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November 1982

ABSTRACT
FINITE ELEMENT SOLUTION FOR ELECTROMAGNETIC
SCATTERING FROM TWO-DIMENSIONAL BODIES
by
John Lawrance Mason
Co-Chairmen: Thomas B.A. Senior, William J. Anderson

The problem of two-dimensional electromagnetic scattering from
bodies in free space has been formulated using a differential equation
finite element method. An incident plane wave polarized so as to
excite only E-wave fields has been assumed. A weak integral statement
was obtained using an approach equivalent to the weighted residuals
method, the weighting functions being selected by Galerkin's method.
The finite element mesh of general first-order quadrilaterals
extended outward into the far field region of the scattering body,
where the boundary condition at the outer boundary was obtained from
the asymptotic expression for the scattered field.

In order to compare the finite element method with an integral
equation moment method, a special case was solved numerically, namely
that of a thin, infinitely long resistive strip. Accurate numerical
results from a moment method solution were available to serve as a
check on thé accuracy of the finite element method results. For a

perfectly conducting strip (the 1imiting case of a resistive strip)

the finite element mesh contained special triangular elements at the

edges of the strip to model the singularities in the magnetic field



which occur there. Two important disadvantages of the finite element
solution became apparent. First, the boundary condition used at the
outer boundary leads to the presence of standing waves in the

computed scattered field, a non-physical result. Second, the computer
memory required increased much more rapidly with strip width than in
the moment method solution.

The finite element method used was thus unable to compete with
the moment method solution for the thin strip problem. However, to
demonstrate a problem for which a moment method solution may be less
attractive because of its increased memory requirements, numerical
results were obtained using the finite element method for scattering
from a body consisting of a thin resistive strip embedded in a

dielectric cylinder.



CHAPTER I. INTRODUCTION

1.1 Historical Background

The scattering of electromagnetic waves from bodies consisting
of a simple shape of homogeneous material has been studied for years.
Much of the early work focussed on bodies whose geometry coincided
with coordinate surfaces of systems for which the wave equation is
separable. Typically, modal expansions of the fields were written,
followed by application of boundary conditions. The solution was
in the form of an infinite series. Numerical values of the fields
were then obtained by summing a finite number of terms of the series,
which was generally a time-consuming process. The solution of
scattering problems using integral equation formulations was not
accomplished except in two cases. In these cases the body surfaces
were complete coordinate surfaces of a system where the wave equation
is separable. An integral transform was found to invert the equation
for a solution.

The techniques mentioned above are usually called analytical
techniques, even though they are often followed by a numerical
procedure to evaluate the resulting expressions at particular points.
For bodies having complicated shapes and/or inhomogeneous material
properties, these techniques fail. Instead, so-called numerical
techniques are used. Until about 1970, most electromagnetic

scattering problems which were solved numerically involved finite



difference, variational, or moment methods (Wexler, 1969; Jones,
1956; Harrington, 1968). Since 1970 the finite element method,
utilized earlier in applied mechanics, has been applied to scattering
problems with some success. A1l of these numerical methods provide

a procedure for converting a scattering problem, formulated in terms
of either a differential equation or an integral equation, into a

problem of solving a system of linear algebraic equations.

1.2 Formulation of Scattering Problems

For numerical solutions of scattering problems involving
bodies in unbounded space, integral equation formulations have been
preferred to those of differential equation formulations. The
solution region for the integral equation is confined to the surface
of the scattering body with boundary and radiation conditions
automatically taken into account. Integral equation formulations are
well suited for scattering by thin sheets and by bodies into which
the field does not penetrate. However, it is more difficult to obtain
such formulations for scattering problems involving thick,
inhomogeneous bodies into which the field does penetrate.

The most commonly used numerical technique for the solution
of integral equations arising from scattering problems is the method
of moments. The resultant system of Tinear algebraic equations has
a dense matrix of coefficients. In view of the current computer
hardware available, this method can be applied to scattering bodies
with surface areas up to about one square wavelength or, in the

case of two-dimensional problems, to lengths of about five



wavelengths. A characteristic of the method is that the solution
becomes non-unique at frequencies for which the interior of the
scattering body is resonant (Klein and Mittra, 1975).

Differential equation formulations have been used primarily
for interior scattering problems when numerical solutions have been
made. For exterior problems, the solution region for the differ-
ential equation is unbounded, requiring application of the radiation
condition at infinity. The solution region is thus larger than that
for an integral equation formulation and is of higher dimension.
However, a differential equation formulation is convenient for
inhomogeneous media.

Interior problems formulated in terms of a differential
equation are usually solved numerically with finite difference,
moment, or finite element methods. The finite difference algorithms
are usually the simplest. However, the finite element method has
advantages over both the other methods in terms of accuracy and
ability to handle bodies having complex shapes. A1l of these
methods lead to systems of linear algebraic equations having sparse
matrices. Proper arrangement of the equations results in a banded
matrix allowing use of efficient equation solvers so that computer
time and memory requirements can be reduced. These comments
apply to exterior problems for which, however, all the methods
require application of the radiation condition and, in general,
require a large system of equations due to the large solution

region. Difficulties associated with these two requirements for an



exterior problem may easily overshadow the advantages of a
differential equation formulation over an integral equation
formulation, except for the ability to handle inhomogeneous media.

The work reported here is an effort to determine if, and under
what conditions, a finite element differential equation solution might
be more economical than a moment-method integral equation solution
for exterior scattering by electrically large bodies (dimensions of
one half wavelength or greater). Also a finite element solution is
demonstrated for a case involving a thick body for which a

moment method integral equation solution may not be practical.

1.3 Previous Work

The finite element method has seen limited application in
solution of integral equations (for example, Jeng and Wexler,

1977, and Sankar and Tong, 1975) because of the efficiency of the
method of moments. The finite element method was first applied
successfully to interior boundary value problems because of the
difficulty in handling the radiation condition in exterior problems.
For example, Arlett et al., (1968) solved the Helmholtz equation in
a waveguide using a variational formulation combined with a finite
element discretization.

Silvester and Hsieh (1971) reported solving Laplace's
equation for an exterior problem using a variational formulation.
They divided the solution region into two parts, one part being a
Tocal region containing, for example, sources, conductors and

dielectrics. The local region was treated using finite elements.



The other region, extending to infinity was treated as a single
exterior element. In the portion of the formulation related to this
element it was necessary to require that the stored energy in the
exterior region be finite, a requirement which is met by solutions
of Laplace's equation. Determination of the element matrix involved
the solution of an integral equation.

McDonald and Wexler (1972) also divided the solution region
into a Tocal region and external region. An integral equation using
a free-space Green's function was used to relate the field at points
within the Tocal regions to points on the boundary of the external
region. Examples of cases satisfying the Laplace and Helmholtz
equations were solved using a variational formulation. As a result
of the use of the integral equation, the global matrix obtained was
more dense than the typical banded matrix of a finite element solution.

The works of Silvester and Hsieh, and McDonald and Wexler are
examples of the combined use of finite element and boundary integral
methods. Another example is the study by Berkhoff (1975) on linear
water wave propagation. A survey of work using this combined approach
was given by Zienkiewicz, Kelly and Bettess (1977). The technique
was also discussed by Brebbia and Walker (1980), Zienkiewicz (1977),
and McDonald and Wexler (1980).

In another approach known as the unimoment method and
developed by Mei (1974), the fields in the exterior region are
expressed in a modal expansion and the interior region is handled

using finite element or finite difference techniques. The interior



and exterior problems are then coupled together by enforcing
boundary conditions for the fields at the boundary between the
regions. The resulting system of equations has a banded matrix.
The unimoment method has been applied to the scattering of
dielectric cylinders (Chang and Mei, 1976) and to inhomogeneous
penetrable bodies of revolution (Morgan and Mei, 1979).

Another way of handling the outer boundary condition for an
exterior problem, proposed by Ungless (1973) and applied by Bettess
(1977), involves the use of elements extending to infinity. The
shape functions for such infinite elements must realistically model
the behavior of the unknown as the distance increases from the Tocal
region of interest and should lead to integrals over the element
domain which are finite. Bettess and Zienkiewicz (1977) used a
combination of finite and infinite elements in a study of water
waves. Included in the infinite element shape functions was an
exponential factor with a decay length. Although this method does
not require detailed knowledge of the form of the solution in the
outer region, some knowledge of the exact solution is required to be
able to select the decay length. This approach does not give an
accurate indication of the behavior of the unknown towards infinity;
however, the effect of the far region on the local region of interest
is introduced.

Thatcher (1978) used an infinite number of elements defined
in a systematic way to solve Laplace's equation in an unbounded

region. This method will also handle singularities occurring at



boundaries of the solution region. Application of this method to
the solution of the Helmholtz equation in unbounded regions has
apparently not been made.

Other work has been reported on absorbing or non-reflecting
boundary conditions for use with finite difference or finite element
solution of wave propagation problems, whereby the exterior problem
is converted to a pseudo-interior problem. Smith (1974) proposed
the superposition of the solutions of Dirichlet and Neumann problems
to completely eliminate reflections at a plane boundary of a half
space. However, this approach does not seem applicable to other
geometries. Orlanski (1976) used the Sommerfeld radiation condition
and a numerical evaluation of phase velocity in the vicinity of the
boundary. In a mechanics problem involving determination of strain,
Hanson and Petschek (1976) used a spring-dashpot system as a
terminating network on a one-dimensional system to absorb a single
wavelength. They reported successfully using a similar technique
on a two-dimensional problem. Engquist and Majda (1977) developed
"perfectly absorbing" boundary conditions for general classes of
wave equations. They then derived local boundary conditions, suitable
for numerical calculations, which approximate the theoretical

boundary conditions.

1.4 Objectives of the Present Study

The first objective of the present study is to develop a

finite element formulation for an exterior scattering problem .



Specifically, a differential equation formulation is used. The
variational method, typical of finite element work, is replaced by

a Green's identity and Galerkin's method. This amounts to

using the method of weighted residuals. Also, the handling of the
boundary condition at the edge of the finite element region is
performed in such a manner that: (1) the influence of the boundary
condition is made through individual element contributions and

(2) the band nature of the global system matrix is preserved. This
rules out the use of boundary integral techniques.

The second objective is to apply the finite element
formulation to the solution of a specific scattering problem to
determine if it has an advantage over a moment method integral
equation solution for electrically large bodies. Scattering from
an infinitely long, finite width, infinitesimally thin, flat
resistive strip is considered since an integral equation formulation
and accurate moment method numerical solution (Knott, Liepa and
Senior, 1973) are available. Briefly a resistive sheet has the
properties that: (1) the component of the electric field tangent
to the surface has no discontinuity at the surface, and (2) the
component of the magnetic field tangent to the surface has a
discontinuity at the surface which is directly proportional to the
tangential electric field. A perfectly conducting sheet can be
considered as a resistive strip with zero resistivity. Both
formulations are capable of handling a strip whose resistivity varies

in the direction perpendicular to the axis of the strip. Further,



since a singularity in the magnetic field occurs at the edge of
a perfectly conducting strip, the finite element discretization
includes special elements to accurately model this behavior.

The practical requirement of each solution method is to
compute the far scattered field and the radar cross section. The
effect of the element density on the accuracy of these results for
various strip widths and resistivities, and for different angles
of incidence is investigated. In order to accomplish this, an
automatic element mesh generator is included in the computer program
so that the element density, the length-to-width ratio of the
elements, and the distance outward to which the finite element region
extends can be easily changed. The effect of the element density
on the computer memory requirements and CPU time is also examined.

The third objective is to apply the finite element formulation
to the solution of scattering from a thick body into which the
field penetrates so as to demonstrate a case where the moment method
integral equation approach may not be practical. The specific case of

a resistive strip embedded in a dielectric cylinder is considered.



CHAPTER II. FORMULATION OF THE SCATTERING PROBLEM

2.1 Statement of the Problem

An infinitely long, infinitesimally thin strip of width w lying
parallel to the z-axis and in the x-z plane is immersed in an infinite,
uniform medium with permeability L and permittivity € (Fig. 2.1).

The strip is a resistive sheet whose resistivity in ohms per square is

RZO, where Z0 = Juo7eo. The sheet is defined by its boundary conditions

h. E]' = 0 (2.1)
and

RZn, [H]' = -n.(n.E) , (2.2)

where n is a unit normal to the strip in the positive y direction and
the notation [ ]f represents a discontinuity across the strip. E and
H are, respectively, the total electric and magnetic field strengths.
The normalized resistivity R may be a function of x, i.e., R = R(x).

A plane wave, whose direction of propagation is perpendicular
to the z-axis, is incident on the strip. The polarization is such
that

. =ik (x cos ¢ _+y sin ¢ )
Elz = 26 O 0 o (2.3)

|m
"
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X = -w/2
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Fig. 2.1:

X = w/2

A strip lying in the x-z plane.
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where ¢0 is the angle that the direction of propagation makes with

19t time dependence is

the plane of the strip (Fig. 2.2). An e
assumed for all time-varying quantities.
The incident fields E' and H' are the fields which would
exist everywhere if the strip was not present. In the presence of
the strip, the total fields are E and H which are the sums of the

incident and scattered fields:

and

The scattered fields are associated with an outward radiation of
energy and must satisfy a radiation condition at infinity. A

surface current induced on the strip is given by

K = n. [, (2.6)

(2.7)

If a knowledge of the surface current density on the
scattering body can be obtained, the far scattered field and the
radar cross section can be determined using an integral

representation such as that of Franz (1948, 1949).
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Fig. 2.2: An axial view of the strip.
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Of interest here, is the prediction of the radar cross section
of the strip for various angles of incidence, resistivities, and

electrical strip widths.

2.2 Integral Equation Formulation

Formulation of a scattering problem in terms of an integral
equation requires an integral representation (e.g., Stratton-Chu,
1939, or Franz) of the scattered field in terms of the surface current
density on the scattering body. Expressions for the total fields in
the space near the body can then be written. An integral equation
for the surface current density is obtained if the observation point
is allowed to approach the surface and the appropriate boundary
conditions are applied (Maue, 1949 and Poggio and Miller, 1973).

A numerical solution of the integral equations of scattering
problems is normally carried out using the method of moments
(Harrington, 1968). Discretization of the equation and the unknown
by this method results in a system of linear, algebraic equations

which may be solved simultaneously using a digital computer.

2.3 Differential Equation Formulation

Maxwell's equations describing the electromagnetic field at

any point in the region of free space surrounding the strip are

VL.E = e (2.8)

and

>
|=
]

-'iweog_ . (2.9)
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The strip is assumed to be Tongitudinally invariant along z such
that all field components are independent of z. Expanding (2.8)

and (2.9) in component form yields

BEZ N BEZ . aEy BEX "
X - Y +(ax oy ) z

5y X 1wu0(HXX + Hyy + sz) (2.10)

BHZ R 3HZ N B_Hl BHX N . N N N
5—)’_)(-2—3-)-(_— (BX -5}—-)2 = '1w€O(ExX+Ey}’+EZZ) . (2.11)

Decomposing (2.10) and (2.11) into scalar component equations yields

the following two independent systems of equations:

Z _ N
-—= = IwuoH (2.12)

and

I
]
[
e
(@]
o
m
x

(2.13)

1
[
e
m

o
m
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Examination of the preceding equations reveals that (2.12) couple
field components Ez’ Hx’ and Hy describing the field configuration
of an E-wave, while (2.13) couple field components Hz’ EX and Ey
describing the field configuration of an H-wave.

Since the incident plane wave has its electric field vector
directed in the z-direction, only E-wave fields will be present.
Eliminating Hy and Hy from (2.12) yields the following two-dimensional

wave equation for E, in which k% = wzuoeo:

32E 32E
—Z4+ —ZLRE =0 . (2.14)
ax2  ay? 02

The incident plane wave field E; satisfies the same wave equation,

and thus it follows that the scattered field Eic = EZ - E; satisfies

32ESC a2ESC .
Z 42 pept o= g . (2.15)
ax? dy2 0z

Since the scattered field is an outwardly propagating wave, it

satisfies the radiation condition (Bowman et al., 1969, p. 5):

1im sc
oF (p)
o> Vo Lafi—:=—-- ikOEic(g)} =0 , (2.16)

where o is a position vector in the x-y plane. At the strip the

boundary conditions may be re-expressed as

(5617 = o (2.17)
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and

RX)Zn ., [T = -0, (n.E) . (2.18)

Since there is no discontinuity in the incident field and n= §,

(2.18) becomes

SCq+
1.

. sC
-R(x)Zo[Hx EZ = EZ + EZ . (2.19)

Further, because (2.12) applies to the scattered fields,

Y
sc_ i z
HX = - 5;;- gy—— (2.20)
and
sc

, 5E + )

Jﬂl((l)_ 2z = f'+pSC (2.21)
0 3y ) z z

In the case of a perfectly conducting strip, R(x) = 0, implying that

£SC = ! (2.22)

at the strip.
Some. symmetry properties of the scattered field evident from an

integral representation (e.g., 2.38) should be noted at this point:

sC - rSC
B (xy) = E7(xy) (2.23)
HoE(xy) = =M C(xmy) (2.24)
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This means that (2.19) can be written as

QR(OZHC], = EL+EC (2.25)

Using (2.20), this becomes

SC
2iR(x) °Ez |
k, I,

I
m

sc
tE (2.26)

on the strip. Further, from symmetry considerations, Hic equals

zero off the strip in the x-z plane, implying that

—Z = (2.27)

for |x| > w/2, y = 0. These symmetry properties allow the solution
of the problem by solving the wave equation only in the half-space
y 2 0.

The boundary conditions at the edge of the strip are not as
easily deduced as they were elsewhere on the strip. At the edge there
is some ambiguity concerning the definition of normal and tangent
vectors. Meixner (1949) proposed an additional boundary condition
which, when imposed, makes the solution to the boundary value problem
unique. His "edge condition" states that the electromagnetic energy
density must be integrable over any finite domain even if the domain
contains singularities of the electromagnetic field. Bouwkamp (1946)

showed that in the case of a perfectly conducting infinitesimally thin
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plane surface with an edge, near the edge the singular components of
the electric and magnetic field vectors are of the order of r'l/z,
where r is the distance from the edge, while components of the fields
parallel to the edge are always finite. It should be noted here

that the singularities which do occur are in the scattered field
components and not in the incident field. Also, the induced surface
current density parallel to the edge of a perfect conductor is
infinite at the edge.

Extending the work of Meixner to deal with imperfectly
conducting edges, Fawzi and Burke (1974) concluded that there are no
singularities in any of the field components at the edge of a
nonmagnetic, finite conductivity wedge. Senior (1979) found that
the current density along the edge of a resistive sheet is always
finite.

A numerical solution for the scattered field Eic using the
differential equation formulation is carried out by the finite element

method as described in the following chapters.

2.4 Far Scattered Field and the Radar Cross-Section

In order to obtain the far scattered field, the induced
surface current density K, on the strip is calculated. Using (2.7)

and (2.20)

i 3ESC ]+
K. = -[H¢ 7" = —‘Z-l:——L] : (2.28)
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For a resistive sheet, (2.19) yields

- 1 i o
KZ = R_(m—; (EZ + EZ ) ’ (2.29)

where R(x) # 0.
Using Franz's representation, the scattered field may be

expressed as

r)o=v,.v, 1) , (2.30)

i = 1 1 1 ]
ir) = ;e—f K(r')G, (r.r')ds (2.31)
0]
S
in which
iko/r - r'|
G (r.r') =
iy - r'|

is the free space Green's function. This field satisfies the radiation

condition at infinity. Since

and

V21 + kg_q = 0 (2.32)

in source-free regions,
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EE" = v(v.rmn)+ k21 (2.33)

at any point off the sheet S.
Since the problem being considered in the present work is
two-dimensional (no variation in the z-direction) and since K = Kzg,

then I = HZE and v - 1 = 0. Thus

SC - sc? - 2 »
E EZ i kOHZz . (2.34)
where
no= 2 ke et e -0t (2.35)
z we 22 17y \Kplp = lide . ‘
(¢] I,P

Here FP is the strip and (1/4)Hél)(k0|p - p'|) is the free space

Green's function in two dimensions.
In the far field region kolg_ - gf] >> 1 and p >> p'. Thus

ik p-i(7/4) -ik pep"
-o'l) = 2o 0 e 9 = . (2.36)

In terms of source coordinates, p' = x'x and pp' = x' cos ¢.
Figure 2.3 shows the relationship between these various quantities.

Therefore, in the far field region

E

ik p-i(n/4)
> () - nﬁop e ? P(9:0,) (2.37)
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Fig. 2.3: A diagram for the far field computation.
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where

b o . -ikox' cos ¢
(620) = - 7> f 7K (x') e dx (2.38)
Xl

The angle of incidence ¢O enters the integral by way of the current

density. For a two-dimensional problem the radar cross section is

defined (Bowman, 1969) as

ESC|2
o(4s0g) = Tim 2mo |~ (2.39)
o> E
which becomes
2

(2.40)

in the present case.



CHAPTER TIII. SOLUTION BY THE FINITE ELEMENT METHOD

3.1 Summary of the Problem

The scattering problem formulated is essentially a scalar
problem in two dimensions. The unknown field E;c is denoted by the

scalar u here and in the following chapters. The scalar u satisfies

2 2
97U, U, k2u =0 . (3.1)
ax2  ay?

On the strip located at y = 0 and |x| < w/2,

2iR(x) au i
—| = u+u . (3.2)
Ko 3Y|:

Here u' = exp[-iko(x Cos 6 +y sin ¢o)], the incident field. 1In

addition on y = 0, |x| > w/2,

The field at the edge of the strip must satisfy Meixner's edge
condition if the strip is a perfect conductor. Finally, the radiation

condition

d
p]immm[az(p—) i 1‘kou(p_>_)] - 0 (3.4)

must be satisfied.

_24-
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3.2 Derivation of an Integral Statement of the Problem

The solution for the scalar field u is to be obtained in the
region @ bounded by the contour T as shown in Fig. 3.1. The region
Ties in the upper half-space y > 0. The contour I' is composed of
three sections:

1. is the Tine y = 0, -w/2 < x < w/2.

Tp
2. T, are the lines y = 0, [x| > w/2.
3. I is a semicircle with a radius el which is sufficiently
large to place T in the far field region (see Section 5.2).
Green's first identity (Stratton, 1941, p. 165) indicates

that for scalar functions u and v

f vv%udsz =-fvtv-vtu d9+f£v%%dr s (3.5)
T

2 Q

where n is an outward normal to I and v, = ;(a/ax) + &(a/ay). The
function u is the scattered field which is continuous and has
continuous first and second derivatives in Q expect at the edges of
the strip (x = tw/2) if the strip is a perfect conductor. In this
case singularities occur at the edges in the first derivatives which
are integrable in accordance with Meixner's edge condition. The sum
of the second derivative terms, v%u, has no singularity anywhere
since u has no singularity and u satisfies (3.1). The function v

is an arbitrary function at this stage except that it must be

sufficiently continuous so that any singularities in the first

derivatives are integrable.
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Use of (3.1) through (3.3) results in

. - k2 - 7
f(vtv 7,0 - Kvu)de - i f—(——l

Q

U _
f vl8qr =g . (3.6)

In the far field region u is approximately given by (2.37) which

satisfies (3.4). Then on Tgs

Using this, (3.6) becomes

. - k2 - _0
f(vtv Vil kvudsz i f dr
Q
+{—]——-ik]f [vu] dar = 0
20 0 p=p
1 I‘B 1

(3.8)
This is known as a "weak form" integral statement (Zienkiewicz, 1977)
since the order of the highest derivative is one lower than the order
of the highest derivative in the original differential equation (3.1).
In the case of a perfectly conducting strip, R(x) = 0,
and (3.8) cannot be used since R(x) is in the denominator. Returning

to (3.5), and using (3.1) and (3.7) yields
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. - K2 - au
f(vtv v.u kovu)dQ f Vo dr
Q T
p

1 .
+ I:ZF—_ 1k0:]‘[ [vu]p=p dr =0. (3.9)
1 B 1

For the perfect conductor a prior knowledge of 3u/3n on the strip
(PP) does not exist, except that the derivative is proportional to
the induced current on the strip, but the boundary condition,
u+ ui =0, on T, is yet to be imposed. Equation (3.9) is the
integral statement for the perfectly conducting case.

The derivations of (3.8) and (3.9) are essentially equivalent

to the weighted residual method described in the finite element

literature (Zienkiewicz, 1977, Chapter 3).

3.3 Interpolation Functions and Expansion of the Unknown

In order to solve for u, it is approximated by

u ¥ u = :Ej Nn(x,y)an (3.10)

I
=1
and v is restricted to be v = W (m=1,...,I) one of a set of
weight functions yet to be prescribed. The domain @ is divided into
a number of small domains o€ called elements with nodes n on the
element boundaries. As indicated in the summation above, there is

a total of I nodes. For each node n there is an interpolation or

shape function Nn which is unity at that node and zero at all other

nodes. The value of the unknown u at node n is then approximately
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a5, a complex constant. Thus, the determination of the scattered

field amounts to determining the value of each of the a constants.
Selection of interpolation functions and weight functions

must be made in accordance with the necessity that the integrals

of the weak form statement (3.8) or (3.9) be finite. In the weak

form statement, the appearance of first derivatives requires that

u and W must be continuous throughout @ and on T', but allows

discontinuities in their first derivatives. Further discussion on

the selection of interpolation functions appears in Section 3.5.
Another name is often attached to the finite element weighted

residual procedure depending on the choice of the weighting functions.

If

, (3.11)

the method of Galerkin is being used. In energy conserving problems,
such as in a perfect dielectric medium, this method leads to a
symmetric matrix of coefficients for the set of algebraic equations
from which the an's are determined. Also, for this case, the method
carries a guarantee of convergence to the proper numerical result,
which other choices of weighting functions do not have (Zienkiewicz,

1977, Chapter 3).

3.4 Conversion to a Set of Algebraic Equations

Using the approximation u for u and Galerkin's method in

selecting the weighting functions W, one obtains for the weak form

statement (3.8):
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Interchanging the order of integration and summation,

I
oN_ 5N oN_ 3N
m n m n )
z {f[ax X 3y 3y konNanQ} 4

I . I
ik N N
0 mn 1 .
2{2 ij) dr} a_+ {(T;"ko) f NN dr

n=1 FP n= PB

ik N u]
= =2 . dr

2 R(x)

r

(3.12)
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form=1,...,I. This is written as

where

and

(3.13)

(3.14)

(3.15)
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Equations (3.13) represent a set of linear algebraic equations to
be solved for the unknown an's, the values of the scattered field
at the nodes.

Calculation of the coefficients Kmn and ) in the finite

element method is done by an element-by-element procedure. The

integrals over the entire region @ are replaced by sums of integrals

over individual elements making up the domain. Thus

J
- e
- 2 K (3.16)
and e=1
J
_ e
£o- Z e, (3.17)
ey

oN_ N aN
m n m L2
cjn [ax X ¥ oy k N N } d

Q(-:‘
ik N_N
0 mn 1 .
-z—fe W““(z‘o?"ko) "l .
rP ré
B
and
ik N u
e _ _o
g f e L (3.19)
e
p

For a perfectly conducting strip, the set of algebraic equations

should be modified by removing equations corresponding to nodes where
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the field strength a, is known, The values of a, for nodes on the

strip is known due to the boundary condition u + u' =0onrT,.

P
Thus on Tp

- i -
a_ = -u (xn,O)

ui
n n

In this case (3.10) can be written as

I ]

- i

u = - :§: Nn(.)(,y)un + :g: Nn(;x,y)an ,
n=I"'+] n=1

where T - I' is the number of nodes on the strip.

(3.20)

(3.21)

Proceeding as with

the resistive strip using u for u and Galerkin's method in selecting

w_, the weak form (3.9) becomes

m
aNm 3 I i L aNm
faT 3X (' Z Npln * Nnan) tay
Q n=I"'+1 n=1
I I' I
R AN 2 .
LRI TN EE A Oy
n=I"+1 n=1 Q n=I"'+1
I' I I'
p) i
+ Nnan) do f N, o ( Z N ul +Z Nnan) ar
n=1 T n=I1"'+] n=1
P
I I'
1 i _
+ (20 1k0) f Nm <— Z Nnun + Nnan) dr = 0
1 I'g n=I1"'+] n=1

(3.22)
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form =1,...,I'. After interchanging the order of integration and
summation, and transferring the terms corresponding to the nodes on
the strip to the right-hand side, the resulting set of linear
algebraic equations is

I
m=1,...,I' , (3.23)

Kmnan N gm i
n=1

where

X  9X 9y Yy omn
1 dar , (3.24)
+ (Zpl - 1k0)‘jn NmNn
T
and
I
g, = Z Kmnu:] . (3.25)
n=I"'+]

3.5 The Element Mesh

The selection of a particular type of element and its
interpolation functions for a particular problem depends on, in
addition to the nature of the integral statement, the geometry of
the problem, the nature of the medium, the desired accuracy of
the solution, and the computer facilities available for the compu-
tation. In the present study, the geometry of the problem and the
desire for computerized mesh generation lead to the selection of

the elements.
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Most of the elements are general quadrilaterals having a
node at each corner. In order that the node Tocations be generated
automatically in the computer program, the nodes are placed at the
intersections of the ellipses and hyperbolas of an elliptic coordinate
system (Stratton, 1941, p. 52). The sides of the elements are
straight lines between the nodes (Fig. 3.2).

Triangular elements are used at the edges of the strip. This
is done because of the need to properly model the behavior of the
fields at the edge of a perfectly conducting strip. Since some
components of the fields become infinite at the edge, an element is
needed with shape functions whose derivatives have appropriate
singularities. Such elements have been developed by W. S. Blackburn
(1973) and a number of others (Zienkiewicz, 1977, Chapter 23).

It can be stated as a general rule that use of higher-order
interpolation functions requires fewer elements to achieve a given
degree of accuracy of solution. Thus savings in computation time
and computer memory requirements can be obtained. On the other hand,
the higher-order functions lead to more complicated computations
for the element matrix coefficients (Zienkiewicz, 1977, Chapter 7).
In this work the quadrilaterals used are of higher order than the
more commonly used linear triangular elements and offer the potential
of greater accuracy. Linear interpolation is used in the quadri-
laterals rather than higher order interpolation functions in the

interest of keeping the element matrix computations simple.
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3.6 Quadrilateral Finite Elements

As can be seen in Fig. 3.2, the quadrilateral elements are
of various sizes and shapes. Rather than write interpolation
functions for each of these elements, a transformation of the
elements to a set of normalized coordinates allows the writing of
the interpolation functions for all the quadrilaterals in a single
concise form.

A general quadrilateral in the x-y plane is shown in Fig. 3.3.
The x- and y-coordinates of the nodes are known values. A transfor-
mation of coordinates is used to map this quadrilateral into a
square element in the a-g coordinate system as shown in Fig. 3.4.
That is, the x-coordinate of any point in the element is a function

of o and 8. The same is true for the y-coordinate. Thus,

x = x(a,B) (3.26)
and

y = y(a,8) . (3.27)

Before the exact expressions for this coordinate transformation are
stated, a discussion of the interpolation functions Nn for the
quadrilateral elements will be given.

The simplest interpolation function is a Tinear function.
It provides for continuity of u at element boundaries but will allow
discontinuities in the first derivatives of u. The function Nn must

satisfy
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Fig. 3.3: A quadrilateral finite element.
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(-1,1) A (1,1)

Fig. 3.4:
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A square element in normalized coordinates.
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1 at node n
N = . (3.28)

0 at all other nodes

A function meeting this requirement and having a linear variation

with position

—

N = Z'(] + aan)(] + Bsn) (3.29)

is selected where,

Q
]

value of a at node n,

value of B at node n.

™
n

Thus in the a-B coordinates the value of u at some point (o,8) in

the square element is

4
u(a,B) = ZE; Nnan . (3.30)
n=1
Linear interpolation is also used for the coordinate transformation
so that (3.26) and (3.27) become
x(a,B) (3.31)
and

> (3.32)

)’(OtsB)
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where X, and y, are the x- and y-coordinates of node n. Because
the same interpolation functions are used for the function u and for
the coordinates x and y, these elements are said to be "isoparametric".
In order to carry out the integrations for the element matrix
coefficients Kﬁn (3.18) or (3.22) and the incident field term f;
(3.19), the integrals are transformed to the a-B coordinates,

simplifying the specification of the limits of the integrals. The

details of these calculations are presented in Chapter IV.

3.7 Triangular Elements at the Strip Edge

At both edges of the strip are regions which may be
conveniently divided into two triangular elements rather than one
quadrilateral element (Fig. 3.5). Integrations over these elements
are most easily handled if the elements are transformed in a manner
similar to that used for the quadrilateral elements. A general
triangular element is shown in Fig. 3.6. This element is transformed
into an o-g coordinate system as shown in Fig. 3.7 using linear

interpolation functions:

x(a,B) (1 -a-B)x +ax + Bx
1 2 3

and . (3.33)

y(a,B) (1-a-8)y +ay +8y
1 2 3
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0 +w/2

Fig. 3.5: Triangular elements in mesh at strip edge.
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Fig. 3.6: A general triangular element.
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sl 0.1)

(0,0) » o

Fig. 3.7: A triangular element in normalized coordinates.
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The interpolation functions Nn are

N = T1T-a-8 ,
1

N = o , (3.34)
2

N = 38

The field is interpolated with the same shape functions

3
ua,8) = Z Na, - (3.35)
n=1
and the element is isoparametric.
This approximation for (3.35) is valid for a resistive
strip, but for a perfectly conducting strip a special set of

interpolation functions

N1=1-VOL+B
N2 = af/o + B (3.36)
N = B//a+8

are used to model the behavior of the fields near the edge.
Following the method of Blackburn (1973) this set of functions not
only models the behavior of u near the edge, but also has a linear
variation along the side of the triangle opposite the node at the
edge of the strip to assure continuity of u at the element's
boundary with the adjacent quadrilateral element. Since the
interpolation functions (3.34) and (3.36) are not the same, this

special element is not isoparametric.



CHAPTER IV. SOLUTION PROCEDURE

4.1 The Computer Program

The computer program for the numerical solution generates the
mesh of nodes and elements by calculating x and y coordinates of
every node. The elements and nodes are then automatically numbered.
Each node is given a unique global node number and a local node
number associated with each element of which it is a corner. Next,
the element matrix coefficients Kﬁn and incident field terms f; are
calculated for one element and inserted into the proper location of
the global matrix for the system of equations (3.13) or (3.23).

This process is repeated for all the elements.

The resulting global matrix has all its nonzero coefficients
in a relatively narrow band centered on the principal diagonal.
Computer memory requirements are kept to a minimum by storing only
the band of nonzero coefficients. The system of equations is solved
by a procedure beginning with a triangular decomposition of the
matrix followed by a variation of Gauss elimination.

Solution of the system of algebraic equations yields the
value of the scattered field at every node. The induced current
on the strip is then calculated, and from this the radar cross section
is obtained. Details of the calculation of element matrix

coefficients, the incident field terms, induced currents, and the

-46-
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radar cross section are given in the remaining sections of this

chapter.

4.2 Element Matrix Coefficients for Quadrilateral Elements

The integrals for the element matrix coefficients K;n (3.18) or
(3.24) are transformed to the a-g coordinates using (3.31) and (3.32).

The first portion of KE
mn

BNm 8Nn BNm BNn
_ k2
fe ox ax Tay sy - Koo | X dy

] 8Nm BNn BNm aNn ,
i U[‘ U[, 5% 3x 3y 3y keN-N| 1] dads (4.1)
=-]

r il
X 3y
ao. aa
J = (4.2)
ax 3y
38 3B
and - -
= = 93X 3y _9x 9y
1J] det J 52 35" 33 by (4.3)

Using (3.31) and (3.32), the partial derivatives of J are



where

O
1]

The terms in (4.5) are the coordinates of the nodes.

The partial derivatives in the integral of (4.1) are

u

y -y ty -y
2 3
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1 A
Z‘(Dl + BDZ)

1
— (D +aD
4 ( 3 a 2)

| —

(D +8D)
4 5

1
- (D
il ( 6 +0LDS) J

=X +tXx +tXx -X
1 2 3 4

X =X +tx =X
1 2 3 L

=X =X *tXx +X
1 2 3 L4

-y + + -
yl y2 Y3 Yh

1 4
-y - +y o+
yl y2 Y3 Yk

oN oN aN

_n_ 1 (_ndy_ _n

ax W(aa o8 ~ 3B
and

ay T \38 9da ~ da

Since Nn is given by (3.29), then

oN
_n
a0,

J

(4.5)

(4.6)
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and

BNn
38 = Bn(] + owcn)

| —

(4.9)

Although the transformation of the integral (4.1) to the a-8

variables simplifies the Timits of integration, the integral is not

easily evaluated due to the complexity of the integrand. Numerical

integration (Gaussian quadrature) is used in the computer program.

The next portion of K;n given in (3.18) is the integral across

the resistive strip. This integral has a nonzero result for only
those elements adjacent to the strip. For a perfectly conducting

strip, Kgn has no such integral on the strip as can be seen in

(3.24). Figure 4.1 shows a typical element adjacent to the strip.

From Fig. 4.1 it is apparent that

ik N N ik y [NNT._
__0 mn g, = _0 mn Y=o 4
2 R(x) 2 b[‘ R(x)
e X
FP 1

Transforming the integral to the «-8 variables and using

yields

(4.10)

(4.11)
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Fig. 4.1: The quadrilateral element adjacent to the strip.
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since the Tine between nodes 1 and 4 corresponds to the line a=-1
in the a-8 coordinate system.
To allow for a number of different resistivity profiles, R

at node n is assumed to be of the form
= 2
Rn A+ BXn + CXn R (4.13)

where A, B and C are constants which are part of the input data for
the computer program. If A, B and C are zero, the computer program
interprets the data to indicate a perfectly conducting strip. The
expression for R(a,8) along the line o = -1 between nodes 1 and 4

is a linear interpolation in terms of R and R .
1 4

[R(a,8)] = NR +NR ,
11 4oy
or

[R(x,8)] . ;—(R1 FR)-TBR <R ). (4.14)

S8l %—(x1 - X ) (4.15)

and using (3.29) yields

N = de (- )T+ )(1-a)(1+8s ).  (4.16)

a=-1
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Thus (4.12) becomes

) lfg-uf NmNn o - ko(] - o )(1 - an)(x1 - X, )
2 R(x) 32
rs 1
P

(1 + Be ) (1 + BB, )ds
f (4.17)

(R +R)—B(1-Rq)

using (4.14), (4.15) and (4.16). This integral is also evaluated
by numerical integration.
The final portion of K;n given in (3.18) or (3.24) is the

integral along the contour r, in the far field region. This integral

B
has a nonzero result only for the elements adjacent to this contour.
Figure 4.2 shows a typical element adjacent to the strip. The
integral is transformed to the a-g coordinates. If I is the

distance along TS

1
(-2—;7-1%)]; NN s (—————1k) Sfl[ } ds . (4.18)

a=1

from node 2, the integral is

The expression for T is

ros oy M -x )2+ (y_ -y )2 (148) . (4.19)
3 2 3 3

However,

X = p €COS¢ ,¥y = p sin¢g , X = p coS ¢

2 1 1 2 1 1 3 1 2

and

y = p_ sin¢
1 2
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Y
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Fig. 4.2: A quadrilateral element adjacent to the contour FB.
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Thus (4.19) becomes

P
r = ——L/1-c05(¢ -¢ ) (1+8)
/7 2 1
Then
p
%E- = L /T -cos(p -¢ ) d8
g a=1 /2 2 1

Using (3.29) yields

INNT = e (1 o)1+ 88)(1+ )1+ s)

a=1

The integral in (4.18) becomes

/T - cos(o. - ¢.)

Y

fNNdr=1 21
mn 16 V2

e

FB 1

(4.20)

(4.21)

(4.22)

(Tt )0 +a) f (1+88 )(1 +88 )ds (4.23)

B=-1

when (4.21) and (4.22) are used with (4.18). The integral in (4.23)

is evaluated exactly so that
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In summary, the element matrix coefficient K;n (3.18) for a
quadrilateral element is the sum of three terms given by (4.1),
(4.17) and (4.24) for a resistive strip. For a perfectly conducting
strip K;n (3.24) is the sum of (4.1) and (4.24).

4.3 Element Matrix Coefficients for Triangular Elements

The integrals for the element matrix coefficients Kﬁn for
the triangular elements are handled in much the same manner as those
for the quadrilateral elements. The first portion of Kﬁn is trans-

formed to the -8 coordinates

BNm 3Nn aNm BNn )
b[, 5% x| 3y 3y KoMy | dx dy

Qe
1 1-g
3Nm aNn aNm aNn
= _ k2
f % % Tay sy - KN [ 19 duds (4.25)
a=0 B=0

where integration is over the triangle shown in Fig. 3.7. Using

(3.33) yields

X L W oy Ly )
Ja TN b Y, 7Y
? (4.26)
X . Wy - -
3B X3 X1 3B y3 yl‘)

so that
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Nn = oann - a0 - SnB R (4.28)
where

a = 1 B = 1

1 1

a = -1 B =0

2 2

a =0 B = -1

3 3

The partial derivatives in (4.25) are given by (4.6) and (4.7).
Using (4.26) and (4.28) yields

aN

Sh - T]]—r[an(yl EARENUAERDN (4.29)
and

aNn 1

5‘9— = W [(Xn(x3 - Xl) + Bn(xl = X2)] . (4-30)

Then using (4.28) through (4.30), the integral (4.25) becomes
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1 1
- 2 - k2 s _ L
' (y2 y1) ]} Ko |JI{; Bt " § (Opfptn t O‘ano‘m)

—

1 1
- 5 loBaBy opBBn) * o7 (o8, v o8 )ty (oo smen)} . (4.31)

nNO

minn

The next portion of K;n given in (3.18) is the integral on the
resistive strip. This integral is nonzero only for the triangles
which are adjacent to the strip. Figure 4.3 shows a triangular
element adjacent to the strip at x = w/2. From the figure it is

apparent that

ik J[ N N ik
0 mn _ 0 mn-y=o
- = i §(§7'dx = —E—-‘Jﬁ ~—§1§71——-dx . (4.32)
r
P

1
ik N N ik N N
0 mn _ _o m_n X
- f RO X Zf [RQ’BJ (38) s ,  (4.33)
B=0

e
Tp
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y
{l
2
(x ,y )
2 2
(%55 y,) 1/ (x 5y,) .
3 W= w2 j

Fig. 4.3: A triangular element adjacent to the strip at x = w/2.
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since the line between nodes 1 and 3 corresponds to the Tine o = 0
in the a-8 coordinate system. The expression for R(a,8) along the

line o = 0 is a linear interpolation from R and R :

[R(a,8)] = R1 +8(R -R) . (4.34)

_ 159_ NN o - ik (x - x.) (0, - 8)8 (o - B8, "
2 R(x) 2 R +8(R -R)
e B=0 1 s 1
Tp
(4.35)
A change of variable in the integral, 8 = (o + 1)/2, yields
ik N N
-2 MR dx
2 R(x)
e
"p
' 1
o 'Iko(xl - X3) (Zam -1 - G)Bm(Zocn -1- O)Bn o (4.36)
8 R +R)+o(R -R) i )
. 1 3 3 1

a form which is convenient for numerical integration.
Figure 4.4 shows the triangular element adjacent to the strip

at x = -w/2. The equivalent of (4.36) for this triangle is
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y
A
(x55¥5) ]
X = -W/2 2

Fig. 4.4: A triangular element adjacent to the strip at x = -w/2.
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1k0 NmNn
'Tf R(x) X
e
Tp
1
) 1k0(§g_: Xl) (ZBm -1- o)am(ZBn -1 - c)an ; (8.37)
8 (Rl +R ) +o(R - Rl) o )
2 2

o=-1

which is evaluated in the computer program by numerical integration.
In the case of a perfectly conducting strip, the element

matrix coefficient (3.24) for the triangular elements becomes

BNm oN BNm oN
1 _ny N _ k2N N[ dxdy . (4.38)

89X  8x 3y ay om

This integral is transformed to a-g8 coordinates using (3.33):

j-a

. . N aN AN N
© - J f oty ay - KN 19l e ds , (4.39)

where |J| is given by (4.27). The interpolation function Nn is

given by (3.36) or can be written in a general form

ana + BnB
Nn = oyt T (4.40)
vo + B

where o and B, are given by
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a = 1 B =
1 1

a = -] B =
2 2

a =0 B =
3 3

The partial derivatives in (4.39) are

From (4.40),

given by (4.6) and (4.7).

aN oot (-2a + Bn)B
—_ = - (4.47)
and
oN (a, - 28 )a - B B
== "3/2 n (4.42)
B 2(a + 8)

IR R STE
J - .
dX 197 2o + 8)3/2 3 1
(an -2 Bn)a - BnB
- - 4,43
T y1>J< )
and
N (@ - 28 )a - BB
n _ 1 n n n
y T‘ﬂ—[ 2(0L+B)3/2 (X2 —Xl)
~aa + (20 +8.)8
n n °n
- s 3)3/2 (x3 - xl)] . (4.44)

K;n (4.39) is evaluated by exact integ

and (4.44). Defining

ration and using (4.40), (4.43)
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Fo= (x =x)2+(y -y)?
1 3 1 3 1
Fo= (x -=x)x -x)+(y -y)y
2 3 1 1
Fo= (x -x)2+(y -y)?
3 2 2 1

the coefficients 'ﬂ?m for the triangular element are

L (F - 2F +F) ol
4T 2 3 7 30
2
1 (_.i F +F + l.F - Eglil
qar\zf R o
k2|J
d 1l e bp U3 Fl - _EJ__L
T \2° 7,77, 30
) k2[J]

1 [ 3
Im(;fFl*Fz*‘z‘Fg)'T

2
1 ise L Ip ,5p) L Kl
a6 1 3, "6 4 18
, k21 J]

1 F 4 7 0!
ﬂWK§F1+3F2+§F3> 9

N

(4.45)

(4.46)
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In summary, the element matrix coefficient K;n (3.18) for
a triangular element is the sum of two terms (4.31) and (4.36) or
(4.37) for a resistive strip. For a perfectly conducting strip

€ (3.24) is given by (4.46).
K

4.4 Incident Field Terms

The integral for the incident field terms (3.19) is evaluated
for the element adjacent to the resistive strip. For a quadrilateral

(Fig. 4.1), (3.19) becomes

X
o iko N u' b N u’ dx
fo o= dx = - >
m 2 ( ) I )
e
P 1
or
ik Nu (a,B)

€ - _0 m OX|
fn = -2 Jr { Ra,8) o8] (4.47)

B=-1

upon transformation to the a-8 coordinates. The incident field in

the a-B coordinates is
u(a,8) = expl-ik x(a,8)cos 4] (4.48)

where x(a,8) is given by (3.31). Then

| —

Maap)] = expigiko(cos )

a=-1

[(x +x)-8(x -x )1}
1 ly 1 4
(4.49)
Using (3.29), (4.14), (4.15) and (4.49), the incident field term
(4.47) becomes
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ds ,

Jrl (1 + Bsm)exp[ iko (Xl ; Xu) (cos ¢o)8]

(R +R) -8R -R)
B=-1 1 Y 1 4
(4.50)
which is evaluated using numerical integration.
For the triangular element adjacent to the resistive strip

at x = w/2 (Fig. 4.3),

_JQ Jn N u' dx
2
X:
or 1
e X it (eo8) x) g (4.51)
m 2 R(a,B) dB ' ’
B=0 =0 '
In this case the incident field ui(a,s) for o = 0 is obtained using
(3.33)
u](a,s)] = exp|-ik_cos ¢ [(1 -8)x +8x ]| . (4.52)
a=0 0 0 1 3

Using (4.26), (4.28), (4.34) and (4.52), the integral (4.51) becomes

exp[—1k0x1 cos ¢O]

| “/m (o, - B8, exp[iko(x1 - x.)(cos ¢O)B]d8 (4.53)

R1 +8(R - R)
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(4.54)
which is evaluated using numerical integration.

For the triangular element adjacent to the strip at x = -w/2

(Fig. 4.4), a similar calculation yields

ik (x - x.) X, + X
e _ 0’2 M1 s 1 2
fn = 7 exp{: 1k0( > > cos ¢(J

! X =X
J o2y - 1 - oexp [iko(—l“f‘&) {cos ¢o)“] ds , (4.55)

g=-1 1 2 2 1

which is numerically evaluated.
In summary, the incident field terms are given by (4.50) for
a quadrilateral, (4.54) for the triangle at x = w/2, and (4.55)

for the triangle at x = -w/2.

4.5 Induced Current

The induced current in the resistive strip is obtained using

(2.29) or

K, = =00 (W' + u) (4.56)
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and is evaluated at the center of the side of each element adjacent

to the strip. If the element is a quadrilateral (Fig. 4.1)

R(x) = NR +NR , (4.57)
11 b4
where
X - X,
N1 = T x (4.58)
1 L
and
x1 - X
Nq = I Tx (4.59)
1 Y

and Rn is given by (4.13). The scalar u on the strip is given by

u = Na +Na (4.60)
and the incident field on the strip is given by

ui = exp[-ik0 X COS ¢0] . (4.61)

Since the x-coordinate of the center of the side of the element which

is along the x-axis is

_ 1 4
X = 5 , (4.62)

the current (4.56) at that point is written as
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B X+ X 2+
exp| -ik ( 1 ) cos ¢ 1 L
1 0 2 0 —5
+
z Z0 R, R, (Rl + RL+
2 2
. -

by using (4.57), (4.60) and (4.61). Similarly, the induced current

(4.63)

at the center of the triangular element at x = w/2 (Fig. 4.3) is

i X, X qa, +a
exp|-ik (——————ii) cos 9 | 1 3
1 0 2 qJ 5
+ T (4.64)

is

(4.65)

If the strip is a perfect conductor, the expressions for KZ
having R(x) in the denominator cannot be used. Instead (2.28) is
used. Due to symmetry (2.24) in the scattered field, (2.28) is

rewritten using (2.20) to obtain

21 du
K. = — . (4.66)
z EOZO Y|,
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For the quadrilateral elements (Fig. 4.1) the derivative in

(4.66) is now evaluated. The scalar u is given by (3.10) or by

N a (4.67)

u T u =
nn

"

n=1

in a single element. Thus the derivative can be expressed by
L

aNn
2 — a . (4.68)
+ :gj 3y n

n=1 y=0

au
3y

Here Nn is given by (3.29) and (aNn/ay) is given by (4.7). Since
the element is adjacent to the x-axis, then y1 = 0 and yL+ = 0.

Noting that o = -1, where y = 0, (4.68) is evaluated to be

du|
3y| 4

124
—_——
1
> [=¥]
L
1 !
> 3]
=
~———
1
—
1
>
—
+
>
N
+
>
1
x
S
+
™
L)
>
—
1
>
N
+
>
w
1
>
g
~
| ——

At the center of the side of the quadrilateral, g = 0 and the

induced current is

(4.70)
For the triangular element (Fig. 4.3) adjacent to the strip

at x = w/2, the derivative in (4.66) is now evaluated. The scalar

u is given by
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<

3
2 Na (4.71)

n=1
where Nn is given by (4.40). Then

3
oN

2 57"— , (4.72)

n=

where aNn/ay is given by (4.44). Since nodes 1 and 3 are on the
X-axis, y1 = 0 and y3 = 0. Noting again that o = -1 where y = o,

(4.72) is evaluated to be

At the center of the side of the triangle, 8 = 1/2 and the induced

current is

¢ k2; { '(x2 - x3)a1 + 2(x1 - x3)a2 + [(x2 - xl) + (x3 - Xl)]asl.
Lo 70, |
(4.74)

For the triangular element (Fig. 4.4) adjacent to the strip
at x = -w/2, the derivative in (4.66) is now evaluated. Since nodes
1 and 2 are on the x-axis, y1 and y equal zero. Equation (4.72)

2

becomes
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In summary, for a resistive strip the induced current KZ is
given by (4.63) for a quadrilateral, (4.64) for the triangle at
x = w/2, and (4.65) for the triangle at x = -w/2. For a perfectly
conducting strip KZ is given by (4.70) for a quadrilateral, (4.74)
for the triangle at x = w/2, and (4.76) for the triangle at

X = -w/2.

4.6 Radar Cross Section

The radar cross section given by (2.40) requires evaluation

of (2.38), the expression for P(¢,¢0). Using (4.56) yields

dx'

1

P(4:0,)

w/?2 . .
) EQ exp[-1k0x (cos 9, * COS )
4 R(x")

'=-w/2

(4.77)

w/2 u(x',O)exp[—ikox' cos ¢]
dx'}

R(x")
X'=-w/2
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for a resistive strip. These integrals can be converted to a series

of integrals over individual element edges along the strip.

J
D plbatg) s (4.78)
e=1
where
Ky exp[-ik x'(cos ¢+ cos ¢)]
Pe(¢s¢ = 'I_ f dx'
e
Tp
u(x',0) exp[- 1k x' cos ¢]
+f R0 dx’ (4.79)

&
and J is the total number of elements. In (4.78) only those
elements adjacent to TP make a nonzero contribution to P(¢,¢0).
For a quadrilateral element (Fig. 4.1), the integrals in
(4.79) are transformed to the a-8 coordinates using (3.31) and

(3.32).

1
’ exp[-1k x(a,8)(cos ¢ + cos ¢0)]
_ o
P (0:0,) = 4—{ [ } dg
A a=-1

f R(a,8) 3| _

L (a,B k (a,B ¢ ]
+ (Jn Jexp[-ik x )cos ax
R(a,8) 38 )

ds} . (4.80)
1
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Since u(a,B) is approximately given by (3.30), then

~

u(a,8) (1+8)a, . (4.81)

N —

1
—2—(] - B)al +

o==1

Using (4.14), (4.15), (4.49) and (4.81) yields

Ko Lo (* T X
Pe(¢,¢o) = -7 (X1 - Xq)exp -k, ( > )(cos ¢ + Cos ¢0)

X, = X,
exp 1ko ( 5 ) (cos ¢ + cos ¢0)B

dg

(a, +3,) - 8(a, - :
. yfa a +a B(a1 aq) exp {1k (Xl ; X, )(cos ¢)§J dé}. (4.82)
(R, +R,) - 8(R - R) i

For the triangular element adjacent to the strip at x = w/2

(Fig. 4.3)
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and for the triangle adjacent to the strip at x = -w/2 (Fig. 4.4)

kO . X1 + Xz
Pe(¢,¢0) = -1 (x2 - xl) exp 1k0 ( 5 ) (cos ¢ + cos ¢0)

1 !
exp 1k0( 5 ) (cos ¢ + cos ¢O)8
| Jr dg

=1 (R, +R) -8R -R)

- N
+ (X2 ; 1) exp [-ﬂ(o(xl : Xz) . ﬂ
(a, +a)-8(a -a) XX
f (R1 + Rz) -g(R -R) exp 1ko< 2 )(COS ¢)8}d8}.

(4.84)
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For the case of a perfectly conducting strip, evaluation

of (2.38) requires the use of (4.66) rather than (4.56). Thus
w/?2

2i su
k_ 3y

X'=-w/2 0

4>| =
o

P(¢,¢O) = - exp[;ikox' c05<ﬂ dx' . (4.85)
+

As with the resistive strip, this integral is converted to a series

of integrals along individual elements. Using (4.78) again,

k .
] 21 au ik x! :
P(0:0) = -7 f > ay+exp[ ik X cosq{}dx . (4.86)
Fe
P

For a quadrilateral element adjacent to the strip (Fig. 4.1),
transformation of (4.86) to a-B coordinates yields

1

k .

= 0 2i | i ax

P (0:00) = 7 f (s {ay exp[1k0x(oc,8)cosq{]aJOL:_1 ds .
B=-1

(4.87)

Since x(a,B) is given by (3.31), then

X, + X
exp [-ikox(a,s)cosﬂ‘ = eXp{fﬁko (—3 > “) oS ¢J

a=-1
. exp [1k0 <x1 ; i )(cos ¢)%}. (4.88)
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Using (4.15), (4.69) and (4.88) yields

+B(a -a +a -a )] d , (4.89)

where D1 and D? are given by (4.5).
For the triangular element adjacent to the strip at x = w/2

(Fig. 4.3), transformation of (4.86) to «-8 coordinates yields

1

k :
- 0 2i |3u i ax
Pl0500) = 7 f 3 [8}, exp [1kox(a,B)COS ¢]BBJ . d

g=0 ©
(4.90)
Using (3.31), (4.26) and (4.73) yields
i(x. - x)
Pe(¢,¢o) = - ———1—5——§—-exp [—ikox1 cos ¢]
. -al(xz - Xg) +2a,(x; - x3) + [(x, - x;) + (x5 - x;)]a,
2y (x_ - x)
21 3 .
1 -~
explik (x, - x.)(cos ¢)g
. I l_ 01/; 3 ] dg (4‘9])

B=0 :
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or, if g = (¢ +1)/2,

. { -2 (x, = xy) * 2a,(x - x,) + [x = x )+ (x -x )a,
/?yz(x - X))

1 3

X, - X

1 . 1 3
exp[}k0 — (cos ¢)o] ( |
do . 4,92

Vo + 1

g=-1

Using (4.74), Pe(¢,¢o) may be written as

where ZOKZ is the induced current at the center of the element.
For the triangular element adjacent to the strip at
x = -w/2 (Fig. 4.4), the expressions for P(¢,¢O) are similar to

(4.92) and (4.93), that is
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do (4.94)
o=-1 Vo + 1
or
k0 X) = Xy . X X
Pe(¢,¢>o) = -4—ZOKZ< 5 )exp[qkq( 5 )cos ¢]

:r exp [1k0 (Xz ; % )(cos ¢)€]d0 , (4.95)

0=-1

where ZoKz is the induced current at the center of the element.
The radar cross section is frequently given as a dimensionless
quantity o(¢,¢o)/x0 and is given in decibels. Since k0 = 2w/xo,

(2.40) may be written as

= 2 e, (4.%6)
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Expressed in decibels,

O(¢a¢) 2
10 1 ° )= 101 £421 P(o, ,
Oglo ( Ao ) 0910 m 20 Oglo [P(o ¢0)I

(4.97)

where P(¢,¢O) is given by (4.78).

In summary, for a resistive strip Pe(¢,¢0) is given by (4.82)
for a quadrilateral, (4.83) for the triangle adjacent to the strip
at x = w/2 and (4.84) for the triangle at x = -w/2. For a perfectly
conducting strip, Pe(¢,¢0) is given by (4.89) for a quadrilateral,
(4.93) for the triangle at x = w/2 and (4.95) for the triangle at
x = -w/2. Numerical integration is used in the computer program

to evaluate the integrals in these expressions for Pe(¢,¢o).



CHAPTER V. RESULTS OF THE NUMERICAL SOLUTION

5.1 Error Criteria for Numerical Results

The numerical results of the finite element method (FEM) were
obtained using the DEC-10 computer at Western Michigan University.
They are compared with results obtained from an integral equation
formulation of the same problem. The integral equation was solved
by the method of moments (MOM) at the Radiation Laboratory of the
University of Michigan (Knott, Liepa and Senior, 1973). The moment
method results for the radar cross section of the resistive strip
are known to agree quite well with measurements.

The error in magnitude of any quantity Q calculated by the
finite element method is defined as follows:

L]
percent error in |Q| = FEM MM« 100 . (5.1)

1 yom

The phase error is given by

error in arg Q = (arg Q)FEM - (arg Q)MOM . (5.2)

5.2 Selection of Element Mesh Parameters

The objective to be met in selection of the mesh parameters

is to provide a sufficient density of elements so that the incident

-80-
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field is adequately sampled at the strip, and so that magnitude and
phase errors in the computed scattered field are not large, allowing
a certain accuracy of solution to be obtained. Of course, the cost
of the solution is also a consideration.

The semicircle I is to be in the far field region of the
scattered field. Selection of the radius p1 of PB is made using the
criterion 2d2/>\O for the near field radius, where d is the largest
dimension of the scattering body (Kouyoumjian and Peters, 1965).
There is no reason to extend the finite element region further
outward because the accuracy of solution is not improved and the
cost of solution is increased. Thus

o = M (5.3)

1 Xo

Along a radial line extending outward from the strip, the
scattered field is essentially a decaying sinusoid of wavelength A
The results of the one-dimensional problem (scattering from an
infinite sheet) in Appendix C indicate that the maximum error in the
magnitude of the scattered field is less than one percent if the
density of the elements is 16 or more elements per wavelength.

This density of elements is generally viewed as adequate for sampling
a sinusoid. Thus if M _is the number of elements in the radial

Y
direction, the selection is

=
| v
p—
(o))
|
—
(8]
D
~—
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Using (5.3) yields

(5.5)

In order to adequately sample the incident field on the strip,
the density of elements there should also be about 16 elements per
wavelength. If Mx is the number of elements adjacent to the strip,

the selection is

16

=
|v

(5.6)

>*'l£

A lower density may be used for cases where the incidence is nearly
broadside.

The element mesh, discussed in Section 3.5, has a nonuniform
distribution of elements. Thus the element densities implied by
(5.4) and (5.6) must be considered as average densities. Near the
strip the density of elements is greater than near the semicircle Tg:

When N MX and My have been selected, computation of the
parameters actually used in the computer program is begun. The
integer number Mx is called NUMELS in the program. The semicircle
of radius o bounding the finite element region coincides approxi-
mately with an ellipse of eccentricity €. For £7! < 0.5, the
ellipse is essentially a circle. Taking o as the average of the

semi-major and semi-minor axes of the ellipse yields
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Using (5.3) yields

1= (5.8)
W
A
0
which is the required eccentricity. This value is the computer
program parameter SMEC:
_ 1
SMEC = —— . (5.9)
4 W
A
o]

In order that the largest ellipse inside the circle o = o be nearly
a circle, SMEC must be 0.5 or less. A value of SMEC equal to 0.5
corresponds to w/AO = 0.5 according to (5.9) and P, w according
to (5.3). Consequently, for w/xO < 0.5 the parameter SMEC must
remain at 0.5 and pl must equal the strip width.

Another of the computer program parameters is an aspect ratio
EL. It is the ratio of the dimension of a quadrilateral element in
the direction parallel to the strip to the dimension in the
direction perpendicular to the strip. Assuming values for My, NUMELS,
and SMEC have been tentatively selected, an approximate value for
EL can be obtained from

M -1 M -1

EL = - =
(NUMELSTA ~ TMJR

(5.10)

where A = -0.83 1og10 SMEC + 0.17. This expression for EL is due to
the properties of the mesh generation portion of the computer program

as explained in Appendix A.
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5.3 Effects of Element Density

In order to examine the effect of element density on the
accuracy of the solution, numerical values of the magnitude and phase
of P(¢,¢O) for backscattering (¢ = ¢0) were obtained for a strip of
width w/Ao = 0.5. The radius in wavelengths of the finite element
region pl/kO is 0.5 as specified by the selection rule (5.3). The
errors in the numerical values are defined by (5.1) and (5.2).

The numerical results indicate that an increase in accuracy
in both magnitude and phase of P(¢,¢O) for all angles of incidence
is most economically accomplished, in terms of computer memory, by
making element densities (MX)AO/w and (My)xo/p1 equal and increasing
them both. It is possible to make one density substantially Targer
than the other to reduce the errors at certain angles of incidence.
However, the effects on the errors at other angles of incidence are
not always predictable if this is done. Figures 5.1 and 5.2 show
the errors in P(¢,¢0) versus element density for R = 1. For 50 degree
and 90 degree angles of incidence, element densities of 16 elements
per wavelength in both directions appear to be adequate to reduce
the error in the magnitude of P(¢,¢O) to be Tess than one percent, and
to reduce the phase error to 1.0 degree or less. The errors for
incidence at zero degrees are larger, apparently due to the presence
of a null in the radiation pattern near this angle.

The effect of the null can be seen in Figs. 5.3 and 5.4
which show the errors in P(¢,¢0) versus ¢ for backscattering. The

errors at the null which occur at about ¢ = 25° can be reduced by



-85-

‘G0 =

) o 1
¢ = ¢) Buruszzeosyoeq ‘g0 = Y/ d

"

1
,o<\3~ ‘0°L =¥ Q\OKVszv = Az\o<Vszv *£3LSudp JuUBWI|d °SA _Aoeneva~ UL A044T

HIONITIAVM ¥3d SINIWITI

G¢ 0e Gl 01
d _ p-
/N
/ N -1 €
OO = nv / //
/ Ne —
~e // Iluﬂw.
x\/\
\\\\\\\.X\\\\\\\\ \
208 _—x M-
xIIIIIlI|X|\l\\\l\x x
-1 0
.06
—1

:1°g by

O,
[(79°0)d| NI ¥O¥¥3 I9VINIIYId



-86-

‘0O°L = ¥ .AHQ\OKVszv = Az\o<Vszv ‘A3Lsusp JudWI[D °SA Aoe.eva fue uL a0uu3z :2°G °*HL4

14

o.,l,

“AOQ = ¢) Buiualzedsydeq ‘G0 = ¥/ ° ‘G0 = ©

HLINITIAVM ¥3d SINIWIT3
02 ST

v/

0t

( !

ST-

X
X0
X
X 0

o
o
Kol

2

/M

(S33¥930) d DY NI ¥Ouy3



PERCENTAGE ERROR IN [P (4,0 )]

Fig. 5.3:

-87-

-12 |

>|<
X
—~
=
N
—
>
~~
=
N
1}
~No
o
-
—~
=
~
—_—~

n

Error in [P(g,¢,)] vs. ¢ for R

p./x, = 0.5, backscattering (¢
1



-88-

M) Og/w) =16, (M) (/e ) =17

®
1
I
]

[ ]
—
=
~
—
>

o
S~
=
~
0]

24 (My)(ko/ol) = 24

ERROR IN ARG P (DEGREES)

Fig. 5.4: Error in arg P(¢,¢ ) vs. ¢ for R = 1.0, w/x = 0.5,
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increasing the element densities. The same general results for
R'=0 are shown in Fig. 5.5 and 5.6 except that the errors are larger
than for R = 1.

The errors in P(¢,¢O) are plotted versus (1/2)k0w cos ¢ for
three different strip widths in Figs. 5.7 and 5.8. Here both the
element densities are 16 elements per wavelength and R = 1. Data
for strips wider than 0.71 wavelength could not be obtained due to
large amount of computer memory required. These two figures show that
for (1/2)kow cos ¢ < 0.3 = the magnitude error is less than one percent
and the phase error is less than 1.5 degrees for all strip widths.

The wider strips have nulls in their radiation patterns for

(1/2)kow cos ¢ * 0.5 7 and consequently have larger errors in

P(¢,¢0) at certain angles due to the rapid changes in phase of the
scattered field in the vicinity of a null. For the widest strip
considered (w/xo = 0.71), the errors for (1/2)k0w cos ¢ > 0.6 = are in
approximately the same range as those for (1/2)k0w cos ¢ < 0.3 .
Increasing the element density above 16 elements per wavelength will

reduce errors mainly in the vicinity of a null.

5.4 Effects of Strip Resistivity

Table 5.1 shows the effect of changing the strip resistivity
on the error in P(¢,¢O) for backscattering. The table shows that
as R decreases below 0.1 the error grows significantly. In the
range 0 < R < 0.05 the numerical results are highly inaccurate, except
for near-broadside incidence. |
Two effects Tead to the deterioration of the numerical results

for low R. One can be explained by considering the finite element
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Fig. 5.5: Error in [P(¢,6,)| vs. ¢ for R = 0.0, wW/x, = 0.5,

pl/x0 = 0.5, backscattering (¢ = ¢ ).
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Table 5.1

) for Backscattering (¢ = ¢0)
A o

—_

—=0.5, —*0.5
M AO >\O
Error in |P|/Error in Arg P
R ¢ = 0° ¢ = 50° 6 = 90°
-10.362% -3.220% 4.288%
0.0
-0.680° 5.968° 3.720°
95.292% -72.613% 6.530%
0.01
-62.961° -81.545° -0.985°
3.695% -20.676% 4.115%
0.05
-22.311° -2.812° -0.726°
-0.554% -10.779% 3.118%
0.10
-12.293° -0.257° -0.515°
-0.673% -1.962% 1.283%
0.5
-4.118° 1.025° 0.054°
-1.345% -0.891% 0.848%
1.0
-3.499° 0.802° 0.095°
-1.852% -0.478% 0.533%
2.0
3.184° -0.463° 0.071°
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mesh as a radial transmission line. The boundary condition imposed

at r, acts as an imperfect termination for the transmission Tine.

B
Multiple reflections occur at Iy and at the strip Ip SO that standing
waves appear in the numerical data. Lowering the value of R increases
the magnitude of the wave reflected from the strip and thus
increases the standing-wave ratio. The transmission line interpre-
tation and the nature of the error caused by the standing waves are
discussed in Appendix B.

The second effect leading to the poor numerical results for
low R is due to the coefficients Kmn (3.14), corresponding to nodes
on the strip, becoming much larger as R decreases. This results in
the system of equations (3.13) becoming increasingly i11-conditioned.
The effect can be partially offset by controlling the size of the
term in (3.18) which contains R. This term is proportional to
[R(Mx)xo/w]'l, where (Mx)xo/w is the density of elements along the
strip. The data of Table 5.1 indicates that if R(Mx)xo/w < 1, there

will be large errors in P(¢,¢0). A selection rule of
R(MX)AO/W > 5 (5.11)

is appropriate. Figures 5.9 and 5.10 show the errors in P(¢,¢0)
versus the angle of incidence for backscattering with R = 0.1. The
curves for constant (Mx)(xo/w)R show how the accuracy improves as

this parameter increases.
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5.5 Solution Cost Considerations

The cost of the numerical solution is a function of the
number of elements used in the discretization of the space surrounding

the scattering body. The number of elements is
J = MxMy +2 . (5.12)

The actual number of unknowns, however, is equal to the number of
nodes at which the scattered field is not known a priori. The

number of unknowns for a resistive strip is

M, = (M + 1)(My +1) . (5.13)

M = (MX + ])My , (5.14)

since the scattered field at the nodes on the strip is specified by
the boundary condition there.

The computer memory requirements for the finite element
solution may be classified either as being fixed or as being variable
with the number of elements. In the variable category, the largest
block of memory is for band storage of the global matrix for the
system of equations (3.13). The variable memory requirements (in

words) are:
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Resistive Strip

Global Matrix ) ,
Memory = 6M M-+ 6M° + 20 MM + 14 M +20M
(band storage) Xy X'y X y

(5.15)

Memory, Other| _
Matrices 14 MxMy 10 M +10 My (5.16)

Perfectly Conducting Strip

Global Matrix ) , : )
Memory = 6 MM +6M+8MM +8M 5.17
(band storage) Xy Y Xy y

Memory, Other

2
Matrices 2 MxMy + 18 MxMy +5 MX + 11 My (5.18)

[f the element densities Mxxo/w and Myxo/p1 are to be kept
equal in view of the results of Section 5.3, My may be written in

terms of MX using (5.3) if w/xO > 0.5.
M = 2M %’—- : (5.19)

For w/xO < 0.5, it is required that P, * w instead of (5.3) as discussed

in Section 5.2. In this case

M = M . (5.20)
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The number of elements (5.12) becomes

Jo= ¥ v o wa > 0.5
XA, ° = . (5.21)

11

2
MX +2 ., w/AO < 0.5

Then for equal element densities, My may be eliminated from (5.15)
through (5.18). For example, (5.15) and (5.16) may be written in
terms of the element density MXAO/W and the strip width in

wavelengths w/AO:

Resistive Strip (w/x > 0.5)

Global Matrix

A ‘
Memory = 24<M i) (L) + 24 (M 2
(band storage) Xw A Xw |

>\O w
+ 14 (MX ——) (5\_0—) (5.22)
M Oth Ao ’ A ’
emory, er - o W o\ / W
Matrices 28 (Mx W ) (AO ) + 20 (Mx w ) (xo )
A
+ 10 (MX VF) \T;) . (5.23)

Table 5.2 shows the number of elements, number of unknowns and
variable memory for different element densities and strip widths.

Table 5.3 compares the memory requirement for the band-storage
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Table 5.2

Variable Memory Requirement for a Resistive Strip

A
M, = = MYf)
M ig_ W | Number of Number of Total Variable
X W A, Elements, J Unknowns, Mu Memory (words)*
0.25 18 25 1,240
0.50 66 81 6,064
0 0.71 178 204 25,160
1.00 514 561 123,200
0.25 27 36 2,020
20 0.50 102 121 10,540
0.71 282 315 47,762
1.00 802 861 230,480

*Inc1udes band-storage global matrix.
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Table 5.3
A
Global Matrix Memory for a Resistive Strip for MX WQ = 16
Global Matrix Memory
(words)
W F.E.M* FLEM* M.0.M,
AO Square Matrix Banded Matrix Square Matrix
0.25 1,250 950 32
0.50 13,122 5,022 128
0.71 83,232 22,440 242
1.00 629,442 115,566 512
A A
L = o
W p
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global matrix to a full square matrix and to the matrix for a
method of moments integral equation solution. Table 5.4 gives the
actual computation time for three selected examples on the DEC-10

computer.
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Table 5.4
Computation Time for a Resistive Sheet

(MXAO/W = Myko/p1 ~ 16)

w/xO 0.25 0.50 0.71
Number of elements, J 18 66 178
Number of unknowns, Mu 25 81 204
Matrix fill time (sec) 0.84 3.61 10.04
Solution of equations (sec) 0.19 1.10 6.22
Total CPU time* (sec) 1.41 5.10 16.60

*
Backscattering for one angle of incidence.




CHAPTER VI. VOLUME SCATTERING EXAMPLE

6.1 Statement and Formulation of Example

One of the advantages of the finite element method 1lies in
its ability to solve problems in which inhomogeneous media are
present or multiple regions of differing homogeneous media are
present. The distinction between these two types of problems is
not important for a finite element solution. Only a minor difference
in the computer program is needed in assigning material properties
to particular finite elements. An example is considered here in
which the resistive strip of the preceding chapters is embedded in a
dielectric cylinder, radius w, of uniform relative permittivity e
and uniform permeability ug as shown in Fig. 6.1. The cylinder is,
in turn, immersed in free space. The radar cross section of the
combined dielectric cylinder and resistive strip is computed.

As before, the incident plane wave (2.3) will excite only E-wave
fields. In this case the total field satisfies

92E_ 92

4, __Z, m2uo g(x,y)Ez = 0 . (6.1)

ax2 ay?

The incident field E;, which is the field present in the absence of

the scattering body, satisfies

Z Z 2 i -
+ + LG E 0 . (6.2)

-105-
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Fig. 6.1:

The extended solution region.

xv
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The scattered field Eic = EZ - E; then must satisfy

325C  92pSC .
z z ’ sC_ 2 i
+ + ,¥)E = -k x_(x, .
> 5 W uoa(x y) z k0 olx y)EZ (6.3)
where
= _E— - - -
Xe . 1 R 1 (6.4)

is the electric susceptibility for the dielectric.

The derivation of an integral statement of the problem parallels
that of Section 3.2. In this case however, the scattered field does
not, in general, have the symmetry properties (2.24) and (2.27) which
exist for the strip alone. Thus the region @ must extend into the
Tower half space y < 0 as shown in Fig. 6.1. The region is bounded by
the contour T which is composed of two sections:

1. Tp is the Tiney =0, -w/2 < x < w/2.

2. FB is a circle centered at the origin with a radius p1 which
is sufficiently large to place FB in the far field region of the
dielectric cylinder with the embedded strip.

Combining the Green's identity (3.5) and differential equation

(6.3) yields

‘jﬂ [vtv * VLU - kg(] + xe(x,y))vu]dQ
Q

_ u i
= SF Y o dr + k2 ur xe(x,y)vu do . (6.5)

T Q
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where u and u1 are the scattered and incident fields as before. Of
the contour integral, the portion on I is the same as before. On

Tps the boundary condition is

. + 1
1Rk(x2 [%_;:] = u + u.I . (6.6)
0 -

The contour integral on PP is

w/2 +

du _ au

fv o aIr = - f v [ayJ_ dx . (6.7)
TP X=-w/?2

Combining (3.7),(6.6) and (6.7) with (6.5) yields the integral
statement upon which the finite element solution is based. The result

is

u/,[vtv . vtu - ké(] + Xe(X,y))vu]dQ + U[, (?%—" 1ko) vu dr

Q0 1

—

B
w/?2 w/?2 j
vu . vu
- 'Iko {W} dx = 'Iko l;my)-} dx
X=-w/2 y=0 X=-w/2 y=0
2 i
+ kofxe(x,y)vu do . (6.8)
Q

The remainder of the solution of this example closely parallels
the procedure of Chapters III and IV. However, in order to calculate
the far scattered field and the radar cross section, an integral

such as (2.35) cannot be used because of the presence of the dielectric
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cylinder. Instead, an integration of the scattered field values on
a closed contour outside and surrounding the dielectric cylinder
must be evaluated. If the contour is a circle of radius p = o

2

as shown in Fig. 6.1, the far scattered field is

2

nkop

) = exp[ikp = 1(r/4)P(g.5,) (6.9)

where, from the integral representation of the field,

k" . BE%(o40")
- _0 1 YA 2 _ SC 1
P(9:05) = 7 f { T E, (o, 00")
. exp[-ikopzcos(¢ - ¢9]oz do' (6.10)

In the computer program, the radius p2 was taken to be slightly larger
than w, or more precisely, one element width out from the dielectric
cylinder. Although the closed contour could be on the surface of the
cylinder, in general, for an inhomogeneous body with a less distinct
boundary the contour must be outside the body. Further, for a body
with a noncircular cross section, it is desirable to place a circular
contour outside the body for ease of computation of the far scattered

field.

6.2 Selection of an Incident Field

In order to demonstrate the use of this formulation without
extensive modification of the computer program used to solye the

problem of Chapters II and III, an incident wave is selected so that
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the scattered field has the symmetry properties (2.24) and (2.27).
This allows the solution to be obtained in the upper half space
as before.

In general, a scattered field can be interpreted as resulting
from electric and magnetic current sources induced by the incident
wave in the scattering body. In the present case p = M, everywhere
so that no magnetic current sources will be induced. For an incident
field which excites only E-wave fields as discussed in Chapter II,
the only possible electric currents must be in the z-direction. In
order to maintain Hic(x,O) equal to zero for |x| > w/2 as implied by
(2.27), the induced electric current distribution must be an even
function of y. For example, the electric current element I(xl,yl)E
produces an x-component of the magnetic field on the x-axis which
is cancelled by an x-component of the magnetic field of a current
element I(X1’-y1);°

The incident field must then have the property that
£ (x,y) = El(xs - y)
2\ Z\X =Y

in order that the symmetry properties (2.24) and (2.27) hold. Here

the incident field chosen with this property consists of two plane

waves
i1 .
EZ = 3 exp[ 1k0(x cos ¢, *+y sin ¢0)]
1 . .
ty exp[-1k0(x cos ¢, - y sin ¢0)] , (6.11)

whose angles of incidence are ¢0 and -¢0, respectively.
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6.3 Implementation of the Solution Procedure

The selection of the particular incident field (6.11) leads to
a symmetric scattered field which is obtained by solution in the

upper half space only. The weak form integral statement (6.8) becomes

f[v © V- kz(] + ¥ (x,y))vu]dmf (?;_' 1'k0> vu dr

1

!
ik W2 ik W2 i
- ___Q_ Vu dx = __0 vu dx
2 R(x) 2 R(x)
X=-w/2 y=0 X=-w/2 y=0

+ k2 u/‘xe(x,y)vu1 d ,  (6.12)
Q
where @ refers to the region in the upper half plane bounded by Tp
and the Tine y = 0.
Following the procedure of Chapter III, the element matrix

coefficients are given by

3Nm oN oN_ 3N
aX X 3y ay

n m n_ 2
+ k(1 + Xe(X,Y))NmNnjl do

ik, NN T
- 52 RGO+ (55;-- 1k0) v/‘ NN oo (6.13)

e e
Tp Tp

and the incident field terms are given by

£ = 0 Gy @+ K ‘j“ ) N oo . (6.14)
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6.4 Numerical Results

With these modifications of the computer program the radar
cross section and the phase of the scattered field are computed for
w/xo = 0.25 and ep = 2. Figures 6.2 and 6.3 show that the bistatic
scattering from the quarter wavelength width strip without the
dielectric cylinder to be relatively independent of scattering angle.
The magnitude and phase of the induced currents on the strip are
relatively uniform. However, when the dielectric cylinder is present
the scattering action becomes more complicated. On the one hand,
there is scattering off the surface of the cylinder. Also the incoming
field which does penetrate the dielectric, interacts with the strip
and the cylindrical surface setting up standing waves inside the
cylinder and producing a second scattered field which combines with
that scattered off the cylindrical surface. In this process, the
orientation of the strip relative to the scattering direction becomes
more important.

Figures 6.4 and 6.5 show bistatic scattering for three angles
of incidence. From these figures it is clear that the scattering is
primarily characterized by radiation from the leading and trailing
edges of the strip. For a scattering angle of ¢= 90 degrees inter-
ference between leading and trailing edge radiation produces a null

in the radar cross section.
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CHAPTER VII. CONCLUSIONS AND RECOMMENDATIONS

7.1 Overview of the Work

The finite element method was applied to the solution of
two-dimensional electromagnetic scattering from bodies in unbounded
space. The technique combined Green's first identity and the
differential equation to form a weak integral statement equivalent
to that obtained by the weighted residual method. Galerkin's
method was used in the selection of the weighting functions. The
finite element solution region was extended outward so that its
outer boundary Tay in the far field region of the scattering body.
The boundary condition on the outer boundary was evaluated by using
the asymptotic expression for the scattered field in the far-field
region. The finite element mesh consisted primarily of
quadrilaterals with linear shape functions and was generated by a
computer program. Two special cases were solved using this
approach: a thin resistive strip and a resistive strip embedded in
a dielectric cylinder. Special triangular elements were used at
the edge of the thin strip for the case of zero resistivity to
model the singularity occurring in the magnetic field.

Numerical results for scattering by the resistive strip
were compared with results of a moment method integral equation

solution known to produce highly accurate values of radar cross

section and scattered field in the far field region. Results

-117-
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indicate the element densities in the radial direction and
adjacent to the strip should be kept equal. For an element density
of 16 elements per wavelength in both directions, a strip width of
a half wavelength, and a normalized resistivity R = 1.0, the
magnitude of the far scattered field differed by less than four percent
from the moment method result at all angles of incidence, except at
deep nulls in the radiation pattern. The phase of the scattered
field differed by less than six degrees at all angles of incidence.

For Tow resistivity strips, pronounced standing waves appeared
in the computed values of the scattered field. These standing waves
were apparently due to multiple reflections between the strip and the
outer boundary. The standing waves led to large errors in the radar
cross section and the far scattered field. Their presence in the
results prevented an evaluation of the effectiveness of the special
triangular elements in modeling the field at the edge of a perfectly
conducting strip. Another effect occurring for Tow (non-zero)
resistivity was the ill-conditioning of the system of algebraic
equations resulting in highly inaccurate results for most angles of
incidence. This effect can be partially offset by increasing the
element density.

The finite element method was applied to the case of the
resistive strip embedded in the dielectric cylinder. No moment
method results are available for comparison, but the numerical results

obtained here appear to be reasonable.
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7.2 Limitations of the Method

The formulations and the computer program used here have some
limitations. First, all work was done assuming an incident plane
wave which excited only an E-wave. The formulation for H-wave
excitation has not been developed. Second, the boundary condition
on the outer boundary (FB) is not accurate enough to prevent standing
waves from occurring in the computed scattered field, particularly
for Tow resistivity. Increasing the element density will improve
the boundary condition and reduce the standing waves but at increased
computation cost (see Appendix B). Third, the memory requirement for
the computer system increases rapidly with the size of the scattering
body due to the need to extend the finite elements into the far field
region. As an example, for the resistive strip in free space, if a
certain element density is to be maintained, the band storage require-
ment for the global matrix in the finite element method increases as
the fifth power of the strip width for w/AO > 1 but only as the second
power in the moment method. Fourth, the system of linear algebraic
equations becomes il11-conditioned for Tow (non-zero) strip
resistivities. A partial solution to this problem involves increasing
the element density.

The second, third and fourth items above are either not
Timitations for a moment method solution or are less of a limitation.
Because of this the finite element method is not competitive with
the method of moments for scattering from a thin body in a

homogeneous unbounded space. On the other hand, for a thick
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penetrable body or a body in an inhomogeneous medium, the moment
method may be less attractive. This may be due either to increased
memory requirements or to difficulties with an integral equation
formulation in an inhomogeneous medium. The finite element method

has been demonstrated to be a feasible approach for these cases.

7.3 Recommendations for Further Work

1. In order that scattering due to arbitrarily polarized incident
plane waves may be determined, the formulation for H-wave excitation
should be developed.

2. The use of quadrilateral elements with higher order shape
functions should be investigated. It is expected that the same
accuracy of solution could be achieved with significantly fewer
elements of a higher order.

3. Element and global matrix coefficients should be interpreted
in energy and circuit terms. Such interpretations could lead to a
nonreflecting boundary condition for the outer boundary of the finite
element region as was done for a one-dimensional case in Appendix
C. The work of Engquist and Majda (1977) on absorbing boundary
conditions should also be considered in improving the boundary
conditions.

4. Three dimensional scattering problems could be formulated

using methods similar to those described in this work.



APPENDIX A. APPROXIMATE RELATIONSHIP BETWEEN ELEMENT
MESH PARAMETERS

In selecting the values of the mesh parameters that are to
be used for a particular computer run it is useful to know
approximately the relationship between the parameters. The number of
elements in the radial direction My is directly proportional to the
product of EL and MX where M, (called NUMELS in the computer program)
is the number of elements adjacent to the strip and EL is an aspect
ratio for the elements. The parameter EL is the ratio of the
dimension of a quadrilateral element in the direction parallel to the
strip to the dimension in the direction perpendicular to the strip.

The relationship in more precise form is

My = A(EL)(MX) +B , (A.1)
where A and B are constants yet to be determined. Figure A.1 shows
the results of a number of computer runs. From this graph it can be
seen that B is approximately unity and A is actually a function of
SMEC. The parameter SMEC is approximately the eccentricity of the
largest ellipse of the mesh, which forms the outer boundary at
p = b, Figure A.2 is a plot of the slopes of the Tines in

Fig. A.1 vs. SMEC. This shows that

A = -0.83Tog SMEC +0.17 . (A.2)
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The desired approximate relation is then

M A(EL)(M ) + 1
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APPENDIX B. TRANSMISSION LINE INTERPRETATION FOR NUMERICAL RESULTS

B.1T The Finite Element Mesh as a Transmission Line

The resemblance of the set of linear algebraic equations for the
nodal values in the finite element procedure to a set of node voltage
equations for a two-dimensional electrical transmission line structure
suggests that the results of the finite element solution be interpreted
in terms of a transmission line. The use of electrical networks for
the solution of electromagnetic field problems is well established.

A great deal of work has been done in the past on the subject of wave
propagation through two-dimensional periodic structures (Brillouin,
1953). Although the finite element mesh in the present work is not
uniform and not perfectly periodic, the transmission line character-
istics are evident in the numerical results.

As an aid in the transmission line interpretation, the finite
element solution for the problem of a plane wave normally incident on
a plane resistive sheet of infinite extent is provided in Appendix C.
This problem is analogous to that of a uniform one-dimensional
transmission line and the method of solution generally parallels that
used for the two-dimensional problem which is the subject of
Chapters III through V. It is found that the characteristic impedance
ZC of the transmission line is always less than the characteristic

impedance of free space ZO. This means that the boundary condition
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(C.5) acts as an imperfect termination for the line and that standing
waves appear in the numerical results. Further, the one-dimensional
problem shows the phase constant k for the Tine is always less than
the phase constant of free space ko so that the phase of the computed
scattered field is always less than that of the exact value, except
at the resistive sheet. If the density of the finite elements is
increased, Zc approaches Z0 and k approaches ko' This reduces the
standing waves and the phase errors.

These results for the one-dimensional uniform line apply
qualitatively to the two-dimensional line extending outward from the
resistive strip. However, since the two-dimensional line is not
uniform in the direction of wave propagation, the impedance mismatch
will depend on the local density of elements at the edge of the finite
element region. An additional consequence of the non-uniformity of
the Tine is the dependence of the standing-wave ratio on the impedance
of the strip. A larger standing-wave ratio is observed for strips
of Tow resistivity.

For the two-dimensional problem, backscattering for normal
incidence most closely resembles the one-dimensional problem of
Appendix C. The transmission line characteristics are clearly apparent
for this case. For example, Fig. B.1 is a plot of the magnitude of
the scattered field as a function of the distance from the strip. The
results of a method of moments (MOM) calculation are plotted for
comparison. Figure B.1 shows that increasing the number of elements

(My) results in a lower standing-wave ratio. The element mesh
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parameters for the curves of Fig. B.1 were selected so that the
standing waves could be easily seen in the data; the selection rules
given in Section 5.2 were not used. Figure B.2 is a plot of the phase
of the scattered field versus distance from the strip with MOM curves
for comparison. It is evident that the error in phase for the FEM
results increases with distance. Increasing (My) provides a small

improvement in the phase accuracy.

B.2 Effect of Standing Waves

The value of the radar cross section of the strip may be
obtained directly from the scattered field values computed in the far
field region such as at p = pl, or it may be obtained by means of a
computation of the induced current on the strip followed by an
integration over the strip (2.38). The numerical results obtained
using the first method are generally less accurate than those having
the second method when standing waves are present.

To examine the effect of the standing waves on the current

calculation in the second method, assume that near the strip

E;7 = [A(x) + B(x)ylexp[i(kyy + 8,(x))] (B.1)

where A, B and 6  are respectively the magnitude of ]E§c|, the
slope of ]E;CI, and the phase of E;C at the strip (y = 0). Using
(4.66)
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B\ 1 B
KZ 3 7" ]+(Z\‘k—) expi(eo+tan :I\_k—;) . (B.2)

To apply this to the current calculation at the center (x = 0) of the
strip for R = 0, A = 1, and normal incidence, the following values

are obtained from Figs. B.1 and B.2:

MOM: A = 1.0 , B=x -0.2 , 6, = -180 degrees
FEM: A = 1.0 , B = 0.6 , eo = -180 degrees
Then (B.2) yields
MOM: Z K. = 2.001 el(1-82°)
02 i(-5.42°)
FEM: ZOKZ = 2.009 e '

It can be seen from this that the error in the slope of |E§C[
at the strip caused by the standing wave results primarily in a phase
error 1in ZoKz' Such phase errors for current in each element adjacent

to the strip enter into the integration of ZOKZ (2.38) to obtain
P(9:0,).
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APPENDIX C. COMPUTATION OF THE SCATTERED FIELD FROM PLANE WAVE
NORMAL INCIDENCE ON AN INFINITE RESISTIVE SHEET

C.1 Introduction

In this appendix a one-dimensional problem closely related to
the problem stated in Chapter II is discussed. An infinitesimally
thin, infinite sheet lying in the y = 0 plane is immersed in free
space. The sheet is a resistive sheet having boundary conditions
given by (2.1) and (2.2). An incident plane wave is polarized so

that its electric field is

where an e-mt time dependence is assumed. The direction or
propagation of gﬁ is in the negative y direction. The scattered field
Eic propagates in the positive y direction and satisfies

2SC
d EZ

2, p2pSC -
" + k2E 0 . (€.2)

At the sheet the boundary condition for a resistive sheet is, using

(2.26)
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and for a perfectly conducting sheet is

tET =0 . (C.4)

Since the scattered field is an outgoing wave, a condition must be

satisifed for any y > O:

SC
dE
.. .SC
ayz—- = ik E, (C.5)
C.2 Finite Element Formulation
From this point on, let u = Eic(y). The solution for u is to

be obtained in the region 0 <y < L. A one-dimensional version of

Green's first identity for scalars u and v is

L L
d?u dv du du
| Ly f oo .[ dy} . (c.6)

y:o y:o
Use of (C.2), (C.3) and (C.5) yields
L L )
f dv du g e vu dy - ik _[vu] o O [y(u+u')] =0
dy dy Y 0 Y 0 y=L ~ 2R~ =0
y=0 y=0 y

for a resistive sheet.
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For a perfectly conducting sheet (C.7) cannot be used since R

is in the denominator. Instead, the use of (C.2) and (C.5) in (C.6)

yields
L L

dvodug o i T
ljn & dy dy k0 Jr vu dy 1k0[vu]y:L [ d;} 0
y=o y=o y=0

(C.8)
The value of (du/dy) at y = 0 is unknown, however (C.4) indicates
that at y = 0
TR (c.9)

This condition is imposed later.

In order to solve for u, the region 0 <y < L is divided
into J equal length elements e with nodes n at the element boundaries
(Fig. C.1). For each node there is an interpolation function which
is unity at that node and zero at all other nodes. The scalar u is
approximated by
I
uly) =) = N va (c.10)
n=

1

where a = u(yn) and I = J + 1.

The function v is restricted to be

viy) = w(y) , m=1,...,I (C.11)
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where wm(y) is one of a set of weight functions yet to be specified.

Using Galerkin's method,

w(y) = N (y) . (C.12)

Interchanging the order of integration and summation, (C.13) is

written as
I
ZE} Kmnan = fm , m=1,...,1 , (C.14)
n=1
where
L
de dNn 1k0
= 0 _ 2 - 1 - ——
Kmn ‘Jﬂ dy dy konNn dy 1ko[NmNn]y=L 2R [NmNnJy=o
y=o *

(C.15)

and
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ik s
fo= O u'[N]

moo R 1 myEo (C.76)

Equation (C.14) represents a set of linear algebraic equations to be
solved for the unknown an's.

Calculation of the coefficients Kmn in the finite element
method is done by an element-by-element procedure. The global
integration over the entire region is replaced by a sum of integrals

over individual elements lying within the interval. Thus

J
Z o (C.17)

(1]
n
P—-F

where

ik
_m " n_,2 o 0
Jn [dy dy konNn} dy 1ko[NmNn]y L [NmNn]y =0
e
(C.18)
For a perfectly conducting sheet, the set of algebraic equations

should be modified by removing the equation corresponding to the node

at the sheet where the field strength a1 is known. Using (C.9),

a = -u'(0) = -ut . (C.19)

I
u(y) = u(y) = -Nl(y)ul + :Ej Nn(y)an . (C.20)

n=2
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Using (C.20), (C.11) and (C.12) in (C.8) yields

L - I L
Eﬁ@. 41 v )t + N (y)a_| dy - k2 NN ()]
dy dy 1 Y 1 Z n y n 4 0 m 1 Y u1
y=o n=2 y=0
I A I
| . i
+ Z Nn(y)anJ dy - 1k0[ N (-Nl(y)u1 + Z Nn(y)an) ]
n=2 n=2 y=L

&=
~

I
- [Nm | - Nl(y)u1 + zgj Nn(y)an ) } =0 , m=2,...,]

n=» y=0
(C.21)

After interchanging the order of integration and summation, and
transferring the term corresponding to the node on the sheet to

the right-hand side, the resulting set of Tinear algebraic equations is

I
Z K a =g » m=2...1, (C.22)
n=2

where J

- ! e
K = Z o (.23)
e=1

. an, o

o’ f T TaR N LV 1k0[NmNn]y=L (C.24)
e
e o = K.ul (C.25)
m mo1 ’
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C.3 Element Matrix Coefficient Kﬁn

Linear interpolation functions are used for the elements:

Nn(y)

1l
—
]
| S|
<
>
+ <
—
1
1
<
<|>
>
—___J
<
=S
| A
<
!
<
S
+
—

= -——___——n R Yy <Yy iy . (C.26)

In a typical element between y = Yy and Y1 the interpolation

functions can be written in a general form

Y F Ve
N (y) = 1 1+ - 2
T2 T -y
2

> (C.27)

where o = -1 for n = k and o = 1 forn =k + 1. The integral in

Kﬁn (C.18) or (C.24) is now evaluated.

dN _ dN
m

o o k2
MmN e - mn___ 0 1
f[dy &y konNn} AV ) B R (] *3 O‘m"‘n) ’

e

(C.28)
where m and n can each be "k" or "k + 1". Thus (C.18) becomes
o k2
e _ mn 0 L 1 .
Kin ~ L/ (1 :-jj_ ) E—.(I - 1) (] ¥ §'aman) ) 1ko[NmNn]y=L
1k0
B §§~'[NmNn]y=o (C.29)
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and Kﬁn for the perfectly conducting strip case is given by

Ke = inﬁ.rl___ - k_20. __l:__) /.l + .]_. uman\) -ik [N N ]
mn (-1 4 \T-1 k 3 /ot mnysL -

(C.30)
For a general element between nodes k and k + 1 (element not

adjacent toy = 0 or y = L) element matrix coefficients are

k2 \
ke - 1-1_ o L
k,k L 3 I-1
2
O 8 S S
k,k+1 L 6 I -1
$ (c.31)
2
& .o L1 %o
k+1,k L "6 I -1
2
8 _1-1 KoL
k+1,k+1 L "3 TI-1
/
For the element adjacent toy = 0 (e = 1) the coefficients are
2 : N
¢ - L-1 % 1T
. [ "3 T-T W
2
WO I B T
1 L "6 T-1
> (C.32)
k2
K' :_L_.-_.I___.O___L_
’1 L "6 T-1
2
o - 1-1_% 1
29 L "3 T-1
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For the element adjacent toy = L (e = J) the coefficients are

\
2
o S
I-1,I-1 L ~ 3 I -1
2
o 1.1 %
I-1,I L "6 T-1
> : (C.33)
k2
KJ - _1-1_ o _L_
I,I-1 L 6 I -1
k2
J I -1 0 L .
Kit = "1 -3 1=7- 7%
J/

In the case of a perfectly conducting strip, the coefficients
for the elements are the same as (C.31), (C.32) and (C.33) except

that Kfl in (C.32) does not have the term with R in it.

C.4 Set of Linear Algebraic Equations

Using (C.17), the coefficients for the set of equations

(C.14) are written. Ifm# 1 and m # I, the mth equation is

m-1 m-1 m m _
Kime13mn-1 (Kmm + Kmm) N S (C.34)
If m=1, the equation is
ik
a +Kk o = 5t (c.35)
11 1 12 2 2 1

and if m = I, the equation is
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J J -
KI,I-1 A, + KIIaI = 0 (C.36)
As an example, if there are six nodes (I = 6) and five elements
(J = 5) the set of equations in matrix form is
r . B
PKl k! 0 0 0 oj r1k° !
11 12 2R 1
K' (kP2 ) K2 0 0 0 0
21 22 22 23
0 K2 (K2 +3 ) 3 0 0 a 0
32 33 3L =
0 0 K3 (K3 +K* ) K™ 0 0
43 [ 45
0 0 0 K4 (K* +K5 ) K° 0
54 55 55 56
0 0 0 0 K> K> 0
65 66 L
L 4~ =~
(C.37)
for a resistive sheet.
For a perfect conductor (C.22) and (C.23) are used. For
example, with I = 6 and J = 5, the system of equations is
~ I j A
(K} +K2 ) K2 0 0 0 |la up k!
22 22 23 2 21
K2 (K2 +K3 ) K3 0 0 ||a 0
32 33 33 3y 3
0 K3 (K3 +K¥ K" 0 |la 0
43 bbb 45 Y
0 0 K4 (K* +K> ) K5 |la 0
54 55 55 56| 5
0 0 0 K> K> la 0
65 66 L_6 J
C alalihy (C.38)

C.5 Transmission Line Interpretation

The set of linear algebraic equations (C.14) may be

interpreted in terms of a transmission line made up of discrete
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components. A typical equation such as (C.34) resembles a node

voltage equation if the coefficients Kmn are divided by -6l Each
coefficient is then an admittance. The equation for node n is

BRI -1 opon oy -

oy Knn-12n-1t o Koy * Kpd 3 * oy Kn.n+1 e 0 . (C.39)
The node voltage equation for node n written in terms of the circuit

components (Fig. C.2) is

-Yl a + (Y1 + Y2 + Ya) a -Ya = 0 . (C.40)

o m K o (C.41)
0
- 1 n+l
Y3 R (C.42)
0
and
o n-1 n
TR i B U (c.43)
From these
_ i n-1 n n-1 n+1
Yz ) Wi (Knn t Kt Kn,n-l ¥ Kn,n+1) : (C.44)

Using (C.31) yields



-143-

n+1
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Fig. C.2:

Transmission line.
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. k2
_ _ i 4I-1."0 L
R wuoli  *6 1-1] (C.45)
and
Y2 = -imeo(T—E—]} . (C.46)

The characteristic impedance of a transmission Tine made up of

T sections (Fig. C.3) is (Johnson, 1950, p. 42)

72
= L
Zc = lez + T (C.47)
Using (C.45) and (C.46) yields
X L
o, [
1= - R (c.48)
1+—9(—w—L )
6 \I -1
and
7 = i
) . (C.49)
(e
o \I -1
Also

(C.50)

for which

] » = ZC = 9 . (C.S])
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-146-

Thus the characteristic impedance of the finite element transmission
Tine is always less than the free space value, but approaches 377
ohms as the density of elements is increased.

Continuing the transmission Tine analogy, the proper termination
of the Tine to prevent reflections and standing waves may now be
determined. The transmission line (Fig. C.2) is terminated in its
characteristic impedance ZC (Fig. C.4). The node voltage equation for

node I is

1 _
Yap [Yl Y+ ]al =0 . (C.52)

1y -
a_, o KI,IaI 0 . (C.53)

Comparing (C.52) and (C.53) indicates that
(C.54)

and

R 2 i EE, NV (C.55)
1 2
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Fig. C.4:

Terminated transmission line.
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Then using (C.45) and (C.46) in (C.55) yields

1

2 2 T
KJ = I -1 _‘_IiO_ L _ kO L 1&)].10 (C 56)
I,I L 3 I-1 : :
2 “c

7 T-1 1
+7Z
Using (C.48) and (C.50) in (C.56) yields

2 2
¢ Lk ]k
I,I L 3 I-1 2

—

1 i ] k%LZ/(I - 1)°

( -

k k k2 . k2 \

o/ L \? 0 o[ L \? o/ L 2|2
2[‘*5‘(?7“” “6“(‘1‘?‘1‘) 4[1+6*\T?‘T}J

Use of K?I given by (C.57) corresponds to a transmission line

terminated in its characteristic impedance. This expression should

be compared with that given in (C.33) for K% [ - The value K% I
of (C.57) approaches Kg p of (C.33) as I > ». Thus use of K?I in

(C.33) corresponds to having an impedance mismatch at the termination
of the transmission 1ine. The greater the density of the elements,
the less the mismatch is. The mismatch will cause standing waves
in the numerical results for the scattered field. On the other
hand, use of K%,I of (C.57) always leads to numerical results without
standing waves.

The propagation constant k for the transmission line is given

by (Watkins, 1958, p. 28)



-149-

Y
cos k <I—LT) S R A (C.58)

L 1 k2(1L1)
- 0 -
COSk(I-]) "l e U
1+0 Q————~—
5 \T- 1
or
k
k: 0 (C.59)

for (L/I-1) << Ao Thus the propagation constant is always less
than that of free space ko, and the phase angle of numerical
results will always be less than that of the actual scattered
plane wave. The greater the density of elements, the less the
phase error will be.

Sample numerical results are given in Fig. C.5 through C.7
for various values of the element density (I-l)AO/L in elements per
wavelength. The magnitude of the scattered field is plotted versus
distance from the resistive sheet in Figs. C.5 and C.6. Figure C.5
shows the standing waves resulting from the imperfect termination of
the transmission line and Fig. C.6 shows the result when the line

is terminated in its characteristic impedance. The phase of the
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scattered field versus distance from the sheet is shown in Fig. C.7

for the imperfect termination. The location of the exact values, if
plotted, would essentially coincide with the line for 16.68 elements
per wavelength. A set of phase curves for the characteristic

impedance termination differs only slightly from Fig. C.7.
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