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For the solution of certain low frequency scattering
problems it is necessary to determine a vector potential A
such that v x A = v$ where ¢ is a known exterior potential
arising from some distribution (charge or dipole) over a
surface S. This is a rather classical problem in potential
theory and, as shown by Stevenson (Q Appl. Math. 12, 194-
197, 1954), a so]ut1on exists if v%¢ outside and on S and

IS 3e/9n dS = 0 where n is a unit vector normal to the
surface.

When S is_a closed surface, a method for the
construction of A has been given by Stevenson. If ¢ is a
magnetostatic potential produced by a field incident on the
perfectly conducting surface S, ¢ can be expressed as a
double layer distribution and A is given immediately in
terms of the boundary values of ¢ + ¢‘"C, where ¢1NC js the
incident field potential. The result is also applicable to
a curved shell or plate of infinitesimal thickness. On the
other hand, if ¢ is an electrostatic potential associated with
an isolated conductor, ¢ is naturally expressed as a single
layer distribution, and the determination of A then requires
the solution of a subsidiary (interior Neumann) potential
problem, equivalent to the representation of ¢ as a double
layer distribution. The construction now fails if S has zero
interior volume.

Methods for the construction of A in the case of a
curved or flat shell (or plate) are discussed. Not
surprisingly, each involves the solution of a subsidiary
problem, and no way to avoid this has been found. To
illustrate the methods, some results for a circular disk are
presented.

RL-732 = RL-732

USNC/URSI Commission B, Boulder 19¢



KL /3¢

THE CONSTRUCTION OF A VECTOR POTENTIAL

Thomas B.A. Senior

Department of Electrical and Computer Engineering
The University of Michigan, Ann Arbor, MI 48109

For the solution of certain low frequency scattering
problems it is_necessary to determine a vector potential A
such that v x A = V¢ where ¢ is a known exterior potential
arising from some distribution (charge or dipole) over a
surface S. This is a rather classical problem in potential
theory and, as shown by Stevenson (Q. Appl. Math. 12, 194-

197, 1954), a solution exists if v2¢ outside and on S and
fS 3¢/3n dS = 0 where n is a unit vector normal to the
surface.

When S is_a closed surface, a method for the
construction of A has been given by Stevenson. If ¢ is a
magnetostatic potential produced by a field incident on the
perfectly conducting surface S, ¢ can be expressed as a
double layer distribution and A is given immediately in
terms of the boundary values of ¢ + ¢'NC, where ¢1NC js the
incident field potential. The result is also applicable to
a curved shell or plate of infinitesimal thickness. On the
other hand, if ¢ is an electrostatic potential associated with
an isolated conductor, ¢ is naturally expressed as a single
layer distribution, and the determination of A then requires
the solution of a subsidiary (interior Neumann) potential
problem, equivalent to the representation of ¢ as a double
layer distribution. The construction now fails if S has zero
interior volume.

Methods for the construction of A in the case of a
curved or flat shell (or plate) are discussed. Not.
surprisingly, each involves the solution of a subsidiary
problem, and no way to avoid this has been found. To
illustrate the methods, some results for a circular disk are
presented.

USNC/URSI Commission B, Boulder 198



RL 732

The Construction of a Vector Potential

A rather classical problem in vector analysis is the determination

of a vector function of position F(r) such that

where f is defined outside and on some surface B. The problem is
discussed in many texts, but probably the most complete treatment is
that of Stevenson (1954) who shows that the necessary and sufficient

conditions for the existence of a solution are

v.f =0, (r € ext B) (2)

fﬁ.?ds=o. (3)
B

To construct a solution, Stevenson first extends the definition

and

of f into the interior of B by choosing an interior potential & " such

that

Fo= gl (4)
with

2" = 0 , (F CintB) (5)
and

m ~



This is a standard Newmann problem for o' and has a solution by virtue

of (2). A solution of (1) is then

s _] :F(;‘l) 1

F = EFVA f —R—dv (7)
all
space

where R = |[r - r'|, and the most general solution is obtained by adding
to this the gradient of any scalar.

In the solution of certain Tow frequency scattering problems
it is necessary to determine the function F. F is then a scattered
electro- or magnetostatic field resulting from the incidence of an
electro- or magnetostatic field on, for example, a perfectly conducting

surface B. Since f can be expressed as
f = v (8)

where ©> is an exterior (scattered) Laplacian potential known outside
and on B, the conditions for the existence of F are satisfied if
the body is electrically neutral and, indeed, the above solution can

be written as
= 1 AS iny 1 .,
F—-Hv,\ fn(@-@)—R-dS . (9)
B

It might seem that this is now the end of the matter, but as we shall
see, the above solution is not always convenient or even valid.
The simplest case to consider first is that in which ¢ is a

magnetostatic potential.



Magnetostatics

If 6> is the scattered magnetostatic potential produced by the
potential o' incident on the perfectly conducting surface B, the
boundary condition is

S i
be” 20 :
¥ - .2, (few) (10)

and since o' is defined everywhere including the interior of B, 5

is itself an interior potential. Comparison with (6) now shows that

L. _¢i (1)
and hence
= 1 At .
F-4—ﬂvhfn®§d5 (12)
B
where
ot = ol +o° (13)

is the total (incident plus scattered) magnetostatic potential.

This result is convenient, since @t is known, and it is also
a standard result. It can be obtained, for example, from the
Stratton-Chu representation of an electromagnetic field by expanding
in powers of ik and recognizing that F is simply a first order
scattered electric field. Alternatively, if we seek a representation

of F in the form



S N IR TS (14)
B
then v . F = vo° if
1 -, - ] .
»° = Hf g(r') - v §dS , (15)
B

and since o° is naturally expressible as a double layer distribution,
viz

[t e, (16)

=
I
S —
=]

r') . (17)

There are, of course, other ways to obtain this same result,
but a key point is that if the interior of B shrinks to zero, so
that B becomes a shell or plate of infinitesimal thickness, the

solution remains valid. Thus, for a shell,
F . 1 AGEFT
F = - iV AL/,n ) - R das' (18)

where the integration is over the upper (positive) side only, and
the vertical line denotes the discontinuity across B. In particular,
for a (planar) shell or plate in the plane z = 0, N =z and FZ = 0.

Unfortunately, the electrostatic case is not quite so simple.



Electrostatics

6> is now assumed to be a scattered electrostatic potential
produced by a potential @i incident on the solid perfectly conducting
body B. > is therefore attributable to a charge distribution set
up on the surface, and if the body is electrically neutral, the
conditions for the existence of a solution F are satisfied. As before,

a solution is
= 1 ~rS iny 1 .
F = -4—1TV’\f n (CP -9 )R-dS (]9)

where ®1n is the corresponding interior potential whose determination
now requires the explicit solution of an interior Neumann problem.
This is a task which is inherent in the form of (19) in the electro-
static case. Recognizing that Fis a first order (in ik) scattered
magnetic field associated with the electrostatic field V®S, (19)
is a representation of F in terms of a surface distribution of electric
dipoles with moments normal to the surface. This is only possible
if the surface is electrcally neutral locally as well as globally,
and the interior potential achieves this end by placing on the inside
surface of B a charge distribution equal and opposite in sign to that
on the outside surface.

Alternatively expressed, since o> is naturally represented as
a single layer distribution, and the general form of F implies a double
layer distribution, it is necessary to express 9> as a double Tayer
distribution. This involves the solution of an interior potential

problem of Neumann type. Although it is a task which is always
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possible for a solid body, it is certainly inconvenient to have to
solve a new potential problem. Worse still, for a shell of
infinitesimal thickness the task is meaningless, and our solution is
no longer valid.

Realizing that F is not unique, it is certainly reasonable to
seek other forms of solution which, for a solid body, do not entail
the solution of an additional potential problem and which would
hopefully carry over in the Timiting case of a shell. For a few
particular solid bodies it is relatively trivial to construct a

function F. Thus, for a sphere of radius L with o' = 3 . r

and a possible solution is

F= v, (—a r;) . (20)

Similarly, for a body of revolution about the z axis, a knowledge of
the dependence of the incident potential on the azimuthal angle ¢
specifies the dependence of 5> and enables a simple expression for F

to be found. Thus, if 3 = X, then
S
> = cos ¢ flp,z)

where p,¢,z are cylindrical polar coordinates, and it is easy to show

that a possible solution is



F o= yo  vf . (21)

In contrast to our original solution, V - F # 0, so that F does not
represent a magnetic field. Though we can construct a magnetic field
by adding to F the gradient of potential, the determination of this is
a separate potential problem that must be solved.

For a solid body without rotational symmetry, the only method
we have found that does not involve the determination of an interior
potential is to introduce a potential (harmonic) function of zero

degree as defined, for example, by Hobson (1931). Let

) - -
K(F,P) = 1o BT (”_' rt) (22)
r-r".r
where R = [r - r'| as before. Then
~ - 1.1
r vK = v TR (23)
V2K = 0 , (r #0,r") (24)
and
K'~-— asr->ow (25)
Consider
t
= ] 30 A= =, \
F e T [ ERKE) s (26)
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where the origin of coordinates is inside B. For r € ext B

= 1 30 A, .
VAF— ﬂfé—n—r}‘ vK dS
B
t
] 30 T 1 .
Vﬂfﬁﬁ"‘(?‘ﬁ)ds
B
= Ve (27)

as required, provided the zero induced charge condition is satisfied.
Thus (26) represents a valid solution which is also a possible magnetic
field, and the nice thing is that it can be computed directly from a
knowledge of the surface charge distribution. In the particular

i A -
case of a sphere with ¢] = -a-r,

as before.
When I prepared the abstract for this talk, I had hoped to
prove that (26) is also a valid solution of (1) when the interior of

B shrinks to zero, so that for a shell or plate
- t|+
_ ] L l AI ol [ .
F—a—;v,\f——— MK(FLE) dS' (28)
and to demonstrate its validity by computing F for, say, circular

and rectangular plates. Unfortunately, the task is not trivial, and

because of some convergence difficulties that arise when the origin



of coordinates is on the surface, the problem of finding a function F
even for a flat plate is not yet fully resolved.

The only plate for which a simple analytical expression for F
is available is a circular disk of radius o’ lying in the plane z = 0.

If the incident potential is

o = 8.1
then
t+
L 7_2_1._7 (29)
re v e
= 7z .V ,\h
where
- A A +
h = -2z L&y (30)
with
ot = 42 T2 (31)
- T 0 P :

We remark that v is simply the magnetostatic potential for the same
geometry, and note that h (which is the discontinuity in the tangential
magnetic field across the plate) vanishes at the edges in accordance

with the edge condition there. An expression for F is then
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and thus

* ] dS'}E . (33)

- A A A A A
Fo= 2a,zp + {z,(za)} \ V { R

[

B

N —
=l

In closing, I want to emphasize that the main objective of this
work was to seek a solution F of the equation VAF = Vo valid for a
shell or plate when ¢ is an electrostatic potential, and to do so
within the general context of classical potential theory. For a flat
perfectly conducting plate it is obvious that we could set up the
coupled integral equations for the components of the total current
induced in the plate and simply solve these numerically. We can do this
even in the dynamic case, and by expanding all quantities in power of
ik, derive the coupled integral equations for the first order currents,
leading then to numerical values for our function F. But the whole
purpose of a low frequency expansion is to simplify the numerical
tasks involved. If the determination of F alone requires us to solve
integral equations which are just as complicated as for the entire

dynamic case, there is no longer any rationale for considering a

Tow frequency expansion.



