future, when ¢ is taken as the variable

1/2

instead of n, v_= (k? - nz)l/2 is replaced by ©_= (k2 - g2)
0 0 0

0
By starting with ¢ on the positive side of one of the branch

cuts, describing a curve in the ¢ plane around the respective branch

point, and returning to the initial point ¢, but this time on the

negative side of the branch cut, = 0 will have the initial value



-114-

>Re &

Fig. |

—arg T°= 0

To = (kf_€2)l/2

Im 1,20

Branch cuts and paths of integration for the additive
decomposition of R (n) and Sl(n). The dashed Tines
1

represent alternative branch cuts, which are used in

Appendix B.
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multiplied by e'™. By using subscripts + and -, this can be

represented by
T = 1, e , (B.9)

where it is understood that both To- and To4 Q€ evaluated at the

+
same value of £ on the branch cut. The Bessel and Hankel functions
will also have a discontinuity across the branch cuts (see

Watson [29], Section 3.62), as follows:

a) = (D" (r,,2) (B.10a)

Irg.a) = (D)™ e a) (B.10b)

i @) = (™ e ) (8.10c)
and

i a) = (") (e La) (8.10d)

Using (B.9) and (B.10), fl(g) and fz(a), given by (3.40),

are seen to have the following discontinuities, for £ on the branch

cuts,
f(e) -fl_(g) = -29(¢) (B.11a)
: 2 ,
fu(e) - fz_(a) = iralg(e) - . To49n(1os) 9 (142)] 5 (B.11b)
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where the subscripts + and - were used to specify the two sides

of the branch cuts, and where g(&) is defined as

T%az - m2 2 2
o) = L [3r )] + g s @ilega) + (e 0P
(B.12)

It should be noted that g(¢) has no branch points, neither
does the right-hand side of (B.11b).
Equations (3.39) are written in the strip of analyticity

(3.12) and, in that strip, according to Appendix A, it is true that

V) = I o °_ (B.13a)
x(€)
J (T a)H(l)(r a)
Yy = o 2, (B.13b)
y ()
.. L L . . U U
and similarly for x (&) and y (&) written in terms of x (£) and y ().

When R?(E) and S?(E) are considered outside of the strip (3.12), (B.13)
must be used for analytic continuation into the lower half-plane,
and similarly xL(g) and yL(g) must be written in terms of xU(g)
and yU(g) for analytic continuation into the upper half-plane.
Keeping that in mind, the discontinuity of R¥(¢) across the

branch cut is, in the upper half-plane,
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R¥(g) - R¥ (g) = -2 + 9(2)
t £ Ky 7 Ao
3
NP b , __F ng(g) [Jmeoa)]
R T ko)yU(g) ToonlTo?)

R¥ (¢) - R* () = -2 . g(g)
1 Etky € -ng
el D, F EyL(E) Jm(roa)dm(roa)
[ + ko E "]Jmlo (E _ kO)XL(E) To

(B.14a)

. (B.14b)

Similarly, for Sf(g) across the upper half-plane branch cut,

ik2al
0

D F
S* () - S* (¢) = -
1- m £+ k0 £ - Hmlo
210
[s(6) - =2 0yt 2002
0
m | A B ey (e) In{7o3)9p(702)
Yo i teoa U .
0 mo| (¢ + ko)x (¢) 0

and, for the Tower half-plane branch cut,

ik2a3
D F
s* (g) - S* (¢g) = - — +
1 ! moE kB

B ExL(é) I:Jm( a)l’
yo(E) " (T52)

Jl
om

(B.14d)
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None of the right-hand sides of equations (B.14) has branch
points in the respective half-planes, so that it does not make any
difference whether t_is taken to be t_, or t_ .

0 o+ 0-

In addition to having branch points at ¢ = iko, R;(g) and
S;(g) also have poles outside the strip of analyticity, and it
will be seen that they all fall on the branches of hyperbola shown

in Fig. B.1. RT(E) has simple poles for g = i = i/k%'(qmn/a) ’

except for £ = A__ = A__ , where it has a double pole. S*(&)
ml mio 1

has simple poles for ¢ = ST t/kg-(pmn/aS2 and for g = A

except for ¢ = Mo T Mo’ where it has a double pole; it also

has a simple pole for ¢ = Amlo‘

In order to carry out integrations (B.8), the paths of
integration yl and Yz will be deformed into the paths y; and y;,
respectively, as depicted in Fig. B.2. These paths have clearly
distinct parts: the integration along y; can be separated into a sum
of residue contributions from the poles, computed on the positive
side of the hyperbolic branch cut, plus an integration around —kO
along a circle of vanishing radius, plus an integration along the
branch cut, from -ko to -i», of the discontinuity of the integrand
across that branch cut. The separation of y; into different parts
is analogous to the separation of yi.

It must be noted that these deformations of Y, and y, are
valid because both R;(g) and S;(g) vanish as £ » », away from the
negative sides of the hyperbolic branch cuts of Fig. B.1. In fact,

using the asymptotic expansions for Bessel and Hankel functions,



t
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| |
| |
\ | X7
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\\ |
\Jko
S > Re
4
(a)
Y2
<
> Re £
Kot~
| N
| \
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\
I \
| \
. L [xm
| |
| |
|
I |
(b)
Fig. B.2: Deformation of the paths of integratiocn ‘. and ; into '

1 ? 1
and ', respectively, showing the capture of the residues
of the poles on the branches of the hyperbola.
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given by Watson [29], Section 7.2, it follows that, as £ + «,

f () = 0(z”%) and fz(g) = 0(z%)

S;(E) = O(g—l). As a consequence, the integrations (B.8) along

, whence Rf(g) = 0(£7%) and

the quarter-circles at infinity in each of the quadrants of the
g-plane are zero.

Considering the parts of y; and y; which are the integrations
along the branch cuts, it is seen that, for R:U(n) and Sfu(n), the
integrations will be from ¢ = -k0 to ¢ = -iw, and the integrands
will be (B.14b) and (B.14d), respectively, divided by (¢ - n). For
R;L(n) and STL(n), the integrations will be from g = k0 to £ = o,
and the integrands will be (B.14a) and (B.14c), respectively,
divided by (¢ - n).

Using the asymptotic expansions for Bessel functions of
large argument, it is concluded that, as ¢ - #iw,

a(e) = o) (8.15)
mag
and that each separate term on the right-hand sides of (B.14) goes
to zero at least as fast as g'l, hence ensuring the convergence of
the integrals, as long as the behavior of the integrands at iko
is appropriate. To verify that that is the case, use must be made
of the expansion of Bessel functions in ascending powers of the

argument, (as given by Watson [29], Section 3.1), because

T, > 0as ¢~ iko. It is concluded that, as 152 0,



-121-

ale) = 4,“?:!)2 (x )22 + 0(x2") (8.162)
J (2l (ra) = 4m(m‘:‘)2 (c )™+ o(<2™T) (B.16b)
and

Since m > 1, it is seen that, as £ » ko’ each one of the terms
on the right-hand sides of (B.14a) and (B.14c) either vanishes or
remains finite. The same can be stated about (B.14b) and (B.14d),
as & > -ko, but with the following exceptions: when m = 1, the
terms corresponding to the constants A and D in (B.14b) go to
infinity as ¢ » -ko, but the problem is overcome if they are
considered together, because the leading terms cancel each other, and
all that is left is a zero 1imit value. Also for m =1, the terms
corresponding to the constants D and A in (B.14d) go to infinity as
£ > -ko, but again they must be taken together, cancelling the
singularities, and leaving a zero Timit value.

Using (B.14b) in (B.8a), and considering only the branch cut

integration, the contribution to R?U(n) is

A () - u B u ), (B.17a)
1 2 m 3
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where
e
s (n) - [ G gl 2 Y(E) £y (¢ a)g3(nga)
-k, L2x (k) o y (k) x(g)
L, (B.17b)
~Joo
uz(n) i % £ ?(§;10 €d§ n (B.17¢)
0
and

100

Ly & 9 plrg?)
y (&) de
{XL S—k)(g-umo) e o (Ba7d)

0

Similarly, from (B.14d) and (B.8a), the contribution to Sru(n)

of the branch cut integrations is

41’kO U am ik%a3
- X (ko)AUq(n) + ;E'Bus(n) - = Fus(n) , (B.18a)
where
21
e C 22 g(g) - ;7;‘J (Toa)Jm(Toa) 2
u(n) = 0 X + —Ts
u
% Y (ky) 0 koax (ko)
3
L 2 1 £ -n ’
yo(e) (e + k)2 dplrga)
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.
o]

—'I 3
. (n) ) f XL(E) | g[Jm(Toa)] de
5 % yL(g) Jm(?aé)To(E + ko)(E - Amlgj £ -
0
and
ZTO
iz 96) - g (el
ue(n) ) g - € é n
X mio

- (B.18c)

(B.18d)

Using (B.14a) in (B.8b), the contribution of the branch cut

integration to RYL(n) is

-2Av (n) - 2Bv (n) - 2Dv (n) + 2Fv (n) , (B.19a)
1 2 3 N
where
[« e
- g(g) dg - g(g dg
Vl(n) = £+ ko £ -1 ’ VZ(n) - £ - )\mlo £ -1 ’
k k
0 0
(B.19b)
®ou L e[l (ra)]
v (n) = XU(E) n-o’ gd§ - (B.19¢)
3 ks y (¢) T3J$(Toa)
and
i o
U [J (¢ 3
v (n) = x (&) “Lhlrg?)] de (B.19d)

/ yU(g) (e - kO)(g - “m10)J$(Toa) £ -n
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Finally, from (B.14c) and (B.8b), the contribution to S*L(n)
1

of the branch cut integration is

ik2a3 ik2a3

- =2 Dusln) - —2— Fugln) + 42 Ava(n) + R Bva(n) . (B.200)
where
2’[0
i= g(g) - Ega'dm(Toa)Jm(Toa) &
vs(n) = EEE Fo o (B.20b)
ko
21
( ) oo g(g) - -lzg—‘ Jm(Toa)Jm(Toa) dE ( )
v (n) = s B.20c
6 k g - Hm1o £ -
0
jo ,
v (n) = yU(E) gdm(Toa)Jm(Toa) dg (B.20d)
7 . XU(E) TO(E + ko)z £ -n
0
and
jo :
v (n) = Xp(g) g2 rg2) € (B.20e)
8 ! Wg) Tole FKJE =N ) B
0

It must be noted that all the functions un(n) and vn(n) are
Cauchy type integrals, over semi-infinite smooth paths, of functions
which are integrable and have a continuous derivative on those paths.
Then, (Pogorzelski [28], Roos [10]), these functions are analytic

everywhere, except for a branch point at n = k0 (for the Vo (n)) or

at n -k0 (for the un(n)). The branch cuts will be the paths of
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integration themselves, and they can be deformed within their
respective quadrants, as Tong as the branches of hyperbola are
not crossed, because that would introduce new terms, due to the
fact that some of the integrands have poles on those curves.

Attention will now be given to the integrations around k0 and
-ko. It is important to find the dominant few terms of RT(E) and
S;(g) as £ » iko.

Use was made of the series expansion of the Bessel and Hankel
functions in ascending powers of the argument (see Watson [29],
Chapter 3). For the limit ¢ - ko’ the variable ¢ = ¢ - ko,was used, with
z = seie, s a constant positive real number which vanishes in the
Timit, and with 6 varying from /2 to -3n/2, whence it follows that
v, = AT+ 0(*?)= V2R exp (1/2)(x + arg k_ +6) + 0(s"/°).
For the Timit ¢ - -ko, the same variable names were used, but now
L =g + ko’ g = seie, 6 varying from 3n/2 to -n/2, T " /?E;Z +
0(;3/2) = /ETE;TE exp(1/2) (arg k0 +0).

It is known that, vy being a circle centered at kO or -ko,

and with ¢ as defined above,

=2ri  if n =-1

5{& g = , (B.21)

Y 0 for any other integer n

where the integration is carried out in a clockwise direction. Then,
of the several terms of the series expansion of the integrand,

only the terms of O(;'l) behavior contribute to the integral.

Though, for m = 1, some terms appear that vary as c-l In ¢, they

cancel each others out and make no contribution.
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For R;U(n), integration (B.8a) is carried out around

£ = —ko, yielding the contribution K*/(n + ko), where

A 1 k a2 xt (-k ) yL ('ko)
Kx = 2k+(0+17+L =T
L m(m ] )
ink 2 0 x“(=ky)  yT(-k,)
iB 1R (-ky)
+ -
nkaz(k0 ) 4nk0a(k0 + ”mlo)xL('ko)

mio

(B.22)

Likewise, for Sru(n), integration is carried out around —k0

resulting in

21k3a2xL(-

Y

ko) K 1
-k, n* kg

my

(B.23)

For RTL(n), integration (B.8b) is carried out around ¢ = ko,

producing the contribution K**/(n - ko)’ where

u 2
Kk = 2A { ko X (ko) __m }

U
k ax (k)
+ B + F 0 0 ;
: 2 - - -
1nk0a (Amlo ko) imm (k0 “mlo)y (ko)

*
Similarly, the contribution for %_L(n) is

imyY(k )

(B.24)

(B.25)
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AT1 that is left, now, is to compute the residues due to the
poles captured by the deformations of Y, and Y,

For Rru(n), the residues of R;(g) at e M T 1,2,35...
affected by a negative sign, because the integration is carried
out in a clockwise direction, will be due to the terms which are
multiplied by the constants A and B, and the first term of fl(E)
n (3.40a). They contribute

The contributions to S;U(n) will be due to the poles of

Sr(g) in the Tower half-plane. These are: at -A n=1,2,3...,

mn’

due to the terms multiplied by A and B, and at e M= 1,2,3,...,

due to the terms multiplied by D and F, and the first term of f (&)
2

n (3.40b). Al1 the poles are simple, yielding

:E: n mn mn n + x :E: Kn n + Mo > (B.27)

n=1 n=1
where
k2a
F
SR + (B.28a)
n ™ Mo ™ Ko M * Mmio
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and
2 U (1)
h = qmnx ()\mn)Jm(qmn)Hm (qmn) (B 28b)
mn 2 _ 2 _ U :
(m* - qpp ) (kg = A )y (A
Contributions to R;L(n) come from simple poles of R;(g) at
g = Amn’ n=2,3,4,..., and a double pole at ¢ = Amlo’ The simple

poles come from all the terms of Rf(g), and their residues yield

e K"
Z v n
_ s
" A

(B.29a)
n=2
where
o o 2 A, Jm D F
n inazxmn m ¥ X A My & Ptk A T Mo
(B.29b)
forn = 2,3,4,....
As to the residue at the double pole, Amlo’ get
1 2B 1
K" — + 3 , (B.30a)
10" Ao 1™ o® (n-axr_.)2

mlo
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where

2 . g2
" ()
gz, "
ml

h
2B [ 1 3a 1 } mlf D F }
+ = + - + +
mi al| A + k A - U ’
m2 - qél qn311 202 422 L mo 0 ‘mo 'm0

K" = , t+84J(q )

(q_)

mi

(B.30b)

with hp. given by (B.28b) by making n = 1.
Finally, for STL(n), contributions come from simple poles of
* = = =
Sl(g) at ¢ s 0 2,3,4,... and at ¢ Ao and from a double
pole at ¢ = oo From the poles at Mo n>2, get

© Kl 11! k2a
:E; _~ , where K''' = 0 D+ t F ;
= 7 Mo n Yo | Pon T "o Pan T Mmio
(B.31)
for n = 2,3,4,...

From the pole at An1o? the contribution is

U
xm1oy

a3, 0

(A

mlo) 1

U
mio0 ¥ ko)X (Amlo) n-A

4mB

(B.32)

The contribution from the double pole at Moo is
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k2aF
K _]u - — (B.33a)
mio mio (n - ”m1o)
where
2 243 2

(= o2 v r ka2 [ | Mo

1 mye (K + ) m | 2 2 a2 k2p2

mio*-o m10 (pml Zumloa kopml

it g )"

5 Jm(pml)Hm (pmlﬂ . (B.33b)

(), Ri() and st (n)

The final expressions for R?(n), S
can now be written.

From (B.1), (B.2), (B.17), (B.22) and (B.26), get

o U
K 2x (k)
U U K* E n 0
Rl(n) - Rc(n) + n + k + n + Ta Au]_(n)
0 mn
n=1
flpu () + () (B.34)
m 2 n Wi 3 ’

SU(n) = sg(n) + sE(n) + Sg(n) + - 0 -
1 ml(k) 7tk
— o2
Kn P - 4ik
+m :> n_mn*mn Zg: K o U -
) - - —_—
n=1 "N + an n + pmn m X (kO)AUu(n) + ia Bus(n)
n=1
ikga3
- Fu (n) .  (B.35)
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From (B.1), (B.2), (B.19), (B.24), (B.29) and (B.30), and

noting that the second term of (B.30a) exactly cancels the first

term of (B.lc),

C (] [ U
K +C.x’ ()
iy - K ZE: n N o Vo
1 n - n - -
o & mn mio
-2Awl(n) - Zsz(n) - ZDv3(n) + 2Fvu(n) . (B.36)

Finally, from (B.3), (B.4), (B.5), (B.6), (B.20), (B.25),
(B.31), (B.32) and (B.33), and noting that the second term of (B.33a)

exactly cancels the first term of (B.5c), and (B.32) exactly cancels

(B.3c),

.U BN 2
stn) = iy (kg) + % Mnig ¥ (g = kp)?
! (k) 1" K Z”'“ i 2
0 & mn ko
U . U ] Tkga’
RAL T K+ Ty = koly (“mlo{] non .~ v (n)
mlo N
ik2a3
0 dm
S P )+ A () 4 %Bv8(n) : (B.37)

where St(n) has been incorporated in the terms in T.



-132-

APPENDIX C. SOME PROPERTIES OF THE TRANSFORMS OF THE FIELDS FOR p < a

The Fourier transforms of the z-components of the fields inside
the dielectric cylinder are given by (2.12a) and (2.13a). Series

expansions of the type (3.1) can be performed, yielding

V,(nse) = Voo(nse) + ¥V, (nse)ak + ... (C.1a)
and
I(ns0) = Izo(mo) + Izl(n,p)Ak + ..., (C.1b)
where
J (v e)
_ L m o
VZO(H,O) Vzo(n) Jm v a s (C.Za)
J(v.0)
_ L m'vo L
Vzl(ﬂap) = Vzl(n) W+ Vzo(n) w (n,0) (C.2b)
J (vop)
Izo(n,p) = Izo(n,a-) 3 (\) a) (C-3a)
m o
and
Jm(voo)
IZl(n’p) = IZl(n’a_) W + Izo(n5a_) W(nap) ’ (C.3b)
with
k J(vap) Jr(vaa)d(vae)
_ 0 Jm\Y ) m\Vo®/“m\Vo
Wnse) = T 4T may e @ : (C.4)

0 m'o ’ [Jm(voa)]2
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In (C.2), V- (n) is given by (3.31b) and (2.53d), and
th(n) is given by (3.36d) and the first order equivalent of (2,53d).
Iz(n,a—) is given by (2.27), and its series expansion, of the

type (3.1), yields Izo(n,a-) and IZl(n,a—), given, respectively, by

imav o

L (na) = 2°Jm(voa)Hngl)'(voa)[&Uw(n)+~r-‘—:n—1;n-1-1—0-:} (c.5a)

and
imav (1) \ U umko
Ly(mas) = —5= g (vt ™" (vpa) d%l(n) ! | )
mio'" ~ “mio
immk N (1) L 1ﬂako U G
+ J (v.a)H " /(va)v. (n) + (n) + —
wpv? o~ m 0" z0 2V %0 L >\mlo
0 0
J'(v a) Tav m2 - v2a2 )
0 0 0 1/(, a). a
R ) + 2+ 57 [:v a > J (voa) Hm "‘vo 2Jm(vo )
0 voa

. Hél)'(v a) - voad&(voa)Hél)l(v a)

(1)
)y 9 (v a)Ht Y'(va) . (C.5b)

It is the objective of this appendix to show that neither
one of the functions (C.2) and (C.3) has branch points in the Tower
half-plane, Im n < Im k. Use will be made of (B.10), wherefrom
both Jm(vop)/dm(voa) and W (n,p) are seen to be free of branch points.
Hence, as Véo(“) and V%l(n) are analytic in the lower half-plane,
it is concluded that Vzo(n,p) and Vzl(n,p) are free of branch points
in the lower half-plane, and their only singularities in that region

are poles at n=1,2,3,....

T "Hmn?
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A similar conclusion must now be reached concerning Izo(n,p)
and Izl(n,p). From (4.3) it is seen that, using the constants

defined in (3.41),

Using (C.6) in (C.5a), it follows that Izo(n,a-) has no
branch point in the lower half-plane, its only singularities in that
region being poles at n = -Amn’ n=1,2,3,....

Hence, in the lower half-plane, Izo(n,p) has no branch

points, it has only poles at n = -»__and n = -u n=1,2,3,....

mn mn?

IZl(n,a—), as given by (C.5b), has a possible branch point
at n = -ko. A branch cut is assumed, like in Fig. B.1, and the

discontinuity of (C.5b) across that cut is found, by using (C.6),
(3.42a), (2.53d), (3.31b), (3.29b), (4.2) and (4.10). Using (B.10)

and definitions (3.41), that discontinuity is found to be

2
N e\ W (va)]

I,.(na-) - I (n,a-) = -ina +

zi¥ z1 L n -k,

2 (kA 0 o ( Y X (1)3(92)
-mra ) + iB - iF :
a Kl n K2 n K3 T]) Jm(\)oa)
. A B VOXL(”)Jm(voa)
+ Ira n+ K +n Y g(ﬂ) D (C7)
0 ml o J&(voa)

where g(n) is given by (B.12).
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When the values of Kn(n), given by (4.9) and (B.17), are
used in (C.7), and after some manipulation, the right-hand side of
(C.7) is found to be identically zero along the branch cut. This
means that Izr(”’a") does not have a branch point at -k, as (C.5b)
would seem to suggest. Rather, its only singularities in the
Tower half-plane are poles at n = —Amn and n = U with
n=1,2,3,....

It is now concluded that Izl(n,o) has no branch points in the
lower half-plane, and its only singularities in that region are

poles at n=-x_andn=-u_, n=1,2,3,...

mn mn
Concerning the transforms of the other components of the
fields, V¢(n,p) and I¢(n,p) are given by (2.9d) and (2.%),
respectively, in terms of Vz(n,p) and Iz(n,p). Inside the dielectric

cylinder, it follows that

V¢0(n,p) ;Z‘ wpp —5 -+ mV_o(nse)| (C.8a)
0]
_ 1 3VZO(N,D)
I¢o(n,p) ST weco—ap——+mnlzo(n,p) , (C.8b)
o]
2ik 3I_ (n,p)
_ 0 Z0
V¢l(n,p) = - —;;—-[éup — + mnvzo(n,pi]
0
; 8Izl(n,o)

and

21k, avzo(n,p)
I (n,0) = — waop———-gg——'+ mnIZO(n,p)

aV_, (nsp)
+ we P 5 + mnIZl(n,p) . (C.8d)
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Then, the conclusion that has been reached for V,(n,e) and
Iz(n,p) implies also that the only signularities of the functions
(C.8) in the Tower half-plane are poles, and no branch points occur
in that region.

From (2.7) and (2.8), a similar conclusion is attained for the

po-components of the transformed fields inside the dielectric cylinder.
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APPENDIX D. SOME PROPERTIES OF THE TRANSFORMS OF THE FIELDS FORp > a

The Fourier transforms of the z-components of the fields outside

the dielectric cylinder, o > a, are (2.12b) and (2.13b). Then,

Vyolnsg) = v';o(n)—mT——— : (0.12)

= yL
v, (ns) = vzl(n>ﬁ§"_)_(;:a_) : (D.1b)

Izo(n,p) = IZO(n’a+);{—(_l—)(_0a—) (D]C)

and

L) = I, (n,a+) ;137}“—3‘ . (D.1d)

. 1 . .
It is now remarked that Hé )(voa) has no zeros in the region
of interest, so that Vzo(n,p) and VZ1(”’p) have no poles in the
lower half-plane, but have a branch point at n = —ko, when ° > a.

With Iz(n,a+) given by (2.26), it follows that

TRWCO
1 (“ A+ B o* ")y “(v?) (0.2)

) mlo Hélj'(voa)
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Since Hél)'(voa) has no zeros in the region of interest either,
it is concluded that Izo(n,p) has no poles in the lower half-plane,

for o> a, but has a branch point at n = -k

o
Also,
1ﬂavo . (1) U amko
Ly (nat) = = (voah " (v 2) cQ¢1<n>+A T
mo'" ~ “mio
immk n
0 (1) L
+ > J (voa)Hm (voa)Vzo(n)
WHV
(0]
1wako B U o m? - vZa Jm(v a)
* ¢O(n) * n - A [}
2v_ mio v a Jm(v a)
mTav m2 - \)26\2 ( ) (1)|
+ — Jm(voa)H (v a) - 2Jm(voa)H (v a)
0
. (1) | (1)
- voadm(voa)Hm (voa) Jm(voa)Hm (voa) . (D.3)
It is noted that
O‘mko U u O‘mkoxu(”) —
L )+ == [ + :
Xm1o(” B AmlO) Amlo(n ) Am1o)
L
. - (n)(l)' > (D.4)
Jm(voa)Hm (voa)
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with tﬂgl(n) given by (3.42a), whence the first term in the right-hand
side of (D.3) has poles for n = Ao M 1,2,3,.... However, and
using (C.6), it is seen that the first term inside the curly brackets
of (D.3) also exhibits poles at n = A’ and it can be shown,
straightforwardly, that these poles exactly cancel the poles due to
the first term of (D.3). It is concluded that 121(n’a+) has no poles
in the Tower half-plane, only a branch point at n = -ko. Therefore,
the only singularity of 121(n,p) in the lower half-plane, forop > a,
is a branch point at n = —ko.

By using the expressions corresponding to (C.8), but now
for o > a, and also from (2.7) and (2.8), it can be concluded that
all the ¢-components and p-components of the transformed fields,
for o > a, exhibit a branch point at —k0 as the only singularity

in the Tower half-plane, and no poles at all in that region.
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