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Chairman: Valdis V. Liepa

In many antenna measurements, a large flat circular
conducting ground plane is a basic part of the measurement
structure. To minimize the effects of edge diffraction, it
is desirable to use as large a ground plane as possible.
But in many instances this is not feasible due to the
constraints imposed by structural limitations, such as
mounting the antenna on a tower, or rotating the antenna
on a pedestal to perform antenna pattern measurements. A
large ground plane can also be cumbersome to use in
laboratory where space is limited.

The task here is to develop a finite size ground
plane for an antenna whose electromagnetic characteristics
resemble those on an infinite ground plane, that is, the
antenna impedance and the radiation patterns approach
those on an infinite ground plane. The basic problem is to
reduce the ground plane ecge diffraction effects over a

wide range of frequencies.
RL-796 = RL-796



Specifically, the problem addressed is that of a monopole
located at the center of a circular ground plane whose
edges are extended using resistive sheet material. The
antenna impedance, radiation patterns, and currents on the
ground plane are studied.

The problem is formulated using the body of
revolution technique and then solved numerically using the
method of moments. Quantities studied for cases with and
without resistive loading are the antenna impedances, the
currents on the monopole and on the ground plane, and the
far field patterns.

To verify the computations, a monopole antenna was
built and evaluated with both metal and resistive ground
planes. The resistive material was made by spraying
resistive paints of different conductivities onto a non-
conductive material base to obtain the desired resistance
variation. Since the resistivity of the sprayed sheet can
not be accurately predetermined, non-destructive methods
are devised to measure local resistivity at both DC and

microwave frequencies.
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CHAPTER I. INTRODUCTION

1.1 Backaround

In most antenna measurements, a highly conducting
flat ground plane is a basic part of the measurement
structure. Experimental work by Meier and Summers [1]
indicates that a small ground plane may have appreciable
effects on the measurements. It is often desirable to reduce
and eliminate as much as possible the effects associated
with the edges of a finite size ground plane and thus obtain
the impedance and radiation characteristics of the antenna
that would approach those when an infinite ground plane or
a large ground plane is used.

The input impedance of a monopole at the center of
a metallic circular ground plane has been studied
experimentally by Meier and Summers [1]. Theoretically
the problem was studied first by Bardeen [2]. He considered
the problem of an antenna placed vertically at the center
of a circular ground plane and obtained an integral equation
for currents on the ground plane. However, he did not solve
the equation excer= for the case when a ground plane is
small in comparison with the wavelength.

Leitner and Spence [3] obtained a solution for this

problem in the form of spheroidal functions. Unfortunately,



however, the series converges very slowly for large radii
ground planes, and thus, for the practical case of a ground
plane greater than ten wavelengths in diameter, this
approach is limited to general applications.

Storer [4,5] has solved the same problem using the
variation method, and so did Fikioris [6]. Although, they
both use a method that involves considerable complexity, no
complete solution is applicable to ground planes of both
small and large diameters.

Theoretical comparison by Thiele and Newhouse [7,8]
using the geometrical theory of diffraction, showed
good agreement with experiments for both the circular
ground plane and an octagonal one. However, as the number
of sides increases, their method for the octagonal ground
plane would not converge to the circular ground plane case
and results based on this approach would be in error.

Green [9] used a different analysis for the variation of
input impedance of the monopole above a circular ground
plane as a function of ground plane radius. For his methed,
the experimental value of the average input impedance had
to be used and this was added to the calculated variations.

Awadalla [10-12] made use of the fictitious edge
current and the principle of magnetic ring current. His
result is in good agreement with experiments for ground
planes down to 0.6) in diameter. When the same technique

is applied to a radiation pattern, it is found that



agreement is fairly good for large diameters, but poor when
the diameters are small.

Recently, Griffin [13] reported on the experimental
study of a monopole on a circular ground plane with
microwave absorbent material placed around the perimeter of
the ground plane. His experiment was based on only one grade
of absorbent material, the same as that used to line
anechoic chambers. Since the wedge-shaped microwave
absorbent material foam on the ground plane near the wedges
attenuates the outward travelling wave as the electric
field and the current pass through, the reflected components,
if such still remain, are also attenuated. In the edge
treatment study presented here, a tapered resistive sheet
1s used instead, where the edge itself is made into an
absorbing structure by changing uniformly the resistivity
from zero ohms per square to a large value (approximately

1000 ohms per square) at the outer edge.

1.2 Outline of the Work

The task presented here is to develop a finite size
ground plane whose electromagnetic characteristics on its
surface and in the far field are approximate to those of an
infinite size ground plane when excited by a monopole at the
center. Specifically, the problem studied here is that of a
monopole located at the center of a circular ground plane

with resistive edge loadina. The effect of such edge



treatment on the impedance and the radiation patterns of the
antenna are of special interest.

The problem is solved numerically by applying the
method of moments to a suitable integral equation formulated
for the surface of revolution. A computer program was
developed to solve the currents on the monopole and the
ground plane, for the antenna impedance, and for the far
field patterns. The resistive sheet boundary condition is
included and by choosing appropriate resistivity variation,
the edge diffraction can be reduced over a wide range of
frequencies. Using resistive paints, resistive sheet
material was made whose resistivity can be varied by
controlling the layers of paint applied and the choice of
the conductivity of the paint. The antenna was then
constructed and measurements were performed.

The concept of the resistive boundary condition and
its inclusion in the formulation [14-17] is discussed in the
remaining section of this chapter. Chapter II is devoted
to a representation of the E-field equations and the method
of moments technique. Chapter III deals with the body of
revolution technique in conjunction with the method of
moments. Integral equations are derived and adapted for
numerical assessment. The making of the resistive sheets
and their resistivity measurements are discussed in Chapter
IV. Chapter V deals with experimental studies in which a

model is built and measurements are made for the antenna



impedance and the far field patterns. The numerical
(computed) results for the current distribution and the
antenna impedance as a function of frequency, antenna
geometry, etc. are presented in Chapter VI along with some
experimental data. A summary and the conclusions are

provided in Chapter VII.

1.3 The Resistive Sheet Boundary Condition

A resistive sheet is characterized by three unique
properties. It is infinitesimally thin, carries only the
electric currents, and these are proportional only to the
tangential component of the (total) electric field.
Mathematically, a resistive sheet is characterized by a

parameter RS as follows

Rg = lim (1.1)
A0 ol
g>®
where
R, is the sheet resistivity (ohms/square)
o} is the conductivity of the material
A is the thickness of the material.

As A approaches to zero, ¢ will be increased in such
a manner that R, :s finite and non-zero in the limit. The
result is an ideaiized (infinitely thin) electric sheet
whose electromagnetic properties are specified by the

single measurable gquantity RS. This definition is applicable



to a non-magnetic, conductive material whose thickness is
small compared to the wavelength ) and the penetration
depth § .

The boundary conditions for an electrically resistive

sheet of resistivity RS are

A + -
nx (E-E) =0 (1.2)
A _+ __ —
n x (H=-H) =3 (1.3)
~ a % _
nx(an)=‘RSJ (1.4)
where
S is a normal unit vector from the sheet
J is the (total) electric current supported by
the sheet.
Next, let
E = tEl (1.5)
t t
Jo = tJ, (1.6)
where
t is tangential unit vector in the sheet.

From Eq.(1.4) the resistive boundary condition on

one side of the sheet becomes



t S t
= i= S, =

Et(R) = Et(R) + Et(R) (1.8)
1,5y _ = =\ _ oS/

Et(R) = RS(R)Jt(R) Et(R) (1.9)

where

Et is the total electric field in the t direction
Ei is the incident field in the t direction
Ei is the scattered field in the t direction, and
Jt is the total current in the t direction.

Equation (1.9) expresses both the incident field
and the scattered field in terms of resistivity R which
need not be constant but can vary with the distance R in

the sheet.



CHAPTER II. THEORETICAL BACKGROUND

2.1 Representation of the Electromagnetic Fields

The total electromagnetic field can be represented
as the sum éf scattered and incident fields. A time harmonic
field with et time variation suppressed is assumed, where
j = /-1 and ¢ is the angular frequency. With the aid of
electric and magnetic scalar potentials [33], the scattered
field can be expressed by

S 1 *

E (R) = -juw A(R) - V&(R) - SV x A (R) (2.1)

|

S X *

-jw A (R) - vo (R) +

T
o]
I

where the vector and scalar potentials are defined as

A(R) = 1y JI4 J(R')G(R,R") ds' (2.3)
A(R)= ¢ [f, J (R'G(R,R') ds' (2.4)
— 1 — — —

¢ (R) = — [f Pe (R")G(R,R") ds' (2.5)

€ S
% 1

¢ (R) = — [f p. (R')G(R,R") ds' (2.6)

€ S



and, they contain the free space Green's function

- jkR

G (R,R'") = —— (2.7)

where

2 %

R=R-TR =[ %+ n'?

- 2nn'cos(¢p-¢') + (z-2")]

The quantities Pe and Py are the electric and the
magnetic charge densities, respectively, and, are related
to the surface currents through the continuity equation

|
p(R") = — [V.J(R")] (2.8)

W

2.2 The Method of Moments

2.2.1 General Procedure

The method of moments [18,19] is a numerical

technique devised to solve the deterministic equation

L(f) = g (2.9)
where L is a linear operator, g is known, and f is to be
determined. Let f be expanded into a series of functions,

f1, f2, f3, f4... in the domain of L as

Eo= Loty (2.10)

where the a, are constants and the fn are called expansion
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functions or basis functions. For exact solutions of f,
Eq.(2.10) would be an infinite summation and the 13

would be required a complete set of basis functions. For
approximate solutions, Eg.(2.10) is usually a finite
summation. Substituting Eg.(2.10) into Eg.(2.9) and using

the linearity property of L, one gets

[ oy L(£) = g (2.11)
n

A set of weighting functions or testing functions, {w1, Yo
w3..} is then defined in the range of operator L. The inner

product of Eq.(2.11) is taken with each W the result is
) a <w_,Lf > = <w_, g> (2.12)
'm=1,2'3..l.
This set of equations can be written in a matrix form as

(1,000, = [g,] (2.13)

where

<w,,Lf.> <w1,Lf > .

[lmn] = <w2,Lf1> <w2,Lf2> . .

(2.14)



"

[a.] = - (2.15)

<w1' g>

Wy, G2 (2.16)

. . . . . -1
If the matrix [lmn] is non-singular, its inverse [lnm]

exists. The a, are then given by

a1 = [1711[g] (2.17)

and the solution for f is given by Eg.(2.10). For a concise
expression of the result, the transposed matrix of f is

defined as

~

[£] = [ £ £q, f3. e e e o] (2.18)

and, Eqg.(2.10) can be written in matrix forms as

f

[£] [a)

[£) 1717 (g ] (2.19)
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This solution may be exact or approximate, depending
upon the choice of fn and W fhe particular choice
fn = W is known as the Galerkin's method (see Kantorovich
and Krylov [20], Jones [21,22]) and is most often used
in application of the method of moments to electromagnetic

problems.

2.2.2 Point Matching

The integration involved in the evaluation of
lon® < ¥p o LE > in Eq.(2.14) is difficult to perform
for problems of practical interest. A simple way to obtain
approximate solutions is to require that Eq.(2.11) be
satisfied at discrete points in the region of interest. This
procedure is called the point-matching method, which is
equivalent to using the Dirac Delta Functions as the testing

functions.

2.2.3 Subsectional Bases

The method of subsections involves the use of basis
function fn' each of which exists only in a subsection in
the domains of f. Then, each an of the expansion function
in EQ.(2.10) affects the approximation of f only over a
subsection of the region of interest. This procedures often
simplifies the generation of the matrix [lmn]. Thus, it is
convenient in our computation to use point matching in

conjunction with subsecticnal bases method.
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2.3 Application of the Method of Moments to Solve the
E-Field Equations

The problem is formulated as follows. Let El denote
the impressed or the incident field and ES the scattered
field due to the currents and charges on the body. Then the
total field E is the sum of the incidént and the scattered

fields, that is to say

E = E + E (2.20)

For a conducting surface S ( R=0 ), the boundary
condition requires that the total tangential component of E
vanishes on S. Hence

i S

Eian = ~ Etan (2.21)

In the format of method of momemts, Eq.(2.21) can also be

written as

L(J) = Etan (2.22)

&
<l
n

(fuA + v¢)tan (2.23)

which follows from Eg.(2.1) and Eq.(2.21).

In Eq.(2.23), L is an integro-differential operator

and a subscript "tan" denotes the tangential component on S.
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A solution of Eq.(2.22) gives the surface current J on S.

Next, let the inner product of two arbitrary

tangential vectors on S be defined by

<F,G6>=J[_ F+G ds (2.24)

A set of expansion functions {Ej} is next defined

for the expansion of currents on S by

Gl
[}
L3
-
)
(]

(2.25)

where Ij are constants to be determined. Because of the
linearity property of L, when Eg.(2.25) is substituted into

Eg.(2.22), it becomes

ZIj L(Jj) = E.n (2.26)
A set of testing function {Wi} is defined, and
an inner product of Eq.(2.26) with each W, is taken.

This results in
) 1j<ﬁi, L3j> = <W.,, E__ > i=1,2,3.... (2.27)
For convenience anc shorter representation, definitions

from the circuit theory are introduced and the network

matrices are defined as
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[Z] = [<Wir L_jj>] (2.28)
_ i

[v] = [<Wi' Etan>] (2.29)

(1] = [Ii] (2.30)

Eg.(2.27) then becomes
[z] [1] = [VI] (2.31)

The excitation matrix [V] is obtained from
Eq.(2.29). It is either an incident field as in the case of
scattering problems or a local source coordinate as in the
case of radiation problems.

In the radiation problem considered here, the term
<W., E___> 1in Eq.(2.29) is replaced by Vi/d’ where V.
is the locally generated voltage applied over a small gap
centered at point i and d is the gap width.

Now [Z] can be considered as a generalized impedance
matrix. The impedance elements of Eg.(2.28) are explicitly

given by

— [ W, . . '
Zi5 = Jrg W (ijj+ vej) ds (2.32)

which follows from equations (2.23) and (2.24).
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Applying the Divergence theorem to the vector Wié on
the surface, the following results
Jfg Vo « W, ds' = “[fg v - Wi ds' (2.33)
and Eq.(2.32) can now be written as

Z.. =ffs (ju) W.o A. - 0.V « W.) ds' (2.34)

Because the gradient of ¢ has been eliminated in
Eq.(2.32), Eg.(2.34) is now in a more convenient form for

numerical evaluation.



CHAPTER III. BODY OF REVOLUTION TECHNIQUES

3.1 Introduction

In this section, the formulation of the integral
equations and the application of method of moments to the
proposed problem are discussed using the body of revolution
techniques.

The body of revolution (BOR) geometry is the
characteristic of many physical structures, such as
rockets, missiles, satellites, raindrops and many types of
biological cells. This method has the advantage of enabling
one to apply the method of moments to three-dimensional
structures which are fairly large with respect to the
wavelength, yet requires only a fraction of the unknowns to
be determined, as compared to a general three-dimensional
method of moments formulation.

Several authors have presented the techniques for
treating problems involving radiation and scattering by
perfectly conducting BOR. Andreasen [23], and, Mautz and
Harrington [24 through 27] have employed the electric field
integral equation (EFIE), whereas, Oshiro, Mitzner [28] and
Uslenghi [29] have used the magnetic field integral equation
(MFIE). Several extensions and refinements of the basic

techniques of these authors have also been developed.

17
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Recently, Glisson and Wilton [30,31] presented techniques
which appear to have alleviated some difficulties previously
encountered by others in the treatment of perfectly
conducting and dielectric bodies of revolution. Their
techniques are being adapted here.

A special case of a body of revolution is a
surface of revolution (SOR). Here, instead of determining
the currents and charges throughout a body, they are
determined on the surface only. The resistive sheet boundary
conditions can thus be applied to the surface of revolution
geometry, which may be closed (such as a spherical shell) or
open (such as a coffee cup).

Any line S revolving about the z axis will generate
a surface of revolution geometry. Thus an antenna geometry
of a monopole located at the center of the circular ground
plane can be generated as a surface of revolution as shown
in Fig.(3.1). Using the method of moments, the currents on
the antenna and on the ground plane, the input impedance,

and the far field patterns can be computed.

3.2 Application of the Method of Moments (MOM)

3.2.1 Evaluation of the MOM Impedance Matrix

Consider a surface S generated by revolving a line
about the z axis. The coordinate system is shown in
Fig.(3.1). Here #n,¢,2z are the usual cylindrical coordinate

variables, and, t is the length variable along the
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Fig. 3.1 A line S Rotated about the Z-Axis Generates
a Monopcle Antenna on the Circular Ground Plane.
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generating curve S. In general, the independent set of

expansion functions of the J(t,¢) on S [30] are defined
- ~ N N ~ N+1 0
Jt) =t [  (r, JIP (") + ¢ J P,(t") (3.
n=1 n=1 ¢
where
T th-y ST S En+y
PR(t") =
0, Otherwise (3.
1, th-p StTOS ot
n ' -
Po(t") =
0, Otherwise (3.
For the problem studied here, there is no ¢ dependence,

hence the second term in Eg.(3.1) involving J, vanishes.

¢

as

and

The charge distribution is obtained from the derivatives of

J, with respect to t (c.f. Eg.(2.8)) and these can be

approximated by

=n _ =n-1
d _ LAl e T dp g
— [J,(t")] = ) — P, (t") (3.4)
dt n=1 tn - tn-1
where
2 2 %
t” thoq | = At = [(/Ln Tongoq) # (zn - z,4) ] (3.5)
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It is assumed that at the edges, the current Jt is zero,
that 1is

o) N+1

=1
mn

=1
m

o
w
N

Since each ty is common to two linear adjoining segments,
1t 1s convenient to approximate the incident field and
the vector potential by their values at t= t Fig.(3.2).

Integration of Eq.(3.2) in the variable t yields

q q g+’

J¢Pq(e) £:0(t)dt = [ t-U(t)dt + [ t-U(t)dt

t t

q-% q

1 A A —

= 5 (Atqtq_% Dtasitqesn ) U(tq)
(3.7)

where U is the vector guantity tested and Eq-% is the

unit vector describing the orientation of linear segments

containing the points tq-1 and tq

The testing functions are defined as

Wolt) = 8 (t) (3.8)

Wy(t) = g,(t) (3.9)
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I"X"‘ ! —=XTT | T~X—~ | X=X~ ~ | "X“l

S T -

N+1

Fig. 3.2 Approxirmating of Generating Arc by Linear
Segments for Strip of Revolution.
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where
1, t =t 3.10
q ( )
51(t) =
0, otherwise
1, t = tq_%
62(t) = (3.11)
0, otherwise

Substituting Egs.(2.4), (2.8) and (2.33) into Eqg.(2.34),

one gets
1 e—ij
Zis = JJgas' [[gaslfuM; T4+ jwe(V'Wi)(V-Jj)] o (3.2)
Note, for body of revolution, in general
N 27
JIgds = [ dat [ xa(t) d¢ (3.13)
0 0

An orthogonal triad of unit vectors ( n, ¢, t ) can
be associated with each coordinate point ( t, ¢ ) where

A A

n, ;, t are defined as follows:

>

A A A

cosy cos¢ X + cosy sing y - siny z (3.14)

3
1]

A

- sing x + cos¢ y (3.15)

- >
1]
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siny cos¢ x + siny sing y + cosy z (3.16)

[
n

where y is the angle between the tangent to the generating
curve t and the z axis, defined to be positive if t

points away from the z axis and negative if t points
towards the z axis. In this coordinate system, the surface
divergence becomes

1T 3 T3

—(nJ, ) + - —(J,)
nat © 0 onap ¢ (3.17)

Ved =
and R becomes

2

1
%

R = {n%+ n'%- 2xn’ cos(¢-¢') + (z-2')%} (3.18)
To obtain the WeJ term in Eq.(3.12), one writes
W, Jj = uy g (3.19)
where p and g represent the permutation of t and 4.
The unit vector dot products, in terms of body
coordinates (;, &, E) are
Ugye u. = sinysiny'cos(¢-¢') + cosycosy' (3.20)
Upgre Uy = -siny'sin(¢-¢") (3.21)
Ugr® Uy = siny sin(¢-¢"') (3.22)
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cos(¢-¢") (3.23)

c
c
n

For a resistive surface in operator form Eg.(1.9)

becomes
"i_. - 3 o o = D!
E= zij [Jt(R )] o+ RS(R ) Jt(R ) (3.24)
where
EL - jkz, [f J(R') GI(R,R') &s'
S
jZO 3 1 9 _ _
- — [/ — — (n" J(R')) G(R,R') ds'
k ot s n' 3t
+ Rs(ﬁ') Et(ﬁ') (3‘25)

It is desirable to express all the quantities of

Eg.(3.25) in terms of local arc coordinates ( t, ¢ ) on

the body surface. Thus, Eq.(3.25) is written

+ Rs(ﬁ') Et(-ﬁ') (3.26)

where



26

G (R,R'") = —m7— (3.27)

and

1
2

- 2nn'cos(p-¢') + (z-2")]

After some manipulation of Eg.(3.26), the impedance matrix

such as Eq.(3.24) can be written as

jkzo '
jkzo _
+ T_" SlnYi+1 Xs(Atj,Yj)[K-‘(ti, ti+1/2; tj)]
k2
o
+ —41; COSYi XC(AtJ'Y])[K(tl'%' tl’ tj)]
kZ
o
+ -4—"- COSYi+1 Xc(Atj,Yj)[K(ti, ti+1/2' t])]
Zo
+ K(t._ ., t.; t. - K(t. ., t.; t.
drkbt, [ i-1 i j+%) ( i-1 i tj—%)]
Zo
- [K(t., t: 47 to) = K(t,, t., .5 t.
4nkAti+1 i i+1 jt+% i i+1 J—%)]
(3.28)
where
ts
Koty to; tj) = [ G (ts,t') at’ (3.29)
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t
2
K (t1, ty tj) = ft Go(tj,t') dt’ (3.30)
1
A (3.31)
G, = [ cos(¢-¢') do'
-m
A (3.32)
G = | do'
° - R
xc(Atj,Yj) = (Atj+1cost+1 bty cost)/Z (3.34)
and i 1is the field point index

j 1is the source point index.

The matrix [Z]ij is the required MOM matrix to be
evaluated. There are eight integrals to be evaluated in
Eg.(3.28), which are basically the integration of the
Green's functions for a given source and observation
points. These integrals are defined in Eq.(3.29)
and Eg.(3.30). Having the impedance matrix {Z]ij and
given the excitation matrix [V], the current matrix [I]
can be computed using the Gaussian elimination method.

The current computed can then be used to evaluate the

antenna impedance and the far field patterns.
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3.2.2 Evaluation of the Antenna Impedance

The input impedance, Z of an antenna is the

in’
impedance presented by the antenna at its terminals.
In computation for the currents on the antenna one

volt (rms) is applied across the gap and the impedance is

determined from the equation
Vin = lin %ip (3.35)

The current Iin is defined as the total current at

the input gap and is related to the current density Ji by

Lin = 2123 (3.36)

Thus, the input impedance of the monopole antenna is

Vin

in
2T ady (3.37)

3.2.3 Evaluation of the Far Field

The scattered far field is an integral over the
surface currents and can be written in the form
e-ij

ds'
R (3.38)

Cal
ol

B - Ayl
]

where

A 1s a constant



29

and
R = |R-R"|
is the distance between a surface point R'

and the far field observation point R.

If the body is finite so that R is much greater than
any of the body dimensions, then
s e KR o —jkﬁ + R
E> = — [[ J(R') e ds'
R s (3.39)
In terms of local arc coordinates ( t, ¢ ) on the body

surface, the dot products applicable to Eg.(3.12) are

given by
Gt' Ge = cosfsinycos¢ - sinpcosy (3.40)
Upt Ug = - cos@sing (3.41)

Then Eq.(3.39) becomes

>

Ei = - [f 3t[cosesinycos¢-sinecosY]ejk(”51n9c°s¢+zcose)ds'
s

o)

(3.42)

Using the integral representation for the Bessel function

J (n) = — [ e 11COSH om4md do

(3.43)
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one can analytically evaluate the ¢ integration in

Eg.(3.43), which results in

A .
Ei = - njtejkzcose[ jcosgsinyd, - sinecosYJO] dt'
R (3.44)
where
Iy = Jm(k151ne)
and JO = the Bessel function of 1st kind, 0Oth order
J1 = the Bessel function of 1st kind, 1st order.

After the currents are evaluated using the method
of moments and the body of revolution technique, it is a
relatively straightforward task to compute the far field
patterns from Eq.(3.44).

Rewriting Eq.(3.38) in matrix form and dotting with
G to obtain a (scalar) transverse component, one gets

the following

juu

E-u-=-Aa— ¢ 4kR17711] (3.45)
4R
where
- . ikzcos® .
(2], = 2nf [ n§ (t)e [cosesiny J,

* jsingcosydy] dt' (3.46)

In Eq.(3.45), A' is a constant and §,(t) are delta functions

defined in Egs.(3.10), (3.711),
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After some manipulation, the impedance matrix can

be written as

[2),= 27 [j3,cosbxg~ J, sinox ] Shitad (3.47)
where

Xg (Bt vy) = (8t L ysiny 4 + At siny )/2

Xe (8t v,) = (Bt qcosy oy + Bt) cosy )/2

with n being the source segment index.

Equation (3.47) requires essentially the evaluation
of the zeroth-order and the first-order Bessel functions of
the first kind. Since the unknown current distribution [I]
is found by solving the MOM impedance matrix [Z]ij of
Eg.(3.28), the far field patterns can be evaluated using

Eq.(3.45) where [Z]n is obtained from Eq.(3.46).



CHAPTER IV. RESISTIVE MATERIALS AND MEASUREMENTS

4,1 Introduction

The effects of edge diffraction can usually be
reduced by adding absorbent materials around the edge,
corrugating the edge or a combination of both. The latter
would probably be more effective. Tapered resistive sheets
are studied here primarily because the approach is new and
it shows a lot of promise. Since the resistive sheets are
not readily available and usually have to be custom made for
a particular application, techniques are developed to make
them in the laboratory, which consists of spraying resistive
paints on plastic or other types of nonconducting base
materials. The conductivity of the paint can be varied by
mixing different paints in various proportions. The
resistivity of the sheet can be controlled by the paint used
and the layers of the paint applied. In this chapter, the
making of resistive sheets is discussed. The properties of
different types of paints are tabulated. The results of
mixing different paints (by weight) and the effects on the
sheet resistivity are plotted. Methods are devised to
measure the resistivities of the sheets at DC and at
microwave freguencies to determine if the resistivity of the

sheets remains constant over the frequency range of interest.

32
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4,2 Resistive Materials

Thin resistive materials can be made by spraying
resistive paints on plastic or paper material (Kimura [32]).
The resistive paints contain finely processed carbon
particles plus a bonding resin and solvent. The resistivity
of the fiﬁished product can be controlled by selecting
appropriate ratios of different types of paints to be mixed
(Fig.(4.4) through Fig.(4.6)), the number and thickness of
the coatings applied (Fig.(4.1) and Fig.(4.2)), and the
drying time (type of solvent and temperature) as well as
the type of the base material (Fig.(4.3)).

For our study, lacquer base paints were chosen
because they are easier to mix and can be redissolved even
after drying. Also, lacquer thinner is readily available
and can be used to clean the spraying equipment.

The paints used were Electrodag®109, 110, 415 and 502.
Their properties are summarized in Table (4.1). These
paints can be directly applied by brush, dip or spray
methods. The latter requires dilution with solvent. An air-
brush was used to produce smooth and uniform coatings (c.f.
Fig.(4.7)). To obtain the required spray consistency and
eventual sheet material resistivity requires a lot of

patience and practice. Paint thickness, air pressure,

Electrodag® is the trademark of Acheson Colloid Company,
Port Huron, Michigan. 48060
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*
Paint Pigment Density | Solvent |Resistance
Type Ohms/sq.
Electrodag| Graphite 1.025 Lacquer Less than
109 Rg/L thinner 30
Electrodag| Graphite 0.98 Lacquer 1.5-2.5K
110 Kg/L thinner
Electrodag| Silver 1.7 Lacquer | Less than
415 Kg/2 thinner 0.1
Electrodag| Graphite 0.82 Lacquer | Less than
502 Kg/L thinner 250
*¥0.001 inch Coating
Table 4.1 The Properties of Paints Used.
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Resistivity (ohms/square)

1600

1200

800 [

400 |-

Number of Coatings

Fig. 4.1 Resistivity vs. Number of Coatings of
Electrodag 110; Paper Base.
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Resistivity (ohms/square)

25

20

15

10

Number of Coatings

Fig. 4.2 Resistivity vs. Number of Coatings of
Electrcdag 109; Paper Base.

10
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Resistivity (ohms/square)

6000
0 Plastic
& Paper
4000
2000 L
l I l l
0
1 2 3 4 5 6

Number of Coatings

Fig. 4.3 Effect of Base Material on Resistivity;
Electrcdag 502.
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Resistivity (ohms/square)

4000

3000 |-

2000 1=

1000

0 | | || |

100% 90% 80% 70% 60% 50% (110)
0% 10% 20% 30% 40% 50% (502)

Mixture Ratio by Weight

Fig. 4.4 Resistivity vs. Mixture Ratio of Electrodag
110 & 502; Plastic Base, 2 coats.
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Resistivity (ohms/sgquare)

250
200
150
00
501
C
90% 80% 70% 6C% 50% (110}
0% 20% 30% 40% 50% (109)

Mixture Ratio by Weight

Fig. 4.5 Resistivity vs. Mixture Ratio of Electrodag
110 & 109; Plastic Base, 2 coats.
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Resistivity (ohms/square)

4000

3000 7

2000 [

1000

0 2 4 6 8 10

Number of Coatings

Fig. 4.6 Resistivity vs. Number of Coatings of Electrodag
109 & 572 (1:4 Ratio by weight); Plastic Base.
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the spraying distance from the brush to the sample, and the
speed-of-hand motion all have significant effect on the
final resistivity.

Thus, by a combination of the paints and the
coatings applied, the resistivity of the material can be
controlled. For the actual ground plane model, where
resistivities were needed to vary from 0 to 1000 ohms/square,
Electrodag 109 was first used primarily because of its low
resistivity, then a mixture of Electrodag 109 and 502 (ratio
of 1:4, mixed by weight) was applied, see Table (5.1).

In practice, it is simpler to measure liquids by
volume, such as with a 10 cc syringe that was used. With
the paints accurately weighed (they all came in the quart
cans) and their densities calculated, the exact ratio for
mixing by volume was obtained for the given ratio by
weight. After the paints were mixed, a lacquer thinner
was added to faciliate the spraying process with the
air-brush.

Depending on the drying time of different paints,
it usually takes at least three to four days for the paints
~to be completely dried and stablized to obtain accurate

resistivity measur~ments.

4.3 Measurement of the Resistivity of the Sample

The resistance of the painted sample can be

measured at DC and microwave frequencies. There are several
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Fig. 4.7 Spraying of Test Samples Using an Air-Brush
Method.
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ways of making DC measurements. The most common approach
(direct method) is to use a rectangular sample painted with
silver electrodes on opposite sides, and measure the
resistance with a multimeter (ohmmeter). A two-wire line is
the other DC method used. A more accurate measurement of
the effective resistivity can be obtained at frequency of
operation using an open-ended coaxial sample holder and a

network analyzer.

4.,3,1 DC Measurements

(a) Direct Method

A resistive sample is cut into rectangular patches,
then the opposite edges painted with silver paint
(Electrodag 415) to provide the edge electrodes. After
drying, the resistance of the sample is measured by an
ohmmeter as shown in Fig.(4.8). The resistance R_ (ohms)

and the sheet resistivity R (ohms/sqg.) of the sample are

related by
n
R = — R
s N m (4.1)
or
W
R, = — R
S /4 m (4.2)
where
N = number of square cells in series

o}
]

number of square cells in parallel

=
n

width of the sample
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Ohmmeter

Input

) S

1 \J
\ XResistive\x\
W < Silver
\\-L \\\ Sheet \Q}\ Electrodes

\‘_ 1 .\

Fig. 4.8 DC Measurement of Sample Using Direct Method.
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£ = length of the sample

(b) Coaxial Transmission Lines and Two-Wire Lines

The resistivity of a resistive sheet can also be
measured by using a coaxial line or two-wire line geometry
electrodes. A two-wire line is connecfed to an ohmmeter and
is placed on the sample to be measured as shown in Fig.(4.9).
The relation of sheet resistivity R (ohms/sg.) to the
measured resistance R (ohms) is obtained next.

The geometry of the problem is a planar one (all
fields lie in the sheet) and the pertinent variables are
the current density and the electric field within the sample.
One can visualize this as a section of a coaxial line filled
with conductive dielectric whose length apprbaches to zero
in the limit. Thus, we start with Laplace's equation in

cylindrical coordinates

Ve = 0 (4.3)

where ¢ is the electric potential.
Since there is no variation in the z or ¢ directions

Eg.(4.3) becomes

n dx dn (4.4)

and its solution is
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Ohmmeter
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Two-Wire Line
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# Resistive
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Fig. 4.9 DC Measurement of Sample Using Two-Wire Line.
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a (4.5)

where a and b are the inner and outer radii respectively,
and V is the voltage applied, (see Fig.(4.10a)). The

electric field intensity is

00 \Y
E = - e—— = b
. alnl3) (4.6)
Next define sheet resistivity R¢
1
RS = lim
A0 o A
0-»>®
where
o] is the conductivity
A is the thickness.
\Y
and, R, = — = Resistance measured in DC.
I
Starting with resistive sheet boundary condition from
Eq.(1.7), we have
E = RS J (4.7)
I = 2mad (4.8)
21hE
I = (4.9)
R
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(a) Coaxial Line

%d

Y
[a?
o

(b) Two-Wire Line

Fig. 4.10 Dimensions of Probe Geometries;
(a) Coaxial Line, (b) Two-Wire Line.
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Using Egs.(4.6), (4.7) and (4.9), one then obtains

\Y _ IRS
5 =
hln(g) 2Th
vV 21
R = —— M
S b
I ln(g)
2T
R = R
s m ln(g)
a

Similarly, for the two-wire line, from Ramo,

Whinnery and Van Duzer [33], we have

V B
(0] =
2 o
90 \'23
E = -— =
X X 20,
2 1 E
1 = X
Rs £

where

(x - a)%+ y2
B = 1n[ PRV R y2 ]
X - a X + a
¢ - ln[(x - a)“+ y2 - (x + a)2+ y2]

(4.

(4.

.10)

11)

.12)

.13)

14)

.15)
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Equating Eq.(4.14) and Eq.(4.15), one obtains

\Y T
R, = — —
S I« (4.16)
thus,
i
R.= R
S m D D,2 %
In[g + 1@ - 137 1] (4.17)
D = Distance between the center of the two-wire
line.
d = Diameter of the two-wire line, (see Fig.(4.10b)).

The sheet resistivity R, can be measured using
two-wire and coaxial geometry probes. When these probes are
brought in contact with the resistive sheet, the resistance
measurments are related to the sheet resistivities via
Eq.(4.17) and Eq.(4.12), respectively. For both probe
designs, the resistance measurements were found to vary
significantly from one measurement to another, even when
measured at the same point. This is a result of non-total
contact of the sheet with the probe, and, indeed, Eg.(4.17)
and Eq.(4.12) show that the resistivity measured is a
contact geometry sensitive. Various approaches such as
carefully polishing the probe tips to make them flat or
varying the pressure applied did not alleviate the problem.
The only alternative was to make a lot of measurements, and

to average them.
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Two sizes of two-wire probes were used and with each
probe twenty measurements were taken for each of the five
samples studied. Table (4.2) shows the averaged results
which are compared to the values obtained by the direct
measurement. Note, the deviations are from -12.59 to 32.75
percent from the direct measurement values.

Measurements were also tried using the coaxial line
probe, but here, the measurement variations were even
greater, attributed to the fact that a uniform contact is
difficult to achieve with the circular electrodes. Hence,
no further measurements were made with this probe, nor are

they reported herein.

4,3.2 AC Measurements

Even though the coaxial probe method does not work
well at DC, a similar technique works well at microwave
frequencies (AC). This can be explained by the fact that
the small non-contact spacing that gave errors at DC, has
capacitance that at AC for all practical purposes provides
a short. An important fact is that this is a non-destructive
measurement technique, and can provide resistivities in the
frequency range of interest.

The concep: is relatively simple. An open-ended
coaxial transmission line provides an almost perfect open
circuit, except for a small stray capacitance. If a

resistive sheet is placed against the end, the impedance
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Resistivity (ohms/square)
Two-Wire Line Percentage
Direct
Avg. of 20 Measurements Error
Method|D= 0.088 cm|D= 0.049 cm|D= 0.088 cm|D= 0.049 cm
d= 0.032 cm|d= 0.036 cm|d= 0.032 cm|d= 0.036 cm
3123 3384 2790 8.36 -10.6
2126 2444 2200 14.68 3.48
1215 1600 1062 31.68 -12.59
504 564 480 11.90 -4.76
58 77 66 32.75 13.70

Table 4.2 Comparison of Resistivity Values Obtained
Using DC Measurements.
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seen would then be due to the resistance plus the stray
capacitance in parallel as shown in Fig.(4.11).

The Hewlett Packard 8745A S-parameter test set with
a model HP 8410A network analyzer was used. A 5 cm long,
7 mm air-line was attached to the test port and served as
the probe. To make the reflection measurements - switch S11
was on. For calibration, a shunt was connected and the test
channel gain and phase offset adjusted for zero dB amplitude
and 180 degrees phase readings, respectively. With the short
removed, the resistive sheet to be measured was then placed
against the open-ended coaxial line, and pushed firmly with
a styrofoam block. The amplitude and phase of parameter Sq4
which is also known as (voltage) reflection coefficient was
then recorded.

The parameter S, is directly related to the

complex impedance of the load by

11

o 11 (4.18)

where
Z, is the characteristic impedance of the coaxial

line probe and for this setup Zy = 50 ohms.

The expression relating measured resistance R
at DC and sheet resistivity R, for a coaxial line geometry

still applies, and Eg.(%4.12) becomes
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Styrofoam Block

S i
Network Parameter : Apply slight
> =] +— pressure
Analyzer Test —
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Resistive |
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zaﬂ
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Line Styrofoam
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Generatér

Fig. 4.11 Equipment Block Diagram; (a) AC Measurement of
Sample ‘’sing a Network Analyzer, (b) Equivalent

Circuit.
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wlol 2

1In(3) (4.19)

where the radii a and b for the 7 mm line are 7.01 mm and
3.05 mm, fespectively.

Table (4.3) shows the comparison between the DC
and AC measurements for the eight samples at three different
frequencies (1000 MHz, 1500 MHz and 2000 MHz). As observed,
the resistivity (ohms/sg.) of the sample does not change
significantly with frequency (or measurement). A variation of
5 to 10 percent is an acceptable result. A small capacitive
component is also measured and varies from 0.02 pF to 0.08
pF for the frequencies measured (see Table (4.4)). This
capacitance in part, is attributed to the outside fringing
fields of the coaxial line and, in part, to the resistive
paint and the base material used. However, the capacitance
does not significantly influence the resistivity measurement
of the sheets. As shown, the resistivity of the resistive

sheet remains relatively constant from DC to 2 GHz.
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Resistivity for various
Resistivity Frequencies (MHz) Percent
, AC AVG
DC Diff.
(ohms/sq.) 1000 1500 2000
3123 3078 3038 3188 3101 -0.73
2627 2579 2651 2500 2577 -1.90
2126 2166 2036 2220 2140 0.65
1215 1299 1286 1280 1288 6.00
504 539 493 507 513 1.78
137 153 135 140 143 4,37
58 64.4 64 58 62 6.89
12 11.9 11.5 10.86 11.4 -5.00

Table 4.3 Comparison of AC and DC Measurements.
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Resistivity| Capacitance (pF) for various Average
v Frequencies (MHz) capacitance
DC value
(ohms/sqg.) 1000 1500 2000 (pF)
3100 0.0448 0.0388 0.0249 0.0361
2600 0.0851 0.0779 0.0451 0.0683
2100 0.0445 0.0296 0.0496 0.0412
1200 0.0645 0.0512 0.0428 0.0528
500 0.0489 0.0452 0.0331 0.0424
140 0.0615 0.0509 0.0573 0.0565
60 0.0226 0.0319 0.0133 0.0226
12 0.0671 0.0842 0.0735 0.0749

Table 4.4 Comparison of Shunt Capacitance at Different

Frequencies.




CHAPTER V. EXPERIMENTAL ANTENNA MODEL

5.1 Introduction

The design and construction of resistive ground
planes, monopole and the measurements are presented in this
section,

It has been shown by Senior and Liepa [16] that
a tapered resistivity extension applied to a metal edge
can drastically reduce its backscattering. The resistivity
should vary from a low value (= 0 ohm/sg.) adjoining the
metal edge to a large value (= 1000 ohms/sq.) at the outer
edge. A quadratic resistivity taper that follows t2 form,
where t is the distance measured from the edge adjoining
the metal, is near optimum and was selected for use here.
As shown in [16] the width of this taper should be 0.75
wavelength or wider to be effective.

Using these design criteria, an edge treatment was
chosen and the model constructed. Besides the resistive
ground plane model, a similar metal ground plane of the same
size and another large metal ground plane which was used to
simulate an "infirite" ground plane were constructed.

Measurements of antenna impedance and radiation
patterns were made on these three models. The results are

consistent with a simple reflection model concept. The

58
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outward travelling wave on the ground plane is reflected by
the edge of the ground plane to produce an inward wave of
lower amplitude. Resistive material near the edge attenuates
the outward travelling wave as well as the reflected wave.
The antenna impedance curve of a finite ground plane with
resistive edge appears to be very close to that of a large
ground plane of five wavelengths in radius which can be
considered, for all practical purposes, as an infinite
ground plane, because the error in antenna impedance is only
three percent (see Storer [4]).

5.2 Construction of the Circular Ground Plane with
Resistive Edge Loading

The resistive coatings can be made in the
laboratory by appropriately blending conductive paints and
spraying on a nonconductive base. This was presented in
Chapter 1V. A plastic sheet of 0.127 cm thick was chosen
for the base material and a disc of twelve centimeters in
radius was cut.

Table (5.1) shows the proposed resistivity variation
for the ground plane. Right at the base, from zero to three
centimeters radius, the resistivity is zero which then
proceeds to 1350 o~hms/square in eleven steps. One can
visualize this re istivity as being applied in bands using
different paint mixtures and number of coatings as determined
in Chapter IV. 1In practice this was accomplished by using a

series of masks with circular holes cut from three to nine
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Resistivity|Distance from center |Number of| Paints used
(ohms/sg.) (cm) Coatings

: 3 - 3.5 8 Elec%ggdag

5 3.5 - 4 6 Elec%ggdag

. L ~ 45 4 Elec%ggdag

20 4.5 - 5 2 Elec?ggdag
100 5 - 6 7 1%%2%55023?T4
150 6 - 7 6 1§é§§85°fa?=4
175 7 - 8 5 1gé§gggoga?:4
250 8 - 9 4 1§éZ§B§°fa?:4
380 9 - 10 3 |103as02 < gu4
700 0 -1 2 1%%2255033?:4
1350 "= 12 1 1096505 %

* By weight
Table 5.1 Number ¢ Coatings and Mixtures Used in Preparing

the Actu21 Model.
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centimeters in radius. The resistivity within the unmasked
region is controlled by the number of coatings applied. The
portion of the band that is coated most, i.e., the central
region, has the lowest resistivity. Figure (5.1) shows the
actual painting of the material.

The paint was sprayed with an air-brush onto the
model which was placed on a phonograph turntable rotated at
16 rpm, Fig.(5.1). To get a consistent deposition or spray,
it is sprayed slower at the outer edge and faster at the
center. After the first band was sprayed, a new mask of
larger radius was laid on the model to cover the portion
that was not yet coated. Thus, by repeating the same process
with nine different radii masks, a tapered resistivity
variation on the circular model was obtained.

After painting and letting it dry for two to three
days, the resistivity of the resistive disc was measured
using the AC method, where the sheet was brought against
an open end of the coaxial line and its reflectivity was
measured, as discussed in Chapter IV. The measurements were
made at 2500 MHz and the results are shown in Fig.(5.2).
Note, the resistivity variation is parabolic and follows

closely to the prcoosed design given in Table (5.1).

5.3 Antenna Impedance Measurements

To provide a means of mounting the monopole on the

resistive ground plane, a 3 cm metal disc was mounted on top
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Fig, 5.1 Making of Circular Resistive Sheet Using an
Air-Brush and a Phonograph Turntable.
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Distance from Center of Monopole (cm)

Fig. 5.2 Resistivity vs. Distance from Center of Monopole
Measured Using AC Method.
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of the painted surface at the center to which a rectangular
flange mount SMA connector was attached. To assure a good
electrical as well as mechanical continuity between the
metal edge and the resistive material, a lacquer-based
silver paint was used (c.f. Fig.(5.3)). The dimensions of
the resistive ground plane and the monopole are given in
Fig.(5.4). The monopole was made of silver-plated copper
wire, 2.68 cm high and 0.048 cm in radius.

A network analyzer was used to measure the antenna
impedance and was set up as shown in Fig.(5.5). A 20 cm air-
line extension plus a 7mm-to-SMA adaptor were used to connect
the antenna to the S-parameter test set. Figure (5.6) to
Fig.(5.8) show photographs of the setup with the resistive
(12 cm radius), metallic (12 cm radius), and metallic large
ground plane (60 cm radius), respectively. Where needed,
styrofoam blocks were used to support the antenna. For
calibration of the network analyzer, a small circular copper
tape disc was placed over the monopole, thus shorting it at
its base to the ground. After each calibration, the copper
tape was removed and the reflection coefficient S11 was
measured. The impedance of the monopole was then evaluated
using Eq.(4.18). Identical procedures were repeated for
different frequencies and different models.

Figure (5.9) shows the impedance measurements for
the monopole antenna with three different ground planes at

five different frequencies. In general, the impedance has
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Fig. 5.3 Photog::ph Showing the Contacts between the
Ground ~lane and the Resistive Sheet, the
Ground Plane and the Monopole Antenna.
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Fig. 5.4 Dimensions of the Actual Model.
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Fig. 5.5 Antenna Impedance Measurement Setup.
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Fig. 5.6 Measurement of Impedance of the Monopole Mounted
on a Firite Size Ground Plane With Resistive
Sheet ¢of Radius 12 cm.
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5.7

Measurement of Impedance of the Monopole Mounted
on a Fi:ite Size Ground Plane of Radius 12 cm.
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Fig. 5.8 Measurement of Impedance of the Monopole Mounted
on a Large Ground Plane of Radius 60 cm.
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similar behavior for all three ground planes, mainly

because the antenna impedance is dictated more by the
monopole height than by the ground plane. The monopole height
is 2.68 cm and at 2606 MHz where the reactive component is
zero (resonant condition), the equivalent antenna height is
0.233 wavelength. At 2500 MHz, the real part of the antenna
impedance is 37.8 ohms with the (finite) metal ground plane,
33.1 ohms with the large metal ground plane, and 32.5 ohms
with the resistive ground plane. Note, the antenna on the
resistive ground plane has an impedance very close to that
of the large ground plane model not only at 2500 MHz but
throughout the freguency range measured. Table (5.2) gives
the numerical values of the measured impedance so that more

accurate assessments can be made if needed.

5.4 Far Field Measurements

For the far field pattern measurements, both the E
and H-plane field patterns were measured. The measurements
were made in a relatively small antenna pattern range.
There, a turntable provided a means of rotating the tested
antenna about its center of radiation. The antenna under
test was used as the receiving antenna. Attached to the
antenna was a crystal detector, the output of which was fed
into the pen amplifier of the antenna pattern recorder. The
received signals as a function of test antenna rotation were

recorded. For the H-plane pattern measurements, the monopole
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Resistance (R) and Reactance (X)
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Finite GP w/r A ¢
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Fregquency MHz

Fig. 5.9 Measured Monopole Impedance for Various Ground
Planes.
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Finite GP with

Frequency Finite GP resistive Large GP
(MHz) sheet
1875 7.2 - 4 100 8.4 - 4 73 10.8 - § 77
2000 10.1 - § 90 12.8 - j 58 14 - 4 62
2500 37.8 - § 5 32.5 - § 8.8 33.1 - 4§ 8.5
3250 119 + 4 36 97.5 + 4 40 93.1 + 4 52
3750 208 + 4 214 192 + § 170 194 + § 187

Monopole Height : 2.68 cm

Radius - Finite Ground Plane : 12 cm

Radius - Finite Ground Plane with Resistive Sheet : 12 cm

Radius - Large Ground Plane : 60 cm

Table 5.2 Compe-ison of Impedance for a Monopole with

Different Ground Planes.
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was mounted vertically so that when it was rotated in the
horizontal plane, and the H-plane pattern was recorded.
Conversely, the antenna was mounted on a side so that the
monopole was horizontal and when rotated in the horizontal
plane the E-plane pattern was obtained.

A waveguide horn antenna was used at the transmitter.
The separation distance between the transmitting antenna and
the receiving antenna should be large enough to insure that
the far field patterns are being measured. For this, the
separation distance should be equal to or greater than
2 DZ/A , where D is the maximum aperture dimension involved
in either transmitting or receiving antenna. In this study
for the test antenna, the ground plane was treated as part
of the antenna, and the far field requirements were met in
the measurements.

To avoid errors due to reflections, radar absorbing
material whenever appropriate was placed around the tested
antenna. A block diagram of equipment used is shown in
Fig.(5.10).

The measurement frequencies used are 2.25 GHz,

2.5 GHz and 2.75 GHz. The measurements were made first

with the monopole antenna section (consisting of the 2.68 cm
monopole, SMA connector and the 3 cm radius metal disc)
mounted on the resistive ground plane. Then the section was
transferred and mounted on the same size metal ground plane

and the far field patterns were measured. No measurements
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Fig. 5.10 Block Diagram for Measuring the Far Field

Patterns
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were made with the large 60 cm radius ground plane since
such size could not be accommodated in the small chamber.
Figure (5.11) and Fig.(5.12) show the mounting arrangement
of the resistive antenna for the H-plane and the E-plane
measurements, respectively. Styrofoam blocks and masking
tape were used to support the antenna on the turntable.

The recorded patterns are shown in Fig.(5.13)
through Fig.(5.15) for 2.25 GHz, 2.5 GHz and 2.75 GHz,
respectively. The H-field patterns are concentric circles,
the larger circle is for the monopole on the finite ground
plane (12 cm in radius), and the smaller circle is for the
monopole on the resistive finite ground plane.

The E-field patterns are similar to those of a
monopole on an infinite ground plane but below (or spilling
over) the horizontal axis. The side lobes are very dominant
for the monopole antenna on the metal ground plane. The
lobes do not exist for the monopole antenna with the
resistive ground plane because the effects of edge

diffraction have been minimized by the resistive treatment.
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oy rresx

Fig. 5.11 Test Antenna Placement for Measuring the
H-Field Pattern.
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Fig. 5.12 Test Antenna Placement for Measuring the
E-Field Pattern.
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Fig., 5.13 Measured Far Field Patterns at 2.25 GHz.
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Fig. 5.14 Measured Far Field Patterns at 2.50 GHz.



81

H PLANE
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Fig. 5.15 Measured Far Field Patterns at 2.75 GHz.



CHAPTER VI. NUMERICAL STUDIES

6.1 Introduction

The best test of a computer program is to compare the
(computed) numerical results with the experimental data. In
this chapter a computer program is discussed that was
developed to solve the electromagnetic problem of a monopole
located at the center of a circular ground plane that can be
metallic and/or resistive. The program computes the antenna
currents on the monopole as well as on the ground plane, the
far field patterns and the antenna impedance. The description
of the program is discussed and numerical results relative to

experimental data are presented.

6.2 Program Description

The program is called RW.PROJECT which is based on
Egs.(3.28) through (3.47) to solve the current distribution
on the monopole and on the ground plane, as well as the far
field. The method of integration used in evaluating the
integrals of Green's function in the ¢ direction is the
four-point Simpson integration. Special attention is given
when the observation point falls within the source segment.
Detailed analytical evaluation of such a segment is given

in Appendix B.

82
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The FORTRAN source program consists of 1454 lines
of statements which include the main program and eleven
subroutines.

The structure of the program is shown in Fig.(6.1).
The entire simulation process is controlled by the routine
"PROCES". It governs four important steps, which are :

1) Initialization, 2) Partition, 3) Computation, and 4)

Post-processing.

6.2.1 Initialization

Subroutine INITAL

This subroutine is used to initialize all the
variables and the constants used in the computation process.
Constants such as pi (m), imaginary number (4), mu (u), the
conversion of degrees to radian (DTR), are defined. The
variables SOUMAX, OBSMAX, corresponding to the maximum
numbers of source points and observation points respectively,
are known as programming parameters and are used to control
the programming arrays. Variables such as wavelength, the
beginning angle (THETA1) and ending angle (THETA2) and its
increments (INC) for the far field computation are read.
Other variables are used for logic control function, for
example, the far field index (FARIDX) which controls if the
the measurement of far field is necessary. The resistive

segments are also determired in this subroutine.
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Flow chart with the top-down approach :

SEGMENT
(LINE)

Fig. 6.1

DISTAN GREENS

MULTPY

Structu:e of the Simulation Program..
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6.2.2 Partition

(a) Subroutine READER

As the name implies, this subroutine reads all the
input data, such as the beginning and the ending segments,
voltage and impedance associated with each segment and the
curve type (a line or a curve) and the index to calculate
the variation of resistivity in each region in a parabolic
manner. Since every segment must be defined continuously,
it is also used to check for the discontinuous segments by

giving an error message if such occur.

(b) Subroutine SLINE

This subroutine places the observation points, the
source points and impedance associated with each segment
in an array. The segments are partitioned in the way shown
in Fig.(6.2), and are divided in such a manner that there
are at least twelve points per wavelength. For example, if
there are three segments, each has to be divided into £,m,n
number of cells, according to a new way of partition. The
beginning segment is divided in (£ + 1/2) equal divisions.
The middle segment is divided into m divisions with the
distance between .ne cells at the end being one half the
length of that on the middle. The end segment is also divided
into (n + 1/2) eqgual divisions. This kind of partition has

the advantage since the spacing between the two transition
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. d da'... a"
---X---X---X---X---|--X--K--X--|-----X-----X-----K-----
A B o D
Segment 1 Segment 2 Segment 3

(a)
e e e' e' e" e"
2 2 2
--=-X-=-=-X--=-X--|--X----X----X--|--X------ X--==-- X----=

A' B' c' D'
(b)
Where AB > A'B'

cb > C'D'

Fig. 6.2 Diagram Showing how the Segments are Partitioned;
(a) 01d Method, (b) New Method.
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regions A'B' or C'D' is smaller than AB or CD as shown in
Fig.(6.2). Also in the transition region (e+e')/2 is smaller

than (d+d'). Though e and e' is a little larger than d and

d' since
Distance of each segment
d =
n (6.1)
Distance of each segment
e =

n+ 1/2 (6.2)

and, for largen, d = e

With this kind of partition, a more accurate
result is obtained as compared to the partition by the old
method, as there is no discontinuity in the transition

region between two adjacent segments.

6.2.3 Computation

(a) Subroutine DISTAN

The subroutine is used to compute the distance
between the source point and the observation point. These
distances are denoted as DS and DSS, which are defined as

R, and R, in Egs.(B.7) and (B.11).

1

Thus,

i i 725 (6.3)
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DSS = [(’li + /Lj) + (Zi - Zj) ] 7 (6.4)

There are eight integrals to be evaluated in
Eq.(3.28). Using a three-point Simpson's integration, there
should be at least twenty-four DSs and DSSs, since some
distances are repeated, only fifteen of such values are

required for each value of i and j.

(b) Subroutine COMPUT

This subroutine is the center of computation process
which evaluates the MOM impedance matrix in Eg.(3.28).
To compute the Green's function integrals, routine "GREENS"
is called. After computation, the MOM [Z] matrix is solved

by using routine "MULTPY".

(c) Subroutine GREENS

The integrals involving Green's function in
Eq.(3.28) are evaluated in this subroutine. Since there
are eight integrals to be integrated, they are denoted as
G1 through G8 in the computation. Three point Simpson
integration is used for the t integration whereas four-point
Simpson's integration is used in the ¢ integration, which
enhance the accur-cy of the results. Special attention is
given when the ok:zervation point lies within the source
segment. If special treatment is needed, routine "APPRMX" is

called.
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(d) Subroutine APPRMX

As |R - R'| approaches to zero which makes the
integrals of the Green's function in Eg.(3.28) to become
singular, subroutine APPRMX is called upon, which is based
on Eg.(B.1) through Eg.(B.16) in Appendix B. This routine
also calls subroutine ELTKP if the elliptical function of

the first kind is necessary in the computation.

(e) Subroutine ELTKP

Subroutine ELTKP is used to compute the elliptical

function of the first kind K(m)

where
5 2 3 4_ 2 3 4
K(m) = ata m ta,my+a my+a,m, ln(m1)(b0+b1m1+b2m1+b3m1+b4m1)
(6.5)
my= 1-m (6.6)

Bgeeens 84 bo""' b4 are given in the Handbook of

Mathematical Functions by Abramowitz and Stegan [34].

(f) Subroutine MULTPY

The final phase of computation is to solve the
[N by N] matrix . This routine is used for solving the
matrix [Z] using Gaussian's elimination method to determine
the current distribution [I] on the monopole and on the

ground plane. Once [Z]_1 is known, the current is
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obtained by

(11 = (vl [z17! (6.7)
The elements in the excitation matrix [V] given in Eg.(6.7)
are usually zero except at the source point (which is the

voltage across the gap) for the radiation problem discussed

here.

6.2.4 Post-processing

Subroutine FARFLD

The computed current distribution obtained from
the matrix inversion of [Z]ij , the MOM impedance matrix,
can be used for calculating the far field. This is done by
evaluating Eg.(3.47) in which the Bessel functions of the
first kind (Jo and J1) are computed. The scattered far field
are then obtained by multiplication of the current
distribution [I] and the MOM matrix [Z]n' Eq.(3.45).
Subroutine "FARFLD" is the final phase of the simulation
process, it is an optional feature. Its operation is
controlled by the index "FARIDX", which is initialized in

the subroutine "INITAL".

6.3 Numerical Results

In this section, numerical results are presented
for the current distribution on the ground plane with the
monopole located at the center of the ground plane. A gap

voltage of one volt (rms) s applied between the ground
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plane of size 12 cm and the monopole whose height is
2.68 cm with a radius of 0.048 cm. The gap width used in
the computation is 0.048 cm, the same as the monopole
radius. Comparisons are made between : 1) the finite size
ground plane (12 cm in radius), 1i) our model, a ground
plane (12 cm in radius) with tapered resistive sheet, and
iii) a largé size ground plane (60 cm in radius).

Figure (6.3) shows the effect of gap distance on
the input impedance of a half-wave dipole (height 0.461
wavelength, radius = 0.0053 wavelength). As noted, the
input resistance is relatively independent of gap width
which varies from 0.001 wavelength to 0.04 wavelength, but
the input reactance changes significantly when the gap is
shortened. A large negative reactance shows that the
capacitive component is very dominant when the gap is small.
For this study it was concluded that the gap width for the
practical antenna should be about the same as the diameter
of the antenna in order to escape the drastic capacitive
effect.

The impedance of the monopole (height 2.68 cm, radius
0.048 cm) on different ground planes, i) a finite size
ground plane (12 cm in radius) with resistive edge, and
ii) without resistive edge, and 1iii) a large ground plane
(60 cm in radius) were computed for different frequencies
from 1875 MHz to 3750 MHz and are shown in Fig.(6.4).

Although improvement is nc: very pronounced, the finite size
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Compute. Monopole Impedance for Various Ground
Planes {(Height 2.68 cm) vs. Frequency.
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ground plane with resistive edge shows a good approximation
to the large size ground plane. It is noted that, since the
monopole is of height 2.68 cm (0.223 wavelength), it is
shorter than 0.235 wavelength that typically would resonate
at 2500 MHz. This explains why slight capacitive components
are present at 2500 MHz.

Figufe (6.5) shows the monopole impedance as a
function of the ground plane size. Computed results are
for metal and resistively treated ground planes. For the
metallic ground plane case, the results are compared with
Meier & Summers' [1] experimental data. The metallic ground
plane varies from 0.25 wavelength to 2.0 wavelength in
radius in both Meier and Summer's experiments and our
numerical computations. The resistive ground plane was made
of metal of 0.25 wavelength radius, plus an added tapered
resistive sheet (0-1000 ohms/sq.) whose width ranges from
zero to 1.75 wavelength. The monopole is of height 0.223
wavelength and radius 0.003 wavelength. With the resistive
ground plane at small radii, the resistive strip is narrow
and hence the curve begins the same as for the metallic one.
For ground plane radius one wavelength and larger, the
impedance is almost constant as one would expect for the
infinite size ground plane. This shows that tapered
resistance can match the surface field.

Figure (6.6) shows the comparison of the current on

a metallic ground plane for different radii of the monopoles
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Fig. 6.5 Impedance of Monopole (Height 0.223 Wavelength,
Radius 0.004 Wavelength) vs. Ground Plane Size
at 2500 MHz.
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Fig. 6.6 Current Distribution on Ground Plane with
Different Monopole Radii at 2500 MHz.
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(0.003, 0.004, 0.01 wavelength; height 0.223 wavelength) at
2500 MHz. As can be seen, the current distribution on the
ground plane does not change significantly for these
different radii of the monopole.

With the monopole (height 2.68 cm, radius 0.048 cm),
at the center of a circular ground plane (radius 12 cm),
the current distributions on the ground plane are compared
in Fig.(6.7) through Fig.(6.10) for metallic and resistive
ground planes. Consider first the metallic ground plane, at
1875 MHz and 2500 MHz the ground plane radii are less or
equal to one wavelength, hence one current minimum is
observed in Fig.(6.7) and Fig.(6.8). At 3000 MHz and
3750 MHz, the radii of the metallic ground planes are 1.2
wavelength and 1.5 wavelength respectively, and consequently
two minima are observed in Fig.(6.9) and Fig.(6.10). With
the resistive ground plane there are no minimum other than
at the feed point (monopole) and the outer edge. Therefore,
one can conclude that with resistive treatment the effects
of travelling waves are minimized.

Figure (6.11) shows the comparison of the current
distribution on the monopole (height 2.68 cm, radius 0.048
cm), 1) for a ground plane with resistive edge and 1ii)

a ground plane without resistive edge (each has 12 cm in
radius). The magnitude of current does not vary
significantly. The phase of the currents on the monopole

on the metallic ground plane and the resistive one have
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Fig. 6.7 Curren- Distribution on Ground Plane at 1875 MHz
(Monopcle Height 2.68 cm, Radius 0.048 cm,
Excitation 1 volt).
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6.9 Current Distribution on Ground Plane at 3000 MHz

(Monopole Height 2.68 cm, Radius 0.048 cm,
Excitation 1 volt).
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Fig. 6.10 Current Distribution on Ground Plane at 3750 MHz
(Monopole Height 2.68 cm, Radius 0.048 cm,
Excitation 1 volt).
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Fig. 6.11 Curre:.: Distribution on Monopole (Height 2.68
cm, RzZius 0.048 cm, Excitation 1 volt) at
2500 MHAz.
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positive phase which indicate that the impedance of the
monopole is capacitive because the height of the monopole
which is 0.223 wavelength at 2500 MHz is shorter than

the resonance length.

The computed far field patterns are shown in
Fig.(6.12) through Fig.(6.14). As in the experimental cases,
the side lobés are eliminated when a resistive ground plane
is used. In the computation, the ground plane radius is
12 cm, monopole height is 2.68 cm and radius is 0.048 cm,
the frequencies used for far field computations are

2.25 GHz, 2.50 GHz and 2.75 GHz.

6.4 Comparison Between Experimental and Numerical Results

It is a good practice to use experimental data to
verify numerical simulations, especially when computations
are approximated to make them feasible. Here, comparisons
are made between the experimental and numerical cases. The
monopole impedance as a function of frequency as well as
the far field patterns (E field patterns) are plotted and
tabulated.

Table (6.1) shows the comparison between the
numerical and experimental results for the impedance of the
monopole (height ..68 cm, radius 0.048 cm) at 1.875 GHz,
2.5 GHz, and 3.75 GHz. Various ground planes are used,

i) the finite size ground plane (12 cm radius), ii) the
finite size ground plane with resistive sheet (also 12 cm

in radius) and, iii) the large ground plane (60 cm in
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Fig. 6.12 Computed Far Field Patterns at 2.25 GHz.
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Fig. 6.13 Computed Far Field Patterns at 2.50 GHz.
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Fig. 6.14 Computed Far Field Patterns at 2.75 GHz.
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radius) which is used for comparison. Close agreement
exists between the experimental model and the numerical
cases. The monopole impedance on the finite size ground
plane with resistive edge is a close approximation to that
of a large ground plane.

Figures (6.15) through (6.17) show the far field
pattern of the same monopole on the finite size metallic
ground plane and the resistive one at three different
frequencies, 2.25, 2.5 and 2.75 GHz. Close agreement
again exists between numerical and experimental data. The
large size ground plane (60 cm in radius) was not used in
the comparison because it was impossible to mount it and
rotate it for the antenna measurements. Another factor was
the size of the anechoic room, in which it was not feasible
to obtain the far field criterion 2D2/A using the large
ground plane diameter for D.

It has been shown that good agreement exists between
the numerical simulation and experimental data. Since the
difference between the numerical and the experimental data
of the antenna impedance and the far field patterns is
typically only five percent or less, this provides a good
verification that numerical computations or simulation codes

are valid.
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CHAPTER VII. CONCLUSIONS

The problem of a monopole located on a finite
size circular ground plane is solved using the surface of
revolution technigue and the method of moments. The
resistive boundary condition is also included in the
formulation. The numerical procedure was tested by
comparison with the experimental measurements for impedance
of the monopole and the far field patterns for both the
metallic and resistive ground plane.

Naor [17] studied the scattering of resistive
plates, but his program has limitations as it handles only
rectangular plate and the maximum area of this plate is
restricted in practice to about a square wavelength. Since
the body of revolution geometry is the characteristic of
many physical structures, this method has the advantage of
utilizing three-dimensional structures which can be much
larger in wavelength. In the modelling of an infinite ground
plane, a ground plane of five wavelengths in radius is used.
It has been shown that such a size would give at most three
percent error in antenna impedance measurements.

The impedance of the monopole on the metallic and the
resistive ground planes are examined both experimentally
and numerically. Close agreement exists between these

results at the frequencies studied.

112
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The current distributions of the monopole on
different ground planes are also studied. It is observed
that with the resistive edge, the standing wave pattern
is eliminated. These standing waves which resulted from
the edge diffraction, give rise to the side lobes in the
far zone pattern.

A monopole antenna was built and evaluated for both
the metallic and the resistive ground plane. The measured
impedances of the antenna with different types of ground
planes have been found to be in good agreements with
corresponding numerical results. The measured far field
patterns have also been found to be in good qualitative
agreemént with numerical results.

In some respect, the overall result may be regarded
as a close approximation to the infinite ground plane case,
but significant deviation may also exist. For example, even
though the far field pattern of the edge treated monopole
does not have any side lobe, it is still different from the
pattern produced by a monopole above an infinite ground
plane.

For further study, the effect of dielectric coating
of the resistive material on antenna characteristics can be

investigated.
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OO0 UO b WK

3 %K % K K 3K % %k 3K % % X % Xk 3K 3 kK 3 X 3% XK % X kK %k %K % 3% % %K X X kK X 3k 3 X 3k X XK ¥ X K X K X % XK % XK %k X X X K X X * X X

This is Rose Wang’s program for emutating a scattering

result.

To use this program,

files should be attached to the

corresponding I/0 units as follows

Logical unit 1

unit 5
unit 6

Logical
Logical

Input data file

(First record must be the parameter)
Terminal

Terminal

3 % 3K 3K X XK 3 %K 3K X %K %K 3 % % % 2k 3 3 % 3 3 3k XK XK X X 3K % X % 3 3 3K K X X 5 XK X X X 3k 3K 3 K XK XK X X Xk Xk ¥ XK XK XK X X X X

3 % K K % 3 % %K % 3% 3K 3% 3 X % % 5K 3K 3 X X X %K XK K XK X X X % X 3k X X % 5k %k % 3 3 X X X 5k K Xk XK X 5k K Xk Xk X X K K X X X X

XS
YS
XB
YB

DS

ARRAY
ARRAY
ARRAY
ARRAY

STORES
STORES
STORES
STORES

ARRAY STORES

REAL
COMMON
REAL
COMMON
REAL
COMMON /DISTNS/
INTEGER

REAL

COMMON /VARIAB/
COMPLEX*8
COMMON /FOUIIS/
COMPLEX*8
COMMON /FOUIES/
INTEGER

REAL

COMMON /VARIAC/
COMPLEX*8
COMMON /VARIAD/
COMPLEX*8
COMMON /CNSTAN/
COMPLEX*8
COMMON /INPUT/
COMPLEX*8
COMMON /OUTPUT/

/SOURCE/

/OBSERV/

THE VARIABLES IN THE
FOR THE ARRAYS IN THE COMMON

INTEGER
COMMON /MAXIMN/

THE VARIABLES IN THE
NUMBER OF VALID

THE
THE
THE
THE

THE

X COORDINATES OF
Y COORDINATES OF
X COORDINATES OF
Y COORDINATES OF

THE SOURCE POINTS.
THE SOURCE POINTS.
THE OBSERVATION POINTS.
THE OBSERVATION POINTS.

DISTANCE BETWEEN AN OBSERVATION POINT
AND EACH OF THE SOURCE POINTS.

XS ,YS ,DIS ,DSQ

XS(100),YS(100),DIS(100),DSQ(100)

XB ,YB

XB(100),YB(100)

DS ,DSS ,THETA1,THETA2, INC

DS(100, 15),DSS(100,15), THETA1, THETA2, INC
DOTNUM, CURTYP

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM, CURTYP

GAA ,GA , GAAP ,GAP

GAA(15),GA(15),GAAP(15),GAP(15)

G1,G2,G3,G4,G5,G6,G7.G8,GB ,GBB

G1,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)

FOUIIN

FK,FRQNCY,MEW,EPSILN,WAVE ,DTR,BETA

FOUIIN,FK,FRQNCY,MEW,EPSILN,WAVE,DTR,BETA(15)

VOLTGE , IMPEDC ,CURENT

VOLTGE(100), IMPEDC(100),CURENT(100)

IMAGI

IMAGI

VOLT, IMP

VOLT, IMP

Z

2(99,99)

"MAXIMN" CONTROL THE ARRAY SIZES

"SOQURCE", "OBSERV".

SOUMAX, OBSMAX
SOUMAX, OBSMAX

"CONTAN" INDICATE THE CURRENT
ENTRIES IN THE ARRAYS.



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

INTEGER

COMMON /ARRCTN/
REAL

COMMON /CONSTN/
INTEGER

COMMON /IOUNIT/

SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
PI,RADIAN,ZO,XR1,YR1,XR2,YR2
PI,RADIAN,ZO,XR1,YR1,XR2,YR2

INPUTF, MESSGE, REPORT, TERMIN

INPUTF, MESSGE, REPORT, TERMIN

INTEGER KODE

CALL INITAL(KODE)

IF (KODE.NE.O) GO TO 999

WRITE(MESSGE, 10)

10 FORMAT(1H ,/,1H
CALL PROCES

998 STOP
END

, 10X,/ *xx Result from the simulation

SUBROUTINE INITAL(KODE)

3K K K K KK K K 3K K KK kK K K kK K K K XK K K K K XK K % K %K %k 3K KK X %K K X X X K X XK K X kK X XK K X X X KK

This subroutine

initializes variables in the

"COMMON" section.

K XK K K K K O K 3K kK K Xk K Kk K 3K K K K %k K K K K K K X K XK K K X K K XK K XK K K K XK X K XK X K K X XK K X K KXk

REAL
COMMON /SOURCE/
REAL

COMMON /OBSERV/
REAL

COMMON /DISTNS/
INTEGER

REAL

COMMON /VARIAB/
COMPLEX*8
COMMON /FOUIIS/
COMPLEX*8
COMMON /FOUIES/
INTEGER

REAL

COMMON /VARIAC/
COMPLEX*8
COMMON /VARIAD/
COMPLEX*8
COMMON /CNSTAN/
COMPLEX*8
COMMON /INPUT/
COMPLEX*8
COMMON /=UTPUT/
INTEGER

COMMON "“*AXIMN/
INTEGER

COMMON /ARRCTN/
REAL

COMMON /CONSTN/
INTEGER

COMMON /IOUNIT/

XS ,YS ,DIS ,DSQ
XS(100),YS(100),DIS(100),DSQ(100)

XB ,YB

XB(100),YB(100)

DS ,DSS L THETAY, THETA2, INC

DS(100,15),DSS(100,15), THETA1, THETA2, INC
DOTNUM, CURTYP

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM, CURTYP

GAA ,GA , GAAP , GAP

GAA(15),GA(15),GAAP(15),GAP(15)

G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

G1,G2,G3,G4,G65,G6,G7,G8,GB(15),GBB( 15)

FOUIIN

FK,FRQNCY ,MEW,EPSILN,WAVE ,DTR,BETA

FOUIIN, FK,FRQNCY ,MEW,EPSILN,WAVE,DTR,BETA(15)

VOLTGE , IMPEDC ,CURENT

VOLTGE(100), IMPEDC(100),CURENT(100)

IMAGI

IMAGI

VOLT, IMP

VOLT, IMP

z

2(99,99)

SOUMAX, OBSMAX

SOUMAX, OBSMAX

SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG

SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG

PI,RADIAN,Z0,XR1,YR1,XR2,YR2

PI,RADIAN,ZO,XR1,YR1,XR2,YR2

INPUTF, MESSGE, REPORT, TERMIN

INPUTF, MESSGE, REPORT, TERMIN

yxxl)



127 END OF COMMON

128 2 memememe et e e c-——emm o e o
128

130 KODE=0

131 SOUMAX=100

132 OBSMAX=100

133 FOUIIN controls the iteration in the FOURIER’S function
134 PI=3.1415827

135 EPSILN=8.85E-12

136 MEW=(4.0E-7)*PI

137 IMAGI=CMPLX(0.0,1.0)

138 . RADIAN=57.29578

139 DTR=0.01745329

140 20 =SQRT(MEW/EPSILN)

141 INPUTF=1

142 MESSGE=6

143 TERMIN=5

144 REPORT=2

145

146

147 FARIDX=1

148 THETA1=0.0

149 THETA2=0.0

150

151 Read the parameters

152

153 READ(INPUTF,10) WAVE,FOUIIN,THETA1,THETA2,INC,FARIDX,MCMFLG,
154 *XR1,YR1,XR2,YR2

155 10 FORMAT(F8.5,13,3F7.2,12,11,4F6.2)

156 IF (FOUIIN.GE.O.AND.FOUIIN.LE.10) GO TO 20

157 WRITE(MESSGE,S01)

158 801 FORMAT(1H ,’*ERROR* : Fourier’’s parameter out of ',

159 * ‘range.’)

160 KODE=-1

161 20 IF (WAVE.GT.0) GO TO 30

162 WRITE(MESSGE,S02)

163 902 FORMAT(1H ,’*ERROR* : Wrong wavelength.’)

164 KODE=-1

165 GO TO 998

166 30 FRQNCY=(3.0E8)/WAVE

167 IF (MCMFLG.EQ.1) FRQNCY=(3.0E10)/WAVE

168 FK=(2*PI)/WAVE

168 999 RETURN

170 END

171 SUBROUTINE READER

172

173 3K 2k K XK 3K K 3 %K X 2 K XK X K 3K XK 3K XK XK 3k % XK K XK XK X X x % 3 3 3 X Xk XK X % 3K 3 X % XK & X 3 Xk M X X X XK XK XK ¥ X X XK ¥ XK XK X %k
174

175 This subroutine reads in input data record, then

176 partition them into intervals before processing.

177

178 K 3 3 %K K K K 3K K K K K K ok %K K 3Kk %k K K a6 K Kk ak %k 3K X K X 3k ok 3k 2k 3K XK K ok 3K K K ok K ok 3K K X XK K Xk XK XK XK X K XK Xk XK kK K X X XK XK
179

180 REAL XS ,YS ,DIS ,DSQ

181 COMMON /SOURCE/ XS(100),YS(100),DIS(100),DSQ(100)

182 REAL XB ,YB

183 COMMON /OBSERV/ XB(100),YB(100)

184 REAL DS ,DSS JTHETA1,THETA2,INC
185 COMMON /_ISTNS/ DS(100,15),DSS(100,15),THETA1,THETA2, INC
186 INTEGER DOTNUM, CURTYP
187 REAL XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2

188 COMMON /VARIAB/ XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,D0OTNUM,CURTYP
189 COMPLEX*8 GAA ,GA , GAAP ,GAP

180 COMMON /FOUIIS/ GAA(15),GA(15),GAAP(15),GAP(15)

191 COMPLEX*8 G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

192 COMMON /FOUIES/ G1,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)
193 INTEGER FOUIIN

184 © REAL FK,FRQNCY ,MEW,EPSILN,WAVE ,DTR,BETA



195 COMMON /VARIAC/ FOUIIN,FK,FRQNCY,MEW,EPSILN,WAVE,DTR,BETA(15)

196 COMPLEX*8 VOLTGE , IMPEDC , CURENT

197 COMMON /VARIAD/ VOLTGE(100),IMPEDC(100),CURENT(100)

198 COMPLEX*8 IMAGI

199 COMMON /CNSTAN/ IMAGI

200 COMPLEX*8 VOLT, IMP

201 COMMON /INPUT/ VOLT,IMP

202 COMPLEX*8 V4

203 COMMON /OUTPUT/ 2(89,99)

204 INTEGER SOUMAX, OBSMAX

205 COMMON /MAXIMN/ SOUMAX, OBSMAX

206 . INTEGER SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX, LASTSG
207 COMMON /ARRCTN/ SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
208 REAL PI,RADIAN,Z0,XR1,YR1,XR2,YR2

208 COMMON /CONSTN/ PI,RADIAN,ZO,XR1,YR1,XR2,YR2

210 INTEGER INPUTF, MESSGE, REPORT, TERMIN

211 COMMON /IOUNIT/ INPUTF, MESSGE, REPORT, TERMIN

212

213 mmmm o s m e e
214 END OF COMMON

215 mmmm e oo e e — e e e
216 :

217 REAL oLDX,0LDY

218 INTEGER LINE,CIRCLE,CURVE,FLAG,KODE

218 DATA LINE/'LINE’/,CIRCLE/’CIRC’/,CURVE/'CURV'/

220 PTR=1

221 OLDX=-1E10

222 OLDY=-1E10

223 FLAG=1

224 KODE=0

225 RECCTN=0

226

227 When "FLAG" is equal to one means that this is the first
228 segment.

229

230 10 READ (INPUTF,20,END=995) XB1,YB1,XB2,YB2,VOLT,IMP,DOTNUM,
231 * CURTYP, IM,LASTSG

232 20 FORMAT(4F9.5,2F6.2,2F8.2,12,A4,12,11)

233 RECCTN=RECCTN+1

234 IF (PTR.NE.1.AND.(XB1.NE.OLDX.OR.YB1.NE.OLDY)) GO TO 120
235

236 Find a proper subroutine to cut the line

237

238 IF (CURTYP.NE.LINE) GO TO 50

239 CALL SLINE(KODE,FLAG)

240 IF (KODE.NE.Q) GO TO 990

241 FLAG=0

242 OLDX=XB2

243 OLDY=YB2

244 GO 70 10

245 50 WRITE(MESSGE,60) RECCTN

246 60 FORMAT(1H ,’*ERROR* : Unrecognizable curve type at record’,18)
247 GO TO 930

248 120 WRITE(MESSGE, 130) RECCTN

249 130 FORMAT(1H ,’*ERROR* : Curve must be defined continuously’,
250 * /L 1H " condition occurred at record’,I8)
251 880 SOUCTN=0

252 GO TO 999

253 985 SOUCTN=PTR-1

254 989 RETURN

255 END

256 SUBROUTINE PROCES

257

258 l**t*xwx(lk***lt*******r***i**!********#****!******l******#

259

260 This subroutine is tne driver for the simulation

261 process.

262



263 3 ok K K K XK K K XK XK Xk K XK O K 3K XK XK XK XK M XK XK XK K X XK kK 3k kK Xk X kK 3K X X X XK X X Xk XK XK X XK X X XK X X Xk Xk X Xk X kX

264

265 REAL XS ,YS ,DIS ,DSQ

266 COMMON /SOURCE/ XS(100),YS(100),DIS(100),DSQ(100)

267 REAL XB ,YB

268 COMMON /OBSERV/ XB(100),YB(100)

269 REAL DS ,DSS ,THETA1,THETA2,INC
270 COMMON /DISTNS/ DS(100,15),DSS(100,15),THETA1, THETA2, INC
271 INTEGER DOTNUM, CURTYP
272 REAL XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2

273 COMMON /VARIAB/ XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM,CURTYP
274 . COMPLEX*8 GAA , GA , GAAP - , GAP

275 COMMON /FOUIIS/ GAA(15),GA(15),GAAP(15),GAP(15)

276 COMPLEX=8 G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

277 COMMON /FOUIES/ G1,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)

278 INTEGER FOUIIN

278 REAL FK,FRQNCY ,MEW,EPSILN,WAVE ,DTR,BETA
280 COMMON /VARIAC/ FOUIIN,FK,FRQONCY,MEW,EPSILN,WAVE,DTR,BETA(15)
281 COMPLEX*8 VOLTGE , IMPEDC ,CURENT

282 COMMON /VARIAD/ VOLTGE(100),IMPEDC(100),CURENT(100)

283 COMPLEX*8 IMAGI

284 COMMON /CNSTAN/ IMAGI

285 COMPLEX*8 VOLT, IMP

286 COMMON /INPUT/ VOLT,IMP

287 COMPLEX*8 z

288 COMMON /OUTPUT/ 2(29,28)

288 INTEGER SOUMAX, OBSMAX

280 COMMON /MAXIMN/ SOUMAX, OBSMAX

291 INTEGER SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
282 COMMON /ARRCTN/ SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
2383 REAL PI,RADIAN,Z0,XR1,YR1,XR2,YR2

294 COMMON /CONSTN/ PI,RADIAN,ZO,XR1,YR1,XR2,YR2

295 INTEGER INPUTF, MESSGE, REPORT, TERMIN

296 COMMON /IOUNIT/ INPUTF, MESSGE, REPORT, TERMIN

297

298 2 mrmeesereceresmeccccrmeccecrmeemececceeese-ee e sccmesmccoo o —m -
298 END OF COMMON

300 2 memememrmercer e r e m e m e m et e e m oo
301

302 CALL READER

303 IF (SOUCTN.LT.3) GO TO 999

304 CALL COMPUT

305 IF (FARIDX.EQ.QO) GO TO 998

306 CALL FARFLD

307 988 RETURN

308 END

308 SUBROUTINE SLINE(KODE,FLAG)

31

31? 2K 3 K K K 3K oKk %K K X K K K XK X XK K 3K %K XK K XK XK 3k 3 X K Xk 3 XK K 3 X 2k XK 3k %K %K X XK K X K XK XK XK X Xk XK Xk 3 3k X kK Xk kK XK XK XK X XK kKX
312

313 This subroutine puts the source points/observation

314 points and the input voltage & impedance into

315 proper position in the matrices.

316

317 FLAG : is used to indicated if this is the first segment.
318

318 Source segment and Non-source segment are processed

320 in the same manner.

321

322 However, the segments may have different partitioned

323 length, depending on where they are on the curve.

324

325 First segment : 2 points

326

327  eeeemee——- e B

328

328 Middle segment : 2 pboints

330



331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
378
380
381
382
383
384
385
386
387
388
388
380
391
382
383
394
395
396
397
398

REAL
COMMON /SOURCE/
REAL

COMMON /OBSERV/
REAL

COMMON /DISTNS/
INTEGER

REAL

COMMON /VARIAB/
COMPLEX*8
COMMON /FOUIIS/
COMPLEX*8
COMMON /FOUIES/
INTEGER

REAL

COMMON /VARIAC/
COMPLEX*8
COMMON /VARIAD/
COMPLEX*8
COMMON /CNSTAN/
COMPLEX*8
COMMON /INPUT/
COMPLEX*8
COMMON /OUTPUT/
INTEGER

COMMON /MAXIMN/
INTEGER

COMMON /ARRCTN/
REAL

COMMON /CONSTN/
INTEGER

COMMON /IOUNIT/

INTEGER ENDPTR,F
REAL SARC LA

ENDPTR=PTR+DOTNU
IF (ENDPTR.GT.SO
COMPEN=0.0

DOTPEN=0.0
IF (LASTSG.EQ.1)

IF (CABS(VOLT).E

IF (FL: £Q.0) G
XB(1i-:81
XS(1:-+31
YB(1)+ 21
YS(1)=YB1

VOLTGE(1)=VOLT
IMPEDC(1)=CMPL
PTR=PTR+1
ENDPTR=ENDPTR+
COMPEN=-0.5
DOTPEN=0.5

2 points
__________ S S
XS ,YS ,DIS ,DSQ
XS(100),YS(100),DIS(100),DSQ(100)
XB ,YB
XB(100),YB(100)
DS ,DSS ,THETA1,THETA2, INC

DS(100,15),DSS(100, 15), THETA1, THETA2, INC
DOTNUM, CURTYP

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM, CURTYP

GAA ,GA , GAAP , GAP

GAA(15).GA(15),GAAP(15),GAP(15)

G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

G1,G2,G3,G4,G65,G6,G7,G8,GB(15),GBB( 15)

FOUIIN

FK,FRQNCY ,MEW,EPSILN,WAVE ,DTR,BETA

FOUIIN,FK,FRQNCY MEW,EPSILN,WAVE,DTR,BETA(15)

VOLTGE , IMPEDC , CURENT

VOLTGE(100),IMPEDC(100),CURENT(100)

IMAGI

IMAGI

VOLT, IMP

VOLT, IMP

z

2(99,99)

SOUMAX, OBSMAX

SOUMAX, OBSMAX

SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG

SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG

PI,RADIAN,ZO,XR1,YR1,XR2,YR2

PI,RADIAN,ZO,XR1,YR1,XR2,YR2

INPUTF, MESSGE, REPORT, TERMIN

INPUTF, MESSGE, REPORT, TERMIN

LAG,KODE
RC ,SPACIN ,COMPEN,DOTPEN, EXPN

M

CHECK IF THE ARRAY IS BIG ENOUGH TO HANDLE THESE NEW POINTS

UMAX) GO TO 100

DOTPEN=0.5

Q.0.0) GO TO 30

0 TO 10

X(0.0,0.0)

1



399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

10 CONTINUE

SPACIN=SQRT(((XB2-XB1)/(DOTNUM+DOTPEN) )**2

* +((YB2-YB1)/(DOTNUM+DOTPEN) )=*2)
DO 20 I = PTR,ENDPTR
XB(1)=XB1+((XB2-XB1)/(DOTNUM+DOTPEN))*(I-PTR+0.5-COMPEN)
XS(I)=XB1+((XB2-XB1)/(DOTNUM+DOTPEN))*(I-PTR+0.5-COMPEN)
YB(I)=YB1+((YB2-YB1)/(DOTNUM+DOTPEN))*(I-PTR+0.5-COMPEN)
YS(I)=YB1+((YB2-YB1)/(DOTNUM+DOTPEN))*(I-PTR+0.5-COMPEN)
DIS(I)=SQRT((XB2-XB(I))**2+(YB2-YB(I))x*x*2)
DSQ(1)=SPACIN
MID=1I-1
VOLTGE(MID)=VOLT
IMPEDC(MID)=CMPLX(0.0,0.0)

20  CONTINUE

PTR=ENDPTR
GO TO 898

THE PRESENT SEGMENT IS NOT A SOURCE SEGMENT

30 IF (FLAG.EQ.0) GO TO 35
XB(1)=XB1
XS(1)=XB1
YB(1)=YB1
YS(1)=YB1
VOLTGE(1)=CMPLX(0.0,0.0)
IMPEDC(1)=IMP
PTR=PTR+1
ENDPTR=ENDPTR+1
COMPEN=-0.5
DOTPEN=0.5

35 CONTINUE

SPACIN=SQRT(((XB2-XB1)/(DOTNUM+DOTPEN) )**2

* +((YB2-YB1)/(DOTNUM+DOTPEN) )**2)

DO 40 I = PTR,ENDPTR
XB(1)=XB1+((XB2-XB1)/(DOTNUM+DOTPEN) )*(I-PTR+0.5-COMPEN)
XS(I)=XB1+((XB2-XB1)/(DOTNUM+DOTPEN) )*(I-PTR+0.5-COMPEN)
YB(I)=YB1+((YB2-YB1)/(DOTNUM+DOTPEN) )*(I~PTR+0.5-COMPEN)
YS(I)=YB1+((YB2-YB1)/(DOTNUM+DOTPEN) )*(I-PTR+0.5-COMPEN)
DSQ(1)=SPACIN
MID=1-1
VOLTGE (MID)=CMPLX(0.0,0.0)
IF (IM.LT.0) GO TO 36
SARC=(XR2-XB(I))**2+(YR2-YB(I))*x*2
GO TO 37

36 SARC=(XR1-XB(I))**2+(YR1-YB(I))**2
37  ARC=(XR2-XR1)**2+(YR2-YR1)**2

DIS(I)=SQRT(SARC)
IF(CABS(IMP).EQ.0.0.AND.IM.GT.0)

* DIS(I)=SQRT((XB2-XB(I))**2+(YB2-YB(I))**2)
IF(CABS(IMP).EQ.O0.0.AND.IM.LT.0O)

* DIS(IY=SQRT((XB1-XB(I))**2+(YB1-YB(I))**2)

EXPN= {FLOAT(IM)/10.0)
IF (1. E.0) GO TO 38
IMPED" “ID)=IMP

GO TC -2

38 IMPEDC(MID)=IMP*( (SARC/ARC)**EXPN)
40 CONTINUE
PTR=ENDPTR
GO TO 898

100 WRITE(MESSGE, 110) SOUMAX
110 FORMAT(1H ,’*ERROR* ARRAY SIZE NEEDS TO BE INCREASED,’,



467 * “CURRENT SIZE :’,18)

468 KODE=-1

469 999 RETURN

470 END

471 SUBROUTINE DISTAN(I)

472

473 3k 3k 2k Ok 3k %k ok K 3K K kK XK K K K K 3k 3k Kk 3k K ok K Xk ok 5K %k 3 K 3 K %k Xk XK X XK 2K 3K XK % XK X XK XK 3K 3K 3 2 X K X XK XK XK XK X XK XK XK XK X X
474

475 THIS SUBROUTINE CALCULATES THE DISTANCE BETWEEN A SOURCE
476 POINT AND A OBSERVATION POINT. THIS PROCESS IS DONE FOR
477 ALL SOURCE POINTS RELATIVE TO ALL OBSERVATION POINTS.

478 .

4783 I . varies from 1 to OBSCTN

480

481 2ok K K K XK K X X K K K K Kk K K K X 3K K %K 3K K K K X K XK XK X XK XK XK XK XK X X Xk 3 O X XK XK Xk XK XK XK XK ¥ X X XK XK X kK XK X X kK XK X K X
482 -

483 REAL XS L YS ,DIS ,DSQ

484 COMMON /SOURCE/ XS(100),YS(100),DIS(100),DSQ(100)

485 REAL XB ,YB

486 COMMON /OBSERV/ XB(100),YB(100)

487 REAL DS ,DSS ,THETA1,THETA2,INC
488 COMMON /DISTNS/ DS(100,15),DSS(100, 15), THETA1, THETA2, INC
489 INTEGER DOTNUM, CURTYP
490 REAL XS1,YS1,X52,YS2,XB1,YB1,XB2,YB2

491 COMMON /VARIAB/ XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM, CURTYP
492 COMPLEX*8 GAA L GA , GAAP ,GAP

493 COMMON /FOUIIS/ GAA(15),GA(15),GAAP(15),GAP(15)

494 COMPLEX*8 G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

495 COMMON /FOUIES/ G1,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)

496 INTEGER FOUIIN

497 REAL FK,FRQNCY ,MEW,EPSILN,WAVE ,DTR,BETA
498 COMMON /VARIAC/ FOUIIN,FK,FRQNCY,MEW,EPSILN,WAVE DTR,BETA(15)
499 COMPLEX*8 VOLTGE , IMPEDC ,CURENT

500 COMMON /VARIAD/ VOLTGE(100),IMPEDC(100),CURENT(100)

501 COMPLEX*8 IMAGI

502 COMMON /CNSTAN/ IMAGI

503 COMPLEX*8 VOLT, IMP

504 COMMON /INPUT/ VOLT,IMP

505 COMPLEX*8 Z

506 COMMON /OUTPUT/ Z(99,99)

507 INTEGER SOUMAX, OBSMAX

508 COMMON /MAXIMN/ SOUMAX, OBSMAX

509 INTEGER SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
510 COMMON /ARRCTN/ SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
511 REAL PI,RADIAN,ZO,XR1,YR1,XR2,YR2

512 COMMON /CONSTN/ PI,RADIAN,ZO,XR1,YR1,XR2,YR2

513 INTEGER INPUTF, MESSGE, REPORT, TERMIN

514 COMMON /IOUNIT/ INPUTF, MESSGE, REPORT, TERMIN

515

516 e e e e e e e cmme ol
517 END OF COMMON

518 e o e e eccec e
519

520

521 THE OBSERVATION POINTS AND THE SOURCE POINTS ARE DEFINED AS
522

523 tm———— dm———— m———— Gt +m———-

524 0 1 2 3 4

525 XS(1) XS(2) XS(3) XS(4) XS(5) SOUCTN = 4
526 XB(1) XB(2) XB(3) XB(4) XB(5) OBSCTN = 4
527 USEFUL POINTS = 3
528

529 INTEGER I,J

530 REAL RQPH,RQMH

531 REAL ZQPH, ZQMH

532 REAL RNPH,RNMH,RNP1,RNM1,RNPQ, RNMQ

533 REAL ZNPH, ZNMH, ZNP1,ZNM1,ZNPQ, ZNMQ

534



535 TEND=SOUCTN

536

537 RQPH=(XB(I)+XB(I1+1))*0.5

538 ZQPH=(YB(I1)+YB(I+1))*0.5

539 RQMH=(XB(1)+XB(I-1))*0.5

540 ZQMH=(YB(I)+YB(I-1))*0.5

5414

542 DO 50 U = 2, IEND

543

544 RNM1=XS(J-1)

545 ZNM1=YS(J-1)

546 RNP1=XS(J+1)

547 ZNP1=YS(uU+1)

548 RNPH=(XS(J)+XS(U+1))*0.5

549 ZNPH=(YS(J)+YS(J+1))*0.5

550 RNMH=(XS(J)+XS(J-1))*0.5

551 ZNMH=(YS(J)+YS(J-1))*0.5

552 RNPQ=(XS(J)*0.75+XS(J+1)*0.25)
553 ZNPQ=(YS(J)*0.75+YS(J+1)*0.25)
554 RNMQ=(XS(J)*0.75+XS(J-1)*0.25)
555 ZNMQ=(YS(U)*0.75+YS(J-1)*0.25)
556

557

558 DS(JU,1) =SQRT((RQPH-XS(J))**2+
559 * (ZQPH-YS(J))**2)
560 DS(J,2) =SQRT((RQPH-RNM1)**2+
561 * (ZQPH-ZNM1)x*2)
562 DS(U.3) =SQRT((RQPH-RNMH)x**2+
563 * (ZQPH-ZNMH) **2)
564 DS(JU,4) =SQRT((RQPH-RNP1)**2+
565 * (ZQPH-ZNP1)**2)
566 DS(J,5) =SQRT((RQPH-RNPH)**2+
567 * (ZQPH-2ZNPH)**2)
568 DS(J,6) =SQRT((RQMH-RNMH)**2+
569 * (ZQMH-ZNMH) **2)
570 DS(U,7) =SQRT((RQMH-RNM1)x**2+
571 * (ZQMH-ZNM1) **2)
572 DS(U,8) =SQRT((RQMH-XS(J))**2+
573 * (ZQMH-YS(J))**2)
574 DS(J,9) =SQRT((RQMH-RNP1)**2+
575 * (ZQMH-ZNP1)*x*2)
576 DS(U,10) =SQRT((RQMH-RNPH)**2+
577 * (ZQMH-ZNPH) **2)
578 DS(J,11) =SQRT((XB(I)-XS(J))**2+
579 x (YB(I)-YS(U))**2)
580 DS(J, 12) =SQRT((XB(I)-RNMH)**2+
58 1 x (YB(I)-ZNMH)**2)
582 DS(J,13) =SQRT((XB(I)-RNMQ)**2+
583 * (YB(1)-ZNMQ)**2)
584 DS(J, 14) =SQRT((XB(I)-RNPH)**2+
585 * (YB(I)-ZNPH)**2)
586 DS(J,15) =SQRT((XB(I)-RNPQ)*=2+
587 * (YB(I)-ZNPQ)**2)
588 DSS(J, 1) =SQRT((RQPH+XS(J))**2+
589 * (ZQPH=-YS(J))**2)
590 DSS(J,2) =SQRT((RQPH+RNM1)*=*2+
591 * (ZQPH-ZNM1)**2)
592 DSS(J,3) =SQRT((RQPH+RNMH)**2+
593 * (ZQPH-ZNMH) **2)
594 DSS(J,4) =SQRT((RQPH+RNP1)**2+
595 * (ZQPH-ZNP 1) **2)
596 DSS(J,5) =SQRT((RQPH+RNPH)**2+
597 * (ZQPH-ZNPH)*x*2)
598 DSS(J,.6) =SQRT((RQOMH+RNMH)**2+
599 * (ZQOMH-ZNMH) **2)
600 DSS(J,7) =SQRT((RQMH+RNM1)**2+
601 * (2 MH-ZNM1 ) **2)

602 DSS(J,8) =SQRT((  H+XS(J))*=*2+



603 * (ZQMH-YS(J) ) **2)

604 DSS(U,9) =SQRT( (RQMH+RNP 1)**2+

605 * (ZQMH-ZNP 1) **2)

606 DSS(J, 10)=SQRT ( (RQMH+RNPH)**2+

607 * (ZQMH-ZNPH) **2)

608 DSS(J,11)=SQRT((XB(I)+XS(J))**2+

609 * (YB(I)-YS(U))*=*2)

610 DSS(J, 12)=SQRT((XB(I)+RNMH)**2+

611 * (YB(I)-ZNMH)**2)

612 DSS(U, 13)=SQRT((XB(I)+RNMQ)**2+

613 * (YB(I)-ZNMQ)**2)

614 ) DSS(J, 14)=SQRT((XB(I)+RNPH)**2+

615 * (YB(I)-ZNPH)**2)

616 DSS(J, 15)=SQRT((XB(I)+RNPQ)**2+

617 * (YB(I)-ZNPQ)**2)

618 50 CONTINUE

619 RETURN

620 END

621 SUBROUTINE COMPUT

622

623 3k 3k %K X % 5K 3K XK 3 5K XK 3K %K X %K % 3k % 3 % %k 3K % 2% K % XK X % X 3 X X XK XK X X X X X XK XK X Xk X X XK Xk kK XK XK X X Xk XK X Xk X

624

625 This subroutine computes the impedance and the

626 current for the defined point on the "body".

627 (Body of Revolution)

628

629 3 K ok K % K K K K K XK XK X K K X XK K XK K XK XK XK XK K X K K XK K X XK ¥ W K XK K Xk X X K X X X K XK KK KX XXX XXX

630

631 REAL XS ,YS ,DIS .DSQ

632 COMMON /SOURCE/ XS(100),YS(100),DIS(100),DSQ(100)

633 REAL XB ,YB

634 COMMON /OBSERV/ XB(100),YB(100)

635 REAL DS ,DSS ,THETA1,THETA2, INC
636 COMMON /DISTNS/ DS(100,15),DSS(100,15),THETA1, THETA2, INC
637 INTEGER DOTNUM, CURTYP
638 REAL XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2

639 COMMON /VARIAB/ XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM, CURTYP
640 COMPLEX*8 GAA , GA , GAAP ,GAP

641 COMMON /FOUIIS/ GAA(15),GA(15),GAAP(15),GAP(15)

642 COMPLEX*8 G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

643 COMMON /FOUIES/ Gi1,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)

644 INTEGER FOUIIN

645 REAL FK,FRQNCY ,MEW,EPSILN,WAVE ,DTR,BETA
646 COMMON /VARIAC/ FOUIIN,FK,FRQNCY,MEW,EPSILN,WAVE,DTR,BETA(15)
647 COMPLEX*8 VOLTGE , IMPEDC ,CURENT

648 COMMON /VARIAD/ VOLTGE(100),IMPEDC(100),CURENT(100)

649 COMPLEX*8 IMAGI

650 COMMON /CNSTAN/ IMAGI

651 COMPLEX*8 VOLT, IMP

652 COMMON /INPUT/ VOLT,IMP

653 COMPLEX*8 z

654 COMMON /OUTPUT/ 2(99,99)

655 INTEGER SOUMAX, OBSMAX

656 COMMON /MAXIMN/ SOUMAX, OBSMAX

657 INTEGER SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
658 COMMON /ARRCTN/ SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
659 REAL PI,RADIAN,Z0,XR1,YR1,XR2,YR2

660 COMMON  "2NSTN/ PI,RADIAN,ZO,XR1,YR1,XR2,YR2

661 INTEGER INPUTF, MESSGE, REPORT, TERMIN

662 COMMON /" 2UNIT/ INPUTF, MESSGE, REPORT, TERMIN

663

B6d mmm e e e e e e
665 END OF COMMON

666 = e e e e e e e m e
667

668 COMPLEX*8 EQ1 ,EQ2 ,EQ3 L,EQTNA,EQTNB,EQTNC, EQTND

669 INTEGER I,J,M

670 REAL XBMID,YBMID,XSMID,YSMID,DXYB1,DXYB2,DXYS1,DXYS2



671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
688
680
691
692
693
694
685
696
687
698
698
700
701
702
703
704
705
706
707
708
708
710
711
712
713
714
715
716
717
718
718
720
721
722
723
724
725
726
727
728
728
730
731
732
733
734
735
736
737
738

6

10
15

20
23

25
30

80
100

x

REAL LAMB1,LAMB2,LAMS1,LAMS2, XBMM, YBMM,DISMM, DSQMM
REAL SINY ,SIN2 ,COSt ,C0S2 ,TSIN ,TCOS

IEND=SQUCTN
M = FOUIIN

DO 100 I = 2, IEND
CALL DISTAN(I)
DO 80 J = 2, IEND
CALL GREENS(I,J.M)
XBMID=XB(I)-XB(I-1)
YBMID=YB(I)-YB(I-1)
XSMID=XS(J)-XS(d-1)
YSMID=YS(J)-YS(J-1)
DXYB1=SQRT (XBMID**2+YBMID**2)
DXYS1=SQRT(XSMID**2+YSMID**2)
IF (YB(I).EQ.YB(I-1)) GO TO 5
LAMB1=ATAN(XBMID/YBMID)
GO TO 6
LAMB1=80.0*DTR
IF (YS(J).EQ.YS(J-1)) GO TO 10
LAMS1=ATAN(XSMID/YSMID)
GO TO 15
LAMS1=80.0*DTR
XBMID=XB(I+1)-XB(I)
YBMID=YB(I+1)-YB(I)
XSMID=XS(J+1)-XS(J)
YSMID=YS(J+1)-YS(J)
DXYB2=SQRT (XBMID**2+YBMID**2)
DXYS2=SQRT(XSMID**2+YSMID**2)
IF (YB(I+1).EQ.YB(I)) GO TO 20
LAMB2=ATAN(XBMID/YBMID)
GO TO 23
LAMB2=80.0*DTR
IF (YS(U+1).EQ.YS(U)) GO TO 25
LAMS2=ATAN(XSMID/YSMID)
GO TO 30
LAMS2=80.0*DTR
SIN{1=DXYB1*SIN(LAMB1)
SIN2=DXYB2*SIN(LAMB2)
CO0S1=DXYB1*COS(LAMB1)
C0S2=DXYB2*COS(LAMB2)
TSIN=(SIN1+SIN2)/2.0
TCOS=(C051+C0S2)/2.0

EQTNA=TSIN*SIN(LAMS1)*G7
EQTNB=TSIN*SIN(LAMS2)*G8
EQTNC=2*TCOS*COS(LAMS1)*G5
EQTND=2*TCOS*COS(LAMS2)*G6

EQ1=FK*0.5*(EQTNA+EQTNB+EQTNC+EQTND) *IMAGI
EQ2=(G1-G2)*IMAGI/(FK*DXYS1)
EQ3= 14-G3)*IMAGI/(FK*DXYS2)

2(1-,J-1)=20*(EQI1+EQ2+EQ3)/(PI*PI*2.0)+SIN(LAMB1)*
(IMPEDC(J-1)/PI)
CONT INUE

CONTINUE

CALL MULTPY
FRQNCY=FRQNCY/(1.0E6)



739
740
741
742

744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
758
760
761
762
763
764
765
766
767
768
768
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
788
790
781
782
793
794
795
796
797
798
799
800
801
802
803
804
805
806

101

102 FORMAT(1H

106 FORMAT(5X, 'RHO’,7X, 2’

WRITE(MESSGE, 101) FOUIIN

FORMAT(1H , 'MODE NUMBER =

1, 12)

WRITE (MESSGE, 102)WAVE, FRQNCY

, 'THE
&’ FREQUENCY =

RESULTS FOR WAVELENGTH = ‘,F7.2,’ CM ', 4X,

" F7.2,'MHZ")

WRITE (MESSGE, 103)
103 FORMAT(/)
IF (FARIDX.EQ.1) GO TO 989

WRITE(MESSGE, 104)

104 FORMAT(8X, ‘DISTANCE’, 25X, ' IMPEDANCE‘, 10X, ‘CURRENT )
WRITE(MESSGE, 105)

105 FORMAT(/)
WRITE(MESSGE, 106)

*7X, 'PHASE")
IIND=SOUCTN-1

DO 110 MM=1,1IND

,8X,’DIS’",5X,'DSQ’,5X, RS’ ,6X, "XS',7X,

AMP=CABS(CURENT(MM))
PHASE=RADIAN*ATAN2(AIMAG(CURENT(MM)),REAL(CURENT(MM)))
DSQMM=DSQ(MM+1)/WAVE

WRITE(MESSGE, 107) XB(MM+1),YB(MM+1),DIS(MM+1),DSQMM,
*IMPEDC(MM) , AMP, PHASE

107 FORMAT(1H ,3FS9.4,F8.4,F10.4,F8.4,E11.4,F8.2)

110 CONTINUE

999 RETURN

END

SUBROUTINE GREENS(I,JU,M)

M : varies from

REAL
COMMON /SOURCE/
REAL

COMMON /OBSERV/
REAL

COMMON /DISTNS/
INTEGER

REAL

COMMON /VARIAB/
COMPLEX*8
COMMON /FOUIIS/
COMPLEX*8
COMMON /FOUIES/
INTEGER

REAL

COMMON /VARIAC/
COMPLEX*8
COMMON /VARIAD/
COMPLEX*8
COMMON /CNSTAN/
COMPLEX*8
COMMON /INPUT/
COMPLEX*8
COMMON /OUTPUT/
INTEGER

COMMON /MAXIMN/
INTEGER

COMMON /ARRCTN/
REAL

COMMON /CONSTN/

*!**x******x****x*****xxxxx*x-«***x*****x*x*x**x******t*ttx

1 to FOUIIN

*l************************x****!*****X*t*************!*x**

XS ,YS ,DIS ,DSQ

XS(100),YS(100),DIS(100),DSQ( 100)

XB ,YB

XB(100),YB(100)

DS ,DSS ,THETA1,THETA2, INC

DS(100,15),DSS(100, 15), THETA1, THETA2, INC
DOTNUM, CURTYP

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM, CURTYP

GAA , GA , GAAP ,GAP

GAA(15),GA(15),GAAP(15),GAP(15)

G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

G1,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)

FOUIIN

FK,FRQNCY,MEW,EPSILN,WAVE ,DTR,BETA
FOUIIN,FK,FRQNCY ,MEW,EPSILN,WAVE ,DTR,BETA(15)

VOLTGE , IMPEDC , CURENT
VOLTGE(100), IMPEDC(100), CURENT(100)
IMAGI

IMAGI

VOLT, IMP

VOLT, IMP

Z

2(99,99)

SOUMAX, OBSMAX

SOUMAX, OBSMAX

SoU” OBSCTN,RECCTN,PTR, IM, FARIDX, LASTSG

SCU.TN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
PI.RADIAN,Z20,XR1,YR1,XR2,YR2
PI,R:DIAN,Z0,XR1,YR1,XR2,YR2

'MAG”



807 INTEGER INPUTF, MESSGE, REPORT, TERMIN

808 COMMON /IOUNIT/ INPUTF, MESSGE, REPORT, TERMIN
809

R T I e it e L
811 END OF COMMON

R b e e L e L PP e
813

814 COMPLEX*8 DASC,DSFK,DASC1,DSFK1

815 INTEGER  I,J.K,M

816 INTEGER  FLAG1,FLAG8,FLAG11

817 REAL TNNM1, TNP 1N, TNNMH, TNPHN

818 . REAL GG1,GG2,GG3(8),GG4(14) ,PK,ELTKP

819 REAL RQ1,RQMHY,RQPH1,X,H,DT(15), TMPDS, TMPCS, TMPSN, TMPDV, TMPX
820 REAL RHN, RHNM1, RHNP 1, RHNMH , RHNPH, RHNMQ , RHNPQ , TMPXX
821

822 2K 3K 3K XK 3K XK N X K K XK K K K XK X X K K XK X K XK X XK K XK K X KKK XK XK XK XK K KK XK KKK NK XK KKNKXXXNKIKDINKDINKINKXXKXIX
823

824 RQ1 =XB(I)

825 RQMH1=(XB(I)+XB(I-1))*0.5

826 RQPH1=(XB(I)+XB(I+1))*0.5

827 RHN =XS(J)

828 RHNM1=XS(J-1)

829 RHNP 1=XS(J+1)

830 RHNMH=(XS(J)+XS(dJ-1))*0.5

831 RHNMQ=XS (J)*0.75+XS(J-1)*0.25

832 RHNPH=(XS(J)+XS(U+1))*0.5

833 RHNPQ=XS(J)*0.75+XS(J+1)*0.25

834

835 DT(1) =2.0*(RQPH1*RHN)

836 DT(2) =2.0*(RQPH1*RHNM1)

837 DT(3) =2.0=(RQPH1*RHNMH)

838 DT(4) =2.0*(RQPH1*RHNP1)

839 DT(5) =2.0*(RQPH1=RHNPH)

840 DT(6) =2.0*(RQMH1*RHNMH)

841 DT(7) =2.0*(RQMH1*RHNM1)

842 DT(8) =2.0*(RQMH1*RHN)

843 DT(9) =2.0*(RQMH1*RHNP 1)

844 DT(10)=2.0*(RQMH1*RHNPH)

845 DT(11)=2.0%*(RQ1*RHN)

846 DT(12)=2.0*(RQ1*RHNMH)

847 DT(13)=2.0%(RQ1*RHNMQ)

848 DT(14)=2.0%(RQ1*RHNPH)

849 DT(15)=2.0*(RQ1*RHNPQ)

850

851 ITIME=(XS(J)*15.0)/WAVE

852 ITIME=(ITIME*3)+1

853 IF (ITIME.LT.4) ITIME=4

854 H=PI/(ITIME-1)

855 DO 100 K = 1, 15

856 GA(K)=CMPLX(0.0,0.0)

857 GB(K)=CMPLX(0.0,0.0)

858 TMPDS=DS(J,K)**2

859 GAA(K)=CMPLX(0.0,0.0)

860 GBB(K)=CMPLX(0.0,0.0)

861

862  mmmm e e oo e— e oo
863

864 X=0.0

865 DO 35 K1 = 1, ITIME

866

867 USING FOUR POINTS SIMPSON INTEGRATION

868

869 IFAC=3

870 ICK =(K1-1)/3

871 ICK =K1-(ICK*3+1)

872 IF (ICK.EQ.0) IFAC=2

873 IF (K1.EQ.1.0R.K1.EQ . ITIME) IFAC=1

874



875 TMPX=COS(X)

876 TMPXX=ABS(TMPX-1.0)

877 = memeemmememmeeeee -

878 IF (DS(J,K).LE.1.0E-5.AND.TMPXX.LE.1.0E-5) GO TO 20
879 TMPDV=SQRT(TMPDS-DT(K)*(TMPX-1.0))

880 TMPCS=COS(FK*TMPDV)

881 TMPSN=-SIN(FK*TMPDV)

882 DSFK=CMPLX(TMPCS, TMPSN)/(TMPDV*FK)

883 GA(K)=GA(K)+(DSFK*IFAC)

884 DSFK1=(CMPLX(TMPCS,TMPSN)~1.0)/(TMPDV*FK)

885 GB(K)=GB(K)+(DSFK1*IFAC)

886 | e

887 20 IF (K.LE.10) GO TO 30

888 IF (DS(J,K).LE.1.0E-5.AND.TMPXX.LE.1.0E-5) GO TO 30
889 DASC=DSFK*TMPX

890 GAA(K)=GAA(K)+(DASC*IFAC)

891 DASC1=(DSFK*TMPX)-(1.0/(TMPDV*FK))

892 GBB(K)=GBB(K)+(DASC1*IFAC)

893 = mmmemmeemmmmeeo -

894 30 X=X+H

895

896 35 CONTINUE

897

898 GAA(K)=GAA(K)*H*0.75

899 GBB(K)=GBB(K)*H*0.75

900 GA(K) =GA(K)*H*0.375

901 GB(K) =GB(K)*H*0.375

902 100 CONTINUE

903

904 2K % X % K ok oK XK 3K K K XK XK K K XK M XK X XK K XK K X 3K XK K XK K XK 3k X X X XK XK X% 3 Xk X X k 5 3k X %k XK K XK % XK % XK K XK ¥ K XK X
905

906

907 TNNM1=SQRT((XS(U)=-XS(U=1))**2+(YS(J)-YS(U-1))*x*2)
908 TNPIN=SQRT((XS(U+1)-XS(J) ) **2+(YS(U+1)-YS(J))**2)
909 TNNMH=SQRT ( (0.5*(XS(J)=-XS(J=-1)))**2+(0.5*(YS(U)-YS(J=-1)))=**2)
910 TNPHN=SQRT((0.5*(XS(J)-XS(J+1)))**2+(0.5*(YS(JU)=YS(J+1)))**2)
911

912

913 BETA(1) =2*SQRT(RQPH1*RHN) /DSS(J, 1)

914 BETA(2) =2=SQRT(RQPH1*RHNM1)/DSS(J,2)

815 BETA(3) =2*SQRT(RQPH1*RHNMH)/DSS(J,3)

916 BETA(4) =2*SQRT(RQPH1*RHNP1)/DSS(J,4)

917 BETA(5) =2*SQRT(RQPH1*RHNPH)/DSS(J,5)

918 BETA(6) =2*SQRT(RQMH1*RHNMH)/DSS(J,6)

219 BETA(7) =2*SQRT(RQMH1*RHNM1)/DSS(J,7)

820 BETA(8) =2*SQRT(RQMH1*RHN) /DSS(J,8)

921 BETA(S) =2*SQRT(RQMH1*RHNP1)/DSS(J,9)

922 BETA(10)=2*SQRT(RQMH1*RHNPH)/DSS(J, 10)

923 BETA(11)=2*SQRT(RQ1*RHN) /DSS(dJ,11)

924 BETA(12)=2*SQRT(RQ1*RHNMH) /DSS(J, 12)

925 BETA(13)=2*SQRT(RQ1*RHNMQ) /DSS(J, 13)

926 BETA(14)=2*SQRT(RQ1*RHNPH) /DSS(J, 14)

8927 BETA(15)=2*SQRT(RQ1*RHNPQ) /DSS(J, 15)

928

929 Check if log function can be performed

930

931 GG4(1)=0.0

8932 IF(DS(. *).NE.0.0) GG4(1)=DS(uJ,1)*ALOG(FK*DS(J,1))
933 GG4(2):..0

934 IF(DS(¢ 2).NE.0.0) GG4(2)=DS(U,2)*ALOG(FK*DS(J,2))
935 GG4(4)-..0

936 IF(DS(JU,4).NE.O.0) GG4(4)=DS(J,4)*ALOG(FK*DS(J,4))
937 GG4(7)=0.0

938 IF(DS(J,7).NE.0.0) GG4(7)=DS(J,7)*ALOG(FK*DS(J,7))
939 GG4(8)=0.0

940 IF(DS(J,8).NE.O.0) GG4(8)=DS(J,8)*ALOG(FK*DS(J,8))
941 GG4(9)=0.0

942 IF(DS(J,9).NE.O.0) GG4(9)=DS(U,9)*ALOG(FK*DS(J,9))



943 GG4(11)=0.0

944 IF(DS(J,11).NE.0.0) GG4(11)=DS(J, 11)*ALOG(FK*DS(J,11))
845 GG4(12)=0.0

946 IF(DS(U,12).NE.0.0) GG4(12)=DS(J, 12)*ALOG(FK*DS(J, 12))
947 GG4(14)=0.0

948 IF(DS(J,14).NE.0.0) GG4(14)=DS(J, 14)*ALOG(FK*DS(J, 14))
948

850

951 GG3(1)=(TNNM1-GG4(1)-GG4(2))

952 GG3(2)=(TNNM1-GG4(7)-GG4(8))

953 GG3(3)=(TNPIN-GG4(1)-GG4(4))

954 ~ GG3(4)=(TNP1IN-GG4(8)-GG4(9))

955 GG3(5)=(TNNMH-GG4(11)-GG4(12))

956 GG3(6)=(TNPHN-GG4(11)-GG4(14))

957 GG3(7)=(TNNMH-GG4(11)-GG4(12))

958 GG3(8)=(TNPHN-GG4(11)-GG4(14))

959

960 DS must be positive, all 15 entries must have valid value
961

862

963 If an entry of DS array does meet the condition below,
964 then, it will be processed by using direct calculation.
965 Otherwise, use the approximation method.

866 **x j. e. If the observation point is within the source
967 region --- use approximation x**

968

963 FLAG1=0

870 FLAG8=0

971 FLAG11=0

972

Q73 Flags are down, which means that GA1, GA8, GA11 have

874 not been approximated yet.

975

976 K 2 K K X 3k ok koK K XK XK X 3K XK XK K K XK X kK 3k XK 3 Xk XK XK kK X XK XK XK Xk X 5 XK Xk Xk X X kK X XK XK X Xk X

977

978 —-=------ Calculate "G1"

979 IF ((DS(JU,1).GT.1.0E-5).AND.(DS(J,2).GT.1.0E-5)

980 * _AND.(DS(J,3).GT.1.0E-5)) GO TO 106
981

3982 FLAG1=1

983 CALL APPRMX(J,1,RQ1,RQMH1,RQPH1)

984 CALL APPRMX(J,2,RQ1,RQMH1,RQPH1)

985 CALL APPRMX(J,3,RQ1,RQMH1,RQPH1)

986 102 G1=(GAP(1)+GAP(2)+4.0*GAP(3))*(TNNM1*FK/6.0)+GG3(1)*2.0/RQPH1
987 GO TO 110

988 106 G1=(GA(1)+GA(2)+4.0*GA(3))*(TNNM1*FK/6.0)

989

39380

991 3k %k 3k 3k 2k ok 5k K K ok 3K 3K K X 3 %K K XK 3K % K K K XK K 3K K K X X X X kK Xk XK XK XK K XK K XK kK XKk KX

8992

993 W --------- Calculate "G2"

9384 110 IF ((DS(J,8).GT.1.0E-5).AND.(DS(J,7).GT.1.0E-5)

995 * .AND.(DS(J,6).GT.1.0E-5)) GO TO 116
996

997 FLAG8=1

998 CALL APPRMX(J,8,RQ1,RQMH1,RQPH1)

999 CALL APPRMX(J,7,RQ1,RQMH1,RQPH1)

1000 CALL APF *X(J,6,RQ1,RQMH1,RQPH1)

1001 112 G2=(GAP( > )+GAP(7)+4.0*GAP(6))*(TNNM1*FK/6.0)+GG3(2)*2.0/RQMH1
1002 GO TO {27

1003 116 G2=(GA(&)+GA(7)+4.0*GA(6))*(TNNM1*FK/6.0)

1004

1005

1006 23K M K K K K ok K 3K K K X K K XK K K K X % % XK K K K K 3K K K K ok K K 3K X % 3K X K XK XK XK XK ¥ XK X

1007

1008 === ----- Calculate "G3"

1009 120 IF ((DS(J,1).GT.1.0E-5).AND.(DS(J,4).GT.1.0E-5)

1010 * .AND.(DS(u,5).GT.1.0E-5)) GO TO 126



1011
1012
1013
1014
1015
1016
1017
1018
1018
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1048
1050
1051
1052
1053
1054
1055
1056
1057
1058
1058
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

124

126

X X % X

130

134

136

x* X X X

141

142

146

x* X Xk X

151

154

156

LEE 3 3

161

IF (FLAG1.EQ.O)

*CALL APPRMX(dJ,1,RQ1,RQMH1,RQPH1)

CALL APPRMX(J,4,RQ1,RQMH1,RQPH1)

CALL APPRMX(J,5,RQ1,RQMH1,RQPH1)
G3=(GAP(1)+GAP(4)+4.0*GAP(5))*(TNPIN*FK/6.0)+GG3(3)*2.0/RQPH1
GO TO 130

G3=(GA(1)+GA(4)+4.0*GA(5))*(TNPIN*FK/6.0)

3 3K 3K ok K XK XK K %K K XK XK 2K K ok Xk 3k 3 K Xk X 3k K X XK X %k 3K XK XK XK Xk X % Xk Xk Xk %k % X X X X

----- Calculate "G4"
IF ((DS(J,8).GT.1.0E-5).AND.(DS(J,9).GT.1.0E~-5)
* .AND.(DS(J,10).GT.1.0E-5)) GO TO 136

IF (FLAG8.EQ.O)
*CALL APPRMX(J,8,RQ1,RQMH1,RQPH1)

CALL APPRMX(J,9,RQ1,RQMH1,RQPH1)

CALL APPRMX(J, 10,RQ1,RQMH1,RQPH1)
G4=(GAP(8)+GAP(9)+4.0*GAP(10))*(TNPIN*FK/6.0)+GG3(4)*2.0/RQMH1
GO TO 141

G4=(GA(8)+GA(9)+4.0*GA(10))*(TNPIN*FK/6.0)

KK K A R K K KK K Xk XK K K K K K K K K Xk x 3k K XK kK Xk X Xk K K K % X %k Xk XK X X X K XK X

----- Calculate "G5", "G7"
IF (DS(J,11).GT.1.0E-5.AND.DS(J,12).GT.1.0E-5
* .AND.DS(U,13).GT.1.0E-5) GO TO 146

FLAG11=1

CALL APPRMX(J,11,RQ1,RQMH1,RQPH1)

CALL APPRMX(J, 12,RQ1,RQMH1,RQPH1)

CALL APPRMX(J, 13,RQ1,RQMH1,RQPH1)
G5=(GAP(11)+GAP(12)+4*GAP(13))*(TNNMH*FK/6.0)+GG3(5)*2.0/RQ1
G7=(GAAP(11)+GAAP(12)+4*GAAP(13))*(TNNMH*FK/6.0)+GG3(7)*2.0/RQ1
GO TO 151

G5=(GA(11)+GA(12)+4*GA(13))*(TNNMH*FK/6.0)
G7=(GAA(11)+GAA(12)+4*GAA(13))*(TNNMH*FK/6.0)

% %k Ok A R 3K K K XK XK K % K %K K K %k K K X K K XK K kK Xk XK XK X K XK K XK X Xk X Xk X XK XK XK kK

————— Calculate "G6", "G8"
IF (DS(JU,11).GT.1.0E-5.AND.DS(J, 14).GT.1.0E-5
* .AND.DS(J,15).GT.1.0E~-5) GO TO 156

IF (FLAG11.EQ.0)
*CALL APPRMX(J, 11,RQ1,RQMH1,RQPH1)
CALL APPRMX(J, 14,RQ1,RQMH1,RQPH1)
CALL APPRMX(J, 15,RQ1,RQMH1,RQPH1)
G6=(GAP(11)+GAP(14)+4*GAP(15))*(TNPHN*FK/6.0)+GG3(6)*2.0/RQ1
G8=(GAAP(11)+GAAP(14)+4*GAAP(15))*(TNPHN*FK/6.0)+GG3(8)*2.0/RQ1
GO TO 161
G6=(GA(11)+GA(14)+4*GA(15) )*(TNPHN*FK/6.0)
G8=(GAA(11)+GAA(14)+4*GAA(15) )*(TNPHN*FK/6.0)

Xk e ok 3K X K Kk K ok K K 3K K XK K XK K K K K K K 3K XK XK K K 3 K XK Xk XK XK XK K kK X XK K K XK

RETURN
END
SUBROUTINE MULTPY



1079 ****x*xx*x*x********x*****x********x************x**x**

1080

108 1 THIS SUBROUTINE SOLVES THE EQUATION FOR THE

1082 MATRICES [Z]1[J]=[E]

1083

1084 *x**x**xx******x**x**x*****************x*******x**x***

1085

1086 REAL XS ,YS ,DIS ,DSQ

1087 COMMON /SOURCE/ XS(100),YS(100),DIS(100),DSQ(100)

1088 REAL XB ,YB

1089 COMMON /OBSERV/ XB(100),YB(100)

1090 ] REAL DS ,DSS © ,THETA{,THETA2,INC
1091 COMMON /DISTNS/ DS(100,15),DSS(100,15),THETA1, THETA2, INC
1082 INTEGER DOTNUM, CURTYP
1093 REAL XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2

1094 COMMON /VARIAB/ XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM, CURTYP
1095 COMPLEX*8 GAA ,GA ,GAAP ,GAP

1096 COMMON /FOUIIS/ GAA(15),GA(15),GAAP(15),GAP(15)

1097 COMPLEX*8 G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

1098 COMMON /FOUIES/ G1.,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)
1099 INTEGER FOUIIN

1100 REAL FK,FRQNCY ,MEW,EPSILN,WAVE,DTR,BETA
1101 COMMON /VARIAC/ FOUIIN,FK,FRQNCY,MEW,EPSILN,WAVE,DTR,BETA(15)
1102 COMPLEX*8 VOLTGE , IMPEDC ,CURENT

1103 COMMON /VARIAD/ VOLTGE(100),IMPEDC(100),CURENT(100)

1104 COMPLEX =8 IMAGI

1105 COMMON /CNSTAN/ IMAGI

1106 COMPLEX*8 VOLT, IMP

1107 COMMON /INPUT/ VOLT,IMP

1108 COMPLEX*8 z

1109 COMMON /OUTPUT/ Z(99,99)

1110 INTEGER SOUMAX, OBSMAX

1111 COMMON /MAXIMN/ SOUMAX, OBSMAX ,

1112 INTEGER SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
1113 COMMON /ARRCTN/ SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
1114 REAL PI,RADIAN,Z0,XR1,YR1,XR2,YR2

1115 COMMON /CONSTN/ PI,RADIAN,Z0,XR1,YR1,XR2,YR2

1116 INTEGER INPUTF, MESSGE, REPORT, TERMIN

1147 COMMON /IOUNIT/ INPUTF, MESSGE, REPORT, TERMIN

1118

P T T e
1120 END OF COMMON

4424  mmmmmmm e e e oo oo -es—---—-—o--o-
1122

1123 COMPLEX*8 TEMPRA,TEMPRB,P

1124 INTEGER  JDX,JP1,UP2,11

1125

1126 N=SOUCTN-1

1127 IF (N.GT.1) GO TO 10

1128 CURENT(1)=VOLTGE(1)/2(1,1)

1129 GO TO 110

1130

1131 10 NM1=N-1

1132

1133 DO 80 I=1,NMt

1134 IP1=1+1

1135 IF (CABS(2(I,I)).NE.0.0) GO TO 50

1136 DO 20 J=IP1,N

1137 JDX=J

1138 IF (CABS(Z(J,I)).NE.0.0) GO TO 30

1139 20 CONTINUE

1140 WRITE (MESSGE,25) 1

1141 25 FORMAT(4H ,’Z MATRIX AT ‘,I3,’ ROW HAS ALL ZEROS')

1142 GO TO 110

1143 30 CONTINUE

1144 DO 40 K=1,N

1145 TEMPRA =Z(JDX,K)

1146 Z(JDX,K)=2(1,K)



1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1471
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

40

50

60

70
80

85

80

110

% X X x

x K %K X

Z(I,K) =TEMPRA
TEMPRB  =VOLTGE (JDX)
VOLTGE (JUDX)=VOLTGE(1)
VOLTGE(I)=TEMPRB

CONTINUE

DD 70 JP1=IP1,N

P=Z(JP1,1)/2(1,1)

DO 60 K=IP1,N
Z(JP1,K)=2(JP1,K)-P*Z(1,K)

CONTINUE
VOLTGE(JP1)=VOLTGE(JUP1)-P*VOLTGE(I) "
CONTINUE

CONTINUE

CURENT(N)=VOLTGE(N)/Z(N,N)

I1=NM1i+1

I1=I1-1

IF (I1.LT.1) GO TO 110

IP1=11+1

DO 90 UP2=IP1{,N
VOLTGE(I1)=VOLTGE(I1)-2(I1,JP2)*CURENT(UP2)
CONTINUE

CURENT(I1)=VOLTGE(I1)/Z(I1,I1)

GO TO 85

RETURN
END
SUBROUTINE ELTK(PK,ELTKP)

23K 2K XK K A K K K K K K K K K K K K K KK KK K K K K K K K ok K % oK X K XK K K XK K XK K XK X XK XK X K K XK X XK K XK X XK

THIS SUBROUTINE COMPUTES THE ELLIPTICAL FUNCTION

OF THE FIRST KIND K(M)

WHERE Mi=1-M

K(M)=AO+A 1 *MI+A2*M1**2+AZ*M1* *3+A4*M 1 ** 4~
(BO+B1*M1+B2*M1**2+B3*M1*x*3+B4*M1**4 ) *ALOG(M1)

FOR MAGNITUDE(ERROR) .LE. 2.0E-8

K K X K %K 3K % K K X K 3K 3K 3K Ok % % K oK K %k Xk % Kk 3k 3k 3k 3K 3K 3k XK %K % K 3K 3K M X A % d 3 K X Xk X % %K X XK XK XK K K X K X

REAL ELTKP,PK
DATA AO,A1,A2,A3,A4,BO,B1,B2,B3,B4/

$ 1.38629436112, .09666344259, .03590092383, .03742563713,
$ .01451196212, .5, . 12498593597, .06880248576,
$ .03328355346, .00441787012/

A=AQO+A1*PK

B=BO+B1*PK

IF (PK.LT.1.E-18) GO TO 10
A=A+A2% (PK**2)
B=B+B2*(PK**2)

IF (PK.LT.1.E-12) GO TO 10
A=A+A3* (PK**3)

B=B+B3* (PK**3)

IF (PK.LT.1.E-9) GO TO 10
A=A+A4* (PK**4)
B=B+B4*(PK**4)

CONTINUE
ELTKP=A-B*ALOG(PK)

RETURN
END
SUBROUTINE APPRMX(J,*-,RQ1,RQMH1,RQPH1)



1215
1216
1217
1218
1218
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

ok 3K % 3K K K K K K oK K K K KK K K K K 3 XK K 3 K K K 3K K K 5K 3K K %K K K % X K %k K 3K 5 % kK K X %K % X K K % X K K X XK

Calculating the
Calling routine

GAP value using the approximation.
--- GREENS

K 3K % oK K Kk 5K 3 K K K 3 K K K % K %K K 5K XK 3k 3 5K XK K 3K 3 X 3 K 3 XK XK 3k 3% X 3 5k 3 5 3 % % XK K XK Kk % % XK K K % K %

REAL

COMMON /SOURCE/
REAL

COMMON /OBSERV/
REAL

COMMON /DISTNS/
INTEGER

REAL

COMMON /VARIAB/
COMPLEX*8
COMMON /FOUIIS/
COMPLEX*8
COMMON /FOUIES/
INTEGER

REAL

COMMON /VARIAC/
COMPLEX*8
COMMON /VARIAD/
COMPLEX*8
COMMON /CNSTAN/
COMPLEX*8
COMMON /INPUT/
COMPLEX*8
COMMON /OUTPUT/
INTEGER

COMMON /MAXIMN/
INTEGER

COMMON /ARRCTN/
REAL

COMMON /CONSTN/
INTEGER

COMMON /IOUNIT/

INTEGER J,KK
REAL
REAL

GG1=0.0
GG2=0.0

XS L YS ,DIS ,DSQ
XS(100),YS(100),CIS(100),DSQ(100)
XB ,YB
XB(100),YB(100)
DS ,DSS ,THETA1,THETA2, INC
DS(100, 15),DSS( 100, 15), THETA1, THETA2, INC
DOTNUM, CURTYP

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2
XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,DOTNUM, CURTYP
GAA ,GA ,GAAP ,GAP
GAA(15),GA(15),GAAP(15),GAP(15)
G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB
G1,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)
FOUIIN

FK,FRQNCY,MEW,EPSILN,WAVE ,DTR,BETA
FOUIIN,FK,FRQNCY,MEW,EPSILN,WAVE,DTR,BETA(15)
VOLTGE , IMPEDC ,CURENT
VOLTGE(100), IMPEDC(100),CURENT(100)
IMAGI
IMAGI
VOLT, IMP
VOLT, IMP
z
2(99.,99)
SOUMAX,
SOUMAX,
SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG
PI,RADIAN,ZO,XR1,YR1,XR2,YR2
PI,RADIAN,ZO,XR1,YR1,XR2,YR2
INPUTF, MESSGE, REPORT, TERMIN
INPUTF, MESSGE, REPORT, TERMIN

OBSMAX
OBSMAX

RQ1,RQMH1,RQPH1
GG1,GG2,

PK

3 A 3K oK K XK K K K K K K K 3k K XK X K %K % % 3k k3K % K % K % % K XK XK XK XK XK X XK

PK=1-BETA(KK)
IF (KK.GT.5) GO

T0 20

ok ok ok oK 3K 3K K K K K XK 3Kk K K X K Kk 3k X 3Kk 3K K K K K Kk K X K K Kk K X K Xk

IF(DS(J,KK).GT.1.0E-5.AND.PK.GT.0) GO TO 15

GG1=AL0OG(4.0)*0

.5/ (RQPH1*FK)

GG2=ALOG(FK*DSS(U,KK))*0.5/(RQPH1*FK)

GO TO 40

CALL ELTK(PK,ELTKP)
GG1=ELTKP/(FK*DSS(J,KK))
GG2=ALOG(FK*DS(J,KK)*0.5/(RQPH1*FK)

GO TO 40
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20 IF (KK.GT.10) GO TO 30

3 3k ok ok K 3K K K XK K K K K XK K K X X K XK K X K XK K K K X K XK K K X XK XK XK K

IF(DS(J,KK).GT.1.0E-5.AND.PK.GT.0) GO TO 25
GG1=AL0OG(4.0)*0.5/(RQMH1*FK)
GG2=ALOG(FK*DSS(J,KK))*0.5/(RQMH1*FK)

GO TO 40

25 CALL ELTK(PK,ELTKP)

GG1=ELTKP/(FK*DSS(U,KK))
GG2=ALOG(FK*DS(U,KK))*0.5/(RQMH1*FK)

GO TO 40

3 3K X K K 3K K K K K XK X XK K X 3K K XK XK kK 2k K K K XK XK K K X X X Xk kK XK X Xk XKk

30 IF(DS(J,KK).GT.1.0E-5.AND.PK.GT.0) GO TO 33

GG1=AL0OG(4.0)*0.5/(RQ1*FK)
GG2=ALOG(FK*DSS(U,KK))*0.5/(RQ1*FK)

GO TO 35

33 CALL ELTK(PK,ELTKP)

GG1=ELTKP/(FK*DSS(U,KK))
GG2=ALOG(FK*DS(J,KK))*0.5/(RQ1*FK)

RETURN
END

35 GAAP(KK)=((GG1+GG2)*4.0+GBB(KK))
40 GAP(KK)=((GG1+GG2)*4.0+GB(KK))

SUBROUTINE FARFLD

This routine is

REAL

COMMON /SOURCE/
REAL

COMMON /OBSERV/
REAL

COMMON /DISTNS/
INTEGER

REAL

COMMON /VARIAB/
COMPLEX*8
COMMON /FOUIIS/
COMPLEX*8
COMMON /FOUIES/
INTEGER

REAL

COMMON /VARIAC/
COMPLEX*8
COMMON /VARIAD/
COMPLEX*8
COMMON  "“ISTAN/
COMPLEX "¢
COMMON  "“PUT/
COMPLEX

COMMON /OUTPUT/
INTEGER

COMMON /MAXIMN/
INTEGER

COMMON /ARRCTN/
REAL

COMMON /CONSTN/

**x***xx******x**i*****i*t*****x*it***x*xx*x*x*x*m*xt****x*x*x:**

used to calculate the far field pattern.

% kK kK K K 3K K K K K 3K k3K Xk ik kK ok 3Kk Xk 3k 3k 3K X 3 Xk K XK K 3K XK K X 3K 3K K XK K XK XK % M K %k %K Xk XK X % XK 3 XK XK 3 X Xk X X K X XX

XS .YS ,DIS ,DSQ
XS(100),YS(100),D1S(100),DSQ(100)

XB ,YB

XB(100),YB(100)

DS ,DSS ,THETA1, THETA2, INC

DS(100, 15),DSS(100,15), THETA1, THETA2, INC
DOTNUM, CURTYP

XS1,YS1,XS2,Y52,XB1,YB1,XB2, YB2

XS1,YS1,XS2,YS2,XB1,YB1,XB2,YB2,D0OTNUM, CURTYP

GAA ,GA , GAAP , GAP

GAA(15),GA(15),GAAP(15),GAP(15)

G1,G2,G3,G4,G5,G6,G7,G8,GB ,GBB

G1,G2,G3,G4,G5,G6,G7,G8,GB(15),GBB(15)

FOUIIN

FK,FRQNCY ,MEW,EPSILN,WAVE ,DTR,BETA

FOUIIN,FK,FRQNCY,MEW,EPSILN,WAVE ,DTR,BETA(15)

VOLTGE , IMPEDC , CURENT

VOLTGE(100), IMPEDC(100),CURENT(100)

IMAGI

IMAGI

VOLT, IMP

VOLT, IMP

Z

2(99,99)

SOUMAX, OBSMAX

SOUMAX, OBSMAX

SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX,LASTSG

SOUCTN, OBSCTN,RECCTN,PTR,IM,FARIDX.LASTSG

PI,RADIAN,ZO,XR1,YR1,XR2,YR2

PI,RADIAN,Z0O,XR1,YR1,XR2,YR2
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1385
1386
1387
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1390
1391
1382
1383
1394
1395
1386
1397
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INTEGER INPUTF, MESSGE, REPORT, TERMIN
COMMON /IOUNIT/ INPUTF, MESSGE, REPORT, TERMIN

COMPLEX*8 BZ1 ,BZO ,FUNCTN
COMPLEX*8 EQTNA,EQTNB,EQTNC ,EQTND
COMPLEX*8 FELD ,EQf

REAL RFB ,KPS X A ,B JH
REAL THETA,XSMID,YSMID,DXYS1,DXYS2
REAL LAMF | LAMS{1,LAMS2

REAL SIN1 ,COSt1 ,REALP1,REALP2

IF (THETA1.LE.O.O.AND.THETA2.LE.0.0) GO TO 990
WRITE (MESSGE, 1)

1 FORMAT(1H ,/,1H .,/)
WRITE(MESSGE,5)

5 FORMAT(1H , 15X, ’'Far Field’,/,1H ,3X,’Theta’,8X, ’'(Mag)’,9X, 'Phase’)
THETA=THETA1
RFB = 10.0 * WAVE

20 BZ0O=CMPLX(0.0,0.0)

BZ1=CMPLX(0.0,0.0)
FELD=CMPLX(0.0.0.0)

DO 100 J = 2, SOUCTN

XSMID=XS(J)-XS(J-1)
YSMID=YS(J)-YS(J-1)
DXYS1=SQRT(XSMID**2+YSMID**2)
LAMF =DTR*THETA

IF (YS(J).EQ.YS(U-1)) GO TO 30
LAMS 1=ATAN(XSMID/YSMID)

GO TO 35

30 LAMS1=80*DTR

35 XSMID=XS(J+1)-XS(J)
YSMID=YS(J+1)-YS(J)
DXYS2=SQRT(XSMID**2+YSMID**2)
IF (YS(JU+1).EQ.YS(J)) GO TO 40
LAMS2=ATAN(XSMID/YSMID)
GO TO 45

40 LAMS2=90*DTR
45 SIN1 =SIN(LAMF)
CO0S1 =COS(LAMF)

KPS=FK*XS(J)*SIN(LAMF)

A=0.0

B=PI*2.0

H=PI%*2.0/30.0

X=A

IF (LAMS1.EQ.(S90.0*DTR)) GO TO 55

BZO=((CM" “(COS(KPS*COS(A)),SIN(KPS*COS(A))))+

* (CM _«(COS(KPS*COS(B)),SIN(KPS*COS(B)))))/2.0
DO 50 ¥ 1, 29

X =X+H

BZO=BZO~i CMPLX(COS(KPS*COS(X)),SIN(KPS*COS(X))))
50 CONTINUE

BZ0O=BZO*H

GO TO 70

55 BZ1=(CMPLX(COS(KPS*COS(A)+A),SIN(KPS*COS(A)+A))+
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1454

*

60

70

80

%*

100

120
140
110

980

CMPLX (COS(KPS*COS(B)+B),SIN(KPS*COS(B)+B)))/2.0
DO 60 K = 1, 29
X=X+H
FUNCTN=CMPLX(COS(KPS*COS(X)+X),SIN(KPS*COS(X)+X))
BZ1=BZ1+FUNCTN
CONTINUE
BZ1=BZ1*H*IMAGI

EQTNA=COS1*SIN(LAMS1)*DXYS1*BZ1*IMAGI
EQTNB=COS1*SIN(LAMS2)*DXYS2*BZ1*IMAGI
EQTNC=SIN1*COS(LAMS1)*DXYS1*BZO* (CMPLX(COS(FK*YS(J)*COS(LAMF)),
SIN(FK*YS(J)*COS(LAMF))))
EQTND=SIN1*COS(LAMS2)>*DXYS2*BZO*(CMPLX(COS(FK*YS(J)*COS(LAMF)),
SIN(FK*YS(J)*COS(LAMF))))

EQ1=(FK*ZO*0.5*IMAGI)*(EQTNA+EQTNB-EQTNC-EQTND)/
RFB
FELD=(EQ1*CURENT(J-1))/(PI*PI1*4.0)+FELD
CONTINUE

AMP=CABS(FELD)

REALP1=AIMAG(FELD)

REALP2= REAL(FELD)

IF (REALP2.NE.0.0) GO TO 120
PHASE=0.0

GO TO 140
PHASE=RADIAN*ATAN2(REALP1,REALP2)
WRITE(MESSGE, 110) THETA,AMP, PHASE
FORMAT(1H ,2X,F7.2,3X,E12.4,5X,F7.2)

THETA=THETA+INC
IF(THETA.LE.THETA2) GO TO 20
RETURN

END
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Appendix B. Singularity Analysis of Self Terms for

the Geometry of Revolution

When an observation point fallé within the source
segment, the integrals described in Eg.(3.28) may have
singular integrands. A brief procedure of evaluating the
integrals is shown here. A more detailed analysis can be
found in reference [30].

Throughout this section, we employ the coordinate

parameter valid for

t. . < t < t.
-1 = = 7]
z = Z2 goq ¥ b cosy; (B.1a)
n = Logeq L sinyj (B.1b)
0 < 2 < At
=" =]
Where
f. =t_tj_1

For self terms, we can apply equations

(z - z")

(2 -2") cosyy (B.2a)

(r=-n") = (L-2") Sinyj (B.2b)
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For the self term, the M integral may be written as

22 m e-ij
M = [ [ ————— cos(ma) do d2' (B.3a)
£1 -7 R
and
R=[(n - n')2+ 2an' (1 - cosa) + (z - z')2]1/2 (B.3b)

As t ->t' and o -> 0, R -> 0, the integrand of

(B.3a) is cleary singular. Then we can define

M o= I, + I, (B.4)
where
Z2 T e-ij 1
1,= [ [ [——— cos(ma) - - ] da 42’
Ly =m R R (B.5a)
Z2 T 1
1, = | [ — do 4’ (B.5b)
2 21 -7 R

Since the integrand I, is no longer singular, I, may be

evaluated numer‘cally with a single change of variable.

I,= 4 [ —¢ K@) a (B.6)
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where

2

R = [(n+ )% (2 -2")

2 ]% (B.7)

and K(u) is the complete elliptical integral of the

first kind defined by

T

1

K(u) = r dé (B.8)
é [1 - uzsin2¢]2

with

Ny

2 (n n")

The integrand of Eqg.(B.6) is still singular. However,

near the singularity at t = t', it varies as

> — [(1n(4)+1n(R,)-1n(R,)]

2 tst’ 21 (B.10)

where

1
%2

R, = [(n- )% (z-22%] (B.11)

At this point, .aly the last term is singular, we can

add and subtract the singular term in Eg.(B.6) to obtain

I, = 15+ 1IJ (B.12)
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where
i 1 1
1= 4[] [— K(u) +— In(Ry)] d (B.13)
21 R2 2n
2 t
1 = - — [ In(R,) at' (B.14)
n 2

Now, the integral Ié does not have a singular integrand,
so the integral Ig can be evaluated analytically by

the parameterization of Eg.(B.1) as follows

2 t
Iy = —— [ 1n [£- '] &L
n 21

N

- = Ly £y = (7 0 Ity D)

- (£'£1) ln(K-ZT)] (B.15)

The integrals I, Ié and I5 can thus be integrated

numerically, and the M integral can be evaluated by

M = I, + 1! +1'2' (B.16)
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