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1. INTRODUCTION

The scattering of acoustic and electromagnetic waves from
bounded objects whose dimensions are small compared with the length
of the incident wave has been the subject of considerable study for
more than a century. Lord Rayleigh found this problem of continuing
interest and his contributions in this area (e.g., Rayleigh, 1881,
1897) provide the foundation on which almost all subsequent work is
based. It is only fitting that his name grace the subject. Some idea
of the history of this area of scientific inquiry and its use in
light scattering may be gained from Twersky (1964) and the books
of van de Hulst (1957) and Kerker (1969); and much relevant material,
especially concerning spherical scatterers, is contained in the
fascinating study of Logan (1965).

Despite this long history, it was not until relatively recently
that a rigorous mathematical definition of Rayleigh scattering was
attempted (Kleinman, 1965, 1978). Although there is not necessarily
universal agreement, it is generally accepted that in three-dimensional
problems, Rayleigh scattering concerns the determination of the first
nonvanishing term in a series expansion in powers of wave number of
a relevant quantity of interest such as the scattered field or far
field coefficient. This is the definition used here and made precise
in Section 2.

The present study is concerned with the determination of the
first or Rayleigh term in the far field coefficient for a variety
of scattering problems. The unifying thread is the use of
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so-called polarizability tensors to characterize the Rayleigh
term in the far field coefficient. These tensors, which are
symmetric for isotropic scatterers, enable one to express the
scattered field in terms of quantities which depend only on the
geometry and constitutive parameters of the scatterer. Methods for
finding these tensor elements as solutions of integral equations
are presented and numerical results are given which show the
dependence of these quantities on the geometry of the scatterer.
In Section 3 the case of perfectly conducting scatterers with
nonzero volume is considered whereas Section 4 treats the corresponding
case of zero volume scatterers. Section 5 deals with homogeneous
dielectrics and Section 6 discusses the effect produced when the
scatterer is dissipative or dispersive in the particular cases of
lossy dielectrics and plasmas. Section 7 treats Rayleigh scattering
of acoustic waves using the mechanism of polarizability tensors.

In Section 7 reference is made to the first two terms in the
Tow frequency expansion for an acoustical hard body and to the first
three terms for a soft body, and it is noted that these higher order
terms are all specified by the potential functions needed for the
calculation of the leading terms alone, a fact discovered by Van
Bladel (1968). The determination of higher order terms in the
electromagnetic case has also been studied. For dielectric bodies,
Jones (1980) has shown that the second term is specified by the
functions needed for the first term, a result similar to that for an
acoustically hard body, but surprisingly the perfectly conducting

body offers greater difficulty. It appears (Senior, 1982) that to
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obtain the first two far field terms requires slightly more than one
near field term. An extra interior potential problem must be solved,
though the full second near field term is not necessary.

A method which reduces the task of finding terms of any order
in the low frequency expansion to problems in potential theory was
proposed by Stevenson (1953a) and refined by Kleinman (1967a, 1978).
The procedure is quite involved and serious questions can be raised
about the wisdom of such higher order calculations. If the higher
order terms can be obtained analytically, as Stevenson (1953b) did
for the second non-trivial term for ellipsoids (in electromagnetics)
and Asvestas and Kleinman (1970) did with all terms for spheroids
(in acoustics), the results can be used to good advantage in
calculating scattering properties. But if, as is more often the
case for irregularly-shaped bodies, one must resort to a numerical
solution of the required potential problems at each stage, then it is
not clear whether it is advantageous to do so rather than solving the
appropriate frequency dependent integral equation at the desired
frequencies. Of course, if one were able to associate individual
terms in a low frequency expansion with particular geometric or
constitutive properties of the scatterer, or if the calculation of
higher order terms could be reduced to the solution of certain
canonical problems, independent of the incident field direction,
as was possible for the first term using polarizability tensors,
then the incentive for obtaining higher order terms would be much
greater. Unfortunately, such results are not presently available,

and in their absence the compromise between the desirable and the
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realistic leads one to concentrate on the first term in the Tow
frequency expansion. Though admittedly Timited to low frequencies,
such results have proven to be quite useful in this range and they
may be systematically presented for a wide variety of problems.

It is such a presentation that is attempted here.



2. DEFINITIONS, FORMULATION AND REPRESENTATIONS

Although scattering problems are most frequently formulated
in the form of boundary value or transition problems for the
Helmholtz or Maxwell equations, it is also customary and useful to
employ integral representations of the fields, both to reformulate
the scattering problem as an integral equation over the scattering
surface and to represent the far field in terms of the surface field.
These integral representations are a central tool in low frequency
analysis and in this section we state the relevant differential
equation formulations, present some integral representations and
relations, and define the quantities of physical interest.

The scattering problems considered herein involve a time
harmonic wave incident upon a bounded surface B with finite (possibly

zero) volume.

2.1 Notation

>

Fig. 1

Let B denote a bounded simply connected piecewise smooth
surface which divides R3 into two regions, the interior, int B, of
finite volume V and an unbounded exterior, ext B. The surface B

is assumed to have a continuous turning normal almost everywhere.



A precise mathematical chracterization of the scattering surface is
surprisingly involved (e.g., Gunter, 1967 ; Muller, 1969 ). For smooth
surfaces one can require that each point on the surface be the

center of a local coordinate system in terms of which the surface

is given locally as z = f(x,y) where f is either three times
differentiable (Werner, 1962), twice differentiable (Muller & Niemeyer,
1961), or differentiable with Holder continuous derivatives (Gunter, 1967).
Non-smooth surfaces are similarly defined except that piecewise
differentiability rather than differentiability is required. We
denote by r (usually in ext B) and r' (usually on B) vectors of
magnitudes r and r', respectively, and rectangular coordinates (x,y,z)
and (x',y',z') with respect to a Cartesian coordinate system centered
in int B. A carat ~ will denote a vector of unit magnitude, so n'

denotes a unit normal at r', directed from B to ext B.

2.2 Scalar Scattering

. C e . inc,-
We assume a time harmonic incident field u  (r), where a

factor e'1wt is suppressed, due to sources in ext B located either at

infinity (plane waves) or at finite points in ext B (point sources).

In either case u1nc will satisfy the Helmholtz equation
(v2 + k2)yinc = g (1)

at all points in int B and almost all points in ext B. If « is the
angular frequency of the incident field, A is the wavelength and ¢ is
the velocity of propagation, then the wave number k satisfies the

relations
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_ 2 _ouw
ko= 3 - (2)

and it is this parameter, properly normalized to make it dimensionless,
which is usually taken to be small in the low frequency regime.

The presence of the scatterer B disturbs the incident field
and gives rise to a scattered field which is merely the difference
between the total field and that which would have been present were

the body absent. Thus

where the superscripts denote total, incident and scattered,

¢ which

respectively. It is the task of finding u® for prescribed u'm
constitutes the scattering problem. In all the scalar problems
considered, the scattered field satisfies the Helmholtz equation and

the radiation condition:

(v2 + W' = 0, r & ext B (4)

S .
Tim r (%%——— ikus> = 0 wuniformly in all directions r . (5)

r > o

Depending on the problem, u® may satisfy either of the

following conditions on B:



Dirichlet or Acoustically Soft:

Neumann or Acoustically Hard:

S inc

au” __ au -
R , re B . (7)

These boundary conditions can be written slightly more simply in terms
of ut using (3). If B is smooth then (4), (5) and either of (6) or
(7) comprise a well-posed classical boundary value problem, i.e.,

u® is twice differentiable in ext B and the first derivatives are
continuous and bounded up to the surface B. If B has corners or

edges, an additional condition (finite energy) must be imposed, which

may be written as

[ ez + i) de <o (2

Q
for every bounded subdomain @ C ext B. This replaces the condition
of differentiability up to the boundary and the Neumann boundary
condition is imposed only where the normal exists.
The boundary value problems enumerated have a common feature—
no energy penetrates inside B. When waves do exist in int B we have
a so-called transmission problem. When the interior medium is

homogeneous, the only case considered here, the total field satisfies

(4) and (5) and, in addition, the following:



(v2 + K2)u- = 0 reint B (9)

and transmission (also called transition) conditions

and

t t
ou _ U =
3N = P ’an_ s 1"6 B ) (]1)

+

where + and - denote the Timits from ext B and int B respectively,
o denotes the ratio of densities of the two media and k1 is the wave

number in the interior:

P+
k = =, = — 12
: c, o o (12)
While it is customary to write u'"® and us separately (rather than
ut) in ext B, it is also usual to treat ot as one quantity in int B

since u'"C does not satisfy (10) unless k1 = k.
By a trivial scaling of the fields, the conditions on B can
be rewritten so that the field has a jump and the normal derivatives

are continuous.



2.3 Electromagnetic Scattering

Again we assume a time harmonic incident field (E1nc’ H1nc)
which satisfies the homogeneous Maxwell equations everywhere in int B
and almost everywhere in ext B:
7x BN = gz B, vk BT = kv BTN (13)
where Z0 and Y0 are the intrinsic impedance and admittance respectively

of free space. In terms of the constitutive parameters €, (permittivity)

and M, (permeability),

where, as before, w is the frequency of the incident wave and the

factor e 10t

is suppressed from all field quantities. Here E and H
(with appropriate superscripts) denote electric and magnetic fields
respectively, vector-valued functions of position r.

The presence of the surface B induces the scattered field,
and we write
it Einc , it = Hinc TR

+ ES , S ext B . (15)

The scattered fields satisfy the homogeneous Maxwell equations
v x E5 = ikZOHS , VxR = -ikYOES , r & ext B (16)
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and the radiation condition

- - _S - -
lim rx (7 x E5) + ikeE = limr x (v x H°) + ikeflS = 0 (17)
r > © , r > «©
uniformly in all directions r.
The scattering problem is that of finding ES and H® when the
incident field is specified. If the boundary B does not permit energy

to penetrate, we have the perfectly conducting boundary conditions:

>

nxES = -nxEMN°

3

a =inc
n-H s

T
(%]
1}
1

The classical scattering problem then consists of finding (ES, H®)
such that (15) through (18) are satisfied. If B is smooth, the field
will be differentiable up to the boundary; however, if there are

corners, the additional requirement of finite energy must be

imposed, namely

f(|55|2+ [H]2) de < = (19)

Q

for every bounded 9 C ext B.
When B is the surface of a scatterer which allows energy to
penetrate, we have a transmission problem. Assume that the interior

of B is homogeneous and characterized by constitutive parameters
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e ,u ,0 , where ¢ is the conductivity, which vanishes for pure
1711 1

dielectrics. Then in addition to (15), (16) and (17), the following

equations must be satisfied:

VXEt = 1'wu1+-lt s foj{t = (-iue +01) Et
1
r int B , (20)
and the transmission conditions:
Aot Aot A= . 9 | ct
nxEl = nxE , nekl = n-(e1 =) E

where + and - again denote Timiting values from ext B and int B
respectively.

Equations (20) and (21) show that the frequency w is perhaps
a more appropriate expansion parameter thanthe wave number. However,
for a variety of reasons it has become quite common to introduce

complex frequency-dependent parameters

. o
e = ¢ t1 L
1 W
k1 = g /Eul (22)
Z1 = VUI/E = 1/Y
1

and to write
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vx B = iklzlﬁt R AN P < int B (23)

while the remaining equations in (21) remain intact. The quantity

n

n - (;)1/4 (25)

is called the complex index of refraction.

2.4 Integral Representations

Integral representations derived from Green's theoreom or
some other variation of the divergence theorem play a central role

in scattering at all frequencies including those of present concern.

If u° satisfies (4) and (5) then

kR ikR , s
= f{“s(m o (e; - % gﬁ'}ds' gzl (26)
B

whereas if u'"C satisfies (4) in int B, then

. kR ikR inc .
& f{”nc(’-"} w () T e } ds' = (alP) - NuE) (27)

=
=
®
a3
0]
=
]
=1
1
—~1
QU
s §
o

o(r) = - lim 14;,—f %H—@ds (28)
B
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and B is that part of the surface of a sphere of radius ¢ and center
€

r lying in ext B. If B is smooth, then

1 , r € ext B
a(r) = <172, r €8 , (29)
o, re int B

whereas if B has corners or edges, (29) still holds at other points
(int B, ext B and smooth points of B), but (28) must be used when r is
a corner or edge point. The function a(F) is a measure of the solid
angle subtended at P by B (e.g., Mikhlin, 1970). Combining (26)

and (27), we obtain

ikR. ikR .
- f{ut(f“') — (eR B e NGO RGN O O

(30)
The corresponding equations for electromagnetic fields are
well known (e.g., Stratton, 1941; Jones, 1964; Miller, 1969). If
(ES,HS) satisfy Maxwell's equations (16) and the radiation condition (17)

in ext B, then

X (H'x ES(F'))} dS' = o(F)ES(F) (31a)

and
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whereas if (E1nc, ﬁ]nc) satisfy Maxwell's equations (16) in int B,

then

kR - - -
- v (%) x (n' x E‘”C(r«')} ds' = (a(F) - DEM(F) (32a)

R N
B (%‘> (i x HmC(FI))J Bt ) D HTER) L (320)

Combining (31) and (32) we have
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ikR . - ) .
- v (5%——> X (n' X Ht(F'ﬁ} ds' = a(F)Ht(F) ML (33b)

It should be noted that the boundary values of the field quantities
occurring in these representations are all limits fromnéxt B,
e.g., UE, But/8n+, Ei, etc.

One consequence of the representations just presented is that

if r € ext B then

kR, kR
(7)) = —};f[u(}') s (eR P) . g%}ds' (34)
B

where u in the integrand may be taken to be us or ut provided

a consistent choice is made for u and 3u/3n'. Similarly,

for r € ext B
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B (r

1
~
"
) —
3
D
—e
~
~N
o
(1]
o] —.
=
o)
>
>
pur iy |
—
-1
—
+
<J
—_
g —
o
=
~———
= >
mij
—
=S
—

3

where (E, H) may be chosen either as (ES, HS) or (Et, Hf) in the

integrands. An alternate form may be obtained by taking the curl

of (35a) and (35b) and using Maxwell's equations, and is

o : KR
E(r) = = X Vr - n' x E(r')ds'
B

17, n - _ . olkR
P VXV X o[’n' x H(r') =— ds'
B
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pu i |
w
—_
=1
S—
i
[__‘
<3
>
m%
(1]
—
~
v
=>
>
o il |
—~
-
~—
[a N
(V2]

for r € ext B, where the quantities in the integrands can be either

total or scattered fields provided the choice is made consistently.

2.5 The Far Field

Expressions for the far field may be readily derived from the

integral representations by employing the asymptotic form of

e1kR/R for large r, i.e.,

ikR ikr-ikper!
e _ e + -2
- - O . (37)
From (34) we have
'ikY‘ -kA —I ~ ~
uS(F) = -%r— e 1Krer (ikn'-rU(F') +3“—) ds' +Q(r 2)
an'

B (38)

and from (36a,b) we have (Kleinman, 1967b)
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B(F) = ¥ rx B(R) +O(r72) (40)

This can be written slightly more conveniently for low freguency

purposes as

- ikr A~ A . A.'l A A - - A - .
E(r) = & kz{ roXor Xf g ikrer FLZoren' x H(r') - n' -+ E(r')]ds’
B

with (40) still ho]ding. As before, the quantities wu, 3u/on' and
(E,H) appearing in the integrands of these expressions may be taken
to be either total or scattered fields.

It is often convenient to introduce so-called scattering or

far field coefficients in both the scalar.and vector cases as

the coefficients of e1kr/4nr in the far field. Thus



in terms of which

and

ikr

e S(r) (44)
ikr _

pyn S(r) (45)

Note that S(r) has no radial component and an alternate definition

of §(;) is available from (41).

While the expressions thus far are valid for any incident field

we now restrict attention to plane wave incidence where the wave

propagates in a direction k. Thus, in the scalar case,

LI RIS ’ (46)
and in the electromagnetic case,
Binc(r) - 3 eikkT (47)
Finegy - YoB RIS (1)
where the vectors a, B, k are mutually orthogonal and
b = kxa , a-k =0 (49)-

We consider only linearly

polarized waves with a the electric field

direction (polarization) and b the magnetic field direction. In this

case the scattering coefficients are written so as to exhibit the
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- A A A

incident field dependence: S(;,i) in the scalar case and S(r,k,a) in the
electromagnetic case. Observe that the incident fields are also chosen
to have unit amplitude.

In addition to the fields themselves, of interest are measures
of the power, scattered and absorbed. We therefore define the following

quantities for plane wave incidence:

Differential Scattering (or Radar) Cross Section

. 52
o(r) = Tim 4wr2%HT%EI§ = %E-IS(r,k)lz (scalar) (50)
u
re o
. =52 o
o(r) = Tlim 4nr2{§;%ET5 = %;T—-}S(r,k,a)l2 (electromagnetic); (51)
E
r > o

Total Scattering Cross Section

1] - 5,2
ot —ﬁfc(r)dﬂ =f]u] ds
Q B

-
- .% cjﬂ s §%%—ds (scalar) (52)

_ ’ £52
cT-Efc(r)dn =f|E] ds
Q B,
A - -k
= ZG ReL[‘ neE> x A ds (electromagnetic) ,  (53)
B

where @ is a unit sphere, and B_ is a sphere whose radius goes to

infinity with n = r on B_,and * denotes the complex conjugate.
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Absorption Cross Section

s, = 1im u(lut a“t* dS (scalar) (54)
A k X +8n,
a —tx
op = I, Re Jﬂ n-Ht X Et dS (electromagnetic) . (55)
B

A - A - ~n - -$%
Since n x Et and n x Ht are continuous through B (23), n-Ht X Et may

-t+%* -
be taken as the limiting values of Et and HY from either int B or

ext B.

Extinction Cross Section

o] o+ to
ext T

A (56)

There is a remarkable relation between Oaxt and S known as the

forward scattering theorem (Van de Hulst, 1957) which states

oyt = %-Im S(@,@) (scalar) (57)
Ooxt = %-Im ;-5(@,@,;) (electromagnetic)  (58)

and we observe that in the scalar case for Dirichlet (6) or Neumann (7)
boundary conditions, or for the transmission problem (10) through (12)
with k1 and o real, oy = 0. Similarly, in the electromagnetic case
for the perfectly conducting boundary conditions (18) or for the
transmission problem with o =0 (i.e., k real), we again have

1
op = 0, so that Oyt MY be replaced by or in these cases.
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2.6 Rayleigh Scattering--Plane Wave Incidence

The central idea in low frequency scattering is to approximate
the field quantities by a finite number of terms of a series expansion in
powers of k, or more conveniently, ik. The determination of the
coefficients, which are of course functions of position but independent
of k, is still formidable. Nevertheless, as Rayleigh observed, much
useful information can be obtained from a knowledge of only the
first nonvanishing term in this expansion. In the present context
we shall call this the Rayleigh term and by Rayleigh scattering we
mean this one term approximation to the scattered fields.

In this approximation, the near and far fields display markedly
different behavior, The regions are distinguished in the following
sense. Although, as noted above, we consider expansions in powers of
ik, in actual fact the expansion parameter is dimensionless, and there
are two critical dimensionless parameters, ka and kr, where a denotes
some characteristic length of the scattering surface B, e.g., diameter,
and r, the distance to the field point. While Tow frequency scattering
is concerned with small values of ka, the near field is characterized

by small kr as well, while in the far field kr is Targe.

Near Field

For plane wave incidence we have the expansions
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uinc(;) = \/ (‘ik)n uinC(‘F)
2] n
n=o0

R = ) " E)
n=o

Hinc(;) - ZE: (ik)n H;nc(;)
n=o

where we

note that these series converge for all kr.

(59)

For small ka and

kr we have expansions of the scattered fields

-
(%]
—_
=Sl
~
it

b gl |
[72]
—
=31
~
1}

for F = ext B, where the coefficients u’

of k.

RO O

(60)
n=o0
> GRMEE) (61)
n=0
> GRRE) (62)
n=o0

s =S .
n? En, and Hn are independent

The expansion coefficients will be real valued in the

Dirichlet, Neumann and perfectly conducting cases as well as

transmission problems for real kl.

problem with nonzero conductivity, a Tow frequency expansion in powers

of iw again leads to real coefficients when the introduction of a

complex index of refraction is avoided.

Considering only the lowest order terms, the Helmholtz equation

and Maxwell equations imply that
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r extB
v X EZ = yxH =0 (64)

Moreover, since E> and H® are divergence free, there are scalar potential

functions @Z and wg such that

cSr= - . Sr= 2:S -

Eo(r) ved(r) V2o, 0 (65)
r € extB ,

nSrzo - . S 2uS -

Ho(r) Y0¥, s Ry 0 (66)

so that not only are the first two terms in the expansion of the scalar
scattered field solutions of Lapiace's equation, but the Towest order
electromagnetic terms are expressible in terms of scalar potential

functions. We also remark that through the use of (34) and (35) it may

S

be ascertained that u,

, @Z and w; all decay at least as fast as 1/r

as r > =, i.e., they are "regular" at ». Furthermore, since

uine < , ML - (67)
0 1

E™ = a2 = Tt tc) (8)
=inc _ b L=

Ho = Yob YV (ber + Cl) , (69)
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the incident fields are also expressible in terms of scalar

potential functions, i.e.,

v2y = vy = 0
0 1
and
v2(asr +c) = V2(ber+c) = 0

Thus, defining coefficients of the expansion of the total fields

t _ s inc -t _ s =inc -t =5 =inc
u, = up tou, , En = En + En and Hn = Hn + Hn
we have
2 2.t -
veu veu r &=ext B
1
=t _ t
EO = v¢0
at _ N
Ho - ’Yovwo
where
t - S A=
%, oy - asr
t _ S _ i
\yo = \yo ber
and
V2% VZWE r € ext B
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Far Field

When the low frequency expansions of the fields are used in

the expressions for the scattering coefficients (42) and (43) there
result

© n N
SRk = - 0" [ G (ery o) s ()
’ n-m)! m  an'
n=0 m=0 B

in the scalar case and

—Yﬁfﬁj%———- rx (rxr')
n=0 m=0 B
)]
S T Chor (o C(w ARV Fo(a SR (m 7( 1
{%Or n' x Hm(r ) - n Em(r ) - (r x +")lren' x Em(r ) + Zon Hm(r ){J ds
(81)
in the electromagnetic case.

Again we call attention to the fact that
either the total or scattered fields may be used in the integrands.

These expressions for the scattering coefficient may be rewritten
as

wn
—
>
-
>
=
I
=
IIE\/]8
o
—~
—
=~
=
=
wn
=
—
-
.
>
N
——~
fos)
o
g
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and

n=o
with
e = ) - (crep)"™ Py
salrob) = - 5 Rty e S [ et
m=0 B m=0 B
n>1 (83)
auo
= - uf SET' ds N n=20
B
and
n ~ -
S (k) = S [ R ren B (F) - e E (7]
n‘t' >’ J (n-m)1! 0 m m
m=0 B

~ -

- (rxr')ren x E (r') + Zn'H (r )]} ds (84)
where Sn(;,ﬁ) and §n(;,§,5) are real scalar and vector-valued functions
respectively in all cases where u, or Em and Hm are real. This fact
enables us to expand the differential scattering cross sections (50) and
(51) in the form

o(r) = z]m

E i8

2n
SN k2n N e (o b
(1K s (rk)Sy, k) (85)
0 m=0

>
1]

in the scalar case and
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® 2n
A 4 oA A A - Aa A
o(r) = A DTN D5 (k) Sy (k) (86)

n=o m=0

in the electromagnetic case.

When only the lowest order terms in k are retained, we have

S(r.k) = -Lf1§¢$r s+ Ok) (87)

and

wni
——
-~ >
x>
-

>
o
1]

=
N

5

x<
—~
- >
by

—s1
\.:
—
N
- >
p

>

s iy |
—
=1
—
1

= >
M
—
=1
\:
[

Expressed in terms of potentials and dipole moments this becomes

(Kleinman, 1973)

~

S(ryk,a) = -k2<£— Xrxp+ Zrx ﬁ) + 0k3) (89)
0

where the electric dipole moment is

P T % uf>{%'@o(F'> - %ET-@O(F-)} as' (90)

B

the magnetic dipole moment is



and either total or scattered potentials may be consistently
employed. We remark that these expressions for the scattering
coefficients remain valid for dipole as well as plane wave sources.
When these Towest order approximations to the far field
coefficient are employed in the expressions for the scattering cross

section (50) to (56), (85) and (86) we find, in the scalar case,

which expresses the fact that if the constant S0 # 0 the scattering

is isotropic to this order. In addition, it can be shown that

and hence

In the electromagnetic case the scattering is a superposition of fields
due to electric and magnetic dipoles and is not isotropic. From

(89) we find

. 4 A~ L A
o(r) = X <|r x p|2 + %—r-p X m o+ l~-[r X m|2> + O(x8) , (95)
4re? c?
0
b - -
o = L ([p{Z + l—-]m|2> + O(ke) (96)
6weg c?

where ¢ is the velocity of light.

-30-



When op = 0 the forward scattering theorem implies that

Sgl(ﬁ,ﬁ,a) =0 (97)
and
A N AN A 'I - ] -
5 (kekea) = — ([p]2 +— [m|?) .
o8 kkea) = g (312 A7) (98)
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To compute the electric and magnetic dipole moments it is
necessary to specify the geometry and composition of the body. There
are a variety of cases to be considered and we start with the simple

problem of a perfectly conducting body.

3. PERFECTLY CONDUCTING BODY

3.1 Formulation
Let B be the surface of a closed perfectly conducting body of

non-zero volume V. The boundary conditions on the zeroth order

scattered fields at the surface are then

- [
anO— an0
(99)
SoonS -~ . ginc
n - H0 = -n H0

and these are independent. In terms of the potentials @5, Ws(see

(65) and (66)) and the corresponding incident field potentials ®inc,

Winc (throughout this section the subscript o will be omitted)
05 = IMC 4.
. reB , (100)
R S
an an

where the constant c must be chosen to satisfy the zero induced

charge condition
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S
30> o L
fan. ds' = 0 (101)

B

for an isolated conductor. In the case of two or more separate
(disjoint) bodies, (101) must be satisfied on each. The unknown
potentials ¢° and ¥° are solutions of Laplace's equation in ext B
and are O(r'z) as r - o,

[t is a trivial matter to construct integral equations for

the potentials. Since 5° is an exterior potential, Green's theorem

gives (set k = 0 in (26))
S
g e e
B

where a(r) is defined in '(28). Similarly, if x is an interior potential

inside B (set k = 0 in (27))

Q

a—f%x — ﬁ [ ﬁ}ds' = («lF) - x(F) . (103)

and if (103) with y = ¢1"C = ¢ is added to (102), we obtain

1 i ' i - i
]T%f %Fr 2% + "M - c)dS' = o'MC L ¢ - o (F)(eS + 1NC - ()
B
(104)
In particular, for r =B,
L1 el ge o ineggy 105
dr R on' ¢ (105)



which is an integral equation with which to determine the total
field potential @t =6 +0"C - conB. Analternative integral
equation may be obtained by taking the normal derivative of (104)

from ext B, giving
[ Lo}
) dS 2 - . (106)

For the magnetostatic potential we likewise have

;_ﬂf i (Lydst = vNE) - 2R L (107)
B
r € B, and this is an integral equation of the second kind for
ML Winc
From the solutions of (105) and (107) and the boundary conditions

(100), the electric and magnetic dipole moments can be computed using

(90) and (91), respectively.

3.2 Plane Wave Incidence

The above results can be simplified if the incident field is
a plane linearly polarized wave. From (68) and (69), the zeroth

order approximations are

implying

o' = A, W = b (108)
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and the dependence of the electric and magnetic dipole moments on

5 and b can be made explicit by writing

3
- 3
s 20 VRS s . RIS
o = D (gl = (b)Y (109)
i=1 i=1

where Xis i=1,2,3, are Cartesian coordinates. If the incident and

total potentials are expanded in a similar manner, the boundary

conditions (100) become

o, = Xx, tc
i i i
(110)
a3 .
1 - .
an *5
on B, with ¥ chosen to satisfy
S
8@1- '
fsa*ds =0 . (111)

B

The boundary condition on @? is now independent of a and we

can therefore write

ot
i}

m
o
v >

o (112)

where P is the electric polarizability tensor whose elements Pij:

S
A ~ a®'
= L6 - X! —3 '
Pij Jr (n STMESS an,) ds (113)

-35-



t

are functions only of the geometry of the body. Since @3 = @i 3
Pij can also be written as
- ! 1
Pij = f ST (114)
B

and yet another form is

P.. = Vs, + fv'o?-vups. av' . (115)

ij 1] 1 J

ext B

This makes explicit the symmetry of E, which therefore has at most

six independent elements. A related tensor is 6 with elements
S

ad
= 125, g1 S v i J )
0 GXJ‘B ACHUALHEY {xi == ds'  (116)

in terms of which

(117)

)

1}

P
— |l
+
O

where I is the identity tensor, and 5 has been called (Schiffer and
Szego, 1949; Payne, 1967) the polarization tensor for an isolated
conductor.

Similarly, the magnetic dipole moment can be written as

mo= =Y Meb (118)
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where ﬁ is the magnetic polarizability tensor with elements

Mij = -(j‘<n-xiwj - X an'> das' . (119)

These are also functions only of the body geometry, and since

S =yt 4y,
i

— AI.A t 1
Mij = -‘jﬂ n Xiwj dsS
B

i
<
(o]

—-—
.

-+
<
B

—e N

.-v'w? dv! (120)

from which the symmetry of M is apparent. The tensor therefore has

at most six independent elements and if W is such that

- ls. ] S 1 = - AI.A s i
wij = f vy ij dv fn x].wj as' . (121)
ext B B

we have

Moo= VI +W . (122)

The tensor ﬁ is identical to that which arises in the study of the
irrotational flow of an incompressible inviscid fluid past the rigid
surface B, where it is termed the added or virtual mass tensor
(Schiffer and Szega, 1949; Payne, 1967). Although (122) is due to
Taylor (1928), the fact that ﬁ is the magnetic polarizability tensor

was not noted.
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The tensors P and M are of most concern to us. The only
non-axially symmetric body for which explicit results are available
is the ellipsoid. If the coordinate axes are chosen to coincide with

the principal axes of the ellipsoid whose equation then becomes

— ===, (123)
a2 a? a?
1 2 3
the tensors diagonalize and
21 _ 1
Pt My T T (124)

L = gaaa f<sz £ a2) % (2 4 2) M2 (2 4 ) a5 (128)
1 123 1 2 3

(Van de Hulst, 1957). L2 and L3 are given by the same formula with

cyclical changes, and
L +L + L =1 . :
. ) ; (126)

In the special case a1 = az, the ellipsoid becomes a spheroid having
the x3 axis as its axis of symmetry (see §3.4).

More generally, the elements of ; can be computed if aég/an
can be determined, and from (105), (108), and (109) an integral

equation for this is
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w )
4t

| —

B

while a second equation is

30"
;

an

L
T

The corresponding equation

1

on

ts

i an
B

B@i

st = =X, = C )
& Lygs =
an R i

for W? is (see (107))

(1\ as' = wi(p) + 2,

To solve (127) it is helpful to write

where

B

_‘>_—l
3
(N
| —

_‘>_.l
&y
w%

| —

From (130) and (111)

and hence

C.
1

u[’ 39 t(0)
an
B

] f ] 1
dS' + J Y dS

(127)

(128)

(129)

(130)

(131)

(132)

(133)



where

t(o)
- £l i
C = -eof Y dsS (134)
B

is the electrostatic capacity of the isolated body. If the body has
two (or more) electrically distinct parts, the constant c, may differ
on each, and (101) must be enforced separately on each part.

The numerical solution of these equations for a particular
class of bodies is discussed in 83.4, but some information about the

tensor elements can be obtained analytically. As shown by Keller

et al (1972)

ij

.0
n
w
=
o
—
(3
+
< >
—r o
2
L)
w
Ql
=
)

1
N w
< )
(o]
-t
Cae
+
>x< >
—t o
Q
e
e 0
a
-
\-—f_\/_‘\—)

where 8V is the volume exterior to B but interior to the smallest sphere

containing B. Thus, for a sphere,

ol
]

N, M = %vf , (136)

and if sV # 0, the volume integrals in (135) play the role of "shape
corrections". They can be used to estimate (or bound) the change in
the dipole moments produced by a small departure from sphericity.
The tensor elements also satisfy certain inequalities. By
application of Schwarz's inequality to (115) and (120) it follows

that for fixed i and j
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N
]

<
~
—
o
1

-<
S
| v
N
[}

<<
[=%
—
N

i " J3J 1J iJ
I PR (137)
(P = )My = V) > V2
and
PosMas > (138)

(Schiffer and Szego, 1949), where i,j = 1,2,3 and repeated suffices

do not imply summation. In addition
3 3
N\ 2
:g: () :Z{ (M5 - V) > o (139)
'i:l j:

and still other inequalities are quoted by Payne (1967), but more

striking are the results for an axially symmetric body.

3.3 Axial Symmetry

The polarizability tensors simplify if the body has one or
more planes of symmetry which coincide with the X planes. Consider,
for example, the tensor P (the properties of M are jdentical). If
the body is symmetrical about (say) the x1 = 0 plane, the symmetry
of the total potentials @?, i=1,2,3, shows that P21 =P =0,

31
implying P12 = P1 = 0. The tensor then has at most the five
3
non-zero elements P11 and Pij with i,j = 2,3, of which only four are °
independent. If the body is also symmetrical about the x2 =0 or

x =0 planes, P =0 implying P32 = 0, producing a diagonal tensor.
3 23
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We are now Teft with only three non-zero and, in general, independent
elements, and we remark that symmetry about a third perpendicular
plane produces no further simplification.

A special case of symmetry about two perpendicular planes is
axial symmetry. If B has an axis of symmetry which is taken to be
the z (= x3) axis, P and M are diagonal (Pij =0 =My, 14 j) and

P =P , M =M (140)

from the invariance to a n/2 rotation about the z-axis. It would
now appear that just four scalar quantities, functions only of the
geometry of B, are sufficient to specify the tensors and, hence, the
Rayleigh scattering for any incident plane wave. In actual fact,
there are only three such independent quantities. This was shown

by Payne (1956) using a proof based on the relation between flow
potentials and stream functions, and also by Karp (1956). They

obtained the identity

P11 (141)

~N| —

33

provided B is simply connected. In practical terms this means that
the axial component of the electric dipole moment (Pas) and a
transverse component of each of the electric and magnetic dipole
moments (P11 and Mll) are sufficient to specify the scattering in
its entirety.

What is more, even the three independent tensor elements that

remain are constrained by certain inequalities. From (138)
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P » M s M >V (142)

and hence, from (141),

. (143)

O
v

11

Also, from the last of (137),

(144)

which serve to establish Tower bounds on M and P once P s
11 33 11

determined, and other inequalities which can be deduced are (Payne,

1956) :
2P+ P > gy
11 33 —
P +4M > OV
11 11 (145)
(P - V)(P +2P -3V) > 12v2
11 11 33
3

M -Vv)(Pp +M -3V = V2
( 11 ) 11 11 )z 4

A1l of these are optimum in the sense that equality holds for at
Teast one body (a sphere).
Two other inequalities that have been derived are (Kleinman
and Senior, 1972) 7
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P +M > 4y (146)
11 11

P +2P > 8V (147)
11 33

and though the bounds are optimum, the optimum shape is no Tonger a
sphere. In (147) equality obtains for an oblate spheroid having
o/w = 0.5 where & is the body length in the direction of the symmetry
axis and w is the maximum dimension in a perpendicular direction,
whereas in (146) equality is approached by a prolate spheroid as
2/w > . There are, in addition, a variety of inequalities that
can be established by variational and other techniques (see, for
example, Schiffer and Szego, 1949), and which can Tikewise serve to
estimate (or bound) the tensor elements.

These relations can be used to provide Tower bounds on the
radar cross section of the body. From (89), (112), (118) and
(141), the scattering coefficient is

~ A A A A ~

5(;,§,;) = - kzi% X (; xa)+ (P -P )az)rx (rxz)
11 33 11

- M
11

b b, )] s O
(148)

from which the radar cross section follows using (51). A number

of special cases have been considered by Kleinman and Senior (1972)

and two examples will suffice. For axjal incidence (ﬁ = -2, say),

~

the back scattering (r = z) cross section is
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= = (P +M )?
° i | 11 11) (149)

and (146) now shows that

oy (150)
m

Q
\4

S S

whereas the forward scattering (r = -z) cross section is

kL*
= — (P -M )2 151
o i . 11) (151)
whose Tower bound is simply zero. Both bounds are optimum and are

approached, for example, by a prolate spheroid as &/w » ». For the

total (integrated) cross section ors We have

I A A A A
op = ‘g— P2+ M2 + (P2 - P2 )(a-z)2+ G P2 - Mz) (b-z) (152)
™1 1 11 33 11 11 11

(Kleinman and Senior, 1972), valid for all angles of incidence.

3.4 Analytical and Numerical Results

There are a few simple axially symmetric geometries for which
analytical expressions for the tensor elements have been obtained
either by the method of images or by expansion of the potentials in
terms of the characteristic functions for an appropriate system of
curvilinear coordinates.

One of these shapes is a spheroid, prolate or oblate. The

non-zero tensor elements can be written as ratios of Legendre
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functions of the first and second kinds, and by inserting the
expressions for these, the results for a prolate spheroid having
interfocal distance 2d and radial spheroidal variable £(1 < £ < =)

are found to be

11

P = ‘5(52-1)2n‘5”—52+1\_1v (153)
33 2 £ - 1

=
i

12 A B o
. 2{25(5 -1)2ng_] £ +2} v
(Stevenson, 1953b; Ruck et al, 1970) where

4rd3

= 2 .
v 7 e(g2 - 1)

is the volume. In terms of ¢ the Tength-to-width ratio of the body is

aw = g(g2 - 1)

b

ranging from infinity for a long thin spheroid (£ = 1) down to
unity for a sphere (¢ = «). The analogous results for an oblate
spheroid can be obtained by replacing d by -id and £ by ig, where

now 0 < £ < w. The length-to-width ratio is then
v = e(e2 4 1)1/
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and varies from unity for a sphere (¢ = «) down to zero for a disk
(¢ =0). In Figs. 2 through 4 Pll/V, P33/V and Mll/v are plotted
as functions of &/w for 0.1 < &/w < 10.

From an examination of data for the spheroid, Siegel (1958)
derived an approximate expression for the backscattering cross
section of an arbitrary body of revolution at axial incidence in the

form

4

m

k4y2F2 (154)

where F is a shape factor given by

F = 1+—¢ (155)

and y is a "measure" of the elongation or length-to-width ratio. We
observe that (154) 1is in agreement with the rigorous lower bound (150),
and that F is actually an approximation to (P11 + Mll)/(4V).

Analytical expressions for some or all of the tensor elements
have also been derived (Schiffer and Szego, 1949) for an anchor ring
(or torus), spindle (or ogive), two spheres, and a generalized "lens"
which reduces to a hemisphere or a hemispherical thin shell (or bowl)
in special cases, but only in a few instances have numerical results

been obtained. Thus, for two equal spheres in contact with their

centers on the z axis,

P = (_1\h-1
—\1/—1=3/\(” = 2.705
23 3

p
]
—
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where V' is the volume of the solid hemisphere. From a comparison
of these, it is clear that the concavity has relatively little
effect on P .
11

For an arbitrary axially symmetric body, a program has been
written (Senior and Ahlgren, 1972, 1973) to solve the integral
equations (129), (131) and (132) by the moment method and then
evaluate the expressions (114) and (120) for the tensor elements

P P and M11' In terms of the cylindrical polar coordinates

117 "33
0,¢,2 the surface is defined as o = o(z), and to simplify the

specification it is assumed that the profile p(z) is made up of
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straight 1ine and circular arc segments. Re-entrant shapes are
permitted, as well as configurations consisting of two bodies either
electrically separated or joined by a wire of infinitesimal thickness
along the z axis.

To illustrate the results obtained, Figs. 2 through 4 show
the normalized tensor elements Pll/v, P33/V and MII/V as functions
of the Tength-to-width ratio 2/w for rounded cones (circular sector,
subtending an angle 6, rotated about a side), ogives (circular
segment rotated about a chord), and Tenses (equal abutting
circular segments rotated about the bisector). The cone
data are in good agreement with those obtained by mode-matching
techniques (Senior, 1971), and other data for satellite and missile-
like geometries have been given by Kleinman and Senior (1975). The
analogous results for spheroids computed from (153) are also
presented in Figs. 2 through 4, and it is clear that for many
practical purposes the spheroid provides an adequate approximation to
the tensor elements of other bodies.

However, this is not always true. For bodies which are
re-entrant or are highly asymmetric left to right, the actual volume
and length-to-width ratio are not necessarily the most effective
parameters to use when selecting the corresponding spheroid, and
Senior (1973) has examined the use of other parameters, such as the
weighted surface integral 1/2f o dS in place of the volume. As an
example of a non-convex body, Table 1 gives data for a sequence of

'scooped-out' hemispheres (see Fig. 5) all of which have 2/w = 0.5.
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Table 1: Tensor elements for a 'scooped-out' hemisphere (see Fig. 5).
V' is the hemispherical volume
V v v v V! '
1 2.094 4.424 {1 2.185 1.371 1.424 2.185 1.371
0.9 1.937 4.728 | 2.222 1.935 4.400 2.054 1.789
0.8 1.776 5.117 | 2.299 2.120 4.339 1.950 1.797
0.6 1.433 6.273 | 2.628 2.597 4.291 1.798 1.776
0.4 1.039 8.584 | 3.422 3.483 4,258 1.697 1.727
0.2 0.570 |15.56 5.974 6.044 4.234 1.625 1.645
0.1 0.299 [29.60 {11.16 10.84 4.221 1.592 1.546
0.05 0.154 |57.22 |21.34 19.24 4.210 1.570 1.416
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When the tensor elements are normalized to the actual volume, all
increase without limit as A - 0, but when normalized to the volume
V' of the smallest enclosing convex body, i.e., the hemisphere, the
results are much closer to those for an oblate spheroid having

2/w = 0.5, viz.

P Pss My
v = 4,230 , V = 1.897 , - = 1.310

There are also instances where no obvious normalization is
effective. Table 2 shows data for two spheres each of radius 0.5 and
distance A apart joined by an infinitesimally thin wire along fhe
z axis. Only a minimum number of sampling points (10 on each spherical
arc) were used in the moment method, and the accuracy of the data
can be judged by comparing the values of Pll/v and P33/V for 4 =0
with the exact results for two spheres in contact. As aA(= 2/w - 2)
increases, P33/V increases and does so more rapidly than expected for
a long thin body, while Pll/V and MII/V approach the values for a
single sphere. If the spheres are electrically disconnected by
removing the wire, only P33 is affected, and the new values are

P' . In neither case does a spheroid provide an accurate approximation.
33

-51-



Table 2: Tensor elements for two spheres A apart (&/w =2 + 4)
T fa3 M M3
v v v

0 2.702 7.237 .605 --
0.02 2.715 7.403 .604 4.557
0.05 2.732 7.655 .592 4.210
0.1 2.759 8.086 .579 3.922
0.5 2.891 12.02 .528 3.299
1.0 2.950 18.19 .51 3.142
2.0 2.988 34.86 .505 3.038
3.5 2.996 70.99 .502 3.017
5.0 2.998 120.6 .500 3.015
8.0 3.002 260.1 .501 3.008
10.0 3.002 383.1 .501 3.002
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4. PERFECTLY CONDUCTING FLAT PLATE

A particular case of the body discussed above is a perfectly
conducting flat plate of infinitesimal thickness and, hence, volume.
This is a geometry which is of interest in its own right, but also,
via Babinet's principle, in connection with the transmission of an
electromagnetic wave through the complementary aperture in a
perfectly conducting screen. It is therefore appropriate to consider

it separately.

4.1 Tensor Elements

An infinitesimally thin perfectly conducting flat plate B of
finite dimensions lies in the plane z = 0 and is illuminated by the
plane Tinearly polarized electromagnetic wave (47) and (48).< Since the
tangential components of the total electric field and the normal
components of the total magnetic field are zero on the plate, the
scattering coefficient is (see (88))

+

- E-EO(F-)

A . L +
S(r,k,a) = k2 Q[‘nx(rxr') {?Or-z HO(F') } ds' + QO (k3)

B

(156)

where the vertical line denotes the discontinuity across the plate.

Hence, from (90) and (91), the electric and magnetic dipole moments

are
+

A = - '13 =1 ]
P €0 bfﬁr 577 %(F') | ds (157)

B
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mo= Y z fwo(F') ds" (158)

respectively, where either scattered or total field potentials can
be used. Clearly, p has components only parallel to the plate and
m has just the single component in the normal direction.

Integral equations with which to determine the required
potentials can be obtained in a manner similar to that described in
Chapter 3. We again introduce the partial potentials ¥ and v

(see (109)) with x =z, and (127) then gives

3
Lflii"i
4r R 3z’

B

+
dS' = -x. - cC. (]59)

where Cs is a constant chosen to satisfy the zero induced charge

condition

ds' = 0 . (160)

In terms of the solution of (159) the elements Pij of the electric

polarizability tensor P (see (112) are

[a
ij i3z
B

from which it follows that P3j 0. Since the tensor is symmetric,

+
ds' (161)

o
i
1

i.e., P.. =P.., we have P.. =0, i,j = 3, and the tensor has at most

ij Ji iJ
three independent elements.
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For the magnetostatic potential, w?(?) = 0 unless i = 3, and

then
+ L +
¥yl = (b-z)y (162)
The representation
+
o= a1 | -
wa(r) - 4H'Jﬂ 32' <R>W3 dS (]63)
B -
then leads to the integro-differential equation
d 1 -
T—;fﬁ st a1, (166)
B

. + :
from which w3l_ can be found, e.g., by converting the second normal
derivative to a surface Laplacian. The resulting magnetic

polarizability tensor M has just the single non-zero element

- [
33 3

B

+
ds' . (165)

4.2 Analytical and Numerical Results

One of the few geometries for which analytic expressions
for the tensor elements are available is the elliptical disk (see,

for example, Collin, 1960). If the equation of the perimeter is
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and

is the ellipticity,

p = ‘;—“ a3e2%(e2) - E(ez)} -1 (166)
11

1 - e2)7! E(e?) - K(ez)}'l (167)

P = =— ale?
22 3

M= %3 a3(1 - e?) {rE(eZ{} -1 (168)
33

with Pij =0, i # j, where K(e?) and E(e?) are the complete elliptic

(

integrals of the first and second kinds respectively as defined by

Abramowitz and Stegun (1964). We note that

oL,
'M—-'--P +P . (169)

33 11 22

Normalized versions of these elements are plotted in Figs. 6 and
7 as- functions of the length-to-width ratio 2/w (= a/b) for
T < 2/w < 10 and will be discussed Tater. In the particular case

of zero ellipticity when the disk is circular, (166-168) give
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8
P =P =323 , M =32 (170)

where a is the radius of the disk.

There have been numerous attempts to develop isoperimetric and
other bounds on the tensor elements, but the only ones that have
been rigorously established are based on the fact that for a solid

body

are increasing set functions (Schiffer and Szego, 1949). By regarding

the plate as the limit of a right prism, we then have

P:.
11

A
o
IA

1]
ii Pis

(i=1,2) (171)

MI MII
33 33 33

A
=
A

where the single and double primed quantities refer to the largest

inscribed and smallest circumscribed circular disks respectively.
If the plate differs significantly from a circular disk, the

bounds given in (171) are too loose to be helpful, but other bounds

have been postulated. A common assumption is that of all plates

of given area A, the circular disk has the largest average virtual

mass (see §3.2) and smallest average polarization. Since, for

a circular disk,
-57-



w]oo

P =]§(P +P)_>_-3——Y‘3,M < r3
where r = (A/ﬂ)l/z is the "area" radius. From a study of various
types of symmetrization, Jaggard and Papas (1978) have also

proposed that

16 16 '

TS Py g (:_) (172)
8

3 r3< > < M = r3

3l 2 M <03

In each case, the upper and Tower bounds are identical for a circular

disk and since, for an elliptical disk,

A = qa?2(1 - ez)l/2 , perimeter = 4aE(e2) |,
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M33 is then equal to the Tower bound for all ellipticities. In a
subsequent paper, Jaggard (1979) suggested that the numerical factor
8/3 in the lower bound for M33 should be replaced by the slightly
smaller quantity =2/4 to encompass the known data for narrow (2/w << 1)
plates. |
In Fig.'6 P11/(2N), P22/(2N) and Pav/(ZN) for elliptical disks
are plotted as functions of the length-to-width ratio, where
N = 8r3/3. The upper bound (r'/r)3 is also shown, and by
appropriate identification of 2 and w, these data can be used to
estimate the tensor elements for other plates. The analogous plot
of M33/N is shown in Fig. 7.
During the Tast few years several programs have been written
to solve the integral equations (159) and (164)by the moment
method and, hence, compute the tensor elements. In most cases the

results presented are for the normalized dipole moments of the

corresponding aperture, and the quantities v and Tay computed

mx*> “my

by De Meulenaere and Van Bladel (1977) and others are related to the

tensor elements for a plate as follows:

= Pll P22 M33

) \Y = s T =
3/2 my 2A3/2 av 2A3/2

Data for rectangles, "rounded" rectangles (i.e., rectangles with
semi-circular ends), diamonds and crosses have been computed by
De Meulenaere and Van Bladel (1977) and De Smedt and Van Bladel

(1980), and presented graphically as functions of 2/w. For the
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convex shapes at least, the results are similar to those for the

corresponding ellipse, with the values for an elliptical disk tending

to provide a lower bound for v

and Vi

mx y*

Additional data for these and other shapes have been provided -

by Okon and Harrington (1980).

1.032 A3/2

o
n
O

|

11 22

1.038 a3/2

for a 5:1 rectangle

p = 402232 | p
11 22

and for a 2:1 diamond

P = 1.975 832 |
11 22

i

Thus, for a square

Moo= 0.452 A3/2 (omH)
33
(DS&VB) 3
0.373 A¥/? | L, = 0.5 p/2
3
= 0.320 A3/2
0.606 A%/2 | L, = 0.7 a3/2
- 0.406 A%/2

The letters in parentheses are the initials of the authors cited

above, and the accuracy which is claimed for the data is about 1

(0&H)
(DM&VB)

(0&H)
(DM&VB)

percent. The results are in accordance with the bounds given in (172).
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The simplest example of a transition problem is a homogeneous
dielectric body immersed in free space. One application of the
results is in the study of scattei'ing by atmospheric particles, and
for analytical purposes it is assumed here that the permittivity
and permeability are independent of frequency, though possibly
complex.

5. HOMOGENEOUS DIELECTRIC BODY

Let B be the surface of a homogeneous isotropic dielectric
body of permittivityel and permeability pl, illuminated by the
Tinearly polarized plane electromagnetic wave (47), (48). The electric
and magnetic dipole moments are given in (90), (91) where the potentials
can be taken to be the exterior scattered ones, and if these are
now written in the form (109), the electric polarizability tensor
P can be introduced via (112).  Its elements Pij are shown in (113)
and are functions only of the geometry and permittivity of the body.
There is similarly a magnetic polarizibility tensor M (see (118))
whose elements Mij are given in (119), and these are functions only

of the geometry and permeability of the body.

5.1 General Polarizability Tensor

When the conditions on the electrostatic and magnetostatic
potentials are examined, it is seen that P and M are particular

cases of a general polarizability tensor i(r) such that

meAll
1}
>
—
m
~
-
=1
1]
1
>
—
=
~

" . (173)
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(Senior, 1976) where €p and u, are the relative permittivity and

permeability respectively of the dielectric. X(t) depends only on

the geometry and the material parameter t, and its elements Xij are
S
A A 00
- 't S _ ! __J_\ ]
X.. = Df’<n X§%5 = X5 v ds (174)

where @3 is an exterior scattered potential (the total potential could

be used instead) satisfying the boundary conditions

S
3 = 0. + X. 175
J J XJ (7)
reB |,
30> 30
J - J .o
an T tn Xj (176)

where Qj is an interior potential. Clearly (176) guarantees the

fulfillment of the zero induced charge condition

a¢§
o das' = 0 . (177)
B

In the limiting case of a perfectly conducting body, P = i(w), M

1}

]
>
—
(an]
~

-

and thus the data presented inSection 3 also specify the tensor

>

for these two extreme values of .
From the definition (174) it might appear that we require a
knowledge of both @? and 8@3/3n on B to calculate Xij’ but this is

not in fact so. From (176) we have
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30 . ~
] J 1 = [ It ! ', 1 1
fxi T T f v (x5 @j)dv + I v (xixj)dv
B int B int B

by applying the divergence theorem. But

since V2®j =0 in V. Hence, by a further anplication of the divergence
theorem,

S

8<I>J- A~ A
1 1 = 1, i
X: 37 dsS T Jf n xiéj ds' + VGij s

B B

and on using (175) to eliminate ®j in favor of ®§,

X.. = (1 -1) ‘Joﬂ'-x1®§ ds' (178)

where

st = oS - x, (179)

is the total potential outside B. Equation (178) is identical to
the (corrected) expression (3.76) of Van Bladel (1964), and we

note that
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X..(1) = 0 . (180)

This shows that if the material is non-magnetic, i.e., Mo = 1, there
is no magnetic dipole moment, and similarly if e, = 1, the electric
dipole moment is zero.

In a similar manner to the above, the following alternative

expression can be derived:

e
X,. = : fx!wi,dS' (181)
1] T ioan

B
and from (178) and (181) it is a simple matter to deduce two other

forms involving the interior potential Qj.

To compute the tensor elements it is sufficient to determine
. t
either 35 or a¢§/an on B. By adding t times (103) with x = %5 to
(103) with x = %j and then subtracting the result from (102) with

6> replaced by @3, we obtain

(1 - ) JTnf (65 - x) & (%) 65t = e (1= ) +alFeS - 1]

t,- 2 1 -1 1 t,-,, 9 1 '
@j(r) = -m‘Xj +~| ¥ T 'Z'_TFI CDJ(Y‘)B—H—T (ﬁ) dS (]82)
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which is an integral equation for @E. Knowing @E, Xij can then be
computed from (178), and even for a body of arbitrary shape; solution
of the three integral equations (182) with j = 1,2,3 is sufficient
to specify the tensor elements.

We can also derive an integral equation for the normal
derivative of the total potential on B. If(103) with x = ®j+xj

is subtracted from (102)with ¢ replaced by @3,

Bét

1 -1 1 1 J v - t
— - ‘jn T ds Qj + X5 (183)
B

and on taking the normal derivative of this, we have

t t

9 . 99 .
T-« 1 (773 3 1 A e j ., 0
T 47rf8n' an (ﬁ)ds =7 7w Ty
B

for r € B. An integral equation for aéglan is therefore

ad)t

ot
N RS S -TJ_ _J 3
an 1+r"xj +1 Zfa an<
B

and once a@?/an has been found, Xij can be computed from (181). By

>dS' . (184)

| —

integrating (184) over the entire surface B, it can be verified that
the zero induced charge condition (177) is satisfied. Since the
eigenvalues of (182) and (184) are all real with moduli not less than
unity, the equations have unique solutions if t is complex or t is

real and positive.
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5.2 Properties of X

The potentials and, hence, the elements Xij are real if 1 is.
If we use the boundary conditions (175) and (176) to eliminate
X and ﬁ-;i from (174), the expression for Xij becomes

S
i
[

Y 3@3 ‘Jﬂ{ 20, a®§
= _— - ! - - - ! . .
Xij h hjﬁifj THR T ds Téj THRE TS s’ + V61J
B

B

and by applying the divergence theorem to the second integral we find

aa? a®§ s

= | 1 vl ]

X'ij f ®1W+®1W ds' + Jq V(I)]-V@j dv
B - ext B

-1 o[) v'@i-v'@j dv' + V51j (185)
int B
which is symmetric in i and j. ; is therefore a symmetric tensor,
real if © is, having at most six independent elements.
In certain special cases the tensor simplifies considerably.
If B is symmetric about the xl = 0 plane, it is evident from (182)

that

at(-x ,x ,x ) = -ot(x ,x ,x)
10 17727 177177273

and

t = at -
oL(-X ,X ,X = oL(x ,Xx , , =2,3 .
J( 172 3) J(Xl Xz X3) ) (186)

A~ A

To every point on B there now corresponds another where nex, is the

same but @% is reversed in sign, and if B+(B_) is that portion of the

surface for which x, > (<)0,
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X = (1-1){] B-i@tds+fﬁ-§<@tds} = 0
21 21 21

B+ B-

i
>
1]

Similarly X =0 and therefore X 0. It follows that

_ 31 12 13
X has at most the nonzero elements

X o= 201 - 1) f nex ¢t ds
11 11
B+ (187)
Xi; = 2(1 -T)f nex ot dS , i,j = 2,3
i 13
B+

and of these no more than four are independent.
If, in addition, the body is symmetrical about a second

perpendicular plane which we take to be the plane x2 = 0, then

t t
O (X 5 = X ,X ) = =0 (X ,X ,X ) (188)
2 1 2 3 2 1 2 3
and
ot(x , - x ,x ) = of(x ,x ,x) , j=1,3
i J 3

in which case X =X =0, implying X =X 0. The tensor
12 32 21

23
is now diagonal and has at most the three nonzero elements

A ~ t .
Xii = 4(1 - 1) tfs n-xi®i ds , i=1,2,3 (189)
B++

where B,, is that portion of the surface having X 5%, > 0. In

general all three elements are distinct, but in the special case of

-67-



symmetry about the x3 axis, X = Xll. Symmetry about a third
22
perpendicular plane x = 0 produces no further simplification
3
to the tensor's form.

Bounds on the tensor elements can be developed even for a

body of arbitrary shape. From (178) and (181)

. | aqs?
(1 +r)X1.\_j = (1-1) I(n 'X1®j+xiﬁ)ds -vsij

B

where we have used the boundary conditions (175) and (176) to replace
the total potential, and by using these again to eliminate

n'-xi and x%, we obtain

T+ 1 ~ 1y ot 1 1 S. 125 i
P Xij - Vsij = 1 0(1 Vo,V @i dav' + %f\ VoLV @j dv
int B ext B
(190)
From Schwarz's inequality
2
{ f V'0;v'e, dV'} < f Ve ]2 dv! I |v'<z>j|2 v,
int B int B int B

(191)

and similarly for the second integral in (190). By squaring both sides
of (190) and then applying the inequality to the new right-hand side,

we finally obtain

-1 -1 T - |
(Xij ‘T+1V51j) < (Xﬁ T+1V>(ij'T+1 V> (192)



for t real and non-negative. This fundamental inequality is the
analogue of those for the electric and magnetic polarizability
tensors in the case of perfect conductivity (see (137)), and
degenerates to them on putting v = 0 or .

We can also develop upper and Tower bounds on the diagonal

elements. Since

f |X1. +YV'®1I2 davt =V +]%‘Xﬁ + y? f IV'<I>1-]2 dv’
int B int B

for any y, combination with (190) gives

lil_:_%lil X.., = Yi- Ty ‘/’ k. +yv'o,|2 dv!
T = 11 2 2 1 1

Y 7" int B
¥ ~jﬂ 71032 vt
ext B
implying
+1 - 21/y y2 -
T T X N T V
T -1 ij = 2

for realy and real t > 0. Upper and lower bounds on Xii are now

obtained by taking y =1 and t respectively, viz

X

T_]z_\il_i?_'r—1

(193)
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It is obvious that these bound Xii extremely closely if t is near to
unity, and whatever geometry dependence then exists must be minimal.
The bounds are, moreover, optimum, in the sense that the upper

one is achieved by the element X33 for a vanishingly thin prolate
spheroid, and the Tower one by the same elements for a vanishingly
thin oblate spheroid. Other bounds have been derived by Jones
(1979, 1980) by considering the "content matrix" whose elements

C.. are related to the X,. by
1] 1

X'ij = (1 - 1) {(1 - T)Cij + V‘Sij} . (194)

5.3 Analytical and Numerical Results

A body for which analytical expressions for the tensor elements
are available is the ellipsoid. If the body is defined by (119) so
that the principal axes coincide with the coordinate axes X the

tensor is diagonal, and

_ T -1
Xisx) = Vi T (195)
i i
where the Li are given by (121) with cyclical changes of the
suffices. Some computed values of the L, are quoted by Van de
Hulst (1957). From (126) and (190)
1 1 ] > + 2
— + )y = =z ) (196
(Xll X2 Xqg T -1 )
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A special case of an ellipsoid is a spheroid, prolate or oblate. If

the X, axis is chosen as the axis of symmetry, L2 = L1 so that

X22 = X11’ and the tensor elements can be written as ratios of
Legendre functions of the first and second kinds. On inserting the
expressions for these functions, the results for a prolate spheroid

are found to be (see §3.4)

-1
TS A R e+l ., _2
X (2 2 {2 e(e? - Man =07 - &2 - ]} v (197)
! -1
- 1 . E+1 _ 0 T
X33(T) = {75(@ 1) en e Tl — } v (198)

The analogous results for an oblate spheroid can be obtained as
indicated in 83.4.

From (197) and (198) it is evident that

X (1) = -%x (2/7 - 1) (199)
33 11

for all spheroids, prolate and oblate, and this enables us to

deduce the values of X and X for 1 < 1 from those of X and
11 33 33

X 1 for the corresponding t > 1. Equation (199) is a generalization
1
of (141) for a perfectly conducting body of revolution about the

x3 axis, but is not valid for bodies other than a spheroid.

Figures 8 and 9 show X11(T) and X33(T) computed using
(197) and (198) respectively as functions of &/w, 0.1 < &/w < 10,
for a variety of (real) r > 0. For any given t, Xll/v is a

decreasing function of 2/w, decreasing from t - 1 for a disk,
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through 3(x - 1)/(z + 2) for a sphere, to 2(r - 1)/(z + 1) for a "rod",
whereas X33/V is an increasing function from (tr - 1)/t through
r - 1)/t +2) tor - 1.

For a number of other bodies computer programs have been
written to solve the integral equations (182) or (184) by the
moment method and, hence, obtain the tensor elements. In general it
is found that (182) is superior to (184) from a numerical standpoint
and most programs have employed the former. One such program,
designated Dielcom (Senior and Willis, 1982), is applicable to
any body of revolution about the x3 axis whose profile can be
constructed from straight line and circular arc segments. Concave
(re-entrant) shapes can be treated, as well as multiply connected
ones, e.g., a torus. Bodies having two or more disjoint portions
can also be considered provided their material prameters are the
same and they have a common axis of symmetry. A similar program
has been written for rectangular parallelepipeds (Herrick and
Senior, 1977).

Using these programs data have been obtained for a variety
of geometry and material combinations. If t > 0 it is found that
the tensor elements are relatively insensitive to the details of
the body's shape, and in many instances they can be adequately
approximated by the elements for a spheroid having the same t,
volume and Tength to width ratio 2/w. This is illustrated in
Figs. 10 and 11 showing the ratios of the tensor elements for a
parallelepiped of square cross section to those of a spheroid. The

maximum difference is no more than 16 percent. Similar plots of the
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parallelepiped values normalized to those for a right circular
cylinder are given by Herrick and Senior (1977), and in this case

the maximum difference is 10 percent. From these it is concluded

that
Ell square < }1}_ circular (c $1)
v cylinder| > V cylinder ) T >
(200)
EEE. square < _533 circular (> 0)
v cylinder v cylinder ’ T >

Since a circle can be viewed as the 1imit of an n-sided regular
polygon as n +~ «, it seems reasonable to conjecture that the tensor
elements of a cylinder whose cross section is an n-sided regular
polygon with n > 4 1ie between those of the corresponding square
and circular cylinders.

Equations (195) through (199) and the above-mentioned computer
programs are also applicable if t is complex, in which case the
tensor elements are complex. If Re t > 0 a spheroid may then
suffice to approximate the real and imaginary parts of X11 and X33,
leading to an estimate of the absorption cross section o, (see (55)).
The manner in which o depends on body shape has been discussed
by Senior (1980), but we caution that if Re t < 0 both the
scattering and the absorption can be extremely dependent on the
body's shape. Many crystalline materials have permittivities
whose real parts are negative at frequencies in the infrared and

optical ranges.
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6. HOMOGENEOUS DISPERSIVE BODIES

Slightly more complicated physical situations involve dispersive
targets such as lossy dielectrics and overdense plasmas. The resu]ting
transition problem involves a frequency dependent permittivity. This
does not make the low frequency analysis more difficult, in fact, in some
sense it is simpler than for pure dielectrics, but the nature of the
low frequency expansion must be reexamined in order to understand its

meaning.

6.1 Lossy Dielectrics

As in Section 5, assume that the linearly polarized plane electro-
magnetic wave (47) and (48) illuminates a homogeneous isotropic body B
which, however, is now characterized by the permittivity e permea-
bility M and nonzero conductivity o Using the complex permittivity
defined in (22), the analytic results of Section 5 apply immediately
in the present case. That is, the electric and magnetic polarizability
tensors may be expressed in terms of one general polarizability tensor

x(t) given by (173) except now

~ 9]
€ = & = (E + 1 _1_> J_ . (20])
€ 1 €

(6] 0o

The elements of this general tensor may be determined as in Section 5,
however the parameter t will be complex when t = €p Thus Section 5.1

is applicable in entirety as are the equations in Sections 5.2 and 5.3,
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but the inequalities and upper and lower bounds on the tensor elements
apply only for real t. Nevertheless the integral equations for the
tensor elements (182) and (184) are valid in the present case even when
7 is complex as are the explicit results for the ellipsoid (195)-(199).
The question we consider here then is not the construction of
the tensor elements in the first term of the expansion but the nature
of the expansion itself. Combining (89), (112), (118) and (173), the

scattering coefficient is given by
S(F.R,8) = -kAP[Px(X(e )-a)] + 7 x (((n) - b))+ O(3)  (202)

and, with (95),

- 4

o(F) = B (rx (Gle,) - )2+ [Fx (L

F2Rer - |

>
—~
™
-
S~
[e})
o —
=<
——~
><
Y
i =
S—
o
—
—
—~
)¢}
o
w
S—r

However, e, is now a function w, and since k = m/eouo, € can be
considered to be a function of k as well. With €, as defined in (201)

we see that this may be written as

o

o= Eei o Lyl (204)
‘ 5 ky ?
0 0 0 0

from which it is straightforward to establish that
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2 -1+O(&k—> : (205)

r 1
] - £ k
TFe, +O<a—) (206)
1
and
p k
T+ < =1+O(a" : (207)
r 1
Now with (181) and (205) we find that
t
0
- - v _Jgs K
Xy5(e0) fxi =+ dS +O(C’1) (208)

B

t
where 8®j/3n' is the solution of (184), and with (206) and (207), the

integral equation (184) may be written as

3‘1’; . aq’§ 5 (1 K
. = =27 - Xj - v i (-R-) dS +O(q) . (209)

B
Comparison with (128) reveals that to order ()(k/ol), 3¢§/an
satisfies the same integral equation as in the perfectly conducting
case. Similarly, comparison of (114) with (208) shows that the
tensor elements in the lossy case are the same as those in the
perfectly conducting case to this order in k/ol. Thus, if o is

fixed and nonzero, it follows that

X..(e) = xi. (=) + Ok) . (210)



and the far field coefficient (202) becomes

(Fksa) = k200 x [rx (D) + @)T+ rx () - 81 + O()

(V2]

(211)

Although they differ in appearance, (202) and (211) are both
correct to the same asymptotic order in k for fixed nonzero ol.
Equation (211) has the advantage of simplicity, especially when the
tensor elements are known in the perfectly conducting case, although
if they have to be computed, the numerical solution of the integral
equations in either case is of the same order of difficulty regardless
of the value of 1 or Epe Equation (202) has the advantage of being
uniformly valid in 9 for all values of H in [0,»] including the
endpoints and should definitely be employed when kYO/ol is Targe.
When kYo/o1 is small either formula may be employed. The precise
definitions of "large" and "small" will depend on the accuracy

desired and will also depend on sl/eo.

For example, if B is a sphere of volume V and n. = 1, (202)

kv £
_0 (21
. 1+ io (e - ])

yields

- ~ 2 1
S, % WV rx(rxa) —g—— (212)
1+.—°(2+—1>
101 Eo
whereas (211) becomes
S = -3V rx (rxa) . (213)

2
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A measure of the relative difference in these results is provided

by
\'1/2

oo (200 @9

1 1

Sl - 52
S
1

This quantity will be less than 0.1 for all values of kVo/cr1 if

e /e > 29, but if e /e =1, it is Tess than 0.1 only if kY /o <
1 0 1 0© 0"

1/30.
Note that in the case of nonmagnetic Tossy materials (“r =]
and o, > 0), (211) becomes simply
S(r.k,a) = -k2r x [r x (X(=) - a)] + OQ(k3) . (215)

Thus for these materials the electric dipole moment is the same as
if the material were perfectly conducting whereas the magnetic dipole
moment is zero, the same as if the material were free space. For

these materials, (202) also has only an electric dipole contribution.

6.2 Overdense Plasmas

Assume now that a plane wave illuminates a homogeneous isotropic
body which is characterized by a frequency dependent relative

permittivity

w2

1- J(M—-Fi]—vcy (216)

Er
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where w is the frequency of the incident plane wave, Wy

is the

plasma frequency and v, is the collision frequency. This is the

standard model of a so-called overdense plasma as an equivalent

lossy dielectric (e.g., Kerker, 1969; p. 185).

we define parameters

If for convenience

-
kp 2 (217)
and
"¢
kv = o (218)
then the equivalent relative permittivity may be written as
K [k .. K ]
y; AU
e, = 1 - . = (219)
r k(k+'lkC7 _;:__(LJ,._I_(_C_)
k k
p P p
Corresponding to (205) - (207), it may now easily be shown that
regardless of whether or not ke =0
T - ¢
r k
_r -1+O( ) (220)
e, E;
Ley k (221
T+e ° -]+O(k_> )
r p
and
€y k
T+e ° ”O(r) : (222)
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Thus the analysis in Section 6.1 may be repeated and it is seen
that (202) and (203) remain valid as does (211) for fixed nonzero
kp. Additional constraints must now be placed on €. or kp and kC
to ensure that (182) or (184) is uniquely solvable; that is, we
require that (1 - Er)/(] + er) is not an eigenvalue of the integral
equation.

As in Section 6.1 there is a choice between (202), with €p
given by (216), and (211), where both are accurate to order Q(k3)
for fixed nonzero kp. In this case it appears that (202) is
preferable unless k is considerably smaller than kp regardless of kc'

For example, when B is a sphere of volume V and My = 1 then

(202) yields

-1

< = _1k2 . 9 5 _ k k s+ C
S1 3k?V r x (r x a) {E 3 EB-(E;+ i E;):} (223)

=

whereas (211) becomes

32 = -3k2V r x (r x a) (224)

and a measure of the difference in these results is

2 1/2
C
k

(225)

i
w
x| =
o
/‘\
x|=
©
~—
N
+
———
=
o
\—/

This quantity is less than 0.1 for k/kp < 0.32 when kc/kp =0,
but when kc/kp = 1 we require k/kp < 0.1, and when kc/kp = 10 we

require k/kp < 0.01 to guarantee that (225) is still less than 0.1.
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Again, (202) is valid uniformly in kp including kp = 0, whereas
(211) 1is not.

One interesting application of (211) 1ds to the case of a
perfectly conducting surface B coated with either a lossy nonmagnetic
dielectric, cl # 0 and M, = 1, or an overdense plasma with kC £ 0
and Mo T 1. If the surface of the coating is denoted by C, it has

been shown (Kleinman and Senior, 1975) that the far field coefficient

is given by
S(rak,a) = -k x [rx (((=) - a)T+ rx (ig(0) + B) + (i)

(226)
where fc(w) is the electric polarizability tensor associated with the

perfectly conducting surface C while X,(0) is the magnetic

5
polarizability tensor associated with the perfectly conducting
surface B.

Finally we note that Kerker (1975) considered the case of a
dielectric ellipsoid with a dielectric or plasma coating and showed

that it was possible to find a condition on the two relative

permittivities which caused the k? term in the far field to vanish.
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7. ACOUSTICALLY SOFT, HARD AND PENETRABLE BODIES

Scalar (acoustic) scattering problems are usually easier to
solve than vector (electromagnetic) ones, and this is true also at
low frequencies. The analysis is more straightforward than in the
electromagnetic case, and the potential functions that occur are
identical to those previously discussed.

For simplicity we shall confine attention to a plane wave
incident on a soft or hard body at the surface of which the boundary
condition is (6) or (7) respectively, or a penetrable body for
which the transmission conditions (10) and (11) are applicable. Since,
for a soft body, the leading term in the low frequency expansion is
both frequency and aspect independent, the next two terms are

derived as well.

7.1 Soft Body
A finite closed acoustically soft body B is illuminated by

the plane acoustic wave u'"C(F) given in (46). For I €ext B the
resulting scattered field is (34), and when the boundary condition

(6) is imposed,

]

Rt
SF) = - g f e W . (227)
B

In the particular case of r €B, we have
ikR t .
1 f% A_gst = u'Cr) (228)
B
which is an integral equation for But/an.
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For small k the exponential in (228) can be expanded in powers
of ik, and when the incident and scattered fields are similarly

expanded (see (59) and (60)), the first three terms yield

I ST (229)
) R oo & F

B

t t -

‘—-fl s = ker ] fau" ds" (230)
4r R on" - L Y 3"

B
L[ 1 f ou,
Hfﬁ A RW“S" deS' (231)

B B B

Comparison of (229) with (131) shows that

t
3ug ] a61)1:(0)
T T (232)
and hence
t
0 C
Ia—_ e (233)
B (0]
where C is the electrostatic capacity of an isolated perfectly
conducting body B immersed in free space.
The second integral equation (230) then becomes
t 3
1 (1 M ; ~ c
wJ R 8 = 2y (kexdxg - (234)
B i=1 ©



and comparison with (131) and (132) shows

3 1
aut LA A 8®F( ) t(o)
_1 - _ (k.x ) 1 + ¢ 3¢ (2:»5)
on j i’ 3n 41reo dn ! >

implying
t 3 )
1

[ - S (3w 1w
B =1

i

QJI

However, as first proved by Van Bladel (1968), we can also evaluate
the left-hand side of (236) without knowing uf. By expanding both
sides of (227) 1in powers of ik, it is seen that u? + C/(4nso) is

an exterior potential function. Hence, from the boundary value

of @S(O)(= 1 on B) and the reciprocity theorem for exterior

potentials,

S
.__l
on

B

But )
au;nc au;nc
= ! =
B
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and therefore

t(o) 2
et 1 e
ST fk.r an' ds 4 (e ) ’
B B ©

Lﬁ

Q> QL

:J_‘ =
o
s
]

a result which can be demonstrated alternatively by applying the

reciprocity theorem to @?(1) and 05(0)

Using (237) the integral equation (231) becomes

with

but we can also find fB(au:/an')dS' knowing only a@t(o)/an. Since

uz - f(r) is an exterior potential, *

S
ou '
2 1 9 1 9 v} 1
deS =f5%rds +f®s(0)a—n—riuz-f(r)}ds
B B B
=Iids'+
n ,
B

mg‘d
r-\/‘\'/\
f
N W
]
-—f’
—~
=1
\;
——J
Q| Q
= e
-l »n
—~
[)
—
o
%)

In addition

inc
ou, N

oo
o

and hence
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(239)
This is as far as we can go using the zeroth order potentials alone.
From (79) and the boundary condition (6), the scattering

coefficient is

o aug . U[‘ . aug auf ; g h ;
s(rk) = - [ =2 dst + ik (r-r T-W)ds £ (1025 (7,K) +o(k?)
B
(240)
with
y U S
Sz(r,k) = -f 7(?"'?) g'n—r- rer ——n-r'*"a—ﬁ‘r ds'. (24])
B
From (232), (233) and (237) it follows immediately that
2 t(o)
SRR S b I L RO P T LA e :
S(r,k) = -Eo+1k{4“(so> +(k - r) fr ! dS}+O(k) ,
B
(242)

as originally derived by Van Bladel (1968). We observe that (242)
involves only the zeroth order electrostatic potential @t(o). The
integral term is absent in the forward scattering direction r= k and,

in addition, the integral itself vanishes if the origin of coordinates

is chosen at the center of gravity of the charge distribution-~a location
which is obvious for a symmetric body, but which in general can be

t(o)

found only when 3¢ /an has been determined. In either case
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s(rak) = - & (1 _ ik Z%E‘)* O(k2) (243)
0 0

and the electrostatic capacity alone now specifies two terms in the
expansion,
o\ s . . t t(1)
The term Q(k?) in (240) intrinsically involves u1 (or o )
and from (232), (235) and (239)

. t(o)
s 2y e Leinz 5 L parnyze Cnomd 20t
Sz(r,k) v[’{%(r ) + 5 (ker')2 + 5 (rer')2+ e, Pertl dsS
B
3 t(1)
v [ s ZE: ir [ 7 g
an' i on'
B i=1 B
This can be simplified as follows. From (133)
2ot (1) T set (1) t(0)
___l = _l-_i ___l dslgg
an an C on' an ’
and by applying the reciprocity theorem to ®§(1) and @t(o), we have
a®§(1) | getl0)
far- st =[x G e
B B
Hence
3
;‘ PN N r 3@}:(1) A= A
. [ ! =
2y texgdrs Rt g dS kePer
i=1 B
£ . t(o) a t(o)
0 y 09 1 vy a¢ '
'—C—[fk an' ds}{:frr an’ ds
B B
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where P is the electric polarizability tensor (see §3.2), and the

final expression for Sz(r,k) is

] .;_;ff (g_ﬁ. - R g-%?(o)éf‘;—t(o)ds ds' . (244)

This can be evaluated knowing only the quantities involved in
determining the electric dipole moment for the perfectly conducting

body.

7.2 Hard Body

If the plane acoustic wave (46) illuminates an acoustically
hard body, application of the boundary condition (7) to the

representation (30) gives

ikR .
%}—fut(r:') L.-(%-)ds' = ubF) - 20"™(F)  (245)

for r €B, which is an integral equation for ut. For small k we
can again expand the total and incident fields in powers of ik,
and when the exponential is similarly expanded, the terms CD(kO)

are found to be
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)dS' ORI (246)

2
20| —

[ e

inc 0, it follows that us(F) = 0, and the solution of

Since au /on

(246) 1is therefore uE(F) = u;nc( r) = 1. The terms O(k) in (225)

then yield the integral equation

2’1T 1 R

= [t (l) ds' = ub(F) - 2keF (247)
B

and by comparison with (129), the solution of this is
3
- D (R (248)
i=1

where W? is a magnetostatic potential such that aw?/an = H'gi on B.
From (42) and the boundary condition (7), the scattering

coefficient is

A -

A A A A s . ]
S(r,k) = -ikf nter ub(F1) eI g (249)
and since ug(F) = 1, expansion of the integral in powers of ik gives
S(rok) = sz[u - reF] (n'er)dst + O(K3) . (250)

The integral is easily evaluated. By applying the divergence theorem

f(?«.F-)(ﬁ'-F) gs' = v
B
and, from (248),
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ofut(F')B'-? ds' = -

= Kefler (251)

©2
—
i
—
lve)

where M is the magnetic polarizability tensor defined in §3.2. Hence

S(r,k) = K2(keMer - V) + O®K3) (252)

and we remark that the magnetostatic potentials W? necessary to
compute M are also sufficient (Van Bladel, 1968) to determine the

A

next term (proportional to k3) in the expansion of S(;,k).

7.3 Penetrable Body

If the plane acoustic wave (46) illuminates a penetrable body,

the low frequency expansions are

u = (ik)" for r € ext B
n
n=o
and (253)
uto= :Ej (ik)" vnug for r € int B ,
n=o
where the factor
v = kl/k (254)

appears because the field in int B is analytic in k rather than k.
1

S

In ext B, u and u, may be taken to be either ut and uﬁ, u~ and ui or
G ong yine.

0 The transmission conditions (10) and (11) give
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t
—+

t nt n n n
u = yu and — = pv — (255)
n, ) an, an_
and the Helmholtz equations imply
2 =
v2u U, (256)
t s inc - -
where u, may be Ugs Uy Or U and u_, =u_, 0.

When these results are used in conjunction with the integral
representation (30) it is easy to verify that ug and uf are both

solutions of Laplace's equation which are regular at infinity, whereas

ug and uf are regular solutions of Laplace's equation in int B. In

fact, the zeroth-order term is trivially found to be

t .
uo = 1, (257)

and for u the transmission conditions (255) yield

T o=
14 1 1_
(258)
sut L. s sul
..__1_ = n.k+__1- = p\).._._l_.
an,. an, an_
With the notation of Section 5 (c.f. (175) and (176)) it
follows that
3
s _ T2 sS -
uwl o= - :§j kex.22 r € ext B (259)
1 J J
j=1

and
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wt = Z kex.6. , T &intB (260)
1 J J

3
J=1

and these may be employed in (83) to obtain the far field coefficient.

Since aut
So(r,k) = = ﬁ:ds s
B

(257) implies

So(r,k) =0 . (261)
The next term is
g R
Sl(r,k) = —f ner UO—Y"Y‘ —n‘i"l"a—n:' dS
B

]
1
lwe) D
P N
e 4
-
= >
+
©
<
Q
=
I = ct
——
o
wn

which also vanishes on using the divergence theorem and (256). Thus

S (r,k) = 0 . (262)

The first nonzero term is

t
v - AIAA‘lt AIAt -IA"IZBUO
S (r,k) = (n'sr)(rer*)u” = n'eru’ - =% (rer')? —
2 0 1+ 2 3n+
B
_out auz
+per' —- - —r { ds"
3n+ 8n+
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Using the divergence theorem it can be shown that

f {(a-.;)@.;-) - (nter)(kert) + (Fﬂ-ﬁ)(?-?')} ds' = v
B

and, with (256),

t
ou
245" = f w2ty = futh=V
an’ 2
int B int B
Thus
3
. . " a¢§
= - 2 + . . ', RNV R & |
S (Rk) = (1= pv2)y z (7 ) (k xj)f n'xg05 = X} gk S
i3 B

(264)
and by using the polarizability tensor (174) with t replaced by o,

3
S (MK) = (1 -pv2)V + Z (Fex V(Koo )Xo (265)

S(r,k) = -k2 {(1 - pv2)V + ;';(p)'ﬁ} + O(k3) . (266)
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The polarizability tensor X is symmetric and all of the results of
Section 5 are directly applicable. When the interior density
becomes infinite, p = 0 (see (12)), and since ?(O) = -M, the
above expression reduces to the hard body result (252).

The formulas of this section as well as those of §§7.1 and
7.2 have been derived by Jones (1979b), who also obtained expressions
for the k3 term. It should be noted that the tensor elements Cij
defined by Jones are related to those presented here by

1

I D
i TR o AT (267)

7.4 Analytical and Numerical Results for a Soft Body

The preceding results make evident the mathematical similarity
of the electromagnetic and acoustic scattering problems at Tow
frequencies, and the results (242) and (252) are also valid for a plate
or open shell of infinitesimal thickness and volume. In the far
field of a soft body, the first three terms in the lTow frequency
expansion can all be expressed in terms of the potential functions
involved in computing the electric dipole moment for the corresponding
perfectly conducting body, and for a hard body the first two terms
are similarly related to the magnetic dipole moment.

The higher order terms provide more detail about the scattering
and, in the case of a soft body, are necessary to reveal any
dependence on the directions of incidence and observation. However,
1ittle information about them is available. Numerical studies

have focussed almost exclusively on the leading terms alone, and
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for those simple bodies which are amenable to analytical solution,
the natural choice of the origin of coordinates eliminates the
integral term in (242) and the term proportional to k3 in (252).

For a soft ellipsoid, Williams (1971) has determined the
cross section in terms of Lame functions, and from his analysis it is
possible to extract expressions for the terms of the first three
orders in (242). A special case is that of a spheroid, and for
axial incidence (ﬁ = -2) Senior (1960) developed the Tow frequency
expansion through terms Q(k®) for soft and hard bodies. In

particular, for a soft sphere of radius a,
S(rk) = -dma 1 - ika + (ika)2 S+ ez o+ O(K) (268)

(Bowman et al, 1969). Another special case of an ellipsoid is an
elliptical disk, and the solution for normal incidence on a soft
disk has been obtained through terms Q(k2) by Williams (1970).

To the leading term in the far field, the scattering of a hard
body is determined by the magnetic polarizability tensor M and the
volume, and data for the tensor elements Mij have been discussed
in §3.4 for a solid body of non-zero volume and in §4.2 for a flat
plate. It is therefore sufficient to confine attention to a soft

body for which the determining factor (see (243)) is the electrostatic

capacity.
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0f all the electromagnetic parameters for a body, it is
probable that the capacity has been the most widely studied. Analytical
expressions are available for a number of solid and planar configu-
rations. Many other geometries have been treated numerically, and
a variety of bounds have been established or proposed. It is therefore
impossible to do more than cite a few of the results.

For a prolate spheroid with interfocal distance 2d and radial

spheroidal variable &

c . 1, g+1(71
= - 4rd {2 Tog £ 1} (269)

(Senior, 1973), leading to the well-known result

c

0

S (270)

for a sphere of radius a. The corresponding formula for an oblate

spheroid is

mlr:

-1
-1 1
4rd {tan E—} , (271)

reducing to

c
€

o]

8a (272)

for a circular disk of radius a. For two spheres of radius a in
contact
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¢ ] 1\
o . ZE; ( 7 T ) 17.421a . (273)
n=0

For a solid hemisphere of radius a

= 8ra (1 --—l> = 10.622 a (274)

and for the corresponding hemispherical bowl of infinitesimal thickness

(and volume)

= 4ra <1 s %) = 32.306 a (275)

(Schiffer and Szego, 1949).

Since C/so has the dimensions of length, a possible normalized
factor is 4ﬂ(3V/4w)1/3. As conjectured by Poincare (1903) and
subsequently proved by Szego (1930), a sphere has the minimum
electrostatic capacity of all solids of equal volume. The capacity
normalized in the above manner therefore has a lower bound of unity
and is, in fact, just the (normalized) equivalent radius 5, i.e.,
the ratio of the radius of a sphere having the same capacity as the
body to the radius of the sphere having the same volume.

The equivalent radius for prolate and oblate spheroids is
plotted as a function of the Tength-to-width ratio 2/w (see 83.4) in

Fig. 12. For two spheres in contact, a = 1.100 with ¢/w = 2, and for
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a hemisphere, a = 1.065 with 2/w = 0.5, and these data are included

in Fig. 12. As 2/w > 0, a > », but this is due to the vanishing

of the normalization factor rather than to any intrinsic property of
C/eo. As %/w > =, however, C/sO becomes infinite logarithmically, and
because of this there is no simple geometric quantity with which to
normalize the capacity to produce a variation within finite nonzero
bounds .

A normalization factor that is sometimes convenient has been
proposed by Senior (1973) and is L = n(2+ w), i.e., 2n times the
average of the body's length and width. For a spheroid C/(EOL) is a
monotonically decreasing function of &/w, decreasing from 4/m for a
thin disk (2 /w = 0), through 1 for a sphere, to 0 for a long thin
spheroid (¢ /w ==), and this quantity is plotted in Fig. 13. As

proved by Szegd (1931),

< 2D (276)

where D is the maximum separation of any two points on the surface,

and since D < ¢ +w, it follows that

E_T < 2 . (277)

The bound is not an optimum one.
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For an arbitrary axially-symmetric body, the program (Senior
and Ahlgren, 1972, 1973) written to compute the elements of the electric
and magnetic polarizability tensors also furnishes the capacity C/eo.
To illustrate the results obtained, the normalized capacity C/(sOL) for
various rounded cones, ogives and lenses (see §3.4) and right
circular cylinders haye been included in Fig. 13. It is evident that
the spheroid proyides a reasonable approximation to the data.

For the "scooped-out" hemisphere shown in Fig. 5, &/w = 0.5
and L = 3r regardless of A, and the computed values of C/(aOL) decrease
monotonically from 1.127 for A = 1 (complete hemisphere) to 1.084
for o = 0.05. The corresponding (oblate) spheroid has C/(soL) = 1.053.
Additional data for two identical spheres joined by a wire along the
axis, and for two identical hemispheres, plane sides facing and
similarly joined, are given in Fig. 14, and in these cases the
spheroid simulation is increasingly in error as &/w get larger.

The capacity of a flat plate has also been widely studied and
is of interest in connection with transmission through the complementary
aperture in an acoustically hard screen. Since the thickness and,
hence, the volume are both zero, the preceding results are irrelevant
to a plate, but as conjectured by Lord Rayleigh (1896) and proved
by Polya and Szegd (1951), of all plates of a given area A the
circular disk has the minimum capacity. Thus, from (272),

<28

o

1/2

) (278)

2|3

with equality (of course) for the circle.

~-99.



The behavior of C under various types of symmetrization has

been studied by many authors and, in particular, it has been shown
(Polya and Szego, 1951) that symmetrization with respect to a line
never increases the capacity. Since the process does not increase
the perimeter of the plate, it supports the often-proposed but still
unproved conjecture that of all plates with a given perimeter P the
circular disk has the Targest capacity. If this is true, then

(Jaggard and Papas, 1968)

8r < g—- < 8r! (279)

[0}

where
A 1/2

ro= (-ﬂ—) (280)

is the inner (area) radius and

o _ P

r = o (281)

is the outer (perimeter) radius. A convenient normalization factor
for the capacity is therefore 8r. The capacity so normalized is

never less than unity and, if the above-mentioned conjecture is

valid, is bounded above by r'/r.
One of the few geometries for which an exact expression for

the capacity is available is the elliptical disk for which
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C _ 4ra (282)

where a is the semi major axis, e is the ellipticity and K(e?) is

the complete elliptic integral of the first kind. Since
A = qa?(l - ez)l/2 and P = 4aE(e?)
where E(e2) is the complete elliptic integral of the second kind,

r = a(l - ez)I/L+ and r' = 2 E(e2) . (283)
i
Figure 15 shows the normalized capacity C/(8re ) as a function of
0
the length-to-width ratio &/w = (1 - e2)'1/2 for 1 < 2/w < 10.

According to (279) the upper bound is

and is clearly satisfied. For an arbitrary plate of overall maximum
dimension 2 and largest perpendiuclar dimension w, these data can
be used to estimate the capacity.

During the last few years several programs have been written
to solve the integral equation (229) for a flat plate and, hence,
compute the capacity. One of the more accurate is that of Okon

and Harrington (1979) who have obtained data for a variety of shapes
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including the elliptical and circular disks, a square, an
isosceles triangle and a regular hexagon. To judge from the disk
data, the accuracy of the "asymptotic" values is about one percent.

For a square it is found that

(cf the value 1.113 obtained by Maxwell, 1879), and this is

consistent with the upper bound r'/r = 1.128. For the triangle

which violates the rigorous lower bound. It would therefore appear
that even for convex shapes the accuracy of existing data is
not sufficient for a detailed study of how the shape affects the

capacity.
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Geometry.

Normalized tensor element P11/V as a function of the length-to-
width ratio of the body for prolate and oblate spheroids (—),
rounded cones of half-angle 6 < /2 (=--=) and & > /2 (——),
and ogives and lenses (© @ ).

Normalized tensor element P33/V as a function of the length-to-
width ratio of the body for prolate and oblate spheroids (—),
rounded cones of half-angle ¢ < /2 (----) and 6 > 7/2 (— —),
and ogives and lenses (©® 0 ).

Normalized tensor element M11/V as a function of the length-to-
width ratio of the body for prolate and oblate spheroids (—),

rounded cones of half-angle 6 < 7/2 (----) and & > /2 (——),

and ogives and lenses (0 @ ).

: 'Scooped-out' hemisphere (o = 1 - tan 6/2).

Normalized tensor elements for elliptical disks, where

N = 8r3/3.

Normalized tensor element for elliptical disks, where

N = 8r3/3. The element is equal to its postulated lower bound.
xll(T)/v for a spheroid as a function of the length-to-width
ratio 2/w for different t.

X (1)/V for a spheroid as a function of the length-to-width

33
ratio g/w for different r.
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Fig.

10:

11:

12:

13:

14:

15:

The tensor element Xll(r) normalized to that of a spheroid
of same volume and material parameter . A11 = X11
(rectangular paraHe]epiped)/X11 (spheroid).

The tensor element X33(T) normalized to that of a spheroid
of same volume and material parameter rt. A33 = X33
(rectangular paraHe]piped)/X33 (spheroid).

Equivalent radius a = (1/41:)(41T/3V)1/3 C/eO for a spheroid
(——), for a hemisphere (®) and for two spheres in
contact (x).

Normalized capacity C/soL for spheroids (——), rounded cones
(—=—,----), ogives and lenses (® ® ) and right circular
cylinders (x x) (see §3.4).

Normalized capacity C/sOL for prolate spheroids (—),
two identical joined spheres (©® ©®), and two joined

hemispheres back-to-back (X X ).

Normalized capacity for an elliptical plate (

compared with the upper bound r'/r (—~—).
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Fig. 2: Normalized tensor element P11/V as a function of the length-to-width
ratio of the body for prolate and oblate spheroids (—), rounded

cones of half-angle 6 < 7/2 (~---) and 6 > 7/2 (——), and ogives and

Tenses (O O).
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Fig. 3: Normalized tensor element P33/V as a function of the Tength-to-width
ratio of the body for prolate and oblate spheroids (——), rounded
cones of half-angle 8 < 7/2 (-——-) and 8 > 7/2 (——), and ogives and

lenses (O O).




Fig. 4:

Normalized tensor element Mn/v as a function of the length-to-width
ratio of the body for prolate and oblate spheroids (——), rounded

cones of half-angle 8 < n/2 (~---) and 6 > /2 (——), and ogives and

Tenses (0 0).
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Fig. 5: 'Scooped-out' hemisphere (Ao =1 - tan 8/2).
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Fig. 6: Normalized tensor elements for elliptical disks, where

N = 8r3/3,
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Fig. 7: Normalized tensor element for elliptical disks, where
N = 8r3/3. The element is equal to its postulated

Tower bound.
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Fig. 8: X (r)/V for a spheroid as a function of the Tength-to-width
11

ratio &/w for different t.
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Fig. 9: X (t)/V for a spheroid as a function of the length-to-width
33

ratio 2/w for different T.
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Fig. 12: Equivalent radius a = (]/4‘“’)(471‘/3\/)1/3 C/:;O for a spheroid (——),

for a hemisphere (®) and for two spheres in contact (X).
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Fig. 13: Normalized capacity C/eOL for spheroids (
(==—,——=), ogives and lenses (® ®) and right circular

cylinders (X x ) (see §3.4).
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Fig. 14: Normalized capacity C/aOL for prolate spheroids (- )s

two identical joined spheres (©®© ©), and two joined

hemispheres back-to-back (X X).
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Fig. 15: Normalized capacity for an elliptical plate (~———) compared

with the upper bound r'/r (——-—).
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