AN ASYMPTOTIC SOLUTION FOR THE
TWO-FREQUENCY MUTUAL COHERENCE FUNCTIONS
OF A RANDOM SLAB

by
Hsiao-fei Maa

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
( Electrical Engineering )
in The University of Michigan
1985

Doctoral Committee:

Professor C. M. Chu, Co-Chairman
Professor V. V. Liepa, Co-Chairman
Professor E. N. Leith

Professor V. C. Liu

Professor C. T. Tai

RL-795 = RL-795



RL 795

ABSTRACT

AN ASYMPTOTIC SOLUTION FOR THE
TWO-FREQUENCY MUTUAL COHERENCE FUNCTIONS
OF A RANDOM SLAB

by
Hsiao-fei Maa

Co-Chairmen: C. M. Chu, V. V. Liepa

The parabolic equation method has been mainly used in dealing with scattering
problems associated with communications. The backscattering effects are often ignored in
these applications. However, in remote sensing problems the calculation of the
backscattered field intensity is essential, and neglecting the effect posed restrictions on the
application of that method.

In this thesis a modified parabolic equation method is employed to formulate the two
frequency mutual coherence functions of a statistically homogeneous body of a continuous
random medium. The backscattering effect is included in the formulation. An asymptotic
solution is found and the coherence functions of a flat slab for both the transmitted and the
backscattered fields are solved. The scattering effects of the slab upon a rectangular pulse
are calculated and plotted. The results are found to be physically meaningful, the energy
conservation law is observed by the solutions, and they represent a realistic picture of the
scattering mechanism; moreover, this formulation also provides a means to evaluate the
backscattering of a random medium, thus is suitable for both communication and remote

sensing applications.
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CHAPTER I. INTRODUCTION

1.1 Random Media and Associated Problems

By definition, a random medium is a medium whose characteristics vary in a
manner that they can not be decided exactly for a given position at a given time. The
medium of interest could be either discrete or continuous. An example for the discrete case
is a medium containing randomly distributed moving particles such as rain drops or hail,
whereas one for a continuous model would be a body of air whose density, due to
temperature and wind velocity fluctuations, is a continuous random function of both space
and time.

When electromagnetic waves propagate in such media, fluctuations will be
induced. Due to the uncertainty of the fluctuations, the only practical way to deal with the
quantities of interest is to find their average values, and hence probabilistic methods are
appropriate. Of all the quantities of interest, the average field <E> and the average
power density represented by the quantity <EE* > are undoubtedly the most important.

A single particle or irregularity in space will cause scattering in all directions. When
a cluster of particles or irregularities exist, multiple scattering generally occurs to make
the problem more complex. Various approximate models have been developed to include
multiple scattering effects to some degree.

When the typical size of the scatterers is very large when compared with the
wavelength of the field, the scattered energy will concentrate within a small angle relative
to the propagating direction of the wave. In such situations, the so-called ‘parabolic
equation method’ is widely used to calculate the forward propagating field quantities. This
name stems from that under the ‘small angle’ assumption, the differential equations for
the field quantities are of parabolic type.

In the conventional parabolic equation method primarily used in communication



problems, the backscattering is often assumed to be negligible to simplify the
formulation. Jedrzejewski proposed a formulation to include backscattering for the
coherence functions for a single-frequency plane wave case[1]. In the present work, the
two-frequency mutual coherence functions of the forward- and back-scattered fields is
formulated and the scattering of a rectangular pulse by a flat slab of a continuous random

medium calculated.

1.2 The Coherence Functions

An electric field propagating in the z direction can be written as

E(k,r) = U(k,r) e'Z,

where U(k.r) is the complex envelope, k is the free space wave number of the field, and
. —iwt .
the time dependence e is assumed.
The two frequency mutual coherence function of the complex envelope is then

defined as
*

and for a statistically homogeneous medium

(k) ko Ly 0,) = ¥k ky )LL)

At k1 =k2=k and T. 151 the real part of ¥ represents the average power spectrum of the

field.

If we consider a body of random medium as a system, the system response due to a

delta input



is essential in predicting the shape change of a pulse after propagating through the

medium. The correlation function B(t t ) is defined by ([2])

Bltyrty) = < Ugue(ty) Uo t{ty) > =
o @
N -lw. t +ie,t
= _fm_-';d“’ld“’zminwl)uin(“’z)>ru(“)1'02)9 171 7272,
1 [~]
where u w, =5 f tU (t is the complex spectrum of the input field.

From its definition, B(tl,tz) is proportional to the power density of the output signal

Pou t(1;) when tl = t2 =t,.

1.3 Continuous Random Media Problems

We start with the scalar wave equation

2, .2 (1-1)
[V" + k"e(r)]JE(r) =

where e(r) is the relative permittivity of the medium. The medium is continuous and is

varying slowly compared with the field. Depolarization effects of scattering are neglected.

The medium permittivity can be written as

where Z:gr_)< <1 is a random variable with a zero mean. It represents the fluctuating part
of the permittivity.,

There are two general approaches to solve the problem. The first one is to solve
Eq.(1-1) for E and then obtain <E> and <EE*> from the expression for E. The second

Ed
approach is to derive equations for <E>, <EE > or whatever quantities of interest from



(1-1) and then try to solve those equations. Because of the complexity of multiple
scattering mechanism, assumptions and approximations have to be made for both
approaches in order to arrive at meaningful solutions for specific situations. (Such as the
magnitude of fluctuation, the size of scatterer, etc.)

The first approach results in an expression of a complicated series. The common
practice is to truncate the series after one or two terms. Since the convergence is very slow
with even moderate fluctuations, this approach is suitable for very weak fluctuations and
short propagation distances only.

The difficulties encountered in the second approach stem from the fact that E@ and
E(r) are mutually correlated, and therefore new variables like <Z@E@> are created
when equations such as (1-1) are averaged. Assumptions and approximations are usually
made to circumvent this so-called ‘closure problem’, and despite those approximations,
higher order scattering terms can be included in the formulation to make this approach

suitable for larger permittivity fluctuations and longer propagation distances.

1.4 Parabolic Equation Method

For a partial differential equation

N 2%y N Bu Bu
Lu = § E aij(x't)_'__ax.ax. + z bi(x’t)—a? + c(x,t)u - Tl 0,
i=lj=1 i) i=1 i
if matrix (aij) is positive definite, i.e., if for any real vector £= (El, ey EN) = 0,

Eaijfigj>0, the operator L is of parabolic type.

In the process of deducing equations for <E> or <EE*>, this type of equations
will be encountered if the scattering is assumed to be in small angles to the incident wave.
According to scattering theory, the ‘small angle’ assumption is always true if the size of
the permittivity irregularities is much larger than a wavelength. In this work a high
frequency incident wave is assumed to justify the small angle approximation.

The following is a simple example of the deduction of a typical parabolic equation



(92}

from Eq.(1-1). Let

E@) = U(_r)elkz. Substituting it into (1-1) gives
92 < ny, 0 92 92 2~ _ _
(E + leENJ(E) + [BX—Z + 3y + k e(_I_‘)]U(E) = 0. (1-2)
The ‘small angle’ approximation implies
8 u(r)| << |izkEu(r) (1-3)
9z2 = oz =" |’

and when it is combined with Eq.(1-2), a parabolic equation

az al . a 2"‘ -
b + o + 3_2k-a; + k7e(x)]u(r) = 0

[
results.

In the past, the parabolic equation method was mainly used to investigate the
forward scattering problems associated with communication systems. The majority of
those works either ignored the multiple scattering effects or assumed that the scattering
occurs only in the forward direction. But models that include backscattering are needed for
remote sensing problems. Jedrzejewski introduced a backscattering model and gave some
numerical results of the mutual coherence functions for a single frequency case in his Ph.D
thesis[1]. In the present work the two-frequency mutual coherence functions of the forward
and backward scattered waves are formulated and analytical asymptotic solutions are
presented. As a result, it is possible to calculate both the transmission and the
backscattering of a random medium, as shown by an example in Chapter V.

The physical structure for which the solutions are given is a flat slab of a continuous
random medium with normal incident waves on both sides, the slab is located in free
space, with thickness L in z-direction and is infinite in x and y directions.

In the formulation, the forward and the backward scattered fields are mutually

coupled, as a result, multiple scattering effects have been included.



CHAPTER II. FORMULATION

2.1 Equations Governing the Electric Field

To account for the effects of backscattering caused by medium permittivity
fluctuation, it is convenient to explicitly introduce a backscattered field E , such as that in

Jedrzejewski's work ([1]):

+ - (2-1)
E(r,k) = E (r,k) + E (r,k).
. + - .
A second relation of E and E is chosen as
) . + -
EE(E'k) = ik[E (r,k) - E (r,k)], (2-2)

where k is the wave number in free space.

The typical size of the disturbance is assumed to be much larger than a wave length
so that the scattering is primarily in the forward and backward direction. Therefore E+
and E can be writter as

(2-3a)

B (k) = vt (r,kelk?,

and

i ; (2-3b)
UT(r, ke K,

E (r,k)

The field E(r,k) inside the random medium satisfies equation

7%+ 25 4 R JEEK) = o, (2-4)

2 22,
) & oy?

where V

L)
!

= e (1+e) = l+e(r)



e = <e>=1
r r

¢ << 1 is a real quantity.

The equations for E+ and E are readily derived from (2-1), (2-2) and (2-4):

[i2kg +72+k” (24 1B (£, k) = ~(VP+k2DE (£, k) (2-5a)

[-i2ks 4724k (2+) JE (£,K) = -2 0E (LK), (2-5b)
whereas the complex conjugates E+ and B " obey

12kl #7222+ JET (g,k) = ~(vV2 P OE (1K), (2-5¢)
and

okl PP (20 JE (20 = ~(PHPDET (k) (2-54)

2.2 Fluctuating Quantities

As an intermediate step essential to the task of this chapter, equations for the

quantities
B (r_,k)E (r, k) E (r_k)E (k)
Larfy® oprfy) v A R T
- +* - -k
E (ga,kl)E (gb,kz) and E (ga,kl)E (gb,kz)
are needed. By averaging those equations, the equations for the coherence functions can be

derived.

Take two points in a horizontal plane

I, T8y * 2z,
and
I, = et ozz.
5
Multiply Eq.(2-5a) for point I and k1 by E+ (—rb’kZ)’ subtract the product of

+ .
E Q;a,kl) and Eq.(2-5¢) for r, and k2, and notice that

-



The resulted equation is

2 2
v v
0 i a b +* ~ _+
(32 ~ 3G ~ )itk Ry IE 1 Eop” 2( E
1 K
2 2
- l(VaE' o VbE+ E- )+ Tkt BT BN ki ET B,
2k la2b  k,la2p 2 1€a la-2b 2€b la-2b’’
where e_ = e(z,p_)
Eb E(Zrﬂb)
Ela - E(kl'z'ﬁa)
Eyp = Elkyizigy,
p = RX + VY.
Similarly
5 i Vi Vi
[+ E(EI } E;)+l(k )]Ela 20" Z(kleaElaEZb 2¢pE1a52p
2 o2
. l a + - _ _b - +* +*
Z(klElaEZb szlaEZb Z(kleaElaEZb KyepE1aEap
s iV T
[3z - E(EI 2) 1(ky+k )]El b Z(kleaElaEZb 2€pE la 2b
v2 2 .
= 3(—§E' B bE E e Tkt BT B kB BT
k| 1la 2 * k, la2p’" 2 1€a la~2b 2€b la"2b

and

2 _ 2 _
VaE(Eb) = VbE(Ea) =

1%a%1a 2b kZGbEl EZb

K.¢. E. E

+%

-k

_*

) =

) =

) =

(2-6a)

(2-6b)

(2-6¢)



VZ 2

0 a V +* +*
(3 + '(‘Z * I?Z')”(k (PRI JEL Epp s Z(kleaElaEZb kzebElaEZb) =
§ T o T -
__ i, a .
= Z(kl 1af2p * k) 1aE2b) (k ¢ El E2b TN EZb) (2-6d)

Equations (2-6) are a set of mutually coupled partial differential equations with

4 FY - % % - 4%

random coef'ﬁcientsEa and Eb for quantities E - E+ .E E | E+E and E E

The coherence functions are defined as the time-average of those quantities:

+ +*
V (kll 2! IEaIBb) = <E (kllzlﬂa)E (k )>

21 %18y

*

\' (kllkzrzlﬂar£b> = <E (kl'z'ﬁa)E )>

Ryr2ipy,
+ -
W (kl' 2! rEargb) = <E (kl,Z,Ba)E (kz,Z,Bb)>

- -— +*

W (kl,kz,z,ga,gb) = <E (kl,z,ga)E (kz,z,gb)>.

Of the above four quantities, only V+ and V (the auto-correlation functions of the
forward and backward scattered fields) are of interest. The two cross-correlation
functions, W+ and W—, will be treated as intermediate variables and be eliminated

eventually.

2.3 The Closure Relations

In the averaging process of Eqs.(2-6), variables other than the four correlation
functions defined in the previous section , such as <e E E2b >, are produced. It is
essential to express these quantities in term of the correlation functions so that a set of
partial differential equations for the correlation functions can be derived.

In an isotropic, homogeneous medium the permittivity correlation is sharply peaked

in the direction of propagation and can be approximated by the expression ([3])
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<E(xEEM> = 8(z'-zA "),

where A(p'—p") is the transverse correlation of the medium permittivity. Furthermore,

since the medium is statistically homogenous,

A(p'-p") = A{p"-p") = A(p)
p=lp-p"]

A(pém) =

In this work ¢ is assumed to have a zero mean Gaussian distribution. Under these

assumptions, the Furutsu-Novidov relationship can be applied to give ([5])

+ +*
L -] 5Elﬁ +* N 8E27
<e ElﬁEZ > = fdz fdp {6(2 z )A(R -p") [<—E_ >+<E15_>]}
e Se (r") de(r')
(2-7a)
and
+ F*
L BElﬁ - . 5E27
<e ElﬂEZ > = fdz fdg {8(z-z")a(p -p") [< E S<E] ﬁ—-—-——>]},
- @ se(r') 2 se(r")
(2-7b)
where

Ga = e(zlﬂa)

Elﬁ = E(kl,z,gﬁ)

*

*
27 = E (kzlzlg’y)

E

2, takes the value of either 2y

or B and

8E(k,z,p)
S is a functional derivative.
de(z'yp")
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In Eqgs.(2-7) either the upper or the lower row of signs, but never a mixed
combination, should be used for the entire equation.
A discussion about the concept of functional derivatives and the derivation of that of

a linear functional can be found in [4]. In our particular case, the expressions are

SE' (k,z,p)

- =0 (z'>z)
de(z',p")
8E (k,z,p)
S ——— 0 (z'<z)
se(z',p")
and
SE" (k,2,p)
s:(z',p") 2 2
8E (k,z,p)
ST gt v
de(z',p")
ik . _
= —[E (k,z,p")+E (k,2,p"')]8(p-p"). (2-8)
4
By substituting Eq.(2-8) into (2-7), the closure relations are derived. These are
gttt 1 _ t_ + ¥ _
<€ E gy, = 4{[klA(paﬁ) sz(pay)]V kAo, W +k)R(p o)W } (2-9a)
and
~ ¥ i _ -3 + 3 _
<eqE1pEy,> = gk Ao ) kpR(py, )W -koR(p IVT+k Ao V'], (2-9)
where
Pap = 1257241
Pay = l2g72 |

By =B OF p =p.
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The quantities V+, \Y% —, W+ and W are defined in Section 2.2.

2.4 The Coupled Equations

The means of Egs.(2-6) can now be taken and the closure relations (2-9)

substituted. Observe that in (2-9), either

paB =0 or pa7 = 0.
Thus,
s 1% % i k
[ - 5(— - ——)-l(k -k )+ A(O)]V =
0z 2k
1 %
Kok, W2 4 k2 2 ki -
= 4—A<p YV ) - [2k bt A(O)]W *[KV 4—A<o>]w
(2-10a)
> i "i Vi ki‘“kg
= E(k_ - l—{—-—)+1(kl-—k2) —2p(0)]v =
1 2
2 2
k.k . K K,
- .12 e - [Lv? - L 2
= X A(pab)(v +V W W ) [Zk V. "1 A(0) JW'+ [2kzvb+ A(O)]w
(2-10b)
3 i V§ VE ki'kg
[32 = 2Go * ) itk +ky)+ AW =
1 2
= [==—V - (0)]v +[ - =a(0)]v (2-10c)
%.b 1 4
2 1
and
s 1% T ki
[E f(k— + K—)+l(kl+k2)- A0)IW =
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k2 k2
_r i 2 1 + 1.2 2 - _
= [—Z_l—{-l-va n A(0) ]V [Zkzvb * 1 A(0)]v , (2-10d)
+ + +*
where V = <E (kl,z,_p_a)E (k2'z'£b)>
- - -
V = <E (kl,z,ga)E (kz,z,gb)>
+ + -
W= <E(ky,zip )E (KyiZipy)>
- - +*
W = <E (kl,z,ga)E (kz,z,p_b)>.

Eqgs.(2-10) can be further simplified by substituting in the expressions

' 1 - 1 (el
p' = (o *py) = x'RHY'Y

and
£ = p = XRHYY.
Thus V2 = lV'2+V' ~V+V2
a 4
2 1,2 _, 2
Vb = ZV -v'.v+V" ,
2 2
whereV'2= 32+ 82
ox' oy’
az a2
2
Ve o= > +
ox oy

The physical structure of the random medium in this work is assumed to be a flat
slab with plane wave normal incidences. It is also assumed to be statistically homogeneous

in the x-y plane. Hence

(2-11)
vi2 =,

which implies
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that is, V+, V_, W+ and W depend only on the horizontal distance p = ma_ ﬁbi Thus

Eqs.(2-10) can be re-written as

2 2
k. -k kZ+k
[+t 202 L 12 0y ik k) v =
0z 2k Kk 4 12
)
Kk, 2.5 , K
= =LA (Vv ) - [ + 2a0) W +[—-—V - —~A(0>] =
. n 2k,
+
=5 (2-123)
2 2
k. -k K24k
(& 2292 1 20y k. k)W =
7z 7 175,
152
2 2
K.k . k . k
= L& @) - [0 - a0yt [siv? + —2a(0) W =
. 7k 7 2k, Z
= s— (2"le)
2 .2
k. +k K-k
[ -122v% + L_Za(0)-i(k k) IH" =
z 2k .k 4 1 2
152
5 PR
= [ v + -——A(O)]v +[ - TA(O)]V =
+
- R (2-12¢)
and
2 .2
k. +k k2-k
[%— w2202 - 1 25 0)i(k sk )W =
z 4 1 2
2k_k
1
2 2

. k
5 - A WA+ Zaoyv
2



=R . (2-12d)

The above equations are a set of mutually coupled partial differential equations. The
left side of each equation is a parabolic operator with constant coefficients whereas the

right hand side will be regarded as the source term for the equation.

2.5 Boundary Conditions

Assume a flat random slab in free space with a symmetric pair of incident waves
E  and E+, as illustrated by Fig.2-1. The field E+ travels in the positive z direction and
illuminates the slab from the underside (z=0), whereas E propagates along the negative
z direction and hits the upperside of the slab (z=L). The boundary values of these waves

E+(z=0) and E (z=L) are known quantities.

From the definitions of V+, V—, W+ and W, we have

+ +_+*

V =<EE >

- - X

V =<EE >
+ +_=*
W =<EE >

*

- -+
W =<EE >,
- [_— -
When E (L) = Oor <EE >| _ =V (L) =0,
W) =W (L) =0,

since there is only one wave propagating in the positive direction at z=L , because no

scattering exists outside the slab.
*
Similarly, when E'(0)=0 or <€'E" > _ =v"(0)=0,
W) =W () =0.

Thus the boundary conditions at z=0 and z=L are, if V+ and V being considered as

. . + .= . .
primary variables and W and W  secondary or induced variables,
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(at z=0)
+ -—
WO [y* gy=g = W (O |y* gyog = O (2-13a)
and (at z=L)
+ -
W (L)|V-(L)=O =W (L)lv'(L)=o = 0. (2-13b)

As for the boundary condition at p={p — —pbl 2 o, since the electromagnetic wave is
propagating inside the random slab, the degree of coherence decays with increased
horizontal distances between the two points. At «, the medium correlation falls to zero,

and therefore the boundary conditions inside the slab are
+ e + - .
V (p?=)=V (p3=)=W (pr=)=W (p?=)=0, (2-14)
and the derivatives of these quantities are

W (p3e)=TV (poe)=TH' (pe)=TH (p4e)=0. (2-15)
Equations (2-12) together with the boundary conditions(2-13) through (2-15) define

a single valued solutions if the boundary values v’ (z=0) and V' (z=L) are specified.

2.6 Summary of Chapter II

1. Medium structure: the random medium occupies the volume defined by 0<z<L,
—o<x,y<w, Medium is continuous and is fluctuating slowly when compared with the
incident field quantities.

2. Statistical properties of the medium:

€ = e(l+e) = l+e
<e>=¢=x1

<e>

0

<e(z',p")e(z",p")> = 8(z'-2")A(p)
with p = |p'-p"|

A(p) is a Gaussian function with a zero mean.

3. Incident wave: plane wave, normal incidence.
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4. Scattering by the medium: the size of irregularities is much larger than the
wavelength, so that scattering is concentrated in the forward and backward directions.

5. To derive the closed set of equations, the Furutsu-Novikov relation is used.



18

g Free Space
incidence at z=L output at z=L
L l
forward scattering
l Random Medium
0 backward scattering

| |

incidence at z=0 output at z=0

Free Space

Figure 2-1. Structure of the Slab



CHAPTER III. THE ASYMPTOTIC SOLUTIONS

3.1 Basic Approach

In this and the following chapter a set of approximate solutions for Egs.(2-12) are
obtained by using a combination of Green's function techniques, asymptotic integration

methods and matrix manipulations.

o

Since the quantities of interest are <E+E+ﬂ:> and <E_E—$> or V+ and V.
W+ and W have been eliminated in the process. The solution is given in the form of a
‘scattering matrix’ with V+(z=0) and V. (z=L) as input and V +(z=L) and V (z=0) as
the output, similar to the scattering matrix of a two-port network
vV (0,p) v'(0,p)

= S(k,,k,,L,p)| _
V+(Lr£) 12 \ (L'B)

By setting V“(Lz__p) = 0, this solution yields the correlation functions of backward
and foreward scattered fields at z=0 and z=L,respectively, as functions of the correlation

function of the incident field at z=0.

3.2 The Green's Functions

Define a set of Green's functions G+, G_, H+ and H for Eqgs.(2-12)

2.2
k,-k k. +k
0 1l 2.2, 172 + ' -
[5; -1 % +l(kl'k2)_ 2 A(0)]G (z,z PP ) =
2k k
172
= 6(z-z")8(p-p") (3-1a)
2 .2
k. -k k,+k
[g— +i 1 2V2-i(k -k, )+ —l—ZA(O)]G-(z,z',g,g') =
z o K 172 4
172

19
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"

6(z-2')é(p-p") (3-1b)

2
k2
4

[a kl+k2 2 k

2
. . 1
— +i Vo+i(k, +k.)~
2k_k 12
172

A(0>]H+(ZIZ' iR

9z

5(z-2")8(p-p") (3-1c)

and

2 .2
k. +k kl k2

(& it 29205 (k +k, )+
-, 1) =
)

A(0)]H (z,2',p,p")

0z

= §(z-z"')8(pp"). (3-1d)

Also define the Fourier transform pair

17 .
£(p) W_fmf(ﬁ)exp{uxx(x-x')+xy(y-y')]}dﬁ

£(x)

ff(g)exp{-i[xx(x-x")+ny(y-y')]} dp.

-

Transforming Egs.(3-1), we get

2.2
k. -k KE+k
3 .12 2 5
[a—z- +1i K2+J.(kl—k2)- —%—ZA(O)]G+(z,z',E) =
2k_k
1%2
= 8(z-z") (3-2a)
2.2
k. -k KE+k
(S -2 KPei(k kv —22a00) 167 (2,2 ) =
2k K,
= 8(z-z') (3-2b)
)
k. +k k.,-k
3 12 2 .
[5; -1 K™+1(k, +k,)- —5Z—ZA(0)]H+<z,z',5) =
2k k
11
= 8(z-z") (3-2¢)

and
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s K1tk o kz_kg -
[ +i K*-i(k,+k, )+ A(0)]H (z,2',k) =
0z 2Kk 172 =
11
= 6(z-z'),
where K2 = |K|2 = K2 +K_ .

The solutions to Eqgs.(3-2) are easily found, and

for z<z2'
. Kk, K24k
G = -exp{[-i K™-i(k,=k,)+ ——A(0)1(z-2")}
2k .k -
172
\ Ktk K2-k2
i = —exp{[i—= K°-i(k, +k,)+ —=A(0)](z-z")}
kK 172 4

11

& =8 =0, and

for z>z'
) Kk, Ko+
G = exp{[i K +i(k,-k,)- A(0)](z-z")}
Kk 172 4
172
- K1y 2 KoK
B = exp{[-i K +i(k +k,)- A(0)](z-z")}
o 1772 4
11
At - At =0 .

(3-24)

. . . . + + .
The physical meaning of the solutions is that G and H are considered as

‘forward propagating’ quantities, therefore their values at a point z' are affected by a

source located at z only if the source lies in the path of the ray, that is, only if

z'>z. Similarly, G and H are ‘backward propagating’ quantities and their values at z'

are affected by a source at z only if z>z7'.

It is also easy to obtain the Green's functions from their Fourier transforms.

For z<z2',



lklk2

Zﬂ(kl—kz)(z—z')

+
G (ZIZ'IQIB') =

ki+k§ klkzlg—g’lz
rexp{[-i(k,-k))+ ——=B(0)](z-z')+i } (3-3a)
2(k,"K,) (z-2")
ik k,

H+(Z,Z':£lﬂ') = .

2n(kl+k2)(z-z')

kz-kg klkzlg—g'lz
2 A(0)](z-z")-1i

rexp{[-1(k, +k,)+ } (3-3b)

2(kl+k2)(z—z')

G (z,2',p,p') = H (z,2",p,p') = 0

and for z>7z',

1klk2

G—(ZIZ'IBIQ') = .
- Y
Zﬂ(kl kz)(z z

ki+k; klk2|£-£'|2
7 A0 ](z=z")-1 } (3-3c)
2(k,-k,) (z-2")

'exp{[i(kl—kz)-

lklkz

2ﬂ(kl+k2)(z-z')

H-(lellﬂlﬁ') =-

phlere'l”
rexp{[i(k +k,)= —=A(0)](z-z")+i

} (3-3d)
2(k, *k,) (z-2")

G+(2.Z',£,g') = H+(z,2',£,g‘) = 0.

3.3 Green's Function Properties

The following properties are useful for evaluating the coherence functions:

1. From the inverse Fourier transform formula,



£p) = (2n)2

ff(x)exp{ [xx(x—x')+xy(y-y')]}d5

and the expressions of G's and I:I's, the limiting values of the Green's functions are

2

1im G (z,2',p,p') = ~8(p=p")

z9z' -
+

lim H (zlz'rﬁrﬁ') = 'S(B'B')
z9z' -

1im G (z,2',0,p') = 8(p-p")
z9z'+

lim H (z,z',0,p") = 6(p=p').

zz'+

. Since all G's and H's are functions of the quantity (z-z'),

. In their non-zero regions and for z=z',

V'2G+(z',z,g',3) =

2
2k.k k. +k
1 2[_ 9 +i(kl—k2)— l

k.-k

0z
172

2
2

=-i A(O)]G (z'yz,0',p)

2—
vV'"G (z‘lzrﬁ‘rﬁ) =

Zklk2 3 k kg
=1 [- = -i(k,~k,)+ —=A(0)]G (z' 1Zep' 4 p)
0z 172
k) 7k,

V'2H+(z',z,£',g) =

2k k K
12 2 +1(k +k)) -
k. +k

0z
172

2 .2
lk2

=i A(O)]H (z' 1Z,pP 12)

(3-4a)

(3-4b)

(3-4c)

(3-44d)

(3-5)

(3-6a)

(3-6b)

(3-6¢)



and

2 -
V'"H (z',z,p"4p) =

2 .2
k k2
4

Zklkz _
A(0>]H (Z'IZIB'!B)' (3-6d)

[- = -i(k

=-1 +k, )+
172
k1+k2

3.4 Integration of the Equations

With the help of the Green's functions derived in Section 3.1, the set of differential
equations (2-12) for the coherence functions are easily solved to yield a set of integral
solutions.

From Eqgs.(2-12) and (3-1), with the primed and unprimed coordinates interchanged,

we have
k. -k
vty +it 2y . ¢Tvvtvivieh) =
0z 2k k
12
= 6's v s(z"-2)8(p"-p) (3-7a)
k. -k
—giT<v ¢)-i—2v' . (G V'V -V VG) =
z 2k k
172
=G S +V 8(2'-2)8(p"-p) (3-7b)
) + + k +k2 + + _+ +
—— (W H)-i V'-(HV'W-W V'H ) =
0z 2k_k
11
+ + _+
= HR +W 6(z'-2)8(p"-p) (3-7¢)
and
k. +k
—ng(w H )+i 1 2v'~(H'v'w’-w'v'H’) =
Z
2k k,

= HR +W 6(z'-2)8(p'-p). (3-7d)
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Next define two volumes V1 and V 5 as

1

{0<z' <z ;-e<x,y <o

V2 {z<z'<L;-—w<x',y'<w}.
Note that the horizontal plane z=z2' is excluded from both volumes. Also, all the z-values
are bounded by 0 < z<Land 0 < z' < L.
Integrating Eq.(3-7a) over Vl’ using the boundary values Eqs.(2-14) and (2-15),

the limiting values Eq.(3-4a), in view of the fact that z=z' in volume V p We get

Vi(z,p) = - [dp'VT(0,p")G (0,2,p",p) -
z < + +
- fdz' [dp' S (2',p"')G (2',2,p",p). (3-8a)
0 -
Similarly,
Vi(zip) = [dp'V (Lip")G (L,z,p"sp) -
L ® _ _
- fdz' [dp' S (2',p")G (2',2,p",p) (3-8b)
VA -0
W (z,p) = - [dp'W (0,p)H (0,2,p",p) -
Z ot + +
- faz' [dp' R (z',p")H (2',2,p",p) (3-8c)
0 -
w-(zlﬁ) = fdelw—(LIB')H—(LIZIB'IB) -
L @ _ _
- Jdz' [dp' R (z',p")H (2',2,p',p), (3-8d)

VA -
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where in the process the second Green’s Theorem has been used.

—_ + —
In the integral solutions Egs.(3-8), all the source terms S+, S ,R and R

+ 2.+ :
contain VZV‘ and VZW‘ and can be treated as the following example :

fdg'G+(Z',Z,E',B)V'2W+<Z',g') =

-0

—
n

@ @
- de'V'-(G+V'WT—W+V'G+) . fd_p_'W+V'2G+ -
= [apw'vie .

By substituting Eq.(3-6a) into the above expression, we get

. 2klk

Kok
I=-1

4

2
2 2
k) -k,

9 .
[ T +l(k1 kz)

A(0)]-

.fdg'w+(2',2')G+(Z"Z,£':£):

-

and thus Egs.(3-8) can be reduced to the general form

X(z,p)=t [dp'X(z',p")F(2',2,p",p)-[dz"' [dp'E(z",p" )F(2",Z,p"1p)s

- -

where X and F designate one of the correlation functions and the corresponding Green's

function, respectively.

From Eqgs.(3-8a) and (3-6a),

Vi(z,p) = - [dp'V (0,216 (0,2,p" 1p) -

-0
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K.k, z ®
.12 fdz' de'A(B')[V++V +W++W ]G+(z',z,3',£) +

4 0 -o

2

z [
+ %A<o>fdz' fdg‘[k§W++le 16" (2" ,z,p"1p) -
0 -

1 @ Ky
TRk g TR RO
172
z ] +
- fdaz! fd_q'[klw -k
0 -

16T (2" 2,0 10), (3-9a)

from Eqgs.(3-8b) and (3-6b),

-]

V(z,p) = [dp'V (L,p")G (L,z,p',p) +

—co

kky L e . - e -
Jaz' [dp'A(p") [V +V +W +W 1G (z',2,p',p) -
4 z -

+

L @
- %A(O)fdz' fdg'[k§w++k§w']G"(z',z,g',g) -
z -Co

1 2 ki“kg
TR gz TR RO
172
L = N o
. [az' fdg'[kzw kW 16 (z',z,p" 1), (3-9b)
A -

from Egs.(3-8c) and (3-6¢),

W (z,p) = - [dp'W (0,p")H (0,2,p",p) -

-C0

Z ©
- %A(O)fdz' fdg'[k§V+-kiV_]H+(Z',Z:£':£) +
0 -
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k2 2
1 0 . l 2
L 5 ity T RO
172
z < + -+
« Jdz' [ap' [k V +kV JH (2',20040), (3-9¢)
0 -

and from Eqs.(3-8d) and (3-6d),

W_(Z,_Q) = fd_e'w_(Lyﬁ')H_(errﬁ'lE) -

-0

2.+

- —A(O)fdz _fdp (kv -k V IH (z',2z,p',p0) *+

-0

2
k 2
kl+k2[- 5; -i(k +ko)+ A(0)]-
L = . o
» Jaz' [dp' [,V +k,V IH (2'42,0"4p0) - (3-9d)
z -

In Eqs.(3-9), all V's and W's are evaluated at ( z', p'), unless explicitly noted otherwise.

3.5 Stationary Phase Method

The well-known Kelven’s stationary phase method is widely used to find the
asymptotic values of integrations with the form
b
I(y) = [dx¢(x)exp[ivf(x)] ; v @ = > 0.
a
It states that if
i. f(z) and ¢(z) are analytic where z = x+1iy,
ii. f(z) is real for real values of z, and

iii. in the integration region f(x) has a finite number of ‘stationary’ points where



then

b
faxg(x)exp[iyf(x)] =
a

I(y)

N [ ——

= m . 7
= DEI{VE;TEWTE;ST ¢(an)exp[17f(an)tl4]}+o(1/7).

The a (n=1,2,...,,N) are the stationary points, and the sign in the exponential of each

term is the same as that of the corresponding second order derivative of f(x) at that point.
_ \ . + = ot -
In the set of Green's functions G , G ,H and H , the x and y dependences are

of the form (see Egs.3-3)

a
z-z'

exp{i [(x-X')2+(Y-Y')2]}

where a i1s a constant.

The stationary phase method can be applied to carry out the x and y integrations in
Egs.(3-9) so that a set of asymptotic solutions are obtained. Notice that the only
stationary points of functions (x-x')2 and (y-y')2 are x=x' and y=y', respectively, and the
second order derivatives of these functions are constants 2>0.

From Eq.(3-9a)

k2+k2
v'(z,p) = V (0, p)exp{[- —2A(0) +i(k, k) 1(z-0)} +
k.k z
s 2 2A(g)fd2'[V+(Z',g)+V—(Z‘,g>+w+(2',g)+w_(2',3)]°
4 0
2 .2
ki*ky

rexp{[- —"A(0) +i(k k) 1(z-z")} -

z
- %—A(O)fdz' [k§W+(z',3)+kiW-(z',3)]'
0
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k2+k2

exp{ [~ —S2(0)+i(k k) 1(z2") ], (3-10a)

from Eq.(3-9b)

k2 +k2

V (z,p) =V (L,p)exp{[ 14 21(0) -i(k,-k,)1(z-L)} +

k.k L
A(p) [az' [V (2", p)+V (2", p)+W (2", p)+W (2',p)]-
4 Z

-+

2,2
k+k2

exp{ [—5-2A(0) -i(k,k,)](z-z")} -

1 L 2 + 2..-
- ZA(o)fdz'[klw (' p)+koW (z',p)]-
z

k2+k2

~exp{[ 14 2A(O)—i(kl-k2>]<z-z'>}, (3-10b)

from Eq.(3-9c)

k%2

W'(z,p) = W (0,p)exp{[- —2A(0) +i(k +k))1(z-0)} +

1, 2 2+ 2. -
+ 78(0) fdz' [koV (2", p)-k ]V (2, p)]

0
22
exp{[- n A(0)+i(kl+k2)](z—z')}, (3-10c)
and finally, from Eq.(3-9d)
2.2
k] -k}

W (z,p) = W (L,p)exp{[ 14 A(0) -i(k *k))1(z-L)} -

1 L 2+ 2, -
- ZA(O)fdz'[klv (z',p)-k3V (z',p)]*
Z
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k2--k2

-exp{[—14—2A(0)-i(kl+k2)](z—z’)}. (3-10d)

A set of mutually coupled differential equations are derived from Egs.(3-10) by

direct differentiation. These are

2.2
KC+k K k K.k )
Syt = - L 2n(0)+ick,—k )+ —2a(p) vt L Za(p)v
0z 4 12 =
4 4
2 2
K.k K K k K
228 a0 W+ 28 (p)- F2A0) I (3-11a)
4 s
2.2
K.k K% +k K.k
Oy - Loy e [ 2a(0)-i(k, k. )- —2a(p) v+
oz = 4 12 =
s s
k%o ki v Bk kg -
+[- —==a(p)+ A0 W +[- —A(p)+ FA0) W (3-11b)
¢ 4
St = éA(O)v‘”- ﬁ11\(0)v“-[k§_k§zx(o>-' (k. +k )W (3-11c)
3z ¢ 7 Z B ¢
oo KKy Kk i
2N = ROV - S +[ 7 A(O)—l(kl+k2)]W ' (3-114)

where all variables V+, V_, W+ and W evaluated at (z,p).

A comparison between Egs.(3-11) and (2-12) reveals that the application of the
stationary phase method results in the elimination of all the V2 terms contained in the
sources of the original equations. This result is consistent with the assumed normal

incidence and the ‘small angle’ approximation.
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Eqgs.(3-11) are next written in a more concise matrix form

+] . (3-12)

Since the solution of Eq.(3-12) will be used to calculate pulse propagation problems where
only the values of the coherence functions at p=0 are required, it is sufficient to solve

Eq.(3-12) for p=0. The coefficient matrix B of the equation then has the elements

klkz'ki'kg
by = by = ——7 & +ilk k)
k.k
R
by, = by = A
4
K,
by = -b,, = 'Z"(kl'kz)
kA
by, = by = - —;—(kl-k2>
ky
by) = by, = 7R
K}
byy = by =- 7R
ki—kg
Dyy = Thyy = 7 T Ak tky)

by = by3 = 0

where A = A(0).
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By introducing new variables u=(k1+k2)-A and v=(k1-k2)-A, the matrix B

becomes

u‘?'+3v2 +iv uz-v2 uv, o utvy
16 16 8 8
i A T T
_ 16 16 8 8
B == (3-13)
). 2
(u-v) (u+v) _u(z -1) 0
16 16 4
(u+v)2 (u-v) 0 u(! i)
16 16 4 :

The set of equations for the two-frequency mutual coherence functions, Eqs.(3-12),

with coefficient matrix B as given in Eq.(3-13) is solved in the next chapter.



CHAPTER IV. SOLUTIONS FOR THE SLAB

In this chapter Eq.(3-12) is solved for the flat random slab shown in Fig.2-1. The

solutions are given in the form of a scattering matrix defined at the begining of Chapter

III.

As an intermediate step, a ‘transmitting matrix’ T (L), defined as

v L) v’ (o)
V| = V0 _
Wo(L) W (0)

is derived first. Appropriate boundary conditions are applied to Eq.(4-1) to eliminate

.. .+ = . . .
quantities W and W | and the scattering matrix derived.

4.1 Laplace Transform Method

For a matrix differential equation

) =
2z X(z) = B X(z),

where B is a constant matrix, the Laplace transform is

sX(s) - X. = B X(s)

0

or

34
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X(s) = (sI - B)"* ;.

Hence

X(z) = 177 {(sT - E)'l}z_z X,
0

where X 0 is the boundary value of X(z) at some plane 2=z Specifically,
-1, = =1
X(L) =L " {(sI-B) 7}, _ X(0), and
X(0) = L7 {(sT - E)’l}z=_L X(L).

4.2 The Matrix (s1 — —E-)—l

The matrix (sI — B) 1 can be calculated following the standard procedure,

although it is quite tedious in the present problem.

4.2.1 Eigen values of (s — B)
Eigen values of matrix (sT—B) are found from the characteristic equation

52 1

2 2.2
+3v )]—5 + —Z[u vi(l- —¢
A A

u2+3v2 .u2+7v2u2

2
Y+1 5

4 2 2

s +[u”+v v] = 0.

Y
+1§(5u

It is easily solved to yield

s, = (a+ip)/A

1
S, =-(a+ipf)/A
3 = (3+in)/A

s, ==(8+in)/A
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where

a = Val-14/(§)2+1]

g = -W—[l+\/( 241]

§ = v’—[ 1y (B +3V )2+1]
n = ~waliw (2],

2.2 The inverse matrix of (sI— B)

P..
The elements of matrix (sI—B) 1 can be expressed as _IJ, where Pi' is a
A

polynomial of no higher than the third order, and A=|sT—§| is a fourth order

polynomial.

That is,

—_ .1 Py
(sI-B).. = 2
1]

where

s2 1 2,..2 2,2

4 2 2 .v 2 2 2 2 u +3v LU +7v 2

A=s + [uT+v +;L-8-(5u +3v )]-—2 + —4[u vo(1l- T Y+i 5 u“v]
A A
1 1
= [s%- —(a+id)?1s%- 5 (3+in) 1. (4-2)
A A

The expressions for Pij's are



P..(s) =

11

P22(s)

P. (s) =

12

21

Pl3(s)

P24(s)

Pl4(s)

P23(s)

P3l(S)

42

32

P4l(s)

33

3 wlew? | §2 2% 2 ¥y
S TV rus S v 5 -
2
_ E_[u2+llv2 iv(d 2 7v2 -]
3 16 64
A
—Pll(—s)
u2-v2 2 v2 u2 v
Tea (5~ g st ()]
A
-Plz(-s)
v uv
(u v)v[ 2_ u+v(g i)s- ——(l i 3v)]
8A A 8
—Pl3(-s)
(utv)v 2 u—v v o, uv u+3v
- (s (- -i)s+ (l+1 )]
8A A 8
—Pl4(—5)
u-v 2 u v uv
1ea {(u-v)s [—— +Hu-v)]s - = (u-v-i
A
—P3l(-s)
uv
Chad {(u+ ys2- & v[—— -i(u+v)]s + — (u+v+i
16A 2
A
—P32(-S)
v 2 2 2 2
_S_uv . .2 u-v . U +3v
=5 A(4 i)s™+ 2(v+ er Vi 5 )s +

A

37

u’-uvezv?

4

u2+uv+2v2

4

)}

)}
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2 2 2
u +5v +iv(l- 3u +5v AZ)]

P44(s) = -P__(-s)

2 ,
P34(s) = v (s-i

>ic

P43(s) = -P,_ (-s).

4.3 The General Solution

It is now a straight forward procedure to inverse transform the elements of (sT -

B) 1 to obtain the general solution of the matrix equation (3-12).

Let the matrix L 1{(ST -B) 1} be denoted by T (z), with

P..(s) P. .
t, () = {21} = I Res{-=d,s, Jexn(s,2), (4-3)
] A(s) K A
where sk's are poles of A(s).
4.3.1 Pole type analysis
Pi'
Generally, — has four simple poles located at
A
a+ip t+in
* R and = A
so that the residues are
Pi.(S) Pi'(sk)
RES{—J—, Sk} = '—'J_, (4_4)
A(s) a'(sy)

where A'(sk) is the derivative of A evaluated at S
However, higher order poles could exist at a+i8 = 0 and §{+in = 0, as can be seen

from Eq.(4-2).



4.3.2 Special cases

l.atip =0
From the expressions for a and g, this can occur only if u = 0. There are then
P..
three simple poles located at s = 0 and s = +(¢{+in)/A for every — These expressions
A

are

4
2V Ly
A"16 2
i o
A 2 v2 3
s[s”+ —(1+izv)]
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V2 v,V
—[s+ =(z -1)]

E@ﬁ ) 84 A8
A 9 v2 3
s[s”+ -—2(l+i—v)]
8
A
fu
A A
Fa3 _Fu
A A
V2 v,V
—[s- (= -1i)]
P3l ) 164 A4
A 2 v‘2 3
s[s”+ —=(1+izv)]
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A
v v,V
—[s+ =(= -1)]
P42 i 16A A4
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A
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fa _Mn
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2
v 2
s?+ —(1- L +i3dy)
p AZ 64 8
33 .
A v2
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4433
A A
4
v
2
A 2 v2 3
s[s"+ —=(1+izv)]
2 8
A
WERT!
A A
with
2 3
$ = V- l-1 (G P41,
n=-v v’%[lﬂ/(%v)“l]-

The corresponding tij(z)'s calculated from Eqs.(4-3) and (4-4) are

2 2 .
VL it Yoyea (Y _pydtin
gg TV g (g DTS
tll(z) = ; (4-5a)
l+1-8-v
tzz(Z) = tll(-z) (4-5b)
2 .
V_1-cys $tHin
64(1 C)+ 16 S
tlz(z) = (4-5c)
1+i§-v
8
tZl(z) = tlz(-—z) (4-54)
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8

tl3<z) ] (4-5e)
l+i§V
t24(z) tl3(-z) (4-5f)
tl4(z) tl3(z) (4-59)
t23(z) t24(z) (4-5h)
2
v
64
t33(z) 1- 3 (1+C) (4-51)
l+i-8-V
t44(z) t33(z) (4-53)
VY iy oy Sin
8(8 2)(1 CH+ 16 S
t3l(z) = - 3 (4-5Kk)
l+i'8—V
t4l(z) = t3l(z) (4-51)
t32(z) t3l(-2) (4-5m)
t42(z) t32(z) (4-5n)
2
v
64
t34(z) - ; (1-C) (4-50)
l+i’§V
t43(2) t34(2) (4-5p)

In the above quantities

C(z) = cosh[(%+in) f;]
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S(z) = sinh[(§+in) i;].

2, t+in =0

From the expressions of ¢ and 7, this implies v=0. The results then are

2
P _1_
A 16As2
2
P u
22 _ 1, >
A 5 1eas
2
Fa %
A As
2
P Y
A As
P..=P, =P _=P , =P =P _=0

.—3l= -l-'l—-(.].'._ l )
A 16°s s-i =

A
.P£= -1 _l.l_.(l.. 1 )
A 16's s-1i u

A

P_4]:= - i -u_(__ 1 )
A 16°s S+i u
P
42 .
LR -2y

16's . u
A Ss+i 3
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= 1+

ex

L

.u
16[l—exp(lz z)]

. u .u

i Ig[l—exP(lK z)]
. u .U

i Ig[l exp( iz z)]
u .u
Ig[l_exP(_lK z)]

p(i% z)

(4-63a)

(4-6b)

(4-6¢)

(4-6d)

(4-6e)

(4-6£)

(4-69)

(4-6h)

(4-61)

(4-63)
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= -i2 -
t44(z) = exp( iz z). (4-6k)

3.atif = §+in =20

This is a trivial case since the condition requires that u=v=0 or k1 = k2 =0,

and solutions for this case are readily found from Eqs.(2-5)

n

tyy =1 (i=3) , and

tij 0 (i#3).

This solution can also be obtained from from Eqs.(4-6) by allowing u go to zero.

4.3.3 Solutions for the general case (u # 0, v = 0)

P..
Generally, when u # 0 and v = 0, there are four simple poles for each —2 | From

A
the expressions for A and Pij's, derived in Section 4.2.2, the tij(z)'s can be obtained by

substituting Eq.(4-4) into (4-3), giving

2
iy—v
1l V2 64 3 V2
f22(®) = gyt Sty g6
l+izv a+1f
8
uz+9v2 . u2+9v2
—_— +iv( -1)
16 128
+ Sz] (4-7a)
$+in
tll(z) = t22(-z) (4-7b)
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2
iE—v
1 V2 64 v2
t1p(®) = gz 1 —— S %2 *
.3 +ip
1+i=v
8
2 2 2 .2
u-v ,;u -3v v
16 128
+ 52] (4-7c)
§+in
tZI(Z) = tlz(-z) (4-74)
vV o
§(§ s vV, u v
t23(z) = ————;—— (Cl—Cz) + §(a+iﬁ°1+ S+in°2) (4-7e)
l+i=v
8
tl4(z) = t23(-z) (4-7£)
vV o,
§(§ Y v, u v
t24(Z) = —‘——;—— (Cl'Cz) - g(a+iﬁal— S+in°2) (4-79)
1+izv
8
tl3(z) = t24(-z) (4-7h)
L u+v—iu+2vv
16 v2 4
ty () = {[:1— -1(utv) J(-C +C )+ ———— uS, +
l+i§v a*if
8
u+v+'u +2u8v+3v
+ vsz} (4-71)
$+in
t32(z) = t41(—z) (4-73)
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31

t3(2) =

t34(z)

(2 =

t33(2) =

where in t..(2)'s
]

Cl(Z)

Sl(z)

CZ(Z)

47

1 _oL.sut2v
1-6- 2 u-v+l 2 v
[[Z +iu-v)](-C,+C.)-
2 1772 N
1+i§v a+if
8
.U —2uv+3v
u-v+l
8
+ VSZ}
§+in
t42(-z)
2
v
62 5 S
[-C.+C +iu(- —=— + —2)]
1772 . .
l+izv a+ip §#in
8
t43(-z)
2
1 2 % V+i(%%' -1
[(1+idv- L . + us
8 64 -1 Ny
l+izv a+if
8
v2 iu
+ 52 (C2+ E"'—l") 52>]
t44(‘2),
cosh[(a+ia)§]
sinh[(a+ia)§]

cosh[(3+im)3]

us

1

+

(4-7k)

(4-71)

(4-7m)

(4-7n)

(4-70)

(4-7p)
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5,(2) = sinh[({+in)z]

a= /1—2“1[—1+V(52’-)2+1]

g = ‘VV°2"V—;[1+!/(§)2+1]
§ = VL1 (B2 a4
n = ~waliw 20 4.

4.3.4 The matrix solution

From the solution given by the Laplace transform method, the equation

a _ =
3% x(z) = B x(z)

has the solution

-1, == -l
x(z,) = L {(s1-B) }z=zz—zlx(zl)°

The solutions for a flat slab with thickness L are thus

i(z L) v’ (z=0)

V.(z=L)| _ = V. (z=0) _
i(z Ly = TW Wt(z=0) (4-8a)
W (z=L) W (z=0)

and
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v’ (2=0) v’ (z=1)
V(z=0)| _ =, |V.(z=L) _
Wz=0)| = T gt (ze) | (4-8b)
W (2=0) W (z=L)

where T(z) = 17 {(sf—ﬁ)-l}z.

4.4 Solution for a Single Layer

. .. ... + o= ot L=
For the convenience of the readers, definitions for quantities V.,V | W  and W

are again listed here. They are

+ + +*
\Y (z,kl,kz) <E (z,kl)E (z,k2)>

- - -k
v (z!kllkz) = <E (zlkl)E (Z,k2)>

+ + -%
W (z,kl,kz) <E (z,kl)E (z,k2)>

- - +*
W (z,kl,kz) = <E (z,kl)E (z,k2)>.

For a single layer of random medium with incident waves E+(z=0) and E_(z=L),
the boundary conditions are stated in Eqgs.(2-13a) and (2-13b). The solutions of the two-
frequency mutual coherence functions of a flat slab of a continuous random medium for the
forward and backward scattered fields due to a single incident field are derived next. The
physical layout is shown in Fig.(4-1).

From Eq.(4-8b):

+ + -
V (z=0) = tll(-L)V (z=L) + tlz(—L)V (z=L) +

+ -
+ tl3(‘L)W (z=L) + tl4(-L)W (z=L) (4-9a)
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- + -
vV (z=0) = t21(—L)V (z=L) + t22(-L)V (z=L) +

-+ -
+ t23("L)W (z=L) + t24(-L)W (z=L). (4-9b)

Applying boundary condition Eq.(2-13b) to Eqgs.(4-9) gives

+ +
V(z=0) |~ popyag = 1 (TBIV (2=L)
Vv (z=0) |, - =t (-L)V" (z=L)
2=0) ly™(z=1)=0 = %21 2=
Therefore
+ _ _ 1 o
V@=L |y (gary=0 T Ty ¢ O
11
t.. (-L)
- + 21 _
V (220) |7 yapy=g = tpp (TLIV (25L) = V' (z=0).
t,,(-L)
11
Assign
+ 1 1
rt = — = (4-10a)
£, (L) Tt (L)
ot (L)t (L)
rr=-2L .12 (4-10b)
£ Wty
Then for the transmitted field at z = L
v(z=1) = <E+(L,kl)E+*(L,k2)> = I (u,v)V (z=0) (4-1la)
and for the backscattered field at z=0
V (2z=0) = <E'(o,kl)E'*(o,k2)> = T (u,v)V (z=0), (4-11b)

where u = (kl+k2)A



<
]

(kl-kz)A

=
]

A(p=0).

The functions l‘+ and T are elements So1 and S11 of the scattering matrix S,

respectively.
The complete solutions for the two-frequency coherence functions are:

1. for u=0 and v=0

l+i-§-v
r'o,v) = (4-12a)
v2 3 V2 3v $+in
7 +(l+l§V - a)c - (E-G- 'l)—'\—;— S
v2 $+in
_ 7 (1-C) + 16 S
r (o,v) = 5 5 (4-12b)
Vil - Poe o 3V 3t
ga TG T gpC T (g DTS
. L
C = cosh[(§+in) K]
. . L
S = sinh[({+in) X]
¢ = V3 [ VG0 aa]
n= vz [1+ VGu)eel]
2. for v=0 (including the case u=v=0)
+ 1
' (u,0) = 5 (4-12c)
1+ ul



3.uz0and v=0

1

+
r (u,v) 5?5757

n

.3
(l+1§v)

2

Y _(Cc.-C.)+

L
64 "1 "2

I v = 50w

where

2

iE—v
2 64

=V
64 1 a+ip 1

u2+9v2 u2
— + iv(

+9v
128

2

iE—v
64

a+if

S+ [1+ igv -

8

2 .
-1)

§+in

Cl(u,v)

Sl(u,v)
Cz(u,v)

Sz(u,v)

o = Va-[-1+/ () 241]

=
]

u? v
“Wosr[14V(5)2+1]

- cosh[(a+iﬁ)§]
. . L
51nh[(a+15)K]
. L

= cosh[(s+1n)K]

= sinh[($+in)§]

2

v
64

]c

2 +

(4-124)

(4-12e)

(4-12£)
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2 , u2+3 2
Va1 (F) 241]

S:
- _oyl uz+3v?, .
n = -willw (=g=—)2+1].

It is seen that for a single layer problem, only t92(z) and t1 (z) are needed since

2
.+ - .. .. . :
W and W are eliminated by application of the boundary conditions. However, for

multi-layer problems, all tij's will be needed to derive the solutions.

It is noted that the above-derived solutions satisfy the energy conservation law,

represented by

+ -

' (u,0) + T (u,0) =1,
since when v=(k1-k9)A(0)=0, the case corresponds to a continuous monochromatic plane
wave input and thus ]‘+ and T represent the power densities of the forward and

backward scattered fields, respectively.

4.5 Conventional PEM Result

For later comparisons, the coherence function of the forward propagating field
calculated by conventional parabolic equation method is derived in this section.

If the backscattering effects are ignored, the equation for the coherence function of

the field is
L9 1 1. 2 ip2 2
{125-2- +(iz - g)v + Z[klA(O)-Zklsz(B)-bsz(O)]+2(kl—k2)}~
<€*(z,k. ,0)E" (z,k = 0
(z, l'Bl) (z, 2122)> = U, (4-13)
where  [p| = |p;-p,]|.

Note that Eq.(4-13) is the two-frequency equivalence of Eq.(1.14) in Reference [3].

The plane wave solution of (4-13) at p=0 is
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. \ (k&) %8
V (z=L) = V (z=0) exp[- ————1L + i(kl-kz)L],
8
or, in the u-v plane
" (u,v) = exp [- = Ry )] (4-14)
pem u,v) = exp 2 (3 iv)]. 1

4.6 Summary of Chapter IV

In this chapter the general solutions linking the quantities V +, Vo, W+, W oat
two planes z=0 and z=L are derived by applying Laplace transform method and are
presented in matrix form(Eqs.(4-8a) and (4-8b)). The expressions of tij's for various u
and v values are given by Eqs.(4-5) through (4-7).

For a single layer and a single incident field the boundary conditions are applied to
derive the two-frequency mutual coherence functions of the transmitted and backscattered
fields as functions of the incident field. These results can be used to solve problems such

as pulse propagation and backscattering.

Since the solutions are given in the form of a transmitting matrix T (L), it is
particularly convenient to extend the solutions to multi-layer problems. In such case the

general solutions are

I+

v (2=0)
|V, (z=0)

W_(z=0)|"

W (z=0)

+
"
=1l
HI
+

(4-15)

TE<<
[
S
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Figure 4-1. Physical Layout of the Problem



CHAPTER V. A CALCULATED EXAMPLE

In this chapter the coherence functions derived in Chapter IV are employed to
calculated the scattering effects of a random slab on a string of rectangular pulses. The
resultant pulses are plotted together with the incident pulse. For computation and plotting,

The University of Michigan Amdah! 5860 computer was employed.

5.1 Basic Formulae

The quantity P(t) = <EE$ > is proportional to the magnitude of the Poynting vector
of a field E(t) and thus is directly linked to the strength of a detected signal. Its value is
given by

™ ®

P() = <E(DE (1)> = [do, [do, E)E (0,)> e

-0 -0

-i (wl—wz )t '

where

’

Bw) = 5= [dt E(t) ™t

Therefore P(t)'s of the scattered fields are

*
P (z=L,t) = <E (L, 1)E" (L,t)>
(] [
At AtX -i(w. ~w )t
_f dwl_fmdw2<E (@DE" (0))>e T F12

=<

® © i (5-1a)
Jaw, [do, v (z=1) e Ho)e))t

-0 -Co

(-] (=] .
[ v, [ aw, T'V"(2=0) e H(@pwy)t

-0 -0

and
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~1

P (2z=0,t) = <E—(0,t)E_*(0,t)>

(<) [ R (5'lb)
= Jdo, Jau, TV (2=0) e Lo eyt

+ . . ..
where V' (z=0) is the two-frequency coherence function of the incident field at z=0.
There are two properties common to all coherence function expressions in Eqs.(4-12)

and (4-14) that are particularly useful in the simplification of the calculations. These are

I'(u,v) r(-u,v) (5-2a)
and
* (5-2b)
F'(u,v) =T (u,-v)

5.2 Fourier Series of the Pulses

For a continuous string of rectangular pulses

. e 22T M <t < nM#l, n=0, *1, £2, ...)
E (z=0) = '
0 (otherwise)

where M>>1 is the period of the string, and N>>1 is the carrier frequency, the
frequency domain expression of the incident field is (notice that the choice of the duration
of a pulse as unity simplifies the calculation considerably without losing any generality

since that is just a scaling in the time domain)

S ¢
. . - sm(ﬁ -N)7# . )
67 (2=0) = = R T - &nw
E (z=0) Mnf—w - exp[:.(M N)7]8(w M)
(ﬁ -N)=w
.. N
wSlnﬁ” igvr
1 n
== z e B(Q-ZW(E +N) ).
-0 n

The coherence function of the incident field is then
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*
v(z=0) = <ﬁ+(z=0,wl)ﬁ+ (220,0,)>

] . N
] o o smﬁrr smﬁn
—2—2 Z y exp(in
T —o—® m n

m-n
M

8w =275 +0))8(0,=2m (g )

si En
1 e Sy
—-2-21(
- n

2
) é(wl—Zn(g +N))a(w2-2n(§ ) +

.. N . _n-1
smﬁn sin—nr .7

1= M M n n-1
t 1L . {e S(wl-Zﬂ(ﬁ +N))6(w2—2w(—ﬁ— +N)) +
T - n n-1
T

M n-1 n
+e é(wl—Zﬂ(—ﬁ— +N))6(02-2ﬂ(ﬁ +N))} o+

.._N . _n-2
Slnﬁﬂ sm—M-n

1 izﬁ n n-2
+ =1L . {e 6(@1—2ﬂ(ﬁ +N))s(w2—2w(—§- +N)) +
7 - n n-2
-i2g n-2 n
+ e 5(01—2ﬂ(—ﬁ— +N))6(w2-2u(ﬁ +N))} o+ oeee o (5-3)

The Fourier series of the scattered power densities, Psc’ can now be derived by
substituting Eq.(5-3) into (5-1), and applying relations (5-2).

Thus,

y2 r¥((1+ L)2R, 0) +

si En
. 1 RV
Psc(t) = - z (

T nN=-= n



. N , _N-m
.1-2t - smﬁﬂ san _

M * 2n-m.— mA
+—SRe{Le z . (e b )l -0
g m=1 = n n-m
where A = ZWf(O) is a dimensionless quantity,

A= % is the carrier wavelength, and
4 -—
I' (wv)and I' (u,v) are given by Egs.(4-12) in Chapter IV.

5.3 The Scattered Pulses

The coherence functions F+(u,v) and I‘—(u,v) derived in Chapter IV are substituted
into Eq.(5-4) to calculate the Fourier coefficients of the forward and backward scattered
pulses. Because of the limited computer time available and the large amount of
calculations required, the accuracy of each Fourier coefficient had to be set for only 10—3;
the carrier frequency N was chosen as 10, and the period M has been chosen as 4. Those
choices pose limits on both the thickness of the slab L and the horizontal correlation, A(0),

of the medium.

A(0) and —If— for all the data sets are listed in Table 5-1.

The parameters Y x

Table 5-1. Parameters Used in the Example

Data Set No. 1 2 3 4 5 6
A(0)/A 0.02 0.02 0.01 0.10 0.002 0.01
L/x 2.5 5.5 11.0 2.5 10.0 10.0

The results are plotted in Figures (5-1) through (5-6). The incident pulse
reconstructed from its Fourier series, i.e., Eq.(5-4) with I'=1, instead of the original
waveform, is plotted in each case. The purpose is to show the influence of the accuracy

and the limited number of harmonics used in the calculation, as well as the Gibb's
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phenomenon.

The computer program used in the calculating and plotting of the pulses is listed in
the Appendix.

In all the figures in this chapter. the incidence starts at t=0 and ends at t=1.

5.3.1 Transmitted pulses

The transmitted pulses are delayed by ¢=—=—-—I:- which is to be expected and
can be seen on Figs.(5-1) through (5-6). After a relatively steep rise due to the effect of
the arrival of the primary waveform, there is a ‘turning point’ from where the magnitude
increases much more gently, which can be explained as the multiple scattering effect. The
Increase turns into an abrupt drop in the peak value at t= 1+%-—§4 when the back edge of
the incident pulse passes the plane z=L. This drop is followed by a gentle decrease in

magnitude. and again, this can be explained as the influence of the multiple scattering

effects. These phenomena are most obvious in Fig.(5-4), representing the result of a severe

A _

Y 0.1).

disturbance (

5.3.2 The returned or backscattered pulses

The pulses plotted in Fig.(5-1) represent the scattering effects of a thin random
slab. The backscattered pulse starts to rise at the moment the incidence hits the slab. It
reaches the turning point at t=27 when the first order backscattered field due to the front
edge of the incident pulse generated by scatterers located near the far edge of the slab
(z=L) arrived at the plane z=0. From then on the pulse continues to rise, but at a much
slower pace, particularly noticeable in Fig.(5-4), an exhibition of higher order scattering
effects. The severe fluctuations of the returned pulse show that for large values of A(0) a
higher accuracy than that used in the computer program (10_3) and more harmonics
should be used in the computation since the exponentials in I'  are fluctuating very
violently.

The returned pulse reaches its maximun vaiue when the back edge of the incident

pulse enters the slab. The magnitude then falls gradually to zero.
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Plots in Figs.(5-2) and (5-3) represent the scattering effects of relatively thick
slabs. When L is large enough so that the incident pulse ends before the first order
backscattered wave caused by the scatterers near z=L arrived at z=0, there is no
flattening in the backscattered pulse's rise; the magnitude increases smoothly until the
entire incident pulse passes the plane z=0, then the gradual fall begins.

Since in the computation the period M was chosen sufficiently large so that before
the arrival of an incident pulse the response of the previous pulses has fallen to practically
zero, the results can be considered to be the response of a single pulse instead of the
periodic string of pulses.

5.3.3 The influence of A(0)

The obvious effects of an increased A(0) are the increased magnitude of and the
energy contained in the returned pulse whereas the same parameters will show some
decreases for the transmitted pulse. In addition, the shapes of the pulses are also
influenced by increased A(0).

Plots in Fig.(5-5) represent a small A(0) case in which the returned pulse shows
three distinctive regions: from t=0 to t=1, a smooth rise; from t=1 (when the incident
pulse ends) to t=2 (when the first order backscattered wave due to the front edge of the
incident pulse caused by scatterers located near z=L arrives at z=0), a graduate drop;
and a steeper drop till t=38 (when the first order backscattered wave due to the back edge
of the incident pulse caused by the same scatterers arrives at the plane z=0). For t>3,
the returned pulse is practically zero. The transmitted pulse shape is almost the same as
that of the incidence.

Plots in Fig.(5-6) represent a slab of the identical thickness but with a more severe

A(0)
A

magnitude does not drop to zero until t=3.5. Note that the transmitted pulse is noticeably

disturbance,

=0.01. The returned pulse now is almost triangular in shape and the

different from the incident pulse.

This behavior can be explained as that for a very weak disturbance (small A(0)), the
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first order scattering effect is predominant in the returned pulse and the zero'th order
effect predominant in the transmitted pulse. As the disturbance of the medium increases
in magnitude (larger A(0) values), the higher order or multiple scattering effects become
more and more important.
5.3.4 Energy conservation property

The energy contained in each pulse is calculated and printed under the plotted pulse
in each figure and also listed in Table 5-2. As the numbers show, the total energy
contained in the transmitted and the backscattered pulses is always equal to the incident
energy. Since the medium is assumed to be lossless(e is real), the solutions obtained obey

the energy conservation law.

Table 5-2. Energy Relations of the Pulses

Data Set No. 1 2 3 4 5 6
Transmitted Energy .663 476 477 .289 .827 .501
Returned Energy 327 512 514 .701 .164 491
Total .990 .988 991 .990 991 .992
Incident Energy .990 .990 .990 .990 .990 .990
Relative Error .00% -.20% .10% .00% .10% .20%

The transmitted and backscattered energies are functions of A(0), L, the incident
pulse period M and the carrier frequency N. A very good estimation suitable for cases that
N>>1 and M>>1(which are almost always true in communications) is to use the
monochromatic plane wave power relations

1

et = ei (5-5a)

1+(n §>2 ACO)L

and
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52 a0
C

e_ = e. ,
r i

1+(n g)z A(0)L

e, is the total incident energy
e is the transmitted energy

e is the returned energy

c is the velocity of lighe in free space.

(5-5b)

The two coefficients in Eqgs.(5-5) are the transmitting and the backscattering

coherence functions for the special case v=0 as given by Egs.(4-12c) and (4-12d),

respectively.

When Egs.(5-5) are used to estimate the energy levels for the examples shown in

Figs.(5-1) through (5-6), the relative error for the transmitted energy ranges from 0.10%

to 0.98%, whereas the error for returned energy is between 0.52% and 1.91%, as shown in

Table 5-3 (the numbers printed under the pulses are calculated by integrating the power

magnitudes against time, thus representing the ‘actual’ energy contained in the pulses). It

is seen that at least for parameters used in examples computed, Egs.(5-5) give quite good

approximation to the energy levels contained in the pulses.

Table 5-3. Accuracy of Egs. (5-5) as Energy Level Estimators

Transmitted Energy

Backscattered Energy

Data
Set No. ‘Actual’ Estimated Error ‘Actual’ Estimated Error
1 .663 .66957 .98% 327 .33042 1.04%
2 476 47947 .72% 512 .52053 1.64%
3 477 47947 .52% 514 .52053 1.25%
4 .289 .28840 -.21% 701 .71160 1.49%
5 .827 .83515 .98% .164 .16485 0.52%
6 501 .50328 .45% .491 .49672 1.15%
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5.3.5 Results of the Traditional PEM
In Figs.(5-7) through (5-9) the transmitted pulses calculated by the traditional
parabolic equation method are plotted along with those calculated by the modified parabolic
equation method formulated in this thesis. The influence of the random slab, which could

) . . . .
be roughly measured by the quantity ﬂ)Z-I—J- is of increasing order in those plots. It is seen

A
A(O)L . o
that for small values of XA the pulse shapes in both cases are quite similar to the
incident pulse. As the value of ﬂg)é increases, the difference in maximum magnitudes

A

becomes larger and larger and the shapes are more and more dissimilar. Notice that the
magnitude calculated by the conventional PEM remain the same, due to the assumption
that the backscattering is negligible.

It can also be seen that the conventional PEM predicts no remaining response after
the primary waveform passed through the slab, whereas the modified PEM results in a
‘spread’ effect, especially for large values of A(}\-OZ)E as presented by Fig.(5-9). Such spread

could affect the detectability of the pulses, and consequently, the error code rate of a digital

system.

5.4 Discussion and Summary

The scattering effects of a random slab on a string of periodic rectangular pulses are
formulated and calculated using the results of Chapter IV. The solutions are compared
with those obtained using the conventional PEM.

The solutions of the modified PEM have been shown to obey the energy conservation
law, and all the results are physically explainable. For weak fluctuations and thin slab
sizes, the results agree with those obtained by the conventional parabolic equation
method. For more severe disturbance and thicker random slab, the modified PEM solutions
are still meaningful whereas the solutions by the conventional PEM are doubtful at best,
suggestng that the modified parabolic equation method is more suitable for those

situations.



Returned Pulse : Maximum Magnitude = 3.59E-01
Total Returned Energy = 3.27E-01

Transmitted Pulse : Maximum Magnitude = 6.68E—01
Total Transmitted Energy = 6.63E-01

Reconstructed Incidence : Magnitude = 1.1E4+00
Total Incident Energy = 9.9E-01

PARAMETERS

A(0) / Wavelength = 0.020 , L / Wavelength = 2.5
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-1. Scattering of a Rectangular Pulse (Data set No.1)
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Returned Pulse : Maximum Magnitude = 5.11E-01
Total Returned Energy = 5.12E-01

Transmitted Pulse : Maximum Magnitude = 4.77E-01
Total Transmitted Energy = 4.76E—01

— -

Reconstructed Incidence : Magnitude = 1.1E+00
Total Incident Energy = 9.9E-01

PARAMETERS

A(0) / Wavelength = 0.020 , L / Wavelength = 5.5
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-2. Scattering of a Rectangular Pulse (Data set No.2)
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Returned Pulse : Maximum Magnitude = 3.40E-01
Total Returned Energy = 5.14E-01

Transmitted Pulse : Maximum Magnitude = 4.47E-01
Total Transmitted Energy = 4.77t£-01

— —

Reconstructed Incidence : Magnitude = 9.9E-01
Total Incident Energy = 9.9E-01

PARAMETERS

A(0) / Wavelength = 0.010 , L / Wavelength = 11.0
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-3. Scattering of a Rectangular Pulse (Data set No.3)
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Returned Pulse : Maximum Magnitude = 8.72E-01
Total Returned Energy = 7.01E-01

Transmitted Pulse : Maximum Magnitude = 3.12E-01
Total Transmitted Energy = 2.89E-01

e\

Reconstructed Incidence : Magnitude = 1.1E4+00
Total Incident Energy = 9.9E-01

PARAMETERS

A(0) / Wavelength = 0.100 , L / Wavelength = 2.5
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-4. Scattering of a Rectangular Pulse (Data set No.4)
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Returned Pulse : Maximum Magnitude = 9.50E-02
Total Returned Energy = 1.64E-01

Transmitted Pulse : Maximum Magnitude = 8.29E-01
Total Transmitted Energy = 8.27E-01

Reconstructed Incidence : Magnitude = 9.9E-01
Total Incident Energy = 9.9E—-01

PARAMETERS

A(0) / Wavelength = 0.002 , L / Wavelength = 10.0
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-5. Scattering of a Rectangular Pulse (Data set No.5)



Returned Pulse : Maximum Magnitude = 3.39E-01
Total Returned Energy = 4.91E-01

Transmitted Pulse : Maximum Magnitude = 4.77E-01
Total Transmitted Energy = 5.01E-01

A A

Reconstructed Incidence : Magnitude = 9.9E-01
Total Incident Energy = 9.9E-01

PARAMETERS

A(0) / Wavelength = 0.010 , L / Wavelength = 10.0
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-6. Scattering of a Rectangular Pulse (Data set No.6)
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By Standard PEM : Maximum Magnitude = 9.97E-01

By Modified PEM : Maximum Magnitude = 6.68E-01

Reconstructed Incidence : Magnitude = 1.1E+00

PARAMETERS

A(0) / Wavelength = 0.020 , L / Wavelength = 2.5
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-7. Transmitted Pulse: comparison (Data set No.1)
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By Standard PEM : Maximum Magnitude = 9.97E—01

By Modified PEM : Maximum Magnitude = 4.77E-01

—_— ~

Reconstructed Incidence : Magnitude = 1.1E+00

PARAMETERS

A(0) / Wavelength = 0.020 , L / Wavelength = 5.5
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-8. Transmitted Pulse: comparison (Data set No.2)
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By Standard PEM : Maximum Magnitude = 9.97E-01

By Modified PEM : Maximum Magnitude = 3.12E-01

N

Reconstructed Incidence : Magnitude = 1.1E+00

PARAMETERS

A(0) / Wavelength = 0.100 , L / Wavelength = 2.5
Carrier Frequency = 10.0 , Period = 4.0
Number of Harmonics Calculated : 200

Figure 5-9. Transmitted Pulse: comparison (Data set No.4)



SUMMARY

The two-frequency coherence functions of a continuous random medium are
formulated using functional analysis technique. The asymptotic solution for a plane wave
incidence is derived and presented in the form of a ‘transmitting matrix’.

For a single flat slab of random medium in free space, the two-frequency mutual
coherence functions of the forward- and backscattered fields are solved by applying the
appropriate boundary conditions. The solutions are shown to be physically meaningful and
compare favorably with the standard parabolic equation method results.

Although the order of approximation is hard to decide, from the comparisons of the
computed results, the modified PEM solutions seem to present a more realistic picture of
the scattering mechanism, and thus are suitable in studies of severe scattering situations,
be they longer propagation distances or larger fluctuations in the medium. Since this
formulation views the forward scattering and the backscattering as a mutually coupled
process, the results not only do appear to be an improvement over the conventional PEM,

but also provide a means to calculate the backscattered power density.
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Listing of the Computer Program Used in Chapter V

PROGRAM PULSE

March 28, 1985
by Hsiao-fei Maa

This program is designed to calculate the scattering
effects of a random slab upon a rectangular pulse
predicted by the Modified Parabolic Equation Method.

The program generates two plots for each data set.
First , the transmitted and backscattered pulses are
plotted along with the incident pulse reconstructed
from its Fourier series expansion, then on the second
plot the transmitted pulses calculated from both
the standard- and the modified parabolic equation
methods are plotted for comparison.

Required input data are :

AK = A(0) / Carrier Wavelength

LK =1L / Carrier Wavelength

M = Period of the rectangular pulse string
N = Carrier frequency

NHAR = Number of harmonics to be eveluated

TMIN,TMAX define the time interval for which
the results are calculated and plotted.
TOL = Tolerance for all the harmonics

Cares must be taken that :

Matrix SI(N1,Nl) be dimensioned no
less than 2M by 2M

TMIN be less than zero in order to show
the front edges of the pulses.

TMAX be chosen carefully. If it is set too
large, resulted pulses may be too narrow on the
plot to show any details, whereas the back edges of
the pulses may not be plotted completely if TMAX is
not large enough.

M be large enough that the influence of the
last pulse died out before the arrival of the
next pulse so that the results can be considered the
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approximation of transcient responses to a single
pulse incidence.

Each data set should be look like :

12345678901234567890123456789012345678901234567890

&DATA AK=,001,LK=5.,NHAR=150,TMAX=2.5,M=5,N=20,
TOL=1.D-3,TMIN=-.3 &END

Running command :

SR Object+*PLOTSYS 5=Datafile 9=Plotfile
Plot command :

SR *CCQUEUE PAR=Plotfile

Plots can be previewed on a graphic terminal
by the following command :

SR NEW:PLOTSEE O=Plotfile

The CPU time required on the Amdahl 5860 computer
is approximately 60 to 100 seconds for each data
set, depending on the parameters used.

IMPLICIT REAL*8(A-H,0-Z,$)

COMPLEX*16 GI,GP,GN,CBO,CBl,CB2,CBI,CBP,CBN,CT,CD1,
& CD2,CD3,CD4,CD5,CPI(201),CPP(201),CPN(201),CPS(201)
REAL*8 L,SI(40,40),PS(201),PP(201),PN(201),
& T(201),PIN(201)

REAL*4 AK,LK,LDA,TMAX,TMIN,RM,RMN

COMMON /GRAPH/PSMAX, PIMAX, PPMAX, PNMAX,EI,EP,EN,
& LK,AK,TMIN, TMAX,NT, JPLOT, M, N, NHAR/CORR/CD1,
& CD2,CD3,CD4,CD5,D1,D2,ANGLE, V2, LDA
NAMELIST/DATA/RK, LK,M, N, NHAR, TMIN, TMAX, TOL

NT=201

JPLOT=0
PI=DARCOS(-1.D0)
ANGLE=65536*PI
GI=DCMPLX(1.D0,0.D0)

READ(5,DATA, END=200)

A=2.DO*PI*AK
L=2.DO*PI*LK
LDA=LK/AK
RM=1./FLOAT(M)
RMN=1./FLOAT(M*N)
PM=PI*RM

MM1=M-1

M2=2*M
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M2M1=M2-1

DT=(TMAX-TMIN) /DFLOAT(NT-1)
DF=RMN*A

A2=2.*A

DF2=2.*DF

DO 1 I=1,M2Ml1
SI(I,M)=PM*DSIN(PM*I)
DO 1 J=1,M2M1
IF(J.NE.M) SI(I,J)=DSIN(PM*I)*DSIN(PM*J)
CONTINUE

Zero'th harmonic term.

X=,25*L*A
BI=.5*PM**2
BP=BI/(1l.+X)
BN=BP*X

J=-1

J=J+1
B0=0.D0
B1=0.DO
B2=0.D0

DO 3 JJ=1,MM1
J=J+1
X1=X*(1.+RMN*J)**2
X2=X*(1.-RMN*J)**2
S=.5*SI(JJ,JJ)/FLOAT(J*J)
B0=B0+2.*S
B1=B1+S*(1./(1l.+X1)+1./(1.+X2))
B2=B2+S*(X1/(1.+X1)+X2/(1.+X2))
CONTINUE
BI=BI+B0
BP=BP+B1l
BN=BN+B2
IF(BO/BI.GT.TOL) GOTO 2

DO 4 I=1,NT
T(I)=TMIN+DT*FLOAT(I-1)
CPI(I)=DCMPLX(BI,0.D0)
CPP(I)=DCMPLX(BP,0.D0)
CPN(I)=DCMPLX(BN,0.D0)
CPS(I)=CPI(I)

CONTINUE

KK=0
DO 11 K=1,NHAR

KK=KK+1

IF(KK.EQ.M2+1) KK=1
JMK=M2-K

IF(JMK.LE.O) JMK=JMK+M2
IF(JMK.LE.0) GOTO 5
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JPK=K
IF(JPK.GT.M2) JPK=JPK-M2
IF(JPK.GT.M2) GOTO 6

CBP=DCMPLX(0.D0,0.D0)
CBN=CBP

CBI=CBP

V=K*DF

U=A2-V

Ul=u

u2=u

Quantities associated with V, for GAMA.

V2=(.125%V)**2
D=DSQRT(16.*V2+1.)
D1=DSQRT(-.5+.5*D)

D2=-DSQRT( .5+.5*D)
CD1=DCMPLX(1.D0Q, .375*V)
CD2=CD1-V2
CD3=DCMPLX(40.*V2,V*(6.*V2-1.))
CD4=DCMPLX(1.D0, .125*V)/16.
CD5=4.*V2*CD1

Coefficient of the K'th harmonic.

J=-1

JC=-1

IF(KK.EQ.M.OR.KK.EQ.M2) GOTO 7
CALL GAMA(GP,GN,U,V)
CBI=SI(KK,M)/FLOAT(K)*GI
CBP=GP*CBI

CBN=GN*CBI

J=J+1

JC=JC+1

IF(JC.EQ.M2) JC=0
CB0O=DCMPLX(0.D0,0.D0)
CB1=DCMPLX(0.D0,0.D0)
CB2=DCMPLX(0.D0,0.D0)

DO 9 JJ=1,MM1

J=J+1

JC=JC+1

JMK=JMK+1

IF(JMK.EQ.M2+1) JMK=1

JPK=JPK+1

IF(JPK.EQ.M2+1) JPK=1

Ul=U1+DF2

U2=U2-DF2

IF((JMK.EQ.M.OR.JMK.EQ.M2) .AND.J.NE.K)

GOTO 8

IF(J.EQ.K) S=SI(JC,M)/FLOAT(J)
IF(J.NE.K) S=SI(JC,JMK)/FLOAT(J*(J-K))



80

CALL GAMA(GP,GN,U1,V)
CB0=CBO+S*GI
CB1=CB1+S*GP
CB2=CB2+S*GN

8 IF(JPK.EQ.M.OR.JPK.EQ.M2) GOTO 9
S=SI(JC,JPK)/FLOAT(J*(J+K))
CALL GAMA(GP,GN,U2,V)
CBO=CBO+S*GI
CB1=CB1+S*GP
CB2=CB2+S*GN

9 CONTINUE

CBI=CBI+CBO
CBP=CBP+CBl
CBN=CBN+CB2

JMK=JMK+1
IF(JMK.EQ.M2+1) JMK=1
JPK=JPK+1
IF(JPK.EQ.M2+1) JPK=1
Ul=Ul+DF2

U2=U2-DF2

IF(CDABS(CBO/CBI).GT.TOL.OR.J.LT.K+2) GOTO 7

DO 10 I=1,NT

CT=CDEXP(DCMPLX(0.D0, (1.-2.*T(I))*PM*K))
CPI(I)=CPI(I)+CBI*CT
CPP(I)=CPP(I)+CBP*CT
CPN(I)=CPN(I)+CBN*CT
CT=CT*CDEXP(LDA*DCMPLX(-8.*V2,V))
CPS(I)=CPS(I)+CBI*CT

10 CONTINUE

11 CONTINUE

CBI=DCMPLX(0.D0,0.D0)
CBP=CBI
CBN=CBI
PIMAX=0.DO0
PPMAX=0.D0
PNMAX=0.D0
PSMAX=0.D0
DO 12 I=1,NT
PIN(I)=CDABS(CPI(I)+DCONJG(CPI(I)))
PP(I)=CDABS(CPP(I)+DCONJG(CPP(I)))
PN(I)=CDABS(CPN(I)+DCONJG(CPN(I)))
PS(I)=CDABS(CPS(I)+DCONJG(CPS(I)))
CBI=CBI+CPI(I)
CBP=CBP+CPP(I)
CBN=CBN+CPN(I)
PIMAX=DMAX (PIMAX,PIN(I))
PPMAX=DMAX (PPMAX, PP(I))
PNMAX=DMAX (PNMAX,PN(I))
PSMAX=DMAX (PSMAX, PS(I))
12 CONTINUE
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Calculate total energy contained in each pulse

CBI=CBI-.5*(CPI(1)+CPI(NT))
CBP=CBP-.5*(CPP(1)+CPP(NT))
CBN=CBN-.5*(CPN(1)+CPN(NT))
EI=DT/PI**2*CDABS(CBI+DCONJG(CBI))
EP=DT/PI**2*CDABS (CBP+DCONJG(CBP))
EN=DT/PI**2*CDABS(CBN+DCONJG(CBN))

Normalize the pulses before plotting.

DO 13 I=1,NT
PIN(I)=PIN(I)/PIMAX
PP(I)=PP(I)/PPMAX
PN(I)=PN(I)/PNMAX
PS(I)=PS{I)/PSMAX

CONTINUE

Calculate the peak values.

PIMAX=PIMAX/PI**2
PPMAX=PPMAX/PI**2
PNMAX=PNMAX/PI**2
PSMAX=PSMAX/PI**2

Plot the calculated pulses.

CALL PLOT(T,PIN,PP,PN,PS)
JPLOT=JPLOT+1
IF(JPLOT.EQ.4) JPLOT=0
IF(JPLOT.EQ.0) CALL PLTEND
GOTO 100

CALL PLTEND

STOP

END

FUNCTION DMAX(D1,D2)

Pick out the variable with
larger absolute value.

IMPLICIT REAL*8(A-H,0-Z,$)
Cl1=DABS(D1)

C2=DABS(D2)

C=Cl

IF(C.LT.C2) C=C2

DMAX=C

RETURN

END

SUBROUTINE PLOT(T,PIN,PP,PN,PS)
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Plot the pulses using the University
of Michigan Plotting System.

REAL*8 T(NT),PP(NT),PN(NT),PIN(NT),PS(NT),

& PIMAX, PNMAX, PPMAX, PSMAX,EI,EP,EN

REAL*4 LK, TMAX,TMIN

LOGICAL TL(10)/'PARAMETERS'/

COMMON /GRAPH/PSMAX, PIMAX, PPMAX, PNMAX,EI,EP,EN,
& LK, AK, TMIN, TMAX,NT, JPLOT,M, N, NHAR

CALL PALPHA('SANSERIF.1l ',0)

XORG=2.
YORG=2.5+FLOAT(JPLOT)*7.8
DX=(TMAX-TMIN)/5.

DY=1.

XT=4,5-.5*PSMLEN(TL, 10, .15)
YT=YORG-1.5

CALL PNUMBR(2.7,YT-.5,.1,NHAR,O.,

& '"Number of Harmonics Calculated : ",JI3*',0)
CALL PNUMBR(2.7,YT-.35,.1,FLOAT(N),O.,
& '"Carrier Frequency = ",JF3.1*',0)
CALL PNUMBR(-0.,-0.,.1,FLOAT(M),0.,

& '", Period = ",JF2.1*',0)

CALL PNUMBR(2.7,YT-.2,.1,AK,0.,

& '"A(0) / Wavelength = ",JF2.3*',0)
CALL PNUMBR(-0.,-0.,.1,LK,O.,

& '", L / Wavelength = ",JF2.1*',0)
CALL PSYM(XT,YT,.15,TL,0.,10,0)

CALL PNUMBR(2.7,YORG-.45,.1,EI,O.,

& '"Total Incident Energy =",WEl.1*',60)

CALL PNUMBR(2.7,YORG-.3,.l1,PIMAX,O0.,

& '"Reconstructed Incidence : Magnitude =",WEl.1*',0)
CALL PLTOFS(TMIN,DX,0.,DY,XORG, YORG)

CALL PLINE(T,PIN,NT,2,0,0,1)

CALL PNUMBR(2.7,YORG+1.55,.1,EP,0.,

& '"Total Transmitted Energy =",WE1l.2*',0)

CALL PNUMBR(2.7,YORG+1.7,.1,PPMAX,O0.,

& '"Transmitted Pulse : Maximum Magnitude =",WE1.2*',0)
CALL PLTOFS(TMIN,DX,0.,DY,XORG,YORG+2.)

CALL PLINE(T,PP,NT,2,0,0,1)

CALL PNUMBR(2.7,YORG+3.55,.1,EN,O.,

& '"Total Returned Energy =",WEl.2*',0)

CALL PNUMBR(2.7,YORG+3.7,.1,PNMAX,O0.,

& '"Returned Pulse : Maximum Magnitude =",WEl.2*',0)
CALL PLTOFS(TMIN,DX,0.,DY,XORG, YORG+4.)

CALL PLINE(T,PN,NT,2,0,0,1)

JPLOT=JPLOT+1
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YORG=2.5+FLOAT(JPLOT)*7.8

YT=YORG-1.5

CALL PNUMBR(2.7,YT-.5,.1,NHAR,O.,

& '"Number of Harmonics Calculated : ",JI3*',0)
CALL PNUMBR(2.7,YT-.35,.1,FLOAT(N),O.,
& '"Carrier Frequency = ",JF3.1*',0)
CALL PNUMBR(-0.,-0.,.1,FLOAT(M),O0.,

& '", Period = ",JF2.1*',0)

CALL PNUMBR(2.7,YT-.2,.1,AK,O0.,

& '"A(0) / Wavelength = ",JF2.3*',0)
CALL PNUMBR(-0.,-0.,.1,LK,O.,

& '", L / Wavelength = ",JF2.1*',0)
CALL PSYM(XT,YT,.15,TL,0.,10,0)

CALL PNUMBR(2.7,Y0ORG-.3,.1,PIMAX,O0.,

& '"Reconstructed Incidence : Magnitude =",WEl.1*',0)
CALL PLTOFS(TMIN,DX,0.,DY,XO0ORG, YORG)

CALL PLINE(T,PIN,NT,2,0,0,1)

CALL PNUMBR(2.7,YORG+1.7,.1,PPMAX,0.,

& '"By Modified PEM : Maximum Magnitude =",WE1l.2*',0)
CALL PLTOFS(TMIN,DX,0.,DY,X0RG,YORG+2.)

CALL PLINE(T,PP,NT,2,0,0,1)

CALL PNUMBR(2.7,YORG+3.7,.1,PSMAX,0.,

& '"By Standard PEM : Maximum Magnitude =",WEl.2*',0)
CALL PLTOFS(TMIN,DX,0.,DY,XORG,YORG+4.)

CALL PLINE(T,PS,NT,2,0,0,1)

RETURN
END

SUBROUTINE GAMA(GP,GN,UK,VK)

Calculate the two-frequency mutual
coherence functions GP and GN for the
forward- and backscattered fields.

UK and VK are inputs of this subroutine.
VK must be non-zero.

IMPLICIT REAL*8(A-H,0-Z,$)

COMPLEX*16 GP,GN,LAl,LA2,El,E2,E3,E4,CDl,
& Cb2,CD3,CD4,CD5,CL1,C2,S1,52,UP, UN, DOWN
REAL*8 IT

REAL*4 LDA

COMMON /CORR/CD1,CD2,CD3,CD4,CD5,
& D1,D2,ANGLE,V2,LDA

U=DABS (UK)

V=DABS (VK)

UsQ=u**2
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D3=DSQRT( (USQ/V+3.*V)**2/64.+1)

ZE=V*DSQRT(-.5+.5*D3)
IT=-V*DSQRT(.5+.5*D3)
LA2=DCMPLX(ZE, IT)

ZE=ZE*LDA

IT=IT*LDA

IF(IT.LT.-ANGLE) IT=IT+ANGLE
IF(IT.LT.-ANGLE) GOTO 1

IF(U.NE.0.DO) GOTO 2
FACT=DEXP(-ZE)
E3=CDEXP(DCMPLX(0.DC, IT))
E4=CDEXP(DCMPLX(-2.*ZE,-IT))
C2=,5*(E3+E4)

S2=,5*(E3-E4)
UN=V2*(FACT-C2)+LA2/16.*S2
DOWN=V2*FACT+CD2*C2-
& LA2*DCMPLX(.1875D0,-1./V)*S2
GOTO 4

CONTINUE

AL=U*D1

BE=U*D2

LA1=DCMPLX(AL,BE)

AL=AL*LDA

BE=BE*LDA

IF(BE.LT.-ANGLE) BE=BE+ANGLE
IF(BE.LT.-ANGLE) GOTO 3

ARG=DMAX(AL, ZE)

FACT=DEXP(-ARG)
E1=CDEXP(DCMPLX(AL-ARG,BE))
E2=CDEXP(DCMPLX(-AL-ARG,-BE))
E3=CDEXP(DCMPLX(ZE-ARG, IT))
E4=CDEXP(DCMPLX (-ZE-ARG,-IT))
Cl=.5*(E1+E2)

S1=.5*(E1-E2)

C2=.5*(E3+E4)

S2=.5*(E3-E4)
UN=V2*(C1-C2)+DCMPLX(0.D0,USQ*V/64.)
& /LA1*S1+(USQ*CD4-CD5)/LA2*S2
DOWN=UN+CD1*C2+CD3/LA2*S2

UP=CD1*FACT

GP=UP/DOWN

GN=UN/DOWN

IF(VK.LT.0.D0O) GP=DCONJG(GP)
IF(VK.LT.0.D0O) GN=DCONJG(GN)

RETURN
END
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