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ABSTRACT

A solution is obtained for the high frequency backscattered far field
from appendages such as an inlet mounted on arbitrary smooth surfaces.
The goal here is twofold; first, to demonstrate the effectiveness of the
Uniform Geometrical Theory of Diffraction (UTD) in computing the scattered
fields from such complex targets, and second, to develop iterative tech-
niques to find multiply diffracted ray paths to be used in the application
of UTD. These techniques are applicable to numerically as well as analyti-

cally defined surfaces.
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I. Introduction

Previous solutions based on the Uniform Geometrical Theory of Diffrac-
tions (UTD) [1] have mostly been applied to mathematically defined surfaces
and structures. This paper presents generalized numerical ray-tracing
routines which can be used for obtaining high frequency solutions to complex
structures of arbitrary shape. The UTD along with the ray-tracing routines
were used to determine the scattered fields from structures such as that
shown in Fig. 1. The internal scattering from the hollow inlet is not
included in this study. It is assumed that the reader is familiar with
UTD which is discussed and developed sufficiently elsewhere [1,2].

In addition to the ordinary UTD, use is also made of the equivalent
current concept [3,4,5] to account for the fields in the caustic regions.
These exist when all the rays emanating from the perturbance, arrive at
the observation point in phase. Because the caustic regions are usually
associated with strong scattered fields, they tend to be dominant
contributors.

The following solution will refer to the inlet structure and results
will be given for the geometry shown in Fig. 2. However, the inlet can
be of a more general shape, position and orientation. Further, the solution
does not require an analytic description of the surface. Instead, given
a surface, it is required that the surface normal (n), the principal surface
radii (R] and RZ) and the corresponding unit directions (f] and %2) be

known. These can be supplied by any type of means from analytically or
numerically defined surfaces. The backscattered fields with the same Tinear
polarization are to be computed, but this is not a necessary case.

The region of interest is restricted to 0° < 6 < . and ¢ < 90°,

where o corresponds to the shadow boundary of the inlet edge as shown

in Fig. 3. [n this region, the UTD solution includes the sum of the fields
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produced by the ray paths indicated in Fig. 4. As noted above, the
internal reflections in the inlet are ignored in this analysis. These

have been discussed by various authors [6,7,8] for a circular

inTet. Further, the results given later are for the xz plane of incidence.

II. OQOutline of the UTD Solution

The UTD solution for the backscattered field has the following terms

EBSC - EGO + E? + ZEED + EgDR , (1)
where
GO
E = geometrical optics (GO) field
D
FH = edge diffracted field from PZ
_RD 0
E2 = reflected-diffracted field through Pe
_RDR o
E3 = reflected-diffracted-reflected field through Pe, and
PZ 1s the stationary point on the inlet edge.
RD
Note also that the factor of two multiplying EZ stands for the inclusion

DR
of the diffracted-reflected field (Fé ), since for plane wave incidence and

for field calculations,
DR RD
E2 = E2 ) (2)

The GO field is given by Eq. 8 of [1] for which the surface normal

A
A

n = -1, where f denotes the direction of incidence, and the edge
diffracted field is given by Eq. (11) of [1] with the diffraction

coefficients in Eq. (52) of the same reference. The reflected-
D
diffracted field is computed in a similar manner to E , except that

the incident field to the edge will now be that reflected by the surface
RDR

at S?. Finally, E3 is the field reflected from S? when the incident

field at this point is that obtained after reflection and then



: RD RDR
diffraction. Note that in the case of E, and Eé , the generalized

2
reflection coefficients (see Eq. (29), of [2]) have to be used near
the shadow boundary. Not only is it necessary to evaluate the fields
incident at the edge but it is also necessary to evaluate the caustics
associated with this reflection. These are needed to compute the
appropriate distance parameter, L, and the caustic distance, o, which
are used to obtain the edge diffracted fields. For a detailed deriva-
tion of the above field components the reader is referred to [9].

The calculated results for the radar cross section o¢¢ agd Oee
in the xz plane of incidence are shown in Fig. 5. The term E becomes

RD

indeterminate at & = 90° for ¢ and E~ at o = 67° (in the pattern

b
the infinity at o = 90° is not apparent for Og because the hard
diffraction coefficient vanishes at this point). At these pattern
points the caustic distance associated with the appropriate diffracted
rays from the edge goes to infinity, and one can predict the location
of this infinity by examining the expressions for the caustic distances.
The UTD is invalid in the nearby region and needs to be supplemented
by the equivalent current concept, since there are now an infinity of
rays contributing to the scattering direction (—f). In the case of
Fz? the reflected rays from a convex surface first diverge and then
converge after diffraction, due to the edge curvature, so that the cone
of diffracted rays at each edge point, Pe’ contains one ray in the
backscatter direction. This is illustrated in Fig. 6.

RDR
The third order field,E, , may also include a caustic region

73
depending on the geometry under consideration. In this case, one of
the principal radii of the reflected wavefront at S? from the edge

toward the backscatter direction may become infinite.



In order to obtain the scattered fields in the caustic regions,
the equivalent current (EC) method was applied. This is a line integral
approach and can also incorporate the field scattered by the discontin-
uities formed at the junctions of the edge with the surface (See Fig. 1).

These will be referred as junction-corner fields and can represent a

dominant contribution for the E polarization.
b

I1I1. Use of the EC Method

This approach is essentially that formulated by Ryan and Peters [4] and
involves the placement of a set of electric and magnetic equivalent currents,
e m
I" and I on the edge.

The equivalent currents used throughout the paper are generally

defined by
N *
e e-Ev(Oe)
Z0 .
= - D 2‘/}_\. -i e"'J TT/4‘
" o ax sin Bo
I (exs*)*E (0 )

e
where e is the unit vector tangent to the edge at each point Pe’
ZO is the impedance of free space,
Oe is the phase reference point as shown in Figure 2,
Dﬁ is the soft and hard diffraction coefficient in [1],
cosB! = S*.B,
0
A~ _*
and s* with E (Oe)denote the direction of the incident rays along the edge

and the associated incident field at the edge, respectively. The form of

these parameters depends on the ra% mechanism (see Fig. 3) under evaluation.

A~

For the singly diffracted field (E ), $* = I, the direction of the incident

rays from the far field source. Consequently, F*(Oe) = EIEI(Oe), where EI

is the field produced by these rays. In the case of the reflected-diffracted



RD
field (E ) the field incident to the edge is that reflected by the surface
as indicated in Fig. 4(b). Therefore, s* = §r, the direction of the
R

E’(Oe), the associated reflected

field. Formally, the equivalent currents for the reflected-diffracted-

_%
reflected rays toward the edge and E (Oe)

reflected field are those of the reflected-diffracted case but the
diffraction coefficient D; must be recomputed for each field component

and in general at each edge point, Pe’ since it is a function of the

angle of incidence and diffraction, as well as the localized edge geometry.

The scattered fields are now found from

Ee % e
=~ [I7 &KX My, (4)
il edge

and the total field from the edge is given by

=T +"=T%+ Z (A9 (5)
0

where s is the direction of scattering. The spacial spreading factor

may be explicitly represented if the kernel ?% is written as

e I (6)
N
e

The dyadic factor, Em, will now be dependent on the case being considered.
For the singly diffracted field,
Z ge
0 . . Iy 2
gﬁ _ 3k =32k (P-0,) 1 (7)

AAA

-e(sxe)

where the variables ?é and ﬁé denote the vectors from the origin to the

e
points P and O_. In the case of the reflected-diffracted field, g" is
again given by Eq. (7) since the direction of diffraction remains the same.

However, for the reflected-diffracted-reflected f1e1d'§% must be formulated



to account for the retracing of the ray back to the receiver. This is
done by assuming an infinitisimal dipole source at each point of the edge

as shown in Fig. 7. The dyadic factor for this case becomes

L et
=e.m _ 0 e = QT N G (8)
= « R T+jks . /r3 r3 -jks  -ik(S -0 )
: {6 ) )} TS, sind, Vorypy €0 e HB0 ) 1,

(5x8
e 4r(s’)
where

- N

6 =

o S X(be,

A~ A~ /\r
bo = B X sp,

N cos™ ! (-8-8")

R is the dyadic reflection coefficient as given in Eq. (29) of [2].

s" is the distance from the reflection point Sr to the diffraction
point, Pe'
o;g 03 are the principal radii of the wavefront reflected off

Sr after first being diffracted, and

A

S_ denotes the projection of the unit vector—gr‘onto the plane

r
p
normal to e (see Appendix A of [9]).

IV. Iterative Ray-Tracing

The formal solution presented thus far outlines briefly the

electromagnetics involved in generating results by the EC method for

the type of target under consideration. There remains the formidable
computation of the various parameters which are functions of the target's
geometry. The most difficult task here is to find the path of the ray
that strikes the edge of the inlet after undergoing a reflection from

the surface. Of course, this needs to be done at each edge point of

the inlet for a given incident field direction. This is due to the
integration required by the EC method as given in Eq. (4). The following

outlines a numerical solution for computing these paths.
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The direction of the reflected ray from the point of reflection

at the curved surface is given by

and

sT=P5 (10)
where n is a vector in the direction of the unit normal, 8. Evaluating
§r is a difficult task for a general surface since an analytic expression
for the surface normal may not be available or is too complex. An iterative
solution that perturbs a known ray path as illustrated in Fig. 8 is attractive
in this case. Such as anproach has also been employed by Markefka [10] for

finding multipaths between an analytic (cylindrical) surface and straight edges.

Assuming that the ray path, including the points Sg and Pg, is known
(determination of such a path is discussed Tater), the surface may be

approximated in the neighborhood of Sg by

where
and X' = E?, (12a)
y' o=t (12b)
2t = n° (12¢)
with E? and Eg defining the principal surface directions at S? and the
0

corresponding principal surface radii of curvature being designated as R]

and Rg. Eq. (12) defines the primed coordinate system with origin at SS.
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Consequently, the surface normal at Sl, which is near Sg, can be approxi-

mated by
[ AT (13)
RO R
1 2
where
gl =X'x" 4+ y'y' + 2z (14)
Also,
= (Pl ke (Pl iyt s (P 2)g (15)
] ex ey o7
. . 1 . .
in which Pex',ey',ez' are the components of the corresponding edge diffrac-

tion point,‘ﬁl. To find the location of Sl, Eqs. (13) and (15) are

substituted into Eq. (9) and it follows that

A e | | X Ce
RO
" (16)
P Pood L] LYy
RO
2
after neglecting higher order terms with respect to x' and y'. In this
process the z components of Eq. (9) become negligible and thus one needs
only to solve for x' and y' by Eq. (9) and then compute z' via Eq. (11).
The components of the above A matrix were found to be
_ 1 1
A]l = -(Ix,Pey. + Iy'Pex')’ (17a)
_ 1 T 0
A]2 = -ZIy.Pey, + ZIZ,PeZ. . Iz'RZ’ (17b)
_ 1 0
A21 = -(—ZIX,Pex. + ZIZ,Pe o+ IZ.R]), (17¢)
A -A (17d)
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where Ix' vz are the components of the unit vector I in the primed coordi-

b 3

nate frame. In addition, for the C matrix one obtains

P] (18a)
V) - (18b)

The above calculated Sl, is only a first order approximation of the
true reflection point. Therefore, there is no assurance that Sl will be
on the surface, albeit, it will be quite close to it. It is, of course,
necessary to project the newly calculated reflection point on the surface
to obtain Slp which has this property. One is subsequently interested in
the accuracy of Slp as a representation of the true reflection point. To

compute the associated error, the true normal (ﬁ]) at Slo and the reflected

ray,

s - pl .3 (19)
are substituted into Eq. (9) to obtain

—r. ~ - _(n =r A.— ] ' 1
(n x I)(Sr n) = -(nxs )(I*n) + x Cex' +y Cey' + z Cez" (20)

where Cex" C . and Cez' denote the errors in the corresponding directions.

ey
Further, note that Cez = 0 since as discussed earlier, the z-component of
Eq. (9) does not contain any first order terms.

In order to evaluate the reflection point (Si) from which the reflected
ray diffracts through the next integration point (Pg), the above process is
repeated with Sl and Pl as the initial points. However, one should be
quite careful in continuing this iteration. The aforementioned errors will

continue to increase due to the violation of our original assumption that

the reflection law be satisfied at the reference (previous) point. But,
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since these are available, Eq. (9) can be rewritten as

A M2 X" Fc L+ C

RO X ex

[ (21)
Iy, y' C.+C .
L - _Rga " ey__J

so that the errors are not propagated from one point to the next. The
iterative process via Eq. (21) will be referred as the ray-tracing routine.
Whenever Cex' and Cey' become unacceptably large (say greater than 5><1D'3
for a 32-bit computer), it is an indication of a poor estimation of Sr' For
a better result the ray-tracing routine may be repeated with the last computed
reflection point as the reference, and with Pe and 1 remaining constant.
Furthermore, although the above ray-tracing routine was derived for a
variable Pe’ it s also valid when f is perturbed. This is essential for
stepping from one pattern point calculation to the next provided i changes
a small amount (1-2 degrees). Therefore, only the knowledge of one reflec-
ted-diffracted ray path is needed in the whole pattern region. One such
path is that for which the incident and diffracted rays from the inlet
are normal to the surface at the projection of the edge diffraction point
as demonstrated in Fig. 9. The path at the desired incidence is then

found by perturbing the direction of this ray to the desired one.

V. Inclusion of Higher Order Mechanisms with the EC Method

The results by the EC method are shown in Fig. 10 for both polarizations
of the incident wave for the same pattern cuts showninFig. 5 using the UTD
solution. The To EC pattern indicates strong radar cross section (RCS)

values near the nose-on region of the inlet. These are due to scattering

by the junction-corners since the field polarization is parallel to the
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inlet edge near the surface. Such behavior is not present in the UTD
pattern of Fig. 5(b). The reader should also note that the UTD and EC
patterns would be basically equal when away from the caustic regions,
provided that junction-corner fields are included in the UTD solution.

For 6>90°, part of inlet edge of Fig. 2 begins to become progressively
shadowed and therefore the previous equivalent current expressions are
not applicable for that portion of the edge. However, the EC solution

could be extended to include the illumination of the edge in the shadow

provided the observation point is in the far field as it occurs here.

This would require knowledge of the geodesic path from the point at which
a creeping wave is Taunched on the surface to the point where it is shed,
to in turn illuminate the shadowed portion of the edge. At the time this
work was evolved, it was not feasible to find the geodesic for the general
surface. Thus, a numerical extrapolation technique was used to approxi-
mately account for the scattering of the shadowed part. This method,
although approximate, gave good agreement with the measured results when
at Teast half of the edge was illuminated, provided that an appropriate
predictor-interpolation algorithm was chosen. One such algorithm was a

summation of shifted 51N X

functions. Accordingly, the integrand of

Eq. (4) in the shadow region is found by

: ivi5d _ 5l
—E‘e,m . /\I Z Fe,m . ,\I S]n[(ﬂ/d,@ )|Pe Pe|]
J i |

e = e

i=0,N,2N, . . (n/ds')[p - p (22)

where P; is the Tth sampling point on the rim. The calculated integrand

is given by F?’

M at z:P; and F?’m corresponds to the predicted component
at z=Pg. Note also that

ar’ = [Pt 7] (23)
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where N is an integer greater or equal to one and satisfies Nyquist's
theorem. For N1, a smaller number of predicted field points are needed
for the prediction of the following point and thus the accuracy of the

algorithm is increased.

VI. Comparison Between Theory and Experiment

Measured data were taken at 9.01GHz using the model in Fig. 11.
Absorber was positioned as illustrated to eliminate internal reflections
and multiple diffraction at the back. However, first and second order
diffraction from point Pgo was included in the analysis (see Appendix B
of [91 for details).

The calculated and measured results for the model in Fig. 11 are given
in Fig. 12. Excellent agreement is observed between theory and experiment
for both polarizations of incidence considering the complexity of the model,

the difficulty in the alignment and the approximations in the analysis.

V. Concluding Remarks

Although the results presented in this paper were restricted to a
cylindrical inlet over an ogive, the EC method can be applied inthe 1it
region of any type of edge over a smooth surface for which the surface
normal, the principal radii and the corresponding directions can be
computed. In addition, the EC method can be used for finding the fields
caused by the aforementioned diffraction mechanisms (edge diffracted,
reflected-diffracted, reflected-diffracted-reflected) at any desired pattern
cut. However, one should be careful to note that additional dominant
backscattering mechanisms will appear when in the broadside region, for

example, of a plate mounted over a smooth surface. These include the
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doubly reflected ray between the surface and the plate or scattering from
the junction of the plate with the surface. The last is dominant when
the plate is normal to the surface. These mechanisms will be discussed

in more detail in future publication.
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Figure 1. Sketch of an arbitrary thin-edge inlet over a surface.
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Figure 7. Radiation of the equivalent current in the backscatter

direction when associated with the reflected-diffracted-

reflected mechanism.
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Figure 9. Raytracing of the reflection point when the incident ray

is varied from fK to i.
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